WO2012050027A1 - Device for testing liquid container - Google Patents

Device for testing liquid container Download PDF

Info

Publication number
WO2012050027A1
WO2012050027A1 PCT/JP2011/072979 JP2011072979W WO2012050027A1 WO 2012050027 A1 WO2012050027 A1 WO 2012050027A1 JP 2011072979 W JP2011072979 W JP 2011072979W WO 2012050027 A1 WO2012050027 A1 WO 2012050027A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
electromagnet
microphone
bin
vibration
Prior art date
Application number
PCT/JP2011/072979
Other languages
French (fr)
Japanese (ja)
Inventor
川井 重弥
朝巳 小田
平石 和弘
Original Assignee
ディ・アイ・エンジニアリング株式会社
麒麟麦酒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディ・アイ・エンジニアリング株式会社, 麒麟麦酒株式会社 filed Critical ディ・アイ・エンジニアリング株式会社
Publication of WO2012050027A1 publication Critical patent/WO2012050027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Definitions

  • the present invention relates to an inspection apparatus for detecting a cracked portion of a container filled with a liquid.
  • a magnetic coil applies an electromagnetic pulse to the stopper of the container to cause mechanical vibration in the stopper, and the vibration propagates through the space in the container to cause the interface between the liquid and the gas and the liquid and the container material By reflecting at the interface, a standing wave is generated in the container. Then, frequency analysis of the vibration noise of the plug and the standing noise of the plug captured by the microphone within a predetermined time (for example, 10 ms) from the electromagnetic impact of the electromagnetic pulse is performed, and the container is filled from the peak frequency shown in this frequency analysis result The fill level of the dispensed liquid can be determined. It is also shown that cracks or cracks in the wall of the container can be recognized from the frequency analysis results.
  • the microphone captures the vibration noise of the high amplitude plug and the low frequency stationary wave generated in 10 ms from the electromagnetic impact of the electromagnetic pulse, but the standing wave formed in the container has the amplitude The vibration of the large plug continues to be affected until it damps. For this reason, it is possible to detect the filling level of the liquid appearing in the standing wave, but it is difficult to identify the presence of container cracks or cracks appearing as an amplitude smaller than that of the standing wave.
  • An object of the present invention is to provide an inspection apparatus capable of identifying a place where a container is present in addition to the presence of a crack or a crack of the container.
  • a cylindrical electromagnet for emitting an electromagnetic wave to a liquid container sealed with a metal plug and a central electromagnet of the electromagnet are disposed to capture the vibration noise of the plug generated by the radiation of the electromagnetic wave.
  • a space between the side surface of the microphone and the inner surface of the electromagnet and a position of each of the end surfaces of the electromagnet and the microphone facing the plug of the container It is characterized in that they are arranged in agreement.
  • the microphone can capture the vibration noise of the stationary wave with a small amplitude without distortion, without being affected by the vibration of the plug having a large amplitude, thereby identifying the presence of a crack or a crack included in the stationary wave and Locations such as cracks can be identified.
  • the inspection apparatus includes an excitation power supply for supplying excitation power to the electromagnet, a container detection sensor for detecting the container located below the electromagnet, and quality determination data for determining the quality of a container to be inspected.
  • Power is supplied from the excitation power supply to the electromagnet according to a storage device storing the storage device and the container detection sensor, and vibration noise of the material of the container excited by the vibration of the plug by the electromagnetic wave is detected.
  • an analysis device for receiving through the microphone, wherein the analysis device is a container material that appears after disappearance of a standing wave formed in the interior space of the container with the decay time of the plug's vibration having elapsed from the electromagnetic impact of the electromagnet.
  • the power intensity area value of the vibration noise of the container material in a plurality of frequency regions is calculated based on the frequency characteristics and the power intensity of the vibration noise, and the power intensity area value It is preferable to determine the quality of the container by comparing the quality determination data stored in the storage device.
  • the container transported below the electromagnet by comparing the power intensity area value of the vibration noise of the container material in a plurality of frequency regions with the quality determination data stored in the storage device. It is possible to determine the quality of the
  • the storage device stores the power intensity area values of a plurality of types of defective product containers as the quality determination data
  • the analysis device determines the power intensity area values of the container and the power intensity area values of the defective product containers. It is preferable to distinguish the defective portion of the container when the two coincide with each other.
  • the analysis device compares the power intensity area value of the container with the power intensity area value of the defective container stored in the storage device, and the defective portion of the container on the condition that both match. Can be determined.
  • the analysis device Fourier-transforms a calculation result obtained by multiplying a sounding signal of vibration sound of the container by a Hanning window function.
  • the front view of the inspection apparatus and liquid container of embodiment of this invention The expanded sectional view of the inspection apparatus of FIG.
  • the block diagram showing the composition of the inspection device of an embodiment.
  • the graph which shows the frequency analysis result of the container by the inspection device of an embodiment.
  • the inspection apparatus of the embodiment shown in FIGS. 1 to 3 uses the bottle 10 sealed by the stopper 12 as a container to be inspected, detects the presence of a defect such as a crack or a chip, and identifies the location of the defect To do the inspection.
  • the inspection apparatus includes an electromagnet 14 that radiates an electromagnetic wave to the bin 10 transported downward, and a microphone 16 that is disposed on the central axis of the electromagnet 14 and captures vibration sound of the bin 10 (for example, fixed to a diaphragm A condenser microphone having a plate, a cover 18 for covering the outer periphery of the electromagnet 14, a cylindrical member 20 for supporting the inner surface of the cover 18 and the electromagnet 14, and an inner peripheral side of the cylindrical member 20 to support the top of the microphone 16 A microphone support member 22 and a holding member 24 for suspending and supporting the microphone support member 22 from above.
  • a microphone 16 that is disposed on the central axis of the electromagnet 14 and captures vibration sound of the bin 10 (for example, fixed to a diaphragm A condenser microphone having a plate, a cover 18 for covering the outer periphery of the electromagnet 14, a cylindrical member 20 for supporting the inner surface of the cover 18 and the electromagnet 14, and an inner peripheral
  • the bottle 10 is filled with a liquid (for example, a soft drink), and is sealed at the top by a metal cap 12 in the form of a crown.
  • a gas for example, carbon dioxide gas or nitrogen gas
  • the plug 12 is enclosed between the plug 12 and the liquid.
  • the bins 10 are placed on a metal or resin carrier plate 26 and conveyed, for example, by a conveyor from the front or rear in the figure to the lower side of the electromagnets 14.
  • the microphone 16 captures the vibration noise of the plug 12 excited by the electromagnetic impact of the electromagnetic wave emitted from the electromagnet 14.
  • the vibration noise of the plug 12 is output from the microphone 16 as an analog signal including the frequency characteristic of the plug 12 and the frequency characteristic of the bin 10.
  • the cylindrical member 20 is in close contact with the inner surface of the electromagnet 14 and the upper inner surface of the cover 18, and extends in the vertical direction to separate the space 26 from the microphone support member 22. Therefore, the space 26 sandwiched between the microphone support member 22 and the cylindrical member 20 has low acoustic resistance, and reduces the generation of a reflected wave due to the vibration of air transmitted through the space 26.
  • the microphone 16 causes the reflected sound generated by the electromagnet 14 to pass below the microphone 16 and prevents the reflected sound from being incident on the microphone 16 by matching the lower position of the microphone 16 with the lower position of the electromagnet 14.
  • the microphone 16 is surrounded by a space 26 between the outer periphery thereof and the inner periphery of the cylindrical member 20, and the microphone 16 and the cover 12 are separated by air. Vibration noise can be passed upward as vibration of air. Second, since the reflected sound from the vibration sound of the plug 12 does not occur in the space 26, the microphone 16 can capture the vibration sound of the plug 12 without distortion. Third, the reflected sound from the electromagnet 14 due to the vibration sound of the plug 12 can be blocked. As a result, the microphone 16 can further improve the sound collection effect of the vibration sound from the plug 12.
  • the microphone support member 22 is preferably formed of a hollow resin-made pipe, and the upper portion thereof is fixed to the holding member 24 by a fixing member (for example, a screw) 28.
  • a fixing member for example, a screw
  • the microphone 16 is attached to the lower part of the microphone support member 22 and the lower position of the microphone 16 is aligned with the lower position of the electromagnet 14 so as to be suspended from the holding member 24.
  • the present invention is not limited to the configuration in which the lower position of the microphone 16 completely matches the lower position of the electromagnet 14.
  • the fixation by the fixation member 28 is released and the fixation position of the microphone support member 22 is adjusted in the vertical direction, the resonance sound generated in the cylindrical space of the central axis of the electromagnet 14 is fixed again by the fixation member 28. It can also be attenuated.
  • the microphone support member 22 inserts the microphone wiring 30 electrically connected to the microphone 16, and cuts off the microphone wiring 30 and the space 26. Therefore, the acoustic resistance of the space 26 is not increased by the microphone wiring 30.
  • the holding member 24 is fixed to the upper surface of the base plate 32 via the fixing portion 34.
  • the upper surface of the cover 18 is fixed to the lower surface of the base plate 32. Further, the base plate 32 and the fixing portion 34 penetrate the coil wire 36 in the vertical direction and introduce the coil wire 36 from the side surface of the cover 18 to the electromagnet 14.
  • the base plate 32 includes extensions 32a and 32b facing downward from both sides at a distance from the head space of the bin 10.
  • the extension 32 a places the bin detection sensor 38 a toward the head space of the bin 10
  • the extension 32 b places the bin detection sensor 38 b toward the head space of the bin 10.
  • the bin detection sensor 38a is preferably a transmission type or reflection type photoelectric sensor that emits a light beam toward the bin detection sensor 38b positioned in the horizontal direction to form an optical axis.
  • a glass detection type sensor of the bin 10 can also be applied as a bin detection sensor as long as it can detect the transported bin 10.
  • FIG. 2 is a cross-sectional view of the inspection apparatus of the present embodiment.
  • the inspection apparatus includes a cylindrical cover 18, an electromagnet 14 supported on the lower inner surface of the cover 18, a microphone 16 disposed on the central axis of the electromagnet 14, and a microphone support member 22 vertically suspending the microphone 16 from above. And the cylindrical member 20 surrounding the space 26 from the outer periphery of the microphone 16 and the microphone support member 22.
  • the electromagnet 14 includes a cylindrical magnetic core 40 surrounding the cylindrical member 20, and a conductive coil winding 42 winding the outer periphery of the magnetic core 40.
  • the lower portion of the magnetic core 40 is a cylindrical member. It is arranged to coincide with the lower position of 20.
  • the magnetic core 40 is formed by laminating thin strips of amorphous material having high initial permeability, and reduces the hysteresis loss as well as the response frequency.
  • the magnetic core 40 is made of a material comprising an iron-based, silicon, and an amorphous ribbon which rapidly solidifies a high-temperature melt containing boron and a small amount of copper-niobium at about 1,000,000 ° C./sec. It is preferable to use a thin film laminate having a crystal grain diameter of 10 nm, which is heat-treated at a crystallization temperature or higher.
  • the cylindrical member 20 surrounds the outer periphery of the microphone 16 and the microphone support member 22 with a space 26 for passing air vibration, so the cylindrical member 20 extends from the lower portion of the cylindrical member 20 and the microphone 16 to the upper portion of the cylindrical member 20. Space 26 is formed. Thereby, the vibration of air due to the vibration noise of the plug 12 can be made to enter the lower part of the space 26, and the vibration of this air can be released from the upper part of the space 26.
  • the microphone 16 can improve the sound collection effect of the vibration sound of the plug 12 and can block the incidence of the reflected sound of the plug 12 from the electromagnet 14.
  • FIG. 3 is a block diagram of the inspection apparatus of the present embodiment.
  • the inspection apparatus includes the electromagnet 14, the spare electromagnet 14a, the microphone 16 disposed on the central axis of the electromagnet 14, the bin detection sensor 38, the coil excitation power supply 44, the microphone 16 and the coil excitation power supply 44, and the bin detection sensor 38. And an analyzing device 46 to be connected.
  • the electromagnet 14 and the spare electromagnet 14a are both connected to the coil excitation power supply 44, and the control program of the analyzer 46 radiates an electromagnetic wave toward the bin 10 and the bin 10a at respective timings.
  • the coil excitation power supply 44 controls the excitation timing by adjusting the voltage of the excitation power supplied by the user to the electromagnet 14 and the auxiliary electromagnet 14a, the excitation timing, and the pulse width, and setting the channel of the excitation coil. .
  • the coil excitation power supply 44 is a single channel coil excitation power supply 44 that supplies excitation power only from the coil excitation power supply 44 to the electromagnet 14 by channel setting, and two electromagnets of the electromagnet 14 and the spare electromagnet 14a. It is possible to select any one of the multi-channel coil excitation power supplies 44 which respectively supply the excitation power.
  • the spare electromagnet 14a is provided above the bin 10a standing by upstream of the bin 10, and applies an electromagnetic impact to the plug 12a of the bin 10a to remove the residual stress of the plug 12a.
  • the container 10a can be transported to the lower side of the electromagnet 14 to receive the electromagnetic impact of the electromagnet 14, and the inspection accuracy can be further improved.
  • the analysis device 46 internally includes a control device 48 (hereinafter referred to as "CPU 48"), a random access memory 50 (hereinafter referred to as "RAM 50"), a measurement trigger input unit 52, and an excitation trigger output.
  • Unit 54 an amplification unit 56, a display screen 58, a data storage storage device 60, a defect determination unit 62, a measured value output unit 64, and a power supply 68. Power is supplied from the power supply 68 to each member Be done.
  • the CPU 48 controls the RAM 50, the measurement trigger input unit 52, the excitation trigger output unit 54, the amplification unit 56, the display screen 58, the data storage memory 60, the defect determination unit 62, and the measurement value output unit 64 via the bus 66. Connecting.
  • the analysis device 46 is connected to the external condition monitoring lamp 70, the discharge device 72, and the external storage device 74, and reports the container determination result for identifying the quality of the bin 10 from the condition monitoring lamp 70. Further, a discharge signal is transmitted from the failure determination unit 62 to the discharge device 72, and the bin 10 is transported to a container failure line (not shown). Further, vibration sound data of the container and frequency analysis data of the container are output from the measurement value output unit 64 to the external storage device 74.
  • the amplification unit 56 receives an analog signal from the microphone 16, amplifies this analog signal, passes it through a filter, converts the analog signal to a digital signal, and sends a digital signal to the RAM 50 via the bus 66 according to a command from the CPU 48. Write.
  • the amplification unit 56 preferably receives vibration sound data of the bin 10 of at least 40 ms from the microphone 16 and outputs a 2,048-bit digital signal in order to obtain 10 Hz frequency resolution.
  • a waveform of an analog signal received from the microphone 16 On the display screen 58, a waveform of an analog signal received from the microphone 16, a waveform of a digital signal stored in the RAM 50, and a frequency analysis result in which the CPU 48 performs a Fourier transform on the digital signal read from the RAM 50 and outputs it. And a menu screen for setting analysis parameters of the analysis device 46.
  • the data storage storage device 60 stores, for example, quality determination data generated by inspecting 100 bins 10 in advance with an inspection device.
  • the 100 bottles include good bottles, bad bottles, bottle opening cracks, bottle inner wall cracks, bottle outer wall cracks, bottle bottom cracks, and liquid filling amount.
  • the data storage memory 60 stores the limit value of the area value of the waveform shown in the frequency analysis result of the bin 10 as the non-defective bin and the defective bin as the pass / fail determination data. This limit value is set in a plurality of frequency regions.
  • the first frequency range (7000 to 8000 Hz) has an intensity area of 200,000 or more
  • the second frequency range (6000 to 7000 Hz) has an intensity area of 100,000 or more
  • the region (7200-7500 Hz) has an intensity area of 150,000 or more
  • the fourth frequency region (6500-6800 Hz) has an intensity area of 150,000 or less
  • the fifth frequency region (5800 to 6100 Hz) has an intensity area of less than 100,000
  • the sixth frequency range (5100-5400 Hz) has an intensity area of more than 50,000.
  • the intensity area of the defective bin intended for the vial can not satisfy one or more limit values of the intensity areas of the first to fifth frequency regions described above.
  • bottle open crack, bottle inner wall crack, bottle outer wall crack, bottle bottom crack, strength area of defective bottle including liquid filling defect, K-bin defect, T-bin defect, outer bottle defect (bin outer wall crack), liquid Unfilled empty bottle failure, internal bottle failure, low filling bottle failure with insufficient liquid filling, high filling bottle failure with excessive liquid filling are exemplified.
  • the low fill bin failure intensity area does not meet the limit value of more than 200,000.
  • the intensity area of all the bad bins meets the limit of more than 100,000.
  • the strength areas of K-bin failure, outer-bin failure, low-fill-bin failure, empty-bin failure, inner-bin failure, and low-fill-bin failure do not satisfy the limit value of 150,000 or more.
  • the intensity area of T-bin failure and inner-bin failure does not satisfy the limit value of 150,000 or less.
  • the intensity area of low filling bin defects does not meet the limit value of 100,000 or less.
  • the intensity area of the empty bin defect does not satisfy the limit value of 50,000 or more.
  • determination result data for each frequency domain is stored in which the determination result of the bin 10 is expressed by the numbers "1" and "0". For example, when the frequency domain limit value is satisfied, the determination result data of the determination result “1” is stored, and when the limit value is not satisfied, the determination result data of “0” is stored.
  • the non-defective bins are specified in the first to sixth frequency ranges in the six-digit "111111" comprehensive determination result data.
  • the K-bin failure is specified by the six digits “110111” of the comprehensive determination result data in the order of the first to sixth frequency regions.
  • the T-bin failure is specified in the first to sixth frequency regions in the six-digit comprehensive judgment result data of “111101”.
  • the outer bin defect is specified in the first to sixth frequency ranges in the six-digit comprehensive determination result data of “110111”.
  • the empty bin defect is specified in the first to sixth frequency regions in the six-digit "111110" comprehensive determination result data.
  • the inner bin defect is specified in the first to sixth frequency regions in the order of the six digits “110011” in the comprehensive judgment result data.
  • the low-filling-bin defect is specified in the first to sixth frequency ranges in the six-digit comprehensive determination result data of “110101”.
  • the high filling bin failure is specified by the six digits “010111” comprehensive determination result data in the order of the first to sixth frequency regions.
  • the limit values of the strength area of the non-defective bottles for large bottles are as follows.
  • the first frequency range (11800-12300 Hz) has an intensity area of 30,000 or more
  • the second frequency range (10200-10600 Hz) has an intensity area of 50,000 or more
  • the region (5300-5700 Hz) has an intensity area of 20,000 or more
  • the fourth frequency region (4000-4500 Hz) has an intensity area of 100,000 or more.
  • the bottle bottom crack defective bottle of the large bottle does not satisfy the limit value of the strength area of the non-defective bottle in all of the first to fourth frequency regions. For this reason, the comprehensive determination result data of the bin bottom crack defective bin can be specified by four digits “0000”.
  • the inspection device is filled with liquid prior to shipping from the factory producing the beverage, and checks whether there is a bottle defect such as cracking or chipping of the bottle 10 sealed with the stopper 12.
  • the inspection device is installed on the inspection line of the bin 10, and the carrier plate 26 moves below the electromagnetic coil 14 of the inspection device.
  • the bin 10 is placed on the transport plate 26 and transported below the electromagnetic coil 14.
  • the transfer plate 26 may be moved continuously by a conveyor, moved continuously by a turret that pivots the bin 10 axially, and stopped below the electromagnetic coil 14. In short, it is preferable to move the bin 10 horizontally while placing the bin 10, and to use means for damping the vibration noise transmitted from the conveyor or the turret.
  • the transfer plate 26 moves so that the center of the stopper 12 of the bin 10 passes the central axis of the electromagnetic coil 14.
  • the distance between the top surface of the plug 12 and the bottom surface of the electromagnetic coil 14 is set, for example, to maintain a distance of 2 to 4 mm.
  • a strong electromagnetic impact is applied to the plug 12 by setting the distance of 3 mm.
  • the distance between the microphone 16 and the plug 12 is set to maintain the illustrated interval of 2 to 4 mm.
  • the vibration noise of the plug 12 can be reliably captured.
  • the bin detection sensors 38a and 38b output the measurement trigger signal at the timing when the central axis of the plug 12 and the central axis of the electromagnet 14 coincide with each other while the bin 10 is conveyed below the electromagnet 14.
  • the horizontal and vertical positions of 38a and 38b are set.
  • the amplification unit 56 sets the amplification factor of the analog signal received from the microphone 16 in accordance with the movement speed or movement time of the bin 10. In addition, it is preferable that the amplification unit 56 be provided with an automatic gain control AGC circuit to feed back the amplified analog signal and automatically control the amplification factor of the analog signal received from the microphone 16.
  • the transfer speed of the carrier plate 26 is determined so as to secure a time for the inspection apparatus to receive the vibration noise of the plug 12 from the microphone 16 for a period of at least 40 ms.
  • the conveyance board 26 moves by the space
  • the analysis device 46 receives a measurement trigger signal for detecting the bin 10 conveyed below the electromagnet 14 from the container detection sensor 38 at the measurement trigger input unit 52.
  • the CPU 48 of the analysis device 46 responds to the reception of the measurement trigger signal, and transmits an excitation trigger signal from the excitation trigger output unit 54 to the coil excitation power supply 44.
  • the coil excitation power supply 44 supplies excitation power to the electromagnet 14 for a time of 1 to 10 ⁇ s that matches the preset excitation timing.
  • the excitation power is supplied to the electromagnet 14 and the spare electromagnet 14 a for a time of 1 to 10 ⁇ s.
  • the spare electromagnet 14 a applies an electromagnetic impact to the untested bin 10 a waiting upstream of the bin 10.
  • the plug 12 is pulled to the electromagnet 14 side by an electromagnetic impact and then opened to generate a vibration having a unique vibration frequency of the plug 12.
  • the vibration of the plug 12 propagates to the boundary between the liquid and gas in the head space of the bottle 10, the boundary between the liquid and the wall of the bottle 10, the opening of the bottle 10 in contact with the plug 12, and reflects inside the bottle 10.
  • the microphone 16 captures the reflected sound of the bin 10 through the bung 12.
  • This reflected sound is a vibration having an inherent vibration frequency corresponding to the internal pressure of the head space of the bin 10, a vibration having an inherent vibration frequency of the mouth of the bin 10 in contact with the plug 12, and an inherent property of the wall of the bin 10.
  • the vibration having the vibration frequency of is an audible sound (for example, 0 to 20000 Hz) integrated.
  • the microphone 16 is preferably a condenser microphone.
  • the diaphragm of the condenser microphone is so thin and light that it responds faithfully to air vibration and vibrates the plug 12 with stable frequency characteristics from low frequency (50 Hz) to high frequency (20, 000 Hz) sound. It can be captured.
  • the microphone 16 can be disposed at a distance of 3 mm from the plug 12 and the vibration sound of the plug 12 without distortion can be captured.
  • the microphone 16 is surrounded by the space 26 with the cylindrical member 20, the sound collection effect of the vibration sound transmitted upward from the plug 12 is high, and the bottom position of the electromagnet 14 and the bottom position of the microphone 16 Are arranged identical to each other, the influence of the reflected sound of the electromagnet 14 can be reduced.
  • the analysis unit 46 receives an analog signal corresponding to the reflected sound for 60 ms from the microphone 16 in the amplification unit 56, amplifies the received analog signal, and converts it to a digital signal for 60 ms through a filter. This digital signal is written to the RAM 50 via the bus 66.
  • the analysis unit 46 executes the sound wave acquisition software using the CPU 48, reads the digital signal for 60 ms written in the RAM 50, discards the digital signal for 20 ms from the electromagnetic shock, and the digital signal for the remaining 40 ms Extract
  • the analysis device 46 measures the material of the bin 10 for at least 40 ms which appears after the vibration of the plug 12 has been damped and the standing waves formed in the head space of the bin 10 have disappeared (after 20 ms have passed from the electromagnetic shock).
  • the frequency characteristic data obtained by subjecting the CPU 48 to Fourier transform is written in the RAM 50 for the vibration noise.
  • the analysis device 46 reads the frequency characteristic data from the RAM 50 by the CPU 48, and calculates and outputs the frequency characteristic and the power intensity of the vibration sound of the material of the bin 10.
  • FIG. 4 shows the result of frequency analysis of the container calculated and output using the CPU 48.
  • FIG. 4A shows the frequency analysis results of two types of non-defective bins.
  • a unique peak frequency appears in the frequency range of 5200 Hz to 5500 Hz, and a unique peak frequency appears in the frequency range of 6700 Hz to 7700 Hz.
  • a bin 10 having a frequency characteristic different from that of the non-defective bin is determined as a defective bin.
  • FIG. 4 (b) shows the frequency characteristics of the K-bin failure.
  • the K-bin defect has a feature in which the intensity area value of the waveform is less than the limit value of 150, 000 in the third frequency range F3 and is different from the intensity area value of the waveform of the non-defective bin. It is determined as
  • the intensity area value of the waveform corresponds to an area value obtained by integrating the waveform (main lobe and side lobe) appearing between the minimum frequency and the maximum frequency in the frequency domain. That is, in contrast to the prior art in which the vibration of the container material is specified by the peak frequency, in the present embodiment, a minute vibration can be identified by integrating all the amplitudes of the waveform appearing in a predetermined frequency region.
  • the CPU 48 Fourier-transforms the calculation result obtained by multiplying the digital signal of the vibration sound of the bin 10 by the Hanning window function.
  • the frequency resolution can be increased as the width of the main lobe, which is the main component of the discrete acoustic signal, decreases.
  • the ability to detect the spectrum of low power can be increased, so that the vibration noise at the defect site where the power intensity is lower than that of the standing wave can be accurately identified.
  • FIG. 4C shows the frequency characteristic of the inner bin failure.
  • the strength area value of the waveform is less than 150,000 in the third frequency range F3, and the strength area value of the waveform is 150,000 in the fourth frequency range F4. Because it has a feature that is different from the intensity area value of the waveform of the non-defective bin, it is determined as a defective bin.
  • FIG. 4D shows that in the fourth frequency range F4, the strength area value of the waveform exceeds the limit value of 150, 000, and has a feature different from the strength area value of the non-defective bin waveform. It is judged as a bin.
  • the CPU 48 compares the limit value of the first to sixth frequency regions as the quality determination data stored in the RAM 50 with the frequency characteristic and the power intensity of the bin 10.
  • the CPU 48 generates six-digit comprehensive determination result data consisting of “1” or “0” depending on whether the bin 10 exceeds or exceeds the predetermined limit value, and determines whether the bin 10 is good or bad. If the bin 10 is a defective bin by this determination processing, it is possible to specify a defective portion of the bin from the comprehensive determination result data.
  • the present invention does not limit the pass / fail judgment data to the limit value of the first to sixth frequency regions, and for example, the waveform data of the first to sixth frequency regions and the waveform of the frequency analysis value of the bin 10 By determining whether or not the patterns match the data, the quality determination of the bin 10 can be performed, and the defective portion of the container can be identified.
  • the analysis device 46 stores the determination result data of the CPU 48 and the examination date and time data in the data storage storage device 60, and turns on the state monitoring lamp 70.
  • the state monitoring lamp 70 distinguishes and notifies blue emission indicating a non-defective bin and red emission indicating a defective bin.
  • the analysis device 46 transmits a discharge device 72 discharge signal to transport the bin 10 to a container failure line (not shown).
  • the analysis device 46 outputs the vibration sound data of the bin 10 written in the RAM 50, the determination result data or the frequency analysis data of the bin 10 to the external storage device 74 through the measurement value output unit 64.
  • the present invention can be applied to an inspection apparatus for detecting a cracked portion of a container filled with a liquid.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

Provided is a testing device capable of specifying the position of a craze or a crack in a liquid container hermetically sealed by a metallic stopper. A testing device is provided with: a cylindrical electromagnet (14) for applying an electromagnetic wave to a liquid container (10) hermetically sealed by a metallic stopper (12); and a microphone (16) disposed on the center axis of the electromagnet (14) and catching the vibrating sound of the stopper generated by the application of the electromagnetic wave. A space (26) for allowing sound to pass therethrough is provided between the side surface of the microphone (16) and the inner surface of the electromagnet (14). Respective end surfaces of the electromagnet (14) and the microphone (16), the end surfaces facing the stopper (12) of the container (10), are arranged to be flush with each other.

Description

液体容器の検査装置Liquid container inspection device
 本発明は、液体が充填された容器のひび割れ箇所を検出する検査装置に関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an inspection apparatus for detecting a cracked portion of a container filled with a liquid.
 従来、液体を充填し栓で封止した容器において液体の充填レベルを決定するために、垂直軸方向に孔を設けたコアを有する磁気コイルと、そのコアの孔の下端に配置したマイクロホンとを備えた装置を用いることが知られている(特許文献1参照)。 Conventionally, in order to determine the filling level of liquid in a container filled with liquid and sealed with a plug, a magnetic coil having a core with a hole in the vertical axis direction and a microphone arranged at the lower end of the hole of that core It is known to use the provided device (see Patent Document 1).
 この装置によれば、容器の栓に磁気コイルから電磁パルスを与えて栓に機械的振動を生じさせ、その振動が容器内の空間を伝播して液体と気体の境界面及び液体と容器材料の境界面で反射することで、容器内に定常波が生成される。そして、電磁パルスの電磁的衝撃から所定時間(例えば、10ms)内にマイクロホンが捕捉した栓の振動音と定常波の振動音を周波数解析し、この周波数解析結果に示されるピーク周波数から、容器に充填された液体の充填レベルを決定することができる。また、周波数解析結果から容器の壁のひび割れ又は亀裂を認識できることも示されている。 According to this apparatus, a magnetic coil applies an electromagnetic pulse to the stopper of the container to cause mechanical vibration in the stopper, and the vibration propagates through the space in the container to cause the interface between the liquid and the gas and the liquid and the container material By reflecting at the interface, a standing wave is generated in the container. Then, frequency analysis of the vibration noise of the plug and the standing noise of the plug captured by the microphone within a predetermined time (for example, 10 ms) from the electromagnetic impact of the electromagnetic pulse is performed, and the container is filled from the peak frequency shown in this frequency analysis result The fill level of the dispensed liquid can be determined. It is also shown that cracks or cracks in the wall of the container can be recognized from the frequency analysis results.
特表2001-503868号公報Japanese Patent Application Publication No. 2001-503868
 上述した装置では、電磁パルスの電磁的衝撃から10msの間に発生する大きな振幅の栓の振動音と小さな振幅の定常波の振動音をマイクロホンが捕捉するが、容器内に形成される定常波は、振幅が大きい栓の振動が減衰するまでその振動の影響を受け続ける。このため、定常波に現れる液体の充填レベルを検知することは可能であるが、定常波の振幅に比して小さい振幅として現れる容器のひび割れや亀裂の存在を識別することは困難である。 In the above-described apparatus, the microphone captures the vibration noise of the high amplitude plug and the low frequency stationary wave generated in 10 ms from the electromagnetic impact of the electromagnetic pulse, but the standing wave formed in the container has the amplitude The vibration of the large plug continues to be affected until it damps. For this reason, it is possible to detect the filling level of the liquid appearing in the standing wave, but it is difficult to identify the presence of container cracks or cracks appearing as an amplitude smaller than that of the standing wave.
 本発明の目的は、容器のひび割れ又は亀裂の存在に加えて、それらが存在する箇所の特定も可能な検査装置を提供することを目的とする。 An object of the present invention is to provide an inspection apparatus capable of identifying a place where a container is present in addition to the presence of a crack or a crack of the container.
 本発明は、金属製の栓で密封された液体容器に対して電磁波を放射する円筒状の電磁石と、該電磁石の中心軸に配置され、前記電磁波の放射によって発生する前記栓の振動音を捕捉するマイクロホンとを備える検査装置であって、前記マイクロホンの側面と前記電磁石の内面との間に音を通過させる空間を設け、前記容器の栓に対向する前記電磁石と前記マイクロホンの各端面の位置を一致させて配置したことを特徴とする。 According to the present invention, a cylindrical electromagnet for emitting an electromagnetic wave to a liquid container sealed with a metal plug and a central electromagnet of the electromagnet are disposed to capture the vibration noise of the plug generated by the radiation of the electromagnetic wave. A space between the side surface of the microphone and the inner surface of the electromagnet and a position of each of the end surfaces of the electromagnet and the microphone facing the plug of the container It is characterized in that they are arranged in agreement.
 本発明によれば、液体容器に対する電磁波の放射によって生じた栓の振動音がマイクロホンに捕捉されるが、マイクロホンの周囲に達した栓の振動音は、マイクロホンの側面と電磁石の内面との間の空間を通過するため、マイクロホンの周囲では振動音の反射が生じない。また、電磁石とマイクロホンの各端面の位置が一致しているので、電磁石が栓の振動音を反射しても、その反射音はマイクロホンに到達しない。以上により、マイクロホンは、振幅が大きい栓の振動の影響を受けずに振幅の小さい定常波の振動音を歪みなく捕捉することが可能となり、定常波に含まれるひび割れや亀裂の存在を識別すると共に、そのひび割れ等の箇所を特定することができる。 According to the present invention, the vibration noise of the plug generated by the radiation of the electromagnetic wave to the liquid container is captured by the microphone, but the vibration noise of the plug reaching the periphery of the microphone is between the side surface of the microphone and the inner surface of the electromagnet. Because it passes through space, no reflection of the vibration noise occurs around the microphone. Further, since the positions of the end faces of the electromagnet and the microphone coincide with each other, even if the electromagnet reflects the vibration sound of the plug, the reflected sound does not reach the microphone. As described above, the microphone can capture the vibration noise of the stationary wave with a small amplitude without distortion, without being affected by the vibration of the plug having a large amplitude, thereby identifying the presence of a crack or a crack included in the stationary wave and Locations such as cracks can be identified.
 本発明の検査装置は、前記電磁石に励磁電力を供給する励磁電源と、前記電磁石の下方に位置した前記容器を検出する容器検出センサと、検査対象の容器の良否を判定するための良否判定データを格納した記憶装置と、前記容器検出センサからの検出信号に応じて、前記励磁電源から前記電磁石へ電力を供給させ、前記電磁波による前記栓の振動によって励起される前記容器の材料の振動音を前記マイクロホンを通して受信する解析装置とを備え、前記解析装置は、前記電磁石の電磁的衝撃から栓の振動の減衰時間が経過して前記容器の内部空間内に形成された定常波の消失後に現れる容器材料の振動音の周波数特性及び電力強度に基づいて、複数の周波数領域における前記容器材料の振動音の電力強度面積値を算出し、該電力強度面積値と前記記憶装置に格納された良否判定データとを対比することにより前記容器の良否を判定することが好ましい。 The inspection apparatus according to the present invention includes an excitation power supply for supplying excitation power to the electromagnet, a container detection sensor for detecting the container located below the electromagnet, and quality determination data for determining the quality of a container to be inspected. Power is supplied from the excitation power supply to the electromagnet according to a storage device storing the storage device and the container detection sensor, and vibration noise of the material of the container excited by the vibration of the plug by the electromagnetic wave is detected. And an analysis device for receiving through the microphone, wherein the analysis device is a container material that appears after disappearance of a standing wave formed in the interior space of the container with the decay time of the plug's vibration having elapsed from the electromagnetic impact of the electromagnet. The power intensity area value of the vibration noise of the container material in a plurality of frequency regions is calculated based on the frequency characteristics and the power intensity of the vibration noise, and the power intensity area value It is preferable to determine the quality of the container by comparing the quality determination data stored in the storage device.
 この好ましい形態によれば、複数の周波数領域における前記容器材料の振動音の電力強度面積値と前記記憶装置に格納された良否判定データとを比較することにより、前記電磁石の下方に搬送された容器の良否を判定することができる。 According to this preferred embodiment, the container transported below the electromagnet by comparing the power intensity area value of the vibration noise of the container material in a plurality of frequency regions with the quality determination data stored in the storage device. It is possible to determine the quality of the
 また、前記記憶装置は、複数種類の不良品容器の電力強度面積値を、前記良否判定データとして記憶し、前記解析装置は、前記容器の電力強度面積値と前記不良品容器の電力強度面積値とを対比して、両者が一致する場合に前記容器の欠陥部位を判別することが好ましい。 Further, the storage device stores the power intensity area values of a plurality of types of defective product containers as the quality determination data, and the analysis device determines the power intensity area values of the container and the power intensity area values of the defective product containers. It is preferable to distinguish the defective portion of the container when the two coincide with each other.
 これによれば、前記解析装置は、前記容器の電力強度面積値と前記記憶装置に記憶された不良品容器の電力強度面積値と比較し、両者が一致することを条件として前記容器の欠陥部位を判別することができる。 According to this, the analysis device compares the power intensity area value of the container with the power intensity area value of the defective container stored in the storage device, and the defective portion of the container on the condition that both match. Can be determined.
 また、前記解析装置は、前記容器の振動音の音響信号にハニング窓関数をかけた演算結果をフーリエ変換することが好ましい。 Further, it is preferable that the analysis device Fourier-transforms a calculation result obtained by multiplying a sounding signal of vibration sound of the container by a Hanning window function.
 これによれば、前記容器の振動音の音響信号の主成分であるメインローブの幅が小さいほど周波数分解能を高くする一方、サイドローブの値が小さいほど小電力のスペクトルを検出する能力を高くすることができる。 According to this, while the smaller the width of the main lobe which is the main component of the sound signal of the container vibration noise, the higher the frequency resolution, the smaller the value of the side lobe, the higher the ability to detect the spectrum of low power. be able to.
本発明の実施形態の検査装置と液体容器の正面図。The front view of the inspection apparatus and liquid container of embodiment of this invention. 図1の検査装置の拡大断面図。The expanded sectional view of the inspection apparatus of FIG. 実施形態の検査装置の構成を示すブロック図。The block diagram showing the composition of the inspection device of an embodiment. 実施形態の検査装置による容器の周波数解析結果を示すグラフ。The graph which shows the frequency analysis result of the container by the inspection device of an embodiment.
 図1~図3に示した実施形態の検査装置は、栓12により密閉されたビン10を検査対象の容器とし、そのひび割れ又は欠けのような欠陥の存在を検知すると共に、欠陥の個所を特定する検査を行う。 The inspection apparatus of the embodiment shown in FIGS. 1 to 3 uses the bottle 10 sealed by the stopper 12 as a container to be inspected, detects the presence of a defect such as a crack or a chip, and identifies the location of the defect To do the inspection.
 本実施形態の検査装置は、下方に搬送されたビン10に電磁波を放射する電磁石14と、電磁石14の中心軸に配置され、ビン10の振動音を捕捉するマイクロホン16(例えば、振動板と固定板を有するコンデンサマイクロホン)と、電磁石14の外周を覆うカバー18と、カバー18及び電磁石14の内面を支持する円筒部材20と、円筒部材20の内周側に配置され、マイクロホン16の頂部を支持するマイクロホン支持部材22と、マイクロホン支持部材22を上方から吊り下げ支持する保持部材24とを備える。 The inspection apparatus according to the present embodiment includes an electromagnet 14 that radiates an electromagnetic wave to the bin 10 transported downward, and a microphone 16 that is disposed on the central axis of the electromagnet 14 and captures vibration sound of the bin 10 (for example, fixed to a diaphragm A condenser microphone having a plate, a cover 18 for covering the outer periphery of the electromagnet 14, a cylindrical member 20 for supporting the inner surface of the cover 18 and the electromagnet 14, and an inner peripheral side of the cylindrical member 20 to support the top of the microphone 16 A microphone support member 22 and a holding member 24 for suspending and supporting the microphone support member 22 from above.
 ビン10は、液体(例えば、清涼飲料水)が充填され、上部に金属製であって王冠状の栓12により密閉されている。栓12と液体との間には気体(例えば、炭酸ガス又は窒素ガス)が封入されている。ビン10の頭部空間内には、液体と気体の境界面及び液体と容器材料(例えば、ガラス)の境界面を有する。 The bottle 10 is filled with a liquid (for example, a soft drink), and is sealed at the top by a metal cap 12 in the form of a crown. A gas (for example, carbon dioxide gas or nitrogen gas) is enclosed between the plug 12 and the liquid. In the head space of the bottle 10, there is a liquid / gas interface and a liquid / container material (eg, glass) interface.
 ビン10は、金属製又は樹脂製の搬送板26に載置され、例えば、コンベアにより図中前方又は後方から電磁石14の下方に搬送される。 The bins 10 are placed on a metal or resin carrier plate 26 and conveyed, for example, by a conveyor from the front or rear in the figure to the lower side of the electromagnets 14.
 マイクロホン16は、電磁石14から放射された電磁波の電磁的衝撃により励起される栓12の振動音を捕捉する。この栓12の振動音は、栓12の周波数特性及びビン10の周波数特性を含んだアナログ信号としてマイクロホン16から出力する。 The microphone 16 captures the vibration noise of the plug 12 excited by the electromagnetic impact of the electromagnetic wave emitted from the electromagnet 14. The vibration noise of the plug 12 is output from the microphone 16 as an analog signal including the frequency characteristic of the plug 12 and the frequency characteristic of the bin 10.
 カバー18は、電磁石14の側面を覆い、カバー18の底部において、電磁石14及びマイクロホン16の底面を露出させている。また、電磁石14の底部とマイクロホン16の底部との間に空気の振動を通過させる空間26が設けられ、空間26は、カバー18の内周側で上下方向に貫通している。 The cover 18 covers the side surface of the electromagnet 14 and exposes the bottom of the electromagnet 14 and the microphone 16 at the bottom of the cover 18. Further, a space 26 for passing the vibration of air is provided between the bottom of the electromagnet 14 and the bottom of the microphone 16, and the space 26 vertically penetrates on the inner peripheral side of the cover 18.
 円筒部材20は、電磁石14の内面及びカバー18の上部内面に密着し、マイクロホン支持部材22と空間26を隔てて垂直方向に延在する。このため、マイクロホン支持部材22と円筒部材20に挟まれた空間26は、音響抵抗が低く、空間26を伝達する空気の振動による反射波の発生を低減させる。 The cylindrical member 20 is in close contact with the inner surface of the electromagnet 14 and the upper inner surface of the cover 18, and extends in the vertical direction to separate the space 26 from the microphone support member 22. Therefore, the space 26 sandwiched between the microphone support member 22 and the cylindrical member 20 has low acoustic resistance, and reduces the generation of a reflected wave due to the vibration of air transmitted through the space 26.
 マイクロホン16は、その下部位置と電磁石14の下部位置とを一致させることにより、電磁石14が発生する反射音をマイクロホン16の下方に通過させ、マイクロホン16に反射音が入射することを防止する。 The microphone 16 causes the reflected sound generated by the electromagnet 14 to pass below the microphone 16 and prevents the reflected sound from being incident on the microphone 16 by matching the lower position of the microphone 16 with the lower position of the electromagnet 14.
 マイクロホン16は、その外周と円筒部材20の内周との間の空間26により包囲し、マイクロホン16とカバー12とを空気で分離しているので、第1に、空間26に到達した栓12の振動音を空気の振動として上方に通過させることができる。第2に、空間26では栓12の振動音による反射音が発生しないので、マイクロホン16は歪の無い栓12の振動音を捕捉できる。第3に、栓12の振動音による電磁石14からの反射音を遮断することができる。これらにより、マイクロホン16は、栓12からの振動音の集音効果をより向上させることができる。 The microphone 16 is surrounded by a space 26 between the outer periphery thereof and the inner periphery of the cylindrical member 20, and the microphone 16 and the cover 12 are separated by air. Vibration noise can be passed upward as vibration of air. Second, since the reflected sound from the vibration sound of the plug 12 does not occur in the space 26, the microphone 16 can capture the vibration sound of the plug 12 without distortion. Third, the reflected sound from the electromagnet 14 due to the vibration sound of the plug 12 can be blocked. As a result, the microphone 16 can further improve the sound collection effect of the vibration sound from the plug 12.
 マイクロホン支持部材22は、好ましくは、樹脂製の中空パイプで形成し、上方を固定部材(例えば、ねじ)28により、保持部材24に固定される。マイクロホン支持部材22の下部にマイクロホン16を取り付け、保持部材24から吊り下げるようにマイクロホン16の下部位置を電磁石14の下部位置に一致させることが好ましい。 The microphone support member 22 is preferably formed of a hollow resin-made pipe, and the upper portion thereof is fixed to the holding member 24 by a fixing member (for example, a screw) 28. Preferably, the microphone 16 is attached to the lower part of the microphone support member 22 and the lower position of the microphone 16 is aligned with the lower position of the electromagnet 14 so as to be suspended from the holding member 24.
 但し、本発明は、マイクロホン16の下部位置を電磁石14の下部位置に完全に一致させる構成に限定されない。例えば、固定部材28による固定を解除して、マイクロホン支持部材22の固定位置を上下方向に調整した後に、固定部材28で再度固定し、電磁石14の中心軸の筒状空間に発生する共鳴音を減衰することもできる。 However, the present invention is not limited to the configuration in which the lower position of the microphone 16 completely matches the lower position of the electromagnet 14. For example, after the fixation by the fixation member 28 is released and the fixation position of the microphone support member 22 is adjusted in the vertical direction, the resonance sound generated in the cylindrical space of the central axis of the electromagnet 14 is fixed again by the fixation member 28. It can also be attenuated.
 また、マイクロホン支持部材22は、マイクロホン16と電気的に接続するマイクロホン配線30を挿入し、マイクロホン配線30と空間26とを遮断する。このため、空間26の音響抵抗をマイクロホン配線30により増大させることがない。 Further, the microphone support member 22 inserts the microphone wiring 30 electrically connected to the microphone 16, and cuts off the microphone wiring 30 and the space 26. Therefore, the acoustic resistance of the space 26 is not increased by the microphone wiring 30.
 保持部材24は、ベース板32の上面に固定部34を介して固定されている。ベース板32の下面には、カバー18の上面を固定する。また、ベース板32及び固定部34は、コイル配線36を垂直方向に貫通させカバー18の側面から電磁石14へコイル配線36を導入する。 The holding member 24 is fixed to the upper surface of the base plate 32 via the fixing portion 34. The upper surface of the cover 18 is fixed to the lower surface of the base plate 32. Further, the base plate 32 and the fixing portion 34 penetrate the coil wire 36 in the vertical direction and introduce the coil wire 36 from the side surface of the cover 18 to the electromagnet 14.
 ベース板32は、両側から下方に向けてビン10の頭部空間と距離を離して対向する延長部32a及び延長部32bを備える。延長部32aは、ビン10の頭部空間に向けてビン検出センサ38aを配置し、延長部32bは、ビン10の頭部空間に向けてビン検出センサ38bを配置する。 The base plate 32 includes extensions 32a and 32b facing downward from both sides at a distance from the head space of the bin 10. The extension 32 a places the bin detection sensor 38 a toward the head space of the bin 10, and the extension 32 b places the bin detection sensor 38 b toward the head space of the bin 10.
 ビン検出センサ38aは、水平方向に位置するビン検出センサ38bに向けて光線を照射し光軸を形成する透過型又は反射型の光電センサを用いることが好ましい。また、ビン検出センサとして、搬送されたビン10を検知できる手段であれば光電型及びレーザ型の他に、ビン10のガラス検知型のセンサを適用することもできる。 The bin detection sensor 38a is preferably a transmission type or reflection type photoelectric sensor that emits a light beam toward the bin detection sensor 38b positioned in the horizontal direction to form an optical axis. In addition to the photoelectric type and the laser type, a glass detection type sensor of the bin 10 can also be applied as a bin detection sensor as long as it can detect the transported bin 10.
 図2は、本実施形態の検査装置の断面図である。 FIG. 2 is a cross-sectional view of the inspection apparatus of the present embodiment.
 検査装置は、円筒状のカバー18と、カバー18の下部内面に支持される電磁石14と、電磁石14の中心軸に配置するマイクロホン16と、マイクロホン16を上方から垂直方向に吊り下げるマイクロホン支持部材22と、マイクロホン16及びマイクロホン支持部材22の外周から空間26を隔てて包囲する円筒部材20とを備える。 The inspection apparatus includes a cylindrical cover 18, an electromagnet 14 supported on the lower inner surface of the cover 18, a microphone 16 disposed on the central axis of the electromagnet 14, and a microphone support member 22 vertically suspending the microphone 16 from above. And the cylindrical member 20 surrounding the space 26 from the outer periphery of the microphone 16 and the microphone support member 22.
 電磁石14は、円筒部材20を包囲する円筒状の磁性体コア40と、磁性体コア40の外周を巻回する導電性のコイル巻線42とを備え、磁性体コア40の下部は、円筒部材20の下部の位置と一致するように配置されている。 The electromagnet 14 includes a cylindrical magnetic core 40 surrounding the cylindrical member 20, and a conductive coil winding 42 winding the outer periphery of the magnetic core 40. The lower portion of the magnetic core 40 is a cylindrical member. It is arranged to coincide with the lower position of 20.
 磁性体コア40は、初期透磁率の高いアモルファス材の薄帯を積層して形成し、応答周波数の向上と共にヒステリシス損を減少させる。例えば、磁性体コア40には、鉄を主成分とし、シリコンと、ボロン及び微量の銅ニオブを添加させた高温溶融液を約100万℃/秒で急冷固化するアモルファス薄帯とからなる素材を、結晶化温度以上で熱処理し、10nmの結晶粒径を有する薄帯の積層体を用いることが好ましい。 The magnetic core 40 is formed by laminating thin strips of amorphous material having high initial permeability, and reduces the hysteresis loss as well as the response frequency. For example, the magnetic core 40 is made of a material comprising an iron-based, silicon, and an amorphous ribbon which rapidly solidifies a high-temperature melt containing boron and a small amount of copper-niobium at about 1,000,000 ° C./sec. It is preferable to use a thin film laminate having a crystal grain diameter of 10 nm, which is heat-treated at a crystallization temperature or higher.
 円筒部材20は、マイクロホン16及びマイクロホン支持部材22の外周を空気の振動を通過させる空間26を隔てて包囲しているので、円筒部材20及びマイクロホン16の下部から円筒部材20の上部間で延在する空間26を形成している。これにより、栓12の振動音による空気の振動を空間26の下部に入射させ、この空気の振動を空間26の上部から放出させることができる。 The cylindrical member 20 surrounds the outer periphery of the microphone 16 and the microphone support member 22 with a space 26 for passing air vibration, so the cylindrical member 20 extends from the lower portion of the cylindrical member 20 and the microphone 16 to the upper portion of the cylindrical member 20. Space 26 is formed. Thereby, the vibration of air due to the vibration noise of the plug 12 can be made to enter the lower part of the space 26, and the vibration of this air can be released from the upper part of the space 26.
 そして、マイクロホン16は、栓12の振動音の集音効果を向上させ、電磁石14から栓12の反射音の入射を遮断することができる。 The microphone 16 can improve the sound collection effect of the vibration sound of the plug 12 and can block the incidence of the reflected sound of the plug 12 from the electromagnet 14.
 図3は、本実施形態の検査装置のブロック図である。 FIG. 3 is a block diagram of the inspection apparatus of the present embodiment.
 検査装置は、電磁石14と、予備電磁石14aと、電磁石14の中心軸に配置するマイクロホン16と、ビン検出センサ38と、コイル励磁電源44と、マイクロホン16及びコイル励磁電源44並びにビン検出センサ38に接続する解析装置46とを備える。 The inspection apparatus includes the electromagnet 14, the spare electromagnet 14a, the microphone 16 disposed on the central axis of the electromagnet 14, the bin detection sensor 38, the coil excitation power supply 44, the microphone 16 and the coil excitation power supply 44, and the bin detection sensor 38. And an analyzing device 46 to be connected.
 電磁石14及び予備電磁石14aは共に、コイル励磁電源44に接続され、解析装置46の制御プログラムにより、電磁波を夫々のタイミングでビン10及びビン10aに向けて放射する。 The electromagnet 14 and the spare electromagnet 14a are both connected to the coil excitation power supply 44, and the control program of the analyzer 46 radiates an electromagnetic wave toward the bin 10 and the bin 10a at respective timings.
 コイル励磁電源44は、使用者により電磁石14及び予備電磁石14aに夫々供給する励磁電力の電圧と、励磁タイミングと、パルス幅とを調整し、励磁コイルのチャンネルを設定することで励磁タイミングを制御する。 The coil excitation power supply 44 controls the excitation timing by adjusting the voltage of the excitation power supplied by the user to the electromagnet 14 and the auxiliary electromagnet 14a, the excitation timing, and the pulse width, and setting the channel of the excitation coil. .
 本実施形態では、コイル励磁電源44は、チャンネル設定により、コイル励磁電源44から電磁石14だけに励磁電力を供給する単チャンネル型のコイル励磁電源44と、電磁石14及び予備電磁石14aの2つの電磁石に励磁電力を夫々供給する多チャンネル型のコイル励磁電源44の何れか1つを選択することができる。 In the present embodiment, the coil excitation power supply 44 is a single channel coil excitation power supply 44 that supplies excitation power only from the coil excitation power supply 44 to the electromagnet 14 by channel setting, and two electromagnets of the electromagnet 14 and the spare electromagnet 14a. It is possible to select any one of the multi-channel coil excitation power supplies 44 which respectively supply the excitation power.
 予備電磁石14aは、ビン10の上流で待機しているビン10aの上方に設けられ、ビン10aの栓12aに対して電磁的衝撃を与えて、この栓12aの残留応力を除去する。これにより、容器10aが電磁石14の下方に搬送されて電磁石14の電磁的衝撃を受けることができ、検査精度をより向上させることができる。 The spare electromagnet 14a is provided above the bin 10a standing by upstream of the bin 10, and applies an electromagnetic impact to the plug 12a of the bin 10a to remove the residual stress of the plug 12a. As a result, the container 10a can be transported to the lower side of the electromagnet 14 to receive the electromagnetic impact of the electromagnet 14, and the inspection accuracy can be further improved.
 解析装置46は、内部に制御装置48(以下、「CPU48」という。)と、ランダムアクセス型のメモリ50(以下、「RAM50」と略記する。)と、計測トリガ入力部52と、励磁トリガ出力部54と、増幅部56と、表示画面58と、データ保存用記憶装置60と、不良判定部62と、計測値出力部64と、電源68とを備え、電源68から各部材へ電力が供給される。 The analysis device 46 internally includes a control device 48 (hereinafter referred to as "CPU 48"), a random access memory 50 (hereinafter referred to as "RAM 50"), a measurement trigger input unit 52, and an excitation trigger output. Unit 54, an amplification unit 56, a display screen 58, a data storage storage device 60, a defect determination unit 62, a measured value output unit 64, and a power supply 68. Power is supplied from the power supply 68 to each member Be done.
 CPU48は、バス66を介して、RAM50、計測トリガ入力部52、励磁トリガ出力部54、増幅部56、表示画面58、データ保存用記憶装置60、不良判定部62、及び計測値出力部64と接続する。 The CPU 48 controls the RAM 50, the measurement trigger input unit 52, the excitation trigger output unit 54, the amplification unit 56, the display screen 58, the data storage memory 60, the defect determination unit 62, and the measurement value output unit 64 via the bus 66. Connecting.
 解析装置46は、外部の状態監視ランプ70と、排斥装置72と、外部記憶装置74に接続され、状態監視ランプ70からビン10の良否を識別する容器判定結果を報知する。また、不良判定部62から排斥装置72へ排斥信号を送信し、ビン10を図外の容器不良ラインへ搬送させる。さらに、計測値出力部64から容器の振動音データや容器の周波数解析データを外部記憶装置74へ出力する。 The analysis device 46 is connected to the external condition monitoring lamp 70, the discharge device 72, and the external storage device 74, and reports the container determination result for identifying the quality of the bin 10 from the condition monitoring lamp 70. Further, a discharge signal is transmitted from the failure determination unit 62 to the discharge device 72, and the bin 10 is transported to a container failure line (not shown). Further, vibration sound data of the container and frequency analysis data of the container are output from the measurement value output unit 64 to the external storage device 74.
 増幅部56は、マイクロホン16からアナログ信号を受信し、このアナログ信号を増幅しフィルタを通過させた後に、アナログ信号をデジタル信号へ変換し、CPU48の指令によりデジタル信号をバス66を介してRAM50へ書き込む。増幅部56では、マイクロホン16から少なくとも40msのビン10の振動音データを受信し、10Hzの周波数分解能を得るため、2、048ビットのデジタル信号を出力することが好ましい。 The amplification unit 56 receives an analog signal from the microphone 16, amplifies this analog signal, passes it through a filter, converts the analog signal to a digital signal, and sends a digital signal to the RAM 50 via the bus 66 according to a command from the CPU 48. Write. The amplification unit 56 preferably receives vibration sound data of the bin 10 of at least 40 ms from the microphone 16 and outputs a 2,048-bit digital signal in order to obtain 10 Hz frequency resolution.
 表示画面58には、使用者の操作により、マイクロホン16から受信するアナログ信号の波形、RAM50に記憶するデジタル信号の波形、CPU48がRAM50から読み出したデジタル信号をフーリエ変換して演算出力する周波数解析結果の波形、解析装置46の解析パラメータを設定するメニュー画面を表示する。 On the display screen 58, a waveform of an analog signal received from the microphone 16, a waveform of a digital signal stored in the RAM 50, and a frequency analysis result in which the CPU 48 performs a Fourier transform on the digital signal read from the RAM 50 and outputs it. And a menu screen for setting analysis parameters of the analysis device 46.
 データ保存用記憶装置60は、例えば、100本のビン10を予め検査装置で検査し生成した良否判定データを記憶する。100本のビンには、良品ビン、不良ビンとして、ビン口割れ、ビン内壁ひび、ビン外壁ひび、ビン底ひび、液体充填量の良否が含まれている。 The data storage storage device 60 stores, for example, quality determination data generated by inspecting 100 bins 10 in advance with an inspection device. The 100 bottles include good bottles, bad bottles, bottle opening cracks, bottle inner wall cracks, bottle outer wall cracks, bottle bottom cracks, and liquid filling amount.
 データ保存用記憶装置60は、良品ビン及び不良ビンの良否判定データとして、ビン10の周波数解析結果に示される波形の面積値の限界値を記憶する。この限界値は、複数の周波数領域に設定されている。 The data storage memory 60 stores the limit value of the area value of the waveform shown in the frequency analysis result of the bin 10 as the non-defective bin and the defective bin as the pass / fail determination data. This limit value is set in a plurality of frequency regions.
 小瓶を対象とする良品ビンの強度面積の限界値を例示すれば、以下のとおりである。 It is as follows if the limit value of the intensity area of the non-defective goods bin which targets a small bottle is illustrated, for example.
 第1の周波数領域(7000~8000Hz)は、200、000以上の強度面積を有し、第2の周波数領域(6000~7000Hz)は、100、000以上の強度面積を有し、第3の周波数領域(7200~7500Hz)は、150、000以上の強度面積を有し、第4の周波数領域(6500~6800Hz)は、150、000以下の強度面積を有し、第5の周波数領域(5800~6100Hz)は、100、000以下の強度面積を有し、第6の周波数領域(5100~5400Hz)は、50、000以上の強度面積を有する。 The first frequency range (7000 to 8000 Hz) has an intensity area of 200,000 or more, and the second frequency range (6000 to 7000 Hz) has an intensity area of 100,000 or more, and the third frequency The region (7200-7500 Hz) has an intensity area of 150,000 or more, and the fourth frequency region (6500-6800 Hz) has an intensity area of 150,000 or less, and the fifth frequency region (5800 to 6100 Hz) has an intensity area of less than 100,000, and the sixth frequency range (5100-5400 Hz) has an intensity area of more than 50,000.
 小瓶を対象とする不良ビンの強度面積は、上述した第1~第5の周波数領域の強度面積の1又は複数の限界値を満たすことができない。例えば、ビン口割れ、ビン内壁ひび、ビン外壁ひび、ビン底ひび、液体の充填不良を含む不良ビンの強度面積を、Kビン不良、Tビン不良、外ビン不良(ビン外壁ひび)、液体が充填されていない空ビン不良、内ビン不良、液体の充填が不十分な低充填ビン不良、液体の充填が過剰な高充填ビン不良として例示する。 The intensity area of the defective bin intended for the vial can not satisfy one or more limit values of the intensity areas of the first to fifth frequency regions described above. For example, bottle open crack, bottle inner wall crack, bottle outer wall crack, bottle bottom crack, strength area of defective bottle including liquid filling defect, K-bin defect, T-bin defect, outer bottle defect (bin outer wall crack), liquid Unfilled empty bottle failure, internal bottle failure, low filling bottle failure with insufficient liquid filling, high filling bottle failure with excessive liquid filling are exemplified.
 第1の周波数領域では、低充填ビン不良の強度面積が200、000以上の限界値を充足しない。 In the first frequency range, the low fill bin failure intensity area does not meet the limit value of more than 200,000.
 第2の周波数領域では、すべての不良ビンの強度面積が100、000以上の限界値を充足する。 In the second frequency range, the intensity area of all the bad bins meets the limit of more than 100,000.
 第3の周波数領域では、Kビン不良、外ビン不良、低充填ビン不良、空ビン不良、内ビン不良、低充填ビン不良の強度面積が150、000以上の限界値を充足しない。 In the third frequency range, the strength areas of K-bin failure, outer-bin failure, low-fill-bin failure, empty-bin failure, inner-bin failure, and low-fill-bin failure do not satisfy the limit value of 150,000 or more.
 第4の周波数領域では、Tビン不良、内ビン不良の強度面積が150、000以下の限界値を充足しない。 In the fourth frequency range, the intensity area of T-bin failure and inner-bin failure does not satisfy the limit value of 150,000 or less.
 第5の周波数領域では、低充填ビン不良の強度面積が100、000以下の限界値を充足しない。 In the fifth frequency range, the intensity area of low filling bin defects does not meet the limit value of 100,000 or less.
 第6の周波数領域では、空ビン不良の強度面積が50、000以上の限界値を充足しない。 In the sixth frequency range, the intensity area of the empty bin defect does not satisfy the limit value of 50,000 or more.
 データ保存用記憶装置60には、ビン10の判定結果を「1」と「0」の数字で表現する周波数領域別の判定結果データを記憶する。例えば、周波数領域の限界値を充足する場合は判定結果「1」の判定結果データを記憶し、限界値を充足しない場合は「0」の判定結果データを記憶する。 In the data storage memory 60, determination result data for each frequency domain is stored in which the determination result of the bin 10 is expressed by the numbers "1" and "0". For example, when the frequency domain limit value is satisfied, the determination result data of the determination result “1” is stored, and when the limit value is not satisfied, the determination result data of “0” is stored.
 良品ビンは、第1~第6の周波数領域の順に、6桁の「111111」の総合判定結果データで特定する。 The non-defective bins are specified in the first to sixth frequency ranges in the six-digit "111111" comprehensive determination result data.
 Kビン不良は、第1~第6の周波数領域の順に、6桁の「110111」の総合判定結果データで特定する。 The K-bin failure is specified by the six digits “110111” of the comprehensive determination result data in the order of the first to sixth frequency regions.
 Tビン不良は、第1~第6の周波数領域の順に、6桁の「111011」の総合判定結果データで特定する。 The T-bin failure is specified in the first to sixth frequency regions in the six-digit comprehensive judgment result data of “111101”.
 外ビン不良は、第1~第6の周波数領域の順に、6桁の「110111」の総合判定結果データで特定する。 The outer bin defect is specified in the first to sixth frequency ranges in the six-digit comprehensive determination result data of “110111”.
 空ビン不良は、第1~第6の周波数領域の順に、6桁の「111110」の総合判定結果データで特定する。 The empty bin defect is specified in the first to sixth frequency regions in the six-digit "111110" comprehensive determination result data.
 内ビン不良は、第1~第6の周波数領域の順に、6桁の「110011」の総合判定結果データで特定する。 The inner bin defect is specified in the first to sixth frequency regions in the order of the six digits “110011” in the comprehensive judgment result data.
 低充填ビン不良は、第1~第6の周波数領域の順に、6桁の「110101」の総合判定結果データで特定する。 The low-filling-bin defect is specified in the first to sixth frequency ranges in the six-digit comprehensive determination result data of “110101”.
 高充填ビン不良は、第1~第6の周波数領域の順に、6桁の「010111」の総合判定結果データで特定する。 The high filling bin failure is specified by the six digits “010111” comprehensive determination result data in the order of the first to sixth frequency regions.
 更に大瓶を対象とする良品ビンの強度面積の限界値を例示すれば、次のとおりである。 Further, the limit values of the strength area of the non-defective bottles for large bottles are as follows.
 第1の周波数領域(11800~12300Hz)は、30、000以上の強度面積を有し、第2の周波数領域(10200~10600Hz)は、50、000以上の強度面積を有し、第3の周波数領域(5300~5700Hz)は、20、000以上の強度面積を有し、第4の周波数領域(4000~4500Hz)は、100、000以上の強度面積を有する。 The first frequency range (11800-12300 Hz) has an intensity area of 30,000 or more, and the second frequency range (10200-10600 Hz) has an intensity area of 50,000 or more, and the third frequency The region (5300-5700 Hz) has an intensity area of 20,000 or more, and the fourth frequency region (4000-4500 Hz) has an intensity area of 100,000 or more.
 大瓶のビン底割れ不良ビンは、第1~第4の周波数領域のすべてにおいて、良品ビンの強度面積の限界値を充足していない。このため、ビン底割れ不良ビンの総合判定結果データは、4桁の「0000」で特定することができる。 The bottle bottom crack defective bottle of the large bottle does not satisfy the limit value of the strength area of the non-defective bottle in all of the first to fourth frequency regions. For this reason, the comprehensive determination result data of the bin bottom crack defective bin can be specified by four digits “0000”.
 次に、上記検査装置の動作について説明する。 Next, the operation of the inspection apparatus will be described.
 検査装置は、飲料物を生産する工場から出荷する前の液体が充填され、栓12で密封されたビン10のひび割れ、欠けのようなビン不良が存在するか否かを検査する。 The inspection device is filled with liquid prior to shipping from the factory producing the beverage, and checks whether there is a bottle defect such as cracking or chipping of the bottle 10 sealed with the stopper 12.
 検査装置は、ビン10の検査ラインに設置され、検査装置の電磁コイル14の下方には搬送板26が移動する。ビン10は、搬送板26に載置されて電磁コイル14の下方に搬送される。搬送板26は、コンベアによる連続移動、ビン10を軸方向に旋回させるターレットによる連続移動、及び電磁コイル14の下方に停止させてもよい。要は、ビン10を載置しながら水平方向に移動させ、コンベア又はターレットから伝達される振動音を減衰させる手段を用いることが好ましい。 The inspection device is installed on the inspection line of the bin 10, and the carrier plate 26 moves below the electromagnetic coil 14 of the inspection device. The bin 10 is placed on the transport plate 26 and transported below the electromagnetic coil 14. The transfer plate 26 may be moved continuously by a conveyor, moved continuously by a turret that pivots the bin 10 axially, and stopped below the electromagnetic coil 14. In short, it is preferable to move the bin 10 horizontally while placing the bin 10, and to use means for damping the vibration noise transmitted from the conveyor or the turret.
 搬送板26は、ビン10の栓12の中心が電磁コイル14の中心軸を通過するように移動する。栓12の上面と電磁コイル14の底面との距離は、例えば、2~4mmの間隔を維持するように設定する。好ましくは、3mmの間隔に設定することで、栓12に対して強い電磁的衝撃を与える。 The transfer plate 26 moves so that the center of the stopper 12 of the bin 10 passes the central axis of the electromagnetic coil 14. The distance between the top surface of the plug 12 and the bottom surface of the electromagnetic coil 14 is set, for example, to maintain a distance of 2 to 4 mm. Preferably, a strong electromagnetic impact is applied to the plug 12 by setting the distance of 3 mm.
 マイクロホン16は、電磁石14の下部位置と同一の位置に下部を露出しているため、マイクロホン16と栓12との距離は、例示した2~4mmの間隔を維持するように設定されている。好ましくは、3mmの間隔に設定することで、栓12の振動音を確実に捕捉することができる。 Since the lower part of the microphone 16 is exposed at the same position as the lower part of the electromagnet 14, the distance between the microphone 16 and the plug 12 is set to maintain the illustrated interval of 2 to 4 mm. Preferably, by setting the distance of 3 mm, the vibration noise of the plug 12 can be reliably captured.
 ビン検出センサ38a、38bは、ビン10が電磁石14の下方に搬送された状態で、栓12の中心軸と電磁石14の中心軸が合致するタイミングで計測トリガ信号を出力するように、ビン検出センサ38a、38bの水平位置及び垂直位置が設定されている。 The bin detection sensors 38a and 38b output the measurement trigger signal at the timing when the central axis of the plug 12 and the central axis of the electromagnet 14 coincide with each other while the bin 10 is conveyed below the electromagnet 14. The horizontal and vertical positions of 38a and 38b are set.
 増幅部56は、ビン10の移動速度又は移動時間に対応させてマイクロホン16から受信するアナログ信号の増幅率を設定する。また、増幅部56は、オートゲインコントロールAGC回路を設けて、増幅したアナログ信号をフィードバックしマイクロホン16から受信するアナログ信号の増幅率を自動的に制御することが好ましい。 The amplification unit 56 sets the amplification factor of the analog signal received from the microphone 16 in accordance with the movement speed or movement time of the bin 10. In addition, it is preferable that the amplification unit 56 be provided with an automatic gain control AGC circuit to feed back the amplified analog signal and automatically control the amplification factor of the analog signal received from the microphone 16.
 搬送板26は、検査装置が少なくとも40msの期間に栓12の振動音をマイクロホン16から受信する時間を確保するように、移動速度が決定されている。なお、搬送板26は、前方又は後方のビン10が接触しない間隔で移動し、搬送板26に載置するビン10が周囲の固定物に接触しないように移動する。 The transfer speed of the carrier plate 26 is determined so as to secure a time for the inspection apparatus to receive the vibration noise of the plug 12 from the microphone 16 for a period of at least 40 ms. In addition, the conveyance board 26 moves by the space | interval which the bin 10 of front or back does not contact, and it moves so that the bin 10 mounted in the conveyance board 26 may not contact surrounding fixed material.
 解析装置46は、計測トリガ入力部52において、容器検出センサ38から電磁石14の下方に搬送されたビン10を検出する計測トリガ信号を受信する。解析装置46のCPU48は、計測トリガ信号の受信に応動し、励磁トリガ出力部54からコイル励磁電源44に励磁トリガ信号を送信する。 The analysis device 46 receives a measurement trigger signal for detecting the bin 10 conveyed below the electromagnet 14 from the container detection sensor 38 at the measurement trigger input unit 52. The CPU 48 of the analysis device 46 responds to the reception of the measurement trigger signal, and transmits an excitation trigger signal from the excitation trigger output unit 54 to the coil excitation power supply 44.
 コイル励磁電源44は、予め設定された励磁タイミングに合致する励磁電力を1~10μsの時間に亘り電磁石14に供給する。また、多チャンネル型のコイル励磁電源44を選択する場合は、励磁電力を1~10μsの時間に亘り電磁石14及び予備電磁石14aに供給する。この予備電磁石14aは、ビン10の上流で待機している検査前のビン10aに電磁的衝撃を与える。 The coil excitation power supply 44 supplies excitation power to the electromagnet 14 for a time of 1 to 10 μs that matches the preset excitation timing. When the multi-channel coil excitation power source 44 is selected, the excitation power is supplied to the electromagnet 14 and the spare electromagnet 14 a for a time of 1 to 10 μs. The spare electromagnet 14 a applies an electromagnetic impact to the untested bin 10 a waiting upstream of the bin 10.
 栓12は、電磁的衝撃により電磁石14側へ引っ張られた後に開放されることで、栓12の固有の振動周波数を有する振動が発生する。この栓12の振動が、ビン10の頭部空間の液体と気体の境界、液体とビン10の壁の境界、栓12と接するビン10の口部に伝播し、ビン10内部で反射する。 The plug 12 is pulled to the electromagnet 14 side by an electromagnetic impact and then opened to generate a vibration having a unique vibration frequency of the plug 12. The vibration of the plug 12 propagates to the boundary between the liquid and gas in the head space of the bottle 10, the boundary between the liquid and the wall of the bottle 10, the opening of the bottle 10 in contact with the plug 12, and reflects inside the bottle 10.
 マイクロホン16は、ビン10の反射音を、栓12を通して捕捉する。この反射音は、ビン10の頭部空間の内圧に対応する固有の振動周波数を有する振動と、栓12と接するビン10の口部の固有の振動周波数を有する振動と、ビン10の壁の固有の振動周波数を有する振動が総合された可聴音(例えば、0~20000Hz)である。 The microphone 16 captures the reflected sound of the bin 10 through the bung 12. This reflected sound is a vibration having an inherent vibration frequency corresponding to the internal pressure of the head space of the bin 10, a vibration having an inherent vibration frequency of the mouth of the bin 10 in contact with the plug 12, and an inherent property of the wall of the bin 10. The vibration having the vibration frequency of is an audible sound (for example, 0 to 20000 Hz) integrated.
 マイクロホン16は、コンデンサマイクロホンを使用することが好ましい。コンデンサマイクロホンの振動板は、非常に薄く、軽いので、空気の振動に忠実に反応し、低い周波数(50Hz)から高い周波数(20、000Hz)の音まで安定した周波数特性で栓12の振動音を捕捉することができる。特に、高耐圧入力(例えば、最大入力音圧が149dB)のため、栓12から3mmの距離にマイクロホン16を配置し、歪の無い栓12の振動音を捕捉することができる。 The microphone 16 is preferably a condenser microphone. The diaphragm of the condenser microphone is so thin and light that it responds faithfully to air vibration and vibrates the plug 12 with stable frequency characteristics from low frequency (50 Hz) to high frequency (20, 000 Hz) sound. It can be captured. In particular, because of the high withstand voltage input (for example, the maximum input sound pressure is 149 dB), the microphone 16 can be disposed at a distance of 3 mm from the plug 12 and the vibration sound of the plug 12 without distortion can be captured.
 また、マイクロホン16は、円筒部材20との間の空間26に包囲されているため、栓12から上方へ伝達される振動音の集音効果が高く、電磁石14の底部位置とマイクロホン16の底部位置が同一に配置されているので、電磁石14の反射音の影響を低減することができる。 Further, since the microphone 16 is surrounded by the space 26 with the cylindrical member 20, the sound collection effect of the vibration sound transmitted upward from the plug 12 is high, and the bottom position of the electromagnet 14 and the bottom position of the microphone 16 Are arranged identical to each other, the influence of the reflected sound of the electromagnet 14 can be reduced.
 解析装置46は、増幅部56において、マイクロホン16から60ms間の反射音に対応するアナログ信号を受信し、受信したアナログ信号を増幅しフィルタを通してから60ms間のデジタル信号へ変換する。このデジタル信号は、バス66を介してRAM50へ書き込まれる。 The analysis unit 46 receives an analog signal corresponding to the reflected sound for 60 ms from the microphone 16 in the amplification unit 56, amplifies the received analog signal, and converts it to a digital signal for 60 ms through a filter. This digital signal is written to the RAM 50 via the bus 66.
 解析装置46は、CPU48を用いて音波収集ソフトウエアを実行し、RAM50に書き込まれた60ms間のデジタル信号を読み出し、電磁的衝撃から20ms間のデジタル信号を破棄し、残りの40ms間のデジタル信号を抽出する。 The analysis unit 46 executes the sound wave acquisition software using the CPU 48, reads the digital signal for 60 ms written in the RAM 50, discards the digital signal for 20 ms from the electromagnetic shock, and the digital signal for the remaining 40 ms Extract
 解析装置46は、栓12の振動が減衰し、ビン10の頭部空間内に形成される定常波が消失した後(電磁的衝撃から20ms経過した後)に現れる少なくとも40msの間のビン10の材料の振動音について、CPU48によりフーリエ変換して得られた周波数特性データをRAM50に書き込む。 The analysis device 46 measures the material of the bin 10 for at least 40 ms which appears after the vibration of the plug 12 has been damped and the standing waves formed in the head space of the bin 10 have disappeared (after 20 ms have passed from the electromagnetic shock). The frequency characteristic data obtained by subjecting the CPU 48 to Fourier transform is written in the RAM 50 for the vibration noise.
 そして、解析装置46は、CPU48により、RAM50から周波数特性データを読み出し、ビン10の材料の振動音の周波数特性及び電力強度を演算出力する。 Then, the analysis device 46 reads the frequency characteristic data from the RAM 50 by the CPU 48, and calculates and outputs the frequency characteristic and the power intensity of the vibration sound of the material of the bin 10.
 図4は、CPU48を用いて演算出力した容器の周波数解析結果を示す。 FIG. 4 shows the result of frequency analysis of the container calculated and output using the CPU 48.
 図4(a)は、2種類の良品ビンの周波数解析結果を示している。図中の実線で示すビンと破線で示すビンは、5200Hz~5500Hzの周波数領域において、固有のピーク周波数が現れ、6700Hz~7700Hzの周波数領域において、固有のピーク周波数が現れる。 FIG. 4A shows the frequency analysis results of two types of non-defective bins. In the bin indicated by the solid line and the broken line in the figure, a unique peak frequency appears in the frequency range of 5200 Hz to 5500 Hz, and a unique peak frequency appears in the frequency range of 6700 Hz to 7700 Hz.
 本実施形態では、良品ビンの周波数特性と相違する周波数特性を有するビン10を不良ビンとして判定する。図4(b)は、Kビン不良の周波数特性を示している。Kビン不良は、第3の周波数領域F3において、波形の強度面積値が限界値の150、000未満であり、良品ビンの波形の強度面積値と相違する特徴を有しているため、不良ビンとして判定される。 In the present embodiment, a bin 10 having a frequency characteristic different from that of the non-defective bin is determined as a defective bin. FIG. 4 (b) shows the frequency characteristics of the K-bin failure. The K-bin defect has a feature in which the intensity area value of the waveform is less than the limit value of 150, 000 in the third frequency range F3 and is different from the intensity area value of the waveform of the non-defective bin. It is determined as
 ここで、波形の強度面積値とは、周波数領域の最小周波数から最大周波数の間に現れる波形(メインローブ及びサイドローブ)を積分した面積値に相当する。すなわち、ピーク周波数により容器材料の振動を特定する従来技術に対し、本実施形態では、所定の周波数領域に現れる波形の振幅をすべて積分することにより、微小な振動を識別することができる。 Here, the intensity area value of the waveform corresponds to an area value obtained by integrating the waveform (main lobe and side lobe) appearing between the minimum frequency and the maximum frequency in the frequency domain. That is, in contrast to the prior art in which the vibration of the container material is specified by the peak frequency, in the present embodiment, a minute vibration can be identified by integrating all the amplitudes of the waveform appearing in a predetermined frequency region.
 また、CPU48は、ビン10の振動音のデジタル信号にハニング窓関数をかけた演算結果をフーリエ変換することが好ましい。 Further, it is preferable that the CPU 48 Fourier-transforms the calculation result obtained by multiplying the digital signal of the vibration sound of the bin 10 by the Hanning window function.
 ビン10の振動音のデジタル信号にハニング窓関数をかけた結果をフーリエ変換することで、離散的な音響信号の主成分であるメインローブの幅が小さいほど周波数分解能を高くすることができ、サイドローブの値が小さいほど小電力のスペクトルを検出する能力を高くすることができるため、定常波に比して電力強度が低い欠陥部位の振動音を正確に識別することができる。 By Fourier-transforming the result of applying the Hanning window function to the digital signal of the vibration sound of the bin 10, the frequency resolution can be increased as the width of the main lobe, which is the main component of the discrete acoustic signal, decreases. As the value of the lobe is smaller, the ability to detect the spectrum of low power can be increased, so that the vibration noise at the defect site where the power intensity is lower than that of the standing wave can be accurately identified.
 図4(c)は、内ビン不良の周波数特性を示している。内ビン不良は、第3の周波数領域F3において、波形の強度面積値が限界値の150、000未満であり、且つ第4の周波数領域F4において、波形の強度面積値が限界値の150、000を超え、良品ビンの波形の強度面積値と相違する特徴を有しているため、不良ビンとして判定される。 FIG. 4C shows the frequency characteristic of the inner bin failure. In the inner bin defect, the strength area value of the waveform is less than 150,000 in the third frequency range F3, and the strength area value of the waveform is 150,000 in the fourth frequency range F4. Because it has a feature that is different from the intensity area value of the waveform of the non-defective bin, it is determined as a defective bin.
 図4(d)は、第4の周波数領域F4において、波形の強度面積値が限界値の150、000を超え、良品ビンの波形の強度面積値と相違する特徴を有しているため、不良ビンとして判定される。 FIG. 4D shows that in the fourth frequency range F4, the strength area value of the waveform exceeds the limit value of 150, 000, and has a feature different from the strength area value of the non-defective bin waveform. It is judged as a bin.
 次に、CPU48は、RAM50に記憶している良否判定データとしての第1~第6の周波数領域の限界値とビン10の周波数特性及び電力強度とを比較する。CPU48は、ビン10が所定の限界値を越えるか超えないかによって「1」又は「0」からなる6桁の総合判定結果データを生成し、ビン10の良否を判定する。この判定処理によりビン10が不良ビンである場合は、ビンの欠陥部位を総合判定結果データから特定することができる。 Next, the CPU 48 compares the limit value of the first to sixth frequency regions as the quality determination data stored in the RAM 50 with the frequency characteristic and the power intensity of the bin 10. The CPU 48 generates six-digit comprehensive determination result data consisting of “1” or “0” depending on whether the bin 10 exceeds or exceeds the predetermined limit value, and determines whether the bin 10 is good or bad. If the bin 10 is a defective bin by this determination processing, it is possible to specify a defective portion of the bin from the comprehensive determination result data.
 但し、本発明は、良否判定データを第1~第6の周波数領域の限界値に限定するものではなく、例えば、第1~第6の周波数領域の波形データとビン10の周波数解析値の波形データとのパターンが一致するか否かを判定することで、ビン10の良否判定を実行し、容器の欠陥部位を特定することができる。 However, the present invention does not limit the pass / fail judgment data to the limit value of the first to sixth frequency regions, and for example, the waveform data of the first to sixth frequency regions and the waveform of the frequency analysis value of the bin 10 By determining whether or not the patterns match the data, the quality determination of the bin 10 can be performed, and the defective portion of the container can be identified.
 解析装置46は、CPU48の判定結果データ及び検査日時データをデータ保存用記憶装置60に記憶し、状態監視ランプ70を点灯させる。状態監視ランプ70は、良品ビンを示す青色発光と不良ビンを示す赤色発光を区別して報知する。 The analysis device 46 stores the determination result data of the CPU 48 and the examination date and time data in the data storage storage device 60, and turns on the state monitoring lamp 70. The state monitoring lamp 70 distinguishes and notifies blue emission indicating a non-defective bin and red emission indicating a defective bin.
 解析装置46は、ビン10がCPU48により不良ビンと判定された場合、排斥装置72排斥信号を送信し、ビン10を図外の容器不良ラインへ搬送させる。 If the bin 10 is determined to be a defective bin by the CPU 48, the analysis device 46 transmits a discharge device 72 discharge signal to transport the bin 10 to a container failure line (not shown).
 更に、解析装置46は、RAM50に書き込んだビン10の振動音データ、又は判定結果データ若しくはビン10の周波数解析データを、計測値出力部64を通して外部記憶装置74へ出力する。 Further, the analysis device 46 outputs the vibration sound data of the bin 10 written in the RAM 50, the determination result data or the frequency analysis data of the bin 10 to the external storage device 74 through the measurement value output unit 64.
 本発明は、液体が充填された容器のひび割れ箇所を検出する検査装置に適用することができる。 The present invention can be applied to an inspection apparatus for detecting a cracked portion of a container filled with a liquid.

Claims (4)

  1.  金属製の栓で密封された液体容器に対して電磁波を放射する円筒状の電磁石と、該電磁石の中心軸に配置され、前記電磁波の放射によって発生する前記栓の振動音を捕捉するマイクロホンロホンとを備える検査装置であって、
     前記マイクロホンの側面と前記電磁石の内面との間に音を通過させる空間を設け、前記容器の栓に対向する前記電磁石と前記マイクロホンの各々の端面の位置を一致させて配置したことを特徴とする検査装置。
    A cylindrical electromagnet for emitting an electromagnetic wave to a liquid container sealed with a metal plug; and a microphone rophone disposed on a central axis of the electromagnet for capturing vibration noise of the plug generated by the radiation of the electromagnetic wave. An inspection apparatus comprising
    A space for passing sound is provided between the side surface of the microphone and the inner surface of the electromagnet, and the positions of the end surfaces of the electromagnet and the microphone facing the stopper of the container are arranged to coincide with each other. Inspection device.
  2.  請求項1記載の検査装置において、前記電磁石に励磁電力を供給する励磁電源と、前記電磁石の下方に位置した前記容器を検出する容器検出センサと、検査対象の容器の良否を判定するための良否判定データを格納した記憶装置と、前記容器検出センサからの検出信号に応じて、前記励磁電源から前記電磁石へ電力を供給させ、前記電磁波による前記栓の振動によって励起される前記容器の材料の振動音を、前記マイクロホンを通して受信する解析装置とを備え、
     前記解析装置は、前記電磁石の電磁的衝撃から栓の振動の減衰時間が経過して前記容器の内部空間内に形成された定常波の消失後に現れる容器材料の振動音の周波数特性及び電力強度に基づいて、複数の周波数領域における前記容器材料の振動音の電力強度面積値を算出し、該電力強度面積値と前記記憶装置に格納された良否判定データとを対比することにより、前記容器の良否を判定することを特徴とする検査装置。
    The inspection apparatus according to claim 1, wherein the excitation power supply for supplying excitation power to the electromagnet, the container detection sensor for detecting the container located below the electromagnet, and the quality for determining the quality of the container to be inspected. The storage device storing the determination data and the excitation power supply to supply power to the electromagnet according to the detection signal from the container detection sensor, the vibration of the material of the container excited by the vibration of the plug by the electromagnetic wave An analyzer for receiving sound through the microphone;
    The analysis device is based on frequency characteristics and power intensity of vibration sound of a container material appearing after disappearance of a standing wave formed in an inner space of the container after lapse of a damping time of vibration of a plug from electromagnetic impact of the electromagnet. By calculating the power intensity area value of the vibration noise of the container material in a plurality of frequency regions, and comparing the power intensity area value with the quality determination data stored in the storage device. An inspection apparatus characterized by determining.
  3.  前記記憶装置は、複数種類の不良品容器の電力強度面積値を前記良否判定データとして記憶し、前記解析装置は、前記容器の電力強度面積値と前記不良品容器の電力強度面積値とを対比し、両者が一致する場合に前記容器の欠陥部位を判別することを特徴とする請求項2に記載の検査装置。 The storage device stores power intensity area values of a plurality of types of defective container as the quality determination data, and the analysis device compares the power intensity area of the container with the power intensity area value of the defective container. 3. The inspection apparatus according to claim 2, wherein the defective portion of the container is determined when the two coincide with each other.
  4.  前記解析装置は、前記容器の振動音の音響信号にハニング窓関数をかけた演算結果をフーリエ変換することを特徴とする請求項2又は3に記載の検査装置。 The inspection apparatus according to claim 2 or 3, wherein the analysis device Fourier-transforms a calculation result obtained by multiplying a sounding signal of vibration sound of the container by a Hanning window function.
PCT/JP2011/072979 2010-10-15 2011-10-05 Device for testing liquid container WO2012050027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-233054 2010-10-15
JP2010233054A JP5385885B2 (en) 2010-10-15 2010-10-15 Liquid container inspection equipment

Publications (1)

Publication Number Publication Date
WO2012050027A1 true WO2012050027A1 (en) 2012-04-19

Family

ID=45938256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072979 WO2012050027A1 (en) 2010-10-15 2011-10-05 Device for testing liquid container

Country Status (2)

Country Link
JP (1) JP5385885B2 (en)
WO (1) WO2012050027A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433700B2 (en) * 2014-07-09 2018-12-05 佐藤工業株式会社 Post-installation anchor anchorage evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503868A (en) * 1996-11-12 2001-03-21 ホイフト ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining parameters in a closed vessel, for example, filling level, pressure or gas composition
JP2001514382A (en) * 1997-08-25 2001-09-11 ホイフト ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング How to inspect a container with a stopper
JP2003215116A (en) * 2002-01-23 2003-07-30 Toyo Seikan Kaisha Ltd Hammering test probe for hammering test machine
JP2005227152A (en) * 2004-02-13 2005-08-25 Mitsubishi Materials Corp Sound capturing device, and hammering test device for can
JP2006153496A (en) * 2004-11-25 2006-06-15 Toyo Seikan Kaisha Ltd Hammering test device and hammering test method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503868A (en) * 1996-11-12 2001-03-21 ホイフト ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining parameters in a closed vessel, for example, filling level, pressure or gas composition
JP2001514382A (en) * 1997-08-25 2001-09-11 ホイフト ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング How to inspect a container with a stopper
JP2003215116A (en) * 2002-01-23 2003-07-30 Toyo Seikan Kaisha Ltd Hammering test probe for hammering test machine
JP2005227152A (en) * 2004-02-13 2005-08-25 Mitsubishi Materials Corp Sound capturing device, and hammering test device for can
JP2006153496A (en) * 2004-11-25 2006-06-15 Toyo Seikan Kaisha Ltd Hammering test device and hammering test method

Also Published As

Publication number Publication date
JP5385885B2 (en) 2014-01-08
JP2012088088A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP3856478B2 (en) Method for determining parameters in a closed container, e.g. filling level, pressure or gas composition
US6176132B1 (en) Method for determining liquid level in a container using an electromagnetic acoustic transducer (EMAT)
US4187718A (en) Method and apparatus for inspecting an internal pressure of hermetically sealed container
CN103230880A (en) Rapid nondestructive detection apparatus of vacuum degrees of containers, and detection method thereof
WO2009110295A1 (en) Method and equipment for inspecting internal pressure of can of canned goods
US6443004B1 (en) Method and device for determining the filling level in containers
WO2012050027A1 (en) Device for testing liquid container
JP4188553B2 (en) How to inspect containers with stoppers
JP3132446U (en) Egg inspection equipment
RU2226679C2 (en) Technique to test plugged vessels
JP7125699B2 (en) Non-contact inspection system
CN203163931U (en) Whole-case container pressure rapid and nondestructive test equipment used in production lines
CN203148623U (en) Container vacuum degree rapid nondestructive test device used for production line
JP2017106729A (en) Device for inspecting internal pressure of hermetically sealed container
CN210742095U (en) Online rapid detection device for binding force of composite material combining laser shock waves and lamb waves
JP6809961B2 (en) Internal pressure inspection device for sealed containers
CN203132762U (en) Container-pressure rapid nondestructive detecting device used on production line
JPH04320958A (en) Method for inspecting product acoustically
EP0790865B1 (en) Non-mechanical contact ultrasound system for monitoring contents of a moving container
MXPA99003978A (en) Method for determining parameters, for example level, pressure, gas composition in closed containers
JPH03627A (en) Tester of sealed vessel and its testing method
JP2003185490A (en) X-ray liquid level-inspecting apparatus
JP2645897B2 (en) Inspection method and apparatus for sealed container
JP4450127B2 (en) Internal pressure inspection method for sealed containers
JPS6223804B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832462

Country of ref document: EP

Kind code of ref document: A1