WO2012049731A1 - Method for producing compound flavoring - Google Patents

Method for producing compound flavoring Download PDF

Info

Publication number
WO2012049731A1
WO2012049731A1 PCT/JP2010/067875 JP2010067875W WO2012049731A1 WO 2012049731 A1 WO2012049731 A1 WO 2012049731A1 JP 2010067875 W JP2010067875 W JP 2010067875W WO 2012049731 A1 WO2012049731 A1 WO 2012049731A1
Authority
WO
WIPO (PCT)
Prior art keywords
odor
fragrance
components
component
blended
Prior art date
Application number
PCT/JP2010/067875
Other languages
French (fr)
Japanese (ja)
Inventor
美紀 若松
雄一 古殿
幸夫 曽根
裕美 寒河江
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2010/067875 priority Critical patent/WO2012049731A1/en
Priority to JP2012538491A priority patent/JP5586702B2/en
Publication of WO2012049731A1 publication Critical patent/WO2012049731A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances

Definitions

  • the present invention relates to a method for producing a blended fragrance.
  • the gas chromatographic olfactometry method (GC-O method) is used to identify the aroma component from the odorous substance by sniffing the smell of the component separated by GC with the human nose.
  • a technique for screening important aroma components using an Aroma Extract Extraction Analysis (AEDA) method, a Charm Analysis Analysis, or the like is known.
  • AEDA Aroma Extract Extraction Analysis
  • FD factor Flavor ⁇ ⁇ Dilution Factor
  • a component having a high contribution to the aroma of the original odor substance as a whole is selected according to the number of components that can be mixed in the manufacturing procedure, for example, the top 30 components.
  • Patent Document 1 and Non-Patent Document 2 It has been confirmed in, for example, Patent Document 1 and Non-Patent Document 2 that the blended fragrance produced by mixing the fragrance components selected by the above method shows a certain degree of similarity to the odor of the original odor substance. Has been. However, the blended fragrances produced by these conventional methods are still less similar to the odor of the entire original odor substance.
  • the present inventors have selected the aroma component based on the element of the detection limit of the odor of each component, that is, the intensity of the odor, in selecting the important aroma component. Therefore, it has been found that among the selected important aroma components, there is a problem that the components contributing to the same odor quality with respect to the blended fragrance can be selected redundantly. Furthermore, there is a problem that a component whose odor intensity is not so strong as compared with other components is eliminated in the selection step even if it has a completely different odor quality from the other components.
  • an object of the present invention is to provide the manufacture of a blended fragrance that can highly reproduce the odor of the original odorous substance even in the number of components that are restricted in the manufacturing procedure.
  • the present inventors selected fragrance components having strong odor intensity from the analyzed and identified fragrance components, and then the fragrance components were classified into a plurality of groups based on the odor quality ( Odor quality group), and by selecting one fragrance component from each odor quality group, the diversity of the odor quality of the original odor substance is ensured even in the limited number of fragrance components, and consequently the original odor It has been found that it is possible to produce a blended fragrance that highly reproduces the odor of a substance.
  • the present invention is based on such knowledge.
  • the first step of analyzing / identifying the fragrance component of the odor substance, and the second step of selecting a plurality of fragrance components from the identified fragrance component in descending order of the odor intensity A step, a third step of classifying the fragrance component selected in the second step into a plurality of odor groups based on the odor quality, and a step of selecting one fragrance component from each of the odor groups.
  • a method for producing a blended fragrance comprising a fourth step and a fifth step of blending the fragrance component selected in the fourth step.
  • the mixed fragrance having higher similarity to the odor of the original odor substance. Can be manufactured.
  • FIG. 1 shows a visual analog scale.
  • FIG. 2 is a diagram illustrating a similarity profile of one fragrance component with respect to a reference fragrance component.
  • FIG. 3 is a cluster diagram by performing multivariate analysis on the result of the similarity profile.
  • the method for producing a blended fragrance of the present invention belongs to a so-called reconstruction technique that includes reproducing the odor of the original odorous substance by blending.
  • the aroma component of the odorous substance is analyzed and identified (first step).
  • odorous substances include plant raw materials such as tobacco, fruits, vegetables, cereals, teas, herbs, and processed products thereof, natural flavors, coffee, alcoholic beverages, and other favorite beverages.
  • tea leaves such as tobacco, green tea and black tea, and beverages.
  • the method for analyzing and identifying the aroma component of the odor substance there is no particular limitation on the method for analyzing and identifying the aroma component of the odor substance, but the GC-O method can be used.
  • a sample odorous substance
  • a carrier gas for example, helium gas
  • the fragrance component is separated based on the difference in the distribution coefficient of each fragrance component between the stationary phase packed in the separation column and the mobile phase.
  • each separated fragrance component is sent to the mass analyzer (MS) on the one hand and to the scent device on the other side, and the qualitative and quantitative analysis of the fragrance component is performed by the MS, and the scent device
  • MS mass analyzer
  • the odor intensity of the fragrance component identified in the first step is measured, and the fragrance component is selected in order of increasing odor intensity (second step).
  • the method for measuring the odor intensity is not particularly limited, but the AEDA method can be used.
  • each of the identified aroma components is sequentially diluted, for example, 2 2 times, 2 3 times, 2 n times, or 4 2 , 4 3, 4 n times,
  • the GC-O method is performed on each diluted sample.
  • the maximum dilution factor at which the odor of the fragrance component is felt is recorded as the FD factor of the fragrance component. Since an odor component having a large FD factor can detect odor even when diluted thinly, the contribution of the original odor substance to the fragrance is large.
  • the odor intensity is measured, and the aroma components are selected in order of increasing odor intensity.
  • the aroma components selected in the second step are classified into a plurality of odor groups (odor groups) based on the odor quality (third step).
  • this third step there is no particular limitation on the method of classifying the odor component into a plurality of odor groups in the odor quality, but for example, the documents RH ⁇ WRIGHT, KM MICHELS, Ann NY Acad Sci, 116, The similarity profile described in -551 (Jul 30, 1964) can be used.
  • the odor quality can be easily stored by the panelists, and the odor quality can be clearly distinguished from each other. Select some (for example, 10 components).
  • the similarity between the fragrance component (including the selected reference component) selected in the second step and the reference component is determined by a panel using a visual analog scale (VAS) (see FIG. 1). evaluate.
  • VAS visual analog scale
  • a similarity profile is created by using the similarity between all components as the value obtained by arithmetically averaging the similarity values obtained by all panelists.
  • An example of a similarity profile for 10 reference components (reference components 1 to 10) for one aroma component is shown in FIG.
  • a cluster diagram is obtained by multivariate analysis of the obtained similarity profile result.
  • the 10 reference components selected first are separated into positions (dotted line a in FIG. 3) where the number of groups is the smallest among the different clusters.
  • the aroma components selected in the second step are classified into a plurality of odorous groups (10 odorous groups A to J in FIG. 3).
  • the number of odor groups is not particularly limited, but when it is less than 10, the degree of similarity to the natural aroma is low, while when it is more than 30, the productivity decreases, so it is preferably 10 to 30.
  • the selection of fragrance components from each odor group can be performed arbitrarily, but preferably the odor quality distance is determined for all pairs of fragrance components in the same odor group and the total odor is selected.
  • the odor quality distance is determined using the VAS method for all pair combinations of fragrance components within the same odor quality group.
  • the component having the smallest sum of odor distances in other words, when each component in the same odor group is placed in space, it is compared with all other components. The component that is close to the target, that is, the component closest to the center of the space is selected.
  • the aroma component selected in the fourth step is blended to produce a desired blended fragrance (fifth step).
  • the blending ratio of the fragrance component selected in the fourth step can be arbitrarily set, but so that all odor qualities are perceived equally in the manufactured blended fragrance, It is preferable to mix each aromatic component with equal strength.
  • Example 1 ⁇ Aroma component analysis and selection of aroma components> Eight cabin mild cigarettes with the filter removed were burned using an automatic smoking device. The crude tar adhering to the Cambridge filter was extracted with 100 mL of diethyl ether, and then concentrated to 2 mL at room temperature and normal pressure using a rapid solvent extraction device to prepare a sample.
  • Example 2 Of the 100 components obtained in Example 2, based on intensity information as usual, the top 10 components of the FD factor are selected (indicated by a circle in Table 1), and the odor intensity of each component is equal.
  • a blended fragrance having components as shown in Table 1 was obtained by blending at a concentration of
  • the 20 panelists were investigated which of the blended fragrance obtained in Example 1 and the blended fragrance obtained in Example 2 felt closer to the smell of tobacco when smoking. As a result, 17 panelists evaluated that the blended fragrance obtained in Example 1 felt closer to the smell of tobacco when smoking. This indicates that there is a significant difference at a risk rate of 1%.
  • the method of the present invention by selecting important fragrance components according to the quality of odor, it is possible to produce a blended fragrance having a higher similarity with the original odor of cigarettes in the same number of fragrance components than in the conventional method. all right.
  • Example 3 In the same manner as in Example 1, the 100 important aroma components are classified into 5 odor groups (indicated by dotted line b in FIG. 3), and one component is arbitrarily selected from each group, and the odor intensity of each component Synthetic fragrances were blended so as to have equal strength.
  • Example 4 In the same manner as in Example 1, the 100 important aroma components are classified into 30 odor groups (indicated by dotted line c in FIG. 3), and one component is arbitrarily selected from each group, and the odor intensity of each component Synthetic fragrances were blended so as to have equal strength.
  • Example 5 The 100 important fragrance components were directly used as 100 odor groups, and synthetic fragrances were prepared so that the odor strength of each component was equal.
  • Example 1 For all the combinations of Example 1 and Examples 3 to 5, 20 panelists were investigated which felt close to the smell of tobacco when smoking. The results are shown in Table 2.
  • Table 3 shows the degree of similarity, productivity, and their overall evaluation. As can be seen from Table 3, when the number of odorous groups was in the range of 10 to 30, the degree of similarity to the odor of cigarettes at least as in Example 2 was shown, and the productivity was sufficiently secured.
  • the productivity evaluation criteria are as follows. ⁇ : Can be easily prepared by manual operation; ⁇ : Manual preparation is possible, but requires a certain amount of time; ⁇ : Preparation by manual operation takes an enormous amount of time; Furthermore, in Table 3, the comprehensive evaluation criteria are as follows. ⁇ : Suitable as the number of odorous groups in the composition of the reproduced fragrance; ⁇ : Not suitable as the number of odorous groups in the structure of the reproduced fragrance.
  • Example 6 In Example 1, after classification into odorous groups, the odorous distances for all pairs of components within the same odorous group were determined using the VAS method. And the synthetic
  • Example 1 and Example 6 felt closer to the smell of tobacco when smoking.
  • 15 panelists evaluated that the blended fragrance obtained in Example 6 felt closer to the smell of tobacco when smoking. This indicates that there is a significant difference at a risk rate of 5%. It was found that the components selected from each odorous group are closer to the smell of tobacco when smoking than selecting the components located in the center of each odorous group rather than selecting them arbitrarily.
  • Example 7 A cigarette was prepared by adding 10 ⁇ L of the blended fragrance obtained in Example 6 to the tobacco part of the mild seven one cigarette using a microsyringe. A smoking evaluation was performed on the panelists. As a result, 18 panelists evaluated that the cigarette added with the blended fragrance obtained in Example 6 felt that the smell of tobacco was stronger when smoking. This indicates that there is a significant difference at a risk rate of 1%. It has been found that the odor of tobacco during smoking can be enhanced by adding the blended fragrance produced by the method of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fats And Perfumes (AREA)
  • Manufacture Of Tobacco Products (AREA)

Abstract

Provided is a method for producing a compound flavoring comprising: analyzing and identifying aroma compounds of an odorous substance; sorting a plurality of aroma compounds in order of descending odor intensity out of the identified aroma compounds; categorizing the sorted aroma compounds into a plurality of odor quality groups based on the odor quality; selecting one aroma compound from each odor quality group; and blending the selected aroma compounds.

Description

調合香料の製造方法Method for producing blended fragrance
 本発明は、調合香料の製造方法に関する。 The present invention relates to a method for producing a blended fragrance.
 近年、各分野の製品において天然物、天然香料等のにおい物質の香気を高度に再現する調合香料(リコンストラクション)が求められている。天然物、天然香料等のにおい物質の香気は、通常、非常に多様なにおいの質を持つ多数の香気成分から成り立っている。リコンストラクションによる調合香料の製造に際しては、これら香気成分のうち、におい物質の香気の特徴を表現するのに特に重要な香気成分をスクリーニングすることが必要となる。 In recent years, there has been a demand for a blended fragrance (reconstruction) that highly reproduces the aroma of odorous substances such as natural products and natural fragrances in products in various fields. The odors of odorous substances such as natural products and natural fragrances are usually composed of a large number of fragrance components having very different odor qualities. In the production of a blended fragrance by reconstruction, it is necessary to screen among these fragrance components for fragrance components that are particularly important for expressing the fragrance characteristics of odor substances.
 そのようなスクリーニング手法として、ガスクロマトグラフィーオルファクトメトリー法(GC-O法)を用いて、GCにより分離された成分のにおいを人の鼻で嗅ぐことにより、におい物質からその香気成分を同定し、次いでアロマ・エキストラクト・ダイリューション・アナリシス(Aroma Extract Dilution Analysis)法(AEDA法)やチャーム・アナリシス(Charm Analysis)法等を用いて重要香気成分をスクリーニングする手法が知られている。例えば、AEDA法では、同定された香気成分のそれぞれについて濃度を順次希釈し、各希釈試料についてGC-Oによるにおい嗅ぎを繰り返し行う。そして、各成分のにおいが感じられる最大の希釈倍率をフレーバー・ダイリューション・ファクタ(Flavor Dilution Factor)(FDファクタ)と定義し、FDファクタの値が大きいほど、元のにおい物質全体の香気への貢献度の高い成分として同定する。AEDA法は、例えば特許文献1、非特許文献1に説明されている。 As such a screening method, the gas chromatographic olfactometry method (GC-O method) is used to identify the aroma component from the odorous substance by sniffing the smell of the component separated by GC with the human nose. Subsequently, a technique for screening important aroma components using an Aroma Extract Extraction Analysis (AEDA) method, a Charm Analysis Analysis, or the like is known. For example, in the AEDA method, the concentration is sequentially diluted for each identified aroma component, and smelling with GC-O is repeated for each diluted sample. The maximum dilution factor at which the odor of each component can be felt is defined as Flavor ダ イ Dilution Factor (FD factor). The larger the FD factor, the more the odor of the original odor substance. Identify as a component with a high contribution of. The AEDA method is described in Patent Document 1 and Non-Patent Document 1, for example.
 リコンストラクションによる調合香料の製造においては、元のにおい物質全体の香気への貢献度の高い成分を、例えば上位30成分というように、製造の手続上混合可能な成分数に応じて選択する。 In the production of a blended fragrance by reconstruction, a component having a high contribution to the aroma of the original odor substance as a whole is selected according to the number of components that can be mixed in the manufacturing procedure, for example, the top 30 components.
 上記方法により選別された香気成分を混合することにより製造される調合香料は、元のにおい物質の香気に対してある程度の類似性を示すことが、例えば特許文献1、非特許文献2等において確認されている。しかしながら、これら従来の方法で製造された調合香料は、元のにおい物質全体の香気に対する類似性がなお低いものである。 It has been confirmed in, for example, Patent Document 1 and Non-Patent Document 2 that the blended fragrance produced by mixing the fragrance components selected by the above method shows a certain degree of similarity to the odor of the original odor substance. Has been. However, the blended fragrances produced by these conventional methods are still less similar to the odor of the entire original odor substance.
特開2004-325116号公報JP 2004-325116 A
 本発明者らは、上記従来技術について検討した結果、上記従来技術では、重要香気成分の選別にあたり、香気成分を各成分のにおいの検出限界、すなわちにおいの強度という要素により選別しているだけであり、そのため、選別された重要香気成分の中には、調合香料に対して同一のにおいの質の貢献をしている成分が重複して選定され得るという問題点があることを見いだした。さらには、においの強度が他の成分と比較して強くない成分は、たとえ他の成分と全く異なるにおいの質を有していても、選別段階で排除されるという問題点がある。 As a result of studying the above prior art, the present inventors have selected the aroma component based on the element of the detection limit of the odor of each component, that is, the intensity of the odor, in selecting the important aroma component. Therefore, it has been found that among the selected important aroma components, there is a problem that the components contributing to the same odor quality with respect to the blended fragrance can be selected redundantly. Furthermore, there is a problem that a component whose odor intensity is not so strong as compared with other components is eliminated in the selection step even if it has a completely different odor quality from the other components.
 したがって、本発明は、製造の手続上制限される構成成分数においても、元のにおい物質の香気を高度に再現し得る調合香料の製造を提供することを目的とする。 Therefore, an object of the present invention is to provide the manufacture of a blended fragrance that can highly reproduce the odor of the original odorous substance even in the number of components that are restricted in the manufacturing procedure.
 本発明者らは、重要香気成分の選別にあたり、分析・同定された香気成分の中からにおいの強度が強い香気成分を選別した後、それら香気成分を、においの質を基準として複数の群(におい質群)に分類し、各におい質群から1つの香気成分を選定することによって、制限される香気成分数においても元のにおい物質のにおいの質の多様性を確保し、ひいては元のにおい物質の香気を高度に再現する調合香料を製造することができることを見いだした。本発明はかかる知見に基づく。 In selecting important fragrance components, the present inventors selected fragrance components having strong odor intensity from the analyzed and identified fragrance components, and then the fragrance components were classified into a plurality of groups based on the odor quality ( Odor quality group), and by selecting one fragrance component from each odor quality group, the diversity of the odor quality of the original odor substance is ensured even in the limited number of fragrance components, and consequently the original odor It has been found that it is possible to produce a blended fragrance that highly reproduces the odor of a substance. The present invention is based on such knowledge.
 したがって、本発明によれば、におい物質の香気成分を分析・同定する第1の工程と、前記同定された香気成分の中から、においの強度が強い順に複数の香気成分を選別する第2の工程と、前記第2の工程において選別された香気成分をにおいの質を基準として複数のにおい質群に分類する第3の工程と、前記におい質群のそれぞれから1つの香気成分を選定する第4の工程、前記第4の工程で選定された香気成分を調合する第5の工程を含む調合香料の製造方法が提供される。 Therefore, according to the present invention, the first step of analyzing / identifying the fragrance component of the odor substance, and the second step of selecting a plurality of fragrance components from the identified fragrance component in descending order of the odor intensity. A step, a third step of classifying the fragrance component selected in the second step into a plurality of odor groups based on the odor quality, and a step of selecting one fragrance component from each of the odor groups. There is provided a method for producing a blended fragrance comprising a fourth step and a fifth step of blending the fragrance component selected in the fourth step.
 本発明によれば、従来の構成成分のにおいの強度のみに基づいて重要香気成分を選別して調合した調合香料に比して、元のにおい物質の香気に対しより類似性の高い調合香料を製造することができる。 According to the present invention, compared to the conventional fragrance prepared by selecting and mixing the important fragrance components based only on the odor intensity of the conventional constituent components, the mixed fragrance having higher similarity to the odor of the original odor substance. Can be manufactured.
図1は、視覚的アナログスケールを示す図である。FIG. 1 shows a visual analog scale. 図2は、1つの香気成分の、基準香気成分に対する類似度プロファイルを示す図。FIG. 2 is a diagram illustrating a similarity profile of one fragrance component with respect to a reference fragrance component. 図3は、類似度プロファイルの結果を多変量解析することにより、クラスタ図である。FIG. 3 is a cluster diagram by performing multivariate analysis on the result of the similarity profile.
 本発明の調合香料の製造方法は、調合によって元のにおい物質の香気を再現することを含むいわゆるリコンストラクション技術に属する。 The method for producing a blended fragrance of the present invention belongs to a so-called reconstruction technique that includes reproducing the odor of the original odorous substance by blending.
 本発明では、まず、におい物質の香気成分を分析・同定する(第1の工程)。におい物質としては、例えば、タバコ、果実類、野菜類、穀物類、茶類、ハーブなどの植物性原料およびそれらの加工品、天然香料類、コーヒー、アルコール飲料等の嗜好飲料類等が挙げられる。これらのうち、好ましいものとしては、タバコ、緑茶、紅茶などの茶葉類、嗜好飲料類が挙げられる。 In the present invention, first, the aroma component of the odorous substance is analyzed and identified (first step). Examples of odorous substances include plant raw materials such as tobacco, fruits, vegetables, cereals, teas, herbs, and processed products thereof, natural flavors, coffee, alcoholic beverages, and other favorite beverages. . Among these, preferred are tea leaves such as tobacco, green tea and black tea, and beverages.
 この第1の工程において、におい物質の香気成分を分析・同定する手法に特に制限はないが、GC-O法を用いることができる。 In the first step, there is no particular limitation on the method for analyzing and identifying the aroma component of the odor substance, but the GC-O method can be used.
 GC-O法では、ガスクロマトグラフの分離カラムに試料(におい物質)を、移動相としてのキャリヤーガス(例えば、ヘリウムガス)とともに注入する。分離カラムでは、分離カラムに充填された固定相と上記移動相との間での各香気成分の分配係数の差に基づいて香気成分の分離が行われる。分離カラムの出口では、分離された各香気成分が、一方では、質量分析器(MS)へ、他方ではにおい嗅ぎ器具に送られ、MSで香気成分の定性・定量分析が行われ、におい嗅ぎ器具のところで人の嗅覚によって各香気成分のにおいが検出される。こうして、におい物質の香気成分を同定することができる。 In the GC-O method, a sample (odorous substance) is injected into a separation column of a gas chromatograph together with a carrier gas (for example, helium gas) as a mobile phase. In the separation column, the fragrance component is separated based on the difference in the distribution coefficient of each fragrance component between the stationary phase packed in the separation column and the mobile phase. At the outlet of the separation column, each separated fragrance component is sent to the mass analyzer (MS) on the one hand and to the scent device on the other side, and the qualitative and quantitative analysis of the fragrance component is performed by the MS, and the scent device The smell of each fragrance component is detected by the human sense of smell. In this way, the aroma component of the odor substance can be identified.
 次に、上記第1の工程で同定された香気成分についてそのにおい強度を測定し、におい強度が強い順に香気成分を選定する(第2の工程)。 Next, the odor intensity of the fragrance component identified in the first step is measured, and the fragrance component is selected in order of increasing odor intensity (second step).
 この第2の工程において、におい強度を測定する手法に特に制限はないが、AEDA法を用いることができる。 In the second step, the method for measuring the odor intensity is not particularly limited, but the AEDA method can be used.
 AEDA法では、上記同定された香気成分のそれぞれについて、例えば、22倍、23倍・・・2n倍、あるいは42、43・・・4n倍というように順次希釈を行い、各希釈試料について上記GC-O法を行なう。香気成分のにおいが感じられる最大の希釈倍率をその香気成分のFDファクタとして記録する。FDファクタが大きい香気成分ほど薄く希釈されてもにおいが検知されるので、元のにおい物質の香気への貢献度が大きい。 In the AEDA method, each of the identified aroma components is sequentially diluted, for example, 2 2 times, 2 3 times, 2 n times, or 4 2 , 4 3, 4 n times, The GC-O method is performed on each diluted sample. The maximum dilution factor at which the odor of the fragrance component is felt is recorded as the FD factor of the fragrance component. Since an odor component having a large FD factor can detect odor even when diluted thinly, the contribution of the original odor substance to the fragrance is large.
 こうしてにおい強度を測定し、におい強度が強い順に香気成分を選別する。 In this way, the odor intensity is measured, and the aroma components are selected in order of increasing odor intensity.
 次に、上記第2の工程で選別された香気成分をにおいの質を基準として複数のにおい質群(におい質群)に分類する(第3の工程)。 Next, the aroma components selected in the second step are classified into a plurality of odor groups (odor groups) based on the odor quality (third step).
 この第3の工程において、香気成分をにおいの質で香気成分を複数のにおい質群に分類する手法に特に制限はないが、例えば、文献R.H. WRIGHT, K.M. MICHELS, Ann NY Acad Sci, 116, 535-551 (Jul 30, 1964)に記載された類似度プロファイルを用いることができる。 In this third step, there is no particular limitation on the method of classifying the odor component into a plurality of odor groups in the odor quality, but for example, the documents RH 文献 WRIGHT, KM MICHELS, Ann NY Acad Sci, 116, The similarity profile described in -551 (Jul 30, 1964) can be used.
 より具体的には、上記第2の工程で選別された香気成分の中から、パネラーにより容易ににおい質を記憶することができ、においの質が互いにはっきりと識別できることを基準とし、基準成分をいくつか(例えば、10成分)選定する。次に、上記第2の工程で選別された香気成分(選定した基準成分を含む)と基準成分との間の類似度をパネラーにより、視覚的アナログスケール(VAS)(図1参照)を用いて評価する。このVASは、dissimilar(数値データ上は0として扱う)とsimilar(数値データ上は100として扱う)を両端のディスクリプタとして持つ。 More specifically, from the fragrance components selected in the second step, the odor quality can be easily stored by the panelists, and the odor quality can be clearly distinguished from each other. Select some (for example, 10 components). Next, the similarity between the fragrance component (including the selected reference component) selected in the second step and the reference component is determined by a panel using a visual analog scale (VAS) (see FIG. 1). evaluate. This VAS has dissimilar (handled as 0 on numeric data) and similar (handled as 100 on numeric data) as descriptors at both ends.
 ついで、全パネラーによる類似値を算術平均して得た値を各成分間の類似度とし、類似度プロファイルを作成する。1つの香気成分についての例えば10の基準成分(基準成分1~10)に対する類似度プロファイルの例を図2に示す。得られた類似度プロファイルの結果を多変量解析することにより、クラスタ図を得る。そして、このクラスタにおいて、はじめに選定した例えば10の基準成分がそれぞれ別のクラスタに入る中で最も群数が少なくなるような位置(図3中点線a)でクラスタを切り分ける。かくして、上記第2の工程で選別された香気成分は、複数のにおい質群(図3では、10のにおい質群A~J)に分類される。におい質群の数は、特に限定されないが、10より少ない場合は天然香気に対する類似度が低く、一方、30より多い場合は生産性が低下するため、好ましくは10~30である。 Next, a similarity profile is created by using the similarity between all components as the value obtained by arithmetically averaging the similarity values obtained by all panelists. An example of a similarity profile for 10 reference components (reference components 1 to 10) for one aroma component is shown in FIG. A cluster diagram is obtained by multivariate analysis of the obtained similarity profile result. Then, in this cluster, for example, the 10 reference components selected first are separated into positions (dotted line a in FIG. 3) where the number of groups is the smallest among the different clusters. Thus, the aroma components selected in the second step are classified into a plurality of odorous groups (10 odorous groups A to J in FIG. 3). The number of odor groups is not particularly limited, but when it is less than 10, the degree of similarity to the natural aroma is low, while when it is more than 30, the productivity decreases, so it is preferably 10 to 30.
 しかる後、各におい質群の中から1つの香気成分を任意に選定する(第4の工程)。 Thereafter, one fragrance component is arbitrarily selected from each odor group (fourth step).
 第4の工程において、各におい質群からの香気成分の選定は任意に行うことができるが、好ましくは同一におい質群内の香気成分の全一対組合せについてにおい質距離を側定し、総和におい質距離が最小の成分を選定することにより、元のにおい物質に対してより高い類似度を有する調合香料を製造することができる。より具体的には、同一におい質群内の香気成分の全一対組合せについてにおい質距離を、VAS法を用いて側定する。そして、同一におい質群内の各成分の中でにおい質距離の総和が最小となる成分(言い換えると、同一におい質群内の各成分を空間上に配置したとき、他の全ての成分から比較的近い位置にある、すなわちその空間の中心に最も近い成分)を選定する。 In the fourth step, the selection of fragrance components from each odor group can be performed arbitrarily, but preferably the odor quality distance is determined for all pairs of fragrance components in the same odor group and the total odor is selected. By selecting the component with the smallest mass distance, a blended fragrance having a higher degree of similarity to the original odor substance can be produced. More specifically, the odor quality distance is determined using the VAS method for all pair combinations of fragrance components within the same odor quality group. Then, among the components in the same odor group, the component having the smallest sum of odor distances (in other words, when each component in the same odor group is placed in space, it is compared with all other components. The component that is close to the target, that is, the component closest to the center of the space is selected.
 最後に、第4の工程で選定された香気成分を調合して、所望の調合香料を製造する(第5の工程)。 Finally, the aroma component selected in the fourth step is blended to produce a desired blended fragrance (fifth step).
 上記第5の工程において、第4の工程で選定された香気成分の調合比は任意に設定することができるが、製造された調合香料においてすべてのにおいの質が均等に知覚されるように、各香気成分を等強度で混合することが好ましい。 In the fifth step, the blending ratio of the fragrance component selected in the fourth step can be arbitrarily set, but so that all odor qualities are perceived equally in the manufactured blended fragrance, It is preferable to mix each aromatic component with equal strength.
 以上述べたようにして、元のにおい物質の香気にきわめて類似する香気を発する調合香料を製造することができる。 As described above, it is possible to produce a blended fragrance that emits an odor very similar to the odor of the original odor substance.
 以下、本発明を実施例により説明するが、本発明はそれら実施例により限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 例1
 <香気成分の分析および香気成分の選別>
 フィルターを除去したキャビンマイルドシガレット8本を、自動喫煙装置を用いて燃焼させた。ケンブリッジフィルターに付着した粗タールを100mLのジエチルエーテルで抽出した後、迅速溶媒抽出装置を用いて常温、常圧で2mLに濃縮し、サンプルとした。
Example 1
<Aroma component analysis and selection of aroma components>
Eight cabin mild cigarettes with the filter removed were burned using an automatic smoking device. The crude tar adhering to the Cambridge filter was extracted with 100 mL of diethyl ether, and then concentrated to 2 mL at room temperature and normal pressure using a rapid solvent extraction device to prepare a sample.
 上記サンプルを下記条件にて、GC-Oにより香気成分の定性、定量分析(におい嗅ぎ(ODP)GC/MS分析)を行った。さらに、同条件で、AEDA法により、サンプルを4倍ずつ順次希釈を行い、各香気成分のFDファクタを測定した。FDファクタが大きい上位100成分(成分1~成分100)を重要香気成分として選定した(下記表1)。 The above samples were subjected to qualitative and quantitative analysis (odor sniffing (ODP) GC / MS analysis) by GC-O under the following conditions. Further, under the same conditions, the sample was sequentially diluted by 4 times by the AEDA method, and the FD factor of each aroma component was measured. The top 100 components (component 1 to component 100) having a large FD factor were selected as important aroma components (Table 1 below).
[GC-O分析条件]
 装置:Agilent 6890GC/5973MSD
 カラム:J & W DB-WAX(0.25μm(フィルム厚)×25mm(内径)×60m(長さ)
 ODP:MSスプリット比:1:1
 インレットモード(CIS4):Solvent Vent
 注入量:1μL
 CIS温度:-100℃(0.1分)→昇温(12℃/秒)→300℃(3分)
 移動相:へリウムガス
 カラム温度:50℃(0分)→昇温(5℃/分)→250℃(20分)
 ODPトランスフアーライン温度:280℃
 MSトランスファーライン温度:250℃
 MSソース温度:230℃
 MS四重極温度:150℃。
[GC-O analysis conditions]
Equipment: Agilent 6890GC / 5973MSD
Column: J & W DB-WAX (0.25 μm (film thickness) × 25 mm (inner diameter) × 60 m (length)
ODP: MS split ratio: 1: 1
Inlet mode (CIS4): Solvent Vent
Injection volume: 1 μL
CIS temperature: -100 ° C (0.1 min) → temperature rise (12 ° C / sec) → 300 ° C (3 min)
Mobile phase: Helium gas Column temperature: 50 ° C. (0 min) → Temperature rise (5 ° C./min)→250° C. (20 min)
ODP transfer line temperature: 280 ° C
MS transfer line temperature: 250 ° C
MS source temperature: 230 ° C
MS quadrupole temperature: 150 ° C.
 <におい質群への分類>
 表1に示す100成分の中から基準成分として10成分を選定した。基準成分1~10は、容易ににおい質を記憶することができ、かつにおい質が互いにはっきりと識別できることを基準とし、実験者により選定した。次いで、表1に示す100成分(基準成分1~10を含む)と基準成分それぞれとの間の類似度を20名のパネラーによる官能評価でVAS法により測定した。用いたVASは、dissimilar(数値データ上は0として扱う)とsimilar(数値データ上は100として扱う)を両端のディスクリプタとして持つものである(図1参照)。20名のパネラーにより得た類似度の算術平均値を各成分間の類似度とした類似度プロファイルを作成した。この類似度プロファイルを図2に示す。類似度プロファイルの結果を多変量解析することにより、図3に示すクラスタ図を得た。このクラスタにおいて、はじめに設定した基準成分1~10がそれぞれ別のクラスタに入る中で最も群数が少なくなるような位置(図3中点線a)でクラスタを切り分けた。その結果、図3に示す10のにおい質群A~Jに分類された(表1をも参照)。群A~Jは、それぞれ、Onion、Sulfur、Gassy、Animal、Roast、Sour、Caramel、Floral、Fruity、Medicinalのにおい質のものであった。
<Classification into odorous groups>
Ten components were selected from the 100 components shown in Table 1 as reference components. The reference components 1 to 10 were selected by an experimenter on the basis that the odor quality can be easily memorized and the odor qualities can be clearly distinguished from each other. Subsequently, the similarity between 100 components shown in Table 1 (including reference components 1 to 10) and each of the reference components was measured by the VAS method by sensory evaluation by 20 panelists. The VAS used has dissimilar (handled as 0 on numeric data) and similar (handled as 100 on numeric data) as descriptors at both ends (see FIG. 1). A similarity profile was created with the arithmetic mean of the similarities obtained by 20 panelists as the similarity between each component. This similarity profile is shown in FIG. The cluster diagram shown in FIG. 3 was obtained by multivariate analysis of the similarity profile results. In this cluster, the clusters were cut at positions (dotted line a in FIG. 3) where the number of groups was the smallest among the reference components 1 to 10 that were set first in different clusters. As a result, it was classified into 10 odor groups A to J shown in FIG. 3 (see also Table 1). Groups A to J were of Onion, Sulfur, Gassy, Animal, Roast, Sour, Caramel, Floral, Fruity and Medicinal odors, respectively.
 <におい質群からの香気成分の選別および香料の調合>
 上記10のにおい質群A~Jのそれぞれから、1成分ずつを任意に選定し(表1中、○印で示す)、各成分のにおい強度が等強度になる濃度で調合することにより、表1に示すような構成成分を持つ調合香料を得た。
<Selection of aromatic components from odor group and preparation of fragrance>
By arbitrarily selecting one component from each of the above ten odor groups A to J (indicated by a circle in Table 1), and blending at a concentration at which the odor intensity of each component is equal, A blended fragrance having components as shown in 1 was obtained.
 例2
 例2で得られた100成分のうち、従来どおり強度の情報のみに基づいて、すなわちFDファクタの上位10成分を選定し(表1中、○印で示す)、各成分のにおい強度が等強度になる濃度で調合することにより、表1に示すような構成成分を持つ調合香料を得た。
Figure JPOXMLDOC01-appb-T000001
Example 2
Of the 100 components obtained in Example 2, based on intensity information as usual, the top 10 components of the FD factor are selected (indicated by a circle in Table 1), and the odor intensity of each component is equal. A blended fragrance having components as shown in Table 1 was obtained by blending at a concentration of
Figure JPOXMLDOC01-appb-T000001
 例1で得られた調合香料と例2で得られた調合香料のどちらが喫煙時のタバコのにおいに近いと感じるかを20名のパネラーに対して調査した。その結果17名のパネラーが、例1で得られた調合香料の方が、喫煙時のタバコのにおいに近いと感じると評価した。これは1%の危険率で有意差があるということを示している。本発明の方法では、においの質に応じた重要香気成分の選別により、同一の香気成分数においては、従来法と比較して、元のタバコのにおいにより類似性の高い調合香料が製造できることがわかった。 The 20 panelists were investigated which of the blended fragrance obtained in Example 1 and the blended fragrance obtained in Example 2 felt closer to the smell of tobacco when smoking. As a result, 17 panelists evaluated that the blended fragrance obtained in Example 1 felt closer to the smell of tobacco when smoking. This indicates that there is a significant difference at a risk rate of 1%. In the method of the present invention, by selecting important fragrance components according to the quality of odor, it is possible to produce a blended fragrance having a higher similarity with the original odor of cigarettes in the same number of fragrance components than in the conventional method. all right.
 例3
 例1と同様の方法により、上記100の重要香気成分を5のにおい質群に分類し(図3中、点線bで切り分け)、各群から1成分ずつ任意に選定し、各成分のにおい強度が等強度になるように、合成香料を調合した。
Example 3
In the same manner as in Example 1, the 100 important aroma components are classified into 5 odor groups (indicated by dotted line b in FIG. 3), and one component is arbitrarily selected from each group, and the odor intensity of each component Synthetic fragrances were blended so as to have equal strength.
 例4
 例1と同様の方法により、上記100の重要香気成分を30のにおい質群に分類し(図3中、点線cで切り分け)、各群から1成分ずつ任意に選定し、各成分のにおい強度が等強度になるように、合成香料を調合した。
Example 4
In the same manner as in Example 1, the 100 important aroma components are classified into 30 odor groups (indicated by dotted line c in FIG. 3), and one component is arbitrarily selected from each group, and the odor intensity of each component Synthetic fragrances were blended so as to have equal strength.
 例5
 上記100の重要香気成分をそのまま100のにおい質群とし、各成分のにおい強度が等強度になるように、合成香料を調合した。
Example 5
The 100 important fragrance components were directly used as 100 odor groups, and synthetic fragrances were prepared so that the odor strength of each component was equal.
 例1および例3~5の全組合せについて、どちらが喫煙時のタバコのにおいに近いと感じるかを20名のパネラーに対して調査した。その結果を表2に示す。 For all the combinations of Example 1 and Examples 3 to 5, 20 panelists were investigated which felt close to the smell of tobacco when smoking. The results are shown in Table 2.
 表2において、各記号は、以下の意味を持つ。 
 +:危険率5%で有意に選ばれた;++:危険率1%で有意に選ばれた;-:危険率5%で有意に選ばれなかった;--:危険率1%で有意に選ばれなかった;NS:有意差なし。
In Table 2, each symbol has the following meaning.
+: Significantly selected at 5% risk rate; ++: Significantly selected at 1% risk rate;-: Not selected significantly at 5% risk rate;-: Significantly at 1% risk rate Not selected; NS: no significant difference.
 におい質群の数が増えるほど、より喫煙時のタバコのにおいに近づくことがわかった。一方で、におい質群の数が増加するほど、調合香料の生産性は低下した。類似度と、生産性およびそれらの総合評価を表3に示す。表3からわかるように、におい質群の数が10~30の範囲では、少なくとも例2以上の喫煙時のタバコのにおいに対する類似度を示し、生産性も十分確保されていた。 It was found that the more the number of odor groups, the closer to the smell of tobacco when smoking. On the other hand, the productivity of blended fragrances decreased as the number of odor groups increased. Table 3 shows the degree of similarity, productivity, and their overall evaluation. As can be seen from Table 3, when the number of odorous groups was in the range of 10 to 30, the degree of similarity to the odor of cigarettes at least as in Example 2 was shown, and the productivity was sufficiently secured.
 なお、表3において、類似度の評価基準は以下の通りである。 
 ◎:例1に対して有意に類似度が高い;○:例1と同等の類似度を有する;×:例1に対して有意に類似度が低い。
In Table 3, the evaluation criteria for similarity are as follows.
A: Significantly higher similarity to Example 1; O: Similar to Example 1; ×: Significantly lower similarity to Example 1.
 また、表3において、生産性の評価基準は、以下の通りである。 
 ◎:手作業により容易に調合ができる;○:手作業による調合は可能であるが、一定の時間を要する;×:手作業による調合には膨大な時間を要する;
 さらに、表3において、総合評価基準は以下の通りである。 
 ○:再現香料の構成におい質群の数として適している;×:再現香料の構成におい質群の数として適していない。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
In Table 3, the productivity evaluation criteria are as follows.
◎: Can be easily prepared by manual operation; ○: Manual preparation is possible, but requires a certain amount of time; ×: Preparation by manual operation takes an enormous amount of time;
Furthermore, in Table 3, the comprehensive evaluation criteria are as follows.
○: Suitable as the number of odorous groups in the composition of the reproduced fragrance; ×: Not suitable as the number of odorous groups in the structure of the reproduced fragrance.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 例6
 例1において、におい質群への分類後、同一におい質群内の成分の全一対組合せについてのにおい質距離を、VAS法を用いて側定した。そして、同一におい質群内の各成分の中でにおい質距離の総和が最小となる成分を選定し、これらを等強度になる濃度で調合することにより合成香料を得た。
Example 6
In Example 1, after classification into odorous groups, the odorous distances for all pairs of components within the same odorous group were determined using the VAS method. And the synthetic | combination fragrance | flavor was obtained by selecting the component from which the sum total of an odor quality distance becomes the minimum among each component in the same odor quality group, and preparing these by the density | concentration which becomes equal intensity | strength.
 例1と例6のどちらが喫煙時のタバコのにおいに近いと感じるかを20名のパネラーに対して調査した。その結果、15名のパネラーが、例6で得られた調合香料の方が、喫煙時のタバコのにおいに近いと感じると評価した。これは5%の危険率で有意差があるということを示している。各におい質群から選別する成分は、任意に選別するよりも、各におい質群内の中心に位置する成分を選別する方が、より喫煙時のタバコのにおいに近づくことがわかった。 Investigated 20 panelists as to which of Example 1 and Example 6 felt closer to the smell of tobacco when smoking. As a result, 15 panelists evaluated that the blended fragrance obtained in Example 6 felt closer to the smell of tobacco when smoking. This indicates that there is a significant difference at a risk rate of 5%. It was found that the components selected from each odorous group are closer to the smell of tobacco when smoking than selecting the components located in the center of each odorous group rather than selecting them arbitrarily.
 例7
 マイルドセブン・ワンシガレットのタバコ刻部に例6で得られた調合香料10μLをマイクロシリンジにより添加したシガレットを作製し、通常のマイルドセブン・ワンシガレットとどちらが喫煙時のタバコのにおいが強いと感じるかを20名のパネラーに対して喫煙評価を行った。その結果、18名のパネラーが、例6で得られた調合香料を添加したシガレットの方が、喫煙時のタバコのにおいが強いと感じると評価した。これは1%の危険率で有意差があるということを示している。本発明の方法により作製した調合香料を添加することにより、喫煙時のタバコのにおいを増強できることがわかった。
Example 7
A cigarette was prepared by adding 10 μL of the blended fragrance obtained in Example 6 to the tobacco part of the mild seven one cigarette using a microsyringe. A smoking evaluation was performed on the panelists. As a result, 18 panelists evaluated that the cigarette added with the blended fragrance obtained in Example 6 felt that the smell of tobacco was stronger when smoking. This indicates that there is a significant difference at a risk rate of 1%. It has been found that the odor of tobacco during smoking can be enhanced by adding the blended fragrance produced by the method of the present invention.

Claims (6)

  1.  におい物質の香気成分を分析・同定する第1の工程と、前記同定された香気成分の中から、においの強度が強い順に複数の香気成分を選別する第2の工程と、前記第2の工程において選別された香気成分をにおいの質を基準として複数のにおい質群に分類する第3の工程と、前記におい質群のそれぞれから1つの香気成分を選定する第4の工程、前記第4の工程で選定された香気成分を調合する第5の工程を含む調合香料の製造方法。 A first step of analyzing / identifying the fragrance component of the odor substance; a second step of selecting a plurality of fragrance components in order of increasing odor intensity from the identified fragrance component; and the second step. A third step of classifying the fragrance components selected in step 4 into a plurality of odor groups based on the odor quality, a fourth step of selecting one fragrance component from each of the odor groups, and the fourth step The manufacturing method of the mixing | blending fragrance | flavor containing the 5th process of preparing the fragrance | flavor component selected at the process.
  2.  前記におい質群は、10~30の群からなる請求項1に記載の方法。 The method according to claim 1, wherein the odor group consists of 10 to 30 groups.
  3.  前記第4の工程において、同一におい質群内の香気成分の全一対組合せについてのにおい質距離を側定し、そして同一におい質群内の各成分の中でにおい質距離の総和が最小となる成分を選定する請求項1または2に記載の方法。 In the fourth step, the odor distance is determined for all pairs of aroma components in the same odor group, and the sum of the odor distances is minimized among the components in the same odor group. The method according to claim 1 or 2, wherein the components are selected.
  4.  請求項1~3のいずれか一項に記載の方法により得られる調合香料。 A blended fragrance obtained by the method according to any one of claims 1 to 3.
  5.  喫煙時のタバコにおいを再現する請求項4に記載の調合香料。 The blended fragrance according to claim 4, which reproduces the smell of tobacco when smoking.
  6.  請求項5に記載の調合香料を添加したタバコ。 Cigarette to which the blended fragrance according to claim 5 is added.
PCT/JP2010/067875 2010-10-12 2010-10-12 Method for producing compound flavoring WO2012049731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/067875 WO2012049731A1 (en) 2010-10-12 2010-10-12 Method for producing compound flavoring
JP2012538491A JP5586702B2 (en) 2010-10-12 2010-10-12 Method for producing blended flavors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067875 WO2012049731A1 (en) 2010-10-12 2010-10-12 Method for producing compound flavoring

Publications (1)

Publication Number Publication Date
WO2012049731A1 true WO2012049731A1 (en) 2012-04-19

Family

ID=45937982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067875 WO2012049731A1 (en) 2010-10-12 2010-10-12 Method for producing compound flavoring

Country Status (2)

Country Link
JP (1) JP5586702B2 (en)
WO (1) WO2012049731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109099A (en) * 2016-12-28 2018-07-12 花王株式会社 Fragrance composition building system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325116A (en) * 2003-04-22 2004-11-18 Takasago Internatl Corp Aromatic component analysis method, manufacturing method for perfume, and perfume

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325116A (en) * 2003-04-22 2004-11-18 Takasago Internatl Corp Aromatic component analysis method, manufacturing method for perfume, and perfume

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIKAN KAGAKU SOSETSU NO.40 AJI TO NIOI NO BUNSHI NINSHIKI, GAKUJUTSU SHUPPAN CENTER, 25 February 1999 (1999-02-25), pages 143 - 162 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109099A (en) * 2016-12-28 2018-07-12 花王株式会社 Fragrance composition building system

Also Published As

Publication number Publication date
JPWO2012049731A1 (en) 2014-02-24
JP5586702B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
Jumtee et al. Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis
Pacioni et al. Composition of commercial truffle flavored oils with GC–MS analysis and discrimination with an electronic nose
Li et al. Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries
Krüsemann et al. Identification of flavour additives in tobacco products to develop a flavour library
Yang et al. Characterization and discrimination of premium‐quality, waxy, and black‐pigmented rice based on odor‐active compounds
Theron et al. Sensory profiling of honeybush tea (Cyclopia species) and the development of a honeybush sensory wheel
Reineccius Instrumental methods of analysis
Liu et al. Studies on the chemical and flavor qualities of white pepper (Piper nigrum L.) derived from five new genotypes
Pino Odour‐active compounds in pineapple (A nanas comosus [L.] M erril cv. R ed S panish)
Nuzzi et al. Evaluation of fruit aroma quality: comparison between gas chromatography–olfactometry (GC–O) and odour activity value (OAV) aroma patterns of strawberries
Farag et al. The characterization of flavored hookahs aroma profile and in response to heating as analyzed via headspace solid-phase microextraction (SPME) and chemometrics
Welke et al. Comprehensive two-dimensional gas chromatography for analysis of volatile compounds in foods and beverages
Genovese et al. Use of odorant series for extra virgin olive oil aroma characterisation
Baiano et al. As oil blending affects physical, chemical, and sensory characteristics of flavoured olive oils
Sun et al. Differentiation of flue-cured tobacco leaves in different positions based on neutral volatiles with principal component analysis (PCA)
Ríos-Reina et al. Contribution of specific volatile markers to green and ripe fruity attributes in extra virgin olive oils studied with three analytical methods
Pet'ka et al. Musk strawberries: the flavour of a formerly famous fruit reassessed
Tomé-Rodríguez et al. Cultivar influence on the volatile components of olive oil formed in the lipoxygenase pathway
Dussort et al. An original approach for gas chromatography-olfactometry detection frequency analysis: Application to gin
JP6899068B2 (en) Fragrance evaluation method and fragrance preparation method based on it
Cuevas-Glory et al. Characterization of odor-active compounds in mango ‘Ataulfo’(Mangifera indica L.) fruit
Wu et al. Comprehensive identification of key compounds in different quality grades of soy sauce-aroma type baijiu by HS-SPME-GC-MS coupled with electronic nose
Cho et al. Aroma chemistry of African Oryza glaberrima and Oryza sativa rice and their interspecific hybrids
Stilo et al. Delineating unique and discriminant chemical traits in Brazilian and Italian extra-virgin olive oils by quantitative 2D-fingerprinting and pattern recognition algorithms
Usami et al. Aroma Evaluation of Setonojigiku (Chrysanthemum japonense var. debile) by Hydrodistillation and Solvent‐assisted Flavour Evaporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012538491

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858387

Country of ref document: EP

Kind code of ref document: A1