WO2012048467A1 - 非接触电场感应式水温水位传感器 - Google Patents

非接触电场感应式水温水位传感器 Download PDF

Info

Publication number
WO2012048467A1
WO2012048467A1 PCT/CN2010/077765 CN2010077765W WO2012048467A1 WO 2012048467 A1 WO2012048467 A1 WO 2012048467A1 CN 2010077765 W CN2010077765 W CN 2010077765W WO 2012048467 A1 WO2012048467 A1 WO 2012048467A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
water temperature
water
module
data
Prior art date
Application number
PCT/CN2010/077765
Other languages
English (en)
French (fr)
Inventor
刘达樊
周志辉
李秀荣
Original Assignee
惠州市卓耐普智能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市卓耐普智能技术有限公司 filed Critical 惠州市卓耐普智能技术有限公司
Priority to CN2010800564428A priority Critical patent/CN102713535A/zh
Priority to PCT/CN2010/077765 priority patent/WO2012048467A1/zh
Publication of WO2012048467A1 publication Critical patent/WO2012048467A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements

Definitions

  • the invention relates to the technical field of sensors, in particular to a non-contact electric field inductive water temperature water level sensor, which can be applied to various liquid liquid level and temperature control display fields such as water level water temperature control display of solar water heaters.
  • the water temperature water level sensor is an instrument that can sense the water temperature and water level and convert the sensed water temperature and water level into a changing electrical signal.
  • water temperature and water level sensors have always played a decisive role.
  • the intelligent and humanized water heaters are inseparable from the water temperature and water level sensors.
  • the water temperature and water level measuring instrument is inseparable from the water temperature and water level sensor, and the water temperature and water level sensor. Stable work is the guarantee for the intelligent control of the entire water heater.
  • the water temperature and water level sensor is from scratch, from simple to complex, and the service life is short to long, which is inseparable from the efforts of solar professionals.
  • the principle of the existing water temperature and water level sensor is to calibrate different water level segments on the sensor, and place a conductive copper foil on each water level segment (some sensors are injection molded with silicone, and conductive copper foil is made of conductive silica), each copper.
  • the foils are connected to one (and sometimes a few) resistors that have a common end that is connected together and connected to the lowest point of the sensor probe.
  • the principle of conductivity of water when water is immersed in different copper foils calibrated by the sensor, the soaked copper foil is electrically connected to the copper foil at the lowest point, and the resistance between the two copper foils that are turned on is equivalent. Shorted, the resistance becomes smaller, which reduces the resistance of the entire sensor.
  • the host can know the water level by measuring the resistance of the entire sensor. Measuring the water temperature is also detected by the thermistor placed in the sensor, and the temperature of the thermistor is measured at different temperatures.
  • the shortcoming of the existing sensors is that the existing sensors use the conductivity of water to judge the water level. Different water quality and different water tank sizes (which affect the amount of water) have different conductivity, which will affect the measurement accuracy of the sensor. Causes the existing sensor to measure the water level is not accurate. Moreover, since the existing sensor is in direct contact with water, it is very easy to form a layer of scale on the sensor. Since the scale is not electrically conductive, the contact between the water and the sensor copper foil is affected, resulting in inaccurate water level measurement. The water itself also has a corrosive effect on the sensor, which seriously affects the service life of the sensor, and the existing water temperature and water level sensor is not conducive to large-scale popularization and application.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a non-contact electric field inductive water temperature water level sensor, which adopts a non-contact electric field induction method, and the sensor probe is sealed by an insulating and thermal conductive silicone, and the water level is probed.
  • the electric insulation between the water, the central control system calculates the water level information by analyzing the potential difference signal of each water level probe point, thereby effectively preventing the corrosion of the water on the sensor, especially the water level probe point, and is also beneficial to reduce the formation of scale;
  • the sensor uses the principle of electric field induction to improve the accuracy of the water level measurement, and the electric field is not affected by scale. Therefore, even if scale is formed on the sensor, it does not affect the normal operation of the water level measurement of the sensor.
  • a non-contact electric field inductive water temperature water level sensor comprising:
  • a sensor probe with a water level sensing module and a water temperature sensing module, the sensor probe is sealed by an insulating and thermally conductive rubber, and the water level sensing module includes a plurality of water level detecting points;
  • An end host for providing power to the central control system and receiving water temperature data and water level data transmitted from the central control system;
  • the central control system for collecting the electromotive force signal of the probe point in the sensor probe and analyzing the water level data, collecting the resistance value signal of the water temperature sensing module and analyzing the water temperature data.
  • the central control system is provided with:
  • a water level acquisition module for collecting an electromotive force signal from a water level probe
  • a water temperature collecting module for collecting a resistance value signal from a water temperature sensing module
  • the utility model is characterized in that the water level data is analyzed according to the electromotive force signal transmitted from the water level collecting module, and the water temperature water level analyzing and processing center for analyzing the water temperature data according to the resistance value signal transmitted from the water temperature collecting module;
  • a pulse output module for generating a high speed pulse input to a water level acquisition module
  • the data transmission interface for receiving the water level data and the water temperature data analyzed by the water temperature and water level analysis and processing center and transmitting to the host system;
  • the voltage regulator module for regulating the power outputted by the host system and transmitting the power to the water temperature water level processing chip
  • the water level detecting point is connected to the water temperature water level analyzing and processing center through a water level collecting module, and the water temperature sensing module is connected to the water temperature water level analyzing and processing center through a water temperature collecting module; the pulse output module is connected with the water level collecting module;
  • the host system is sequentially connected to the voltage stabilizing module and the water temperature and water level analysis and processing center through the power line, and the water temperature and water level analysis and processing center is sequentially connected to the data transmission interface and the host system through the data line.
  • the insulating thermally conductive adhesive is preferably an insulating thermally conductive silicone.
  • the water temperature sensing module is preferably a thermistor.
  • the water level probes are preferably four.
  • the present invention has the following advantages and beneficial effects:
  • This sensor adopts a new principle of electric field induction. Since water itself is also an electric conductor, any electric conductor and an object different from its own potential (here, the water level probe) will form an electric field between the two, and the electric field The size is proportional to the potential difference between the two. It is thus the sensor's probe itself and the circuit connection, driven by high-speed pulses and peripheral circuits, forming a higher electromotive force, water in the water heater (can be considered to be connected to the earth, the electromotive force can be considered 0 The electromotive force is lower than the probe point, so that the two form an electric field. This electric field is fed back to the water level acquisition circuit, which affects the electromotive force of the water level acquisition circuit.
  • This electromotive force signal will be collected by the water level acquisition module of the central control system, and analyzed by the water temperature and water level.
  • the processing center analyzes the change of the electromotive force before and after the analysis, and thus, the position of the water level can be known.
  • the sensor Using the principle of electric field induction, the sensor realizes that the sensor water level probe is not in contact with water (protected by insulated thermal silica gel), which effectively prevents water from corroding the sensor. Moreover, such a structure is also beneficial for reducing scale formation. Since the sensor utilizes the principle of electric field induction, the electric field is not affected by scale, so even if scale is formed on the sensor, the water level measurement of the sensor is not affected. The measurement of the water temperature is basically the same as the existing sensor principle, and is realized by the temperature characteristics of the thermistor.
  • FIG. 1 is a schematic structural view of a non-contact electric field inductive water temperature water level sensor of the present invention
  • Figure 2 is a circuit diagram of the central control system in the embodiment
  • FIG. 3 is a circuit diagram of a power supply between a host system and a central control system in the embodiment
  • FIG. 4 is a circuit diagram of data transmission between a host system and a central control system in the embodiment
  • Figure 5 is a circuit schematic diagram of water level collection in the embodiment
  • Figure 6 is a circuit schematic diagram of water temperature acquisition in the embodiment.
  • the invention Non-contact electric field inductive water temperature water level sensor, the sensor adopts non-contact electric field induction mode, the sensor probe is sealed by insulating and thermal conductive silicone, the water level probe is electrically insulated from water, and the central control system analyzes the potential difference signal of each water level probe. To calculate the water level information.
  • the non-contact electric field inductive water temperature and water level sensor includes:
  • a sensor probe with a water level sensing module and a water temperature sensing module, the sensor probe is sealed by an insulating and thermally conductive silicone, and the water level sensing module includes a plurality of water level detecting points;
  • An end host for providing power to the central control system and receiving water temperature data and water level data transmitted from the central control system;
  • the central control system for collecting the electromotive force signal of the probe point in the sensor probe and analyzing the water level data, collecting the resistance value signal of the water temperature sensing module and analyzing the water temperature data.
  • the central control system is provided with:
  • a water level acquisition module for collecting an electromotive force signal from a water level probe
  • a water temperature collecting module for collecting a resistance value signal from a water temperature sensing module
  • the utility model is characterized in that the water level data is analyzed according to the electromotive force signal transmitted from the water level collecting module, and the water temperature water level analyzing and processing center for analyzing the water temperature data according to the resistance value signal transmitted from the water temperature collecting module;
  • a pulse output module for generating a high speed pulse input to a water level acquisition module
  • the data transmission interface for receiving the water level data and the water temperature data analyzed by the water temperature and water level analysis and processing center and transmitting to the host system;
  • the voltage regulator module for regulating the power outputted by the host system and transmitting the power to the water temperature water level processing chip
  • the water level detecting point is connected to the water temperature water level analyzing and processing center through a water level collecting module, and the water temperature sensing module is connected to the water temperature water level analyzing and processing center through a water temperature collecting module; the pulse output module is connected with the water level collecting module;
  • the host system is sequentially connected to the voltage stabilizing module and the water temperature and water level analysis and processing center through the power line, and the water temperature and water level analysis and processing center is sequentially connected to the data transmission interface and the host system through the data line.
  • the non-contact electric field inductive water temperature and water level sensor of the present invention will be described in further detail below, but the embodiment of the present invention is not limited thereto.
  • the central control system actually includes three parts: data acquisition and data analysis and data transmission.
  • the high-speed pulse output module outputs high-speed pulse-driven water level acquisition module.
  • the water level acquisition module is connected to the sensor probe, and the water level acquisition module also passes through the data acquisition port of the water temperature and water level analysis processing center (see figure Water level 1 in 2, 2, 3 Enter) the connection.
  • the water temperature and water level analysis and processing center collects the signal output by the water level acquisition module, analyzes it, and judges the water level data through a software algorithm.
  • the water temperature and water level analysis and processing center is connected to the water temperature sensing module (integrated in the sensor probe, specifically the thermistor), and the water temperature signal is calculated by calculating the water temperature signal.
  • the water level and water temperature in the water heater are calculated, and the data is transmitted to the host system through the data transmission line, and the host system receives the data and displays it on the control instrument.
  • the central control system itself and the host system only use 3 Root wire connection.
  • two power lines (including positive and negative lines) are connected to the 12V power supply part of the host system to obtain power supply.
  • the central control system operates at 5V and is 12V from the host system.
  • the power supply is regulated to 5V by the LM7805 regulator module and then supplied to the central control system.
  • the system uses a single-wire transmission technology, and all communication between the central control system and the host system is completed by only one signal data line.
  • the principle is shown in Figure 4.
  • Figure 4 The data output part of the central control system is shown, and the receiving circuit is also provided in the host to complete the data transmission.
  • the water level collection and analysis part is the key part of the whole sensor.
  • This sensor adopts the new electric field induction principle.
  • Figure 5 As shown, the high-speed pulse is output by the high-speed pulse output module, which drives the water level acquisition module to work.
  • the high-speed pulse supplies energy to the acquisition module, forming a voltage at the MCU_IO point, and this MCU_IO This is also connected to the probe of the sensor. Since water itself is also an electrical conductor, any electrical conductor and an object that is not the same as its own potential (here, the water level probe) will form an electric field between the two, and the magnitude of the electric field is proportional to the potential difference between the two. .
  • the water level acquisition module circuit has a temperature-sensitive device (thermistor) built in the sensor probe.
  • the thermistor is a temperature-sensitive resistor made of a special material.
  • the thermistor The resistance value of the self changes with the temperature change, and the change is very regular.
  • the water temperature of the water tank can be known by analyzing the resistance value of the thermistor by collecting data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

非接触电场感应式水温水位传感器
技术领域
本发明涉及传感器技术领域,具体涉及一种非接触电场感应式水温水位传感器,可应用于太阳能热水器水位水温控制显示等各种液体液位和温度控制显示领域。
背景技术
水温水位传感器是一种能够感受水温水位,并且将感受到的水温水位转变成变化的电信号的仪器。在太阳能及电热水器的发展史上,水温水位传感器一直起着举足轻重的作用,热水器的智能化、人性化都与水温水位传感器密不可分,水温水位测控仪更是离不开水温水位传感器,水温水位传感器工作稳定是对整个热水器智能控制的保障。水温水位传感器的从无到有、从简单到复杂,使用寿命的由短到长,都与太阳能专业人士的努力是分不开的。
现有水温水位传感器原理是,在传感器上标定不同的水位段,在每一个水位段上放置一个导电铜箔(有些传感器注塑了硅胶封装,导电铜箔部分用的是导电硅胶),每一个铜箔都连接了一个(有时候是几个)电阻,这些电阻有一个公共端连接到一起并连接到传感器探头的最低点的铜箔。利用水的导电性原理,当有水浸泡到传感器标定的不同铜箔后,被浸泡的铜箔就和最低点的铜箔电气导通,被导通的两个铜箔之间的电阻相当于被短路,电阻变小,这样把整个传感器的电阻也变小了。主机通过测量整个传感器的电阻大小,就可以知道水位了。测量水温也是通过置于传感器中的热敏电阻,通过热敏电阻在不同温度下阻值的不同来检测水温。
现有传感器的不足是,现有传感器正是利用水的导电性进行水位判断,不同的水质,不同的水箱大小(影响水量多少)的导电能力不一样,都会对传感器的测量准确度有影响,造成现有传感器测量水位不准的问题。而且,由于现有传感器要和水直接接触,非常容易在传感器上形成一层水垢,由于水垢不导电,影响了水和传感器铜箔的接触,造成水位测量不准确。水本身也对传感器有腐蚀作用,严重影响了传感器的使用寿命,致使现有的水温水位传感器不利于大规模的推广应用。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种非接触电场感应式水温水位传感器,该传感器采用非接触式的电场感应方式,传感器探头由绝缘导热硅胶密封,水位探点与水之间电绝缘,中央控制系统通过分析各水位探点的电势差信号来计算获取水位信息,从而有效阻止了水对传感器尤其是水位探点的腐蚀,而且也有利于减少水垢的形成;由于本传感器利用的是电场感应原理,提高了水位测量的准确度,而且电场是不受水垢影响的,所以,即使在传感器上面形成水垢,也不影响本传感器的水位测量等正常工作。
本发明的目的是通过以下技术方案来实现的:非接触电场感应式水温水位传感器,包括:
内置有水位感应模块以及水温感应模块的传感器探头,所述传感器探头由绝缘导热胶密封,所示水位感应模块包括若干个水位探点;
用于给中央控制系统提供电力供应,以及接收中央控制系统传来的水温数据、水位数据的终端主机;
用于采集传感器探头中探点的电动势信号并以此分析出水位数据,采集水温感应模块的电阻值信号并以此分析出水温数据的中央控制系统。
更为具体的优选方案是,所述中央控制系统设置有:
用于从水位探点采集电动势信号的水位采集模块;
用于从水温感应模块采集电阻值信号的水温采集模块;
用于根据水位采集模块传来的电动势信号分析出水位数据,以及根据水温采集模块传来的电阻值信号分析出水温数据的水温水位分析处理中心;
用于产生高速脉冲输入至水位采集模块的脉冲输出模块;
用于接收水温水位分析处理中心分析出的水位数据、水温数据并传输至主机系统的数据传输接口;
用于对主机系统输出的电力进行稳压处理并传至水温水位处理芯片的稳压模块;
所述水位探点通过水位采集模块与水温水位分析处理中心相连接,所述水温感应模块通过水温采集模块与水温水位分析处理中心相连接;所述脉冲输出模块与水位采集模块相连接;所述主机系统通过电源线依次与稳压模块、水温水位分析处理中心相连接,所述水温水位分析处理中心通过数据线依次与数据传输接口、主机系统相连接。
所述绝缘导热胶优选绝缘导热硅胶。
所述水温感应模块优选热敏电阻。
所述水位探点优选为 4 个。
本发明相比现有技术具有以下优点及有益效果:
本传感器采用了全新的电场感应原理,由于水本身也是导电体,任何导电体和一个和自身电势不一样的物体(这里是水位探点)接近,都会在两者之间形成电场,而且电场的大小和两者之间的电势差成正比。正是由此,传感器的探点本身和电路连接,由高速脉冲和外围电路驱动,形成了一个较高的电动势,热水器内的水(可以认为是和大地连接,电动势可以认为是 0 )电动势比探点低,这样两者形成了一个电场,这个电场反馈到水位采集电路,影响了水位采集电路的电动势,这一电动势信号将由中央控制系统的水位采集模块来采集,由水温水位分析处理中心分析前后电动势的变化,通过这样,就可以知道水位的位置。
利用电场感应的原理,本传感器实现了传感器水位探点不和水接触(通过绝缘导热硅胶保护),有效阻止水对传感器的腐蚀,而且,这样的结构也有利于减少水垢的形成。由于本传感器利用的是电场感应原理,电场是不受水垢影响的,所以,即使在传感器上面形成水垢,也不影响本传感器的水位测量。测量水温部分和现有传感器原理基本一样,是利用热敏电阻的温度特性实现的。
附图说明
图 1 是本发明 非接触电场感应式水温水位传感器 的结构示意图;
图 2 是实施例中中央控制系统的电路图;
图 3 是实施例中主机系统与中央控制系统之间的电力供应电路图;
图 4 是实施例中主机系统与中央控制系统之间的数据传输电路图;
图 5 是实施例中水位采集的电路原理图;
图 6 是实施例中水温采集的电路原理图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
总的来说本发明 非接触电场感应式水温水位传感器,该传感器采用非接触式的电场感应方式,传感器探头由绝缘导热硅胶密封,水位探点与水之间电绝缘,中央控制系统通过分析各水位探点的电势差信号来计算获取水位信息。
如图 1 所示,非接触电场感应式水温水位传感器,结构上包括:
内置有水位感应模块以及水温感应模块的传感器探头,所述传感器探头由绝缘导热硅胶密封,所示水位感应模块包括若干个水位探点;
用于给中央控制系统提供电力供应,以及接收中央控制系统传来的水温数据、水位数据的终端主机;
用于采集传感器探头中探点的电动势信号并以此分析出水位数据,采集水温感应模块的电阻值信号并以此分析出水温数据的中央控制系统。
更为具体的优选方案是,所述中央控制系统设置有:
用于从水位探点采集电动势信号的水位采集模块;
用于从水温感应模块采集电阻值信号的水温采集模块;
用于根据水位采集模块传来的电动势信号分析出水位数据,以及根据水温采集模块传来的电阻值信号分析出水温数据的水温水位分析处理中心;
用于产生高速脉冲输入至水位采集模块的脉冲输出模块;
用于接收水温水位分析处理中心分析出的水位数据、水温数据并传输至主机系统的数据传输接口;
用于对主机系统输出的电力进行稳压处理并传至水温水位处理芯片的稳压模块;
所述水位探点通过水位采集模块与水温水位分析处理中心相连接,所述水温感应模块通过水温采集模块与水温水位分析处理中心相连接;所述脉冲输出模块与水位采集模块相连接;所述主机系统通过电源线依次与稳压模块、水温水位分析处理中心相连接,所述水温水位分析处理中心通过数据线依次与数据传输接口、主机系统相连接。
以下对 本发明 非接触电场感应式水温水位传感器 作进一步详细的描述,,但本发明的实施方式不限于此。
实施例 1
中央控制系统
如图 2 所示,中央控制系统实际上包含数据采集和数据分析及数据传输三部分。系统工作时候,首先由高速脉冲输出模块输出高速脉冲驱动水位采集模块工作。水位采集模块连接了传感器探头,水位采集模块还通过水温水位分析处理中心的采集数据端口(见图 2 中的水位 1 、 2 、 3 输入)连接。水温水位分析处理中心通过采集水位采集模块输出的信号,进行分析,通过软件算法判断水位数据。水温水位分析处理中心同时连接了水温感应模块(集成在传感器探头内,具体为热敏电阻),通过采集水温信号,进行计算,算出水温数据。通过以上工作,计算出热水器内的水位水温,通过数据传输线,将数据传输到主机系统,主机系统接收到数据,显示到控制仪表上。
供电系统
如图 3 所示,中央控制系统本身和主机系统只用 3 根导线连接。其中,两条电源线(包括正负线),接到主机系统的 12V 供电部分,以获取电力供应。中央控制系统工作电压为 5V ,从主机系统引入的 12V 电源经过 LM7805 稳压模块稳压到 5V 后再给中央控制系统内部供电。
数据传输原理
本系统采用了单线传输技术,中央控制系统和主机系统的所有通信只用一根信数据线完成。原理如图 4 所示。图 4 所示为中央控制系统一端输出数据部分,在主机还设置有接收电路配合,以完成数据的传输。
水位采集、分析原理
水位采集、分析部分是整个传感器关键部分,本传感器采用了全新的电场感应原理。如图 5 所示,高速脉冲由高速脉冲输出模块输出,驱动水位采集模块工作,高速的脉冲给采集模块供应能量,在 MCU_IO 一点形成一个电压,同时这个 MCU_IO 这一点也连接到传感器的探头。由于水本身也是导电体,任何导电体和一个和自身电势不一样的物体(这里是水位探点)接近,都会在两者之间形成电场,而且电场的大小和两者之间的电势差成正比。正是由此,传感器的探点本身和电路连接,由高速脉冲和外围电路驱动,形成了一个较高的电势,热水器内的水 (可以认为是和大地连接,电动势可以认为是 0 )电动势比探点低,这样两者形成了一个电场,这个电场反馈到水位采集电路,影响了水位采集电路的电动势,这一变化将由中央控制系统的水位采集模块来采集,由水温水位分析处理中心并分析,通过这样,就可以知道水位的位置。
在实际应用中,比如需要测量 4 个水位,即传感器要测量出水位为 25% , 50% , 75% , 100% 这 4 个不同的水位并在主机上显示出来。上面图 5 只是举了单一个探点(如 50% )的电路作为说明。实际电路使用中,可以布置 4 个的图 5 的电路到电路中以完成 4 个不同水位的测量。这样的一个水位布置一个测试电路负责测试是比较容易实现的。本传感器电路还实现了用三个探点测量四个不同的水位。经过分析,甚至可以用两个的探点完成对四个不同的水位的测量,也就是说,在传感器布置的探点的数量和需要测量水位的个数并不需要完全一样。在本传感器中,只用到了三个的探点完成对四个水位的测量。第一个探点测试 25% 的水位,第二个探点负责 50% 和 75% 的水位测量,第三个探点负责 100 水位的测量。
水温采集、分析原理
如图 6 所示,水位采集模块电路,在传感器探头内置一个对温度敏感的器件(热敏电阻),热敏电阻是利用特殊材料做成的对温度非常敏感的电阻,当水位变化的时候,热敏电阻自身的阻值会随着温度变化而变化,而且变化很有规律,利用热敏电阻的这一特性,通过采集数据分析热敏电阻的阻值大小,就可以知道水箱的水温。
上述实施例为本 发明 较佳的实施方式,但本 发明 的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本 发明 的保护范围之内。

Claims (5)

  1. 非接触电场感应式水温水位传感器, 其特征在于, 包括:
    内置有水位感应模块以及水温感应模块的传感器探头,所述传感器探头由绝缘导热胶密封,所示水位感应模块包括若干个水位探点;
    用于给中央控制系统提供电力供应,以及接收中央控制系统传来的水温数据、水位数据的终端主机;
    用于采集传感器探头中探点的电动势信号并以此分析出水位数据,采集水位感应模块的电阻值信号并以此分析出水温数据的中央控制系统。
  2. 根据权利要求 1 所述的非接触电场感应式水温水位传感器, 其特征在于 ,所述中央控制系统设置有:
    用于从水位探点采集电动势信号的水位采集模块;
    用于从水温感应模块采集电阻值信号的水温采集模块;
    用于根据水位采集模块传来的电动势信号分析出水位数据,以及根据水温采集模块传来的电阻值信号分析出水温数据的水温水位分析处理中心;
    用于产生高速脉冲输入至水位采集模块的脉冲输出模块;
    用于接收水温水位分析处理中心分析出的水位数据、水温数据并传输至主机系统的数据传输接口;
    用于对主机系统输出的电力进行稳压处理并传至水温水位处理芯片的稳压模块;
    所述水位探点通过水位采集模块与水温水位分析处理中心相连接,所述水温感应模块通过水温采集模块与水温水位分析处理中心相连接;所述脉冲输出模块与水位采集模块相连接;所述主机系统通过电源线依次与稳压模块、水温水位分析处理中心相连接,所述水温水位分析处理中心通过数据线依次与数据传输接口、主机系统相连接。
  3. 根据权利要求1所述的基于FPC的水温水位传感器,其特征在于,所述绝缘导热胶为绝缘导热硅胶。
  4. 根据权利要求1所述的基于FPC的水温水位传感器,其特征在于,所述水温感应模块为热敏电阻。
  5. 根据权利要求1所述的基于FPC的水温水位传感器,其特征在于,所述水位探点为4个。
PCT/CN2010/077765 2010-10-15 2010-10-15 非接触电场感应式水温水位传感器 WO2012048467A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800564428A CN102713535A (zh) 2010-10-15 2010-10-15 非接触电场感应式水温水位传感器
PCT/CN2010/077765 WO2012048467A1 (zh) 2010-10-15 2010-10-15 非接触电场感应式水温水位传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077765 WO2012048467A1 (zh) 2010-10-15 2010-10-15 非接触电场感应式水温水位传感器

Publications (1)

Publication Number Publication Date
WO2012048467A1 true WO2012048467A1 (zh) 2012-04-19

Family

ID=45937831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077765 WO2012048467A1 (zh) 2010-10-15 2010-10-15 非接触电场感应式水温水位传感器

Country Status (2)

Country Link
CN (1) CN102713535A (zh)
WO (1) WO2012048467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398754A (zh) * 2013-07-12 2013-11-20 广东卓耐普智能技术股份有限公司 三合一传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334663A1 (de) * 1993-10-12 1995-04-13 Rolf Windhorst Verfahren zur kontinuierlichen Messung des Füllstandes eines Flüssigkeitsbehälters und deren Temperatur unter Verwendung einer kapazitiven Meßsonde mit mengengenauer Anzeige auch bei unterschiedlichen Behälterformen
CN2869792Y (zh) * 2005-06-08 2007-02-14 顾亿文 水温水位传感器
CN201289396Y (zh) * 2008-10-21 2009-08-12 皇明太阳能集团有限公司 用于太阳能热水器的水温及水位测量装置
CN201497543U (zh) * 2009-05-21 2010-06-02 浙江达峰科技有限公司 电容感应式水温水位传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692005B (zh) * 2009-09-24 2011-06-01 合肥工业大学 数字电容式液位测量传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334663A1 (de) * 1993-10-12 1995-04-13 Rolf Windhorst Verfahren zur kontinuierlichen Messung des Füllstandes eines Flüssigkeitsbehälters und deren Temperatur unter Verwendung einer kapazitiven Meßsonde mit mengengenauer Anzeige auch bei unterschiedlichen Behälterformen
CN2869792Y (zh) * 2005-06-08 2007-02-14 顾亿文 水温水位传感器
CN201289396Y (zh) * 2008-10-21 2009-08-12 皇明太阳能集团有限公司 用于太阳能热水器的水温及水位测量装置
CN201497543U (zh) * 2009-05-21 2010-06-02 浙江达峰科技有限公司 电容感应式水温水位传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398754A (zh) * 2013-07-12 2013-11-20 广东卓耐普智能技术股份有限公司 三合一传感器

Also Published As

Publication number Publication date
CN102713535A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN104458799B (zh) 一种在线测量igbt模块瞬态热阻的方法和装置
CN104280419A (zh) 一种瞬态平面热源法测试材料导热系数的方法
CN111238672B (zh) 一种基于磁显微法的超导带材动态温度测量方法
WO2009003395A1 (fr) Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision
CN109298309B (zh) 对igbt焊料层进行实时监测的方法
CN102520237B (zh) 一种数字式交直流电流转换测量装置和方法
CN103823170B (zh) 一种功率型led集成模块热阻测试新方法
CN103926517A (zh) 功率型led热阻的测试装置及方法
CN102507046B (zh) 变压器温度表校验仪
CN112556870A (zh) 一种超导带材动态温度测量方法及系统
WO2012048467A1 (zh) 非接触电场感应式水温水位传感器
CN201548191U (zh) 一种用于建筑结构位移测试装置
CN202403836U (zh) 多晶硅-金属热电偶塞贝克系数的在线测试结构
CN208537050U (zh) 一种多通道三线制铂热电阻测温装置
RU166715U1 (ru) Ионно-меточный измеритель скорости воздушного потока
CN212749125U (zh) 一种硅橡胶平板温升试验系统
CN102564634B (zh) 植物叶片表面温度测量仪
CN108871413A (zh) 一种高寒地区冻土层上水水位及水温监测装置
CN211402228U (zh) 一种恒压测量精密热电偶电阻的装置
CN212567717U (zh) 带rs485输出的智能型温度传感器装置
CN111044873A (zh) 一种基于共享串联电阻的自热效应测试方法和电路
CN207881763U (zh) 一种实时电力监测系统
CN101839875A (zh) 一种富硼渣瞬态热导检测仪及测量方法
CN110307913A (zh) 一种极地多点低温温度传感装置及测温方法
CN204730959U (zh) 一种冷却液温度传感器输入输出特性检测实验箱

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056442.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858299

Country of ref document: EP

Kind code of ref document: A1