WO2012046953A2 - Pyroelectric crystal x-ray generating device using radiant heat - Google Patents

Pyroelectric crystal x-ray generating device using radiant heat Download PDF

Info

Publication number
WO2012046953A2
WO2012046953A2 PCT/KR2011/006438 KR2011006438W WO2012046953A2 WO 2012046953 A2 WO2012046953 A2 WO 2012046953A2 KR 2011006438 W KR2011006438 W KR 2011006438W WO 2012046953 A2 WO2012046953 A2 WO 2012046953A2
Authority
WO
WIPO (PCT)
Prior art keywords
pyroelectric
crystal
pyroelectric crystal
radiant heat
crystals
Prior art date
Application number
PCT/KR2011/006438
Other languages
French (fr)
Korean (ko)
Other versions
WO2012046953A3 (en
Inventor
최재호
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Publication of WO2012046953A2 publication Critical patent/WO2012046953A2/en
Publication of WO2012046953A3 publication Critical patent/WO2012046953A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/163Vessels shaped for a particular application
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the present invention relates to a pyroelectric crystal X-ray generator by radiant heat, and in particular, radiant heat is irradiated to the pyroelectric crystal to minimize the temperature variation in the length and axial direction of the pyroelectric crystal and increase the temperature of the pyroelectric crystal. It is known that the surface charge induction does not increase or decrease in proportion to the temperature rise in the pyroelectric crystals of a certain size or more because the temperature difference between the heat source contact section and the opposite cross section of the pyroelectric crystal with low heat capacity and low thermal conductivity is large.
  • Provides an X-ray generator that overcomes the limitations.
  • radiant heat penetrates into the inside of the pyroelectric crystal during radiant heat irradiation and simultaneously heats the inside and the outside of the pyroelectric crystal, thereby minimizing the temperature deviation in the longitudinal direction and the axial direction of the pyroelectric crystal.
  • Surface charge induction can be maximized.
  • Pyroelectric phenomenon is a phenomenon in which spontaneous crystals are cut in a direction perpendicular to the polarization direction, and a certain heat is applied to the crystals to induce spontaneous polarization by inducing surface charges having different polarities on both sides of the crystal. Charges induced on the surface form a potential difference large enough to generate X-rays.
  • Pyroelectric crystals which are anisotropic crystals, are polarized at equilibrium and have a total dipole moment even in the absence of an external electric field.
  • spontaneous polarization P s
  • ⁇ P S spontaneous polarization
  • the pyroelectric effect forms an electric field (greater than 100 keV) that is large enough to emit electrons or generate effective radiation.
  • the electric field is proportional to the surface charge induced.
  • is the pyroelectric constant
  • the electric field formed by the pyroelectric crystal has the distance between the pyroelectric crystal and the target as shown in Equation (1). (d gap The shorter the), the higher the electric field and the distance d between the two crystals, as shown in equation (2). gap The closer to), the longer the length (L) of the pyroelectric crystal, and the greater the temperature change, the greater the induced electric field.
  • the heat conductivity of the pyroelectric crystal during heating or cooling must be large to facilitate heat transfer.
  • the typical thermal conductivity of pyroelectric crystals is 45mJ / cm- sec for LiTaO 3 , which is comparable to the glass fiber used for building insulation.
  • other than the second electric crystal LiTaO 3 also has a thermal property similar to the LiTaO 3. Due to the thermal characteristics of the above-mentioned superelectric crystals, the heat source contact end surface and the opposite surface when heated by a resistance heating or a thermal conduction method using a thermoelectric cooling device (TEC), which is a method of heating a pyroelectric crystal used in the prior art. Temperature difference between the two.
  • TEC thermoelectric cooling device
  • the temperature rise-drop due to the thermal conduction is determined according to the thermal conductivity of the crystal, and when the crystals are connected in the longitudinal direction, the temperature deviation between the two cross-sections becomes larger, and as a result, the surface charge does not increase even if the length of the pyroelectric crystal becomes longer.
  • the prior art increases the potential difference by causing the polarity of the charge induced in the cross-sections of the two pyroelectric crystals to face the other side in order to increase the potential difference.
  • This concept has a limit that can only increase the potential difference by twice.
  • the reason why this limitation is difficult to overcome is that when a long pyroelectric crystal is used or two crystals are connected in series in the longitudinal direction of the crystal, the conventional method of heating by contact resistance heating method shows that the temperature variation of the crystal in the longitudinal direction is not sufficient. Increased and temperature deviations across the pyroelectric crystals result in slowing or decreasing the potential difference.
  • the heat conductivity of the crystal In order to induce the temperature change of the crystal, the heat conductivity of the crystal must be large when it is heated to facilitate heat transfer, thereby reducing the temperature deviation of both ends of the crystal.
  • the thermal conductivity of the material is small, if it is heated from one side of the material, the heat transfer has a low thermal conductivity and thus has a temperature deviation from the opposite side. In this case, the longer the length of the sample, the greater the temperature deviation.
  • thermoelectric crystal with a low thermal conductivity of 30 ° C when the temperature of the heating surface between the two ends of the crystal having a diameter of 5 mm and a length of 20 mm is 110 ° C is obtained.
  • it is limited to increase the temperature of the crystal while maintaining a small temperature difference in the longitudinal or axial direction of the pyroelectric crystal.
  • Conventional pyroelectric crystal heating method is a contact method by resistance heating. Since heat transfer depends on heat conduction, the longer the temperature deviation between the heat source contact surface of the pyroelectric crystal having low thermal conductivity and the opposite surface, the larger the pyroelectric crystal length is. Brings a deviation. This increase in temperature has a problem that results in a significant slowdown of the potential difference increase or decrease over a certain length.
  • the pyroelectric method used in the conventional art is a pyroelectric device. It is difficult to reduce the temperature deviation of the crystal cross section.
  • the potential difference using a pyroelectric crystal longer than 10 mm which is known as the limitation of the present technology, is minimized by minimizing the temperature deviation of the length and the axial direction of the pyroelectric crystal by the radiation heat irradiation method. It is an object of the present invention to provide a device for generating high energy X-rays by increasing.
  • the present invention is a vacuum container; A pyroelectric crystal installed in the vacuum vessel; An X-ray target provided in a direction in which the induced charge generated in the pyroelectric crystal is generated in the vacuum vessel; It provides an X-ray generating apparatus including a radiant heat irradiation apparatus for heating the pyroelectric crystal to generate surface induced charges to impact the X-ray target to generate X-rays.
  • the radiant heat irradiation apparatus is a radiant heat source that converts electrical energy into radiant energy, or collects infrared lamps or solar radiant energy, or is disposed spirally around the pyroelectric crystal.
  • the radiant heat irradiation apparatus is mounted inside or outside the vacuum vessel.
  • the pyroelectric crystals include one or more pyroelectric crystals connected in a longitudinal direction, and two or more of the pyroelectric crystals are in a longitudinally aligned form, or two or more crystals are connected to each other by a predetermined distance on a side of different charge polarities. It characterized in that it has one of the forms facing each other.
  • the X-ray generator according to the present invention further includes a cooling device for heat dissipation around the pyroelectric crystal.
  • the radiant heat penetrates into the pyroelectric crystal during radiant heat irradiation, thereby simultaneously heating the inside and the outside of the pyroelectric crystal.
  • the induced surface charges are increased by increasing the length and cross-sectional area by minimizing the temperature variation in the longitudinal and axial directions, thereby increasing the electric field by maximizing the surface conversion. You get The increase in the electric field will improve the electron and ion acceleration performance, greatly improving the X-ray generation performance using this device.
  • a pyroelectric crystal longer than the length (20 mm or more) than the conventional technique using the contact method is used, or candles connected in series in the longitudinal direction are used. Even with the use of electric crystals, the limitation of the prior art is overcome by heating with a minimum temperature deviation in the longitudinal axis direction of.
  • Increasing the temperature of the pyroelectric crystal by radiating heat to the pyroelectric crystal increases the temperature of the pyroelectric crystal and minimizes the temperature variation in the longitudinal and axial directions even in the pyroelectric crystal with a long cross-sectional area. Is increased, resulting in an increase in the electric field. The increase of the electric field will improve the electron and ion acceleration performance, greatly improving the X-ray generation performance using this device.
  • FIG. 1 is a view schematically showing an X-ray generator according to an embodiment of the present invention
  • FIG. 2 is a view schematically showing an X-ray generator according to the prior art
  • FIG. 3 is a view schematically showing an X-ray generator according to an embodiment of the present invention.
  • FIG. 4 is a view schematically showing a pyroelectric X-ray generator to which a reflective target according to an embodiment of the present invention is applied, and
  • FIG. 5 is a view schematically showing an X-ray generator according to an embodiment of the present invention.
  • the conventional method of heating a pyroelectric crystal is a contact method by resistance heating and a thermoelectric effect device (TEC). Since heat transfer is dependent on heat conduction, the gap between the heat source contact surface of the pyroelectric crystal having small heat capacity and thermal conductivity and the opposite side thereof is different. The longer the temperature deviation is, the longer the pyroelectric crystal is. Such a temperature deviation is a limitation of the prior art that results in a significant slowdown of the potential difference increase (or the length of the pyroelectric crystal) is reduced above a certain length (10 mm).
  • the heat transfer in the pyroelectric crystal should be carried out by heat transfer rather than heat conduction.
  • Non-contact method of irradiating a pyroelectric crystal with a radiant heat source focused on an infrared lamp or solar light which is longer than the length used in the prior art (20 mm or more), in the longitudinal axis direction of pyroelectric crystals connected in series in the longitudinal direction or in the longitudinal direction.
  • a pyroelectric crystal is an anisotropic crystal and has a constant value of a dipole moment that has been polarized even without an external electric field applied in a constant equilibrium state.
  • the polarization value of a crystal is called spontaneous polarization without external electric field and temperature change.
  • the spontaneous polarization value changes. This phenomenon is called the pyroelectrie effect.
  • the surface charges charged by the pyroelectric phenomenon form a large electromagnetic field, and the electric potential difference caused by the electric field emits electrons, and in the case of LiTaO 3 , a typical pyroelectric crystal, it is formed by a pyroelectric crystal having a diameter of 10 mm and a length of 10 mm.
  • the potential difference is about 100 keV.
  • the method of enlarging the temperature change is determined by the nature of the crystal and has its limit value. That is, when the temperature of the crystal is heated above the Curie temperature, the pyroelectricity of the pyroelectric crystal is permanently dissipated.
  • the Curie temperature of BaTiO 3 a typical pyroelectric crystal, is 393 K (absolute temperature), LiTaO 3 is 813 to 970K, and LiNbO 3 is 1488K. That is, LiTaO 3 crystals lose their superelectricity when heated to 540 ° C or higher.
  • the heat capacity of most pyroelectric crystals is 470J / kgK and the thermal conductivity is 45 mJ / cm -sec , which limits the temperature of the pyroelectric crystals up to Curie temperature without temperature variation in both cross-sections and axial directions.
  • FIG. 2 shows an example of the X-ray generator by the resistance heating method of the prior art.
  • the heat source 60 is in contact with one side of the pyroelectric crystal 10 to heat the pyroelectric crystal 10 by conduction.
  • the X-ray generator configured as described above can increase the induction of surface charge by increasing the length and cross-sectional area of the pyroelectric crystal 10.
  • the pyroelectric crystal 10 is a heat source due to temperature characteristics.
  • the temperature difference between the surface in contact with (60) and the surface not in contact with (60) becomes large. This temperature deviation causes the number of surface charges to increase no more than a certain length. As a result of the current study, it is reported that the surface charge does not increase over a length of 10 mm.
  • a method of using a long pyroelectric crystal is a method of heating a temperature distribution at a high temperature in the longitudinal direction of the crystal by radiative heat irradiation or by heating two or more pyroelectric crystals.
  • the radiant heat applied is transmitted to the pyroelectric crystal, so that the pyroelectric crystal with low thermal conductivity can be uniformly heated in the longitudinal direction and the axial direction by simultaneously heating the inside and the outside of the pyroelectric crystal.
  • the size limitations of the crystals leads to increased surface charge induction and thus high potential differences.
  • the method of arranging the pyroelectric crystals can be freely configured, which is convenient for constructing a structure capable of focusing electrons and ions in the future, and the potential difference derived from each pyroelectric crystal increases in proportion to the number of pyroelectric crystals. The result is high energy X-rays.
  • Figure 1 (a) is a longitudinal cross-sectional view showing an embodiment of the X-ray generating apparatus according to the present invention having a linear radiation heat irradiation device 20
  • Figure 1 (b) is a cross-sectional view of Figure 1 (a)
  • FIG. 3 (a) is a longitudinal sectional view showing an embodiment of an X-ray generator with a spiral radiant heat irradiation apparatus 21
  • FIG. 3 (b) is a cross sectional view of FIG. 3 (a)
  • FIG. 4, and 5 is a cross-sectional view showing another embodiment of the X-ray generator according to the present invention.
  • the X-ray generator is a vacuum vessel 30, pyroelectric crystals (10, 11, 14), radiation heat irradiation device 20, spiral radiation heat irradiation device 21, beryllium transmission window 70 and an X-ray target 75.
  • Reference numeral 80 is an X-ray, 50 is a negative charge.
  • Pyroelectric crystal 11 is installed inside the vacuum vessel 30, and maintains a degree of vacuum of about 10 -4 ⁇ 10 -3 Torr.
  • the beryllium transmission window 70 is installed in the vacuum container 30 to transmit and radiate X-rays.
  • the X-ray target 75 is installed in the advancing direction of the vessel by generating an X-ray by collision of electric charges generated in the pyroelectric crystals 10, 11 and 14.
  • the X-ray target 75 is installed as shown in FIGS. 1, 3, and 5 in the case of a transmissive type, and is mounted at a position having a predetermined angle with the charge propagation direction as shown in FIG. 4 in the case of a reflective type, and generates the generated X-ray 80.
  • the X-ray target 75 may have a thickness of a few micrometers, the thickness of the target having a different value depending on the induced potential difference and the target material.
  • the pyroelectric crystal 11 is installed inside the vacuum vessel 30, and examples of representative pyroelectric crystals include LiTaO 3, BaTiO 3, LiNbO 3, and the like.
  • the pyroelectric crystal 11 is heated from room temperature to 110 ° C by the radiant heat irradiation apparatus 21, and the charges induced in the cross section are concentrated on the surface to form a high potential difference.
  • Only one pyroelectric crystal 10 may be installed as shown in FIG. 1, a single long pyroelectric crystal 11 as shown in FIG. 5 (a) may be used, and in the longitudinal direction as shown in FIG. 5 (b). It may include two or more pyroelectric crystals 14 to be connected. Two or more of the pyroelectric crystals 14 may be aligned in the longitudinal direction, or two or more crystals may be connected to face each other at a predetermined distance with respect to a surface having different polarities.
  • the radiant heat radiating apparatus 21 may be a device for converting electrical energy into radiant energy, such as an infrared lamp, or a device for focusing solar radiant energy.
  • the radiant heat irradiation apparatus 21 is preferably arranged spirally around the pyroelectric crystal as shown in Figs. 3, 4 and 5, because it can exert thermal efficiency. It is also apparent that it may have other shapes, such as straight, cylindrical, single looped, or the like.
  • Such a radiant heat irradiation apparatus 31 may be mounted inside or outside of the container 30.
  • FIG. 1 is a cross-sectional view showing an X-ray generator for heating the pyroelectric crystal 10 by the radiant heat irradiation apparatus 20, wherein the radiant heat irradiation apparatus 20 heats the pyroelectric crystal 10 with radiant heat, Charges induced in the cross section of the electrical crystal 10 aggregate on the surface to form a high potential difference, and these charges are radiated toward the X-ray target 75 to collide with the X-ray target 75 to cause the X-ray 80 to break. Will occur.
  • the thickness of the X-ray target 75 is preferably several micrometers. The thickness of the target 75 has a different value depending on the induced potential difference and the target material.
  • the pyroelectric crystal 10 is installed inside the vacuum vessel 30 and the superelectric crystal is applied by applying electrical energy to the radiant heat irradiation apparatus 20 while maintaining the vacuum degree of the vacuum vessel 30 at 10 -4 to 10 -3 Torr.
  • the temperature of (10) is raised.
  • the temperature of the pyroelectric crystal 10 increases from room temperature to 110 degrees Celsius.
  • the temperature difference between the two end faces of the pyroelectric crystal 10 is much smaller than the temperature difference between the two end faces of the crystal when heated by the contact heating source 60 applied in the prior art as shown in FIG.
  • the minimization of the temperature deviation of both ends of the pyroelectric crystal leads to surface charge more effectively when the crystal length is increased.
  • Fig. 1 (b) is a cross sectional view of the X-ray generator shown in Fig. 1 (a).
  • FIG. 3 (a) is a cross-sectional view showing an embodiment in which a spiral infrared lamp is configured as a radiant heat irradiation apparatus 21 in the X-ray generator of FIG. 1, and FIG. 3 (b) is an X-ray generation in FIG. 3 (a).
  • Cross section view of the device The spiral radiant heat irradiation apparatus 21 has a structure in which the spiral radiant heat radiator 21 wraps around the vacuum vessel 30 in the same configuration as the X-ray generator shown in FIG. 1 and the pyroelectric crystal 10. .
  • the spiral heat source 21 has a better temperature uniformity in the longitudinal direction and the axial direction of the pyroelectric crystal than the linear heat source 20 structure.
  • Degree. 3 (b) is a plan view of the pyroelectric crystal 10 X-ray generator (Fig. 3 (a)) using the helical heat source 21.
  • the 4 is an embodiment of a pyroelectric X-ray generator to which a reflective target is applied.
  • the X-ray target 75 is mounted at a position at an angle with the pyroelectric surface, and the generated X-rays are radiated by the X-ray 80 through the beryllium transmission window 70.
  • FIG. 5 (a) shows an embodiment of X-ray generation by a high energy generator which induces surface charge by heating radiation of a long pyroelectric crystal 11 by radiant heat.
  • 5 (b) shows another example of increasing surface charge induction, in which two or more pyroelectric crystals are longitudinally aligned to induce a high potential difference between the crystal 14 and the X-ray target and generate X-rays. It is a way to increase the efficiency.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

The present invention relates to a device for generating X-rays by means of an accelerated electron beam created by the potential difference between an X-ray target and surface charges induced on both end surfaces of a pyroelectric crystal by irradiating radiant heat onto the crystal. A high-energy electron beam is generated by inducing a temperature change in a pyroelectric crystal through the irradiation of radiant heat, thereby minimising temperature deviation in the diametral direction and the length direction of both end surfaces of the pyroelectric crystals, thereby overcoming the size limitations and the structural limitations of pyroelectric crystals used in the prior art and increasing the potential difference which results from increasing the number of induced surface charges. The performance of X-ray generator devices is improved by using the electron beam.

Description

복사열에 의한 초전기 결정 X-선 발생 장치Pyroelectric Crystal X-ray Generator by Radiant Heat
본 발명은 복사열에 의한 초전기 결정 X-선 발생 장치에 관한 것으로, 특히, 복사열을 초전기 결정에 조사하여 초전기 결정의 길이 및 축방향으로의 온도 편차를 최소화하며 초전기 결정의 온도를 증가시키는 장치로 열용량이 적고 열전도율이 낮은 초전기 결정의 열원 접촉단면과 그 맞은편 단면의 온도편차가 커서 일정 크기 이상의 초전기 결정에서 표면전하 유도가 온도 상승에 비례하여 증가하지 않거나 오히려 감소한다는 종래 기술의 한계를 극복하는 X-선 발생 장치를 제공한다.The present invention relates to a pyroelectric crystal X-ray generator by radiant heat, and in particular, radiant heat is irradiated to the pyroelectric crystal to minimize the temperature variation in the length and axial direction of the pyroelectric crystal and increase the temperature of the pyroelectric crystal. It is known that the surface charge induction does not increase or decrease in proportion to the temperature rise in the pyroelectric crystals of a certain size or more because the temperature difference between the heat source contact section and the opposite cross section of the pyroelectric crystal with low heat capacity and low thermal conductivity is large. Provides an X-ray generator that overcomes the limitations.
이러한 복사열 조사에 의한 가열 방법은 복사열 조사 시 초전기 결정의 내부로 복사열이 침투해서 초전기 결정의 내부-외부를 동시에 가열함으로써 초전기 결정의 길이 방향과 축 방향으로의 온도편차가 최소화되고 이에 따라 표면 전하 유도를 극대화시킬 수 있다.In the heating method by radiant heat irradiation, radiant heat penetrates into the inside of the pyroelectric crystal during radiant heat irradiation and simultaneously heats the inside and the outside of the pyroelectric crystal, thereby minimizing the temperature deviation in the longitudinal direction and the axial direction of the pyroelectric crystal. Surface charge induction can be maximized.
초전기 현상이란 초전기 결정을 분극방향에 수직한 방향으로 결정을 절단하고 이 결정에 일정 열을 가하면 결정 양단면에 극성이 다른 표면 전하가 유도되어 유도 자발 분극되는 현상이다. 표면에 유도된 전하는 X-선을 발생시키기 충분히 큰 전위차 형성하게 된다. Pyroelectric phenomenon is a phenomenon in which spontaneous crystals are cut in a direction perpendicular to the polarization direction, and a certain heat is applied to the crystals to induce spontaneous polarization by inducing surface charges having different polarities on both sides of the crystal. Charges induced on the surface form a potential difference large enough to generate X-rays.
이방성 결정인 초전기 결정은 평형상태에서 분극되어 외부 전기장이 가해지 않은 상태에서도 총 쌍극자 모멘트의 값이 존재한다. 초전기 결정을 분극 방향에 수직한 방향으로 절단하면 절단면 양단면에 극성이 다른 표면 전하가 유도되어 외부 전기장이나 온도변화가 없는 상태에서 자발분극(P s )이 존재한다. 이러한 초전기 결정에 열을 인가하여 온도 변화를 유도하면 자발분극의 변화(ΔPS)가 생기고 이를 초전기 효과(pyroelectric effect)라고 한다. 초전기 효과는 전자를 방출하거나 유효한 방사선을 발생시키기 충분히 큰 전계(100 keV 이상)를 형성하다. 상기 전계는 유도된 표면 전하에 비례한다. 단위면적당 표면 전하의 크기는 초전기 결정을 가열하면 때 ΔPS =γΔT로 주어진다. 여기서 γ는 초전기 상수이고 ΔT는 초전기 결정의 온도 변화이다. 초전기 결정이 유도되는 표면 전하량은 온도변화에 비례하여 증가함을 알 수 있다. 초전기 표면 전하에 단면적을 곱한 값이 되므로, 초전기 결정 단면의 전체 전하는 Q=γΔTA며 여기서 A는 단면적이다. 이렇게 유도된 표면 전하에 의한 전위차는 V=Q/C가 된다.Pyroelectric crystals, which are anisotropic crystals, are polarized at equilibrium and have a total dipole moment even in the absence of an external electric field. When the pyroelectric crystal is cut in a direction perpendicular to the polarization direction, surface charges having different polarities are induced at both ends of the cut surface, and thus spontaneous polarization (P s ) exists in the absence of an external electric field or temperature change. When heat is applied to such a pyroelectric crystal, a change in spontaneous polarization (ΔP S ) occurs, which is called a pyroelectric effect. The pyroelectric effect forms an electric field (greater than 100 keV) that is large enough to emit electrons or generate effective radiation. The electric field is proportional to the surface charge induced. The magnitude of the surface charge per unit area is given by ΔP S = γΔT when the pyroelectric crystal is heated. Where γ is the pyroelectric constant and ΔT is the temperature change of the pyroelectric crystal. It can be seen that the amount of surface charge induced with the pyroelectric crystal increases in proportion to the temperature change. Since the surface charge of the pyroelectric is multiplied by the cross-sectional area, the total charge of the cross-section of the pyroelectric crystal is Q = γΔTA, where A is the cross-sectional area. The potential difference due to the surface charge thus induced is V = Q / C.
초전기 결정과 타깃으로 구성된 장치에서의 전기장의 크기는 The magnitude of the electric field in a device composed of pyroelectric crystals and targets
수학식 1
Figure PCTKR2011006438-appb-M000001
Equation 1
Figure PCTKR2011006438-appb-M000001
로 주어지며Given by
또한 두 개의 초전기 결정을 각기 다른 전하가 유도되게 배열된 장치에서 전기장의 크기는 Also, in a device where two pyroelectric crystals are arranged to induce different charges, the magnitude of the electric field
수학식 2
Figure PCTKR2011006438-appb-M000002
Equation 2
Figure PCTKR2011006438-appb-M000002
로 주어진다.       Is given by
초전기 결정에 의해 형성되는 전기장은 수학식(1)에서 보는 바와 같이 초전기 결정과 타깃의 거리 (dgap)가 짧을수록 전기장이 증가하고 또한 수학식(2)에서 보는 바와 같이 두 결정의 거리(dgap)가 가까울수록 초전기 결정의 길이(L)가 길수록, 온도변화가 클수록 유도되는 전기장은 크게 된다. The electric field formed by the pyroelectric crystal has the distance between the pyroelectric crystal and the target as shown in Equation (1). (dgapThe shorter the), the higher the electric field and the distance d between the two crystals, as shown in equation (2).gapThe closer to), the longer the length (L) of the pyroelectric crystal, and the greater the temperature change, the greater the induced electric field.
초전기 결정의 단면에 전하를 유도하기 위해 가열 또는 냉각 시 초전기 결정의 열전도율이 커야 열전달을 원활히 할 수 있다. 그러나 대표적인 초전기 결정의 열전도율은 LiTaO3의 경우 45mJ/cm-sec로 건물의 단열재를 쓰이는 유리섬유와 비슷한 정도이다. 일반적으로 LiTaO3 이외의 초전기 결정도 LiTaO3와 유사한 열특성을 가지고 있다. 상기한 초전기 결정의 열특성으로 인하여 종래 기술에서 사용되는 초전기 결정의 가열방법인 저항가열 또는 열전효과장치 (thermoelectric cooling device:TEC)에 의한 열전도 방법으로 가열할 경우 열원 접촉 단면과 그 반대면 사이의 온도편차를 가져온다.In order to induce charge on the cross-section of the pyroelectric crystal, the heat conductivity of the pyroelectric crystal during heating or cooling must be large to facilitate heat transfer. However, the typical thermal conductivity of pyroelectric crystals is 45mJ / cm- sec for LiTaO 3 , which is comparable to the glass fiber used for building insulation. In general, other than the second electric crystal LiTaO 3 also has a thermal property similar to the LiTaO 3. Due to the thermal characteristics of the above-mentioned superelectric crystals, the heat source contact end surface and the opposite surface when heated by a resistance heating or a thermal conduction method using a thermoelectric cooling device (TEC), which is a method of heating a pyroelectric crystal used in the prior art. Temperature difference between the two.
이러한 열전도에 의한 온도 상승-강하는 결정의 열전도율에 따라 결정되고 결정을 길이 방향으로 연결할 경우 양단면 간 온도편차는 더욱 커져 결과적으로 초전기 결정의 길이가 길어짐에도 표면 전하가 증가하지 않게 된다. The temperature rise-drop due to the thermal conduction is determined according to the thermal conductivity of the crystal, and when the crystals are connected in the longitudinal direction, the temperature deviation between the two cross-sections becomes larger, and as a result, the surface charge does not increase even if the length of the pyroelectric crystal becomes longer.
종래 기술은 전위차를 증가시키기 위하여 두 개의 초전기 결정의 단면에 유도되는 전하의 극성이 다른 면을 마주하게 함으로써 전위차를 증가시키고 있다 이러한 개념은 전위차를 2배까지만 증가시킬 수 있는 한계를 갖는다. 이러한 한계를 극복하기 어려운 이유는 길이가 긴 초전기 결정을 사용하거나 두 결정을 결정의 길이 방향으로 직렬 연결시킬 경우 기존의 접촉식 저항 가열법에 의한 가열 방법으로는 결정의 길이 방향의 온도 편차가 증가되고 초전기 결정 양단면의 온도편차는 전위차 증가를 둔화시키거나 감소시키는 결과를 초래한다.The prior art increases the potential difference by causing the polarity of the charge induced in the cross-sections of the two pyroelectric crystals to face the other side in order to increase the potential difference. This concept has a limit that can only increase the potential difference by twice. The reason why this limitation is difficult to overcome is that when a long pyroelectric crystal is used or two crystals are connected in series in the longitudinal direction of the crystal, the conventional method of heating by contact resistance heating method shows that the temperature variation of the crystal in the longitudinal direction is not sufficient. Increased and temperature deviations across the pyroelectric crystals result in slowing or decreasing the potential difference.
종래 기술에서는 유도 전기장을 배가시키기 위한 방법 중 하나인 두 개의 초전기 결정을 표면 전하의 극성이 반대인 결정의 단면을 마주 배치하는 방법이 적용되고 있는데, 이 경우 초전기 결정에 의해 유도되는 전기장은 상기 수학식(2)에서 보는 바와 같이 마주보는 두개의 결정의 거리(d gap )가 가까울수록 초전기 결정의 단면적(A)이 넓을수록, 길이(L)가 길수록, 온도변화가 클수록 유도되는 전기장은 크게 된다. In the prior art, a method of arranging two pyroelectric crystals, one of the methods for doubling the induction electric field, facing each other in the cross section of the crystal having the opposite polarity of the surface charge, in which case the electric field induced by the pyroelectric crystal As shown in Equation (2), the closer the distance (d gap ) of the two crystals facing each other, the wider the cross-sectional area (A) of the pyroelectric crystal, the longer the length (L), and the larger the temperature change, the induced electric field is induced. Becomes large.
결정의 온도변화를 유도하기 위해 가열 시 결정의 열전도율이 커야 열전달을 원활히 할 수 있어 결정의 양단면의 온도편차를 줄일 수 있다. 그러나 재료의 열전도율이 작은 경우 재료의 한 면으로부터 가열하면 열전달은 열전도율이 낮아 반대편과의 온도편차를 갖게 된다. 이 경우 시료의 길이가 길수록 온도 편차는 더욱 커지게 된다.In order to induce the temperature change of the crystal, the heat conductivity of the crystal must be large when it is heated to facilitate heat transfer, thereby reducing the temperature deviation of both ends of the crystal. However, if the thermal conductivity of the material is small, if it is heated from one side of the material, the heat transfer has a low thermal conductivity and thus has a temperature deviation from the opposite side. In this case, the longer the length of the sample, the greater the temperature deviation.
대표적인 초전기 결정의 열전도율은 LiTaO3의 경우 45 mJ/cm-sec 로 건물의 단열재를 쓰이는 유리광섬유 단열재와 비슷한 정도이다. 실험적으로 직경 5 mm, 길이 20 mm 인 결정의 양단간 가열면의 온도가 110℃ 일때 온도차가 30℃ 이렇게 열전도율이 낮은 초전기 결정은 초전기 결정의 길이가 길고 단면적이 큰 경우 또한 여러 개의 결정을 길이 방향으로 직렬로 연결할 경우에 초전기 결정의 길이방향 또는 축방향으로의 온도차를 적게 유지하며 결정의 온도를 증가시키는 데는 한계에 있다.The thermal conductivity of a typical pyroelectric crystal is 45 mJ / cm -sec for LiTaO 3 , which is comparable to that of glass fiber optic insulation used for building insulation. Experimentally, a thermoelectric crystal with a low thermal conductivity of 30 ° C when the temperature of the heating surface between the two ends of the crystal having a diameter of 5 mm and a length of 20 mm is 110 ° C is obtained. When connected in series in the direction, it is limited to increase the temperature of the crystal while maintaining a small temperature difference in the longitudinal or axial direction of the pyroelectric crystal.
종래의 초전기 결정 가열방법은 저항 가열에 의한 접촉식 방법으로 열전달이 열전도에 의존하기 때문에 열전도도가 낮은 초전기 결정의 열원 접촉면과 그 반대면 사이의 온도편차가 초전기 결정의 길이가 길수록 큰 편차를 가져온다. 이러한 온도차 증가는 전위차 증가를 현저히 둔화시키거나 일정 길이 이상에서는 감소시키는 결과를 초래하는 문제점이 있었다.Conventional pyroelectric crystal heating method is a contact method by resistance heating. Since heat transfer depends on heat conduction, the longer the temperature deviation between the heat source contact surface of the pyroelectric crystal having low thermal conductivity and the opposite surface, the larger the pyroelectric crystal length is. Brings a deviation. This increase in temperature has a problem that results in a significant slowdown of the potential difference increase or decrease over a certain length.
열전도에 의한 초전기 결정 장치의 전위차를 증가시키고 X-선 발생 장치의 성능을 향상시키기 위하여 초전기 결정의 크기를 크게하거나 장치의 구성을 용이하게 하기 위해서는 종래 기술에서 사용되는 열전도 방식으로는 초전기 결정 양 단면의 온도 편차를 줄이기 어렵다.In order to increase the potential difference of the pyroelectric crystal device due to heat conduction and to improve the performance of the X-ray generator, in order to increase the size of the pyroelectric crystal or to facilitate the construction of the device, the pyroelectric method used in the conventional art is a pyroelectric device. It is difficult to reduce the temperature deviation of the crystal cross section.
본 발명에서는 상기와 같은 종래 기술의 한계를 극복하기 위해 복사열 조사 방식으로 초전기 결정의 길이와 축 방향의 온도편차를 최소화하여 현 기술의 한계로 알려져 있는 10 mm 보다 긴 초전기 결정을 사용하여 전위차를 증가시켜 고에너지 X-선을 발생시키는 장치를 제공하는 것을 목적으로 한다.In the present invention, in order to overcome the limitations of the prior art as described above, the potential difference using a pyroelectric crystal longer than 10 mm, which is known as the limitation of the present technology, is minimized by minimizing the temperature deviation of the length and the axial direction of the pyroelectric crystal by the radiation heat irradiation method. It is an object of the present invention to provide a device for generating high energy X-rays by increasing.
본 발명은 진공 용기; 상기 진공 용기 내에 설치되는 초전기 결정; 상기 진공 용기 안에서 상기 초전기 결정에서 발생한 유도 전하의 진행 방향에 설치되는 X-선 타깃; 표면 유도 전하를 발생시켜 상기 X-선 타깃을 충돌시켜 X-선을 발생하도록 상기 초전기 결정을 가열하는 복사열 조사장치를 포함하는 X-선 발생 장치를 제공한다.The present invention is a vacuum container; A pyroelectric crystal installed in the vacuum vessel; An X-ray target provided in a direction in which the induced charge generated in the pyroelectric crystal is generated in the vacuum vessel; It provides an X-ray generating apparatus including a radiant heat irradiation apparatus for heating the pyroelectric crystal to generate surface induced charges to impact the X-ray target to generate X-rays.
상기 복사열 조사장치는 전기 에너지를 복사 에너지로 변화시키거나, 적외선 램프 또는 태양광 복사에너지를 집속한 복사 열원이거나, 상기 초전기 결정의 주위에 나선형으로 배치된다.The radiant heat irradiation apparatus is a radiant heat source that converts electrical energy into radiant energy, or collects infrared lamps or solar radiant energy, or is disposed spirally around the pyroelectric crystal.
상기 복사열 조사장치는 상기 진공 용기의 내부 또는 외부에 장착된다.The radiant heat irradiation apparatus is mounted inside or outside the vacuum vessel.
상기 초전기 결정은 길이 방향으로 연결되는 하나 이상의 초전기 결정을 포함하며, 둘 이상의 상기 초전기 결정은 길이 방향으로 정렬된 형태, 또는 두 개 이상의 결정이 연결되어 전하의 극성이 다른 면이 일정 거리를 두고 마주 정렬된 형태 중 하나를 가지는 것을 특징으로 한다.The pyroelectric crystals include one or more pyroelectric crystals connected in a longitudinal direction, and two or more of the pyroelectric crystals are in a longitudinally aligned form, or two or more crystals are connected to each other by a predetermined distance on a side of different charge polarities. It characterized in that it has one of the forms facing each other.
본 발명에 의한 X-선 발생 장치는 상기 초전기 결정 주변에 열방출을 위한 냉각 장치가 추가로 포함한다.The X-ray generator according to the present invention further includes a cooling device for heat dissipation around the pyroelectric crystal.
상기와 같이 구성된 본 발명에 의하면, 초전기 결정에 복사열을 조사하여 초전기 결정의 온도를 증가시키면 복사열 조사시 초전기 결정의 내부로 복사열이 침투해서 초전기 결정의 내부-외부를 동시에 가열함으로써 초전기 결정의 길이가 길고 단면적이 넓은 초전기 결정에서도 길이 방향 및 축방향의 온도 편차를 최소화하여 길이 및 단면적 증가에 의한 유도 표면 전하가 증가되고 이로 인하여 표면 전화 유도를 극대화하여 전기장을 증가하는 결과를 얻게 된다. 상기 전기장의 증가는 전자 및 이온 가속 성능을 향상시키게 되어 이 장치를 이용한 X-선 발생 성능을 크게 향상시킨다.According to the present invention configured as described above, when the pyroelectric crystal is irradiated with radiant heat to increase the temperature of the pyroelectric crystal, the radiant heat penetrates into the pyroelectric crystal during radiant heat irradiation, thereby simultaneously heating the inside and the outside of the pyroelectric crystal. Even in the pyroelectric crystals with long lengths and large cross-sectional areas, the induced surface charges are increased by increasing the length and cross-sectional area by minimizing the temperature variation in the longitudinal and axial directions, thereby increasing the electric field by maximizing the surface conversion. You get The increase in the electric field will improve the electron and ion acceleration performance, greatly improving the X-ray generation performance using this device.
상기와 같이 적외선 램프 또는 태양광을 집속한 복사 열원으로 초전기 결정을 조사하면, 접촉 방식을 사용하는 종래 기술보다 길이보다 긴(20 mm 이상) 초전기 결정을 사용하거나, 길이 방향으로 직렬 연결된 초전기 결정을 사용하여도, 의 길이 축 방향으로의 온도 편차를 최소화하며 가열함으로써 종래 기술의 한계를 극복한다. When the pyroelectric crystal is irradiated with an infrared lamp or a solar radiation-concentrated radiation source as described above, a pyroelectric crystal longer than the length (20 mm or more) than the conventional technique using the contact method is used, or candles connected in series in the longitudinal direction are used. Even with the use of electric crystals, the limitation of the prior art is overcome by heating with a minimum temperature deviation in the longitudinal axis direction of.
초전기 결정에 복사열을 조사하여 초전기 결정의 온도를 증가시키면 초전기 결정의 길이가 길고 단면적이 넓은 초전기 결정에서도 길이 방향 및 축방향의 온도 편차를 최소화하여 길이 및 단면적 증가에 의한 유도 표면 전하가 증가되고 이로 인하여 전기장이 증가하는 결과를 얻게 된다. 상기 전기장의 증가는 전자 및 이온 가속 성능을 향상 시키게 되어 이 장치를 이용한 X-선 발생 성능을 크게 향상시킨다.Increasing the temperature of the pyroelectric crystal by radiating heat to the pyroelectric crystal increases the temperature of the pyroelectric crystal and minimizes the temperature variation in the longitudinal and axial directions even in the pyroelectric crystal with a long cross-sectional area. Is increased, resulting in an increase in the electric field. The increase of the electric field will improve the electron and ion acceleration performance, greatly improving the X-ray generation performance using this device.
도 1은 본 발명의 일 실시예에 따른 X-선 발생 장치를 개략적으로 도시한 도면,1 is a view schematically showing an X-ray generator according to an embodiment of the present invention,
도 2는 종래의 기술에 따른 X-선 발생 장치를 개략적으로 도시한 도면,2 is a view schematically showing an X-ray generator according to the prior art,
도 3은 본 발명의 일 실시예에 따른 X-선 발생 장치를 개략적으로 도시한 도면,3 is a view schematically showing an X-ray generator according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른 반사형 타깃을 적용한 초전기 X-선 발생 장치를 개략적으로 도시한 도면, 및4 is a view schematically showing a pyroelectric X-ray generator to which a reflective target according to an embodiment of the present invention is applied, and
도 5는 본 발명의 일 실시예에 따른 X-선 발생 장치를 개략적으로 도시한 도면이다.5 is a view schematically showing an X-ray generator according to an embodiment of the present invention.
종래의 초전기 결정을 가열하는 방법은 저항 가열 및 열전효과장치(TEC)에 의한 접촉식 방법으로 열전달이 열전도에 의존하기 때문에 열용량 및 열전도도가 작은 초전기 결정의 열원 접촉면과 그 반대면 사이의 온도편차가 초전기 결정의 길이가 길수록 큰 편차를 가져온다. 이러한 온도편차는 전위차 증가를 현저히 둔화시키거나 (초전기 결정의 길이가) 일정 길이 (10mm) 이상에서는 감소시키는 결과를 초래하고 있는 것이 종래 기술의 한계이다.The conventional method of heating a pyroelectric crystal is a contact method by resistance heating and a thermoelectric effect device (TEC). Since heat transfer is dependent on heat conduction, the gap between the heat source contact surface of the pyroelectric crystal having small heat capacity and thermal conductivity and the opposite side thereof is different. The longer the temperature deviation is, the longer the pyroelectric crystal is. Such a temperature deviation is a limitation of the prior art that results in a significant slowdown of the potential difference increase (or the length of the pyroelectric crystal) is reduced above a certain length (10 mm).
이를 극복하는 방법은 초전기 결정 내에서의 열전달을 열전도가 아닌 복사에 의한 열전달 방법을 사용하여야 한다. 적외선 램프 또는 태양광을 집속한 복사열원을 초전기 결정에 조사하는 비접촉 방법으로 종래 기술에서 사용되는 길이보다 긴(20 mm 이상) 초전기 결정 또는 길이 방향으로 직렬 연결된 초전기 결정의 길이 축 방향으로의 온도 편차를 최소화하며 가열함으로써 종래 기술의 한계를 극복하게 된다.In order to overcome this problem, the heat transfer in the pyroelectric crystal should be carried out by heat transfer rather than heat conduction. Non-contact method of irradiating a pyroelectric crystal with a radiant heat source focused on an infrared lamp or solar light, which is longer than the length used in the prior art (20 mm or more), in the longitudinal axis direction of pyroelectric crystals connected in series in the longitudinal direction or in the longitudinal direction. By minimizing the temperature deviation of the heating to overcome the limitations of the prior art.
초전기 결정(pyroelectric crystal)은 비등방성 결정으로 일정 평형상태에서 외부 전기장의 인가가 없어도 분극이 되어 있던 쌍극자 모멘트를 일정 값을 갖는다.A pyroelectric crystal is an anisotropic crystal and has a constant value of a dipole moment that has been polarized even without an external electric field applied in a constant equilibrium state.
이 초전기 결정을 분극 축의 수직하게 절단하면 이 절단면의 한 면에 표면 양전하가 다른 한 면에 표면 음전하가 대전된다. 이렇게 외부전계와 온도변화 없이도 결정의 분극 값을 자발분극(spontaneous polarization)이라 한다. 이런 초전기 결정에 열을 가하여 초전기 결정의 온도를 변화시키면 자발분극 값이 변화되는데 이런 현상을 초전기 현상(pyroelectrie effect)이라고 한다. 초전기 현상에 의해 대전된 표면 전하는 큰 전자기장을 형성하게 되는데, 상기 전기장에 의한 전위차는 전자를 방출하게 되고 대표적인 초전기 결정인 LiTaO3의 경우 직경 10 mm 길이 10 mm인 초전기 결정에 의해 형성되는 전위차는 약 100 keV정도이다.When this pyroelectric crystal is cut perpendicular to the polarization axis, the surface positive charge is charged on one surface of the cut surface and the surface negative charge on the other surface. Thus, the polarization value of a crystal is called spontaneous polarization without external electric field and temperature change. When the pyroelectric crystal is heated by changing the temperature of the pyroelectric crystal, the spontaneous polarization value changes. This phenomenon is called the pyroelectrie effect. The surface charges charged by the pyroelectric phenomenon form a large electromagnetic field, and the electric potential difference caused by the electric field emits electrons, and in the case of LiTaO 3 , a typical pyroelectric crystal, it is formed by a pyroelectric crystal having a diameter of 10 mm and a length of 10 mm. The potential difference is about 100 keV.
초전기 결정에 의한 고에너지 발생장치의 실용화를 위해서는 성능을 응용단계로 향상시키기 위해서는 유도 표면전하의 증가가 필수적이다. 표면전하를 증가시키기 위해서는 초전기 결정의 온도변화를 크게 하거나 단면적과 길이를 크게 하는 방법이 있다.In order to improve the performance to the application level, it is necessary to increase the induced surface charge for the practical use of the high energy generator by the pyroelectric crystal. In order to increase the surface charge, there is a method of increasing the temperature change of the pyroelectric crystal or increasing the cross-sectional area and length.
온도 변화를 크게 하는 방법은 결정의 특성에 의해 결정되고 그 한계 값을 갖는다. 즉, 결정의 온도를 퀴리(Curie) 온도 이상으로 가열할 경우, 초전기 결정의 초전기성은 영구적으로 소멸된다. 대표적인 초전기 결정인 BaTiO3의 Curie 온도는 393 K(절대온도), LiTaO3는 813 내지 970K, LiNbO3는 1488K이다. 즉, LiTaO3결정은 540℃ 이상으로 가열할 경우 초전기성을 잃게 된다. 그러나 대부분의 초전기 결정의 열용량은 470J/kg·K 이며 열전도율은 45 mJ/cm-sec로 작아 초전기 결정의 온도를 결정 양단면 및 축방향의 온도 편차 없이 Curie 온도까지 상승시키기에 제한이 있다The method of enlarging the temperature change is determined by the nature of the crystal and has its limit value. That is, when the temperature of the crystal is heated above the Curie temperature, the pyroelectricity of the pyroelectric crystal is permanently dissipated. The Curie temperature of BaTiO 3 , a typical pyroelectric crystal, is 393 K (absolute temperature), LiTaO 3 is 813 to 970K, and LiNbO 3 is 1488K. That is, LiTaO 3 crystals lose their superelectricity when heated to 540 ° C or higher. However, the heat capacity of most pyroelectric crystals is 470J / kgK and the thermal conductivity is 45 mJ / cm -sec , which limits the temperature of the pyroelectric crystals up to Curie temperature without temperature variation in both cross-sections and axial directions.
도 2는 종래 기술인 저항 가열법에 의한 X-선 발생 장치의 예를 보이고 있다. 도시하는 바와 같이, 초전기 결정(10) 일측에 열원(60)이 접촉하여 전도에 의해 초전기 결정(10)을 가열하게 된다. 이와 같이 구성된 X-선 발생 장치는 초전기 결정(10)의 길이 및 단면적을 크게 하면 표면전하의 유도를 크게 할 수 있으나 길이를 길게 했을 경우, 초전기 결정(10)은 온도 특성으로 인하여, 열원(60)과 접촉된 면과 그렇지 않은 면과의 온도 차가 커지게 된다. 이러한 온도편차는 표면 전하의 수가 일정 길이 이상에서 더 이상 증가하지 않는 원인이다. 현재 연구 결과로서 10 mm 이상의 길이에서는 표면 전하가 증가하지 않는 것으로 보고되고 있다. 또한 단면적을 크게 하였을 경우, 초전기 결정의 표면과 중심부의 온도 차가 발생하고 이에 따라 표면 전하의 증가가 둔화되어 초전기 결정의 길이가 10 mm보다 길어도 발생되는 에너지가 증가하지 않게 된다. 따라서, X-선 에너지 또한 증가하지 않게 된다.Figure 2 shows an example of the X-ray generator by the resistance heating method of the prior art. As shown, the heat source 60 is in contact with one side of the pyroelectric crystal 10 to heat the pyroelectric crystal 10 by conduction. The X-ray generator configured as described above can increase the induction of surface charge by increasing the length and cross-sectional area of the pyroelectric crystal 10. However, when the length is increased, the pyroelectric crystal 10 is a heat source due to temperature characteristics. The temperature difference between the surface in contact with (60) and the surface not in contact with (60) becomes large. This temperature deviation causes the number of surface charges to increase no more than a certain length. As a result of the current study, it is reported that the surface charge does not increase over a length of 10 mm. In addition, when the cross-sectional area is increased, a temperature difference between the surface of the pyroelectric crystal and the center of the pyroelectric crystal is generated, and as a result, the increase in the surface charge is slowed down so that the generated energy does not increase even if the length of the pyroelectric crystal is longer than 10 mm. Therefore, the X-ray energy also does not increase.
상기 기술한 전위차 증가율의 둔화 또는 감소 현상을 극복하고 긴 초전기 결정을 사용할 수 있는 방법은 복사열 조사에 의해 결정의 길이 방향으로 고온에서 온도 분포를 일정하게 가열하거나 2개 또는 다수개의 초전기 결정을 비접촉식 가열로 초전기 결정을 직렬로 연결하여 전위차를 증가시키는 방법이 있다.In order to overcome the above-mentioned slowdown or decrease in the rate of increase of the potential difference, a method of using a long pyroelectric crystal is a method of heating a temperature distribution at a high temperature in the longitudinal direction of the crystal by radiative heat irradiation or by heating two or more pyroelectric crystals. There is a method of increasing the potential difference by connecting pyroelectric crystals in series with non-contact heating.
복사열 조사에 의한 가열 방법은 인가되는 복사열이 초전기 결정에 투과되므로 초전기 결정의 내부와 외부를 동시에 가열함으로써 열전도도가 작은 초전기 결정을 길이 방향과 축 방향으로 균일하게 가열할 수 있어 초전기 결정의 크기 한계를 극복하여 표면 전하 유도가 증가되고 이에 따라 고전위차를 얻게 된다. 또한, 초전기 결정의 배열 방법을 자유롭게 구성할 수 있어 향후 전자 및 이온을 집속할 수 있는 구조를 구성하는데 편리성을 갖게 되고 각 초전기 결정으로부터 유도되는 전위차는 초전기 결정의 수에 비례하여 증가하게 되어 결과적으로 높은 에너지의 X-선을 얻게 된다.In the heating method by radiant heat irradiation, the radiant heat applied is transmitted to the pyroelectric crystal, so that the pyroelectric crystal with low thermal conductivity can be uniformly heated in the longitudinal direction and the axial direction by simultaneously heating the inside and the outside of the pyroelectric crystal. Overcoming the size limitations of the crystals leads to increased surface charge induction and thus high potential differences. In addition, the method of arranging the pyroelectric crystals can be freely configured, which is convenient for constructing a structure capable of focusing electrons and ions in the future, and the potential difference derived from each pyroelectric crystal increases in proportion to the number of pyroelectric crystals. The result is high energy X-rays.
이하에서, 도면을 참조하여 본 발명의 구성을 보다 상세히 설명하기로 한다. 도 1(a)는 직선형 복사열 조사 장치(20)를 구비한 본 발명에 따른 X-선 발생 장치의 일 실시예를 나타낸 종단면도이고, 도 1(b)는 도 1(a)의 횡단면도이고, 도 3(a)은 나선형 복사열 조사 장치(21)를 구비한 X-선 발생 장치의 일 실시예를 나타낸 종단면도이고, 도 3(b)는 도3(a)의 횡단면도이고, 도 4, 및 도 5는 본 발명에 따른 X-선 발생 장치의 다른 실시예를 나타낸 단면도이다. Hereinafter, with reference to the drawings will be described in more detail the configuration of the present invention. Figure 1 (a) is a longitudinal cross-sectional view showing an embodiment of the X-ray generating apparatus according to the present invention having a linear radiation heat irradiation device 20, Figure 1 (b) is a cross-sectional view of Figure 1 (a), FIG. 3 (a) is a longitudinal sectional view showing an embodiment of an X-ray generator with a spiral radiant heat irradiation apparatus 21, FIG. 3 (b) is a cross sectional view of FIG. 3 (a), and FIG. 4, and 5 is a cross-sectional view showing another embodiment of the X-ray generator according to the present invention.
도시된 바와 같이, 본 발명에 의한 X-선 발생 장치는 진공 용기(30), 초전기 결정(10,11,14), 복사열 조사 장치(20), 나선형 복사열 조사 장치(21), 베릴륨 투과창(70) 및 X-선 타깃(75)을 포함한다. 도면 부호 80은 X-선, 50은 음전하이다.As shown, the X-ray generator according to the present invention is a vacuum vessel 30, pyroelectric crystals (10, 11, 14), radiation heat irradiation device 20, spiral radiation heat irradiation device 21, beryllium transmission window 70 and an X-ray target 75. Reference numeral 80 is an X-ray, 50 is a negative charge.
진공 용기(30)는 내부에 초전기 결정(11)이 설치되고, 약 10-4~10-3Torr 정도의 진공도를 유지한다. Pyroelectric crystal 11 is installed inside the vacuum vessel 30, and maintains a degree of vacuum of about 10 -4 ~ 10 -3 Torr.
한편, 진공 용기(30)에는 베릴륨 투과창(70)이 설치되어 발생된 X-선이 투과하여 방사된다.Meanwhile, the beryllium transmission window 70 is installed in the vacuum container 30 to transmit and radiate X-rays.
X-선 타깃(75)은 초전기 결정(10,11,14)에서 발생한 전하가 충돌하여 X-선을 발생시키는 것으로 용기 내 진행방향에 설치된다. X-선 타깃(75)은 투과형일 경우, 도 1,3,5와 같이 설치되고, 반사형일 경우 도4와 같이 전하 진행 방향과 일정 각도를 갖는 위치에 장착되고, 발생된 X-선(80)은 베릴륨 투과창(70)을 통해 방사된다. 또한, X-선 타깃(75)은 수 마이크로미터의 두께를 가질 수 있고, 타깃의 두께는 유도된 전위차와 타깃 물질에 따라 다른 값을 갖는다. The X-ray target 75 is installed in the advancing direction of the vessel by generating an X-ray by collision of electric charges generated in the pyroelectric crystals 10, 11 and 14. The X-ray target 75 is installed as shown in FIGS. 1, 3, and 5 in the case of a transmissive type, and is mounted at a position having a predetermined angle with the charge propagation direction as shown in FIG. 4 in the case of a reflective type, and generates the generated X-ray 80. ) Is emitted through the beryllium transmission window 70. In addition, the X-ray target 75 may have a thickness of a few micrometers, the thickness of the target having a different value depending on the induced potential difference and the target material.
초전기 결정(11)은 진공 용기(30) 내부에 설치되며, 대표적인 초전기 결정의 예로는 LiTaO3, BaTiO3, LiNbO3 등이 있다. 초전기 결정(11)은 복사열 조사 장치(21)에 의해 실온부터 110℃ 까지 가열되어 단면에 유도되는 전하가 표면에 결집하여 높은 전위차를 형성한다. 상기 초전기 결정(10)은 도 1과 같이 하나만 설치될 수도 있고, 도 5(a)와 같이 길이가 긴 단일 초전기 결정(11)이 사용될 수도 있고, 도 5(b)와 같이 길이 방향으로 연결되는 둘 이상의 초전기 결정(14)을 포함할 수 있다. 둘 이상의 상기 초전기 결정(14)은 길이 방향으로 정렬된 형태, 또는 두 개 이상의 결정이 연결되어 전하의 극성이 다른 면이 일정 거리를 두고 마주 정렬된 형태를 가질 수 있다.The pyroelectric crystal 11 is installed inside the vacuum vessel 30, and examples of representative pyroelectric crystals include LiTaO 3, BaTiO 3, LiNbO 3, and the like. The pyroelectric crystal 11 is heated from room temperature to 110 ° C by the radiant heat irradiation apparatus 21, and the charges induced in the cross section are concentrated on the surface to form a high potential difference. Only one pyroelectric crystal 10 may be installed as shown in FIG. 1, a single long pyroelectric crystal 11 as shown in FIG. 5 (a) may be used, and in the longitudinal direction as shown in FIG. 5 (b). It may include two or more pyroelectric crystals 14 to be connected. Two or more of the pyroelectric crystals 14 may be aligned in the longitudinal direction, or two or more crystals may be connected to face each other at a predetermined distance with respect to a surface having different polarities.
복사열 조사 장치(21)는 적외선 램프와 같이 전기 에너지를 복사 에너지로 변화시키는 장치이거나, 태양광 복사 에너지를 집속하는 장치가 될 수 있다. 복사열 조사 장치(21)는 도 3,4,5에 도시하는 바와 같이 초전기 결정의 주위에 나선형으로 배치되는 것이 열효율을 발휘할 수 있으므로 바람직하다. 직선형, 원통형, 단일 루프형 등 다른 형태를 가질 수 있는 것 또한 명백하다. 이와 같은 복사열 조사장치(31)는 용기(30)의 내부에 장착되어도 좋고 외부에 장착되어도 좋다.The radiant heat radiating apparatus 21 may be a device for converting electrical energy into radiant energy, such as an infrared lamp, or a device for focusing solar radiant energy. The radiant heat irradiation apparatus 21 is preferably arranged spirally around the pyroelectric crystal as shown in Figs. 3, 4 and 5, because it can exert thermal efficiency. It is also apparent that it may have other shapes, such as straight, cylindrical, single looped, or the like. Such a radiant heat irradiation apparatus 31 may be mounted inside or outside of the container 30.
상기와 같이 구성된 본 발명에 의한 X-선 발생 장치의 작동을 보다 상세히 설명하기로 한다.The operation of the X-ray generator according to the present invention configured as described above will be described in more detail.
도 1은 복사열 조사 장치(20)에 의한 초전기 결정(10)을 가열하는 X-선 발생 장치를 도시한 단면도로서, 복사열 조사 장치(20)가 복사열로 초전기 결정(10)을 가열하여 초전기 결정(10) 단면에 유도되는 전하가 표면에 결집하여 높은 전위차를 형성하고 이들 전하가 X-선 타깃(75) 쪽으로 방사되어 X-선 타깃(75)과 충돌하여 X-선(80)을 발생하게 된다. 이때 X-선 타깃(75)의 두께는 수 마이크로미터인 것이 바람직하다. 상기 타깃(75)의 두께는 유도된 전위차와 타깃 물질에 따라 다른 값을 갖는다. 1 is a cross-sectional view showing an X-ray generator for heating the pyroelectric crystal 10 by the radiant heat irradiation apparatus 20, wherein the radiant heat irradiation apparatus 20 heats the pyroelectric crystal 10 with radiant heat, Charges induced in the cross section of the electrical crystal 10 aggregate on the surface to form a high potential difference, and these charges are radiated toward the X-ray target 75 to collide with the X-ray target 75 to cause the X-ray 80 to break. Will occur. In this case, the thickness of the X-ray target 75 is preferably several micrometers. The thickness of the target 75 has a different value depending on the induced potential difference and the target material.
초전기 결정(10)을 진공 용기(30) 내부에 설치하고 진공 용기(30)의 진공도를 10-4 ~ 10-3 Torr로 유지하면서 복사열 조사 장치(20)에 전기에너지를 인가하여 초전기 결정(10)의 온도를 상승시킨다. 초전기 결정(10)의 온도는 실온으로부터 섭씨 110도까지 증가시킨다. 이때 초전기 결정(10)의 양단면의 온도차는 도 2와 같은 종래의 기술에서 적용하고 있는 접촉식 가열원(60)으로 가열한 경우에서보다 결정 양 단면의 온도편차가 매우 작게 된다. 초전기 결정 양단면의 온도편차의 최소화는 결정의 길이를 길게 할 경우 더욱 효과적으로 표면 전하를 유도하게 된다. 결과적으로 복사열에 의한 가열방법은 초전기 결정에 의해 형성되는 전기장을 결정의 길이 증가에 비례하여 증가하게 하여 가속전압을 증가시키고 이를 이용한 X-선 발생 장치의 성능을 크게 향상시켜 상용화를 가능하게 한다. 초전기 결정(20)을 냉각 시키는 방법은 도면에 나타나 있지는 않으나 방열판 또는 방열핀을 진공장치 외부에 부착하여 열전도에 의한 자연냉각법 또는 강제냉각법을 실시한다. 도 1(b)는 도 1(a)에 도시된 X-선 발생 장치의 횡단면도이다. The pyroelectric crystal 10 is installed inside the vacuum vessel 30 and the superelectric crystal is applied by applying electrical energy to the radiant heat irradiation apparatus 20 while maintaining the vacuum degree of the vacuum vessel 30 at 10 -4 to 10 -3 Torr. The temperature of (10) is raised. The temperature of the pyroelectric crystal 10 increases from room temperature to 110 degrees Celsius. At this time, the temperature difference between the two end faces of the pyroelectric crystal 10 is much smaller than the temperature difference between the two end faces of the crystal when heated by the contact heating source 60 applied in the prior art as shown in FIG. The minimization of the temperature deviation of both ends of the pyroelectric crystal leads to surface charge more effectively when the crystal length is increased. As a result, the heating method by the radiant heat increases the electric field formed by the pyroelectric crystal in proportion to the increase in the length of the crystal, increases the acceleration voltage and greatly improves the performance of the X-ray generator using the same, thereby enabling commercialization. . Although the method of cooling the pyroelectric crystal 20 is not shown in the drawing, a heat sink or a heat sink fin is attached to the outside of the vacuum apparatus to perform a natural cooling method or a forced cooling method by heat conduction. Fig. 1 (b) is a cross sectional view of the X-ray generator shown in Fig. 1 (a).
도 3(a)은 도 1의 X-선 발생 장치에 나선형 적외선 램프를 복사열 조사 장치(21)로 구성한 실시예를 나타낸 단면도이고, 도 3(b)는 도3(a)의 X-선 발생 장치의 횡단면도이다. 도 1에 도시된 X-선 발생 장치와 동일한 진공용기(30)와 초전기 결정(10)의 구성에 나선형 복사열 조사 장치(21)가 진공용기(30)의 주위를 감싸는 구조를 가진 실시 예이다. 상기 나선형 열원(21)은 직선형 열원(20) 구조보다 초전기 결정의 길이 방향과 축방향으로의 온도 균일성이 우수한 구조이다. 나선형 열원에 의한 초전기 결정 가열 시 실시 조건은 도. 1의 실시 조건과 동일하다. 도. 3(b)는 나선형 열원(21)을 이용한 초전기 결정(10) X-선 발생 장치(도. 3(a))의 평면도이다.FIG. 3 (a) is a cross-sectional view showing an embodiment in which a spiral infrared lamp is configured as a radiant heat irradiation apparatus 21 in the X-ray generator of FIG. 1, and FIG. 3 (b) is an X-ray generation in FIG. 3 (a). Cross section view of the device. The spiral radiant heat irradiation apparatus 21 has a structure in which the spiral radiant heat radiator 21 wraps around the vacuum vessel 30 in the same configuration as the X-ray generator shown in FIG. 1 and the pyroelectric crystal 10. . The spiral heat source 21 has a better temperature uniformity in the longitudinal direction and the axial direction of the pyroelectric crystal than the linear heat source 20 structure. The implementation conditions for heating the pyroelectric crystal by the spiral heat source are shown in FIG. It is the same as the implementation conditions of 1. Degree. 3 (b) is a plan view of the pyroelectric crystal 10 X-ray generator (Fig. 3 (a)) using the helical heat source 21.
도 4는 반사형 타깃을 적용한 초전기 X-선 발생장치의 실시 예이다. X-선 타깃(75)은 초전기 면과 일정 각도를 갖은 위치에 장착하고 발생된 X-선은 베릴륨 투과창(70)을 통해 X-선(80)이 방사된다.4 is an embodiment of a pyroelectric X-ray generator to which a reflective target is applied. The X-ray target 75 is mounted at a position at an angle with the pyroelectric surface, and the generated X-rays are radiated by the X-ray 80 through the beryllium transmission window 70.
도 5(a)는 길이가 긴 초전기(11) 결정을 복사열을 조사하여 가열하여 표면전하를 유도하는 고에너지 발생장치에 의한 X-선 발생 실시 예이다. 종래 기술의 한계치 이상의 길이인 20 mm 이상의 초전기 결정(11)을 진공용기에 장착하고 본 발명에서 제안하는 복사열에 의해 가열함으로써 표면전하를 유도하는 실시 예로 유도 표면 전하의 수가 결정의 길이에 비례하여 증가하게 되어 종래기술의 한계를 극복 한다. 도 5(b)는 표면전하 유도를 증가시키는 또 다른 실시 예로 초전기 결정 두 개 또는 다수 개를 길이 방향으로 정렬하여 결정(14)과 X-선 타깃 사이에 고전위차를 유도하며 X-선 발생 효율을 증가시키는 방법이다.FIG. 5 (a) shows an embodiment of X-ray generation by a high energy generator which induces surface charge by heating radiation of a long pyroelectric crystal 11 by radiant heat. An example of inducing surface charge by mounting a pyroelectric crystal 11 of 20 mm or more, the length of which is more than the limit of the prior art, in a vacuum vessel and heating by radiant heat proposed in the present invention, the number of induced surface charges is proportional to the length of the crystal. To increase and overcome the limitations of the prior art. 5 (b) shows another example of increasing surface charge induction, in which two or more pyroelectric crystals are longitudinally aligned to induce a high potential difference between the crystal 14 and the X-ray target and generate X-rays. It is a way to increase the efficiency.

Claims (10)

  1. X-선 발생 장치에 있어서,In the X-ray generator,
    진공 용기;A vacuum vessel;
    상기 진공 용기 내에 설치되는 초전기 결정;A pyroelectric crystal installed in the vacuum vessel;
    상기 진공 용기 안에서 상기 초전기 결정에서 발생한 유도 전하의 진행 방향에 설치되는 X-선 타깃;An X-ray target provided in a direction in which the induced charge generated in the pyroelectric crystal is generated in the vacuum vessel;
    X-선을 발생하도록 상기 초전기 결정을 가열하는 복사열 조사장치를 포함하는 X-선 발생 장치.And a radiant heat irradiation device for heating the pyroelectric crystal to generate X-rays.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 복사열 조사장치는 전기 에너지를 복사 에너지로 변화시키는 X-선 발생 장치.The radiant heat irradiation apparatus is an X-ray generating apparatus for converting electrical energy into radiant energy.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 복사열 조사장치는 적외선 램프 또는 태양광 복사에너지를 집속한 복사 열원인 X-선 발생 장치.The radiant heat irradiation apparatus is an X-ray generator that is a radiant heat source focusing on infrared lamps or solar radiation energy.
  4. 제 1 항에 있어서The method of claim 1
    상기 복사열 조사장치는 상기 초전기 결정의 주위에 나선형으로 배치되는 X-선 발생 장치.And the radiant heat irradiation apparatus is disposed spirally around the pyroelectric crystal.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 복사열 조사장치는 상기 용기 내부 또는 외부에 장착되는 X-선 발생 장치.And the radiant heat irradiation device is mounted inside or outside the container.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 초전기 결정은 길이 방향으로 연결되는 하나 이상의 초전기 결정을 포함하는 X-선 발생 장치.And the pyroelectric crystal comprises one or more pyroelectric crystals connected in the longitudinal direction.
  7. 제 6 항에 있어서,The method of claim 6,
    둘 이상의 상기 초전기 결정은 길이 방향으로 정렬된 형태, 또는 두 개 이상의 결정이 연결되어 전하의 극성이 다른 면이 일정 거리를 두고 마주 정렬된 형태 중 하나를 가지는 X-선 발생 장치.Two or more of the pyroelectric crystals have a form aligned in the longitudinal direction, or two or more crystals connected to each other having a form in which the opposite sides of the polarity of the charge is aligned at a distance.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 초전기 결정 주변에 열방출을 위한 냉각 장치가 추가로 포함되는 X-선 발생 장치.And a cooling device for heat dissipation around the pyroelectric crystal.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 X-선 타깃은 투과형 또는 반사형인 X-선 발생 장치.And the X-ray target is a transmissive or reflective type.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 진공 용기는 발생한 상기 X 선이 투과되는 투과창을 추가로 포함하는 X-선 발생 장치.The vacuum vessel further comprises a transmission window through which the generated X-rays are transmitted.
PCT/KR2011/006438 2010-10-05 2011-08-31 Pyroelectric crystal x-ray generating device using radiant heat WO2012046953A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100096744A KR101094128B1 (en) 2010-10-05 2010-10-05 X-ray generator driven by pyroelectric crystals using the radiation heat source
KR10-2010-0096744 2010-10-05

Publications (2)

Publication Number Publication Date
WO2012046953A2 true WO2012046953A2 (en) 2012-04-12
WO2012046953A3 WO2012046953A3 (en) 2012-06-07

Family

ID=45506310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006438 WO2012046953A2 (en) 2010-10-05 2011-08-31 Pyroelectric crystal x-ray generating device using radiant heat

Country Status (2)

Country Link
KR (1) KR101094128B1 (en)
WO (1) WO2012046953A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284019B1 (en) * 2012-02-27 2013-07-09 단국대학교 산학협력단 Neutron generating apparatus and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267096A (en) * 2000-03-24 2001-09-28 Nikon Corp X-ray generating equipment
JP2009043658A (en) * 2007-08-10 2009-02-26 Hamamatsu Photonics Kk X-ray generator
JP2010015711A (en) * 2008-07-01 2010-01-21 Kyoto Univ X-ray generating device using hemimorphic crystal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299192A (en) * 1992-04-22 1993-11-12 Toshiba Corp X-ray generating device, x-ray diagnostic device, and x-ray ct device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267096A (en) * 2000-03-24 2001-09-28 Nikon Corp X-ray generating equipment
JP2009043658A (en) * 2007-08-10 2009-02-26 Hamamatsu Photonics Kk X-ray generator
JP2010015711A (en) * 2008-07-01 2010-01-21 Kyoto Univ X-ray generating device using hemimorphic crystal

Also Published As

Publication number Publication date
KR101094128B1 (en) 2011-12-14
WO2012046953A3 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US3376437A (en) Thermionic conversion means
EP2474782A2 (en) Cooling unit using ionic wind and LED lighting unit including the cooling unit
EP2637478A2 (en) High frequency heating apparatus
CN108925146B (en) Radiation device and processing device using the same
ITRM20110088A1 (en) THERMAL SOLAR CONVERTER
WO2012046953A2 (en) Pyroelectric crystal x-ray generating device using radiant heat
WO2012030131A2 (en) Apparatus for generating pyroelectric crystal neutrons by radiant heat
JP2006338945A (en) Neutron generation tube
WO2006103822A1 (en) X-ray generator using hemimorphic crystal
KR20140112270A (en) X-ray generator including heat sink block
CN102801101B (en) Graphene illuminator, radiating device employing graphene illuminator, and optical transmission network node
KR101097834B1 (en) Methods and Apparatuses of Pyroelectric Crystal for High-Energy Generators Driven by Pyroelectric Crystals using The Radiation Heat Source
CN102119583A (en) Method and device for generating EUV radiation or soft X-rays
KR101284019B1 (en) Neutron generating apparatus and method thereof
EP2637479A1 (en) High frequency heating apparatus
BR112012027756B1 (en) ELECTRODE FOR PLASMA DBD PROCESS AND DEVICE COMPRISING THE SAME
KR101094136B1 (en) X-ray generator driven by pyroelectric-crystals using radiation devices
BR112019023717A2 (en) ELECTRICITY GENERATOR, AND, METHOD FOR GENERATING ELECTRICITY
JP2009284633A (en) Non-contact power transfer device
JP4619028B2 (en) X-ray generator using heteropolar crystal
Antolak et al. Radiatively heated high voltage pyroelectric crystal pulser
Chrobak et al. Restoring transmission of irradiated image fiber bundles
RU2775274C1 (en) Generator of ionising radiation based on periodic variation of the temperature of a pyroelectric crystal (variants)
KR20180079693A (en) Heat radiating apparatus using ionic wind
JPH0512011Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830838

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830838

Country of ref document: EP

Kind code of ref document: A2