WO2012046778A1 - Method for producing laminate by forming film by means of plasma cvd - Google Patents

Method for producing laminate by forming film by means of plasma cvd Download PDF

Info

Publication number
WO2012046778A1
WO2012046778A1 PCT/JP2011/072998 JP2011072998W WO2012046778A1 WO 2012046778 A1 WO2012046778 A1 WO 2012046778A1 JP 2011072998 W JP2011072998 W JP 2011072998W WO 2012046778 A1 WO2012046778 A1 WO 2012046778A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
film forming
flow rate
substrate
Prior art date
Application number
PCT/JP2011/072998
Other languages
French (fr)
Japanese (ja)
Inventor
彰 長谷川
黒田 俊也
眞田 隆
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012046778A1 publication Critical patent/WO2012046778A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide

Definitions

  • the present invention relates to a method for manufacturing a laminate by plasma CVD film formation.
  • the gas barrier film can be suitably used as a container suitable for packaging articles such as foods and drinks, cosmetics, and detergents.
  • a gas barrier film formed by forming a thin film layer of an inorganic compound such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide on one surface of a base film such as a plastic film has been proposed. Yes.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition method
  • a gas barrier film manufactured using such a film forming method for example, in Japanese Patent Laid-Open No. 4-89236 (Patent Document 1), two layers formed by vapor deposition on the surface of a plastic substrate are disclosed.
  • a gas barrier film provided with a laminated vapor deposition film layer composed of the above silicon oxide film is disclosed.
  • the gas barrier film using the film forming method described in Patent Document 1 is a gas barrier film for articles that can be satisfied even if the gas barrier property of packaging containers such as foods and drinks, cosmetics, and detergents is relatively low. Can be used, but the gas barrier film for packaging electronic devices such as organic EL elements and organic thin-film solar cells is not always sufficient in terms of gas barrier properties.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a laminated film having sufficient gas barrier properties.
  • the present inventors have found that a laminated film having sufficient gas barrier properties can be obtained by adopting a specific plasma CVD method as a method for forming a barrier film.
  • the headline and the present invention were completed.
  • a plasma CVD film forming apparatus including a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed is used.
  • a method for producing a laminate In the vacuum chamber, the substrate is wound around the film forming roll so that the first portion of the surface of the long substrate and the second portion of the surface of the substrate face each other. While transporting the substrate, a film forming gas containing an organosilicon compound gas and oxygen gas is supplied to the film forming space between the film forming rolls, and a magnetic field is generated in the film forming space by the magnetic field generating member.
  • the plasma power supply generates discharge plasma between the film forming rolls, thereby continuously forming a thin film layer on the substrate, wherein the pressure in the film forming space is 0.1-2. 0.5 Pa, and the flow rate of the gas of the organosilicon compound is 85 to 230 sccm at 0 ° C. and 1 atm per 1 m 2 / min of the substrate area velocity.
  • a plasma CVD film forming apparatus including a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed.
  • a method for producing a laminate In the vacuum chamber, the substrate is wound around the film forming roll so that the first portion of the surface of the long substrate and the second portion of the surface of the substrate face each other. While transporting the substrate, a film forming gas containing an organosilicon compound gas and oxygen gas is supplied to the film forming space between the film forming rolls, and a magnetic field is generated in the film forming space by the magnetic field generating member. The plasma power supply generates discharge plasma between the film forming rolls, thereby continuously forming a thin film layer on the substrate, wherein the pressure in the film forming space is 0.1-2.
  • a method in which the gas flow rate of the organosilicon compound is 15 to 40 sccm at 0 ° C. and 1 atm.
  • [2] may be a combination with [1].
  • [3] The method according to [1] or [2], wherein the pressure in the film formation space is 0.3 to 1.5 Pa.
  • the flow rate ratio of the organic silicon compound gas to the oxygen gas (flow rate of oxygen gas) / (flow rate of the organic silicon compound gas) of the film forming gas is not more than twice the molar ratio for completely oxidizing the organosilicon compound.
  • the flow rate ratio of the organic silicon compound gas to the oxygen gas (flow rate of oxygen gas) / (flow rate of the organosilicon compound gas) of the film forming gas is equal to or less than the molar ratio for completely oxidizing the organosilicon compound.
  • the organic silicon compound of the film forming gas is hexamethyldisiloxane (HMDSO), and the flow ratio of HMDSO and oxygen gas (oxygen gas flow rate) / (flow rate of HMDSO gas) is 24 or less.
  • HMDSO hexamethyldisiloxane
  • the organic silicon compound of the film forming gas is hexamethyldisiloxane (HMDSO), and the flow ratio of HMDSO and oxygen gas (oxygen gas flow rate) / (flow rate of HMDSO gas) is 12 or less.
  • HMDSO hexamethyldisiloxane
  • oxygen gas flow rate oxygen gas flow rate
  • flow rate of HMDSO gas is 12 or less.
  • the plasma CVD film forming method of the present invention it is possible to provide a laminated film having a sufficient gas barrier property.
  • FIG. 1 It is a schematic diagram which shows an example of a preferable manufacturing apparatus for manufacturing a laminated
  • a “vacuum chamber” is a container for evacuating the interior. Normally, a vacuum environment is created in the chamber by operating a vacuum pump attached to the chamber. “Wrap” is to bring a bendable object such as a film into contact with a cylindrical object such as a roll so as to cover the cylindrical object. “Long” means that the length in the length direction is longer than the length in the width direction, like a film wound in a roll shape.
  • the “substrate” is an object that becomes a support for the film when the film is formed.
  • the “film-forming roll” is a roll for forming a film on the surface of the substrate wound around it, and is usually made of metal and also serves as an electrode for discharge.
  • the “film formation space” is a space between a pair of film formation rolls and in which plasma for film formation is generated.
  • An “organosilicon compound” is an organic compound containing silicon as a constituent element.
  • “Film-forming gas” is a gas containing a raw material gas that is a raw material of a film as an essential element, and if necessary, a reactive gas that reacts with the raw material gas to form a compound, or is included in the formed film In some cases, it may further contain an auxiliary gas that contributes to plasma generation and film quality improvement.
  • the “source gas” is a gas that is a supply source of a material that is a main component of the film.
  • a gas containing Si such as HMDSO, TEOS, silane or the like is a source gas.
  • the “reactive gas” is a gas that reacts with the source gas and is taken into the formed film.
  • oxygen (O 2 ) corresponds to this when forming a SiOx film.
  • the “magnetic field generating member” is a magnetic field generating mechanism composed of a permanent magnet, for example, a member composed of a long central magnet, an outer peripheral magnet surrounding the central magnet, and a magnetic field short-circuiting member connecting them. .
  • the “plasma power source” is a power source that is connected to a pair of film forming rolls that are electrodes and generates plasma between the film forming rolls.
  • “Plasma power supply with reversed polarity” means the plasma power supply defined above. When the polarity of one film forming roll is positive, the polarity is reversed so that the polarity of the other film forming roll is negative. It is a plasma power supply.
  • “Discharge plasma” is plasma generated by discharge.
  • the “plasma CVD film forming method” is a kind of CVD film forming method for forming a film using a chemical reaction of a gaseous substance, and is a CVD film forming method for promoting a chemical reaction using a plasma discharge. .
  • the present invention will be described in detail with reference to preferred embodiments thereof.
  • the method for producing a laminate of the present invention includes a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed.
  • a method for manufacturing a laminate performed using a plasma CVD film forming apparatus, wherein a first portion of a surface of a long substrate and a second portion of the surface of the substrate are formed in the vacuum chamber.
  • a gas is supplied, a magnetic field is generated in the film forming space by the magnetic field generating member, and a discharge plasma is generated by the plasma power source between the film forming rolls, whereby a thin film layer is continuously formed on the substrate.
  • a method of forming the film formation space Pressure is the 0.1 ⁇ 2.5 Pa, the flow rate of the gas of the organic silicon compound, an area rate of 1 m 2 / min per substrate, 0 ° C., a 85 ⁇ 230sccm at 1 atm criteria.
  • the laminate manufacturing method of the present invention includes a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed.
  • a laminate manufacturing method performed using a plasma CVD film forming apparatus comprising: a first portion of a surface of a long base material; and a second portion of a surface of the base material in the vacuum chamber.
  • the film forming space between the film forming rolls contains an organic silicon compound gas and an oxygen gas while transporting the base material while the base material is wound around the film forming roll so as to face the portion.
  • a film forming gas is supplied, a magnetic field is generated in the film forming space by the magnetic field generating member, and discharge plasma is generated by the plasma power source between the film forming rolls, whereby a thin film is continuously formed on the substrate.
  • a method of forming a layer wherein Pressure in the deposition space is 0.1 ⁇ 2.5 Pa, the flow rate of the gas of the organic silicon compound, 0 ° C., a 15 ⁇ 40 sccm at 1 atm criteria.
  • Examples of the long base material used in the method for producing a laminate of the present invention include a film or sheet made of a resin.
  • Examples of the resin used for such a substrate include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin; polyamide Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin
  • polyamide Polycarbonate resin Polystyrene resin
  • Polyvinyl alcohol resin Saponified ethylene-vinyl acetate copolymer
  • polyester resins and polyolefin resins are preferred, and PET and PEN are particularly preferred from the viewpoints of high heat resistance and linear expansion coefficient and low production cost.
  • these resin can be used individually by 1 type or in combination of 2 or more types.
  • the thickness of the long base material can be appropriately set in consideration of the stability when manufacturing a laminated film.
  • the thickness of the substrate is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 50 to 200 ⁇ m, and more preferably in the range of 50 to 100 ⁇ m from the viewpoint that the film can be conveyed even in vacuum. A range is particularly preferred.
  • the base material is preferably subjected to a surface activation treatment for cleaning the surface of the base material from the viewpoint of adhesion to the thin film layer.
  • a surface activation treatment for cleaning the surface of the base material from the viewpoint of adhesion to the thin film layer.
  • Examples of such surface activation treatment include corona treatment, plasma treatment, and flame treatment.
  • an inter-roll discharge plasma CVD method is used as a method for forming a thin film layer as a barrier film on a resin film.
  • the plasma CVD method is a film forming method in which a source material is radicalized and / or ionized by gasifying the gas containing the source material with alternating current, and the source material is deposited on a substrate such as a resin film. is there. Furthermore, in the present invention, a low-pressure plasma CVD method is used in order to obtain a laminated film having excellent gas barrier properties and bending resistance.
  • the low pressure is 0.1 Pa to 2.5 Pa, preferably 0.3 to 1.5 Pa.
  • the pressure in the vacuum chamber is 0.1 Pa or more, it is not difficult to generate a discharge in the region where the magnetic field exists.
  • the pressure is 2.5 Pa or less, the reaction occurs in the gas phase, and the film is formed on or in the thin film layer.
  • the particles reduce the gas barrier property of the thin film layer. However, if the particle is within the above range, the formation of the particles is well suppressed, and a thin film layer having a high barrier property can be formed.
  • An organic silicon compound containing silicon is used as a source gas in the film forming gas used for forming such a thin film layer.
  • organosilicon compounds include hexamethyldisiloxane, 1.1.3.3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethyl
  • Examples thereof include silane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1.1.3.3-tetramethyldisiloxane are preferred from the viewpoints of handling properties of the compound and gas barrier properties of the resulting thin film layer.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • monosilane may be contained in addition to the above-described organosilicon compound, and used as a silicon source for the barrier film to be formed.
  • the gas flow rate of the organosilicon compound is 85 to 230 sccm (Standard Cubic Centimeter per Minute) at 0 ° C. and 1 atm per 1 m 2 / min of the substrate area velocity, preferably Is 115 to 170 sccm.
  • the thin film layer is not porous and sufficient gas barrier properties are obtained, and when it is 230 sccm or less, pressure control is not hindered due to insufficient exhaust capacity.
  • the flow rate of the organic silicon compound gas is 15 to 40 sccm, preferably 20 to 30 sccm.
  • a numerical value is a value when the width of the film forming roll is not limited.
  • a reactive gas is used in addition to the raw material gas.
  • oxygen gas is used to react with the raw material gas to form an oxide.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • a carrier gas and a discharge gas known ones can be used as appropriate.
  • a rare gas such as helium, argon, neon, xenon, or hydrogen can be used.
  • plasma discharge is generated in the space between the film-forming rolls.
  • two water-cooled rotating drums containing non-rotating magnets are installed between film forming rolls at intervals of 4 to 5 cm, a magnetic field is formed between the rolls, and a medium frequency is applied between the magnets and the rollers. .
  • gas is introduced, a very bright high density plasma is formed between the rolls. Electrons are confined in the vicinity of the center of the gap between rolls by the magnetic field and electric field between the rolls, and a high-density plasma is formed.
  • This plasma source can operate at a low pressure of several Pa, the temperature of neutral particles and ions is low, and it is close to room temperature.
  • the electron temperature is high, many radicals and ions are generated. Further, high temperature secondary electrons are prevented from flowing into the resin film by the action of the magnetic field, and high power can be input while keeping the temperature of the resin film low, thereby achieving high-speed film formation.
  • Film deposition mainly occurs only on the surface of the resin film, and since the electrode is covered with the resin film and is not easily soiled, stable film formation can be performed for a long time.
  • FIG. 1 is a schematic diagram showing an example of a production apparatus preferable for producing a laminated film using the method of the present invention.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • a manufacturing apparatus at least the film forming rolls 31, 32, the gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61, 62 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roll has a plasma generation power source so that the pair of film-forming rolls (film-forming roll 31 and film-forming roll 32) can function as a pair of counter electrodes. 51 is connected. Therefore, in such a manufacturing apparatus, it is possible to discharge into the space between the film forming roll 31 and the film forming roll 32 by supplying power from the plasma generating power source 51, thereby forming the film. Plasma can be generated in the space between the roll 31 and the film forming roll 32. Further, in such a manufacturing apparatus, the pair of film forming rolls (film forming rolls 31 and 32) are arranged to face each other in parallel or substantially in parallel.
  • the film forming rate can be doubled and a film having the same structure can be formed.
  • a manufacturing apparatus it is possible to form a thin film layer on the surface of the film 100 by a CVD method.
  • a film component can be deposited on the surface of the film 100 also on the film roll 32. Therefore, the thin film layer can be efficiently formed on the surface of the film 100.
  • magnetic field generators 61 and 62 fixed so as not to rotate in conjunction with the rotation of the film forming roll are provided, respectively.
  • the film forming roll 31 and the film forming roll 32 known rolls can be appropriately used. As such film forming rolls 31 and 32, those having the same diameter are preferably used from the viewpoint of forming a thin film layer more efficiently. Further, the diameter of the film forming rolls 31 and 32 is preferably in the range of 5 to 100 cm from the viewpoint of discharge conditions, chamber space, and the like.
  • a pair of film-forming rolls (film-forming roll 31 and film-forming roll 32) are arranged so that the first part and the second part on the surface of the film 100 face each other.
  • a film 100 is wound around.
  • the thin film layer can be efficiently formed on the surface of the film 100.
  • the first part and the second part of the film 100 do not indicate a fixed part of the surface of the film, but “a part located in the film formation space on the surface of the film”. Is defined.
  • the feed roll 11 and the transport rolls 21, 22, 23, 24 used in such a manufacturing apparatus known rolls can be appropriately used.
  • the winding roll 71 is not particularly limited as long as it can wind the film 100 on which the thin film layer is formed, and a known roll can be appropriately used.
  • the gas supply pipe 41 a pipe capable of supplying or discharging the raw material gas at a predetermined speed can be used as appropriate.
  • the plasma generating power source 51 a known power source for a plasma generating apparatus can be used as appropriate.
  • Such a power source 51 for generating plasma supplies power to the film forming roll 31 and the film forming roll 32 connected to the power source 51 and makes it possible to use them as a counter electrode for discharging.
  • As such a plasma generation power source 51 it is possible to more efficiently carry out plasma CVD, so that the polarity of the pair of film forming rolls can be alternately reversed (AC power source or the like). Is used.
  • the applied power can be set to 100 W to 10 kW and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible.
  • the magnetic field generators 61 and 62 known magnetic field generators can be used as appropriate.
  • the film 100 a film in which a thin film layer is formed in advance can be used. Thus, by using a film 100 in which a thin film layer is formed in advance, the thickness of the thin film layer can be increased.
  • the manufacturing apparatus shown in FIG. 1 to limit the type of raw material gas, the flow rate, and the pressure in the vacuum chamber, a laminated film having excellent gas barrier properties and bending resistance can be manufactured. Further, for example, the power of the electrode drum of the plasma generator, the diameter of the film forming roll, and the film conveyance speed may be adjusted as appropriate. That is, by using the manufacturing apparatus shown in FIG. 1 to generate a discharge between a pair of film forming rolls (film forming rolls 31 and 32) while supplying a film forming gas (such as a raw material gas) into the vacuum chamber.
  • a film forming gas such as a raw material gas
  • the film forming gas (raw material gas or the like) is decomposed by plasma, and the thin film layer is formed on the surface of the film 100 on the film forming roll 31 and on the surface of the film 100 on the film forming roll 32 by the plasma CVD method. Is done.
  • the long film 100 is conveyed by the delivery roll 11 and the film formation roll 31, respectively, so that the surface of the film 100 is formed by a roll-to-roll continuous film formation process.
  • the thin film layer is formed thereon.
  • the film-forming gas contains the organosilicon compound and oxygen, and the ratio of the organosilicon compound that is the source gas and oxygen that is the reaction gas is to completely react the source gas and the reaction gas. It is preferable that the ratio of the reaction gas is not excessively larger than the ratio of the amount of the reaction gas that is theoretically required. If the ratio of the reaction gas is excessive, a laminated film having excellent gas barrier properties and bending resistance cannot be obtained. Therefore, it is preferable that the oxygen gas is less than or equal to the theoretical oxygen amount necessary to completely oxidize the entire amount of the organosilicon compound in the film forming gas.
  • the organic silicon compound gas of the film formation gas and the oxygen of the reaction gas are supplied from the gas supply unit to the film formation region to react and form a film.
  • the ratio of the flow rate of the organic silicon compound gas to the oxygen gas (flow rate of oxygen gas) / (flow rate of the gas of the organosilicon compound) is a molar ratio that completely oxidizes the organic silicon compound as a raw material, The reaction cannot proceed completely, and it is considered that the reaction is completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio.
  • the flow rate ratio between the organic silicon compound gas and the oxygen gas in the film forming gas is preferably not more than twice the molar ratio for completely oxidizing the organosilicon compound, and not more than the molar ratio for completely oxidizing the organosilicon compound. More preferably.
  • a gas containing hexamethyldisiloxane organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O :) as a source gas and oxygen (O 2 ) as a reaction gas is used.
  • organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O : oxygen
  • O 2 oxygen
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to form a silicon-oxygen-based material.
  • HMDSO hexamethyldisiloxane
  • O 2 oxygen
  • the following reaction formula (1) is given by the film-forming gas: (CH 3 ) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2 (1)
  • the reaction as described in 1 takes place to produce silicon dioxide. In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol.
  • the film forming gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane and is completely reacted, a uniform silicon dioxide film is formed. It becomes impossible to obtain a laminated film excellent in flexibility. Therefore, when forming the thin film layer, the oxygen amount is less than the stoichiometric ratio of 12 moles per mole of hexamethyldisiloxane so that the reaction of the above formula (1) does not proceed completely. There is a need to. Note that, as described above, in the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region and reacted to form a film.
  • the reaction can actually proceed completely. It is considered that the reaction is completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio. Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material is preferably a stoichiometric ratio of 24 times or less, and 12 times or less. More preferred.
  • the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane.
  • the amount is more than 0.5 times.
  • an electrode drum connected to the plasma generating power source 51 (in this embodiment, the film is installed on the film forming rolls 31 and 32).
  • the electric power to be applied can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., and cannot be generally stated, but may be in the range of 0.1 to 10 kW. preferable. If this applied power is less than the lower limit, particles tend to be generated.On the other hand, if the upper limit is exceeded, the amount of heat generated during film formation increases, and the temperature of the substrate surface during film formation increases. There is a possibility that the substrate loses heat and wrinkles occur during film formation. In severe cases, the film melts due to heat, and a large current discharge occurs between the bare film formation rolls. May cause damage.
  • the conveyance speed (line speed) of the film 100 can be adjusted as appropriate according to the type of raw material gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.1 to 100 m / min. A range of 5 to 20 m / min is more preferable. If the line speed is less than the lower limit, wrinkles due to heat tend to occur in the film. On the other hand, if the upper limit is exceeded, the thickness of the formed thin film layer tends to be thin.
  • the water vapor permeability of the laminated film was measured by the following method.
  • Example 1 A laminated film was produced using the production apparatus shown in FIG. That is, a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 ⁇ m, width: 350 mm, manufactured by Teijin DuPont Films, Inc., trade name “Teonex Q65FA”) is used as a base material (film 100). -Mounted on Le 11.
  • PEN film thickness: 100 ⁇ m, width: 350 mm
  • Teijin DuPont Films, Inc. trade name “Teonex Q65FA”
  • Plasma is generated by discharging, and a film forming gas (mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (also functioning as a discharge gas) as a reaction gas) is supplied to such a discharge region.
  • a film forming gas mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (also functioning as a discharge gas) as a reaction gas
  • HMDSO hexamethyldisiloxane
  • oxygen gas also functioning as a discharge gas
  • ⁇ Film formation conditions Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 25/250 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard] Hexamethyldisiloxane flow rate per substrate area velocity 1 m 2 / min: 143 sccm Degree of vacuum in the vacuum chamber: 0.55 Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min. Number of repetitions: 5 passes
  • the thickness of the thin film layer in the laminated film thus obtained was 430 nm. Further, in the obtained laminated film, the water vapor permeability under the conditions of a temperature of 40 ° C., a humidity of 0% RH on the low humidity side and a humidity of 90% RH on the high humidity side is a detection limit (1 ⁇ 10 ⁇ 4 g / m 2 / day) It was the following value.
  • the laminated film obtained had a water vapor permeability of 7 ⁇ 10 ⁇ 5 g / m 2 / day under the conditions of a temperature of 40 ° C. and a humidity of 90% RH by the Ca corrosion method.
  • the observation result of the microscope (CCD camera) is shown in FIG.
  • Example 2 Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed.
  • ⁇ Film formation conditions Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 25/500 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard] Hexamethyldisiloxane flow rate per substrate area velocity 1 m 2 / min: 143 sccm Degree of vacuum in the vacuum chamber: 1.0 Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min. Number of repetitions: 5 passes
  • the thickness of the thin film layer in the laminated film thus obtained was 522 nm.
  • the resulting laminated film had a water vapor transmission rate of 2.0 ⁇ 10 ⁇ 4 g / m 2 / day by the Ca corrosion method under the conditions of a temperature of 40 ° C. and a humidity of 90% RH.
  • Example 3 Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed.
  • ⁇ Film formation conditions Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 25/500 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard] Hexamethyldisiloxane flow rate per substrate area velocity 1 m 2 / min: 143 sccm Degree of vacuum in the vacuum chamber: 1.5 Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min. Number of repetitions: 1 pass
  • the thickness of the thin film layer in the laminated film thus obtained was 338 nm.
  • the laminated film obtained had a water vapor permeability of 9.0 ⁇ 10 ⁇ 4 g / m 2 / day under the conditions of a temperature of 40 ° C. and a humidity of 90% RH by the Ca corrosion method.
  • Example 1 Comparative Example 1 Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed. The observation result of the microscope (CCD camera) is shown in FIG.
  • ⁇ Film formation conditions Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 50/500 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard] Hexamethyldisiloxane flow rate per 1 m 2 / min of substrate area velocity: 286 sccm Degree of vacuum in the vacuum chamber: 3.0Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min. Number of repetitions: 1 pass
  • the thickness of the thin film layer in the laminated film thus obtained was 390 nm.
  • the obtained laminated film had a water vapor permeability of 9.8 ⁇ 10 ⁇ 3 g / m 2 / day under the conditions of a temperature of 40 ° C. and a humidity of 90% RH by the Ca corrosion method.
  • Comparative Example 2 (Comparative Example 2) Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed.
  • ⁇ Film formation conditions Deposition gas mixing ratio (hexamethyldisiloxane / oxygen): 12.5 / 125 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard] Flow rate of hexamethyldisiloxane per substrate area velocity of 1 m 2 / min: 71 sccm Degree of vacuum in the vacuum chamber: 1.0 Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min. Number of repetitions: 5 passes
  • the thickness of the thin film layer in the laminated film thus obtained was 400 nm. Further, the obtained laminated film had a water vapor permeability of 2.0 ⁇ 10 ⁇ 1 g / m 2 / day or more by a Ca corrosion method under conditions of a temperature of 40 ° C. and a humidity of 90% RH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A laminate film exhibiting sufficient gas barrier properties can be provided by using the method of the present invention. The laminate film is produced by means of a method for producing a laminate using a plasma CVD film-forming device provided with a vacuum chamber, a pair of film-forming rolls which are arranged facing one another in parallel or approximately in parallel and which have a magnetic field generating member in the interior, and a plasma power source having a polarity that reverses. The method involves: supplying a film-forming gas containing oxygen gas and an organic silicon compound gas to a film-forming space formed between the film-forming rolls while transferring a substrate wound around the film-forming rolls such that a first section and a second section of the surface of the substrate in the lengthwise direction face one another within the vacuum chamber; generating a magnetic field in the film-forming space by means of the magnetic field generating member; and generating a discharge plasma between the film-forming rolls by means of the plasma power source. As a consequence, a thin film layer is continuously formed on the substrate. The pressure in the film-forming space is 0.1 to 2.5 Pa, and the flow rate of the organic silicon compound gas is 85 to 230 sccm at 0°C and 1 atm per 1 m2/min of the areal velocity of the substrate.

Description

プラズマCVD成膜による積層体の製造方法Method of manufacturing a laminate by plasma CVD film formation
 本発明は、プラズマCVD成膜による積層体の製造方法に関する。
 本願は、2010年10月8日に、日本に出願された特願2010-228913号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a laminate by plasma CVD film formation.
This application claims priority based on Japanese Patent Application No. 2010-228913 filed in Japan on October 8, 2010, the contents of which are incorporated herein by reference.
 ガスバリア性フィルムは、飲食品、化粧品、洗剤といった物品の包装に適する容器として好適に用いることができる。近年、プラスチックフィルム等の基材フィルムの一方の表面上に、酸化珪素、窒化珪素、酸窒化珪素、酸化アルミニウムなどの無機化合物の薄膜層を成膜して形成されたガスバリア性フィルムが提案されている。 The gas barrier film can be suitably used as a container suitable for packaging articles such as foods and drinks, cosmetics, and detergents. In recent years, a gas barrier film formed by forming a thin film layer of an inorganic compound such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide on one surface of a base film such as a plastic film has been proposed. Yes.
 このように無機化合物の薄膜層をプラスチック基材の表面上に成膜する方法としては、真空蒸着法、スパッタ法、イオンプレーティング法等の物理気相成長法(PVD)、減圧化学気相成長法、プラズマ化学気相成長法等の化学気相成長法(CVD)が知られている。
 また、このような成膜方法を用いて製造したガスバリア性フィルムとして、例えば、特開平4-89236号公報(特許文献1)には、プラスチック基材の表面上に、蒸着により形成された2層以上のケイ素酸化物膜からなる積層蒸着膜層が設けられたガスバリア性フィルムが開示されている。
As a method of forming a thin film layer of an inorganic compound on the surface of a plastic substrate in this manner, physical vapor deposition (PVD) such as vacuum deposition, sputtering, ion plating, etc., reduced pressure chemical vapor deposition A chemical vapor deposition method (CVD) such as a plasma chemical vapor deposition method is known.
Further, as a gas barrier film manufactured using such a film forming method, for example, in Japanese Patent Laid-Open No. 4-89236 (Patent Document 1), two layers formed by vapor deposition on the surface of a plastic substrate are disclosed. A gas barrier film provided with a laminated vapor deposition film layer composed of the above silicon oxide film is disclosed.
特開平4-89236号公報JP-A-4-89236
 しかしながら、上記特許文献1に記載の成膜方法を用いたガスバリア性フィルムは、飲食品、化粧品、洗剤等のような包装容器のガスバリア性が比較的低くても満足できる物品用のガスバリア性フィルムとしては使用することができるが、有機EL素子や有機薄膜太陽電池等の電子デバイスの包装用のガスバリア性フィルムとしてはガスバリア性の点で必ずしも十分なものではなかった。 However, the gas barrier film using the film forming method described in Patent Document 1 is a gas barrier film for articles that can be satisfied even if the gas barrier property of packaging containers such as foods and drinks, cosmetics, and detergents is relatively low. Can be used, but the gas barrier film for packaging electronic devices such as organic EL elements and organic thin-film solar cells is not always sufficient in terms of gas barrier properties.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、十分なガスバリア性を有する積層フィルムを提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a laminated film having sufficient gas barrier properties.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、バリア膜の形成法として、特定のプラズマCVD法を採用することにより、十分なガスバリア性を有する積層フィルムが得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a laminated film having sufficient gas barrier properties can be obtained by adopting a specific plasma CVD method as a method for forming a barrier film. The headline and the present invention were completed.
 すなわち本発明によれば、以下のことが提供される。
[1]真空チャンバーと、平行ないしほぼ平行に対向して配置され、内部に磁場発生部材を備えている一対の成膜ロールと、極性が反転するプラズマ電源とを備えるプラズマCVD成膜装置を用いて行われる積層体の製造方法であって、
前記真空チャンバー内で、長尺の基材の表面の第一の部分と、該基材の表面の第二の部分とが対向するように記基材を前記成膜ロールに巻き掛けた状態で該基材を搬送しながら、前記成膜ロールの間の成膜空間に有機珪素化合物のガスと酸素ガスを含む成膜ガスを供給し、前記磁場発生部材により前記成膜空間に磁場を発生させ、前記成膜ロール間に前記プラズマ電源により放電プラズマを発生させ、これにより、該基材上に連続的に薄膜層を形成する方法であって、前記成膜空間の圧力が0.1~2.5Paであり、前記有機珪素化合物のガスの流量が、基材の面積速度1m/分あたり、0℃、1気圧基準で85~230sccmである方法。
[2]真空チャンバーと、平行ないしほぼ平行に対向して配置され、内部に磁場発生部材を備えている一対の成膜ロールと、極性が反転するプラズマ電源とを備えるプラズマCVD成膜装置を用いて行われる積層体の製造方法であって、
前記真空チャンバー内で、長尺の基材の表面の第一の部分と、該基材の表面の第二の部分とが対向するように前記基材を前記成膜ロールに巻き掛けた状態で該基材を搬送しながら、前記成膜ロールの間の成膜空間に有機珪素化合物のガスと酸素ガスを含む成膜ガスを供給し、前記磁場発生部材により前記成膜空間に磁場を発生させ、前記成膜ロール間に前記プラズマ電源により放電プラズマを発生させ、これにより、該基材上に連続的に薄膜層を形成する方法であって、前記成膜空間の圧力が0.1~2.5Paであり、前記有機珪素化合物のガスの流量が、0℃、1気圧基準で15~40sccmである方法。[2]は、[1]との組み合わせであっても良い。
[3]前記成膜空間の圧力が0.3~1.5Paである[1]または[2]に記載の方法。
[4]前記有機珪素化合物のガスの流量が、基材の面積速度1m/分あたり、0℃、1気圧基準で、115~170sccmである[1]~[3]のいずれかに記載の方法。
[5]前記成膜ガスの有機珪素化合物のガスと酸素ガスの流量比(酸素ガスの流量)/(有機珪素化合物のガスの流量)が、有機珪素化合物を完全に酸化させるモル比の倍以下である[1]~[4]のいずれかに記載の方法。
[6]前記成膜ガスの有機珪素化合物のガスと酸素ガスの流量比(酸素ガスの流量)/(有機珪素化合物のガスの流量)が、有機珪素化合物を完全に酸化させるモル比以下である[1]~[5]のいずれかに記載の方法。
[7]前記成膜ガスの有機珪素化合物がヘキサメチルジシロキサン(HMDSO)であり、HMDSOと酸素ガスの流量比(酸素ガス流量)/(HMDSOガスの流量)が、24以下である[1]~[5]のいずれかに記載の方法。
[8]前記成膜ガスの有機珪素化合物がヘキサメチルジシロキサン(HMDSO)であり、HMDSOと酸素ガスの流量比(酸素ガス流量)/(HMDSOガスの流量)が、12以下である[1]~[7]のいずれかに記載の方法。
That is, according to the present invention, the following is provided.
[1] A plasma CVD film forming apparatus including a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed is used. A method for producing a laminate,
In the vacuum chamber, the substrate is wound around the film forming roll so that the first portion of the surface of the long substrate and the second portion of the surface of the substrate face each other. While transporting the substrate, a film forming gas containing an organosilicon compound gas and oxygen gas is supplied to the film forming space between the film forming rolls, and a magnetic field is generated in the film forming space by the magnetic field generating member. The plasma power supply generates discharge plasma between the film forming rolls, thereby continuously forming a thin film layer on the substrate, wherein the pressure in the film forming space is 0.1-2. 0.5 Pa, and the flow rate of the gas of the organosilicon compound is 85 to 230 sccm at 0 ° C. and 1 atm per 1 m 2 / min of the substrate area velocity.
[2] Using a plasma CVD film forming apparatus including a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed. A method for producing a laminate,
In the vacuum chamber, the substrate is wound around the film forming roll so that the first portion of the surface of the long substrate and the second portion of the surface of the substrate face each other. While transporting the substrate, a film forming gas containing an organosilicon compound gas and oxygen gas is supplied to the film forming space between the film forming rolls, and a magnetic field is generated in the film forming space by the magnetic field generating member. The plasma power supply generates discharge plasma between the film forming rolls, thereby continuously forming a thin film layer on the substrate, wherein the pressure in the film forming space is 0.1-2. A method in which the gas flow rate of the organosilicon compound is 15 to 40 sccm at 0 ° C. and 1 atm. [2] may be a combination with [1].
[3] The method according to [1] or [2], wherein the pressure in the film formation space is 0.3 to 1.5 Pa.
[4] The gas flow rate of the organosilicon compound according to any one of [1] to [3], wherein the flow rate of the organic silicon compound is 115 to 170 sccm based on an area velocity of 1 m 2 / min of the substrate at 0 ° C. and 1 atm. Method.
[5] The flow rate ratio of the organic silicon compound gas to the oxygen gas (flow rate of oxygen gas) / (flow rate of the organic silicon compound gas) of the film forming gas is not more than twice the molar ratio for completely oxidizing the organosilicon compound. The method according to any one of [1] to [4].
[6] The flow rate ratio of the organic silicon compound gas to the oxygen gas (flow rate of oxygen gas) / (flow rate of the organosilicon compound gas) of the film forming gas is equal to or less than the molar ratio for completely oxidizing the organosilicon compound. [1] The method according to any one of [5].
[7] The organic silicon compound of the film forming gas is hexamethyldisiloxane (HMDSO), and the flow ratio of HMDSO and oxygen gas (oxygen gas flow rate) / (flow rate of HMDSO gas) is 24 or less. The method according to any of [5].
[8] The organic silicon compound of the film forming gas is hexamethyldisiloxane (HMDSO), and the flow ratio of HMDSO and oxygen gas (oxygen gas flow rate) / (flow rate of HMDSO gas) is 12 or less. The method according to any one of to [7].
 本発明のプラズマCVD成膜方法によれば、十分なガスバリア性を有する積層フィルムを提供することが可能となる。 According to the plasma CVD film forming method of the present invention, it is possible to provide a laminated film having a sufficient gas barrier property.
本発明の方法を用いて積層フィルムを製造するのに好ましい製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of a preferable manufacturing apparatus for manufacturing a laminated | multilayer film using the method of this invention. Ca腐食法を用いて評価した積層フィルムのマイクロスコープ(光学顕微鏡)画像を示す図である。It is a figure which shows the microscope (optical microscope) image of the laminated | multilayer film evaluated using Ca corrosion method.
(定義)
 以下に、本発明に関する主要な用語の定義を記す。
 「真空チャンバー」とは、内部を真空にするための容器である。通常、チャンバーに取り付けられた真空ポンプを作動させることにより、チャンバー内に真空環境が作られる。
 「巻き掛ける」とは、フィルムなどの可曲性物体をロールなどの円筒状物体に、前記円筒状物体を覆うように接触させることである。
 「長尺の」とは、ロール状に巻かれたフィルムのように、幅方向の長さに比べて長さ方向の長さが長いことを意味する。
 「基材」とは、膜を形成する時に該膜の支持体となる物体である。
 「成膜ロール」とは、それに巻き掛けた基材の表面上に膜を形成するためのロールであり、通常は、金属からなって放電のための電極を兼ねる。
 「成膜空間」とは、一対の成膜ロールの間の空間であって、成膜のためのプラズマが発生する空間である。
 「有機珪素化合物」とは、珪素を構成元素として含有する有機化合物である。
 「成膜ガス」とは、膜の原料となる原料ガスを必須要素として含有するガスであり、必要に応じて、原料ガスと反応して化合物を形成する反応ガスや、形成された膜に含まれることはないがプラズマ発生や膜質向上などに寄与する補助ガスを更に含有することがある。
 「原料ガス」とは、膜の主成分となる材料の供給源となるガスである。例えばSiO膜を形成する場合には、HMDSO,TEOS,シラン等のSiを含有するガスが原料ガスである。
 「反応ガス」とは、原料ガスと反応して、形成される膜に取り込まれるガスであり、例えばSiOx膜を形成する場合には、酸素(O)がこれに該当する。
 「磁場発生部材」とは、永久磁石からなる磁場発生機構であり、例えば、長い中央磁石と、この中央磁石を取り囲む外周磁石と、それらを接続する磁界短絡部材とからなる部材がこれに該当する。
 「プラズマ電源」とは、電極である一対の成膜ロールに接続されて成膜ロール間にプラズマを発生させる電源である。
 「極性が反転するプラズマ電源」とは、上に定義されたプラズマ電源であって、一方の成膜ロールの極性がプラスの時、他方の成膜ロールの極性がマイナスとなるように極性が反転するプラズマ電源である。
 「放電プラズマ」とは、放電により発生させたプラズマである。
 「プラズマCVD成膜方法」とは、ガス状物質の化学反応を利用して成膜を行うCVD成膜方法の一種であり、プラズマ放電を利用して化学反応を促進させるCVD成膜方法である。
 「面積速度」とは、ロール・ツー・ロール成膜法などにおいて、一定時間の間に基材が進む面積である。基材の線速度と基材の幅との間には、(面積速度)=(線速度)×(基材の幅)の関係がある。
 「0℃、1気圧基準で」とは、表示されたガスの量が、0℃、1気圧におけるそのガスの体積であることを表す。
 「有機珪素化合物を完全に酸化させる」とは、有機珪素化合物を、該化合物に含まれるSi、C、およびHが、SiはSiOになり、CはCOになり、HはHOになるように酸化させることを意味する。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
(Definition)
Hereinafter, definitions of main terms relating to the present invention will be described.
A “vacuum chamber” is a container for evacuating the interior. Normally, a vacuum environment is created in the chamber by operating a vacuum pump attached to the chamber.
“Wrap” is to bring a bendable object such as a film into contact with a cylindrical object such as a roll so as to cover the cylindrical object.
“Long” means that the length in the length direction is longer than the length in the width direction, like a film wound in a roll shape.
The “substrate” is an object that becomes a support for the film when the film is formed.
The “film-forming roll” is a roll for forming a film on the surface of the substrate wound around it, and is usually made of metal and also serves as an electrode for discharge.
The “film formation space” is a space between a pair of film formation rolls and in which plasma for film formation is generated.
An “organosilicon compound” is an organic compound containing silicon as a constituent element.
“Film-forming gas” is a gas containing a raw material gas that is a raw material of a film as an essential element, and if necessary, a reactive gas that reacts with the raw material gas to form a compound, or is included in the formed film In some cases, it may further contain an auxiliary gas that contributes to plasma generation and film quality improvement.
The “source gas” is a gas that is a supply source of a material that is a main component of the film. For example, when an SiO x film is formed, a gas containing Si such as HMDSO, TEOS, silane or the like is a source gas.
The “reactive gas” is a gas that reacts with the source gas and is taken into the formed film. For example, oxygen (O 2 ) corresponds to this when forming a SiOx film.
The “magnetic field generating member” is a magnetic field generating mechanism composed of a permanent magnet, for example, a member composed of a long central magnet, an outer peripheral magnet surrounding the central magnet, and a magnetic field short-circuiting member connecting them. .
The “plasma power source” is a power source that is connected to a pair of film forming rolls that are electrodes and generates plasma between the film forming rolls.
“Plasma power supply with reversed polarity” means the plasma power supply defined above. When the polarity of one film forming roll is positive, the polarity is reversed so that the polarity of the other film forming roll is negative. It is a plasma power supply.
“Discharge plasma” is plasma generated by discharge.
The “plasma CVD film forming method” is a kind of CVD film forming method for forming a film using a chemical reaction of a gaseous substance, and is a CVD film forming method for promoting a chemical reaction using a plasma discharge. .
“Area speed” is an area in which a substrate advances in a certain time in a roll-to-roll film forming method or the like. There is a relationship of (area velocity) = (linear velocity) × (substrate width) between the linear velocity of the substrate and the width of the substrate.
“On the basis of 0 ° C. and 1 atm” means that the amount of the displayed gas is the volume of the gas at 0 ° C. and 1 atm.
“To completely oxidize an organosilicon compound” means that an organosilicon compound contains Si, C and H contained in the compound, Si becomes SiO 2 , C becomes CO 2 , and H becomes H 2 O. Means to be oxidized.
Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
 本発明の積層体の製造方法は、真空チャンバーと、平行ないしほぼ平行に対向して配置され、内部に磁場発生部材を備えている一対の成膜ロールと、極性が反転するプラズマ電源とを備えるプラズマCVD成膜装置を用いて行われる積層体の製造方法であって、前記真空チャンバー内で、長尺の基材の表面の第一の部分と、該基材の表面の第二の部分とが対向するように前記基材を前記成膜ロールに巻き掛けた状態で該基材を搬送しながら、前記成膜ロールの間の成膜空間に有機珪素化合物のガスと酸素ガスを含む成膜ガスを供給し、前記磁場発生部材により前記成膜空間に磁場を発生させ、前記成膜ロール間に前記プラズマ電源により放電プラズマを発生させ、これにより、該基材上に連続的に薄膜層を形成する方法であって、前記成膜空間の圧力が0.1~2.5Paであり、前記有機珪素化合物のガスの流量が、基材の面積速度1m/分あたり、0℃、1気圧基準で85~230sccmである。 The method for producing a laminate of the present invention includes a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed. A method for manufacturing a laminate performed using a plasma CVD film forming apparatus, wherein a first portion of a surface of a long substrate and a second portion of the surface of the substrate are formed in the vacuum chamber. A film containing an organic silicon compound gas and an oxygen gas in a film forming space between the film forming rolls while transporting the base material while the base material is wound around the film forming roll so as to face each other A gas is supplied, a magnetic field is generated in the film forming space by the magnetic field generating member, and a discharge plasma is generated by the plasma power source between the film forming rolls, whereby a thin film layer is continuously formed on the substrate. A method of forming the film formation space Pressure is the 0.1 ~ 2.5 Pa, the flow rate of the gas of the organic silicon compound, an area rate of 1 m 2 / min per substrate, 0 ° C., a 85 ~ 230sccm at 1 atm criteria.
 また、本発明の積層体の製造方法は、真空チャンバーと、平行ないしほぼ平行に対向して配置され、内部に磁場発生部材を備えている一対の成膜ロールと、極性が反転するプラズマ電源とを備えるプラズマCVD成膜装置を用いて行われる積層体の製造方法であって、前記真空チャンバー内で、長尺の基材の表面の第一の部分と、該基材の表面の第二の部分とが対向するように前記基材を前記成膜ロールに巻き掛けた状態で該基材を搬送しながら、前記成膜ロールの間の成膜空間に有機珪素化合物のガスと酸素ガスを含む成膜ガスを供給し、前記磁場発生部材により前記成膜空間に磁場を発生させ、前記成膜ロール間に前記プラズマ電源により放電プラズマを発生させ、これにより、該基材上に連続的に薄膜層を形成する方法であって、前記成膜空間の圧力が0.1~2.5Paであり、前記有機珪素化合物のガスの流量が、0℃、1気圧基準で15~40sccmである。 The laminate manufacturing method of the present invention includes a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and having a magnetic field generating member therein, and a plasma power source whose polarity is reversed. A laminate manufacturing method performed using a plasma CVD film forming apparatus comprising: a first portion of a surface of a long base material; and a second portion of a surface of the base material in the vacuum chamber. The film forming space between the film forming rolls contains an organic silicon compound gas and an oxygen gas while transporting the base material while the base material is wound around the film forming roll so as to face the portion. A film forming gas is supplied, a magnetic field is generated in the film forming space by the magnetic field generating member, and discharge plasma is generated by the plasma power source between the film forming rolls, whereby a thin film is continuously formed on the substrate. A method of forming a layer, wherein Pressure in the deposition space is 0.1 ~ 2.5 Pa, the flow rate of the gas of the organic silicon compound, 0 ° C., a 15 ~ 40 sccm at 1 atm criteria.
 本発明の積層体の製造方法に用いる長尺の基材としては、樹脂からなるフィルム又はシートが挙げられる。このような基材に用いる樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリビニルアルコール系樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル系樹脂;アセタール系樹脂;ポリイミド系樹脂が挙げられる。これらの樹脂の中でも、耐熱性及び線膨張率が高く、製造コストが低いという観点から、ポリエステル系樹脂、ポリオレフィン系樹脂が好ましく、PET、PENが特に好ましい。また、これらの樹脂は、1種を単独で又は2種以上を組み合わせて使用することができる。 Examples of the long base material used in the method for producing a laminate of the present invention include a film or sheet made of a resin. Examples of the resin used for such a substrate include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP), and cyclic polyolefin; polyamide Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin. Among these resins, polyester resins and polyolefin resins are preferred, and PET and PEN are particularly preferred from the viewpoints of high heat resistance and linear expansion coefficient and low production cost. Moreover, these resin can be used individually by 1 type or in combination of 2 or more types.
 前記長尺の基材の厚みは、積層フィルムを製造する際の安定性を考慮して適宜に設定することができる。前記基材の厚みとしては、真空中においてもフィルムの搬送が可能であるという観点から、5~500μmの範囲であることが好ましく、50~200μmの範囲であることがより好ましく、50~100μmの範囲であることが特に好ましい。 The thickness of the long base material can be appropriately set in consideration of the stability when manufacturing a laminated film. The thickness of the substrate is preferably in the range of 5 to 500 μm, more preferably in the range of 50 to 200 μm, and more preferably in the range of 50 to 100 μm from the viewpoint that the film can be conveyed even in vacuum. A range is particularly preferred.
 また、前記基材には、薄膜層との密着性の観点から、基材の表面を清浄するための表面活性化処理を施すことが好ましい。このような表面活性化処理としては、例えば、コロナ処理、プラズマ処理、フレーム処理が挙げられる。 The base material is preferably subjected to a surface activation treatment for cleaning the surface of the base material from the viewpoint of adhesion to the thin film layer. Examples of such surface activation treatment include corona treatment, plasma treatment, and flame treatment.
 本発明では、樹脂フィルム上にバリア膜である薄膜層を形成する方法として、ロール間放電プラズマCVD法を用いる。これにより、屈曲してもバリア性が低下し難い積層フィルムを得ることができる。従来の積層フィルムでは、屈曲するとバリア膜にクラックが生じ易く、バリア性が低下し易かったが、本発明によれば、屈曲してもバリア膜にクラックが生じ難く、バリア性が低下し難い積層フィルムを得ることができる。 In the present invention, an inter-roll discharge plasma CVD method is used as a method for forming a thin film layer as a barrier film on a resin film. Thereby, even if it bends, the laminated | multilayer film which a barrier property cannot fall easily can be obtained. In the conventional laminated film, if it is bent, the barrier film is likely to crack, and the barrier property is likely to be lowered. However, according to the present invention, even if bent, the barrier film is hardly cracked and the barrier property is not easily lowered. A film can be obtained.
 ここで、プラズマCVD法は、原料物質を含むガスを交流でプラズマ化することにより、原料物質がラジカル化、及び/又はイオン化し、樹脂フィルム等の基板上に原料物質が堆積する成膜方法である。更に、本発明においては、ガスバリア性や耐屈曲性に優れた積層フィルムを得るために、低圧プラズマCVD法が用いられている。
 低圧とは、0.1Pa~2.5Paであり、好ましくは0.3~1.5Paである。
 真空チャンバー内の圧力が、0.1Pa以上の場合、磁場の存在する領域における放電の発生が困難とならず、2.5Pa以下の場合、気相中で反応が生じ、薄膜層の上または中に薄膜層と同じまたは類似の化学組成のパーティクルが形成されることを防止することができる。上記パーティクルは、薄膜層のガスバリア性を低下させるが、上記範囲内であれば、パーティクルの形成がよく抑制されてバリア性の高い薄膜層を成膜することができる。
Here, the plasma CVD method is a film forming method in which a source material is radicalized and / or ionized by gasifying the gas containing the source material with alternating current, and the source material is deposited on a substrate such as a resin film. is there. Furthermore, in the present invention, a low-pressure plasma CVD method is used in order to obtain a laminated film having excellent gas barrier properties and bending resistance.
The low pressure is 0.1 Pa to 2.5 Pa, preferably 0.3 to 1.5 Pa.
When the pressure in the vacuum chamber is 0.1 Pa or more, it is not difficult to generate a discharge in the region where the magnetic field exists. When the pressure is 2.5 Pa or less, the reaction occurs in the gas phase, and the film is formed on or in the thin film layer. It is possible to prevent particles having the same or similar chemical composition as the thin film layer. The particles reduce the gas barrier property of the thin film layer. However, if the particle is within the above range, the formation of the particles is well suppressed, and a thin film layer having a high barrier property can be formed.
 このような薄膜層の形成に用いる前記成膜ガス中の原料ガスとして、珪素を含有する有機珪素化合物を用いる。このような有機珪素化合物としては、例えば、ヘキサメチルジシロキサン、1.1.3.3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機珪素化合物の中でも、化合物の取り扱い性及び得られる薄膜層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1.1.3.3-テトラメチルジシロキサンが好ましい。また、これらの有機珪素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 さらに、原料ガスとして、上述の有機珪素化合物のほかにモノシランを含有させ、形成するバリア膜の珪素源として使用してもよい。
An organic silicon compound containing silicon is used as a source gas in the film forming gas used for forming such a thin film layer. Examples of such organosilicon compounds include hexamethyldisiloxane, 1.1.3.3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethyl Examples thereof include silane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1.1.3.3-tetramethyldisiloxane are preferred from the viewpoints of handling properties of the compound and gas barrier properties of the resulting thin film layer. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
Further, as the source gas, monosilane may be contained in addition to the above-described organosilicon compound, and used as a silicon source for the barrier film to be formed.
 本発明のプラズマCVD法においては、有機珪素化合物のガスの流量が、基材の面積速度1m/分あたり、0℃、1気圧基準で85~230sccm(Standard Cubic Centimeter per Minute)であり、好ましくは115~170sccmである。85sccm以上の場合、薄膜層がポーラスとならず充分なガスバリア性が得られ、230sccm以下の場合、排気能力不足を理由に圧力制御に支障をきたすことがない。 In the plasma CVD method of the present invention, the gas flow rate of the organosilicon compound is 85 to 230 sccm (Standard Cubic Centimeter per Minute) at 0 ° C. and 1 atm per 1 m 2 / min of the substrate area velocity, preferably Is 115 to 170 sccm. When it is 85 sccm or more, the thin film layer is not porous and sufficient gas barrier properties are obtained, and when it is 230 sccm or less, pressure control is not hindered due to insufficient exhaust capacity.
 また、本発明のプラズマCVD法においては、有機珪素化合物のガスの流量は、15~40sccmであり、好ましくは20~30sccmである。かかる数値は、前記成膜ロールの幅等を限定しない場合の値である。 In the plasma CVD method of the present invention, the flow rate of the organic silicon compound gas is 15 to 40 sccm, preferably 20 to 30 sccm. Such a numerical value is a value when the width of the film forming roll is not limited.
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いる。このような反応ガスとして、前記原料ガスと反応して酸化物を形成させるために、酸素ガスを用いる。 Further, as the film forming gas, a reactive gas is used in addition to the raw material gas. As such a reactive gas, oxygen gas is used to react with the raw material gas to form an oxide.
 前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such a carrier gas and a discharge gas, known ones can be used as appropriate. For example, a rare gas such as helium, argon, neon, xenon, or hydrogen can be used.
 ロール間放電プラズマCVD法では、成膜ロール間の空間にプラズマ放電を発生させる。典型的な例では、回転しない磁石を内蔵した2つの水冷回転ドラムを4~5cmの間隔で成膜ロール間に設置し、ロール間に磁場が形成され、磁石とローラー間に中周波を印加する。ガスを導入するときわめて明るい高密度のプラズマがロール間に形成される。ロール間の磁場と電場により電子はロール間ギャップの中心近傍に閉じ込められることになり、高密度のプラズマが形成される。 In the inter-roll discharge plasma CVD method, plasma discharge is generated in the space between the film-forming rolls. In a typical example, two water-cooled rotating drums containing non-rotating magnets are installed between film forming rolls at intervals of 4 to 5 cm, a magnetic field is formed between the rolls, and a medium frequency is applied between the magnets and the rollers. . When gas is introduced, a very bright high density plasma is formed between the rolls. Electrons are confined in the vicinity of the center of the gap between rolls by the magnetic field and electric field between the rolls, and a high-density plasma is formed.
 このプラズマ源は、数Paの低圧力で動作可能で、中性粒子やイオンの温度は低く、室温近傍になる。一方、電子の温度は高いので、ラジカルやイオンを多く生成する。また、高温の2次電子が磁場の作用で樹脂フィルムに流れ込むのが防止され、樹脂フィルムの温度を低く抑えたままで高い電力の投入が可能となり、高速成膜が達成される。膜の堆積は、主に樹脂フィルム表面のみに起こり、電極は樹脂フィルムに覆われて汚れにくいために、長時間の安定成膜ができる。 This plasma source can operate at a low pressure of several Pa, the temperature of neutral particles and ions is low, and it is close to room temperature. On the other hand, since the electron temperature is high, many radicals and ions are generated. Further, high temperature secondary electrons are prevented from flowing into the resin film by the action of the magnetic field, and high power can be input while keeping the temperature of the resin film low, thereby achieving high-speed film formation. Film deposition mainly occurs only on the surface of the resin film, and since the electrode is covered with the resin film and is not easily soiled, stable film formation can be performed for a long time.
 図1は、本発明の方法を用いて積層フィルムを製造するのに好ましい製造装置の一例を示す模式図である。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 FIG. 1 is a schematic diagram showing an example of a production apparatus preferable for producing a laminated film using the method of the present invention. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示す製造装置は、送り出しロール11と、搬送ロール21、22、23、24と、成膜ロール31、32と、ガス供給管41と、プラズマ発生用電源51と、成膜ロール31及び32の内部に設置された磁場発生装置61、62と、巻取りロール71とを備えている。また、このような製造装置においては、少なくとも成膜ロール31、32と、ガス供給管41と、プラズマ発生用電源51と、磁場発生装置61、62とが図示を省略した真空チャンバー内に配置されている。更に、このような製造装置において前記真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。 1 includes a feed roll 11, transport rolls 21, 22, 23, 24, film forming rolls 31, 32, a gas supply pipe 41, a plasma generating power supply 51, a film forming roll 31, and 32 includes magnetic field generators 61 and 62 installed inside 32, and a winding roll 71. In such a manufacturing apparatus, at least the film forming rolls 31, 32, the gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61, 62 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置においては、一対の成膜ロール(成膜ロール31と成膜ロール32)を一対の対向電極として機能させることが可能となるように、各成膜ロールがそれぞれプラズマ発生用電源51に接続されている。そのため、このような製造装置においては、プラズマ発生用電源51により電力を供給することにより、成膜ロール31と成膜ロール32との間の空間に放電することが可能であり、これにより成膜ロール31と成膜ロール32との間の空間にプラズマを発生させることができる。更に、このような製造装置においては、一対の成膜ロール(成膜ロール31及び32)は、平行ないしほぼ平行に対向して配置される。このようにして、一対の成膜ロール(成膜ロール31及び32)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できる。
 このような製造装置によれば、CVD法によりフィルム100の表面上に薄膜層を形成することが可能であり、成膜ロール31上においてフィルム100の表面上に膜成分を堆積させつつ、更に成膜ロール32上においてもフィルム100の表面上に膜成分を堆積させることもできる。従って、フィルム100の表面上に前記薄膜層を効率よく形成することができる。
In such a manufacturing apparatus, each film-forming roll has a plasma generation power source so that the pair of film-forming rolls (film-forming roll 31 and film-forming roll 32) can function as a pair of counter electrodes. 51 is connected. Therefore, in such a manufacturing apparatus, it is possible to discharge into the space between the film forming roll 31 and the film forming roll 32 by supplying power from the plasma generating power source 51, thereby forming the film. Plasma can be generated in the space between the roll 31 and the film forming roll 32. Further, in such a manufacturing apparatus, the pair of film forming rolls (film forming rolls 31 and 32) are arranged to face each other in parallel or substantially in parallel. Thus, by arranging a pair of film forming rolls (film forming rolls 31 and 32), the film forming rate can be doubled and a film having the same structure can be formed.
According to such a manufacturing apparatus, it is possible to form a thin film layer on the surface of the film 100 by a CVD method. A film component can be deposited on the surface of the film 100 also on the film roll 32. Therefore, the thin film layer can be efficiently formed on the surface of the film 100.
 また、成膜ロール31及び成膜ロール32の内部には、成膜ロールが回転しても、連動して回転しないように固定された磁場発生装置61及び62がそれぞれ設けられている。 Further, inside the film forming roll 31 and the film forming roll 32, magnetic field generators 61 and 62 fixed so as not to rotate in conjunction with the rotation of the film forming roll are provided, respectively.
 成膜ロール31及び成膜ロール32としては適宜公知のロールを用いることができる。
このような成膜ロール31及び32としては、より効率よく薄膜層を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ロール31及び32の直径としては、放電条件、チャンバーのスペース等の観点から、5~100cmの範囲とすることが好ましい。
As the film forming roll 31 and the film forming roll 32, known rolls can be appropriately used.
As such film forming rolls 31 and 32, those having the same diameter are preferably used from the viewpoint of forming a thin film layer more efficiently. Further, the diameter of the film forming rolls 31 and 32 is preferably in the range of 5 to 100 cm from the viewpoint of discharge conditions, chamber space, and the like.
 また、このような製造装置においては、フィルム100の表面の第一の部分と第二の部分とが互いに対向するように、一対の成膜ロール(成膜ロール31と成膜ロール32)に、フィルム100が巻き掛けられている。このようにフィルム100を配置することにより、成膜ロール31と成膜ロール32との間に放電を行ってプラズマを発生させる際に、一対の成膜ロール間に存在するフィルム100の表面の第一の部分と第二の部分に同時に成膜することが可能となる。すなわち、このような製造装置によれば、上述したように、CVD法により、成膜ロール31上にてフィルム100の表面上に膜成分を堆積させ、更に成膜ロール32上にて膜成分を堆積させることができるため、フィルム100の表面上に前記薄膜層を効率よく形成することが可能となる。なお、フィルム100の前記第一の部分及び前記第二の部分は、該フィルムの表面の固定された部分を指すものではなく、「該フィルムの表面の成膜空間中に位置している部分」と定義される。 Moreover, in such a manufacturing apparatus, a pair of film-forming rolls (film-forming roll 31 and film-forming roll 32) are arranged so that the first part and the second part on the surface of the film 100 face each other. A film 100 is wound around. By disposing the film 100 in this way, when the plasma is generated by discharging between the film forming roll 31 and the film forming roll 32, the surface of the film 100 existing between the pair of film forming rolls is changed. It is possible to form a film on the first part and the second part simultaneously. That is, according to such a manufacturing apparatus, as described above, the film component is deposited on the surface of the film 100 on the film forming roll 31 by the CVD method, and the film component is further deposited on the film forming roll 32. Since the film can be deposited, the thin film layer can be efficiently formed on the surface of the film 100. In addition, the first part and the second part of the film 100 do not indicate a fixed part of the surface of the film, but “a part located in the film formation space on the surface of the film”. Is defined.
 また、このような製造装置に用いる送り出しロール11及び搬送ロール21、22、23、24としては適宜公知のロールを用いることができる。また、巻取りロール71としても、薄膜層を形成したフィルム100を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のロールを用いることができる。 Further, as the feed roll 11 and the transport rolls 21, 22, 23, 24 used in such a manufacturing apparatus, known rolls can be appropriately used. Further, the winding roll 71 is not particularly limited as long as it can wind the film 100 on which the thin film layer is formed, and a known roll can be appropriately used.
 また、ガス供給管41としては原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源51としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源51は、これに接続された成膜ロール31と成膜ロール32に電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源51としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ロールの極性を交互に反転させることが可能なもの(交流電源など)を利用する。また、このようなプラズマ発生用電源51としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ且つ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置61、62としては適宜公知の磁場発生装置を用いることができる。さらに、フィルム100としては、薄膜層を予め形成させたものを用いることができる。このように、フィルム100として薄膜層を予め形成させたものを用いることにより、前記薄膜層の厚みを厚くすることも可能である。 Further, as the gas supply pipe 41, a pipe capable of supplying or discharging the raw material gas at a predetermined speed can be used as appropriate. Furthermore, as the plasma generating power source 51, a known power source for a plasma generating apparatus can be used as appropriate. Such a power source 51 for generating plasma supplies power to the film forming roll 31 and the film forming roll 32 connected to the power source 51 and makes it possible to use them as a counter electrode for discharging. As such a plasma generation power source 51, it is possible to more efficiently carry out plasma CVD, so that the polarity of the pair of film forming rolls can be alternately reversed (AC power source or the like). Is used. In addition, since the plasma generating power source 51 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible. As the magnetic field generators 61 and 62, known magnetic field generators can be used as appropriate. Furthermore, as the film 100, a film in which a thin film layer is formed in advance can be used. Thus, by using a film 100 in which a thin film layer is formed in advance, the thickness of the thin film layer can be increased.
 このように、図1に示す製造装置を用いて、原料ガスの種類、流量、真空チャンバー内の圧力を限定することにより、ガスバリア性や耐屈曲性に優れた積層フィルムを製造することができる。また、例えば、プラズマ発生装置の電極ドラムの電力、成膜ロールの直径、並びに、フィルムの搬送速度を適宜調整してもよい。すなわち、図1に示す製造装置を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ロール(成膜ロール31及び32)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ロール31上のフィルム100の表面上並びに成膜ロール32上のフィルム100の表面上に、前記薄膜層がプラズマCVD法により形成される。なお、このような成膜に際しては、長尺のフィルム100が送り出しロール11や成膜ロール31等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスによりフィルム100の表面上に前記薄膜層が形成される。 As described above, by using the manufacturing apparatus shown in FIG. 1 to limit the type of raw material gas, the flow rate, and the pressure in the vacuum chamber, a laminated film having excellent gas barrier properties and bending resistance can be manufactured. Further, for example, the power of the electrode drum of the plasma generator, the diameter of the film forming roll, and the film conveyance speed may be adjusted as appropriate. That is, by using the manufacturing apparatus shown in FIG. 1 to generate a discharge between a pair of film forming rolls (film forming rolls 31 and 32) while supplying a film forming gas (such as a raw material gas) into the vacuum chamber. The film forming gas (raw material gas or the like) is decomposed by plasma, and the thin film layer is formed on the surface of the film 100 on the film forming roll 31 and on the surface of the film 100 on the film forming roll 32 by the plasma CVD method. Is done. In such film formation, the long film 100 is conveyed by the delivery roll 11 and the film formation roll 31, respectively, so that the surface of the film 100 is formed by a roll-to-roll continuous film formation process. The thin film layer is formed thereon.
 前記成膜ガスは、前記有機珪素化合物と酸素とを含有するものであり、原料ガスである有機珪素化合物と反応ガスである酸素の比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎてしまうと、ガスバリア性や耐屈曲性に優れた積層フィルムが得られなくなってしまう。よって、酸素ガスは前記成膜ガス中の前記有機珪素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 The film-forming gas contains the organosilicon compound and oxygen, and the ratio of the organosilicon compound that is the source gas and oxygen that is the reaction gas is to completely react the source gas and the reaction gas. It is preferable that the ratio of the reaction gas is not excessively larger than the ratio of the amount of the reaction gas that is theoretically required. If the ratio of the reaction gas is excessive, a laminated film having excellent gas barrier properties and bending resistance cannot be obtained. Therefore, it is preferable that the oxygen gas is less than or equal to the theoretical oxygen amount necessary to completely oxidize the entire amount of the organosilicon compound in the film forming gas.
 実際のプラズマCVDチャンバー内の反応では、成膜ガスの有機珪素化合物のガスと反応ガスの酸素は、ガス供給部から成膜領域へ供給されて反応し、成膜されるので、成膜ガスの有機珪素化合物のガスと酸素ガスの流量比(酸素ガスの流量)/(有機珪素化合物のガスの流量)が、原料の有機珪素化合物を完全に酸化させるモル比であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる。
 そのため、成膜ガスの有機珪素化合物のガスと酸素ガスの流量比は、有機珪素化合物を完全に酸化させるモル比の倍以下であることが好ましく、有機珪素化合物を完全に酸化させるモル比以下であることがより好ましい。
In the actual reaction in the plasma CVD chamber, the organic silicon compound gas of the film formation gas and the oxygen of the reaction gas are supplied from the gas supply unit to the film formation region to react and form a film. Even if the ratio of the flow rate of the organic silicon compound gas to the oxygen gas (flow rate of oxygen gas) / (flow rate of the gas of the organosilicon compound) is a molar ratio that completely oxidizes the organic silicon compound as a raw material, The reaction cannot proceed completely, and it is considered that the reaction is completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio.
Therefore, the flow rate ratio between the organic silicon compound gas and the oxygen gas in the film forming gas is preferably not more than twice the molar ratio for completely oxidizing the organosilicon compound, and not more than the molar ratio for completely oxidizing the organosilicon compound. More preferably.
 以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機珪素化合物:HMDSO:(CHSiO:)と反応ガスとしての酸素(O)を含有するものを用い、珪素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスの好適な比率等についてより詳細に説明する。 Hereinafter, as the film forming gas, a gas containing hexamethyldisiloxane (organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O :) as a source gas and oxygen (O 2 ) as a reaction gas is used. Taking a case of producing a silicon-oxygen-based thin film as an example, a suitable ratio of the source gas and the reactive gas in the film forming gas will be described in more detail.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)とを含有する成膜ガスをプラズマCVDにより反応させて珪素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式(1):
 (CHSiO+12O→6CO+9HO+2SiO   (1)
に記載のような反応が起こり、二酸化珪素が製造される。このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化珪素膜が形成されてしまうため、ガスバリア性や耐屈曲性に優れた積層フィルムを得ることができなくなってしまう。そのため、薄膜層を形成する際には、上記(1)式の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくする必要がある。
 なお、上述したように、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素は、ガス供給部から成膜領域へ供給されて反応し、成膜される。従って、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる。
 そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である24倍量以下の量であることが好ましく、12倍量以下とすることがより好ましい。
 このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が薄膜層中に取り込まれ、得られる積層フィルムに優れたバリア性及び耐屈曲性を発揮させることが可能となる。
 なお、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)が少なすぎると、酸化されなかった炭素原子や水素原子が薄膜層中に過剰に取り込まれる。この場合はバリア膜の透明性が低下して、バリアフィルムは有機ELデバイスや有機薄膜太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板には利用できなくなってしまう。このような観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to form a silicon-oxygen-based material. When producing a thin film, the following reaction formula (1) is given by the film-forming gas:
(CH 3 ) 6 Si 2 O + 12O 2 → 6CO 2 + 9H 2 O + 2SiO 2 (1)
The reaction as described in 1 takes place to produce silicon dioxide. In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, when the film forming gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane and is completely reacted, a uniform silicon dioxide film is formed. It becomes impossible to obtain a laminated film excellent in flexibility. Therefore, when forming the thin film layer, the oxygen amount is less than the stoichiometric ratio of 12 moles per mole of hexamethyldisiloxane so that the reaction of the above formula (1) does not proceed completely. There is a need to.
Note that, as described above, in the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region and reacted to form a film. Therefore, even if the molar amount (flow rate) of oxygen in the reaction gas is 12 times the molar amount (flow rate) of hexamethyldisiloxane as a raw material, the reaction can actually proceed completely. It is considered that the reaction is completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio.
Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material is preferably a stoichiometric ratio of 24 times or less, and 12 times or less. More preferred.
By containing hexamethyldisiloxane and oxygen in such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the thin film layer, and an excellent barrier to the resulting laminated film And exhibiting flexibility.
If the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is too small, unoxidized carbon atoms and hydrogen atoms are excessively taken into the thin film layer. In this case, the transparency of the barrier film decreases, and the barrier film cannot be used for a flexible substrate for a device that requires transparency such as an organic EL device or an organic thin film solar cell. From such a viewpoint, the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane. Preferably, the amount is more than 0.5 times.
 また、このようなプラズマCVD法において、成膜ロール31及び32間に放電するために、プラズマ発生用電源51に接続された電極ドラム(本実施形態においては成膜ロール31及び32に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。この印加電力が前記下限未満ではパーティクルが発生し易くなる傾向にあり、他方、前記上限を超えると成膜時に発生する熱量が多くなり、成膜時の基材表面の温度が上昇してしまい、基材が熱負けして成膜時に皺が発生してしまう可能性や、ひどい場合には熱でフィルムが溶けて、裸の成膜ロール間に大電流の放電が発生して成膜ロール自体を傷めてしまう可能性が生じる。 In such a plasma CVD method, in order to discharge between the film forming rolls 31 and 32, an electrode drum connected to the plasma generating power source 51 (in this embodiment, the film is installed on the film forming rolls 31 and 32). The electric power to be applied can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., and cannot be generally stated, but may be in the range of 0.1 to 10 kW. preferable. If this applied power is less than the lower limit, particles tend to be generated.On the other hand, if the upper limit is exceeded, the amount of heat generated during film formation increases, and the temperature of the substrate surface during film formation increases. There is a possibility that the substrate loses heat and wrinkles occur during film formation. In severe cases, the film melts due to heat, and a large current discharge occurs between the bare film formation rolls. May cause damage.
 フィルム100の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.1~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が前記下限未満では、フィルムに熱に起因する皺の発生しやすくなる傾向にあり、他方、前記上限を超えると、形成される薄膜層の厚みが薄くなる傾向にある。 The conveyance speed (line speed) of the film 100 can be adjusted as appropriate according to the type of raw material gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.1 to 100 m / min. A range of 5 to 20 m / min is more preferable. If the line speed is less than the lower limit, wrinkles due to heat tend to occur in the film. On the other hand, if the upper limit is exceeded, the thickness of the formed thin film layer tends to be thin.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、積層フィルムの水蒸気透過度は以下の方法により測定した。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples. The water vapor permeability of the laminated film was measured by the following method.
 [水蒸気透過度の測定] 
 (i)温度40℃、低湿度側の湿度0%RH、高湿度側の湿度90%RHの条件において、水蒸気透過度測定機(GTRテック社製、機種名「GTRテック-3000」)を用いて、積層フィルムの水蒸気透過度を測定した。
 (ii)水蒸気透過度が(i)の方法の検出限界を超えた積層フィルムについては、Ca腐食法(特開2005-283561号公報に記載される方法)によって、水蒸気透過度を測定した。
[Measurement of water vapor permeability]
(I) Using a water vapor transmission meter (model name “GTR Tech-3000” manufactured by GTR Tech Co., Ltd.) under the conditions of a temperature of 40 ° C., a humidity of 0% RH on the low humidity side, and a humidity of 90% RH on the high humidity side. Then, the water vapor permeability of the laminated film was measured.
(Ii) For the laminated film whose water vapor permeability exceeded the detection limit of the method (i), the water vapor permeability was measured by a Ca corrosion method (method described in JP-A-2005-283561).
 (実施例1)
 前述の図1に示す製造装置を用いて積層フィルムを製造した。すなわち、2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を基材(フィルム100)として用い、これを送り出しロ-ル11に装着した。そして、成膜ロール31と成膜ロール32との間に磁場を印加すると共に、成膜ロール31と成膜ロール32にそれぞれ電力を供給して成膜ロール31と成膜ロール32との間に放電してプラズマを発生させ、このような放電領域に成膜ガス(原料ガスとしてのヘキサメチルジシロキサン(HMDSO)と反応ガスとしての酸素ガス(放電ガスとしても機能する)の混合ガス)を供給して、下記条件にてプラズマCVD法による薄膜形成を行い、積層フィルムを得た。
Example 1
A laminated film was produced using the production apparatus shown in FIG. That is, a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films, Inc., trade name “Teonex Q65FA”) is used as a base material (film 100). -Mounted on Le 11. And while applying a magnetic field between the film-forming roll 31 and the film-forming roll 32 and supplying electric power to the film-forming roll 31 and the film-forming roll 32, respectively, Plasma is generated by discharging, and a film forming gas (mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (also functioning as a discharge gas) as a reaction gas) is supplied to such a discharge region. Then, a thin film was formed by the plasma CVD method under the following conditions to obtain a laminated film.
 〈成膜条件〉
成膜ガスの混合比(ヘキサメチルジシロキサン/酸素):25/250[単位:sccm(Standard Cubic Centimeter per Minute)、0℃、1気圧基準]
基材の面積速度1m/分あたりのヘキサメチルジシロキサンの流量:143sccm
真空チャンバー内の真空度:0.55Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
繰り返し数:5パス
<Film formation conditions>
Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 25/250 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard]
Hexamethyldisiloxane flow rate per substrate area velocity 1 m 2 / min: 143 sccm
Degree of vacuum in the vacuum chamber: 0.55 Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 0.5 m / min.
Number of repetitions: 5 passes
 このようにして得られた積層フィルムにおける薄膜層の厚みは430nmであった。また、得られた積層フィルムにおいて、温度40℃、低湿度側の湿度0%RH、高湿度側の湿度90%RHの条件における水蒸気透過度は検出限界(1×10-4g/m/day)以下の値であった。 The thickness of the thin film layer in the laminated film thus obtained was 430 nm. Further, in the obtained laminated film, the water vapor permeability under the conditions of a temperature of 40 ° C., a humidity of 0% RH on the low humidity side and a humidity of 90% RH on the high humidity side is a detection limit (1 × 10 −4 g / m 2 / day) It was the following value.
 また、得られた積層フィルムについて、Ca腐食法により温度40℃、湿度90%RHの条件における水蒸気透過度は7×10-5g/m/dayだった。マイクロスコープ(CCDカメラ)の観察結果を図2に示す。 The laminated film obtained had a water vapor permeability of 7 × 10 −5 g / m 2 / day under the conditions of a temperature of 40 ° C. and a humidity of 90% RH by the Ca corrosion method. The observation result of the microscope (CCD camera) is shown in FIG.
 (実施例2)
 前述の図1に示す製造装置を用いて成膜条件だけを変えて実施例1と同様に成膜を行った。
(Example 2)
Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed.
 〈成膜条件〉
成膜ガスの混合比(ヘキサメチルジシロキサン/酸素):25/500[単位:sccm(Standard Cubic Centimeter per Minute)、0℃、1気圧基準]
基材の面積速度1m/分あたりのヘキサメチルジシロキサンの流量:143sccm
真空チャンバー内の真空度:1.0Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
繰り返し数:5パス
<Film formation conditions>
Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 25/500 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard]
Hexamethyldisiloxane flow rate per substrate area velocity 1 m 2 / min: 143 sccm
Degree of vacuum in the vacuum chamber: 1.0 Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 0.5 m / min.
Number of repetitions: 5 passes
 このようにして得られた積層フィルムにおける薄膜層の厚みは522nmであった。また、得られた積層フィルムについて、Ca腐食法により温度40℃、湿度90%RHの条件における水蒸気透過度は2.0×10-4g/m/dayだった。 The thickness of the thin film layer in the laminated film thus obtained was 522 nm. The resulting laminated film had a water vapor transmission rate of 2.0 × 10 −4 g / m 2 / day by the Ca corrosion method under the conditions of a temperature of 40 ° C. and a humidity of 90% RH.
 (実施例3)
 前述の図1に示す製造装置を用いて成膜条件だけを変えて実施例1と同様に成膜を行った。
(Example 3)
Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed.
 〈成膜条件〉
成膜ガスの混合比(ヘキサメチルジシロキサン/酸素):25/500[単位:sccm(Standard Cubic Centimeter per Minute)、0℃、1気圧基準]
基材の面積速度1m/分あたりのヘキサメチルジシロキサンの流量:143sccm
真空チャンバー内の真空度:1.5Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
繰り返し数:1パス
<Film formation conditions>
Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 25/500 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard]
Hexamethyldisiloxane flow rate per substrate area velocity 1 m 2 / min: 143 sccm
Degree of vacuum in the vacuum chamber: 1.5 Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 0.5 m / min.
Number of repetitions: 1 pass
 このようにして得られた積層フィルムにおける薄膜層の厚みは338nmであった。また、得られた積層フィルムについて、Ca腐食法により温度40℃、湿度90%RHの条件における水蒸気透過度は9.0×10-4g/m/dayだった。 The thickness of the thin film layer in the laminated film thus obtained was 338 nm. The laminated film obtained had a water vapor permeability of 9.0 × 10 −4 g / m 2 / day under the conditions of a temperature of 40 ° C. and a humidity of 90% RH by the Ca corrosion method.
 (比較例1)
 前述の図1に示す製造装置を用いて成膜条件だけを変えて実施例1と同様に成膜を行った。マイクロスコープ(CCDカメラ)の観察結果を図2に示す。
(Comparative Example 1)
Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed. The observation result of the microscope (CCD camera) is shown in FIG.
 〈成膜条件〉
成膜ガスの混合比(ヘキサメチルジシロキサン/酸素):50/500[単位:sccm(Standard Cubic Centimeter per Minute)、0℃、1気圧基準]
基材の面積速度1m/分あたりのヘキサメチルジシロキサンの流量:286sccm
真空チャンバー内の真空度:3.0Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
繰り返し数:1パス
<Film formation conditions>
Mixing ratio of film forming gas (hexamethyldisiloxane / oxygen): 50/500 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard]
Hexamethyldisiloxane flow rate per 1 m 2 / min of substrate area velocity: 286 sccm
Degree of vacuum in the vacuum chamber: 3.0Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 0.5 m / min.
Number of repetitions: 1 pass
 このようにして得られた積層フィルムにおける薄膜層の厚みは390nmであった。また、得られた積層フィルムについて、Ca腐食法により温度40℃、湿度90%RHの条件における水蒸気透過度は9.8×10-3g/m/dayだった。 The thickness of the thin film layer in the laminated film thus obtained was 390 nm. The obtained laminated film had a water vapor permeability of 9.8 × 10 −3 g / m 2 / day under the conditions of a temperature of 40 ° C. and a humidity of 90% RH by the Ca corrosion method.
 (比較例2)
 前述の図1に示す製造装置を用いて成膜条件だけを変えて実施例1と同様に成膜を行った。
(Comparative Example 2)
Using the manufacturing apparatus shown in FIG. 1, the film formation was performed in the same manner as in Example 1 except that the film formation conditions were changed.
 〈成膜条件〉
成膜ガスの混合比(ヘキサメチルジシロキサン/酸素):12.5/125[単位:sccm(Standard Cubic Centimeter per Minute)、0℃、1気圧基準]
基材の面積速度1m/分あたりのヘキサメチルジシロキサンの流量:71sccm
真空チャンバー内の真空度:1.0Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
繰り返し数:5パス
<Film formation conditions>
Deposition gas mixing ratio (hexamethyldisiloxane / oxygen): 12.5 / 125 [unit: sccm (Standard Cubic Centimeter per Minute), 0 ° C., 1 atm standard]
Flow rate of hexamethyldisiloxane per substrate area velocity of 1 m 2 / min: 71 sccm
Degree of vacuum in the vacuum chamber: 1.0 Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 0.5 m / min.
Number of repetitions: 5 passes
 このようにして得られた積層フィルムにおける薄膜層の厚みは400nmであった。また、得られた積層フィルムについて、Ca腐食法により温度40℃、湿度90%RHの条件における水蒸気透過度は2.0×10-1g/m/day以上だった。 The thickness of the thin film layer in the laminated film thus obtained was 400 nm. Further, the obtained laminated film had a water vapor permeability of 2.0 × 10 −1 g / m 2 / day or more by a Ca corrosion method under conditions of a temperature of 40 ° C. and a humidity of 90% RH.
 11…送り出しロール、21、22、23、24…搬送ロール、31、32…成膜ロール、41…ガス供給管、51…プラズマ発生用電源、61、62…磁場発生装置、71…巻取りロール、100…フィルム。 DESCRIPTION OF SYMBOLS 11 ... Sending roll, 21, 22, 23, 24 ... Conveyance roll, 31, 32 ... Film-forming roll, 41 ... Gas supply pipe, 51 ... Power source for plasma generation, 61, 62 ... Magnetic field generator, 71 ... Winding roll , 100 ... film.

Claims (8)

  1.  真空チャンバーと、平行ないしほぼ平行に対向して配置され、内部に磁場発生部材を備えている一対の成膜ロールと、極性が反転するプラズマ電源とを備えるプラズマCVD成膜装置を用いて行われる積層体の製造方法であって、
    前記真空チャンバー内で、長尺の基材の表面の第一の部分と、該基材の表面の第二の部分とが対向するように前記基材を前記成膜ロールに巻き掛けた状態で該基材を搬送しながら、前記成膜ロールの間の成膜空間に有機珪素化合物のガスと酸素ガスを含む成膜ガスを供給し、前記磁場発生部材により前記成膜空間に磁場を発生させ、前記成膜ロール間に前記プラズマ電源により放電プラズマを発生させ、これにより、該基材上に連続的に薄膜層を形成する方法であって、前記成膜空間の圧力が0.1~2.5Paであり、前記有機珪素化合物のガスの流量が、基材の面積速度1m/分あたり、0℃、1気圧基準で85~230sccmである方法。
    This is performed using a plasma CVD film forming apparatus including a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and provided with a magnetic field generating member therein, and a plasma power source whose polarity is reversed. A method for producing a laminate,
    In the vacuum chamber, the substrate is wound around the film forming roll so that the first portion of the surface of the long substrate and the second portion of the surface of the substrate face each other. While transporting the substrate, a film forming gas containing an organosilicon compound gas and oxygen gas is supplied to the film forming space between the film forming rolls, and a magnetic field is generated in the film forming space by the magnetic field generating member. The plasma power supply generates discharge plasma between the film forming rolls, thereby continuously forming a thin film layer on the substrate, wherein the pressure in the film forming space is 0.1-2. 0.5 Pa, and the flow rate of the gas of the organosilicon compound is 85 to 230 sccm at 0 ° C. and 1 atm per 1 m 2 / min of the substrate area velocity.
  2.  真空チャンバーと、平行ないしほぼ平行に対向して配置され、内部に磁場発生部材を備えている一対の成膜ロールと、極性が反転するプラズマ電源とを備えるプラズマCVD成膜装置を用いて行われる積層体の製造方法であって、
    前記真空チャンバー内で、長尺の基材の表面の第一の部分と、該基材の表面の第二の部分とが対向するように前記基材を前記成膜ロールに巻き掛けた状態で該基材を搬送しながら、前記成膜ロールの間の成膜空間に有機珪素化合物のガスと酸素ガスを含む成膜ガスを供給し、前記磁場発生部材により前記成膜空間に磁場を発生させ、前記成膜ロール間に前記プラズマ電源により放電プラズマを発生させ、これにより、該基材上に連続的に薄膜層を形成する方法であって、前記成膜空間の圧力が0.1~2.5Paであり、前記有機珪素化合物のガスの流量が、0℃、1気圧基準で15~40sccmである方法。
    This is performed using a plasma CVD film forming apparatus including a vacuum chamber, a pair of film forming rolls arranged in parallel or substantially parallel to each other and provided with a magnetic field generating member therein, and a plasma power source whose polarity is reversed. A method for producing a laminate,
    In the vacuum chamber, the substrate is wound around the film forming roll so that the first portion of the surface of the long substrate and the second portion of the surface of the substrate face each other. While transporting the substrate, a film forming gas containing an organosilicon compound gas and oxygen gas is supplied to the film forming space between the film forming rolls, and a magnetic field is generated in the film forming space by the magnetic field generating member. The plasma power supply generates discharge plasma between the film forming rolls, thereby continuously forming a thin film layer on the substrate, wherein the pressure in the film forming space is 0.1-2. A method in which the gas flow rate of the organosilicon compound is 15 to 40 sccm at 0 ° C. and 1 atm.
  3.  前記成膜空間の圧力が0.3~1.5Paである請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the pressure in the film formation space is 0.3 to 1.5 Pa.
  4.  前記有機珪素化合物のガスの流量が、基材の面積速度1m/分あたり、0℃、1気圧基準で115~170sccmである請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the flow rate of the gas of the organosilicon compound is 115 to 170 sccm on the basis of an atmospheric velocity of 1 m 2 / min of the substrate at 0 ° C and 1 atm.
  5.  前記成膜ガスの有機珪素化合物のガスと酸素ガスの流量比(酸素ガスの流量/有機珪素化合物のガスの流量)が、有機珪素化合物を完全に酸化させるモル比の倍以下である請求項1又は2に記載の方法。 2. The flow rate ratio of the organic silicon compound gas to the oxygen gas (the flow rate of oxygen gas / the flow rate of the organic silicon compound gas) of the film forming gas is not more than twice the molar ratio for completely oxidizing the organosilicon compound. Or the method of 2.
  6.  前記成膜ガスの有機珪素化合物に対するガスと酸素ガスの流量比(酸素ガスの流量/有機珪素化合物のガスの流量)が、有機珪素化合物を完全に酸化させるモル比以下である請求項1又は2に記載の方法。 The flow rate ratio of the gas to the organic silicon compound in the film forming gas and the oxygen gas (the flow rate of the oxygen gas / the flow rate of the gas of the organosilicon compound) is equal to or less than the molar ratio for completely oxidizing the organosilicon compound. The method described in 1.
  7.  前記成膜ガスの有機珪素化合物がヘキサメチルジシロキサン(HMDSO)であり、HMDSOに対する酸素ガスの流量比(酸素ガス流量/HMDSOガスの流量)が、24以下である請求項1又は2に記載の方法。 The organic silicon compound of the film forming gas is hexamethyldisiloxane (HMDSO), and a flow rate ratio of oxygen gas to HMDSO (oxygen gas flow rate / HMDSO gas flow rate) is 24 or less. Method.
  8.  前記成膜ガスの有機珪素化合物がヘキサメチルジシロキサン(HMDSO)であり、HMDSOに対する酸素ガスの流量比(酸素ガス流量/HMDSOガスの流量)が、12以下である請求項1又は2に記載の方法。 The organic silicon compound of the film forming gas is hexamethyldisiloxane (HMDSO), and a flow rate ratio of oxygen gas to HMDSO (oxygen gas flow rate / HMDSO gas flow rate) is 12 or less. Method.
PCT/JP2011/072998 2010-10-08 2011-10-05 Method for producing laminate by forming film by means of plasma cvd WO2012046778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010228913 2010-10-08
JP2010-228913 2010-10-08

Publications (1)

Publication Number Publication Date
WO2012046778A1 true WO2012046778A1 (en) 2012-04-12

Family

ID=45927773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072998 WO2012046778A1 (en) 2010-10-08 2011-10-05 Method for producing laminate by forming film by means of plasma cvd

Country Status (3)

Country Link
JP (1) JP2012097354A (en)
TW (1) TW201229306A (en)
WO (1) WO2012046778A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156129A1 (en) * 2013-03-28 2014-10-02 株式会社神戸製鋼所 Film forming device and film forming method
CN104395067A (en) * 2012-04-19 2015-03-04 住友化学株式会社 Laminated film
WO2015029732A1 (en) * 2013-08-27 2015-03-05 コニカミノルタ株式会社 Gas barrier film and process for manufacturing gas barrier film
WO2015194557A1 (en) * 2014-06-17 2015-12-23 コニカミノルタ株式会社 Gas barrier film and method for producing same
WO2016080447A1 (en) * 2014-11-21 2016-05-26 コニカミノルタ株式会社 Film formation device and gas barrier film-manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805943A (en) * 2012-11-08 2014-05-21 大永真空科技股份有限公司 Coating film using mixing multilayer vacuum deposition method for deposition and solidification
WO2014109250A1 (en) * 2013-01-08 2014-07-17 コニカミノルタ株式会社 Method for producing functional film, apparatus for producing functional film, and organic electroluminescent element provided with functional film
WO2014175170A1 (en) * 2013-04-22 2014-10-30 コニカミノルタ株式会社 Film formation device, electrode roll, and method for producing gas barrier film
JP6409258B2 (en) * 2013-09-03 2018-10-24 Jnc株式会社 Gas barrier film laminate and electronic component using the same
JPWO2015083706A1 (en) * 2013-12-02 2017-03-16 コニカミノルタ株式会社 Gas barrier film and method for producing the same
WO2015146807A1 (en) * 2014-03-26 2015-10-01 コニカミノルタ株式会社 Method for manufacturing gas barrier film
DE102022105041A1 (en) * 2022-03-03 2023-09-07 IonKraft GmbH Coating technology for plastic containers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049273A (en) * 2001-08-08 2003-02-21 Kobe Steel Ltd Plasma cvd device and film deposition method by plasma cvd
JP2003294945A (en) * 2002-04-02 2003-10-15 Konica Corp Optical film, method for manufacturing the same, and polarizing plate and display device using the same
JP2005504880A (en) * 2001-04-20 2005-02-17 アプライド・プロセス・テクノロジーズ Penning discharge plasma source
JP2008196001A (en) * 2007-02-13 2008-08-28 Kobe Steel Ltd Plasma cvd apparatus
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504880A (en) * 2001-04-20 2005-02-17 アプライド・プロセス・テクノロジーズ Penning discharge plasma source
JP2003049273A (en) * 2001-08-08 2003-02-21 Kobe Steel Ltd Plasma cvd device and film deposition method by plasma cvd
JP2003294945A (en) * 2002-04-02 2003-10-15 Konica Corp Optical film, method for manufacturing the same, and polarizing plate and display device using the same
JP2008196001A (en) * 2007-02-13 2008-08-28 Kobe Steel Ltd Plasma cvd apparatus
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395067A (en) * 2012-04-19 2015-03-04 住友化学株式会社 Laminated film
CN104395067B (en) * 2012-04-19 2016-11-09 住友化学株式会社 Stacked film
WO2014156129A1 (en) * 2013-03-28 2014-10-02 株式会社神戸製鋼所 Film forming device and film forming method
JP2014189890A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Film deposition apparatus and film deposition method
WO2015029732A1 (en) * 2013-08-27 2015-03-05 コニカミノルタ株式会社 Gas barrier film and process for manufacturing gas barrier film
WO2015194557A1 (en) * 2014-06-17 2015-12-23 コニカミノルタ株式会社 Gas barrier film and method for producing same
CN106457765A (en) * 2014-06-17 2017-02-22 柯尼卡美能达株式会社 Gas barrier film and method for producing same
WO2016080447A1 (en) * 2014-11-21 2016-05-26 コニカミノルタ株式会社 Film formation device and gas barrier film-manufacturing method

Also Published As

Publication number Publication date
JP2012097354A (en) 2012-05-24
TW201229306A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP6585226B2 (en) Laminated film
WO2012046778A1 (en) Method for producing laminate by forming film by means of plasma cvd
JP5513959B2 (en) Gas barrier laminated film
JP5673927B2 (en) Laminated film
WO2010117046A1 (en) Gas-barrier multilayer film
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP2011512459A (en) Plasma processing apparatus and method for processing a substrate using an atmospheric pressure glow discharge electrode configuration
JP2012082468A (en) Laminated film
JP2010260347A (en) Gas-barrier multilayer film
JP5673926B2 (en) Laminated film
JP2012082467A (en) Plasma cvd film forming device and film forming method
JP2014001444A (en) Film deposition method
JP2013040378A (en) Plasma cvd film deposition apparatus, and film deposition method
JP6569685B2 (en) Film forming apparatus and gas barrier film manufacturing method
TWI666121B (en) Laminated film, organic electroluminescence device, photoelectric conversion device, and liquid crystal display
JP2012082466A (en) Plasma cvd film forming device and film forming method
TWI547590B (en) Film forming apparatus and film forming method
JP2012081630A (en) Gas barrier laminated film
WO2015163358A1 (en) Gas barrier film and manufacturing method thereof
JP2014000782A (en) Laminated film
JP2012081633A (en) Laminated film
JP6593347B2 (en) Gas barrier film manufacturing method and manufacturing apparatus
JP6642587B2 (en) Plasma CVD film forming equipment
JP6288082B2 (en) Film forming apparatus, electrode roll, and gas barrier film manufacturing method
JP2012082465A (en) Film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830710

Country of ref document: EP

Kind code of ref document: A1