WO2012046461A1 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
WO2012046461A1
WO2012046461A1 PCT/JP2011/053374 JP2011053374W WO2012046461A1 WO 2012046461 A1 WO2012046461 A1 WO 2012046461A1 JP 2011053374 W JP2011053374 W JP 2011053374W WO 2012046461 A1 WO2012046461 A1 WO 2012046461A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
temperature
heat exchanger
compressor
refrigerant heat
Prior art date
Application number
PCT/JP2011/053374
Other languages
French (fr)
Japanese (ja)
Inventor
北村 哲也
高木 純一
宏太朗 渡邊
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201180048187.7A priority Critical patent/CN103154630B/en
Priority to KR1020137006261A priority patent/KR101465572B1/en
Publication of WO2012046461A1 publication Critical patent/WO2012046461A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21156Temperatures of a compressor or the drive means therefor of the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Definitions

  • the present invention relates to a heat pump type water heater in which water boiled by a water-refrigerant heat exchanger is stored in a tank.
  • a heat pump water heater is known that has a boiling function that drives a heat pump cycle using midnight power or the like to heat low-temperature water and store hot water at a desired temperature in a tank.
  • a water-refrigerant heat exchanger provided in a heat pump cycle and a tank are connected by a pipe, and water in the tank is circulated in the connected pipe. Boiling is performed by exchanging heat between the water in the tank and the refrigerant of the heat pump cycle.
  • Patent Document 1 a method for detecting clogging in the water pipe from the relationship between the flow rate of water circulated by the pump and the temperature of the refrigerant flowing out of the water-refrigerant heat exchanger or the temperature of the water.
  • the heat pump type hot water heater is different in the pressure of the liquid flowing through the liquid flow path, the flow rate of the liquid to be heated, and the pressure loss of the liquid flow path depending on the installation location.
  • the range between the number of rotations and the minimum number of rotations depends on the installation location. In this case, there is a problem that abnormality detection accuracy varies depending on a place where the heat pump type hot water heater is installed.
  • the flow rate control range of the pump is close to the minimum rotation speed of the pump, the abnormality may not be detected even if it should be judged as abnormal, and may be overlooked.
  • the pump flow control range is close to the maximum rotation speed of the pump, there is a possibility that the rotation speed will immediately become the maximum rotation speed due to sudden flow fluctuations. There is a risk of detection.
  • an object of the present invention is to provide a highly reliable heat pump type hot water heater that can detect the abnormality of the liquid flow path by eliminating the factors of the state of the liquid flow path that differs depending on the installation location. To do.
  • the present invention performs heat exchange with a variable capacity compressor, a liquid-refrigerant heat exchanger that heats a liquid to be heated by a high-temperature, high-pressure refrigerant discharged from the compressor, and the liquid-refrigerant heat exchanger.
  • a liquid temperature detector that detects the temperature of the liquid to be heated; and a controller that controls the capacity of the compressor, and the liquid to be heated is introduced into the liquid-refrigerant heat exchanger to exchange the liquid-refrigerant heat.
  • the capacity of the compressor is controlled to be a liquid temperature, and the temperature of the liquid heat-exchanged by the liquid-refrigerant heat exchanger when the compressor is operating below a preset reference capacity is When the temperature is higher than the target liquid temperature, it is determined that the liquid flow path is abnormal. And wherein the door.
  • the present invention provides a variable capacity compressor, a liquid-refrigerant heat exchanger that heats a liquid to be heated by a high-temperature, high-pressure refrigerant discharged from the compressor, and heat exchange using the liquid-refrigerant heat exchanger.
  • a liquid temperature detector for detecting the temperature of the heated liquid
  • a refrigerant temperature detector for detecting the temperature of the refrigerant heat-exchanged by the liquid-refrigerant heat exchanger
  • a controller for controlling the capacity of the compressor;
  • the liquid to be heated flows out of the liquid-refrigerant heat exchanger after being introduced into the liquid-refrigerant heat exchanger and passing through the liquid-refrigerant heat exchanger.
  • the temperature of the cooled refrigerant is higher than a reference temperature determined based on the target liquid temperature. In the case of, characterized by determining an abnormality of the liquid flow path.
  • FIG. 1 is a system configuration diagram of a heat pump type water heater according to Embodiment 1.
  • FIG. FIG. 3 is a control flow diagram of the heat pump type hot water heater according to the first embodiment.
  • 6 is a graph showing changes in compressor rotation speed and water-refrigerant heat exchanger outlet hot water temperature in a state where there is no clogging in the water pipe in the heat pump hot water supply apparatus according to Example 1.
  • FIG. 6 is a graph showing changes in compressor rotation speed and water-refrigerant heat exchanger outlet hot water temperature in a state where clogging occurs in water piping in the heat pump hot water supply apparatus according to Example 1.
  • FIG. It is a system configuration
  • FIG. 6 is a control flow diagram of a heat pump hot water supply apparatus according to a third embodiment.
  • Example 1 The first embodiment relates to a heat pump type water heater that can detect an abnormality (particularly, a decrease in flow rate) occurring in a water flow path with high accuracy.
  • FIG. 1 is a system configuration diagram of a heat pump type water heater according to the first embodiment.
  • FIG. 2 is a control flow diagram during operation of the heat pump type hot water heater according to the first embodiment.
  • FIG. 3 shows changes over time in the compressor rotation speed and the outlet water temperature of the water-refrigerant heat exchanger in the state where no abnormality has occurred in the water flow path of the heat pump type hot water heater according to the first embodiment.
  • FIG. 4 shows changes over time in the compressor rotation speed and the outlet water temperature of the water-refrigerant heat exchanger when an abnormality (reduction in flow rate) occurs in the water flow path of the heat pump type hot water supply apparatus according to the first embodiment.
  • the heat pump type hot water supply apparatus includes a variable capacity compressor 4, a water-refrigerant heat exchanger 5 that heats water using a high-temperature, high-pressure refrigerant discharged from the compressor 4, and water-refrigerant heat exchange.
  • the water temperature detection part 15 which detects the temperature of the water heat-exchanged with the container 5 and the control part 20 which controls the capacity
  • the heat pump type water heater has a water flow path F through which water flows out of the water-refrigerant heat exchanger 5 after being introduced into the water-refrigerant heat exchanger 5 and passing through the water-refrigerant heat exchanger 5.
  • this heat pump type water heater includes a tank 9 for storing hot water heated by the water-refrigerant heat exchanger 5, a tank unit 2 for accommodating the tank 9, a compressor 4 and a water-refrigerant heat exchanger 5.
  • the water flow path F is provided across the tank unit 2 and the heat pump unit 1.
  • this heat pump type water heater includes a heat pump unit 1 in which a refrigeration cycle including a water-refrigerant heat exchanger 5 shown on the left side of FIG. 1 is mounted inside a casing, and a tank 9 shown on the right side of the drawing. And a tank unit 2 in which the hot water supply circuit is mounted inside the box. And the heat pump unit 1 and the tank unit 2 have a structure connected using the connection piping 3 in the installation place of a heat pump type water heater.
  • the tank 9 often stores hot water, and in this case is called a hot water storage tank.
  • the refrigeration cycle includes a compressor 4 that compresses refrigerant, a water-refrigerant heat exchanger 5 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 4 and water introduced from the tank 9, and water-refrigerant heat.
  • the pressure reducing valve 6 for reducing the pressure of the refrigerant flowing out of the exchanger 5 and the evaporator 7 for exchanging heat with the air for the low-temperature and low-pressure pressure reduced by the pressure reducing valve 6 are connected in an annular manner via a refrigerant pipe. It has a configuration.
  • the evaporator 7 has a structure in which outside air is ventilated by a fan 8. In this refrigeration cycle, carbon dioxide is used as a refrigerant.
  • the compressor 4 is capacity-controlled by the controller 20 so that the temperature of the hot water heat-exchanged by the water-refrigerant heat exchanger 5 becomes a preset target hot water temperature.
  • the compressor 4 is an inverter compressor whose capacity is controlled by controlling the rotation speed of the compressor.
  • the compressor which performs capacity control by returning the discharged refrigerant to the suction side may be used.
  • the compression method of the compressor is a scroll method, but may be a rotary method or a reciprocating method.
  • the water cycle includes a tank 9 for storing a necessary amount of hot water, a pump (circulation pump) 10 for guiding water at the bottom of the tank 9, and a water-refrigerant that exchanges heat discharged from the pump (circulation pump) 10 with refrigerant.
  • the heat exchanger 5 is annularly connected by a circulation pipe, and the water discharged from the water-refrigerant heat exchanger 5 is returned to the top of the tank 9.
  • the water flow path F has a portion where water is taken out from the tank 9 as a starting point and a portion where hot water is returned to the tank 9 as an end point.
  • the bottom of the tank 9 is connected to a water supply source such as a water supply (not shown) via a water supply pipe 11, and a hot water supply pipe 12 for supplying hot water to a hot water supply terminal such as a faucet or a shower is connected to the top.
  • a water supply source such as a water supply (not shown)
  • a hot water supply pipe 12 for supplying hot water to a hot water supply terminal such as a faucet or a shower is connected to the top.
  • the compressor 4 is provided with a compressor temperature sensor 13 for measuring the casing temperature. Thereby, the temperature of the refrigerant discharged from the compressor 4 (refrigerant discharge temperature) can be detected.
  • the refrigerant discharge temperature may be a temperature detected by a temperature sensor provided in the refrigerant discharge pipe.
  • the detection of the casing temperature of the compressor 4 as the refrigerant discharge temperature can suppress the fluctuation of the refrigerant temperature and can control the compressor 4 more easily than the temperature of the refrigerant discharge pipe. Has merit.
  • a water-cycle refrigerant heat exchanger serving as a water temperature detecting unit 14 for detecting the temperature of water flowing into the water-refrigerant heat exchanger 5 is provided in a water cycle pipe provided before and after the water-refrigerant heat exchanger 5.
  • An inlet water temperature sensor and a water-refrigerant heat exchanger outlet hot water temperature sensor are provided as a water temperature detector 15 for measuring the temperature of water flowing out of the water-refrigerant heat exchanger 5.
  • the temperature of the water exchanged by the water-refrigerant heat exchanger 5 is higher than the target hot water temperature. It is determined that the water flow path is abnormal. In this way, it is possible to detect an abnormality in the water flow path by eliminating factors of the state of the water flow path that differ depending on the installation location. Further, in the refrigeration cycle including the compressor, the pressure of the fluid, the pressure loss, and the like are not greatly different depending on the installation location of the heat pump type hot water heater, so that the abnormality of the water flow path F is detected based on the rotation speed of the pump Compared to the above, the detection accuracy can be increased.
  • the control of the first embodiment performs the abnormality of the water flow path F for the following reason. It is suitable for detecting with high accuracy.
  • the tank 9 and the refrigeration cycle in which the water-refrigerant heat exchanger 5 is housed are configured as separate units.
  • the state of the water flow path F (pipe resistance and the like) varies greatly depending on the heat pump type hot water heater, depending on the shape and length of the connection pipe 3 performed at the time of installation, the number of bent portions, and the like.
  • the heat pump type hot water heater is controlled not based on the flow rate of the water flow path F or the rotation speed of the pump 10, but based on the capacity of the compressor 4. Can be detected.
  • the reference capacity is set based on the minimum rotation speed of the compressor 4.
  • the minimum rotational speed of the compressor 4 is set to a lower limit value of a rotational speed range determined in advance as a driving range of the compressor 4. Specifically, in order to prevent the malfunction or failure of the compressor 4, it is set slightly higher with a margin than the limit rotational speed at which the compressor 4 can be evaluated as performing refrigerant compression work. .
  • size of a margin can be made into arbitrary values according to the characteristic of the compressor 4, it may not give a margin especially.
  • this heat pump type hot water heater is configured so that when the temperature of the water exchanged by the water-refrigerant heat exchanger 5 is higher than the target hot water temperature for a predetermined time or longer, Judge as abnormal. In this way, it is possible to improve the accuracy of the abnormality determination without determining that an accidental change in temperature is abnormal.
  • this heat pump type hot water heater determines that the flow rate of the water flowing through the water flow path F is decreased when it is determined to be abnormal by the above method. And the alerting
  • the boiling operation After setting the target hot water temperature and the compressor target temperature to the control unit 20 (S1 in FIG. 2), the boiling operation is started. From the start of the boiling operation, the opening degree of the pressure reducing valve 6 is corrected so that the compressor temperature obtained from the compressor temperature sensor 13 (S2 in FIG. 2) matches the compressor target temperature (S3 in FIG. 2).
  • control unit 20 corrects the rotational speed of the compressor 4 so that the outlet hot water temperature (S4 in FIG. 2) obtained by the water temperature detection unit 15 matches the target hot water temperature (S5 in FIG. 2).
  • the number of rotations of the compressor that outputs the heating capacity increases or decreases with respect to the amount of circulating water, so that it is possible to accurately grasp the currently output heating capacity.
  • the control unit 20 reduces the rotational speed of the compressor 4 so that the outlet hot water temperature matches the target hot water temperature.
  • FIG. 1 In order to detect this phenomenon, in this embodiment, a function (S6 in FIG. 2) for monitoring whether or not the rotation speed of the compressor 4 is always operated at a rotation speed higher than the minimum rotation speed during the boiling operation.
  • the predetermined time can also be referred to as a flow rate reduction monitoring time.
  • the time variation of the compressor rotation speed and the outlet hot water temperature of the water-refrigerant heat exchanger 5 when an abnormality (flow rate decrease) occurs in the water flow path F will be described.
  • the rotational speed of the compressor 4 gradually decreases.
  • the rotation speed of the compressor 4 becomes the minimum rotation speed.
  • the time from time T1 to time T2 is about 5 to 10 minutes.
  • the flow rate reduction monitoring time (time T2 to time T3) is about 15 minutes.
  • the flow rate reduction monitoring time may be as short as 2 minutes.
  • abnormalities such as clogging of scales and clogging of small garbage progress gradually (that is, the flow rate decreases).
  • the valve arranged in the water flow path F is closed, or when a large garbage is clogged, the flow suddenly stops.
  • the abnormality detection according to the first embodiment takes about 5 to 10 minutes from the start of controlling the rotation speed of the compressor 4 to detect the abnormality until the minimum rotation speed is reached. Therefore, it is suitable for detecting abnormalities in the decrease in flow rate that progresses little by little.
  • the second embodiment relates to a heat pump type water heater that can detect an abnormality (particularly, a flow stop) occurring in the water flow path F ′ with high accuracy.
  • FIG. 5 shows a system configuration diagram of a heat pump type water heater according to the second embodiment.
  • FIG. 6 shows a control flow chart during operation of the heat pump type hot water heater according to the second embodiment.
  • FIG. 7 shows temporal changes in the compressor temperature, the outlet refrigerant temperature of the water-refrigerant heat exchanger, and the outlet hot water temperature in a state where no abnormality has occurred in the water flow path of the heat pump type hot water heater according to the second embodiment.
  • FIG. 8 shows temporal changes in the compressor temperature, the outlet refrigerant temperature of the water-refrigerant heat exchanger, and the outlet hot water temperature when an abnormality (flow stoppage) occurs in the water flow path of the heat pump type hot water heater according to the second embodiment. .
  • the heat pump type hot water heater includes a variable capacity compressor 104, a water-refrigerant heat exchanger 105 that heats water using a high-temperature, high-pressure refrigerant discharged from the compressor 104, and water-refrigerant heat exchange. Controls the capacity of the compressor 104, a water temperature detector 115 that detects the temperature of the water heat-exchanged by the condenser 105, a refrigerant temperature detector 116 that detects the temperature of the refrigerant heat-exchanged by the water-refrigerant heat exchanger 105, and the compressor 104 And a control unit 120.
  • the heat pump type hot water heater has a water flow path F ′ that flows out from the water-refrigerant heat exchanger 105 after water is introduced into the water-refrigerant heat exchanger 105 and passes through the water-refrigerant heat exchanger 105.
  • this heat pump type water heater includes a tank 109 that stores hot water heated by the water-refrigerant heat exchanger 105, a tank unit 102 that accommodates the tank 109, a compressor 104, and a water-refrigerant heat exchanger 105.
  • the water flow path F ′ is provided across the tank unit 102 and the heat pump unit 101.
  • the heat pump type hot water heater includes a heat pump unit 101 in which a refrigeration cycle including a water-refrigerant heat exchanger 105 shown on the left side of the drawing is mounted inside a box, and a right side of the drawing. And a tank unit 102 in which a hot water supply circuit including the tank 109 shown in FIG.
  • the heat pump unit 101 and the tank unit 102 are connected to each other by using a connection pipe 103 at a place where the heat pump type hot water heater is installed.
  • the tank 109 often stores hot water, and in this case, it may be called a hot water storage tank.
  • the water-refrigerant heat exchanger 105 generally heats water and may be called a water-refrigerant heat exchanger.
  • the refrigeration cycle includes a compressor 104 that compresses the refrigerant, a water-refrigerant heat exchanger 105 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 104 and water introduced from the tank 109, and water-refrigerant heat.
  • a pressure reducing valve 106 for reducing the pressure of the refrigerant flowing out of the exchanger 105, and an evaporator 107 for exchanging heat with air for the low temperature / low pressure refrigerant pressure reduced by the pressure reducing valve 106 are connected in an annular manner via a refrigerant pipe. It has a configuration.
  • the evaporator 107 has a structure in which outside air is ventilated by a fan 108. In this refrigeration cycle, carbon dioxide is used as a refrigerant.
  • the capacity of the compressor 104 is controlled by the controller 120 so that the temperature of the hot water heat-exchanged by the water-refrigerant heat exchanger 105 becomes a preset target hot water temperature.
  • the compressor 104 is an inverter compressor whose capacity is controlled by controlling the rotation speed of the compressor.
  • the compressor which performs capacity control by returning the discharged refrigerant to the suction side may be used.
  • the compression method of the compressor is a scroll method, but may be a rotary method or a reciprocating method.
  • the water cycle consists of a tank 109 for storing a required amount of hot water, a pump (circulation pump) 110 to which water at the bottom of the tank 109 is guided, and water discharged from the pump (circulation pump) 110 to exchange heat with refrigerant.
  • the refrigerant heat exchanger 105 is annularly connected by a circulation pipe, and water discharged from the water-refrigerant heat exchanger 105 is returned to the top of the tank 109.
  • the water flow path F ′ has a portion where water is taken out from the tank 109 as a starting point and a portion where hot water is returned to the tank 109 as an end point.
  • the bottom of the tank 109 is connected to a water supply source such as a water supply (not shown) via a water supply pipe 111, and a hot water supply pipe 112 for supplying hot water to a hot water supply terminal such as a faucet or a shower is connected to the top.
  • a water supply source such as a water supply (not shown)
  • a hot water supply pipe 112 for supplying hot water to a hot water supply terminal such as a faucet or a shower is connected to the top.
  • the compressor 104 is provided with a compressor temperature sensor 113 for measuring the casing temperature of the compressor 104. Thereby, the temperature of the refrigerant discharged from the compressor 104 (refrigerant discharge temperature) can be detected.
  • the refrigerant discharge temperature may be detected by a temperature sensor provided in the refrigerant discharge pipe.
  • detecting the casing temperature of the compressor 104 as the refrigerant discharge temperature can suppress the fluctuation of the refrigerant temperature lower than detecting the temperature of the refrigerant discharge pipe, and it is easier to control the compressor 104. Has merit.
  • the refrigerant pipe downstream of the water-refrigerant heat exchanger 105 has a refrigerant temperature at the outlet of the water-refrigerant heat exchanger as the refrigerant temperature detector 116.
  • a sensor is provided.
  • a water-cycle refrigerant heat exchanger serving as a water temperature detector 114 that detects the temperature of water flowing into the water-refrigerant heat exchanger 5 is provided in a water cycle pipe provided before and after the water-refrigerant heat exchanger 105.
  • An inlet water temperature sensor and a water-refrigerant heat exchanger outlet hot water temperature sensor are provided as a water temperature detector 115 for detecting the temperature of water flowing out of the water-refrigerant heat exchanger 5.
  • the heat pump type hot water heater determines that the water flow path F ′ is abnormal when the temperature of the refrigerant heat-exchanged by the water-refrigerant heat exchanger 105 is equal to or higher than a reference temperature determined based on the target hot water temperature. In this way, it is possible to detect the abnormality of the water flow path F ′ by eliminating the factors of the state of the water flow path F ′ that differ depending on the installation location.
  • the refrigeration cycle including the compressor 104 detects an abnormality in the water flow path F ′ based on the number of rotations of the pump because the fluid pressure, pressure loss, and the like do not differ greatly depending on the installation location of the heat pump type hot water heater. Compared with the case where it does, detection accuracy can be raised.
  • the reference temperature is the same as the target hot water temperature.
  • the capacity of the compressor 104 is controlled so that the temperature of the hot water heat-exchanged in the water-refrigerant heat exchanger 105 becomes the target hot water temperature
  • the target hot water temperature is temporarily set in the process of increasing the water temperature. There is a case of exceeding (so-called overshoot).
  • the reference temperature is set to be higher by about several degrees Celsius than the target hot water temperature. As a result, even when the temperature of the hot water temporarily exceeds the target hot water temperature, it is not immediately determined as abnormal.
  • this heat pump type water heater since the water flow path F ′ is provided across the tank unit 102 and the heat pump unit 101, the control of the second embodiment is performed for the following reason. It is suitable for detecting anomalies with high accuracy.
  • the tank 109 and the refrigeration cycle in which the water-refrigerant heat exchanger 105 is housed are configured as separate units.
  • the state (pipe resistance, etc.) of the water flow path F ′ varies greatly for each heat pump hot water heater depending on the shape and length of the connection pipe 103 performed at the time of installation, the number of bent portions, and the like.
  • this heat pump type hot water heater is controlled based on the capacity of the compressor 104, not based on the flow rate of the water flow path F ′, so that highly accurate detection can be performed regardless of the installation location. Can do.
  • the boiling operation After setting the target hot water temperature and the compressor target temperature to the control unit 120 (S101 in FIG. 6), the boiling operation is started. From the start of the boiling operation, the opening degree of the pressure reducing valve 106 is corrected so that the compressor temperature obtained from the compressor temperature sensor 113 (S102 in FIG. 6) matches the compressor target temperature (S103 in FIG. 6).
  • control unit 120 corrects the rotational speed of the compressor 104 so that the outlet hot water temperature (S104 in FIG. 6) obtained from the water temperature detection unit 115 matches the target hot water temperature (S105 in FIG. 6).
  • the number of rotations of the compressor that outputs the heating capacity increases or decreases with respect to the amount of circulating water, so that it is possible to accurately grasp the currently output heating capacity.
  • the outlet refrigerant temperature of the water-refrigerant heat exchanger 105 is constantly monitored during the boiling operation (S106 in FIG. 6), and the outlet refrigerant temperature is higher than the boiling target temperature.
  • a function for monitoring whether the temperature is lower (S107 in FIG. 6) is provided.
  • the opening of the pressure reducing valve 106 is changed and the compressor rotational speed is corrected.
  • the outlet refrigerant temperature becomes higher than the boiling target temperature (S7 ⁇ Yes in FIG. 6)
  • a water circulation error is issued (S109 in FIG. 6) and the operation is stopped.
  • the predetermined time can also be referred to as a flow stop monitoring time.
  • the time change of the compressor rotation speed and the outlet refrigerant temperature of the water-refrigerant heat exchanger when abnormality (flow stoppage) occurs in the water flow path F ′ will be described.
  • T11 after the operation of the compressor 104 is started, if the water flow path F ′ is abnormal, the outlet refrigerant temperature gradually increases.
  • T ⁇ b> 12 the outlet refrigerant temperature exceeds the casing temperature of the compressor 104.
  • the time from time T11 to time T12 is about 1 to 2 minutes.
  • the flow stop monitoring time (time T12 to time T13) is about 2 minutes.
  • abnormalities such as clogging of scales and clogging of small garbage progress gradually (that is, the flow rate decreases).
  • the valve disposed in the water flow path F ′ is closed or when a large garbage is clogged, the flow suddenly stops.
  • the time from the start of heating in the abnormal state until the outlet hot water temperature exceeds the casing temperature of the compressor 104 is about 1 to 2 minutes, and the change is relatively Since it is steep, it is suitable for detecting abnormalities in sudden flow stoppage.
  • the normal relationship between the outlet refrigerant temperature and the outlet hot water temperature of the water-refrigerant heat exchanger 105 shown in FIG. 7 (there is no clogging in the water pipe, and a normal water circulation amount is ensured. 8) and the relationship between the outlet refrigerant temperature and outlet hot water temperature of the water-refrigerant heat exchanger 105 shown in FIG. 8 at the time of abnormalities (clogging in the water piping, etc. has occurred, making it impossible to secure a regular amount of water circulation) Change in the state) can be detected during boiling operation. Therefore, the water circulation abnormality can be reported without erroneous detection, and the boiling operation can be stopped. Further, since the abnormality detection is determined at the boiling target temperature, the water circulation abnormality can be reported without erroneous detection and the boiling operation can be stopped regardless of what value the boiling target temperature is set to.
  • Example 3 Since the heat pump type water heater according to the third embodiment has a structure that is basically the same as that of the heat pump type hot water heater according to the second embodiment shown in FIG. I will omit it.
  • the third embodiment is a heat pump that can detect both the abnormality in the flow rate decrease that occurs in the water flow path F described in the first embodiment and the abnormality in the flow stop that occurs in the water flow path F ′ described in the second embodiment. It relates to a water heater.
  • the temperature of water heat-exchanged by the water-refrigerant heat exchanger 105 when the compressor 104 is operating below a preset reference capacity is the target hot water temperature. If the temperature is higher than the target hot water temperature, it is determined that the flow rate of the water flowing through the water flow path F ′ is decreasing, and the temperature of the refrigerant exchanging heat in the water-refrigerant heat exchanger 105 is equal to or higher than the target hot water temperature. It is determined that the water flow in the path F ′ is stopped.
  • steps S201 to S205 in FIG. 9 correspond to steps S1 to S5 of the first embodiment and steps S101 to S105 of the second embodiment, respectively.
  • Step S206 corresponds to step S106 of the second embodiment.
  • Steps S207 to S209 correspond to steps S6 to S8 of the first embodiment.
  • Steps S211 to S212 correspond to steps S107 to S108 of the second embodiment.
  • Step S210 corresponds to step S9 of the first embodiment and step S109 of the second embodiment.
  • abnormalities such as clogging of scales and clogging of small garbage progress gradually (that is, the flow rate decreases).
  • an abnormality such as a valve disposed in the water flow path F 'being closed or a large clogging of dust is one in which the flow suddenly stops.
  • abnormality detection for detecting that the temperature of water heat-exchanged by the water-refrigerant heat exchanger 105 is higher than the target hot water temperature when the compressor 104 is operating at a preset reference capacity or less. Since the time required for detecting an abnormality is relatively long, it is suitable for detecting an abnormality of a flow rate decrease that progresses gradually.
  • the abnormality detection for detecting that the temperature of the refrigerant heat-exchanged in the water-refrigerant heat exchanger 105 is equal to or higher than a reference temperature determined based on the target hot water temperature is abrupt because the time required for abnormality detection is relatively short. Suitable for detecting abnormalities in the flow stop that occurs.
  • any abnormality of flow rate decrease or flow stoppage can be detected with high accuracy.
  • the flow rate is suddenly reduced (for example, when medium-sized debris is clogged), the flow rate is reduced or the flow is stopped. It can be detected reliably.
  • heat pump type water heater according to the present invention is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.
  • the present invention is not limited to this, and the liquid to be heated (liquid to be heated) is a liquid other than water (for example, , Heat storage liquid, etc.).
  • a heat pump type hot water supply device for example, there is a system in which a high temperature liquid heated by a heat pump is stored in a tank, and hot water is indirectly heated using this high temperature liquid to supply hot water. It is done.
  • the water-refrigerant heat exchanger can be read as a liquid-refrigerant heat exchanger, the hot water temperature and the water temperature can be read as the liquid temperature, and the water flow path is read as the liquid flow path. be able to.
  • the heat pump type hot water heater which stores the high temperature water heated with the heat pump in the tank was demonstrated to the example, this invention is the hot water heated with the heat pump as it is to the hot water supply terminal.
  • the present invention can also be applied to a heat pump type water heater of the supply type.
  • the heat pump type hot water heater that heats the water stored in the tank by introducing it into the water-refrigerant heat exchanger has been described as an example.
  • the present invention uses the water from the water supply source as it is. -It can also be applied to heat pump water heaters that are heated by introduction into a refrigerant heat exchanger.
  • the tank unit 2 that accommodates the tank 9 and the heat pump unit 1 that accommodates the compressor 4 and the liquid-refrigerant heat exchanger 5 are described as examples.
  • the present invention is not limited thereto, and a tank, a compressor, and a liquid-refrigerant heat exchanger may be integrally provided in one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The purpose of the present invention is to provide a highly reliable heat pump water heater capable of detecting an abnormality of a liquid flow path by eliminating conditional factors of the liquid flow path that are different depending on the installation position. This heat pump water heater comprises: a variable capacity compressor (4); a liquid-refrigerant heat exchanger (5) for heating liquid to be heated with a high-temperature, high-pressure refrigerant discharged from the compressor; a liquid temperature detector (15) for detecting the temperature of the liquid to be heated that has been heat exchanged by the liquid-refrigerant heat exchanger; and a controller for controlling the capacity of the compressor. The heat pump water heater includes a liquid flow path through which the liquid to be heated flows from the liquid-refrigerant heat exchanger after being introduced into and then passed through the liquid-refrigerant heat exchanger. The controller controls the capacity of the compressor such that the temperature of the liquid to be heated that has been heat exchanged by the liquid-refrigerant heat exchanger becomes a target liquid temperature. The controller determines that the liquid flow path has an abnormality in the case where the temperature of the liquid to be heated that has been heat exchanged by the liquid-refrigerant heat exchanger is higher than the target liquid temperature when the compressor is operating at a capacity equal to or less than a preset standard capacity.

Description

ヒートポンプ式給湯機Heat pump water heater
 本発明は、水-冷媒熱交換器にて沸上げた水をタンクに蓄えるようにしたヒートポンプ式給湯機に関するものである。 The present invention relates to a heat pump type water heater in which water boiled by a water-refrigerant heat exchanger is stored in a tank.
 深夜電力等を利用してヒートポンプサイクルを駆動し、低温水を加熱して所望の温度の湯をタンクに貯える沸上機能を備えたヒートポンプ式給湯機が知られている。 A heat pump water heater is known that has a boiling function that drives a heat pump cycle using midnight power or the like to heat low-temperature water and store hot water at a desired temperature in a tank.
 このようなヒートポンプ式給湯機は、ヒートポンプサイクル内に設けた水-冷媒熱交換器とタンクを配管にて接続し、接続した配管内をタンク内の水を循環させ、水-冷媒熱交換器においてタンク内の水とヒートポンプサイクルの冷媒で熱交換を行い沸上げを行っている。 In such a heat pump type water heater, a water-refrigerant heat exchanger provided in a heat pump cycle and a tank are connected by a pipe, and water in the tank is circulated in the connected pipe. Boiling is performed by exchanging heat between the water in the tank and the refrigerant of the heat pump cycle.
 このような沸上げを行うヒートポンプ式給湯機では、水配管内のごみ詰まりや水道水内に含まれる硬度成分(例えば炭酸カルシウム)がスケールとして析出し配管内に付着したスケール詰まり、配管内の空気抜き不足による空気詰まり等によって沸上げを行う水の循環ができなくなり、機器異常による運転停止が発生する問題がある。 In heat pump water heaters that perform such boiling, clogged dirt in the water pipes and hardness components (for example, calcium carbonate) contained in the tap water deposit as scales and adhere to the pipes. There is a problem that the water for boiling cannot be circulated due to air clogging due to shortage and the operation is stopped due to equipment abnormality.
 この問題に対応するために、ポンプによって循環する水の流量と水-冷媒熱交換器から流出する冷媒の温度や水の温度との関係から水配管内の詰りを検出する方法(例えば特許文献1参照)が提案されている。 In order to cope with this problem, a method for detecting clogging in the water pipe from the relationship between the flow rate of water circulated by the pump and the temperature of the refrigerant flowing out of the water-refrigerant heat exchanger or the temperature of the water (for example, Patent Document 1). Have been proposed).
特開2010-127574号公報JP 2010-127574 A
 しかしながら、ヒートポンプ式給湯機は、液体流路を流れる液体の圧力や、被加熱液体の流量や、液体流路の圧力損失が設置場所によって異なるものであるため、ポンプの流量制御範囲がポンプの最大回転数と最小回転数との間のどの範囲となるかが設置される場所によって異なる。これでは、ヒートポンプ式給湯機が設置される場所によって、異常の検出精度が異なってしまうという問題がある。 However, the heat pump type hot water heater is different in the pressure of the liquid flowing through the liquid flow path, the flow rate of the liquid to be heated, and the pressure loss of the liquid flow path depending on the installation location. The range between the number of rotations and the minimum number of rotations depends on the installation location. In this case, there is a problem that abnormality detection accuracy varies depending on a place where the heat pump type hot water heater is installed.
 例えば、ポンプの流量制御範囲がポンプの最小回転数に近い場合には、異常と判断すべき状態でも異常を検出できず看過してしまうおそれがある。また、ポンプの流量制御範囲がポンプの最大回転数に近い場合には、突発的な流れの変動で回転数が直ちに最大回転数となってしまうおそれや、異常と判断すべきでない状態でも異常と検出してしまうおそれがある。 For example, if the flow rate control range of the pump is close to the minimum rotation speed of the pump, the abnormality may not be detected even if it should be judged as abnormal, and may be overlooked. In addition, when the pump flow control range is close to the maximum rotation speed of the pump, there is a possibility that the rotation speed will immediately become the maximum rotation speed due to sudden flow fluctuations. There is a risk of detection.
 そこで、本発明は、設置場所に応じて異なる液体流路の状態の要因を排除して、液体流路の異常を検出することができる信頼性の高いヒートポンプ式給湯機を提供することを目的とする。 Accordingly, an object of the present invention is to provide a highly reliable heat pump type hot water heater that can detect the abnormality of the liquid flow path by eliminating the factors of the state of the liquid flow path that differs depending on the installation location. To do.
 本発明は、容量可変な圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により被加熱液体を加熱する液-冷媒熱交換器と、前記液-冷媒熱交換器で熱交換された被加熱液体の温度を検知する液体温度検知部と、前記圧縮機の容量を制御する制御部とを備え、前記被加熱液体が前記液-冷媒熱交換器に導入されて前記液-冷媒熱交換器を通過した後に前記液-冷媒熱交換器から流出する液体流路を有し、前記制御部は、前記液-冷媒熱交換器で熱交換された被加熱液体の温度が予め設定された目標液体温度となるように前記圧縮機の容量を制御し、前記圧縮機が予め設定された基準容量以下で運転しているときに前記液-冷媒熱交換器で熱交換された液体の温度が前記目標液体温度よりも高い場合には、前記液体流路の異常と判断することを特徴とする。 The present invention performs heat exchange with a variable capacity compressor, a liquid-refrigerant heat exchanger that heats a liquid to be heated by a high-temperature, high-pressure refrigerant discharged from the compressor, and the liquid-refrigerant heat exchanger. A liquid temperature detector that detects the temperature of the liquid to be heated; and a controller that controls the capacity of the compressor, and the liquid to be heated is introduced into the liquid-refrigerant heat exchanger to exchange the liquid-refrigerant heat. A liquid flow path that flows out of the liquid-refrigerant heat exchanger after passing through the vessel, and the control unit has a preset target temperature of the heated liquid that has been heat-exchanged in the liquid-refrigerant heat exchanger The capacity of the compressor is controlled to be a liquid temperature, and the temperature of the liquid heat-exchanged by the liquid-refrigerant heat exchanger when the compressor is operating below a preset reference capacity is When the temperature is higher than the target liquid temperature, it is determined that the liquid flow path is abnormal. And wherein the door.
 或いは、本発明は、容量可変な圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により被加熱液体を加熱する液-冷媒熱交換器と、前記液-冷媒熱交換器で熱交換された被加熱液体の温度を検知する液体温度検知部と、前記液-冷媒熱交換器で熱交換した冷媒の温度を検知する冷媒温度検知部と、前記圧縮機の容量を制御する制御部とを備え、前記被加熱液体が前記液-冷媒熱交換器に導入されて前記液-冷媒熱交換器を通過した後に前記液-冷媒熱交換器から流出する液体流路を有し、前記制御部は、前記液-冷媒熱交換器で熱交換された被加熱液体の温度が予め設定された目標液体温度となるように前記圧縮機の容量を制御し、前記液-冷媒熱交換器で熱交換した冷媒の温度が前記目標液体温度に基づいて定められる基準温度以上の場合には、前記液体流路の異常と判断することを特徴とする。 Alternatively, the present invention provides a variable capacity compressor, a liquid-refrigerant heat exchanger that heats a liquid to be heated by a high-temperature, high-pressure refrigerant discharged from the compressor, and heat exchange using the liquid-refrigerant heat exchanger. A liquid temperature detector for detecting the temperature of the heated liquid, a refrigerant temperature detector for detecting the temperature of the refrigerant heat-exchanged by the liquid-refrigerant heat exchanger, and a controller for controlling the capacity of the compressor; The liquid to be heated flows out of the liquid-refrigerant heat exchanger after being introduced into the liquid-refrigerant heat exchanger and passing through the liquid-refrigerant heat exchanger. Controls the capacity of the compressor such that the temperature of the heated liquid exchanged by the liquid-refrigerant heat exchanger becomes a preset target liquid temperature, and performs heat exchange by the liquid-refrigerant heat exchanger. The temperature of the cooled refrigerant is higher than a reference temperature determined based on the target liquid temperature. In the case of, characterized by determining an abnormality of the liquid flow path.
 本発明によれば、設置場所に応じて異なる液体流路の状態の要因を排除して、液体流路の異常を検出することができるヒートポンプ式給湯機を提供することができる。 According to the present invention, it is possible to provide a heat pump type hot water heater that can detect the abnormality of the liquid flow path by eliminating the factors of the state of the liquid flow path that differs depending on the installation location.
実施例1に係るヒートポンプ式給湯機の系統構成図である。1 is a system configuration diagram of a heat pump type water heater according to Embodiment 1. FIG. 実施例1に係るヒートポンプ式給湯機の制御フロー図である。FIG. 3 is a control flow diagram of the heat pump type hot water heater according to the first embodiment. 実施例1に係るヒートポンプ式給湯機において、水配管内の詰りが無い状態における圧縮機回転数と水-冷媒熱交換機出口温水温度の変化を示すグラフである。6 is a graph showing changes in compressor rotation speed and water-refrigerant heat exchanger outlet hot water temperature in a state where there is no clogging in the water pipe in the heat pump hot water supply apparatus according to Example 1. FIG. 実施例1に係るヒートポンプ式給湯機において、水配管内に詰りが発生した状態における圧縮機回転数と水-冷媒熱交換機出口温水温度の変化を示すグラフである。6 is a graph showing changes in compressor rotation speed and water-refrigerant heat exchanger outlet hot water temperature in a state where clogging occurs in water piping in the heat pump hot water supply apparatus according to Example 1. FIG. 実施例2に係るヒートポンプ式給湯機の系統構成図である。It is a system configuration | structure figure of the heat pump type water heater which concerns on Example 2. FIG. 実施例2に係るヒートポンプ式給湯機の制御フロー図である。It is a control flow figure of the heat pump type hot water heater concerning Example 2. 実施例2に係るヒートポンプ式給湯機において、水配管内の詰りが無い状態における圧縮機温度、水-冷媒熱交換機出口温水温度、水-冷媒熱交換器出口冷媒温度の変化を示すグラフである。6 is a graph showing changes in compressor temperature, water-refrigerant heat exchanger outlet hot water temperature, and water-refrigerant heat exchanger outlet refrigerant temperature in a state where there is no clogging in the water pipe in the heat pump hot water supply apparatus according to Example 2. 実施例2に係るヒートポンプ式給湯機において、水配管内に詰りが発生した状態における圧縮機温度、水-冷媒熱交換機出口温水温度、水-冷媒熱交換器出口冷媒温度の変化を示すグラフである。6 is a graph showing changes in compressor temperature, water-refrigerant heat exchanger outlet hot water temperature, and water-refrigerant heat exchanger outlet refrigerant temperature in a state where clogging occurs in the water pipe in the heat pump type water heater according to Example 2. FIG. . 実施例3に係るヒートポンプ式給湯機の制御フロー図である。FIG. 6 is a control flow diagram of a heat pump hot water supply apparatus according to a third embodiment.
 以下、本発明の実施形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施例1)
 実施例1は、水流路に発生する異常(特に、流量減少)を高精度に検出することができるヒートポンプ式給湯機に関する。
Example 1
The first embodiment relates to a heat pump type water heater that can detect an abnormality (particularly, a decrease in flow rate) occurring in a water flow path with high accuracy.
 図1は、実施例1に係るヒートポンプ式給湯機の系統構成図を示す。図2は、実施例1に係るヒートポンプ式給湯機の運転時の制御フロー図を示す。図3は、実施例1に係るヒートポンプ式給湯機の水流路に異常が発生していない状態における圧縮機回転数と水-冷媒熱交換器の出口温水温度の時間変化を示す。図4は、実施例1に係るヒートポンプ式給湯機の水流路に異常(流量減少)が発生した際の圧縮機回転数と水-冷媒熱交換器の出口温水温度の時間変化を示す。 FIG. 1 is a system configuration diagram of a heat pump type water heater according to the first embodiment. FIG. 2 is a control flow diagram during operation of the heat pump type hot water heater according to the first embodiment. FIG. 3 shows changes over time in the compressor rotation speed and the outlet water temperature of the water-refrigerant heat exchanger in the state where no abnormality has occurred in the water flow path of the heat pump type hot water heater according to the first embodiment. FIG. 4 shows changes over time in the compressor rotation speed and the outlet water temperature of the water-refrigerant heat exchanger when an abnormality (reduction in flow rate) occurs in the water flow path of the heat pump type hot water supply apparatus according to the first embodiment.
 実施例1に係るヒートポンプ式給湯機は、容量可変な圧縮機4と、圧縮機4から吐出される高温,高圧の冷媒により水を加熱する水-冷媒熱交換器5と、水-冷媒熱交換器5で熱交換された水の温度を検知する水温検知部15と、圧縮機の容量を制御する制御部20とを備える。また、このヒートポンプ式給湯機は、水が水-冷媒熱交換器5に導入されて水-冷媒熱交換器5を通過した後に水-冷媒熱交換器5から流出する水流路Fを有する。 The heat pump type hot water supply apparatus according to the first embodiment includes a variable capacity compressor 4, a water-refrigerant heat exchanger 5 that heats water using a high-temperature, high-pressure refrigerant discharged from the compressor 4, and water-refrigerant heat exchange. The water temperature detection part 15 which detects the temperature of the water heat-exchanged with the container 5 and the control part 20 which controls the capacity | capacitance of a compressor are provided. The heat pump type water heater has a water flow path F through which water flows out of the water-refrigerant heat exchanger 5 after being introduced into the water-refrigerant heat exchanger 5 and passing through the water-refrigerant heat exchanger 5.
 また、このヒートポンプ式給湯機は、水-冷媒熱交換器5で加熱された温水を貯留するタンク9と、タンク9を収容するタンクユニット2と、圧縮機4及び水-冷媒熱交換器5を収容するヒートポンプユニット1とを備える。そして、水流路Fは、タンクユニット2とヒートポンプユニット1とに跨って設けられる。 In addition, this heat pump type water heater includes a tank 9 for storing hot water heated by the water-refrigerant heat exchanger 5, a tank unit 2 for accommodating the tank 9, a compressor 4 and a water-refrigerant heat exchanger 5. A heat pump unit 1 to be housed. The water flow path F is provided across the tank unit 2 and the heat pump unit 1.
 具体的には、このヒートポンプ式給湯機は、図1の左側に示す水-冷媒熱交換器5を含む冷凍サイクルを筐体内部に搭載したヒートポンプユニット1と、図面の右側に示すタンク9を含めた給湯回路を箱体内部に搭載したタンクユニット2とを備えて構成される。そして、ヒートポンプユニット1とタンクユニット2は、ヒートポンプ式給湯機の設置場所において、接続配管3を使用して接続される構造となっている。なお、タンク9は、湯が貯留されることが多く、この場合には貯湯タンクと呼ばれる。 Specifically, this heat pump type water heater includes a heat pump unit 1 in which a refrigeration cycle including a water-refrigerant heat exchanger 5 shown on the left side of FIG. 1 is mounted inside a casing, and a tank 9 shown on the right side of the drawing. And a tank unit 2 in which the hot water supply circuit is mounted inside the box. And the heat pump unit 1 and the tank unit 2 have a structure connected using the connection piping 3 in the installation place of a heat pump type water heater. The tank 9 often stores hot water, and in this case is called a hot water storage tank.
 冷凍サイクルは、冷媒を圧縮する圧縮機4と、圧縮機4から吐出される高温・高圧の冷媒が、タンク9より導いた水と熱交換する水-冷媒熱交換器5と、水-冷媒熱交換器5より流出された冷媒が減圧される減圧弁6と、減圧弁6により減圧された低温・低圧の冷媒が、空気と熱交換する蒸発器7を冷媒配管を介して環状に接続される構成となっている。蒸発器7には、ファン8により外気が通風される構造となっている。なお、この冷凍サイクルでは、二酸化炭素が冷媒として用いられる。 The refrigeration cycle includes a compressor 4 that compresses refrigerant, a water-refrigerant heat exchanger 5 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 4 and water introduced from the tank 9, and water-refrigerant heat. The pressure reducing valve 6 for reducing the pressure of the refrigerant flowing out of the exchanger 5 and the evaporator 7 for exchanging heat with the air for the low-temperature and low-pressure pressure reduced by the pressure reducing valve 6 are connected in an annular manner via a refrigerant pipe. It has a configuration. The evaporator 7 has a structure in which outside air is ventilated by a fan 8. In this refrigeration cycle, carbon dioxide is used as a refrigerant.
 圧縮機4は、水-冷媒熱交換器5で熱交換された温水の温度が予め設定された目標温水温度となるように制御部20によって容量制御される。具体的には、圧縮機4は、圧縮機回転数を制御することにより容量が制御されるインバータ圧縮機である。ただし、これに限定されるものではなく、例えば、吐出された冷媒を吸込み側に戻すことで容量制御を行う圧縮機であってもよい。また、圧縮機の圧縮方式は、スクロール方式であるが、ロータリー方式やレシプロ方式のものであってもよい。 The compressor 4 is capacity-controlled by the controller 20 so that the temperature of the hot water heat-exchanged by the water-refrigerant heat exchanger 5 becomes a preset target hot water temperature. Specifically, the compressor 4 is an inverter compressor whose capacity is controlled by controlling the rotation speed of the compressor. However, it is not limited to this, For example, the compressor which performs capacity control by returning the discharged refrigerant to the suction side may be used. The compression method of the compressor is a scroll method, but may be a rotary method or a reciprocating method.
 水サイクルは、必要量の湯を貯えるタンク9と、タンク9の底部の水を導くポンプ(循環ポンプ)10と、ポンプ(循環ポンプ)10から吐出された水を冷媒と熱交換させる水-冷媒熱交換器5が循環配管により環状に接続される構成となっており、水-冷媒熱交換器5より吐出された水はタンク9の頂部に戻される構造となっている。即ち、水流路Fは、実施例1ではタンク9から水を取り出す部分を起点とし、タンク9に湯が戻される部分を終点とする。また、タンク9の底部は、給水配管11を介して、図示していない水道などの給水源と接続され、頂部には蛇口やシャワー等の給湯端末に給湯する給湯配管12が接続されている。 The water cycle includes a tank 9 for storing a necessary amount of hot water, a pump (circulation pump) 10 for guiding water at the bottom of the tank 9, and a water-refrigerant that exchanges heat discharged from the pump (circulation pump) 10 with refrigerant. The heat exchanger 5 is annularly connected by a circulation pipe, and the water discharged from the water-refrigerant heat exchanger 5 is returned to the top of the tank 9. In other words, in the first embodiment, the water flow path F has a portion where water is taken out from the tank 9 as a starting point and a portion where hot water is returned to the tank 9 as an end point. The bottom of the tank 9 is connected to a water supply source such as a water supply (not shown) via a water supply pipe 11, and a hot water supply pipe 12 for supplying hot water to a hot water supply terminal such as a faucet or a shower is connected to the top.
 圧縮機4には、筐体温度を測定するために圧縮機温度センサ13が設けられている。これにより、圧縮機4から吐出される冷媒の温度(冷媒吐出温度)を検知することができる。なお、冷媒吐出温度は、冷媒の吐出配管に設けられる温度センサによって検知する温度であってもよい。ただし、冷媒吐出温度として圧縮機4の筐体温度を検知する方が、冷媒の吐出配管の温度を検知するよりも、冷媒温度の変動を低く抑えることができ、圧縮機4を制御しやすいというメリットを有する。 The compressor 4 is provided with a compressor temperature sensor 13 for measuring the casing temperature. Thereby, the temperature of the refrigerant discharged from the compressor 4 (refrigerant discharge temperature) can be detected. The refrigerant discharge temperature may be a temperature detected by a temperature sensor provided in the refrigerant discharge pipe. However, the detection of the casing temperature of the compressor 4 as the refrigerant discharge temperature can suppress the fluctuation of the refrigerant temperature and can control the compressor 4 more easily than the temperature of the refrigerant discharge pipe. Has merit.
 また、水-冷媒熱交換器5の前後に設けてある水サイクルの配管には、水-冷媒熱交換器5に流入する水の温度を検知する水温検知部14としての水-冷媒熱交換器入口水温度センサと、水-冷媒熱交換器5から流出する水の温度を計測する水温検知部15としての水-冷媒熱交換器出口温水温度センサが設けられている。 A water-cycle refrigerant heat exchanger serving as a water temperature detecting unit 14 for detecting the temperature of water flowing into the water-refrigerant heat exchanger 5 is provided in a water cycle pipe provided before and after the water-refrigerant heat exchanger 5. An inlet water temperature sensor and a water-refrigerant heat exchanger outlet hot water temperature sensor are provided as a water temperature detector 15 for measuring the temperature of water flowing out of the water-refrigerant heat exchanger 5.
 そして、このヒートポンプ式給湯機は、圧縮機4が予め設定された基準容量以下で運転しているときに水-冷媒熱交換器5で熱交換された水の温度が目標温水温度よりも高い場合には、水流路の異常と判断する。このようにすれば、設置場所によって異なる水流路の状態の要因を排除して、水流路の異常を検出することができる。また、圧縮機を含む冷凍サイクルは、流体の圧力や圧力損失等がヒートポンプ式給湯機の設置場所ごとに大きく異なるものではないため、ポンプの回転数に基づいて水流路Fの異常を検出する場合に比べて、検出精度を高めることができる。 In the heat pump type hot water heater, when the compressor 4 is operating at a preset reference capacity or less, the temperature of the water exchanged by the water-refrigerant heat exchanger 5 is higher than the target hot water temperature. It is determined that the water flow path is abnormal. In this way, it is possible to detect an abnormality in the water flow path by eliminating factors of the state of the water flow path that differ depending on the installation location. Further, in the refrigeration cycle including the compressor, the pressure of the fluid, the pressure loss, and the like are not greatly different depending on the installation location of the heat pump type hot water heater, so that the abnormality of the water flow path F is detected based on the rotation speed of the pump Compared to the above, the detection accuracy can be increased.
 また、このヒートポンプ式給湯機では、水流路Fがタンクユニット2とヒートポンプユニット1とに跨って設けられるものであるため、実施例1の制御は、以下のような理由により、水流路Fの異常を高精度に検出するのに適している。一般的なヒートポンプ式給湯機では、タンク9と水-冷媒熱交換器5を収納した冷凍サイクルとが分離された別ユニットで構成される。この場合、据付け時に行われる接続配管3の形状や長さ,曲がり部の数などにより、水流路Fの状態(配管抵抗等)は、ヒートポンプ式給湯機ごとに大きく異なるものとなる。その点、このヒートポンプ式給湯機は、水流路Fの流量やポンプ10の回転数に基づいてではなく、圧縮機4の容量に基づいて制御するものであるため、設置場所によらず、高精度な検出を行うことができる。 Moreover, in this heat pump type water heater, since the water flow path F is provided across the tank unit 2 and the heat pump unit 1, the control of the first embodiment performs the abnormality of the water flow path F for the following reason. It is suitable for detecting with high accuracy. In a general heat pump type water heater, the tank 9 and the refrigeration cycle in which the water-refrigerant heat exchanger 5 is housed are configured as separate units. In this case, the state of the water flow path F (pipe resistance and the like) varies greatly depending on the heat pump type hot water heater, depending on the shape and length of the connection pipe 3 performed at the time of installation, the number of bent portions, and the like. In this respect, the heat pump type hot water heater is controlled not based on the flow rate of the water flow path F or the rotation speed of the pump 10, but based on the capacity of the compressor 4. Can be detected.
 なお、基準容量は、圧縮機4の最低回転数に基づいて設定される。圧縮機4の最低回転数とは、圧縮機4の駆動範囲として予め決められた回転数範囲の下限値に設定される。具体的には、圧縮機4の不調や故障の発生を防止すべく、圧縮機4が冷媒圧縮の仕事をしていると評価できる限界の回転数よりも余裕を持って少し高めに設定される。なお、余裕の大きさは、圧縮機4の特性に応じて任意の値とすることができるが、特に余裕を持たせないものであっても良い。 The reference capacity is set based on the minimum rotation speed of the compressor 4. The minimum rotational speed of the compressor 4 is set to a lower limit value of a rotational speed range determined in advance as a driving range of the compressor 4. Specifically, in order to prevent the malfunction or failure of the compressor 4, it is set slightly higher with a margin than the limit rotational speed at which the compressor 4 can be evaluated as performing refrigerant compression work. . In addition, although the magnitude | size of a margin can be made into arbitrary values according to the characteristic of the compressor 4, it may not give a margin especially.
 具体的には、このヒートポンプ式給湯機は、水-冷媒熱交換器5で熱交換された水の温度が目標温水温度よりも高い状態が所定の時間以上継続した場合には、水流路Fの異常と判断する。このようにすれば、温度の偶発的な変動を異常と判断することがなく、異常判断の精度をより高めることができる。 Specifically, this heat pump type hot water heater is configured so that when the temperature of the water exchanged by the water-refrigerant heat exchanger 5 is higher than the target hot water temperature for a predetermined time or longer, Judge as abnormal. In this way, it is possible to improve the accuracy of the abnormality determination without determining that an accidental change in temperature is abnormal.
 また、このヒートポンプ式給湯機は、上記のような方法で異常と判断した場合、水流路Fを流れる水の流量が減少していると判断する。そして、水流路Fの水の流量減少に関係する報知を行う。具体的には、リモコン等に設けられる表示画面にエラーを表示する。 In addition, this heat pump type hot water heater determines that the flow rate of the water flowing through the water flow path F is decreased when it is determined to be abnormal by the above method. And the alerting | reporting relevant to the flow volume reduction of the water flow path F is performed. Specifically, an error is displayed on a display screen provided on a remote controller or the like.
 次に、実施例1に係る運転時の制御フローを図2を使用して説明する。 Next, a control flow during operation according to the first embodiment will be described with reference to FIG.
 沸上運転の際、制御部20に対して目標温水温度と圧縮機目標温度をセット(図2中S1)した後、沸上運転を開始する。沸上運転開始時より、圧縮機温度センサ13より得られる圧縮機温度(図2中S2)が圧縮機目標温度と一致するように減圧弁6の開度を修正する(図2中S3)。 During boiling operation, after setting the target hot water temperature and the compressor target temperature to the control unit 20 (S1 in FIG. 2), the boiling operation is started. From the start of the boiling operation, the opening degree of the pressure reducing valve 6 is corrected so that the compressor temperature obtained from the compressor temperature sensor 13 (S2 in FIG. 2) matches the compressor target temperature (S3 in FIG. 2).
 また、制御部20は、水温検知部15により得られる出口温水温度(図2中S4)と目標温水温度が一致するように圧縮機4の回転数を修正する(図2中S5)。この動作により、循環している水の量に対して、加熱能力を出力している圧縮機回転数が増減するため、現在出力している加熱能力を正確に把握することが可能となる。 Further, the control unit 20 corrects the rotational speed of the compressor 4 so that the outlet hot water temperature (S4 in FIG. 2) obtained by the water temperature detection unit 15 matches the target hot water temperature (S5 in FIG. 2). As a result of this operation, the number of rotations of the compressor that outputs the heating capacity increases or decreases with respect to the amount of circulating water, so that it is possible to accurately grasp the currently output heating capacity.
 このような動作で沸上運転を行っている間、配管内に詰まり等が無く、正規の水循環量が確保されている場合、正規の加熱能力を出力するために、圧縮機回転数の大幅な低下は発生しない。 During the boiling operation in such an operation, when there is no clogging in the piping and the regular water circulation amount is secured, the compressor rotation speed is greatly increased in order to output the regular heating capacity. There is no decline.
 しかし、配管内に詰まり等の異常が発生し、正規の水循環量が確保できなくなった場合には、加熱対象液体である水の循環量が減少するため、必要となる加熱能力は小さくなる。従って、出口温水温度が上昇するため、出口温水温度と目標温水温度とが一致するように、制御部20は、圧縮機4の回転数を低下させる。 However, when abnormalities such as clogging occur in the piping and the regular water circulation amount cannot be secured, the circulation amount of water, which is the liquid to be heated, decreases, and the required heating capacity becomes small. Therefore, since the outlet hot water temperature rises, the control unit 20 reduces the rotational speed of the compressor 4 so that the outlet hot water temperature matches the target hot water temperature.
 そして、この状態が進むと、水循環量が大幅に減少し、圧縮機4は制御部20で規定される最低回転数で運転することとなる。この現象を検出するために、本実施例では沸上運転中に常時、圧縮機4の回転数が最低回転数よりも高い回転数で運転されているかを監視する機能(図2中S6)を設ける。 And if this state progresses, the amount of water circulation will decrease significantly and the compressor 4 will drive | operate with the minimum rotation speed prescribed | regulated by the control part 20. FIG. In order to detect this phenomenon, in this embodiment, a function (S6 in FIG. 2) for monitoring whether or not the rotation speed of the compressor 4 is always operated at a rotation speed higher than the minimum rotation speed during the boiling operation. Provide.
 圧縮機4の回転数が最低回転数より高い回転数で運転されている場合は(図2中S6→No)、上述の減圧弁開度の変更と圧縮機回転数の修正を行う。圧縮機回転数が規定している最低回転数と同じとなった場合(図2中S6→Yes)、出口温水温度の確認を行う(図中S7)。確認した出口温水温度が目標温水温度以下の場合には(図2中S7→No)、上述の減圧弁開度変更と圧縮機回転数の修正を行う。出口温水温度が目標温水温度より高い場合には(図2中S7→Yes)、温度が高い状態が所定の時間経過しても維持していることを確認した後(図中S8)、水循環エラーを発報(図2中S9)して運転を停止する。なお、前記所定の時間は、流量減少監視時間とも呼ぶことができる。 When the compressor 4 is operated at a rotational speed higher than the minimum rotational speed (S6 → No in FIG. 2), the pressure reducing valve opening is changed and the compressor rotational speed is corrected. When the compressor rotational speed is the same as the minimum rotational speed defined (S6 → Yes in FIG. 2), the outlet hot water temperature is confirmed (S7 in the figure). When the confirmed outlet hot water temperature is equal to or lower than the target hot water temperature (S7 → No in FIG. 2), the above-described pressure reducing valve opening change and compressor rotation speed correction are performed. When the outlet hot water temperature is higher than the target hot water temperature (S7 → Yes in FIG. 2), after confirming that the high temperature is maintained even after a predetermined time has passed (S8 in the figure), water circulation error Is issued (S9 in FIG. 2) and the operation is stopped. The predetermined time can also be referred to as a flow rate reduction monitoring time.
 従って、水配管内のごみ詰まりや水道水内に含まれる硬度成分(例えば炭酸カルシウム)がスケールとして析出し配管内に付着したスケール詰まり、配管内の空気抜き不足による空気詰まり等によって沸上げを行う水の循環ができなくなる不具合が発生した時、高精度でかつ安価な方法で不具合を検出して異常報知による速やかな対応を図ることができるため、信頼性の向上を図ることができる。 Therefore, water clogged due to clogging of dirt in the water pipe, hardness component (for example, calcium carbonate) contained in the tap water deposited as scale, clogged in the pipe, air clogging due to insufficient air venting in the pipe, etc. When a problem that prevents the circulation of a problem occurs, it is possible to detect the problem with a highly accurate and inexpensive method and to promptly respond to the abnormality notification, thereby improving the reliability.
 図4の実験例を用いて、水流路Fに異常(流量減少)が発生した際の圧縮機回転数と水-冷媒熱交換器5の出口温水温度の時間変化を説明する。時刻T1において、圧縮機4の運転を開始した後、水流路Fに異常がある場合、徐々に圧縮機4の回転数が低下していく。そして、時刻T2において、圧縮機4の回転数が最低回転数となる。図4の実験例では、時刻T1から時刻T2までの時間は、5~10分程度である。そして、時刻T2に前記状態となってから所定の時間(流量減少監視時間)異常が継続していることを確認すると、時刻T3において異常を報知する。図4の実験例では、前記流量減少監視時間(時刻T2~時刻T3)は、15分程度である。ただし、前記流量減少監視時間は、2分程度の短い時間であってもよい。 Referring to the experimental example of FIG. 4, the time variation of the compressor rotation speed and the outlet hot water temperature of the water-refrigerant heat exchanger 5 when an abnormality (flow rate decrease) occurs in the water flow path F will be described. After the operation of the compressor 4 is started at time T1, when the water flow path F is abnormal, the rotational speed of the compressor 4 gradually decreases. At time T2, the rotation speed of the compressor 4 becomes the minimum rotation speed. In the experimental example of FIG. 4, the time from time T1 to time T2 is about 5 to 10 minutes. Then, when it is confirmed that the abnormality continues for a predetermined time (flow rate reduction monitoring time) after the state is reached at time T2, the abnormality is notified at time T3. In the experimental example of FIG. 4, the flow rate reduction monitoring time (time T2 to time T3) is about 15 minutes. However, the flow rate reduction monitoring time may be as short as 2 minutes.
 一般的に、スケール詰りや小さなゴミ詰り等の異常は、少しずつ進行する(即ち、流量が減少していく)ものである。一方、水流路Fに配置される弁が閉まっている場合や、大きなゴミ詰り等の場合には、流れが突然停止するものである。この点、実施例1に係る異常検知は、異常検知のために圧縮機4の回転数を制御し始めてから最低回転数となるまでの時間が5~10分程度かかるものであり、変化が比較的緩やかであるため、少しずつ進行する流量減少の異常検知に適している。 In general, abnormalities such as clogging of scales and clogging of small garbage progress gradually (that is, the flow rate decreases). On the other hand, when the valve arranged in the water flow path F is closed, or when a large garbage is clogged, the flow suddenly stops. In this respect, the abnormality detection according to the first embodiment takes about 5 to 10 minutes from the start of controlling the rotation speed of the compressor 4 to detect the abnormality until the minimum rotation speed is reached. Therefore, it is suitable for detecting abnormalities in the decrease in flow rate that progresses little by little.
 このような制御とすることにより、図3に示す出口温水温度と圧縮機回転数の正常時の関係(水配管内の詰まり等が無く、正規の水循環量が確保されている状態)と、図4に示す出口温水温度と圧縮機回転数の異常時の関係(水配管内の詰まり等が発生し、正規の水循環量が確保できなくなった状態)の相違を沸上運転中に検出することができる。従って、誤検出なく水循環異常を発報し、沸上運転を停止することができる。 By adopting such control, the relationship between the outlet hot water temperature and the compressor rotation speed shown in FIG. 3 in a normal state (there is no clogging in the water pipe and the normal water circulation amount is secured), FIG. It is possible to detect the difference in the relationship between the outlet warm water temperature and the compressor rotation speed shown in Fig. 4 during the boiling operation (a state where clogging in the water piping has occurred and the normal amount of water circulation cannot be secured). it can. Therefore, the water circulation abnormality can be reported without erroneous detection, and the boiling operation can be stopped.
(実施例2)
 実施例2は、水流路F′に発生する異常(特に、流れ停止)を高精度に検出することができるヒートポンプ式給湯機に関する。
(Example 2)
The second embodiment relates to a heat pump type water heater that can detect an abnormality (particularly, a flow stop) occurring in the water flow path F ′ with high accuracy.
 図5は、実施例2に係るヒートポンプ式給湯機の系統構成図を示す。図6は、実施例2に係るヒートポンプ式給湯機運転時の制御フロー図を示す。図7は、実施例2に係るヒートポンプ式給湯機の水流路に異常が発生していない状態における圧縮機温度と水-冷媒熱交換器の出口冷媒温度と出口温水温度の時間変化を示す。図8は、実施例2に係るヒートポンプ式給湯機の水流路に異常(流れ停止)が発生した際の圧縮機温度と水-冷媒熱交換器の出口冷媒温度と出口温水温度の時間変化を示す。 FIG. 5 shows a system configuration diagram of a heat pump type water heater according to the second embodiment. FIG. 6 shows a control flow chart during operation of the heat pump type hot water heater according to the second embodiment. FIG. 7 shows temporal changes in the compressor temperature, the outlet refrigerant temperature of the water-refrigerant heat exchanger, and the outlet hot water temperature in a state where no abnormality has occurred in the water flow path of the heat pump type hot water heater according to the second embodiment. FIG. 8 shows temporal changes in the compressor temperature, the outlet refrigerant temperature of the water-refrigerant heat exchanger, and the outlet hot water temperature when an abnormality (flow stoppage) occurs in the water flow path of the heat pump type hot water heater according to the second embodiment. .
 実施例2に係るヒートポンプ式給湯機は、容量可変な圧縮機104と、圧縮機104から吐出される高温,高圧の冷媒により水を加熱する水-冷媒熱交換器105と、水-冷媒熱交換器105で熱交換された水の温度を検知する水温検知部115と、水-冷媒熱交換器105で熱交換した冷媒の温度を検知する冷媒温度検知部116と、圧縮機104の容量を制御する制御部120とを備える。また、このヒートポンプ式給湯機は、水が水-冷媒熱交換器105に導入されて水-冷媒熱交換器105を通過した後に水-冷媒熱交換器105から流出する水流路F′を有する。 The heat pump type hot water heater according to the second embodiment includes a variable capacity compressor 104, a water-refrigerant heat exchanger 105 that heats water using a high-temperature, high-pressure refrigerant discharged from the compressor 104, and water-refrigerant heat exchange. Controls the capacity of the compressor 104, a water temperature detector 115 that detects the temperature of the water heat-exchanged by the condenser 105, a refrigerant temperature detector 116 that detects the temperature of the refrigerant heat-exchanged by the water-refrigerant heat exchanger 105, and the compressor 104 And a control unit 120. The heat pump type hot water heater has a water flow path F ′ that flows out from the water-refrigerant heat exchanger 105 after water is introduced into the water-refrigerant heat exchanger 105 and passes through the water-refrigerant heat exchanger 105.
 また、このヒートポンプ式給湯機は、水-冷媒熱交換器105で加熱された温水を貯留するタンク109と、タンク109を収容するタンクユニット102と、圧縮機104及び水-冷媒熱交換器105を収容するヒートポンプユニット101とを備える。そして、水流路F′は、タンクユニット102とヒートポンプユニット101とに跨って設けられる。 In addition, this heat pump type water heater includes a tank 109 that stores hot water heated by the water-refrigerant heat exchanger 105, a tank unit 102 that accommodates the tank 109, a compressor 104, and a water-refrigerant heat exchanger 105. A heat pump unit 101 to be housed. The water flow path F ′ is provided across the tank unit 102 and the heat pump unit 101.
 具体的には、このヒートポンプ式給湯機は、図5に示すように、図面の左側に示す水-冷媒熱交換器105を含む冷凍サイクルを箱体内部に搭載したヒートポンプユニット101と、図面の右側に示すタンク109を含めた給湯回路を箱体内部に搭載したタンクユニット102とを備えて構成される。そして、ヒートポンプユニット101とタンクユニット102は、ヒートポンプ式給湯機の設置場所において、接続配管103を使用して接続される構造となっている。 Specifically, as shown in FIG. 5, the heat pump type hot water heater includes a heat pump unit 101 in which a refrigeration cycle including a water-refrigerant heat exchanger 105 shown on the left side of the drawing is mounted inside a box, and a right side of the drawing. And a tank unit 102 in which a hot water supply circuit including the tank 109 shown in FIG. The heat pump unit 101 and the tank unit 102 are connected to each other by using a connection pipe 103 at a place where the heat pump type hot water heater is installed.
 なお、タンク109は、湯が貯留されることが多く、この場合には、貯湯タンクと呼ばれる場合がある。また、水-冷媒熱交換器105は、一般的には水を加熱するものであり、水-冷媒熱交換器と呼ばれる場合がある。 The tank 109 often stores hot water, and in this case, it may be called a hot water storage tank. The water-refrigerant heat exchanger 105 generally heats water and may be called a water-refrigerant heat exchanger.
 冷凍サイクルは、冷媒を圧縮する圧縮機104と、圧縮機104から吐出される高温・高圧の冷媒が、タンク109より導いた水と熱交換する水-冷媒熱交換器105と、水-冷媒熱交換器105より流出された冷媒が減圧される減圧弁106と、減圧弁106により減圧された低温・低圧の冷媒が、空気と熱交換する蒸発器107を冷媒配管を介して環状に接続される構成となっている。蒸発器107には、ファン108により外気が通風される構造となっている。なお、この冷凍サイクルでは、二酸化炭素が冷媒として用いられる。 The refrigeration cycle includes a compressor 104 that compresses the refrigerant, a water-refrigerant heat exchanger 105 that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 104 and water introduced from the tank 109, and water-refrigerant heat. A pressure reducing valve 106 for reducing the pressure of the refrigerant flowing out of the exchanger 105, and an evaporator 107 for exchanging heat with air for the low temperature / low pressure refrigerant pressure reduced by the pressure reducing valve 106 are connected in an annular manner via a refrigerant pipe. It has a configuration. The evaporator 107 has a structure in which outside air is ventilated by a fan 108. In this refrigeration cycle, carbon dioxide is used as a refrigerant.
 圧縮機104は、水-冷媒熱交換器105で熱交換された温水の温度が予め設定された目標温水温度となるように制御部120によって容量を制御される。具体的には、圧縮機104は、圧縮機回転数を制御することにより容量が制御されるインバータ圧縮機である。ただし、これに限定されるものではなく、例えば、吐出された冷媒を吸込み側に戻すことで容量制御を行う圧縮機であってもよい。また、圧縮機の圧縮方式は、スクロール方式であるが、ロータリー方式やレシプロ方式のものであってもよい。 The capacity of the compressor 104 is controlled by the controller 120 so that the temperature of the hot water heat-exchanged by the water-refrigerant heat exchanger 105 becomes a preset target hot water temperature. Specifically, the compressor 104 is an inverter compressor whose capacity is controlled by controlling the rotation speed of the compressor. However, it is not limited to this, For example, the compressor which performs capacity control by returning the discharged refrigerant to the suction side may be used. The compression method of the compressor is a scroll method, but may be a rotary method or a reciprocating method.
 水サイクルは、必要量の湯を貯えるタンク109と、タンク109の底部の水が導かれるポンプ(循環ポンプ)110と、ポンプ(循環ポンプ)110から吐出された水が冷媒と熱交換する水-冷媒熱交換器105が循環配管により環状に接続される構成となっており、水-冷媒熱交換器105より吐出された水はタンク109の頂部に戻される構造となっている。即ち、水流路F′は、実施例2ではタンク109から水を取り出す部分を起点とし、タンク109に湯が戻される部分を終点とする。またタンク109の底部は、給水配管111を介して、図示していない水道などの給水源と接続され、頂部には蛇口やシャワー等の給湯端末に給湯する給湯配管112が接続されている。 The water cycle consists of a tank 109 for storing a required amount of hot water, a pump (circulation pump) 110 to which water at the bottom of the tank 109 is guided, and water discharged from the pump (circulation pump) 110 to exchange heat with refrigerant. The refrigerant heat exchanger 105 is annularly connected by a circulation pipe, and water discharged from the water-refrigerant heat exchanger 105 is returned to the top of the tank 109. In other words, in the second embodiment, the water flow path F ′ has a portion where water is taken out from the tank 109 as a starting point and a portion where hot water is returned to the tank 109 as an end point. The bottom of the tank 109 is connected to a water supply source such as a water supply (not shown) via a water supply pipe 111, and a hot water supply pipe 112 for supplying hot water to a hot water supply terminal such as a faucet or a shower is connected to the top.
 圧縮機104には、圧縮機104の筐体温度を測定するために圧縮機温度センサ113が設けられている。これにより、圧縮機104から吐出される冷媒の温度(冷媒吐出温度)を検知することができる。なお、冷媒吐出温度は、冷媒の吐出配管に設けられる温度センサ検知するものであってもよい。ただし、冷媒吐出温度として圧縮機104の筐体温度を検知する方が、冷媒の吐出配管の温度を検知するよりも、冷媒温度の変動を低く抑えることができ、圧縮機104を制御しやすいというメリットを有する。 The compressor 104 is provided with a compressor temperature sensor 113 for measuring the casing temperature of the compressor 104. Thereby, the temperature of the refrigerant discharged from the compressor 104 (refrigerant discharge temperature) can be detected. The refrigerant discharge temperature may be detected by a temperature sensor provided in the refrigerant discharge pipe. However, detecting the casing temperature of the compressor 104 as the refrigerant discharge temperature can suppress the fluctuation of the refrigerant temperature lower than detecting the temperature of the refrigerant discharge pipe, and it is easier to control the compressor 104. Has merit.
 水-冷媒熱交換器105より流出する冷媒温度を検知するために、水-冷媒熱交換器105より下流にある冷媒配管には、冷媒温度検知部116としての水-冷媒熱交換器出口冷媒温度センサが設けられている。また、水-冷媒熱交換器105の前後に設けてある水サイクルの配管には、水-冷媒熱交換器5に流入する水の温度を検知する水温検知部114としての水-冷媒熱交換器入口水温度センサと、水-冷媒熱交換器5から流出する水の温度を検知する水温検知部115としての水-冷媒熱交換器出口温水温度センサが設けられている。 In order to detect the temperature of the refrigerant flowing out of the water-refrigerant heat exchanger 105, the refrigerant pipe downstream of the water-refrigerant heat exchanger 105 has a refrigerant temperature at the outlet of the water-refrigerant heat exchanger as the refrigerant temperature detector 116. A sensor is provided. A water-cycle refrigerant heat exchanger serving as a water temperature detector 114 that detects the temperature of water flowing into the water-refrigerant heat exchanger 5 is provided in a water cycle pipe provided before and after the water-refrigerant heat exchanger 105. An inlet water temperature sensor and a water-refrigerant heat exchanger outlet hot water temperature sensor are provided as a water temperature detector 115 for detecting the temperature of water flowing out of the water-refrigerant heat exchanger 5.
 そして、このヒートポンプ式給湯機は、水-冷媒熱交換器105で熱交換した冷媒の温度が目標温水温度に基づいて定められる基準温度以上の場合には、水流路F′の異常と判断する。このようにすれば、設置場所によって異なる水流路F′の状態の要因を排除して、水流路F′の異常を検出することができる。また、圧縮機104を含む冷凍サイクルは、流体の圧力や圧力損失等がヒートポンプ式給湯機の設置場所ごとに大きく異なるものではないため、ポンプの回転数に基づいて水流路F′の異常を検出する場合に比べて、検出精度を高めることができる。 The heat pump type hot water heater determines that the water flow path F ′ is abnormal when the temperature of the refrigerant heat-exchanged by the water-refrigerant heat exchanger 105 is equal to or higher than a reference temperature determined based on the target hot water temperature. In this way, it is possible to detect the abnormality of the water flow path F ′ by eliminating the factors of the state of the water flow path F ′ that differ depending on the installation location. In addition, the refrigeration cycle including the compressor 104 detects an abnormality in the water flow path F ′ based on the number of rotations of the pump because the fluid pressure, pressure loss, and the like do not differ greatly depending on the installation location of the heat pump type hot water heater. Compared with the case where it does, detection accuracy can be raised.
 なお、基準温度は、目標温水温度と同一とされる。ただし、水-冷媒熱交換器105で熱交換された温水の温度が目標温水温度となるように圧縮機104の容量を制御する際、水の温度が上昇する過程で目標温水温度を一時的に超える場合(いわゆる、オーバーシュート)がある。これを考慮して、このヒートポンプ式給湯機では、基準温度を目標温水温度よりも数℃程度高く設定している。これにより、温水の温度が目標温水温度を一時的に超えた場合でも、直ちに異常と判断しないようになっている。 Note that the reference temperature is the same as the target hot water temperature. However, when the capacity of the compressor 104 is controlled so that the temperature of the hot water heat-exchanged in the water-refrigerant heat exchanger 105 becomes the target hot water temperature, the target hot water temperature is temporarily set in the process of increasing the water temperature. There is a case of exceeding (so-called overshoot). Considering this, in this heat pump type hot water heater, the reference temperature is set to be higher by about several degrees Celsius than the target hot water temperature. As a result, even when the temperature of the hot water temporarily exceeds the target hot water temperature, it is not immediately determined as abnormal.
 また、このヒートポンプ式給湯機では、水流路F′がタンクユニット102とヒートポンプユニット101とに跨って設けられるものであるため、実施例2の制御は、以下のような理由により、水流路F′の異常を高精度に検出するのに適している。一般的なヒートポンプ式給湯機では、タンク109と水-冷媒熱交換器105を収納した冷凍サイクルとが分離された別ユニットで構成される。この場合、据付け時に行われる接続配管103の形状や長さ,曲がり部の数などにより、水流路F′の状態(配管抵抗等)は、ヒートポンプ式給湯機ごとに大きく異なるものとなる。その点、このヒートポンプ式給湯機は、水流路F′の流量に基づいてではなく、圧縮機104の容量に基づいて制御するものであるため、設置場所によらず、高精度な検出を行うことができる。 Further, in this heat pump type water heater, since the water flow path F ′ is provided across the tank unit 102 and the heat pump unit 101, the control of the second embodiment is performed for the following reason. It is suitable for detecting anomalies with high accuracy. In a general heat pump type hot water heater, the tank 109 and the refrigeration cycle in which the water-refrigerant heat exchanger 105 is housed are configured as separate units. In this case, the state (pipe resistance, etc.) of the water flow path F ′ varies greatly for each heat pump hot water heater depending on the shape and length of the connection pipe 103 performed at the time of installation, the number of bent portions, and the like. In this respect, this heat pump type hot water heater is controlled based on the capacity of the compressor 104, not based on the flow rate of the water flow path F ′, so that highly accurate detection can be performed regardless of the installation location. Can do.
 具体的には、このヒートポンプ式給湯機は、水-冷媒熱交換器105で熱交換した冷媒の温度が目標温水温度以上である状態が所定の時間以上継続した場合には、水流路F′の異常と判断する。このようにすれば、温度の偶発的な変動を異常と判断することがなく、異常判断の精度をより高めることができる。 Specifically, in this heat pump type hot water heater, when the state where the temperature of the refrigerant heat-exchanged by the water-refrigerant heat exchanger 105 is equal to or higher than the target hot water temperature continues for a predetermined time or longer, Judge as abnormal. In this way, it is possible to improve the accuracy of the abnormality determination without determining that an accidental change in temperature is abnormal.
 また、このヒートポンプ式給湯機は、上記のような方法で異常と判断した場合、水流路F′を流れる水の流れが停止していると判断する。そして、水流路F′の水の流れが停止していることに関係する報知を行う。具体的には、リモコン等に設けられる表示画面にエラーを表示する。 Further, when it is determined that the heat pump type hot water heater is abnormal by the above method, it is determined that the flow of water flowing through the water flow path F ′ is stopped. And the alerting | reporting relevant to the flow of the water of the water flow path F 'having stopped is performed. Specifically, an error is displayed on a display screen provided on a remote controller or the like.
 次に、実施例2に係る運転時の制御フローを図6を使用して説明する。 Next, a control flow during operation according to the second embodiment will be described with reference to FIG.
 沸上運転の際、制御部120に対して目標温水温度と圧縮機目標温度をセット(図6中S101)した後、沸上運転を開始する。沸上運転開始時より、圧縮機温度センサ113より得られる圧縮機温度(図6中S102)が圧縮機目標温度と一致するように減圧弁106の開度を修正する(図6中S103)。 During boiling operation, after setting the target hot water temperature and the compressor target temperature to the control unit 120 (S101 in FIG. 6), the boiling operation is started. From the start of the boiling operation, the opening degree of the pressure reducing valve 106 is corrected so that the compressor temperature obtained from the compressor temperature sensor 113 (S102 in FIG. 6) matches the compressor target temperature (S103 in FIG. 6).
 また、制御部120は、水温検知部115より得られる出口温水温度(図6中S104)と目標温水温度が一致するように圧縮機104の回転数を修正する(図6中S105)。この動作により、循環している水の量に対して、加熱能力を出力している圧縮機回転数が増減するため、現在出力している加熱能力を正確に把握することが可能となる。 Further, the control unit 120 corrects the rotational speed of the compressor 104 so that the outlet hot water temperature (S104 in FIG. 6) obtained from the water temperature detection unit 115 matches the target hot water temperature (S105 in FIG. 6). As a result of this operation, the number of rotations of the compressor that outputs the heating capacity increases or decreases with respect to the amount of circulating water, so that it is possible to accurately grasp the currently output heating capacity.
 このような動作で沸上運転を行っている間、配管内に詰まり等が無く、正規の水循環量が確保されている場合、水-冷媒熱交換器105において水と冷媒により熱交換が行われ、冷媒は保有している熱エネルギーを水へ放熱するため、図3に示すごとく水-冷媒熱交換器出口の冷媒温度は沸上目標温度より低い温度となる。 During the boiling operation in such an operation, when there is no clogging or the like in the piping and a regular water circulation amount is secured, heat exchange is performed between the water and the refrigerant in the water-refrigerant heat exchanger 105. Since the refrigerant dissipates the stored thermal energy to water, the refrigerant temperature at the outlet of the water-refrigerant heat exchanger becomes lower than the boiling target temperature as shown in FIG.
 しかし、配管内に詰まり等の異常が発生し、正規の水循環量が確保できなくなった場合には、水-冷媒熱交換器105において冷媒が加熱対象液体である水へ放熱できなくなるため、図8に示すごとく水-冷媒熱交換器105の出口冷媒温度は沸上目標温度に近づいていく。 However, when an abnormality such as clogging occurs in the piping and a normal water circulation amount cannot be secured, the refrigerant cannot radiate heat to the water to be heated in the water-refrigerant heat exchanger 105, so that FIG. As shown, the outlet refrigerant temperature of the water-refrigerant heat exchanger 105 approaches the boiling target temperature.
 この現象を検出するために、本実施例では沸上運転中に常時、水-冷媒熱交換器105の出口冷媒温度の監視(図6中S106)を行い、出口冷媒温度が沸上目標温度よりも低い温度となっているかを監視する機能(図6中S107)を設ける。 In order to detect this phenomenon, in this embodiment, the outlet refrigerant temperature of the water-refrigerant heat exchanger 105 is constantly monitored during the boiling operation (S106 in FIG. 6), and the outlet refrigerant temperature is higher than the boiling target temperature. A function for monitoring whether the temperature is lower (S107 in FIG. 6) is provided.
 出口冷媒温度が沸上目標温度より低い温度となっている場合は(図6中S107→No)、上述の減圧弁106の開度変更と圧縮機回転数の修正を行う。出口冷媒温度が沸上目標温度よりも高い温度となった場合には(図6中S7→Yes)、温度が高い状態が所定の時間経過しても維持していることを確認した後(図6中S108→Yes)、水循環エラーを発報(図6中S109)して運転を停止する。なお、前記所定の時間は、流れ停止監視時間とも呼ぶことができる。 When the outlet refrigerant temperature is lower than the boiling target temperature (S107 → No in FIG. 6), the opening of the pressure reducing valve 106 is changed and the compressor rotational speed is corrected. When the outlet refrigerant temperature becomes higher than the boiling target temperature (S7 → Yes in FIG. 6), after confirming that the high temperature state is maintained even after a predetermined time has elapsed (FIG. 6 during S108 → Yes), a water circulation error is issued (S109 in FIG. 6) and the operation is stopped. The predetermined time can also be referred to as a flow stop monitoring time.
 従って、水配管内のごみ詰まりや水道水内に含まれる硬度成分(例えば炭酸カルシウム)がスケールとして析出し配管内に付着したスケール詰まり、配管内の空気抜き不足による空気詰まり等によって沸上げを行う水の循環ができなくなる不具合が発生した時、高精度でかつ安価な方法で不具合を検出して異常報知による速やかな対応を図ることができるため、信頼性の向上を図ることができる。 Therefore, water clogged due to clogging of dirt in the water pipe, hardness component (for example, calcium carbonate) contained in the tap water deposited as scale, clogged in the pipe, air clogging due to insufficient air venting in the pipe, etc. When a problem that prevents the circulation of a problem occurs, it is possible to detect the problem with a highly accurate and inexpensive method and to promptly respond to the abnormality notification, thereby improving the reliability.
 図8の実験例を用いて、水流路F′に異常(流れ停止)が発生した際の圧縮機回転数と水-冷媒熱交換器の出口冷媒温度の時間変化を説明する。時刻T11において、圧縮機104の運転を開始した後、水流路F′に異常がある場合、徐々に出口冷媒温度が上昇していく。そして、時刻T12において、出口冷媒温度が圧縮機104の筐体温度を超える。図4の実験例では、時刻T11から時刻T12までの時間は、1~2分程度である。そして、時刻T12に前記状態となってから所定の時間(流れ停止監視時間)異常が継続していることを確認すると、時刻T13において、異常を報知する。図8の実験例では、流れ停止監視時間(時刻T12~時刻T13)は、2分程度である。 Referring to the experimental example of FIG. 8, the time change of the compressor rotation speed and the outlet refrigerant temperature of the water-refrigerant heat exchanger when abnormality (flow stoppage) occurs in the water flow path F ′ will be described. At time T11, after the operation of the compressor 104 is started, if the water flow path F ′ is abnormal, the outlet refrigerant temperature gradually increases. At time T <b> 12, the outlet refrigerant temperature exceeds the casing temperature of the compressor 104. In the experimental example of FIG. 4, the time from time T11 to time T12 is about 1 to 2 minutes. Then, when it is confirmed that the abnormality continues for a predetermined time (flow stop monitoring time) after the state is reached at time T12, the abnormality is notified at time T13. In the experimental example of FIG. 8, the flow stop monitoring time (time T12 to time T13) is about 2 minutes.
 一般的に、スケール詰りや小さなゴミ詰り等の異常は、少しずつ進行する(即ち、流量が減少していく)ものである。一方、水流路F′に配置される弁が閉まっている場合や、大きなゴミ詰り等の場合は、流れが突然停止するものである。この点、実施例2に係る異常検知は、異常状態で加熱を開始してから出口温水温度が圧縮機104の筐体温度を超えるまでの時間が1~2分程度であり、変化が比較的急であるため、突然発生する流れ停止の異常検知に適している。 In general, abnormalities such as clogging of scales and clogging of small garbage progress gradually (that is, the flow rate decreases). On the other hand, when the valve disposed in the water flow path F ′ is closed or when a large garbage is clogged, the flow suddenly stops. In this regard, in the abnormality detection according to the second embodiment, the time from the start of heating in the abnormal state until the outlet hot water temperature exceeds the casing temperature of the compressor 104 is about 1 to 2 minutes, and the change is relatively Since it is steep, it is suitable for detecting abnormalities in sudden flow stoppage.
 このような制御とすることにより、図7に示す水-冷媒熱交換器105の出口冷媒温度と出口温水温度の正常時の関係(水配管内の詰まり等が無く、正規の水循環量が確保されている状態)と、図8に示す水-冷媒熱交換器105の出口冷媒温度と出口温水温度の異常時の関係(水配管内の詰まり等が発生し、正規の水循環量が確保できなくなった状態)の変化を沸上運転中に検出することができる。従って、誤検出なく水循環異常を発報し、沸上運転を停止することができる。また異常検出の判定を沸上目標温度で行うため、沸上目標温度がどの様な値に設定されたとしても誤検出無く水循環異常を発報し、沸上運転を停止することができる。 By adopting such control, the normal relationship between the outlet refrigerant temperature and the outlet hot water temperature of the water-refrigerant heat exchanger 105 shown in FIG. 7 (there is no clogging in the water pipe, and a normal water circulation amount is ensured. 8) and the relationship between the outlet refrigerant temperature and outlet hot water temperature of the water-refrigerant heat exchanger 105 shown in FIG. 8 at the time of abnormalities (clogging in the water piping, etc. has occurred, making it impossible to secure a regular amount of water circulation) Change in the state) can be detected during boiling operation. Therefore, the water circulation abnormality can be reported without erroneous detection, and the boiling operation can be stopped. Further, since the abnormality detection is determined at the boiling target temperature, the water circulation abnormality can be reported without erroneous detection and the boiling operation can be stopped regardless of what value the boiling target temperature is set to.
(実施例3)
 実施例3に係るヒートポンプ式給湯機は、図5に示す実施例2に係るヒートポンプ式給湯機と基本的に共通する構造を有するものであるため、配管構成等に関しては説明を同一符号を付して割愛する。
(Example 3)
Since the heat pump type water heater according to the third embodiment has a structure that is basically the same as that of the heat pump type hot water heater according to the second embodiment shown in FIG. I will omit it.
 実施例3は、実施例1で説明した水流路Fに発生する流量減少の異常、及び、実施例2で説明した水流路F′に発生する流れ停止の異常をどちらも検出することができるヒートポンプ式給湯機に関する。 The third embodiment is a heat pump that can detect both the abnormality in the flow rate decrease that occurs in the water flow path F described in the first embodiment and the abnormality in the flow stop that occurs in the water flow path F ′ described in the second embodiment. It relates to a water heater.
 即ち、実施例3に係るヒートポンプ式給湯機は、圧縮機104が予め設定された基準容量以下で運転しているときに水-冷媒熱交換器105で熱交換された水の温度が目標温水温度よりも高い場合には、水流路F′を流れる水の流量が減少していると判断し、水-冷媒熱交換器105で熱交換した冷媒の温度が目標温水温度以上の場合には、水流路F′の水の流れが停止していると判断する。 That is, in the heat pump type hot water heater according to the third embodiment, the temperature of water heat-exchanged by the water-refrigerant heat exchanger 105 when the compressor 104 is operating below a preset reference capacity is the target hot water temperature. If the temperature is higher than the target hot water temperature, it is determined that the flow rate of the water flowing through the water flow path F ′ is decreasing, and the temperature of the refrigerant exchanging heat in the water-refrigerant heat exchanger 105 is equal to or higher than the target hot water temperature. It is determined that the water flow in the path F ′ is stopped.
 実施例3における流量減少の異常検知は実施例1で説明したものであり、流れ停止の異常検知は実施例2で説明したものであるため、具体的な制御の内容に関しては説明を割愛する。 Since the abnormality detection of the flow rate reduction in the third embodiment is the same as that described in the first embodiment and the abnormality detection of the flow stop is the same as that described in the second embodiment, the description of the specific control contents is omitted.
 なお、図9におけるステップS201~S205は、実施例1のステップS1~S5、及び、実施例2のステップS101~S105にそれぞれ対応する。また、ステップS206は、実施例2のステップS106に対応する。また、ステップS207~S209は、実施例1のステップS6~S8に対応する。また、ステップS211~S212は、実施例2のステップS107~S108に対応する。そして、ステップS210は、実施例1のステップS9、及び、実施例2のステップS109にそれぞれ対応する。 Note that steps S201 to S205 in FIG. 9 correspond to steps S1 to S5 of the first embodiment and steps S101 to S105 of the second embodiment, respectively. Step S206 corresponds to step S106 of the second embodiment. Steps S207 to S209 correspond to steps S6 to S8 of the first embodiment. Steps S211 to S212 correspond to steps S107 to S108 of the second embodiment. Step S210 corresponds to step S9 of the first embodiment and step S109 of the second embodiment.
 一般的に、スケール詰りや小さなゴミ詰り等の異常は、少しずつ進行する(即ち、流量が減少していく)ものである。一方、水流路F′に配置される弁が閉まっているとか、大きなゴミ詰り等の異常は、流れが突然停止するものである。この点、圧縮機104が予め設定された基準容量以下で運転しているときに水-冷媒熱交換器105で熱交換された水の温度が目標温水温度よりも高いことを検知する異常検知は、異常検知に要する時間が比較的長いため、少しずつ進行する流量減少の異常検知に適している。一方、水-冷媒熱交換器105で熱交換した冷媒の温度が目標温水温度に基づいて定められる基準温度以上であることを検知する異常検知は、異常検知に要する時間が比較的短いため、突然発生する流れ停止の異常検知に適している。 In general, abnormalities such as clogging of scales and clogging of small garbage progress gradually (that is, the flow rate decreases). On the other hand, an abnormality such as a valve disposed in the water flow path F 'being closed or a large clogging of dust is one in which the flow suddenly stops. In this respect, abnormality detection for detecting that the temperature of water heat-exchanged by the water-refrigerant heat exchanger 105 is higher than the target hot water temperature when the compressor 104 is operating at a preset reference capacity or less. Since the time required for detecting an abnormality is relatively long, it is suitable for detecting an abnormality of a flow rate decrease that progresses gradually. On the other hand, the abnormality detection for detecting that the temperature of the refrigerant heat-exchanged in the water-refrigerant heat exchanger 105 is equal to or higher than a reference temperature determined based on the target hot water temperature is abrupt because the time required for abnormality detection is relatively short. Suitable for detecting abnormalities in the flow stop that occurs.
 従って、実施例3に係るヒートポンプ式給湯機によれば、流量減少又は流れ停止のいずれの異常が発生しても、それぞれ精度よく検知することができる。また、流れが停止する程ではないが急激な流量低下が発生した場合(例えば、中程度の大きさのゴミつまりが発生した場合)であっても、流量減少又は流れ停止のいずれかの異常として確実に検知することができる。 Therefore, according to the heat pump type water heater according to the third embodiment, any abnormality of flow rate decrease or flow stoppage can be detected with high accuracy. In addition, even if the flow rate is suddenly reduced (for example, when medium-sized debris is clogged), the flow rate is reduced or the flow is stopped. It can be detected reliably.
 なお、本発明に係るヒートポンプ式給湯機は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。 In addition, the heat pump type water heater according to the present invention is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.
 例えば、上記実施形態においては、加熱対象液体(被加熱液体)として水を例に説明したが、これに限定されるものではなく、加熱対象液体(被加熱液体)は、水以外の液体(例えば、蓄熱液体等)であってもよい。このようなヒートポンプ式給湯機としては、例えば、ヒートポンプで加熱された高温の液体をタンクに貯留しておき、この高温の液体を用いて給水を間接的に加熱して給湯する方式のものが考えられる。また、この場合には、上記水-冷媒熱交換器は、液-冷媒熱交換器と読み替えることができ、温水温度や水温は、液体温度と読み替えることができ、水流路は液体流路と読み替えることができる。 For example, in the above embodiment, water has been described as an example of the liquid to be heated (liquid to be heated). However, the present invention is not limited to this, and the liquid to be heated (liquid to be heated) is a liquid other than water (for example, , Heat storage liquid, etc.). As such a heat pump type hot water supply device, for example, there is a system in which a high temperature liquid heated by a heat pump is stored in a tank, and hot water is indirectly heated using this high temperature liquid to supply hot water. It is done. In this case, the water-refrigerant heat exchanger can be read as a liquid-refrigerant heat exchanger, the hot water temperature and the water temperature can be read as the liquid temperature, and the water flow path is read as the liquid flow path. be able to.
 また、上記実施形態においては、ヒートポンプで加熱された高温の水をタンク内に貯留するヒートポンプ式給湯機を例に説明したが、本発明は、ヒートポンプで加熱された高温の水をそのまま給湯端末に供給する方式のヒートポンプ式給湯機にも適用可能である。 Moreover, in the said embodiment, although the heat pump type hot water heater which stores the high temperature water heated with the heat pump in the tank was demonstrated to the example, this invention is the hot water heated with the heat pump as it is to the hot water supply terminal. The present invention can also be applied to a heat pump type water heater of the supply type.
 また、上記実施形態においては、タンクに貯留された水を水-冷媒熱交換器に導入して加熱するヒートポンプ式給湯機を例に説明したが、本発明は、給水源からの水をそのまま水-冷媒熱交換器に導入して加熱する方式のヒートポンプ式給湯機にも適用可能である。 In the above embodiment, the heat pump type hot water heater that heats the water stored in the tank by introducing it into the water-refrigerant heat exchanger has been described as an example. However, the present invention uses the water from the water supply source as it is. -It can also be applied to heat pump water heaters that are heated by introduction into a refrigerant heat exchanger.
 また、上記実施形態においては、タンク9を収容するタンクユニット2と、圧縮機4及び液-冷媒熱交換器5を収容するヒートポンプユニット1とが別個に設けられるものを例に説明したが、これに限定されるものではなく、タンクや圧縮機や液-冷媒熱交換器が一つのユニットに一体的に設けられるものであってもよい。 In the above embodiment, the tank unit 2 that accommodates the tank 9 and the heat pump unit 1 that accommodates the compressor 4 and the liquid-refrigerant heat exchanger 5 are described as examples. However, the present invention is not limited thereto, and a tank, a compressor, and a liquid-refrigerant heat exchanger may be integrally provided in one unit.
1,101 ヒートポンプユニット
2,102 タンクユニット
3,103 接続配管
4,104 圧縮機
5,105 水-冷媒熱交換器
6,106 減圧弁
7,107 蒸発器
8,108 ファン
9,109 タンク
10,110 ポンプ
11,111 給水配管
12,112 給湯配管
13,113 圧縮機温度センサ
14,15,114,115 水温検知部
116 冷媒温度検知部
1,101 Heat pump unit 2,102 Tank unit 3,103 Connection pipe 4,104 Compressor 5,105 Water-refrigerant heat exchanger 6,106 Pressure reducing valve 7,107 Evaporator 8,108 Fan 9,109 Tank 10,110 Pump 11, 111 Water supply pipe 12, 112 Hot water supply pipe 13, 113 Compressor temperature sensor 14, 15, 114, 115 Water temperature detection unit 116 Refrigerant temperature detection unit

Claims (8)

  1.  容量可変な圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により被加熱液体を加熱する液-冷媒熱交換器と、前記液-冷媒熱交換器で熱交換された被加熱液体の温度を検知する液体温度検知部と、前記圧縮機の容量を制御する制御部とを備え、
     前記被加熱液体が前記液-冷媒熱交換器に導入されて前記液-冷媒熱交換器を通過した後に前記液-冷媒熱交換器から流出する液体流路を有し、
     前記制御部は、前記液-冷媒熱交換器で熱交換された被加熱液体の温度が予め設定された目標液体温度となるように前記圧縮機の容量を制御し、
     前記圧縮機が予め設定された基準容量以下で運転しているときに前記液-冷媒熱交換器で熱交換された液体の温度が前記目標液体温度よりも高い場合には、前記液体流路の異常と判断することを特徴とするヒートポンプ式給湯機。
    A compressor having a variable capacity, a liquid-refrigerant heat exchanger that heats the liquid to be heated by a high-temperature and high-pressure refrigerant discharged from the compressor, and a liquid to be heated that is heat-exchanged by the liquid-refrigerant heat exchanger A liquid temperature detection unit for detecting the temperature, and a control unit for controlling the capacity of the compressor,
    A liquid channel that flows out of the liquid-refrigerant heat exchanger after the liquid to be heated is introduced into the liquid-refrigerant heat exchanger and passes through the liquid-refrigerant heat exchanger;
    The controller controls the capacity of the compressor so that the temperature of the liquid to be heated exchanged by the liquid-refrigerant heat exchanger becomes a preset target liquid temperature;
    If the temperature of the liquid heat exchanged by the liquid-refrigerant heat exchanger is higher than the target liquid temperature when the compressor is operating below a preset reference capacity, A heat pump type water heater characterized by being judged to be abnormal.
  2.  前記圧縮機が予め設定された基準容量以下で運転しているときに前記液-冷媒熱交換器で熱交換された液体の温度が前記目標液体温度よりも高い状態が所定の時間以上継続した場合には、前記液体流路の異常と判断することを特徴とする請求の範囲第1項に記載のヒートポンプ式給湯機。 When the temperature of the liquid heat-exchanged in the liquid-refrigerant heat exchanger is higher than the target liquid temperature continues for a predetermined time or longer when the compressor is operating below a preset reference capacity The heat pump type hot water heater according to claim 1, wherein it is determined that the liquid flow path is abnormal.
  3.  前記液-冷媒熱交換器で熱交換された被加熱液体の温度が目標液体温度となるように前記圧縮機の容量を制御し、前記圧縮機が予め設定された基準容量以下で運転しているときに前記液-冷媒熱交換器で熱交換された液体の温度が前記目標液体温度よりも高い場合には、前記液体流路の被加熱液体の流量減少に関係する報知を行うことを特徴とする請求の範囲第1項に記載のヒートポンプ式給湯機。 The capacity of the compressor is controlled so that the temperature of the liquid to be heated exchanged by the liquid-refrigerant heat exchanger becomes a target liquid temperature, and the compressor is operating below a preset reference capacity. When the temperature of the liquid heat exchanged by the liquid-refrigerant heat exchanger is higher than the target liquid temperature, a notification related to a decrease in the flow rate of the liquid to be heated in the liquid flow path is performed. The heat pump type water heater according to claim 1.
  4.  容量可変な圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により被加熱液体を加熱する液-冷媒熱交換器と、前記液-冷媒熱交換器で熱交換された被加熱液体の温度を検知する液体温度検知部と、前記液-冷媒熱交換器で熱交換した冷媒の温度を検知する冷媒温度検知部と、前記圧縮機の容量を制御する制御部とを備え、
     前記被加熱液体が前記液-冷媒熱交換器に導入されて前記液-冷媒熱交換器を通過した後に前記液-冷媒熱交換器から流出する液体流路を有し、
     前記制御部は、前記液-冷媒熱交換器で熱交換された被加熱液体の温度が予め設定された目標液体温度となるように前記圧縮機の容量を制御し、
     前記液-冷媒熱交換器で熱交換した冷媒の温度が前記目標液体温度に基づいて定められる基準温度以上の場合には、前記液体流路の異常と判断することを特徴とするヒートポンプ式給湯機。
    A compressor having a variable capacity, a liquid-refrigerant heat exchanger that heats the liquid to be heated by a high-temperature and high-pressure refrigerant discharged from the compressor, and a liquid to be heated that is heat-exchanged by the liquid-refrigerant heat exchanger A liquid temperature detection unit for detecting temperature, a refrigerant temperature detection unit for detecting the temperature of the refrigerant heat-exchanged by the liquid-refrigerant heat exchanger, and a control unit for controlling the capacity of the compressor,
    A liquid channel that flows out of the liquid-refrigerant heat exchanger after the liquid to be heated is introduced into the liquid-refrigerant heat exchanger and passes through the liquid-refrigerant heat exchanger;
    The controller controls the capacity of the compressor so that the temperature of the liquid to be heated exchanged by the liquid-refrigerant heat exchanger becomes a preset target liquid temperature;
    A heat pump type water heater characterized by determining that the liquid flow path is abnormal when the temperature of the refrigerant heat-exchanged by the liquid-refrigerant heat exchanger is equal to or higher than a reference temperature determined based on the target liquid temperature. .
  5.  前記液-冷媒熱交換器で熱交換した冷媒の温度が前記目標液体温度に基づいて定められる基準温度以上である状態が所定の時間以上継続した場合には、前記液体流路の異常と判断することを特徴とする請求の範囲第4項に記載のヒートポンプ式給湯機。 If the state where the temperature of the refrigerant heat-exchanged by the liquid-refrigerant heat exchanger is equal to or higher than a reference temperature determined based on the target liquid temperature continues for a predetermined time or more, it is determined that the liquid flow path is abnormal. The heat pump type water heater according to claim 4, wherein
  6.  前記液-冷媒熱交換器で熱交換した冷媒の温度が前記目標液体温度に基づいて定められる基準温度以上の場合には、前記液体流路の被加熱液体の流れが停止していることに関係する報知を行うことを特徴とする請求の範囲第4項に記載のヒートポンプ式給湯機。 When the temperature of the refrigerant heat-exchanged by the liquid-refrigerant heat exchanger is equal to or higher than a reference temperature determined based on the target liquid temperature, the flow of the liquid to be heated in the liquid channel is stopped. The heat pump type hot water heater according to claim 4, wherein notification is performed.
  7.  容量可変な圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により被加熱液体を加熱する液-冷媒熱交換器と、前記液-冷媒熱交換器で熱交換された被加熱液体の温度を検知する液体温度検知部と、前記液-冷媒熱交換器で熱交換した冷媒の温度を検知する冷媒温度検知部と、前記圧縮機の容量を制御する制御部とを備え、
     前記被加熱液体を前記液-冷媒熱交換器に導入して前記液-冷媒熱交換器を通過させた後に前記液-冷媒熱交換器から取り出す液体流路を有し、
     前記制御部は、前記液-冷媒熱交換器で熱交換された被加熱液体の温度が予め設定された目標液体温度となるように前記圧縮機の容量を制御し、
     前記圧縮機が予め設定された基準容量以下で運転しているときに前記液-冷媒熱交換器で熱交換された液体の温度が前記目標液体温度よりも高い場合には、前記液体流路を流れる被加熱液体の流量が減少していると判断し、
     前記液-冷媒熱交換器で熱交換した冷媒の温度が前記目標液体温度に基づいて定められる基準温度以上の場合には、前記液体流路の被加熱液体の流れが停止していると判断することを特徴とするヒートポンプ式給湯機。
    A compressor having a variable capacity, a liquid-refrigerant heat exchanger that heats the liquid to be heated by a high-temperature and high-pressure refrigerant discharged from the compressor, and a liquid to be heated that is heat-exchanged by the liquid-refrigerant heat exchanger A liquid temperature detection unit for detecting temperature, a refrigerant temperature detection unit for detecting the temperature of the refrigerant heat-exchanged by the liquid-refrigerant heat exchanger, and a control unit for controlling the capacity of the compressor,
    A liquid flow path for removing the liquid to be heated from the liquid-refrigerant heat exchanger after introducing the liquid to be heated into the liquid-refrigerant heat exchanger and passing through the liquid-refrigerant heat exchanger;
    The controller controls the capacity of the compressor so that the temperature of the liquid to be heated exchanged by the liquid-refrigerant heat exchanger becomes a preset target liquid temperature;
    If the temperature of the liquid heat-exchanged by the liquid-refrigerant heat exchanger is higher than the target liquid temperature when the compressor is operating below a preset reference capacity, Judge that the flow rate of the liquid to be heated is decreasing,
    When the temperature of the refrigerant that has exchanged heat with the liquid-refrigerant heat exchanger is equal to or higher than a reference temperature determined based on the target liquid temperature, it is determined that the flow of the liquid to be heated in the liquid channel is stopped. A heat pump type water heater characterized by that.
  8.  前記液-冷媒熱交換器で加熱された被加熱液体を貯留するタンクと、
     前記タンクを収容するタンクユニットと、
     前記圧縮機と前記液-冷媒熱交換器とを収容するヒートポンプユニットとを備え、
     前記液体流路が前記タンクユニットと前記ヒートポンプユニットとに跨って設けられることを特徴とする請求の範囲第1項、第4項、第7項の何れか一項に記載のヒートポンプ式給湯機。
    A tank for storing a liquid to be heated heated by the liquid-refrigerant heat exchanger;
    A tank unit for housing the tank;
    A heat pump unit that houses the compressor and the liquid-refrigerant heat exchanger;
    The heat pump type hot water supply apparatus according to any one of claims 1, 4, and 7, wherein the liquid flow path is provided across the tank unit and the heat pump unit.
PCT/JP2011/053374 2010-10-07 2011-02-17 Heat pump water heater WO2012046461A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180048187.7A CN103154630B (en) 2010-10-07 2011-02-17 Heat pump hot-water supply system
KR1020137006261A KR101465572B1 (en) 2010-10-07 2011-02-17 Heat pump water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-227130 2010-10-07
JP2010227130A JP5487067B2 (en) 2010-10-07 2010-10-07 Heat pump water heater

Publications (1)

Publication Number Publication Date
WO2012046461A1 true WO2012046461A1 (en) 2012-04-12

Family

ID=45927463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053374 WO2012046461A1 (en) 2010-10-07 2011-02-17 Heat pump water heater

Country Status (4)

Country Link
JP (1) JP5487067B2 (en)
KR (1) KR101465572B1 (en)
CN (1) CN103154630B (en)
WO (1) WO2012046461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966367A1 (en) * 2014-07-07 2016-01-13 Mitsubishi Electric Corporation Hot water apparatus and failure notification method for hot water apparatus
EP2706303A3 (en) * 2012-09-07 2018-03-21 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388559B (en) * 2022-09-05 2023-02-24 宁波奥克斯电气股份有限公司 Flow abnormity determination method and device and air energy hot water system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147608A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007333288A (en) * 2006-06-14 2007-12-27 Denso Corp Hot-water supply system, and automatic diagnostic method for hot-water supply system
JP2010091181A (en) * 2008-10-08 2010-04-22 Corona Corp Storage water heater and heat pump water heater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828969A (en) * 1994-07-15 1996-02-02 Sanyo Electric Co Ltd Cooling system
JP2004116942A (en) * 2002-09-27 2004-04-15 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP3836796B2 (en) * 2003-02-10 2006-10-25 リンナイ株式会社 Cogeneration system
JP3887781B2 (en) * 2003-11-12 2007-02-28 日立アプライアンス株式会社 Heat pump water heater
JP4284290B2 (en) * 2005-03-24 2009-06-24 日立アプライアンス株式会社 Heat pump water heater
CN201363837Y (en) * 2009-01-06 2009-12-16 珠海格力电器股份有限公司 Air-conditioning heat-pump hot water machine set

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147608A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007333288A (en) * 2006-06-14 2007-12-27 Denso Corp Hot-water supply system, and automatic diagnostic method for hot-water supply system
JP2010091181A (en) * 2008-10-08 2010-04-22 Corona Corp Storage water heater and heat pump water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2706303A3 (en) * 2012-09-07 2018-03-21 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat pump system
EP2966367A1 (en) * 2014-07-07 2016-01-13 Mitsubishi Electric Corporation Hot water apparatus and failure notification method for hot water apparatus
US9625165B2 (en) 2014-07-07 2017-04-18 Mitsubishi Electric Corporation Hot water apparatus and failure notification method for hot water apparatus

Also Published As

Publication number Publication date
KR101465572B1 (en) 2014-11-26
JP2012082980A (en) 2012-04-26
KR20130041327A (en) 2013-04-24
CN103154630A (en) 2013-06-12
CN103154630B (en) 2016-04-06
JP5487067B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
KR101222331B1 (en) Heat-pump hot water apparatus
JP5113447B2 (en) Control method for heat pump water heater
JP2010091181A (en) Storage water heater and heat pump water heater
JP2007327725A (en) Heat pump type water heater
JP5034367B2 (en) Heat pump water heater
JP5003542B2 (en) Refrigeration cycle equipment
WO2012046461A1 (en) Heat pump water heater
US20150267953A1 (en) System for operating an hvac system having tandem compressors
JP6071352B2 (en) Heat pump system
JP6768977B2 (en) Geothermal heat pump system and control method of geothermal heat pump system
JP5020114B2 (en) Air conditioner
JP2019184150A (en) Air conditioner
JP2011075257A (en) Heat pump type water heater
JP6296279B2 (en) Temperature control device
KR102243654B1 (en) Air conditioner
JP2007057148A (en) Heat pump water heater
JP2008261590A (en) Ejector cycle
JP6208633B2 (en) Heat pump water heater
JP2012247079A (en) Heat pump type water heater
JP2016223741A (en) Refrigeration cycle device
JP2016138696A (en) Temperature control device
JP5273132B2 (en) Heat pump type hot water system
JP2018146150A (en) Heat pump type water heater
JP6037601B2 (en) Heat pump system
JP2010060201A (en) Cooling device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048187.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006261

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830395

Country of ref document: EP

Kind code of ref document: A1