WO2012046407A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012046407A1
WO2012046407A1 PCT/JP2011/005414 JP2011005414W WO2012046407A1 WO 2012046407 A1 WO2012046407 A1 WO 2012046407A1 JP 2011005414 W JP2011005414 W JP 2011005414W WO 2012046407 A1 WO2012046407 A1 WO 2012046407A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blue
liquid crystal
crystal display
green
Prior art date
Application number
PCT/JP2011/005414
Other languages
French (fr)
Japanese (ja)
Inventor
壮史 石田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012046407A1 publication Critical patent/WO2012046407A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device including a backlight that emits blue light.
  • the liquid crystal display device includes, for example, a thin film transistor (hereinafter referred to as “TFT”) substrate, a color filter (hereinafter referred to as “CF”) substrate, and a TFT substrate which are disposed so as to face each other. And a liquid crystal display panel constituted by a liquid crystal layer sealed between CF substrates and the like, and a backlight provided on the back side of the liquid crystal display panel.
  • TFT thin film transistor
  • CF color filter
  • a liquid crystal display panel constituted by a liquid crystal layer sealed between CF substrates and the like, and a backlight provided on the back side of the liquid crystal display panel.
  • CF substrate a colored layer colored, for example, red, green, or blue is provided in each sub-pixel constituting the pixel.
  • liquid crystal display device having the above configuration, since light from the backlight is absorbed by, for example, each colored layer constituting the CF substrate, the light use efficiency becomes relatively low. There has been proposed a liquid crystal display device that achieves low power consumption by improving utilization efficiency.
  • a phosphor layer that emits light of the same color corresponding to each pixel corresponding to the above-described sub-pixels of red, green, and blue is disposed outside the polarizing plate on the light incident side of the liquid crystal display panel.
  • a liquid crystal display device is disclosed in which the phosphor layer of each pixel is excited by light from a light source to emit red, green, and blue light, respectively.
  • each of the red and green sub-pixels is provided with a phosphor layer containing a phosphor that converts blue light into red light and green light, respectively. Since it is considered that a transparent layer or a diffusion layer is provided in the pixel, wavelength conversion by the phosphor is performed in each of the red and green subpixels, and wavelength conversion by the phosphor is not performed in the blue subpixel. Become.
  • the wavelength conversion is performed by the phosphor, the light intensity decreases due to the efficiency of wavelength conversion (quantum efficiency) and the extraction efficiency of isotropically emitted light. The intensity is lower than that of blue light. In this case, the display color on the screen of the liquid crystal display device becomes bluish and an appropriate white balance cannot be obtained, so there is room for improvement.
  • the present invention has been made in view of such points, and an object thereof is to obtain a suitable white balance by suppressing the bluish color of the display color.
  • the intensity (amount of light) of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is changed to red fluorescence provided in the red sub-pixel.
  • the intensity (light quantity) of the blue light incident on the body layer and the intensity (light quantity) of the blue light incident on the green phosphor layer provided in the green subpixel are set lower.
  • a liquid crystal display device includes a liquid crystal display panel in which red, green, and blue sub-pixels constituting pixels are arranged, and a back surface that is provided on the back side of the liquid crystal display panel and emits blue light.
  • a light adjustment unit provided between the liquid crystal display panel and the backlight, and adjusting the blue light incident from the backlight and supplying the light to the liquid crystal display panel.
  • a red phosphor layer provided so as to overlap the sub-pixel and converting the incident blue light into red light
  • a green phosphor provided so as to overlap the green sub-pixel and converting the incident blue light into green light
  • a liquid crystal display device comprising a body layer and a blue transmissive layer that is provided so as to overlap the blue sub-pixel and transmits the incident blue light, wherein the light adjusting unit transmits the blue transmissive layer.
  • the intensity of the blue light characterized in that it is configured to be lower than the intensity of the blue light incident on the red phosphor layer and a green phosphor layer.
  • the intensity of red light and green light is lower than the incident intensity of blue light.
  • the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is changed to the intensity of the blue light incident on the red phosphor layer provided in the red sub-pixel, and the green sub-pixel.
  • the red sub-pixel Since the intensity of the blue light incident on the provided green phosphor layer is lower, the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel in the light adjustment unit, the red sub-pixel It is possible to make the intensity of the red light converted by the red phosphor layer provided in the green and the intensity of the green light converted by the green phosphor layer provided in the green sub-pixel uniform. As a result, red light, green light, and blue light can be incident on the red, green, and blue sub-pixels arranged on the liquid crystal display panel with the same intensity, so that the light passes through the liquid crystal display panel. In the image display performed by adjusting the light transmittance for each sub-pixel, blue of the display color is suppressed. In the liquid crystal display device, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color is suppressed and an appropriate white balance can be obtained.
  • the light adjustment unit includes a light shielding layer that is opened so as to overlap each of the red, green, and blue subpixels, and an area of the light shielding layer that is opened so as to overlap the blue subpixel is the red color Also, the area may be smaller than the open area so as to overlap the green sub-pixels.
  • the opening area overlapping the blue subpixel is smaller than the opening area overlapping the red and green subpixels.
  • the intensity ratio of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel in the light adjustment unit in the light adjustment unit according to the area ratio of each opening portion of the light shielding layer overlapping each blue sub-pixel. Specifically, it is lower than the intensity of blue light incident on the provided red phosphor layer and the intensity of blue light incident on the green phosphor layer provided on the green subpixel.
  • the light shielding layer may have light reflectivity.
  • the light shielding layer has light reflectivity, among the blue light from the backlight, the blue light that has not passed through each opening of the light shielding layer is reflected on the light shielding layer and the backlight (The reflection efficiency of the blue light from the backlight is improved by sequentially reflecting and reusing it with the reflection sheet provided.
  • the area opened so as to overlap with the blue subpixel may be less than or equal to 1 ⁇ 2 of the area opened so as to overlap with the red and green subpixels.
  • the area opened so as to overlap the blue subpixel is less than or equal to 1 ⁇ 2 of the area opened so as to overlap each of the red and green subpixels. Therefore, the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is adjusted in the light adjustment unit according to the area ratio of each opening portion of the light-shielding layer overlapping the red, green, and blue sub-pixels. Is specifically 1 of the intensity of blue light incident on the red phosphor layer provided in the red subpixel and the intensity of blue light incident on the green phosphor layer provided in the green subpixel. / 2 or less.
  • the blue subpixel may be formed smaller than the red and green subpixels.
  • the blue subpixel is formed smaller than the red and green subpixels, the blue subpixel is selected in the light adjustment unit depending on the size of the red, green, and blue subpixels.
  • the intensity of the blue light transmitted through the blue transmission layer provided on the red sub-pixel is the intensity of the blue light incident on the red phosphor layer provided on the red sub-pixel, and the green phosphor layer provided on the green sub-pixel. Specifically, it is lower than the intensity of the incident blue light.
  • the light adjusting unit may include a light shielding layer provided in the blue sub-pixel and opened by the blue sub-pixel.
  • the light adjustment unit since the light adjustment unit has the light shielding layer opened in the blue subpixel, the light shielding layer is not disposed in each of the red and green subpixels.
  • the aperture ratio in the sub-pixel is improved.
  • the light adjusting unit may be provided with a partition that separates the red fluorescent layer, the green fluorescent layer, and the blue transmitting layer.
  • the light adjusting unit is provided with the partition that separates the red fluorescent layer, the green fluorescent layer, and the blue transmissive layer. Therefore, the red light and the green fluorescent layer converted by the red fluorescent layer are provided. Color mixing between the green light converted in step 1 and the blue light transmitted through the blue transmission layer is suppressed.
  • the light adjusting unit may be provided with a light shielding layer so as to overlap the partition wall.
  • the light adjusting unit is provided with the light shielding layer so as to overlap the partition wall, the red light converted by the red fluorescent layer, the green light converted by the green fluorescent layer, and the blue light transmission
  • the red phosphor layer provided in the red sub-pixel has the intensity of blue light transmitted through the blue transmissive layer provided in the blue sub-pixel while the color mixture between the blue light transmitted through the layer is suppressed by the partition wall
  • the intensity of the blue light incident on the green sub-pixel and the intensity of the blue light incident on the green phosphor layer provided in the green subpixel are lower.
  • the light shielding layer may have light reflectivity.
  • the blue light which did not pass between light shielding layers among the blue light from a backlight is light shielding layer and backlight (The reflection efficiency of the blue light from the backlight is improved by sequentially reflecting and reusing it with the reflection sheet provided on the backlight.
  • the partition may have a light shielding property.
  • the partition wall itself has a light shielding property, the red light converted by the red fluorescent layer, the green light converted by the green fluorescent layer, and a separate light shielding layer are not provided.
  • the color mixing between the blue light transmitted through the blue transmission layer is suppressed by the partition wall, and the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is reduced by the red fluorescence provided in the red sub-pixel. It becomes lower than the intensity of the blue light incident on the body layer and the intensity of the blue light incident on the green phosphor layer provided in the green subpixel.
  • the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is the intensity of the blue light incident on the red phosphor layer provided in the red sub-pixel. Since the intensity of the blue light incident on the green phosphor layer provided in the green subpixel is lower than the intensity of blue light, it is possible to suppress the bluishness of the display color and obtain an appropriate white balance.
  • FIG. 1 is a cross-sectional view of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating a positional relationship between the configuration of the pixel and the configuration of the light adjustment unit in the liquid crystal display device according to the first embodiment.
  • FIG. 3 is a graph showing an emission spectrum in the liquid crystal display device according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the liquid crystal display device according to the second embodiment.
  • FIG. 5 is an explanatory diagram showing a positional relationship between the configuration of the pixels and the configuration of the light adjustment unit in the liquid crystal display device according to the second embodiment.
  • FIG. 6 is a cross-sectional view of the liquid crystal display device according to the third embodiment.
  • FIG. 1 is a cross-sectional view of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating a positional relationship between the configuration of the pixel and the configuration of the light adjustment unit in the liquid crystal display device according to the first
  • FIG. 7 is an explanatory diagram illustrating a positional relationship between the configuration of the pixel and the configuration of the light adjustment unit in the liquid crystal display device according to the third embodiment.
  • FIG. 8 is a cross-sectional view of the liquid crystal display device according to the fourth embodiment.
  • FIG. 9 is an explanatory diagram illustrating a positional relationship between the configuration of the pixels and the configuration of the light adjustment unit in the liquid crystal display device according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view of the liquid crystal display device according to the fifth embodiment.
  • FIG. 11 is a cross-sectional view of the liquid crystal display device according to the sixth embodiment.
  • FIG. 12 is a cross-sectional view of the liquid crystal display device according to the seventh embodiment.
  • FIG. 13 is a cross-sectional view of the liquid crystal display device according to the eighth embodiment.
  • FIG. 14 is a graph showing an emission spectrum in the liquid crystal display device according to the comparative example.
  • Embodiment 1 of the Invention 1 to 3 show Embodiment 1 of a liquid crystal display device according to the present invention.
  • FIG. 1 is a cross-sectional view of the liquid crystal display device 100a of the present embodiment.
  • FIG. 2 is an explanatory diagram perspectively showing the positional relationship between the configuration of the pixel Pa and the configuration of the light adjustment unit 22a in the liquid crystal display device 100a.
  • the liquid crystal display device 100a includes a liquid crystal display panel 50a in which a plurality of pixels Pa (see FIG. 2) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface (rear surface) of the liquid crystal display panel 50a. , A pair of polarizing plates 51a and 51b attached to the lower surface of the figure, a backlight 70a emitting blue light Lb provided on the back side of the liquid crystal display panel 50a, and the liquid crystal display panel 50a (attached to the liquid crystal display panel 50a). And a phosphor substrate 60a including a light adjusting unit 22a for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a. Yes.
  • each pixel Pa a red subpixel Pra that performs red gradation display, a green subpixel Pga that performs green gradation display, and a blue subpixel that performs blue gradation display, which are formed in the same size.
  • Pba is arranged as shown in FIG.
  • the liquid crystal display panel 50a includes a TFT substrate 20a and a CF substrate 30a arranged to face each other, a liquid crystal layer 40 provided between the TFT substrate 20a and the CF substrate 30a, and a TFT substrate.
  • 20a and the counter substrate 30a are bonded to each other, and a sealing material (not shown) provided in a frame shape is provided to enclose the liquid crystal layer 40 between the TFT substrate 20a and the counter substrate 30a.
  • the TFT substrate 20a includes an insulating substrate 10a such as a glass substrate, a plurality of gate lines (not shown) provided on the insulating substrate 10a so as to extend in parallel with each other, and orthogonal to each gate line. And a plurality of source lines 11 provided so as to extend in parallel with each other, and a plurality of source lines 11 provided for each gate line and each intersecting portion of each source line 11, that is, for each subpixel Pra, Pga and Pba.
  • insulating substrate 10a such as a glass substrate
  • gate lines not shown
  • source lines 11 provided so as to extend in parallel with each other
  • a plurality of source lines 11 provided for each gate line and each intersecting portion of each source line 11, that is, for each subpixel Pra, Pga and Pba.
  • TFT (not shown), a protective film (not shown) provided so as to cover each TFT, a plurality of pixel electrodes (not shown) provided in a matrix on the protective film and connected to each TFT And an alignment film (not shown) provided so as to cover each pixel electrode.
  • the CF substrate 30a includes an insulating substrate 10b such as a glass substrate, a black matrix (not shown) provided in a lattice shape on the insulating substrate 10b, and each subpixel between the lattices of the black matrix.
  • a red layer 16ra, a green layer 16ga, and a blue layer 16ba that are provided corresponding to Pra, Pga, and Pba, respectively, and a common electrode that is provided so as to cover the black matrix, the red layer 16ra, the green layer 16ga, and the blue layer 16ba ( (Not shown) and an alignment film (not shown) provided so as to cover the common electrode.
  • the liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
  • the backlight 70a includes a linear light source (not shown) that emits blue light, a light guide plate (not shown) provided on the side of the linear light source, and a reflection sheet (not shown) provided below the light guide plate. And a diffusion sheet (not shown) provided on the light guide plate and a prism sheet (not shown) provided on the diffusion sheet, the blue light from the linear light source is converted into the light guide plate, the reflection sheet, and the diffusion. It is configured to emit blue light Lb (see FIG. 1) through the sheet and the prism sheet.
  • each linear light source includes a plurality of blue LEDs (Light-Emitting-Diodes) provided in a row that emits blue light.
  • the phosphor substrate 60a includes an insulating substrate 10c such as a glass substrate, and a light adjusting unit 22a provided on the insulating substrate 10c.
  • the light adjusting unit 22a includes a light shielding layer 21a provided on the insulating substrate 10c, and a red phosphor layer provided on the light shielding layer 21a so as to overlap the red subpixel Pra. 22ra, a green phosphor layer 22ga provided on the light shielding layer 21a so as to overlap the green subpixel Pga, and a blue transmission layer 22ba provided on the light shielding layer 21a so as to overlap the blue subpixel Pba.
  • a red phosphor layer provided on the light shielding layer 21a so as to overlap the red subpixel Pra. 22ra
  • a green phosphor layer 22ga provided on the light shielding layer 21a so as to overlap the green subpixel Pga
  • a blue transmission layer 22ba provided on the light shielding layer 21a so as to overlap the blue subpixel Pba.
  • the light shielding layer 21a includes an opening Ar provided so as to overlap the red subpixel Pra, an opening Ag provided so as to overlap the green subpixel Pga, and the blue subpixel Pba.
  • the opening Ab is provided so as to overlap.
  • the area of the opening Ab that overlaps the blue subpixel Pba is 1/20 to 1/2 of the area of the opening Ar that overlaps the red subpixel Pra and the area of the opening Ag that overlaps the green subpixel Pga. It is about.
  • the configuration in which the light shielding layer 21a is provided below the red phosphor layer 22ra, the green phosphor layer 22ga, and the blue transmission layer 22ba is exemplified.
  • the light shielding layer 21a includes the red phosphor layer 22ra, It may be provided on the upper layer of the green phosphor layer 22ga and the blue transmission layer 22ba.
  • the red phosphor layer 22ra is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting blue light Lb from the backlight 70a into red light Lr is dispersed. is there.
  • the green phosphor layer 22ga is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
  • the blue transmissive layer 22ba is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
  • the transparent resin layer is exemplified as the blue transmissive layer 22ba.
  • the blue light Lb from the backlight 70a is dispersed by dispersing transparent beads having a refractive index different from that of the transparent resin layer in the transparent resin layer. May be transmitted while being diffused, or may be a transparent inorganic material layer or a space layer.
  • the light adjustment unit 22a has a blue subpixel according to the area ratio of each opening portion of the light shielding layer 21a that overlaps the red subpixel Pra, the green subpixel Pga, and the blue subpixel Pba.
  • the intensity of the blue light Ltb that is transmitted through the blue transmission layer 22ba provided in Pba is the same as the intensity of the blue light Lb that is incident on the red phosphor layer 22ra provided in the red subpixel Pra, and the green subpixel Pga.
  • the intensity of the blue light Ltb transmitted through a, the intensity of the red light Lr converted by the red phosphor layer 22ra provided in the red subpixel Pra, and the green phosphor layer 22ga provided in the green subpixel Pga The intensities of the converted green light Lg can be made uniform.
  • FIG. 3 shows the liquid crystal display device 100a, which is provided in the blue subpixel Pba according to the area ratio of the open portions of the light shielding layer 21a overlapping the red subpixel Pra, the green subpixel Pga, and the blue subpixel Pba.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22ba is the same as the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the red subpixel Pra and the green fluorescence provided in the green subpixel Pga.
  • FIGS. 3 and 14 are a graph showing a light emission spectrum of a comparative example in which the areas of the opened portions of the light shielding layer 21a overlapping the red subpixel Pra, the green subpixel Pga, and the blue subpixel Pba are equal to each other.
  • the graphs of FIGS. 3 and 14 are obtained by adding together the emission spectrum of the red phosphor layer 22ra, the emission spectrum of the green phosphor layer 22ga, and the emission spectrum of the blue transmission layer 22ba.
  • the relative intensity of blue light is high and the chromaticity coordinates (x, y) are (0.2233, 0.1623), so that an appropriate white balance is obtained. Is considered difficult.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22ba provided in the blue subpixel Pba, the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the red subpixel Pra, and green In order to reduce the intensity of the blue light Lb incident on the green phosphor layer 22ga provided in the subpixel Pga to 1/3, the opening area of the light shielding layer 21a overlapping the blue subpixel Pba is changed to red and green. Although it is necessary to make the opening area overlapping each of the subpixels Pra and Pga to be 1/3, the light shielding layer 21a is formed of a light reflective material (for example, an aluminum film), and the reflected light Lrb of the blue light Lb is regenerated.
  • a light reflective material for example, an aluminum film
  • the opening area overlapping the blue subpixel Pba is set to 1 ⁇ 2 of the opening area overlapping the red and green subpixels Pra and Pga. It is possible, it is possible to improve the utilization efficiency of blue light Lb to 1.3 times the case where the light-shielding layer 21a does not have light reflectivity.
  • the liquid crystal display device 100a having the above configuration applies a predetermined voltage to each of the subpixels Pra, Pga and Pba to the liquid crystal layer 40 disposed between each pixel electrode on the TFT substrate 20a and the common electrode on the CF substrate 30a.
  • the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a is adjusted for each of the subpixels Pra, Pga, and Pba. It is configured to display.
  • the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22ra and the green phosphor layer 22ga.
  • the intensity of the light Lg is lower than the incident intensity of the blue light Lb
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22ba provided in the blue subpixel Pba in the light adjustment unit 22a is red. Since it is lower than the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the pixel Pra and the intensity of the blue light Lb incident on the green phosphor layer 22ga provided in the green sub-pixel Pga.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22ba provided in the blue subpixel Pba is set in the red subpixel Pra.
  • the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Pra, Pga, and Pba arranged on the liquid crystal display panel 50a with the same intensity.
  • the display color is bluish. Can be suppressed.
  • the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
  • FIG. 4 is a cross-sectional view of the liquid crystal display device 100b of this embodiment.
  • FIG. 5 is an explanatory diagram perspectively showing the positional relationship between the configuration of the pixel Pb and the configuration of the light adjustment unit 22b in the liquid crystal display device 100b.
  • the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 100a in which the red, green, and blue subpixels Pra, Pga, and Pba are formed with the same size is illustrated.
  • the blue subpixel Pbb is relatively A liquid crystal display device 100b formed to be small is illustrated.
  • the liquid crystal display device 100b includes a liquid crystal display panel 50b in which a plurality of pixels Pb (see FIG. 5) are arranged in a matrix, and the surface (upper surface in the drawing) of the liquid crystal display panel 50b. And a pair of polarizing plates 51a and 51b attached to the back surface (the back surface, the bottom surface in the figure), a backlight 70a provided on the back side of the liquid crystal display panel 50b, and the liquid crystal display panel 50b And a phosphor substrate 60b including a light adjusting unit 22b provided between the polarizing plate 51b) and the backlight 70a for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50b. .
  • each pixel Pb a relatively large red sub-pixel Prb that performs red gradation display, a green sub-pixel Pgb that performs green gradation display, and a relatively small blue floor. As shown in FIG. 5, the blue sub-pixels Pbb that perform the tone display are arranged.
  • the liquid crystal display panel 50b includes a TFT substrate 20b and a CF substrate 30b arranged to face each other, a liquid crystal layer 40 provided between the TFT substrate 20b and the CF substrate 30b, and a TFT substrate.
  • a sealing material (not shown) provided in a frame shape is provided for adhering the liquid crystal layer 40 between the TFT substrate 20b and the counter substrate 30b.
  • the intervals between the source lines 11 and the sizes of the pixel electrodes differ according to the sizes of the subpixel Prb, the subpixel Pgb, and the subpixel Pbb constituting each pixel Pb.
  • the other configurations are substantially the same as those of the TFT substrate 20a of the first embodiment.
  • the CF substrate 30b corresponds to the size of the sub-pixel Prb, the sub-pixel Pgb, and the sub-pixel Pbb constituting each pixel Pb, the spacing between the black matrixes, and the red layer 16rb.
  • the other configurations are substantially the same as those of the CF substrate 30a of the first embodiment except that the sizes of the green layer 16gb and the blue layer 16bb are different.
  • the phosphor substrate 60b includes an insulating substrate 10c and a light adjusting unit 22b provided on the insulating substrate 10c.
  • the light adjusting unit 22b includes a light shielding layer 21b provided on the insulating substrate 10c and a red phosphor layer provided on the light shielding layer 21b so as to overlap the red subpixel Prb. 22rb, a green phosphor layer 22gb provided on the light shielding layer 21b so as to overlap the green subpixel Pgb, and a blue transmission layer 22bb provided on the light shielding layer 21b so as to overlap the blue subpixel Pbb.
  • a red phosphor layer provided on the light shielding layer 21b so as to overlap the red subpixel Prb. 22rb
  • a green phosphor layer 22gb provided on the light shielding layer 21b so as to overlap the green subpixel Pgb
  • a blue transmission layer 22bb provided on the light shielding layer 21b so as to overlap the blue subpixel Pbb.
  • the light shielding layer 21b includes an opening Ar provided so as to overlap the red subpixel Prb, an opening Ag provided so as to overlap the green subpixel Pgb, and the blue subpixel Pbb.
  • the opening Ab is provided so as to overlap.
  • the area of the opening Ab overlapping the blue subpixel Pbb is 1/20 to 1/2 of the area of the opening Ar overlapping the red subpixel Prb and the area of the opening Ag overlapping the green subpixel Pgb. It is about.
  • the red phosphor layer 22rb is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
  • the green phosphor layer 22gb is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
  • the blue transmissive layer 22bb is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
  • the blue subpixel Pbb is formed to be smaller than the red subpixel Prb and the green subpixel Pgb, and the light blocking layer 21b of the light adjustment unit 22b includes the blue subpixel Pbb. Since the overlapping opening area is about 1/20 to 1/2 of the opening area overlapping the red and green subpixels Prb and Pgb, the red subpixel Prb, the green subpixel Pgb, and the blue subpixel are arranged.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb in the light adjustment unit 22b is determined by the area ratio of each opened portion of the light shielding layer 21b overlapping the Pbb.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb and the red phosphor layer provided in the red subpixel Prb are reduced to about 20 to 1/2.
  • the intensity of the red light Lr converted by 22rb and the intensity of the green light Lg converted by the green phosphor layer 22gb provided in the green subpixel Pgb can be made uniform.
  • the liquid crystal display device 100b shields light from overlapping the red subpixel Prb, the green subpixel Pgb, and the blue subpixel Pbb.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb is changed to the red phosphor layer 22rb provided in the red subpixel Prb by the area ratio of each opened portion of the layer 21b.
  • the chromaticity coordinates (x, y) are (0.2901, 0.2812), it is considered easy to obtain an appropriate white balance, whereas the red subpixel Prb, the green subpixel Pgb, and the blue subpixel In the comparative example in which the areas of the opened portions of the light shielding layer 21b overlapping the pixel Pbb are equal to each other, the chromaticity coordinates (x, y) are (0.2233, 0.1623). It is considered difficult to obtain.
  • the light use efficiency is set to the above embodiment. 1 can be improved to 1.05 times that of the corresponding embodiment (with light reflectivity: yes), and when the light-shielding layer 21b does not have light reflectivity, the light utilization efficiency can be improved. It can be improved 1.3 times as much as the corresponding example of Embodiment 1 (light reflectivity: none).
  • the liquid crystal display device 100b having the above configuration applies a predetermined voltage to each of the subpixels Prb, Pgb, and Pbb to the liquid crystal layer 40 disposed between each pixel electrode on the TFT substrate 20b and the common electrode on the CF substrate 30b.
  • the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50b is adjusted for each of the subpixels Prb, Pgb, and Pbb. It is configured to display.
  • the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22rb and the green phosphor layer 22gb.
  • the intensity of the light Lg is lower than the incident intensity of the blue light Lb
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb in the light adjustment unit 22b is red. Since the intensity of the blue light Lb incident on the red phosphor layer 22rb provided in the pixel Prb and the intensity of the blue light Lb incident on the green phosphor layer 22gb provided in the green sub-pixel Pgb are lower.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb is set in the red subpixel Prb.
  • the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Prb, Pgb, and Pbb arranged on the liquid crystal display panel 50b in a state where the intensities are uniform.
  • the blue of the display color is suppressed. can do.
  • the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
  • FIG. 6 is a cross-sectional view of the liquid crystal display device 100c of this embodiment.
  • FIG. 7 is an explanatory diagram perspectively showing a positional relationship between the configuration of the pixel Pa and the configuration of the light adjusting unit 22c in the liquid crystal display device 100c.
  • the liquid crystal display devices 100a and 100b in which the light shielding layers 21a and 21b are provided in the red, green, and blue subpixels are illustrated. However, in the present embodiment, only the blue subpixels are provided.
  • a liquid crystal display device 100c provided with a light shielding layer 21c is illustrated.
  • the liquid crystal display device 100c includes a liquid crystal display panel 50a in which a plurality of pixels Pa (see FIG. 7) are arranged in a matrix, and the surface (upper surface in the drawing) of the liquid crystal display panel 50a. And a pair of polarizing plates 51a and 51b attached to the back surface (rear surface, lower surface in the figure), a backlight 70a provided on the back surface side of the liquid crystal display panel 50a, and the liquid crystal display panel 50a A polarizing plate 51b) and a phosphor substrate 60c including a light adjusting portion 22c for adjusting the blue light Lb from the backlight 70a and supplying the blue light Lb to the liquid crystal display panel 50a. .
  • the phosphor substrate 60c includes an insulating substrate 10c and a light adjusting unit 22c provided on the insulating substrate 10c.
  • the light adjusting unit 22c overlaps the light-shielding layer 21c provided on the insulating substrate 10c so as to overlap the blue subpixel Pba and the red subpixel Pra on the insulating substrate 10c.
  • the red phosphor layer 22rc provided in this manner, the green phosphor layer 22gc provided on the insulating substrate 10c so as to overlap the green subpixel Pga, and the blue subpixel Pba so as to overlap the light shielding layer 21c.
  • a blue transmission layer 22bc provided.
  • the light shielding layer 21 c includes an opening Ab provided so as to overlap the blue subpixel Pba.
  • the red phosphor layer 22rc is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
  • the green phosphor layer 22gc is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
  • the blue transmissive layer 22bc is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit a part of the blue light Lb from the backlight 70a as the blue light Ltb. .
  • the blue transmission layer 22bc provided in the blue subpixel Pba in the light adjustment unit 22c since the light blocking layer 21c of the light adjustment unit 22c is provided only in the blue subpixel Pb, the blue transmission layer 22bc provided in the blue subpixel Pba in the light adjustment unit 22c.
  • the intensity of the blue light Ltb that passes through is incident on the red phosphor layer 22rc provided on the red subpixel Pra, and on the green phosphor layer 22gc provided on the green subpixel Pga.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bc provided in the blue subpixel Pba and the red fluorescence provided in the red subpixel Pra are lower than the intensity of the blue light Lb.
  • the intensity of the red light Lr converted by the body layer 22rc and the intensity of the green light Lg converted by the green phosphor layer 22gc provided in the green subpixel Pga can be made uniform. That.
  • the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22rc and the green phosphor layer 22gc.
  • the intensity of the light Lg is lower than the incident intensity of the blue light Lb
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bc provided in the blue subpixel Pba in the light adjusting unit 22c is red. Since it is lower than the intensity of the blue light Lb incident on the red phosphor layer 22rc provided in the pixel Pra and the intensity of the blue light Lb incident on the green phosphor layer 22gc provided in the green sub-pixel Pga.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bc provided in the blue subpixel Pba is set in the red subpixel Pra. It was can be aligned intensity of the converted red light Lr by the red phosphor layer 22Rc, and the intensity of the green light Lg converted by a green phosphor layer 22gc provided a green subpixel Pga. As a result, the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Pra, Pga, and Pba arranged on the liquid crystal display panel 50a with the same intensity.
  • the display color is bluish. Can be suppressed.
  • the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
  • the light adjustment unit 22c has the light shielding layer 21c opened in the blue subpixel Pba, so that the red subpixel Pra and the green subpixel Pga are shielded from light.
  • the layer 21c is not disposed, and each aperture ratio in the red subpixel Pra and the green subpixel Pga can be improved.
  • FIG. 8 is a cross-sectional view of the liquid crystal display device 100d of this embodiment.
  • FIG. 9 is an explanatory diagram perspectively showing the positional relationship between the configuration of the pixel Pb and the configuration of the light adjustment unit 22d in the liquid crystal display device 100c.
  • liquid crystal display devices 100a to 100c in which the light shielding layer is provided as a part of the light adjustment unit in each of the red, green, and blue subpixels or in the blue subpixel are illustrated.
  • the liquid crystal display device 100d in which the light shielding layer is not provided as a part of the light adjustment unit is illustrated.
  • the liquid crystal display device 100d includes a liquid crystal display panel 50b in which a plurality of pixels Pb (see FIG. 9) are arranged in a matrix, and the surface (upper surface in the drawing) of the liquid crystal display panel 50b. And a pair of polarizing plates 51a and 51b attached to the back surface (the back surface, the bottom surface in the figure), a backlight 70a provided on the back side of the liquid crystal display panel 50b, and the liquid crystal display panel 50b A polarizing plate 51b) and a phosphor substrate 60d including a light adjusting unit 22d for adjusting the blue light Lb from the backlight 70a and supplying the blue light Lb to the liquid crystal display panel 50b. .
  • the phosphor substrate 60d includes an insulating substrate 10c and a light adjusting unit 22d provided on the insulating substrate 10c.
  • the light adjusting unit 22d includes a red phosphor layer 22rd provided on the insulating substrate 10c so as to overlap the red subpixel Prb, and a green subpixel Pgb on the insulating substrate 10c.
  • a green phosphor layer 22gd provided so as to overlap the blue sub-pixel Pbb, and a blue transmission layer 22bd provided so as to overlap the blue subpixel Pbb on the insulating substrate 10c.
  • the red phosphor layer 22rd is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting blue light Lb from the backlight 70a into red light Lr is dispersed. is there.
  • the green phosphor layer 22gd is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
  • the blue transmissive layer 22bd is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
  • the blue subpixel Pbb is smaller than the red subpixel Prb and the green subpixel Pgb, the red subpixel Prb, the green subpixel Pgb, and the blue subpixel are formed.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bd provided in the blue subpixel Pbb is incident on the red phosphor layer 22rd provided in the red subpixel Prb.
  • the intensity of the blue light Lb is lower than the intensity of the blue light Lb incident on the green phosphor layer 22gd provided on the green subpixel Pgb, and the light adjustment unit 22d is provided on the blue subpixel Pbb.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bd, the intensity of the red light Lr converted by the red phosphor layer 22rd provided in the red subpixel Prb, and green Intensity of the converted green light Lg by the green phosphor layer 22gd provided subpixel Pgb of can be made uniform.
  • the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22rd and the green phosphor layer 22gd.
  • the intensity of the light Lg is lower than the incident intensity of the blue light Lb
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bd provided in the blue subpixel Pbb in the light adjusting unit 22d is red. Since it is lower than the intensity of the blue light Lb incident on the red phosphor layer 22rd provided in the pixel Prb and the intensity of the blue light Lb incident on the green phosphor layer 22gd provided in the green sub-pixel Pgb.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bd provided in the blue subpixel Pbb is set in the red subpixel Prb.
  • Was can be aligned intensity of the converted red light Lr by the red phosphor layer 22Rd, and the intensity of the green light Lg converted by a green phosphor layer 22gd provided a green subpixel Pgb.
  • the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Prb, Pgb, and Pbb arranged on the liquid crystal display panel 50b in a state where the intensities are uniform.
  • the blue of the display color is suppressed. can do.
  • the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
  • the light adjusting unit 22d since the light adjusting unit 22d is not provided with the light shielding layer, the aperture ratios of the sub-pixels Prb, Pgb, and Pbb can be improved.
  • FIG. 10 is a cross-sectional view of the liquid crystal display device 100e of this embodiment.
  • the liquid crystal display devices 100a to 100d in which the partition is not provided between the red phosphor layer, the green phosphor layer, and the blue transmission layer constituting the light adjustment units 22a to 22d are exemplified.
  • a liquid crystal display device 100e in which a partition wall 23a is provided between a red phosphor layer, a green phosphor layer, and a blue transmission layer that constitute the light adjusting unit 22e is illustrated.
  • the liquid crystal display device 100e includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the drawing) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back side of the liquid crystal display panel 50a, and a polarizing plate 51b attached to the liquid crystal display panel 50a ) And the backlight 70a, and a phosphor substrate 60e including a light adjusting unit 22e for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a.
  • a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the drawing) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back
  • the phosphor substrate 60e includes an insulating substrate 10c and a light adjusting unit 22e provided on the insulating substrate 10c.
  • the light adjustment unit 22e overlaps the light shielding layer 21e provided on the insulating substrate 10c, the partition wall 23a provided in a lattice shape on the light shielding layer 21e, and the red sub-pixel (Pra).
  • the red phosphor layer 22re provided between the barrier ribs 23a
  • the green phosphor layer 22ge provided between the barrier ribs 23a so as to overlap the green subpixel (Pga), and the blue subpixel (Pba).
  • a blue transmission layer 22be provided between the partition walls 23a.
  • the light shielding layer 21e has an opening (Ar) provided so as to overlap the red subpixel (Pra) and an opening (Ag) provided so as to overlap the green subpixel (Pgb). ) And an opening (Ab) provided so as to overlap with the blue sub-pixel (Pbb).
  • the area of the opening (Ab) that overlaps the blue subpixel (Pba) is the opening (Ar) that overlaps the red subpixel (Pra) and the opening (Ag) that overlaps the green subpixel (Pga).
  • the light shielding layer 21e may have light reflectivity.
  • the partition wall 23a is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m).
  • the red phosphor layer 22re is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
  • the green phosphor layer 22ge is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
  • the blue transmission layer 22be is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
  • the opening area overlapping the blue subpixel (Pba) is 1 / of the opening area overlapping the red and green subpixels (Pra and Pga). Since it is about 20 to 1/2, depending on the area ratio of each opened portion of the light shielding layer 21e overlapping the red subpixel (Pra), the green subpixel (Pga), and the blue subpixel (Pba),
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22be provided in the blue subpixel (Pba) is incident on the red phosphor layer 22re provided in the red subpixel (Pra).
  • the intensity of the blue light Lb and the intensity of the blue light Lb incident on the green phosphor layer 22ge provided in the green sub-pixel (Pga) are about 1/20 to 1/2.
  • Sub-pixel The intensity of the blue light Ltb transmitted through the blue transmission layer 22be provided in Pba), the intensity of the red light Lr converted by the red phosphor layer 22re provided in the red subpixel (Pra), and the green subpixel
  • the intensities of the green light Lg converted by the green phosphor layer 22ge provided in (Pga) can be made uniform.
  • the red light Lr is obtained by wavelength conversion by the red phosphor layer 22re and the green phosphor layer 22ge.
  • the intensity of the green light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22be provided in the blue subpixel (Pba) in the light adjustment unit 22e is low.
  • the intensity of the red light Lr converted by the red phosphor layer 22re provided in the sub-pixel (Pra) and the green light Lg converted by the green phosphor layer 22ge provided in the green sub-pixel (Pga) The strength can be made uniform.
  • red light Lr, green light Lg, and blue light Ltb are incident on the red, green, and blue sub-pixels (Pra, Pga, and Pba) arranged on the liquid crystal display panel 50a with the same intensity.
  • Blueness of color can be suppressed.
  • the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
  • the light adjusting unit 22e is provided with the partition wall 23a that separates the red fluorescent layer 22re, the green fluorescent layer 22ge, and the blue transmissive layer 22be. Color mixing among the red light Lr converted by the fluorescent layer 22re, the green light Lg converted by the green fluorescent layer 22ge, and the blue light Ltb transmitted through the blue transmission layer 22be can be suppressed.
  • the light adjusting unit 22e is provided with the light shielding layer 21e so as to overlap the partition wall 23a, the red light Lr converted by the red fluorescent layer 22re, green
  • the color mixture between the green light Lg converted by the fluorescent layer 22ge and the blue light Ltb transmitted through the blue transmission layer 22be can be suppressed by the partition wall 23b, and the blue transmission provided in the blue subpixel (Pba) can be suppressed.
  • the intensity of the blue light Ltb that passes through the layer 22be is the same as the intensity of the blue light Lb that is incident on the red phosphor layer 22re provided in the red subpixel (Pra), and the green that is provided in the green subpixel (Pga). It can be made lower than the intensity of the blue light Lb incident on the phosphor layer 22ge.
  • the blue light Lb from the backlight 70a has a space between the light shielding layers 21e. Since the blue light Lrb that has not passed through the light is sequentially reflected and reused by the reflection sheet provided on the light shielding layer 21e and the backlight 70a, the utilization efficiency of the blue light Lb from the backlight 70a can be improved. .
  • FIG. 11 is a cross-sectional view of the liquid crystal display device 100f of this embodiment.
  • the liquid crystal display device 100e in which the partition wall 23a is provided above the light shielding layer 21e is illustrated, but in this embodiment, the liquid crystal display device 100f in which the partition wall 23b is provided below the light shielding layer 21f is illustrated. To do.
  • the liquid crystal display device 100f includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back side of the liquid crystal display panel 50a, and a polarizing plate 51b attached to the liquid crystal display panel 50a ) And a backlight 70a, and a phosphor substrate 60f including a light adjusting unit 22f for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a.
  • a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the
  • the phosphor substrate 60f includes an insulating substrate 10c and a light adjusting unit 22f provided on the insulating substrate 10c.
  • the light adjusting unit 22f includes a red phosphor provided between the barrier ribs 23b provided in a grid pattern on the insulating substrate 10c and the barrier ribs 23b so as to overlap the red sub-pixel (Pra).
  • a transmissive layer 22bf and a light shielding layer 21f provided on the partition wall 23b are provided.
  • the partition wall 23b is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m).
  • the light shielding layer 21f has an opening (Ar) provided so as to overlap the red subpixel (Pra) and an opening (Ag) provided so as to overlap the green subpixel (Pgb). ) And an opening (Ab) provided so as to overlap with the blue sub-pixel (Pbb).
  • the area of the opening (Ab) that overlaps the blue subpixel (Pba) is the opening (Ar) that overlaps the red subpixel (Pra) and the opening (Ag) that overlaps the green subpixel (Pga).
  • the light shielding layer 21f may have light reflectivity.
  • the red phosphor layer 22rf is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting blue light Lb from the backlight 70a into red light Lr is dispersed. is there.
  • the green phosphor layer 22gf is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
  • the blue transmissive layer 22bf is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
  • the opening area overlapping the blue subpixel (Pba) is 1 / of the opening area overlapping the red and green subpixels (Pra and Pga). Since it is about 20 to 1/2, depending on the area ratio of each opened portion of the light shielding layer 21f overlapping the red subpixel (Pra), the green subpixel (Pga), and the blue subpixel (Pba),
  • the intensity of the blue light Ltb that passes through the blue transmission layer 22bf provided in the blue subpixel (Pba) is incident on the red phosphor layer 22rf provided in the red subpixel (Pra).
  • the intensity of the blue light Lb and the intensity of the blue light Lb incident on the green phosphor layer 22gf provided in the green sub-pixel (Pga) are about 1/20 to 1/2.
  • Sub-pixel The intensity of the blue light Ltb transmitted through the blue transmission layer 22bf provided in Pba), the intensity of the red light Lr converted by the red phosphor layer 22rf provided in the red subpixel (Pra), and the green subpixel
  • the intensities of the green light Lg converted by the green phosphor layer 22gf provided in (Pga) can be made uniform.
  • the red light Lr is obtained by wavelength conversion using the red phosphor layer 22rf and the green phosphor layer 22gf.
  • the intensity of the green light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bf provided in the blue subpixel (Pba) in the light adjustment unit 22f is low.
  • the intensity of the blue light Lb incident on the red phosphor layer 22rf provided in the red sub-pixel (Pra) and the intensity of the blue light Lb incident on the green phosphor layer 22gf provided in the green sub-pixel (Pga) Since the intensity is lower than the intensity, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bf provided in the blue sub-pixel (Pba) in the light adjustment unit 22f, red Of the red light Lr converted by the red phosphor layer 22rf provided in the sub-pixel (Pra) of the green light and the green light Lg converted by the green phosphor layer 22gf provided in the green sub-pixel (Pga)
  • the strength can be made uniform.
  • red light Lr, green light Lg, and blue light Ltb are incident on the red, green, and blue sub-pixels (Pra, Pga, and Pba) arranged on the liquid crystal display panel 50a with the same intensity.
  • Blueness of color can be suppressed.
  • the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
  • the light adjusting unit 22f is provided with the partition wall 23b that separates the red fluorescent layer 22rf, the green fluorescent layer 22gf, and the blue transmissive layer 22bf. Color mixing between the red light Lr converted by the fluorescent layer 22rf, the green light Lg converted by the green fluorescent layer 22gf, and the blue light Ltb transmitted through the blue transmission layer 22bf can be suppressed.
  • the light adjusting unit 22f is provided with the light shielding layer 21f so as to overlap the partition wall 23b, the red light Lr converted by the red fluorescent layer 22rf, green The color mixture between the green light Lg converted by the phosphor layer 22gf and the blue light Ltb transmitted through the blue transmission layer 22bf can be suppressed by the partition wall 23b, and the blue transmission provided in the blue sub-pixel (Pba) can be suppressed.
  • the intensity of the blue light Ltb that is transmitted through the layer 22bf is the same as the intensity of the blue light Lb that is incident on the red phosphor layer 22rf provided in the red subpixel (Pra), and the green that is provided in the green subpixel (Pga). It can be made lower than the intensity of the blue light Lb incident on the phosphor layer 22gf.
  • the blue light Lb from the backlight 70a has a space between the light shielding layers 21f. Since the blue light Lrb that has not passed through the light is sequentially reflected and reused by the reflection sheet provided in the light shielding layer 21f and the backlight 70a, the utilization efficiency of the blue light Lb from the backlight 70a can be improved. .
  • FIG. 12 is a cross-sectional view of the liquid crystal display device 100g of the present embodiment.
  • the liquid crystal display devices 100e and 100f in which the light shielding layers 21e and 21f are arranged on the partition walls 23a and 23b are illustrated.
  • the partition wall 23c has a light shielding property.
  • the liquid crystal display device 100g includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back side of the liquid crystal display panel 50a, and a polarizing plate 51b attached to the liquid crystal display panel 50a ) And the backlight 70a, and a phosphor substrate 60g including a light adjusting unit 22g for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a.
  • a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back
  • the phosphor substrate 60g includes an insulating substrate 10c and a light adjusting unit 22g provided on the insulating substrate 10c.
  • the light adjusting unit 22g includes a red phosphor provided between the partition wall 23c provided in a grid pattern on the insulating substrate 10c and the partition wall 23c so as to overlap the red sub-pixel (Pra).
  • a transmissive layer 22bg is a transmissive layer 22bg.
  • the partition wall 23c is a light-shielding resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m).
  • the red phosphor layer 22rg is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
  • the green phosphor layer 22gg is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
  • the blue transmissive layer 22bg is a transparent resin layer (thickness of about 10 ⁇ m to several tens of ⁇ m) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
  • the opening area overlapping the blue subpixel (Pba) is 1/20 of the opening area overlapping the red and green subpixels (Pra and Pga). Since it is about 1 ⁇ 2, the light adjustment is performed according to the area ratio of each opened portion of the partition wall 23c overlapping the red subpixel (Pra), the green subpixel (Pga), and the blue subpixel (Pba).
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bg provided in the blue subpixel Pba is equal to the intensity of the blue light Lb incident on the red phosphor layer 22rg provided in the red subpixel Pra.
  • the intensity of the green light Lg converted by the provided green phosphor layer 22gg can be made uniform.
  • the red light Lr is obtained by wavelength conversion using the red phosphor layer 22rg and the green phosphor layer 22gg.
  • the intensity of the green light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bg provided in the blue subpixel (Pba) in the light adjustment unit 22g is low.
  • the intensity of the blue light Ltb transmitted through the blue transmission layer 22bg provided in the blue sub-pixel (Pba) in the light adjustment unit 22g red
  • the intensity of the red light Lr converted by the red phosphor layer 22rg provided in the sub-pixel (Pra) and the green light Lg converted by the green phosphor layer 22gg provided in the green sub-pixel (Pga) The strength can be made uniform.
  • red light Lr, green light Lg, and blue light Ltb are incident on the red, green, and blue sub-pixels (Pra, Pga, and Pba) arranged on the liquid crystal display panel 50a with the same intensity.
  • the white balance can be adjusted by suppressing the bluish color of the display color, so that the appropriate white balance can be obtained by suppressing the bluish color of the display color.
  • the partition wall 23c itself has a light shielding property in the light adjusting unit 22g, the red light Lr converted by the red fluorescent layer 22rg and the green fluorescent layer 22gg.
  • the color mixture between the green light Lg converted in step B and the blue light Ltb transmitted through the blue transmission layer 22bg can be suppressed by the partition wall 23c, and the blue subpixel (Pba) can be provided without a separate light shielding layer.
  • the intensity of the blue light Ltb that passes through the blue transmission layer 22bg provided in the red sub-pixel (Pra), the intensity of the blue light Lb that enters the red phosphor layer 22rg provided in the red sub-pixel (Pra), and the green sub-pixel ( Pga) can be lower than the intensity of the blue light Lb incident on the green phosphor layer 22gg provided in Pga).
  • FIG. 13 is a cross-sectional view of the liquid crystal display device 100h of this embodiment.
  • liquid crystal display devices 100a to 100g including the edge-light type backlight 70a are illustrated, but in this embodiment, the liquid crystal display device 100h including the direct type backlight 70b is illustrated.
  • the liquid crystal display device 100h includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the drawing) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70b emitting blue light Lb provided on the back side of the liquid crystal display panel 50a, and a liquid crystal display panel 50a And a phosphor substrate 60a including a light adjusting unit 22a that is provided between the polarizing plate 51b) and the backlight 70b and adjusts the blue light Lb from the backlight 70b and supplies the blue light Lb to the liquid crystal display panel 50a. ing.
  • the backlight 70b is provided above the reflection sheet (not shown) and the reflection sheet, and is integrally provided above each of the point light sources (not shown) that emit blue light and the point light sources.
  • a diffusion sheet (not shown) and a prism sheet (not shown) provided on the diffusion sheet are provided, and blue light from each point light source is converted into blue light Lb (via the reflection sheet, the diffusion sheet, and the prism sheet).
  • the light is emitted as shown in FIG.
  • the point light source is configured by a blue LED or the like.
  • the light adjustment unit 22a transmits the blue transmission layer 22ba provided in the blue subpixel (Pba).
  • the intensity of the blue light Ltb is in the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the red sub-pixel (Pra) and the green phosphor layer 22ga provided in the green sub-pixel (Pga). Since it is lower than the intensity of the incident blue light Lb, it is possible to suppress the bluish color of the display color and obtain an appropriate white balance.
  • the configuration in which the backlight 70a of the liquid crystal display device 100a of the first embodiment is replaced with the direct type backlight 70b is exemplified.
  • the backlight of the liquid crystal display devices 100b to 100g of the second to seventh embodiments is exemplified.
  • the light 70a may be replaced with a direct backlight 70b.
  • the light adjustment unit having a partition is provided for the liquid crystal display panel 50a in which the red, green, and blue sub-pixels Pra, Pga, and Pba are formed with the same size.
  • the light adjustment unit having the partition is provided for the liquid crystal display panel 50b in which the blue subpixel Pbb is formed smaller than the red subpixel Prb and the green subpixel Pgb. May be.
  • the liquid crystal display device including the TFT substrate is exemplified, but the present invention is also applied to a liquid crystal display device including other active matrix substrates, a liquid crystal display device of a passive matrix driving system, and the like. can do.
  • a liquid crystal display device including a CF substrate provided with a red layer, a green layer, a blue layer, and the like has been exemplified.
  • the present invention is not limited to the red layer, the green layer, and the blue layer on the CF substrate. It can also be applied to a liquid crystal display device in which is omitted.
  • the present invention is useful for a liquid crystal display device because an appropriate white balance can be obtained by suppressing blueness of a display color caused by a backlight emitting blue light.
  • Pb Pixels Pra Prb Red subpixels Pga, Pgb Green subpixels Pba, Pbb Blue subpixels 21a-21c, 21e, 21f
  • Light shielding layers 22a-22g Light adjustment units 22ra-22rg Red phosphor layers 22ga-22gg Green phosphor layers 22ba-22bg Blue transmission layers 23a-23c Partition walls 50a, 50b Liquid crystal display panels 70a, 70b Backlights 100a-100h Liquid crystal display device

Abstract

This liquid crystal display device is provided with: a liquid crystal display panel (50a) in which red, green, and blue subpixels are arranged in a row; a backlight (70a) for emitting blue light (Lb), the backlight (70a) being provided to the reverse side of the liquid crystal display panel (50a); and a light-adjusting unit (22a) for adjusting the blue light (Lb) and supplying the light to the liquid crystal display panel (50a), the light-adjusting unit (22a) being provided between the liquid crystal display panel (50a) and the backlight (70a); the light-adjusting unit (22a) being provided with a red phosphor layer (22ra) overlapped on the red subpixel and adapted to convert the blue light (Lb) into red light (Lr), a green phosphor layer (22ga) overlapped on the green subpixel and adapted to convert the blue light (Lb)into green light (Lg), and a blue transmission layer (22ba) overlapped on the blue subpixel and adapted to transmit the blue light (Lb); and the intensity of blue light (Ltb) transmitted through the blue transmission layer (22ba) in the light-adjusting unit (22a) is lower than the intensity of the blue light (Lb) incident on the red phosphor layer (22ra) and the green phosphor layer (22ga).

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関し、特に、青色光を発するバックライトを備えた液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device including a backlight that emits blue light.
 液晶表示装置は、例えば、互いに対向するように配置された薄膜トランジスタ(thin film transistor、以下、「TFT」と称する)基板及びカラーフィルタ(color filter、以下、「CF」と称する)基板と、TFT基板及びCF基板の間に封入された液晶層となどにより構成された液晶表示パネル、並びに液晶表示パネルの背面側に設けられたバックライトを備え、非発光型の表示装置である。ここで、CF基板では、画素を構成する各副画素に、例えば、赤色、緑色又は青色に着色された着色層が設けられている。 The liquid crystal display device includes, for example, a thin film transistor (hereinafter referred to as “TFT”) substrate, a color filter (hereinafter referred to as “CF”) substrate, and a TFT substrate which are disposed so as to face each other. And a liquid crystal display panel constituted by a liquid crystal layer sealed between CF substrates and the like, and a backlight provided on the back side of the liquid crystal display panel. Here, in the CF substrate, a colored layer colored, for example, red, green, or blue is provided in each sub-pixel constituting the pixel.
 上記構成の液晶表示装置では、バックライトからの光が、例えば、上記CF基板を構成する各着色層で吸収されることにより、光の利用効率が比較的低くなってしまうので、近年、光の利用効率を向上させることにより、低消費電力を図った液晶表示装置が提案されている。 In the liquid crystal display device having the above configuration, since light from the backlight is absorbed by, for example, each colored layer constituting the CF substrate, the light use efficiency becomes relatively low. There has been proposed a liquid crystal display device that achieves low power consumption by improving utilization efficiency.
 例えば、特許文献1には、液晶表示パネルの光入射側の偏光板よりも外側に赤色、緑色、青色の上記副画素に相当する各画素に対応する同系色の光を発する蛍光体層を配置し、各画素の蛍光体層が光源からの光により励起されて、赤色、緑色、青色の光をそれぞれ発する液晶表示装置が開示されている。 For example, in Patent Document 1, a phosphor layer that emits light of the same color corresponding to each pixel corresponding to the above-described sub-pixels of red, green, and blue is disposed outside the polarizing plate on the light incident side of the liquid crystal display panel. A liquid crystal display device is disclosed in which the phosphor layer of each pixel is excited by light from a light source to emit red, green, and blue light, respectively.
特開2004-94039号公報JP 2004-94039 A
 ところで、青色光を発するバックライトを備えた液晶表示装置では、赤色及び緑色の各副画素に青色光を赤色光及び緑色光にそれぞれ変換する蛍光体を含む蛍光体層が設けられ、青色の副画素に透明層又は拡散層が設けられると考えられるので、赤色及び緑色の各副画素では、蛍光体による波長変換が行われ、青色の副画素では、蛍光体による波長変換が行われないことになる。ここで、蛍光体による波長変換が行われると、波長変換の効率(量子効率)及び等方的に発せられた光の取り出し効率などにより、光の強度が低くなるので、赤色光及び緑色光は、青色光よりも強度が低くなってしまう。そうなると、液晶表示装置の画面上の表示色が青みがかってしまい、適切なホワイトバランスが得られなくなるので、改善の余地がある。 By the way, in a liquid crystal display device equipped with a backlight that emits blue light, each of the red and green sub-pixels is provided with a phosphor layer containing a phosphor that converts blue light into red light and green light, respectively. Since it is considered that a transparent layer or a diffusion layer is provided in the pixel, wavelength conversion by the phosphor is performed in each of the red and green subpixels, and wavelength conversion by the phosphor is not performed in the blue subpixel. Become. Here, when the wavelength conversion is performed by the phosphor, the light intensity decreases due to the efficiency of wavelength conversion (quantum efficiency) and the extraction efficiency of isotropically emitted light. The intensity is lower than that of blue light. In this case, the display color on the screen of the liquid crystal display device becomes bluish and an appropriate white balance cannot be obtained, so there is room for improvement.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、表示色の青みを抑制して、適切なホワイトバランスを得ることにある。 The present invention has been made in view of such points, and an object thereof is to obtain a suitable white balance by suppressing the bluish color of the display color.
 上記目的を達成するために、本発明は、光調整部において、青色の副画素に設けられた青色透過層を透過する青色光の強度(光量)が、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度(光量)、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度(光量)よりも低くなるようにしたものである。 In order to achieve the above object, according to the present invention, in the light adjustment unit, the intensity (amount of light) of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is changed to red fluorescence provided in the red sub-pixel. The intensity (light quantity) of the blue light incident on the body layer and the intensity (light quantity) of the blue light incident on the green phosphor layer provided in the green subpixel are set lower.
 具体的に本発明に係る液晶表示装置は、画素を構成する赤色、緑色及び青色の各副画素が配列された液晶表示パネルと、上記液晶表示パネルの背面側に設けられ、青色光を発するバックライトと、上記液晶表示パネル及びバックライトの間に設けられ、上記バックライトから入射する青色光を調整して上記液晶表示パネルに供給する光調整部とを備え、上記光調整部が、上記赤色の副画素に重なるように設けられ上記入射する青色光を赤色光に変換する赤色蛍光体層と、上記緑色の副画素に重なるように設けられ上記入射する青色光を緑色光に変換する緑色蛍光体層と、上記青色の副画素に重なるように設けられ上記入射する青色光を透過する青色透過層とを備えた液晶表示装置であって、上記光調整部において、上記青色透過層を透過する青色光の強度が上記赤色蛍光体層及び緑色蛍光体層に入射する各青色光の強度よりも低くなるように構成されていることを特徴とする。 Specifically, a liquid crystal display device according to the present invention includes a liquid crystal display panel in which red, green, and blue sub-pixels constituting pixels are arranged, and a back surface that is provided on the back side of the liquid crystal display panel and emits blue light. A light adjustment unit provided between the liquid crystal display panel and the backlight, and adjusting the blue light incident from the backlight and supplying the light to the liquid crystal display panel. A red phosphor layer provided so as to overlap the sub-pixel and converting the incident blue light into red light, and a green phosphor provided so as to overlap the green sub-pixel and converting the incident blue light into green light A liquid crystal display device comprising a body layer and a blue transmissive layer that is provided so as to overlap the blue sub-pixel and transmits the incident blue light, wherein the light adjusting unit transmits the blue transmissive layer. The intensity of the blue light, characterized in that it is configured to be lower than the intensity of the blue light incident on the red phosphor layer and a green phosphor layer.
 上記の構成によれば、赤色及び緑色の各副画素では、赤色蛍光体層及び緑色蛍光体層による波長変換により赤色光及び緑色光の強度が青色光の入射強度よりもそれぞれ低くなるものの、光調整部において、青色の副画素に設けられた青色透過層を透過する青色光の強度が、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度よりも低くなっているので、光調整部において、青色の副画素に設けられた青色透過層を透過した青色光の強度、赤色の副画素に設けられた赤色蛍光体層により変換された赤色光の強度、及び緑色の副画素に設けられた緑色蛍光体層により変換された緑色光の強度を揃えることが可能になる。これにより、液晶表示パネルに配列された赤色、緑色及び青色の各副画素には、強度を揃えた状態で赤色光、緑色光及び青色光がそれぞれ入射可能になるので、液晶表示パネルを透過する光の透過率を各副画素毎に調整して行う画像表示では、表示色の青みが抑制される。そして、液晶表示装置では、表示色の青みが抑制されることにより、ホワイトバランスの調整が可能になるので、表示色の青みを抑制して、適切なホワイトバランスが得られる。 According to the above configuration, in each of the red and green sub-pixels, although the red and green phosphor layers have wavelength conversion by the red phosphor layer and the green phosphor layer, the intensity of red light and green light is lower than the incident intensity of blue light. In the adjustment unit, the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is changed to the intensity of the blue light incident on the red phosphor layer provided in the red sub-pixel, and the green sub-pixel. Since the intensity of the blue light incident on the provided green phosphor layer is lower, the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel in the light adjustment unit, the red sub-pixel It is possible to make the intensity of the red light converted by the red phosphor layer provided in the green and the intensity of the green light converted by the green phosphor layer provided in the green sub-pixel uniform. As a result, red light, green light, and blue light can be incident on the red, green, and blue sub-pixels arranged on the liquid crystal display panel with the same intensity, so that the light passes through the liquid crystal display panel. In the image display performed by adjusting the light transmittance for each sub-pixel, blue of the display color is suppressed. In the liquid crystal display device, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color is suppressed and an appropriate white balance can be obtained.
 上記光調整部は、上記赤色、緑色及び青色の各副画素にそれぞれ重なるように開口した遮光層を有し、上記遮光層において、上記青色の副画素に重なるように開口した面積は、上記赤色及び緑色の各副画素に重なるように開口した面積よりもそれぞれ小さくなっていてもよい。 The light adjustment unit includes a light shielding layer that is opened so as to overlap each of the red, green, and blue subpixels, and an area of the light shielding layer that is opened so as to overlap the blue subpixel is the red color Also, the area may be smaller than the open area so as to overlap the green sub-pixels.
 上記の構成によれば、光調整部を構成する遮光層において、青色の副画素に重なる開口面積が、赤色及び緑色の各副画素に重なる開口面積よりもそれぞれ小さくなっているので、赤色、緑色及び青色の各副画素に重なる遮光層の各開口した部分の面積比によって、光調整部において、青色の副画素に設けられた青色透過層を透過する青色光の強度が、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度よりも具体的に低くなる。 According to the above configuration, in the light shielding layer constituting the light adjustment unit, the opening area overlapping the blue subpixel is smaller than the opening area overlapping the red and green subpixels. And the intensity ratio of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel in the light adjustment unit in the light adjustment unit according to the area ratio of each opening portion of the light shielding layer overlapping each blue sub-pixel. Specifically, it is lower than the intensity of blue light incident on the provided red phosphor layer and the intensity of blue light incident on the green phosphor layer provided on the green subpixel.
 上記遮光層は、光反射性を有していてもよい。 The light shielding layer may have light reflectivity.
 上記の構成によれば、遮光層が光反射性を有しているので、バックライトからの青色光のうち、遮光層の各開口部分を通過しなかった青色光が遮光層及びバックライト(に設けられた反射シート)で順に反射して再利用されることにより、バックライトからの青色光の利用効率が向上する。 According to the above configuration, since the light shielding layer has light reflectivity, among the blue light from the backlight, the blue light that has not passed through each opening of the light shielding layer is reflected on the light shielding layer and the backlight ( The reflection efficiency of the blue light from the backlight is improved by sequentially reflecting and reusing it with the reflection sheet provided.
 上記青色の副画素に重なるように開口した面積は、上記赤色及び緑色の各副画素に重なるように開口した面積の1/2以下にそれぞれなっていてもよい。 The area opened so as to overlap with the blue subpixel may be less than or equal to ½ of the area opened so as to overlap with the red and green subpixels.
 上記の構成によれば、光調整部を構成する遮光層において、青色の副画素に重なるように開口した面積が、赤色及び緑色の各副画素に重なるように開口した面積の1/2以下にそれぞれなっているので、赤色、緑色及び青色の各副画素に重なる遮光層の各開口した部分の面積比によって、光調整部において、青色の副画素に設けられた青色透過層を透過する青色光の強度が、具体的に、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度の1/2以下になる。 According to the above configuration, in the light shielding layer that configures the light adjustment unit, the area opened so as to overlap the blue subpixel is less than or equal to ½ of the area opened so as to overlap each of the red and green subpixels. Therefore, the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is adjusted in the light adjustment unit according to the area ratio of each opening portion of the light-shielding layer overlapping the red, green, and blue sub-pixels. Is specifically 1 of the intensity of blue light incident on the red phosphor layer provided in the red subpixel and the intensity of blue light incident on the green phosphor layer provided in the green subpixel. / 2 or less.
 上記青色の副画素は、上記赤色及び緑色の各副画素よりも小さく形成されていてもよい。 The blue subpixel may be formed smaller than the red and green subpixels.
 上記の構成によれば、青色の副画素が赤色及び緑色の各副画素よりも小さく形成されているので、赤色、緑色及び青色の各副画素のサイズによって、光調整部において、青色の副画素に設けられた青色透過層を透過する青色光の強度が、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度よりも具体的に低くなる。 According to the above configuration, since the blue subpixel is formed smaller than the red and green subpixels, the blue subpixel is selected in the light adjustment unit depending on the size of the red, green, and blue subpixels. The intensity of the blue light transmitted through the blue transmission layer provided on the red sub-pixel is the intensity of the blue light incident on the red phosphor layer provided on the red sub-pixel, and the green phosphor layer provided on the green sub-pixel. Specifically, it is lower than the intensity of the incident blue light.
 上記光調整部は、上記青色の副画素に設けられ該青色の副画素で開口した遮光層を有していてもよい。 The light adjusting unit may include a light shielding layer provided in the blue sub-pixel and opened by the blue sub-pixel.
 上記の構成によれば、光調整部が青色の副画素に、開口した遮光層を有しているので、赤色及び緑色の各副画素に遮光層が配置しないことになり、赤色及び緑色の各副画素における開口率が向上する。 According to the above configuration, since the light adjustment unit has the light shielding layer opened in the blue subpixel, the light shielding layer is not disposed in each of the red and green subpixels. The aperture ratio in the sub-pixel is improved.
 上記光調整部には、上記赤色蛍光層、緑色蛍光層及び青色透過層の間を分離する隔壁が設けられていてもよい。 The light adjusting unit may be provided with a partition that separates the red fluorescent layer, the green fluorescent layer, and the blue transmitting layer.
 上記の構成によれば、光調整部には、赤色蛍光層、緑色蛍光層、青色透過層の間を分離する隔壁が設けられているので、赤色蛍光層で変換された赤色光、緑色蛍光層で変換された緑色光、及び青色透過層を透過した青色光の間における混色が抑制される。 According to the above configuration, the light adjusting unit is provided with the partition that separates the red fluorescent layer, the green fluorescent layer, and the blue transmissive layer. Therefore, the red light and the green fluorescent layer converted by the red fluorescent layer are provided. Color mixing between the green light converted in step 1 and the blue light transmitted through the blue transmission layer is suppressed.
 上記光調整部には、上記隔壁に重なるように遮光層が設けられていてもよい。 The light adjusting unit may be provided with a light shielding layer so as to overlap the partition wall.
 上記の構成によれば、光調整部には、隔壁に重なるように遮光層が設けられているので、赤色蛍光層で変換された赤色光、緑色蛍光層で変換された緑色光、及び青色透過層を透過した青色光の間における混色が隔壁により抑制されると共に、青色の副画素に設けられた青色透過層を透過する青色光の強度が、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度よりも低くなる。 According to the above configuration, since the light adjusting unit is provided with the light shielding layer so as to overlap the partition wall, the red light converted by the red fluorescent layer, the green light converted by the green fluorescent layer, and the blue light transmission The red phosphor layer provided in the red sub-pixel has the intensity of blue light transmitted through the blue transmissive layer provided in the blue sub-pixel while the color mixture between the blue light transmitted through the layer is suppressed by the partition wall The intensity of the blue light incident on the green sub-pixel and the intensity of the blue light incident on the green phosphor layer provided in the green subpixel are lower.
 上記遮光層は、光反射性を有していてもよい。 The light shielding layer may have light reflectivity.
 上記の構成によれば、隔壁に重なる遮光層が光反射性を有しているので、バックライトからの青色光のうち、遮光層の間を通過しなかった青色光が遮光層及びバックライト(に設けられた反射シート)で順に反射して再利用されることにより、バックライトからの青色光の利用効率が向上する。 According to said structure, since the light shielding layer which overlaps with a partition has light reflectivity, the blue light which did not pass between light shielding layers among the blue light from a backlight is light shielding layer and backlight ( The reflection efficiency of the blue light from the backlight is improved by sequentially reflecting and reusing it with the reflection sheet provided on the backlight.
 上記隔壁は、遮光性を有していてもよい。 The partition may have a light shielding property.
 上記の構成によれば、隔壁自体が遮光性を有しているので、別途、遮光層を設けなくても、赤色蛍光層で変換された赤色光、緑色蛍光層で変換された緑色光、及び青色透過層を透過した青色光の間における混色が隔壁により抑制されると共に、青色の副画素に設けられた青色透過層を透過する青色光の強度が、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度よりも低くなる。 According to the above configuration, since the partition wall itself has a light shielding property, the red light converted by the red fluorescent layer, the green light converted by the green fluorescent layer, and a separate light shielding layer are not provided. The color mixing between the blue light transmitted through the blue transmission layer is suppressed by the partition wall, and the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is reduced by the red fluorescence provided in the red sub-pixel. It becomes lower than the intensity of the blue light incident on the body layer and the intensity of the blue light incident on the green phosphor layer provided in the green subpixel.
 本発明によれば、光調整部において、青色の副画素に設けられた青色透過層を透過する青色光の強度が、赤色の副画素に設けられた赤色蛍光体層に入射する青色光の強度、及び緑色の副画素に設けられた緑色蛍光体層に入射する青色光の強度よりも低くなっているので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 According to the present invention, in the light adjustment unit, the intensity of the blue light transmitted through the blue transmission layer provided in the blue sub-pixel is the intensity of the blue light incident on the red phosphor layer provided in the red sub-pixel. Since the intensity of the blue light incident on the green phosphor layer provided in the green subpixel is lower than the intensity of blue light, it is possible to suppress the bluishness of the display color and obtain an appropriate white balance.
図1は、実施形態1に係る液晶表示装置の断面図である。FIG. 1 is a cross-sectional view of the liquid crystal display device according to the first embodiment. 図2は、実施形態1に係る液晶表示装置における画素の構成と光調整部の構成との位置関係を示す説明図である。FIG. 2 is an explanatory diagram illustrating a positional relationship between the configuration of the pixel and the configuration of the light adjustment unit in the liquid crystal display device according to the first embodiment. 図3は、実施形態1に係る液晶表示装置における発光スペクトルを示すグラフである。FIG. 3 is a graph showing an emission spectrum in the liquid crystal display device according to the first embodiment. 図4は、実施形態2に係る液晶表示装置の断面図である。FIG. 4 is a cross-sectional view of the liquid crystal display device according to the second embodiment. 図5は、実施形態2に係る液晶表示装置における画素の構成と光調整部の構成との位置関係を示す説明図である。FIG. 5 is an explanatory diagram showing a positional relationship between the configuration of the pixels and the configuration of the light adjustment unit in the liquid crystal display device according to the second embodiment. 図6は、実施形態3に係る液晶表示装置の断面図である。FIG. 6 is a cross-sectional view of the liquid crystal display device according to the third embodiment. 図7は、実施形態3に係る液晶表示装置における画素の構成と光調整部の構成との位置関係を示す説明図である。FIG. 7 is an explanatory diagram illustrating a positional relationship between the configuration of the pixel and the configuration of the light adjustment unit in the liquid crystal display device according to the third embodiment. 図8は、実施形態4に係る液晶表示装置の断面図である。FIG. 8 is a cross-sectional view of the liquid crystal display device according to the fourth embodiment. 図9は、実施形態4に係る液晶表示装置における画素の構成と光調整部の構成との位置関係を示す説明図である。FIG. 9 is an explanatory diagram illustrating a positional relationship between the configuration of the pixels and the configuration of the light adjustment unit in the liquid crystal display device according to the fourth embodiment. 図10は、実施形態5に係る液晶表示装置の断面図である。FIG. 10 is a cross-sectional view of the liquid crystal display device according to the fifth embodiment. 図11は、実施形態6に係る液晶表示装置の断面図である。FIG. 11 is a cross-sectional view of the liquid crystal display device according to the sixth embodiment. 図12は、実施形態7に係る液晶表示装置の断面図である。FIG. 12 is a cross-sectional view of the liquid crystal display device according to the seventh embodiment. 図13は、実施形態8に係る液晶表示装置の断面図である。FIG. 13 is a cross-sectional view of the liquid crystal display device according to the eighth embodiment. 図14は、比較例に係る液晶表示装置における発光スペクトルを示すグラフである。FIG. 14 is a graph showing an emission spectrum in the liquid crystal display device according to the comparative example.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
 《発明の実施形態1》
 図1~図3は、本発明に係る液晶表示装置の実施形態1を示している。具体的に、図1は、本実施形態の液晶表示装置100aの断面図である。また、図2は、液晶表示装置100aにおける画素Paの構成と光調整部22aの構成との位置関係を斜視的に示す説明図である。
Embodiment 1 of the Invention
1 to 3 show Embodiment 1 of a liquid crystal display device according to the present invention. Specifically, FIG. 1 is a cross-sectional view of the liquid crystal display device 100a of the present embodiment. FIG. 2 is an explanatory diagram perspectively showing the positional relationship between the configuration of the pixel Pa and the configuration of the light adjustment unit 22a in the liquid crystal display device 100a.
 液晶表示装置100aは、図1に示すように、複数の画素Pa(図2参照)がマトリクス状に配列された液晶表示パネル50aと、液晶表示パネル50aの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50aの背面側に設けられた青色光Lbを発するバックライト70aと、液晶表示パネル50a(に貼り付けられた偏光板51b)及びバックライト70aの間に設けられ、バックライト70aからの青色光Lbを調整して液晶表示パネル50aに供給するための光調整部22aを含む蛍光体基板60aとを備えている。 As shown in FIG. 1, the liquid crystal display device 100a includes a liquid crystal display panel 50a in which a plurality of pixels Pa (see FIG. 2) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface (rear surface) of the liquid crystal display panel 50a. , A pair of polarizing plates 51a and 51b attached to the lower surface of the figure, a backlight 70a emitting blue light Lb provided on the back side of the liquid crystal display panel 50a, and the liquid crystal display panel 50a (attached to the liquid crystal display panel 50a). And a phosphor substrate 60a including a light adjusting unit 22a for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a. Yes.
 各画素Paでは、互いに等しいサイズで形成された赤色の階調表示を行う赤色の副画素Pra、緑色の階調表示を行う緑色の副画素Pga、及び青色の階調表示を行う青色の副画素Pbaが、図2に示すように、配列されている。 In each pixel Pa, a red subpixel Pra that performs red gradation display, a green subpixel Pga that performs green gradation display, and a blue subpixel that performs blue gradation display, which are formed in the same size. Pba is arranged as shown in FIG.
 液晶表示パネル50aは、図1に示すように、互いに対向するように配置されたTFT基板20a及びCF基板30aと、TFT基板20a及びCF基板30aの間に設けられた液晶層40と、TFT基板20a及び対向基板30aを互いに接着すると共に、TFT基板20a及び対向基板30aの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。 As shown in FIG. 1, the liquid crystal display panel 50a includes a TFT substrate 20a and a CF substrate 30a arranged to face each other, a liquid crystal layer 40 provided between the TFT substrate 20a and the CF substrate 30a, and a TFT substrate. 20a and the counter substrate 30a are bonded to each other, and a sealing material (not shown) provided in a frame shape is provided to enclose the liquid crystal layer 40 between the TFT substrate 20a and the counter substrate 30a.
 TFT基板20aは、図1に示すように、ガラス基板などの絶縁基板10aと、絶縁基板10a上に互いに平行に延びるように設けられた複数のゲート線(不図示)と、各ゲート線と直交する方向に互いに平行に延びるように設けられた複数のソース線11と、各ゲート線及び各ソース線11の交差する部分毎、すなわち、各副画素Pra、Pga及びPba毎にそれぞれ設けられた複数のTFT(不図示)と、各TFTを覆うように設けられた保護膜(不図示)と、保護膜上にマトリクス状に設けられ、各TFTに接続された複数の画素電極(不図示)と、各画素電極を覆うように設けられた配向膜(不図示)とを備えている。 As shown in FIG. 1, the TFT substrate 20a includes an insulating substrate 10a such as a glass substrate, a plurality of gate lines (not shown) provided on the insulating substrate 10a so as to extend in parallel with each other, and orthogonal to each gate line. And a plurality of source lines 11 provided so as to extend in parallel with each other, and a plurality of source lines 11 provided for each gate line and each intersecting portion of each source line 11, that is, for each subpixel Pra, Pga and Pba. TFT (not shown), a protective film (not shown) provided so as to cover each TFT, a plurality of pixel electrodes (not shown) provided in a matrix on the protective film and connected to each TFT And an alignment film (not shown) provided so as to cover each pixel electrode.
 CF基板30aは、図1に示すように、ガラス基板などの絶縁基板10bと、絶縁基板10b上に格子状に設けられたブラックマトリクス(不図示)と、ブラックマトリクスの各格子間に各副画素Pra、Pga及びPbaに対応してそれぞれ設けられた赤色層16ra、緑色層16ga及び青色層16baと、ブラックマトリクス、赤色層16ra、緑色層16ga及び青色層16baを覆うように設けられた共通電極(不図示)と、共通電極を覆うように設けられた配向膜(不図示)とを備えている。 As shown in FIG. 1, the CF substrate 30a includes an insulating substrate 10b such as a glass substrate, a black matrix (not shown) provided in a lattice shape on the insulating substrate 10b, and each subpixel between the lattices of the black matrix. A red layer 16ra, a green layer 16ga, and a blue layer 16ba that are provided corresponding to Pra, Pga, and Pba, respectively, and a common electrode that is provided so as to cover the black matrix, the red layer 16ra, the green layer 16ga, and the blue layer 16ba ( (Not shown) and an alignment film (not shown) provided so as to cover the common electrode.
 液晶層40は、電気光学特性を有するネマチックの液晶材料などにより構成されている。 The liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
 バックライト70aは、青色光を発する線状光源(不図示)と、線状光源の側方に設けられた導光板(不図示)と、導光板の下方に設けられた反射シート(不図示)と、導光板上に設けられた拡散シート(不図示)と、拡散シート上に設けられたプリズムシート(不図示)とを備え、線状光源からの青色光を、導光板、反射シート、拡散シート及びプリズムシートを介して青色光Lb(図1参照)として出射するように構成されている。ここで、線状光源は、各々、青色光を発する一列に設けられた複数の青色LED(Light Emitting Diode)などにより構成されている。 The backlight 70a includes a linear light source (not shown) that emits blue light, a light guide plate (not shown) provided on the side of the linear light source, and a reflection sheet (not shown) provided below the light guide plate. And a diffusion sheet (not shown) provided on the light guide plate and a prism sheet (not shown) provided on the diffusion sheet, the blue light from the linear light source is converted into the light guide plate, the reflection sheet, and the diffusion. It is configured to emit blue light Lb (see FIG. 1) through the sheet and the prism sheet. Here, each linear light source includes a plurality of blue LEDs (Light-Emitting-Diodes) provided in a row that emits blue light.
 蛍光体基板60aは、図1に示すように、ガラス基板などの絶縁基板10cと、絶縁基板10c上に設けられた光調整部22aとを備えている。 As shown in FIG. 1, the phosphor substrate 60a includes an insulating substrate 10c such as a glass substrate, and a light adjusting unit 22a provided on the insulating substrate 10c.
 光調整部22aは、図1及び図2に示すように、絶縁基板10c上に設けられた遮光層21aと、遮光層21a上に赤色の副画素Praに重なるように設けられた赤色蛍光体層22raと、遮光層21a上に緑色の副画素Pgaに重なるように設けられた緑色蛍光体層22gaと、遮光層21a上に青色の副画素Pbaに重なるように設けられた青色透過層22baとを備えている。 As shown in FIGS. 1 and 2, the light adjusting unit 22a includes a light shielding layer 21a provided on the insulating substrate 10c, and a red phosphor layer provided on the light shielding layer 21a so as to overlap the red subpixel Pra. 22ra, a green phosphor layer 22ga provided on the light shielding layer 21a so as to overlap the green subpixel Pga, and a blue transmission layer 22ba provided on the light shielding layer 21a so as to overlap the blue subpixel Pba. I have.
 遮光層21aは、図2に示すように、赤色の副画素Praに重なるように設けられた開口部Ar、緑色の副画素Pgaに重なるように設けられた開口部Ag、及び青色の副画素Pbaに重なるように設けられた開口部Abを備えている。ここで、青色の副画素Pbaに重なる開口部Abの面積は、赤色の副画素Praに重なる開口部Ar、及び緑色の副画素Pgaに重なる開口部Agの各面積の1/20~1/2程度になっている。なお、本実施形態では、遮光層21aが赤色蛍光体層22ra、緑色蛍光体層22ga及び青色透過層22baの下層に設けられた構成を例示したが、遮光層21aは、赤色蛍光体層22ra、緑色蛍光体層22ga及び青色透過層22baの上層に設けられていてもよい。 As shown in FIG. 2, the light shielding layer 21a includes an opening Ar provided so as to overlap the red subpixel Pra, an opening Ag provided so as to overlap the green subpixel Pga, and the blue subpixel Pba. The opening Ab is provided so as to overlap. Here, the area of the opening Ab that overlaps the blue subpixel Pba is 1/20 to 1/2 of the area of the opening Ar that overlaps the red subpixel Pra and the area of the opening Ag that overlaps the green subpixel Pga. It is about. In the present embodiment, the configuration in which the light shielding layer 21a is provided below the red phosphor layer 22ra, the green phosphor layer 22ga, and the blue transmission layer 22ba is exemplified. However, the light shielding layer 21a includes the red phosphor layer 22ra, It may be provided on the upper layer of the green phosphor layer 22ga and the blue transmission layer 22ba.
 赤色蛍光体層22raは、図1に示すように、バックライト70aからの青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 1, the red phosphor layer 22ra is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting blue light Lb from the backlight 70a into red light Lr is dispersed. is there.
 緑色蛍光体層22gaは、図1に示すように、バックライト70aからの青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 1, the green phosphor layer 22ga is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
 青色透過層22baは、図1に示すように、バックライト70aからの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。なお、本実施形態では、青色透過層22baとして、透明樹脂層を例示したが、透明樹脂層と屈折率が異なる透明なビーズを透明樹脂層に分散することにより、バックライト70aからの青色光Lbを拡散させながら透過させてもよく、また、透明な無機材料層や空間層であってもよい。 As shown in FIG. 1, the blue transmissive layer 22ba is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. . In the present embodiment, the transparent resin layer is exemplified as the blue transmissive layer 22ba. However, the blue light Lb from the backlight 70a is dispersed by dispersing transparent beads having a refractive index different from that of the transparent resin layer in the transparent resin layer. May be transmitted while being diffused, or may be a transparent inorganic material layer or a space layer.
 ここで、上述したように、光調整部22aの遮光層21aでは、青色の副画素Pbaに重なる開口面積が、赤色及び緑色の各副画素Pra及びPgaに重なる開口面積の1/20~1/2程度になっているので、赤色の副画素Pra、緑色の副画素Pga及び青色の副画素Pbaに重なる遮光層21aの各開口した部分の面積比によって、光調整部22aにおいて、青色の副画素Pbaに設けられた青色透過層22baを透過する青色光Ltbの強度が、赤色の副画素Praに設けられた赤色蛍光体層22raに入射する青色光Lbの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gaに入射する青色光Lbの強度の1/20~1/2程度になり、光調整部22aにおいて、青色の副画素Pbaに設けられた青色透過層22baを透過した青色光Ltbの強度、赤色の副画素Praに設けられた赤色蛍光体層22raにより変換された赤色光Lrの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gaにより変換された緑色光Lgの強度を揃えることができる。 Here, as described above, in the light shielding layer 21a of the light adjusting unit 22a, the opening area overlapping the blue subpixel Pba is 1/20 to 1/1 of the opening area overlapping the red and green subpixels Pra and Pga. Therefore, the light adjustment unit 22a has a blue subpixel according to the area ratio of each opening portion of the light shielding layer 21a that overlaps the red subpixel Pra, the green subpixel Pga, and the blue subpixel Pba. The intensity of the blue light Ltb that is transmitted through the blue transmission layer 22ba provided in Pba is the same as the intensity of the blue light Lb that is incident on the red phosphor layer 22ra provided in the red subpixel Pra, and the green subpixel Pga. It becomes about 1/20 to 1/2 of the intensity of the blue light Lb incident on the green phosphor layer 22ga thus obtained, and the blue transmission layer 22 provided in the blue sub-pixel Pba in the light adjustment unit 22a. The intensity of the blue light Ltb transmitted through a, the intensity of the red light Lr converted by the red phosphor layer 22ra provided in the red subpixel Pra, and the green phosphor layer 22ga provided in the green subpixel Pga The intensities of the converted green light Lg can be made uniform.
 図3は、液晶表示装置100aにおいて、赤色の副画素Pra、緑色の副画素Pga及び青色の副画素Pbaに重なる遮光層21aの各開口した部分の面積比によって、青色の副画素Pbaに設けられた青色透過層22baを透過する青色光Ltbの強度を、赤色の副画素Praに設けられた赤色蛍光体層22raに入射する青色光Lbの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gaに入射する青色光Lbの強度の1/3とした実施例の発光スペクトルを示すグラフである。また、図14は、赤色の副画素Pra、緑色の副画素Pga及び青色の副画素Pbaに重なる遮光層21aの各開口した部分の面積を互いに等しくした比較例の発光スペクトルを示すグラフである。なお、図3及び図14のグラフは、赤色蛍光体層22raにおける発光スペクトル、緑色蛍光体層22gaにおける発光スペクトル、及び青色透過層22baにおける発光スペクトルを足し合わせたものである。 FIG. 3 shows the liquid crystal display device 100a, which is provided in the blue subpixel Pba according to the area ratio of the open portions of the light shielding layer 21a overlapping the red subpixel Pra, the green subpixel Pga, and the blue subpixel Pba. The intensity of the blue light Ltb transmitted through the blue transmission layer 22ba is the same as the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the red subpixel Pra and the green fluorescence provided in the green subpixel Pga. It is a graph which shows the emission spectrum of the Example made into 1/3 of the intensity | strength of the blue light Lb which injects into the body layer 22ga. FIG. 14 is a graph showing a light emission spectrum of a comparative example in which the areas of the opened portions of the light shielding layer 21a overlapping the red subpixel Pra, the green subpixel Pga, and the blue subpixel Pba are equal to each other. The graphs of FIGS. 3 and 14 are obtained by adding together the emission spectrum of the red phosphor layer 22ra, the emission spectrum of the green phosphor layer 22ga, and the emission spectrum of the blue transmission layer 22ba.
 さらに、上記実施例及び比較例において、以下の条件でCIE1931表色系の色度を計算した。 Furthermore, in the above examples and comparative examples, the chromaticity of the CIE 1931 color system was calculated under the following conditions.
  <計算条件>
  青色光源ピーク波長:450nm
  青色光源半値幅:20nm
  緑色蛍光体ピーク波長:530nm
  緑色蛍光体半値幅:80nm
  赤色蛍光体ピーク波長:630nm
  緑色蛍光体半値幅:80nm
  青色光から緑色光への変換の量子効率:80%
  緑色蛍光体の上方への光取り出し効率:50%
  青色光から赤色光への変換の量子効率:80%
  赤色蛍光体の上方への光取り出し効率:50%
  緑色の副画素の面積に対する遮光層の開口面積の比率:90%
  赤色の副画素の面積に対する遮光層の開口面積の比率:90%
 実施例では、図3に示すように、青色光の相対強度が低く、色度座標(x、y)が(0.2901,0.2812)となったので、適切なホワイトバランスを得ることが容易であると考えられる。
<Calculation conditions>
Blue light source peak wavelength: 450 nm
Blue light source half width: 20 nm
Green phosphor peak wavelength: 530 nm
Green phosphor half width: 80 nm
Red phosphor peak wavelength: 630 nm
Green phosphor half width: 80 nm
Quantum efficiency of conversion from blue light to green light: 80%
Light extraction efficiency above the green phosphor: 50%
Quantum efficiency of conversion from blue light to red light: 80%
Light extraction efficiency above the red phosphor: 50%
Ratio of the opening area of the light shielding layer to the area of the green subpixel: 90%
Ratio of aperture area of light shielding layer to area of red subpixel: 90%
In the embodiment, as shown in FIG. 3, since the relative intensity of blue light is low and the chromaticity coordinates (x, y) are (0.2901, 0.2812), an appropriate white balance can be obtained. It is considered easy.
 また、比較例では、図14に示すように、青色光の相対強度が高く、色度座標(x、y)が(0.2233,0.1623)となったので、適切なホワイトバランスを得ることが困難であると考えられる。 In the comparative example, as shown in FIG. 14, the relative intensity of blue light is high and the chromaticity coordinates (x, y) are (0.2233, 0.1623), so that an appropriate white balance is obtained. Is considered difficult.
 なお、青色の副画素Pbaに設けられた青色透過層22baを透過する青色光Ltbの強度を、赤色の副画素Praに設けられた赤色蛍光体層22raに入射する青色光Lbの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gaに入射する青色光Lbの強度の1/3とするには、遮光層21aにおいて、青色の副画素Pbaに重なる開口面積を、赤色及び緑色の各副画素Pra及びPgaに重なる開口面積の1/3とする必要があるが、遮光層21aを光反射性を有する材料(例えば、アルミニウム膜)で形成し、青色光Lbの反射光Lrbを再利用率75%で利用することにより、遮光層21aにおいて、青色の副画素Pbaに重なる開口面積を、赤色及び緑色の各副画素Pra及びPgaに重なる開口面積の1/2とすることができ、青色光Lbの利用効率を遮光層21aが光反射性を有していない場合の1.3倍に向上させることができる。 Note that the intensity of the blue light Ltb transmitted through the blue transmission layer 22ba provided in the blue subpixel Pba, the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the red subpixel Pra, and green In order to reduce the intensity of the blue light Lb incident on the green phosphor layer 22ga provided in the subpixel Pga to 1/3, the opening area of the light shielding layer 21a overlapping the blue subpixel Pba is changed to red and green. Although it is necessary to make the opening area overlapping each of the subpixels Pra and Pga to be 1/3, the light shielding layer 21a is formed of a light reflective material (for example, an aluminum film), and the reflected light Lrb of the blue light Lb is regenerated. By using at a utilization rate of 75%, in the light shielding layer 21a, the opening area overlapping the blue subpixel Pba is set to ½ of the opening area overlapping the red and green subpixels Pra and Pga. It is possible, it is possible to improve the utilization efficiency of blue light Lb to 1.3 times the case where the light-shielding layer 21a does not have light reflectivity.
 上記構成の液晶表示装置100aは、TFT基板20a上の各画素電極とCF基板30aの共通電極との間に配置する液晶層40に各副画素Pra、Pga及びPba毎に所定の電圧を印加して液晶層40の配向状態を変えることにより、各副画素Pra、Pga及びPba毎に液晶表示パネル50a内を透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を調整して、画像表示を行うように構成されている。 The liquid crystal display device 100a having the above configuration applies a predetermined voltage to each of the subpixels Pra, Pga and Pba to the liquid crystal layer 40 disposed between each pixel electrode on the TFT substrate 20a and the common electrode on the CF substrate 30a. By changing the alignment state of the liquid crystal layer 40, the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a is adjusted for each of the subpixels Pra, Pga, and Pba. It is configured to display.
 以上説明したように、本実施形態の液晶表示装置100aによれば、赤色及び緑色の各副画素Pra及びPgaでは、赤色蛍光体層22ra及び緑色蛍光体層22gaによる波長変換により赤色光Lr及び緑色光Lgの強度が青色光Lbの入射強度よりもそれぞれ低くなるものの、光調整部22aにおいて、青色の副画素Pbaに設けられた青色透過層22baを透過する青色光Ltbの強度が、赤色の副画素Praに設けられた赤色蛍光体層22raに入射する青色光Lbの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gaに入射する青色光Lbの強度よりも低くなっているので、光調整部22aにおいて、青色の副画素Pbaに設けられた青色透過層22baを透過した青色光Ltbの強度、赤色の副画素Praに設けられた赤色蛍光体層22raにより変換された赤色光Lrの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gaにより変換された緑色光Lgの強度を揃えることができる。これにより、液晶表示パネル50aに配列された赤色、緑色及び青色の各副画素Pra、Pga及びPbaには、強度を揃えた状態で赤色光Lr、緑色光Lg及び青色光Ltbをそれぞれ入射させることができるので、液晶表示パネル50aを透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を各副画素Pra、Pga及びPba毎にそれぞれ調整して行う画像表示では、表示色の青みを抑制することができる。そして、液晶表示装置100aでは、表示色の青みが抑制されることにより、ホワイトバランスを調整することができるので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100a of the present embodiment, in each of the red and green subpixels Pra and Pga, the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22ra and the green phosphor layer 22ga. Although the intensity of the light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22ba provided in the blue subpixel Pba in the light adjustment unit 22a is red. Since it is lower than the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the pixel Pra and the intensity of the blue light Lb incident on the green phosphor layer 22ga provided in the green sub-pixel Pga. In the light adjustment unit 22a, the intensity of the blue light Ltb transmitted through the blue transmission layer 22ba provided in the blue subpixel Pba is set in the red subpixel Pra. Was can be aligned intensity of the converted red light Lr by the red phosphor layer 22RA, and the intensity of the green light Lg converted by a green phosphor layer 22ga provided a green subpixel Pga. As a result, the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Pra, Pga, and Pba arranged on the liquid crystal display panel 50a with the same intensity. Therefore, in the image display performed by adjusting the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a for each of the sub-pixels Pra, Pga, and Pba, the display color is bluish. Can be suppressed. In the liquid crystal display device 100a, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
 《発明の実施形態2》
 図4は、本実施形態の液晶表示装置100bの断面図である。また、図5は、液晶表示装置100bにおける画素Pbの構成と光調整部22bの構成との位置関係を斜視的に示す説明図である。なお、以下の各実施形態において、図1~図3と同じ部分については同じ符号を付して、その詳細な説明を省略する。
<< Embodiment 2 of the Invention >>
FIG. 4 is a cross-sectional view of the liquid crystal display device 100b of this embodiment. FIG. 5 is an explanatory diagram perspectively showing the positional relationship between the configuration of the pixel Pb and the configuration of the light adjustment unit 22b in the liquid crystal display device 100b. In the following embodiments, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
 上記実施形態1では、赤色、緑色及び青色の各副画素Pra、Pga及びPbaが互いに等しいサイズで形成された液晶表示装置100aを例示したが、本実施形態では、青色の副画素Pbbが相対的に小さく形成された液晶表示装置100bを例示する。 In the first embodiment, the liquid crystal display device 100a in which the red, green, and blue subpixels Pra, Pga, and Pba are formed with the same size is illustrated. However, in the present embodiment, the blue subpixel Pbb is relatively A liquid crystal display device 100b formed to be small is illustrated.
 具体的に、液晶表示装置100bは、図4に示すように、複数の画素Pb(図5参照)がマトリクス状に配列された液晶表示パネル50bと、液晶表示パネル50bの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50bの背面側に設けられたバックライト70aと、液晶表示パネル50b(に貼り付けられた偏光板51b)及びバックライト70aの間に設けられ、バックライト70aからの青色光Lbを調整して液晶表示パネル50bに供給するための光調整部22bを含む蛍光体基板60bとを備えている。 Specifically, as shown in FIG. 4, the liquid crystal display device 100b includes a liquid crystal display panel 50b in which a plurality of pixels Pb (see FIG. 5) are arranged in a matrix, and the surface (upper surface in the drawing) of the liquid crystal display panel 50b. And a pair of polarizing plates 51a and 51b attached to the back surface (the back surface, the bottom surface in the figure), a backlight 70a provided on the back side of the liquid crystal display panel 50b, and the liquid crystal display panel 50b And a phosphor substrate 60b including a light adjusting unit 22b provided between the polarizing plate 51b) and the backlight 70a for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50b. .
 各画素Pbでは、相対的に大きく形成された赤色の階調表示を行う赤色の副画素Prb、及び緑色の階調表示を行う緑色の副画素Pgb、並びに相対的に小さく形成された青色の階調表示を行う青色の副画素Pbbが、図5に示すように、配列されている。 In each pixel Pb, a relatively large red sub-pixel Prb that performs red gradation display, a green sub-pixel Pgb that performs green gradation display, and a relatively small blue floor. As shown in FIG. 5, the blue sub-pixels Pbb that perform the tone display are arranged.
 液晶表示パネル50bは、図4に示すように、互いに対向するように配置されたTFT基板20b及びCF基板30bと、TFT基板20b及びCF基板30bの間に設けられた液晶層40と、TFT基板20b及び対向基板30bを互いに接着すると共に、TFT基板20b及び対向基板30bの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。 As shown in FIG. 4, the liquid crystal display panel 50b includes a TFT substrate 20b and a CF substrate 30b arranged to face each other, a liquid crystal layer 40 provided between the TFT substrate 20b and the CF substrate 30b, and a TFT substrate. A sealing material (not shown) provided in a frame shape is provided for adhering the liquid crystal layer 40 between the TFT substrate 20b and the counter substrate 30b.
 TFT基板20bは、図4に示すように、各画素Pbを構成する副画素Prb、副画素Pgb及び副画素Pbbのサイズに対応して、各ソース線11の間隔及び画素電極のサイズが異なっているだけで、その他の構成が上記実施形態1のTFT基板20aと実質的に同じ構成になっている。 As shown in FIG. 4, in the TFT substrate 20b, the intervals between the source lines 11 and the sizes of the pixel electrodes differ according to the sizes of the subpixel Prb, the subpixel Pgb, and the subpixel Pbb constituting each pixel Pb. The other configurations are substantially the same as those of the TFT substrate 20a of the first embodiment.
 CF基板30bは、図4に示すように、各画素Pbを構成する副画素Prb、副画素Pgb及び副画素Pbbのサイズに対応して、ブラックマトリクスの各格子間の間隔、並びに赤色層16rb、緑色層16gb及び青色層16bbのサイズが異なっているだけで、その他の構成が上記実施形態1のCF基板30aと実質的に同じ構成になっている。 As shown in FIG. 4, the CF substrate 30b corresponds to the size of the sub-pixel Prb, the sub-pixel Pgb, and the sub-pixel Pbb constituting each pixel Pb, the spacing between the black matrixes, and the red layer 16rb. The other configurations are substantially the same as those of the CF substrate 30a of the first embodiment except that the sizes of the green layer 16gb and the blue layer 16bb are different.
 蛍光体基板60bは、図4に示すように、絶縁基板10cと、絶縁基板10c上に設けられた光調整部22bとを備えている。 As shown in FIG. 4, the phosphor substrate 60b includes an insulating substrate 10c and a light adjusting unit 22b provided on the insulating substrate 10c.
 光調整部22bは、図4及び図5に示すように、絶縁基板10c上に設けられた遮光層21bと、遮光層21b上に赤色の副画素Prbに重なるように設けられた赤色蛍光体層22rbと、遮光層21b上に緑色の副画素Pgbに重なるように設けられた緑色蛍光体層22gbと、遮光層21b上に青色の副画素Pbbに重なるように設けられた青色透過層22bbとを備えている。 As shown in FIGS. 4 and 5, the light adjusting unit 22b includes a light shielding layer 21b provided on the insulating substrate 10c and a red phosphor layer provided on the light shielding layer 21b so as to overlap the red subpixel Prb. 22rb, a green phosphor layer 22gb provided on the light shielding layer 21b so as to overlap the green subpixel Pgb, and a blue transmission layer 22bb provided on the light shielding layer 21b so as to overlap the blue subpixel Pbb. I have.
 遮光層21bは、図5に示すように、赤色の副画素Prbに重なるように設けられた開口部Ar、緑色の副画素Pgbに重なるように設けられた開口部Ag、及び青色の副画素Pbbに重なるように設けられた開口部Abを備えている。ここで、青色の副画素Pbbに重なる開口部Abの面積は、赤色の副画素Prbに重なる開口部Ar、及び緑色の副画素Pgbに重なる開口部Agの各面積の1/20~1/2程度になっている。 As shown in FIG. 5, the light shielding layer 21b includes an opening Ar provided so as to overlap the red subpixel Prb, an opening Ag provided so as to overlap the green subpixel Pgb, and the blue subpixel Pbb. The opening Ab is provided so as to overlap. Here, the area of the opening Ab overlapping the blue subpixel Pbb is 1/20 to 1/2 of the area of the opening Ar overlapping the red subpixel Prb and the area of the opening Ag overlapping the green subpixel Pgb. It is about.
 赤色蛍光体層22rbは、図4に示すように、バックライト70aからの青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 4, the red phosphor layer 22rb is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
 緑色蛍光体層22gbは、図4に示すように、バックライト70aからの青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 4, the green phosphor layer 22gb is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
 青色透過層22bbは、図4に示すように、バックライト70aからの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 4, the blue transmissive layer 22bb is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
 ここで、上述したように、青色の副画素Pbbが赤色の副画素Prb及び緑色の副画素Pgbよりも小さく形成されていると共に、光調整部22bの遮光層21bでは、青色の副画素Pbbに重なる開口面積が、赤色及び緑色の各副画素Prb及びPgbに重なる開口面積の1/20~1/2程度になっているので、赤色の副画素Prb、緑色の副画素Pgb及び青色の副画素Pbbに重なる遮光層21bの各開口した部分の面積比によって、光調整部22bにおいて、青色の副画素Pbbに設けられた青色透過層22bbを透過する青色光Ltbの強度が、赤色の副画素Prbに設けられた赤色蛍光体層22rbに入射する青色光Lbの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gbに入射する青色光Lbの強度の1/20~1/2程度になり、光調整部22bにおいて、青色の副画素Pbbに設けられた青色透過層22bbを透過した青色光Ltbの強度、赤色の副画素Prbに設けられた赤色蛍光体層22rbにより変換された赤色光Lrの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gbにより変換された緑色光Lgの強度を揃えることができる。 Here, as described above, the blue subpixel Pbb is formed to be smaller than the red subpixel Prb and the green subpixel Pgb, and the light blocking layer 21b of the light adjustment unit 22b includes the blue subpixel Pbb. Since the overlapping opening area is about 1/20 to 1/2 of the opening area overlapping the red and green subpixels Prb and Pgb, the red subpixel Prb, the green subpixel Pgb, and the blue subpixel are arranged. The intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb in the light adjustment unit 22b is determined by the area ratio of each opened portion of the light shielding layer 21b overlapping the Pbb. 1 of the intensity of the blue light Lb incident on the red phosphor layer 22rb provided on the green and the intensity of the blue light Lb incident on the green phosphor layer 22gb provided on the green sub-pixel Pgb. In the light adjustment unit 22b, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb and the red phosphor layer provided in the red subpixel Prb are reduced to about 20 to 1/2. The intensity of the red light Lr converted by 22rb and the intensity of the green light Lg converted by the green phosphor layer 22gb provided in the green subpixel Pgb can be made uniform.
 また、本実施形態において、上記実施形態1の計算条件と同様に、色度を計算すると、液晶表示装置100bにおいて、赤色の副画素Prb、緑色の副画素Pgb及び青色の副画素Pbbに重なる遮光層21bの各開口した部分の面積比によって、青色の副画素Pbbに設けられた青色透過層22bbを透過する青色光Ltbの強度を、赤色の副画素Prbに設けられた赤色蛍光体層22rbに入射する青色光Lbの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gbに入射する青色光Lbの強度の1/3とした実施例では、色度座標(x、y)が(0.2901,0.2812)となったので、適切なホワイトバランスを得ることが容易であると考えられるのに対し、赤色の副画素Prb、緑色の副画素Pgb及び青色の副画素Pbbに重なる遮光層21bの各開口した部分の面積を互いに等しくした比較例では、色度座標(x、y)が(0.2233,0.1623)となったので、適切なホワイトバランスを得ることが困難であると考えられる。 Further, in the present embodiment, when the chromaticity is calculated in the same manner as the calculation conditions of the first embodiment, the liquid crystal display device 100b shields light from overlapping the red subpixel Prb, the green subpixel Pgb, and the blue subpixel Pbb. The intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb is changed to the red phosphor layer 22rb provided in the red subpixel Prb by the area ratio of each opened portion of the layer 21b. In an embodiment in which the intensity of the incident blue light Lb and the intensity of the blue light Lb incident on the green phosphor layer 22gb provided in the green sub-pixel Pgb is 1/3, the chromaticity coordinates (x, y) are (0.2901, 0.2812), it is considered easy to obtain an appropriate white balance, whereas the red subpixel Prb, the green subpixel Pgb, and the blue subpixel In the comparative example in which the areas of the opened portions of the light shielding layer 21b overlapping the pixel Pbb are equal to each other, the chromaticity coordinates (x, y) are (0.2233, 0.1623). It is considered difficult to obtain.
 さらに、青色の副画素Pbbにおける遮光層21bの占有面積が小さくなっているので、本実施例において、遮光層21bが光反射性を有している場合には、光の利用効率を上記実施形態1の対応する実施例(光反射性:有)の1.05倍に向上させることができ、また、遮光層21bが光反射性を有していない場合には、光の利用効率を上記実施形態1の対応する実施例(光反射性:無)の1.3倍に向上させることができる。 Furthermore, since the area occupied by the light shielding layer 21b in the blue sub-pixel Pbb is small, in this embodiment, when the light shielding layer 21b has light reflectivity, the light use efficiency is set to the above embodiment. 1 can be improved to 1.05 times that of the corresponding embodiment (with light reflectivity: yes), and when the light-shielding layer 21b does not have light reflectivity, the light utilization efficiency can be improved. It can be improved 1.3 times as much as the corresponding example of Embodiment 1 (light reflectivity: none).
 上記構成の液晶表示装置100bは、TFT基板20b上の各画素電極とCF基板30bの共通電極との間に配置する液晶層40に各副画素Prb、Pgb及びPbb毎に所定の電圧を印加して液晶層40の配向状態を変えることにより、各副画素Prb、Pgb及びPbb毎に液晶表示パネル50b内を透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を調整して、画像表示を行うように構成されている。 The liquid crystal display device 100b having the above configuration applies a predetermined voltage to each of the subpixels Prb, Pgb, and Pbb to the liquid crystal layer 40 disposed between each pixel electrode on the TFT substrate 20b and the common electrode on the CF substrate 30b. By changing the alignment state of the liquid crystal layer 40, the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50b is adjusted for each of the subpixels Prb, Pgb, and Pbb. It is configured to display.
 以上説明したように、本実施形態の液晶表示装置100bによれば、赤色及び緑色の各副画素Prb及びPgbでは、赤色蛍光体層22rb及び緑色蛍光体層22gbによる波長変換により赤色光Lr及び緑色光Lgの強度が青色光Lbの入射強度よりもそれぞれ低くなるものの、光調整部22bにおいて、青色の副画素Pbbに設けられた青色透過層22bbを透過する青色光Ltbの強度が、赤色の副画素Prbに設けられた赤色蛍光体層22rbに入射する青色光Lbの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gbに入射する青色光Lbの強度よりも低くなっているので、光調整部22bにおいて、青色の副画素Pbbに設けられた青色透過層22bbを透過した青色光Ltbの強度、赤色の副画素Prbに設けられた赤色蛍光体層22rbにより変換された赤色光Lrの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gbにより変換された緑色光Lgの強度を揃えることができる。これにより、液晶表示パネル50bに配列された赤色、緑色及び青色の各副画素Prb、Pgb及びPbbには、強度を揃えた状態で赤色光Lr、緑色光Lg及び青色光Ltbをそれぞれ入射させることができるので、液晶表示パネル50bを透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を各副画素Prb、Pgb及びPbb毎に調整して行う画像表示では、表示色の青みを抑制することができる。そして、液晶表示装置100bでは、表示色の青みが抑制されることにより、ホワイトバランスを調整することができるので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100b of the present embodiment, in the red and green subpixels Prb and Pgb, the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22rb and the green phosphor layer 22gb. Although the intensity of the light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb in the light adjustment unit 22b is red. Since the intensity of the blue light Lb incident on the red phosphor layer 22rb provided in the pixel Prb and the intensity of the blue light Lb incident on the green phosphor layer 22gb provided in the green sub-pixel Pgb are lower. In the light adjustment unit 22b, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bb provided in the blue subpixel Pbb is set in the red subpixel Prb. Was can be aligned intensity of the converted red light Lr by the red phosphor layer 22Rb, and the intensity of the green light Lg converted by a green phosphor layer 22gb provided a green subpixel Pgb. Accordingly, the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Prb, Pgb, and Pbb arranged on the liquid crystal display panel 50b in a state where the intensities are uniform. Therefore, in the image display performed by adjusting the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50b for each sub-pixel Prb, Pgb, and Pbb, the blue of the display color is suppressed. can do. In the liquid crystal display device 100b, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
 《発明の実施形態3》
 図6は、本実施形態の液晶表示装置100cの断面図である。また、図7は、液晶表示装置100cにおける画素Paの構成と光調整部22cの構成との位置関係を斜視的に示す説明図である。
<< Embodiment 3 of the Invention >>
FIG. 6 is a cross-sectional view of the liquid crystal display device 100c of this embodiment. FIG. 7 is an explanatory diagram perspectively showing a positional relationship between the configuration of the pixel Pa and the configuration of the light adjusting unit 22c in the liquid crystal display device 100c.
 上記実施形態1及び2では、赤色、緑色及び青色の各副画素に遮光層21a及び21bがそれぞれ設けられた液晶表示装置100a及び100bを例示したが、本実施形態では、青色の各副画素だけに遮光層21cが設けられた液晶表示装置100cを例示する。 In the first and second embodiments, the liquid crystal display devices 100a and 100b in which the light shielding layers 21a and 21b are provided in the red, green, and blue subpixels are illustrated. However, in the present embodiment, only the blue subpixels are provided. A liquid crystal display device 100c provided with a light shielding layer 21c is illustrated.
 具体的に、液晶表示装置100cは、図6に示すように、複数の画素Pa(図7参照)がマトリクス状に配列された液晶表示パネル50aと、液晶表示パネル50aの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50aの背面側に設けられたバックライト70aと、液晶表示パネル50a(に貼り付けられた偏光板51b)及びバックライト70aの間に設けられ、バックライト70aからの青色光Lbを調整して液晶表示パネル50aに供給するための光調整部22cを含む蛍光体基板60cとを備えている。 Specifically, as shown in FIG. 6, the liquid crystal display device 100c includes a liquid crystal display panel 50a in which a plurality of pixels Pa (see FIG. 7) are arranged in a matrix, and the surface (upper surface in the drawing) of the liquid crystal display panel 50a. And a pair of polarizing plates 51a and 51b attached to the back surface (rear surface, lower surface in the figure), a backlight 70a provided on the back surface side of the liquid crystal display panel 50a, and the liquid crystal display panel 50a A polarizing plate 51b) and a phosphor substrate 60c including a light adjusting portion 22c for adjusting the blue light Lb from the backlight 70a and supplying the blue light Lb to the liquid crystal display panel 50a. .
 蛍光体基板60cは、図6に示すように、絶縁基板10cと、絶縁基板10c上に設けられた光調整部22cとを備えている。 As shown in FIG. 6, the phosphor substrate 60c includes an insulating substrate 10c and a light adjusting unit 22c provided on the insulating substrate 10c.
 光調整部22cは、図6及び図7に示すように、絶縁基板10c上に青色の副画素Pbaに重なるように設けられた遮光層21cと、絶縁基板10c上に赤色の副画素Praに重なるように設けられた赤色蛍光体層22rcと、絶縁基板10c上に緑色の副画素Pgaに重なるように設けられた緑色蛍光体層22gcと、遮光層21c上に青色の副画素Pbaに重なるように設けられた青色透過層22bcとを備えている。 As shown in FIGS. 6 and 7, the light adjusting unit 22c overlaps the light-shielding layer 21c provided on the insulating substrate 10c so as to overlap the blue subpixel Pba and the red subpixel Pra on the insulating substrate 10c. The red phosphor layer 22rc provided in this manner, the green phosphor layer 22gc provided on the insulating substrate 10c so as to overlap the green subpixel Pga, and the blue subpixel Pba so as to overlap the light shielding layer 21c. And a blue transmission layer 22bc provided.
 遮光層21cは、図7に示すように、青色の副画素Pbaに重なるように設けられた開口部Abを備えている。 As shown in FIG. 7, the light shielding layer 21 c includes an opening Ab provided so as to overlap the blue subpixel Pba.
 赤色蛍光体層22rcは、図6に示すように、バックライト70aからの青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 6, the red phosphor layer 22rc is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
 緑色蛍光体層22gcは、図6に示すように、バックライト70aからの青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 6, the green phosphor layer 22gc is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
 青色透過層22bcは、図6に示すように、バックライト70aからの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 6, the blue transmissive layer 22bc is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit a part of the blue light Lb from the backlight 70a as the blue light Ltb. .
 ここで、上述したように、光調整部22cの遮光層21cは、青色の副画素Pbだけに設けられているので、光調整部22cにおいて、青色の副画素Pbaに設けられた青色透過層22bcを透過する青色光Ltbの強度が、赤色の副画素Praに設けられた赤色蛍光体層22rcに入射する青色光Lbの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gcに入射する青色光Lbの強度よりも低くなり、光調整部22cにおいて、青色の副画素Pbaに設けられた青色透過層22bcを透過した青色光Ltbの強度、赤色の副画素Praに設けられた赤色蛍光体層22rcにより変換された赤色光Lrの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gcにより変換された緑色光Lgの強度を揃えることができる。 Here, as described above, since the light blocking layer 21c of the light adjustment unit 22c is provided only in the blue subpixel Pb, the blue transmission layer 22bc provided in the blue subpixel Pba in the light adjustment unit 22c. The intensity of the blue light Ltb that passes through is incident on the red phosphor layer 22rc provided on the red subpixel Pra, and on the green phosphor layer 22gc provided on the green subpixel Pga. The intensity of the blue light Ltb transmitted through the blue transmission layer 22bc provided in the blue subpixel Pba and the red fluorescence provided in the red subpixel Pra are lower than the intensity of the blue light Lb. The intensity of the red light Lr converted by the body layer 22rc and the intensity of the green light Lg converted by the green phosphor layer 22gc provided in the green subpixel Pga can be made uniform. That.
 以上説明したように、本実施形態の液晶表示装置100cによれば、赤色及び緑色の各副画素Pra及びPgaでは、赤色蛍光体層22rc及び緑色蛍光体層22gcによる波長変換により赤色光Lr及び緑色光Lgの強度が青色光Lbの入射強度よりもそれぞれ低くなるものの、光調整部22cにおいて、青色の副画素Pbaに設けられた青色透過層22bcを透過する青色光Ltbの強度が、赤色の副画素Praに設けられた赤色蛍光体層22rcに入射する青色光Lbの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gcに入射する青色光Lbの強度よりも低くなっているので、光調整部22cにおいて、青色の副画素Pbaに設けられた青色透過層22bcを透過した青色光Ltbの強度、赤色の副画素Praに設けられた赤色蛍光体層22rcにより変換された赤色光Lrの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22gcにより変換された緑色光Lgの強度を揃えることができる。これにより、液晶表示パネル50aに配列された赤色、緑色及び青色の各副画素Pra、Pga及びPbaには、強度を揃えた状態で赤色光Lr、緑色光Lg及び青色光Ltbをそれぞれ入射させることができるので、液晶表示パネル50aを透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を各副画素Pra、Pga及びPba毎にそれぞれ調整して行う画像表示では、表示色の青みを抑制することができる。そして、液晶表示装置100cでは、表示色の青みが抑制されることにより、ホワイトバランスを調整することができるので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100c of the present embodiment, in each of the red and green subpixels Pra and Pga, the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22rc and the green phosphor layer 22gc. Although the intensity of the light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bc provided in the blue subpixel Pba in the light adjusting unit 22c is red. Since it is lower than the intensity of the blue light Lb incident on the red phosphor layer 22rc provided in the pixel Pra and the intensity of the blue light Lb incident on the green phosphor layer 22gc provided in the green sub-pixel Pga. In the light adjustment unit 22c, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bc provided in the blue subpixel Pba is set in the red subpixel Pra. It was can be aligned intensity of the converted red light Lr by the red phosphor layer 22Rc, and the intensity of the green light Lg converted by a green phosphor layer 22gc provided a green subpixel Pga. As a result, the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Pra, Pga, and Pba arranged on the liquid crystal display panel 50a with the same intensity. Therefore, in the image display performed by adjusting the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a for each of the sub-pixels Pra, Pga, and Pba, the display color is bluish. Can be suppressed. In the liquid crystal display device 100c, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
 また、本実施形態の液晶表示装置100cによれば、光調整部22cが青色の副画素Pbaに開口した遮光層21cを有しているので、赤色の副画素Pra及び緑色の副画素Pgaに遮光層21cが配置しないことになり、赤色の副画素Pra及び緑色の副画素Pgaにおける各開口率を向上させることができる。 In addition, according to the liquid crystal display device 100c of the present embodiment, the light adjustment unit 22c has the light shielding layer 21c opened in the blue subpixel Pba, so that the red subpixel Pra and the green subpixel Pga are shielded from light. The layer 21c is not disposed, and each aperture ratio in the red subpixel Pra and the green subpixel Pga can be improved.
 《発明の実施形態4》
 図8は、本実施形態の液晶表示装置100dの断面図である。また、図9は、液晶表示装置100cにおける画素Pbの構成と光調整部22dの構成との位置関係を斜視的に示す説明図である。
<< Embodiment 4 of the Invention >>
FIG. 8 is a cross-sectional view of the liquid crystal display device 100d of this embodiment. FIG. 9 is an explanatory diagram perspectively showing the positional relationship between the configuration of the pixel Pb and the configuration of the light adjustment unit 22d in the liquid crystal display device 100c.
 上記各実施形態では、赤色、緑色及び青色の各副画素に又は青色の副画素に光調整部の一部として遮光層が設けられた液晶表示装置100a~100cを例示したが、本実施形態では、光調整部の一部として遮光層が設けられていない液晶表示装置100dを例示する。 In each of the above embodiments, the liquid crystal display devices 100a to 100c in which the light shielding layer is provided as a part of the light adjustment unit in each of the red, green, and blue subpixels or in the blue subpixel are illustrated. The liquid crystal display device 100d in which the light shielding layer is not provided as a part of the light adjustment unit is illustrated.
 具体的に、液晶表示装置100dは、図8に示すように、複数の画素Pb(図9参照)がマトリクス状に配列された液晶表示パネル50bと、液晶表示パネル50bの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50bの背面側に設けられたバックライト70aと、液晶表示パネル50b(に貼り付けられた偏光板51b)及びバックライト70aの間に設けられ、バックライト70aからの青色光Lbを調整して液晶表示パネル50bに供給するための光調整部22dを含む蛍光体基板60dとを備えている。 Specifically, as shown in FIG. 8, the liquid crystal display device 100d includes a liquid crystal display panel 50b in which a plurality of pixels Pb (see FIG. 9) are arranged in a matrix, and the surface (upper surface in the drawing) of the liquid crystal display panel 50b. And a pair of polarizing plates 51a and 51b attached to the back surface (the back surface, the bottom surface in the figure), a backlight 70a provided on the back side of the liquid crystal display panel 50b, and the liquid crystal display panel 50b A polarizing plate 51b) and a phosphor substrate 60d including a light adjusting unit 22d for adjusting the blue light Lb from the backlight 70a and supplying the blue light Lb to the liquid crystal display panel 50b. .
 蛍光体基板60dは、図8に示すように、絶縁基板10cと、絶縁基板10c上に設けられた光調整部22dとを備えている。 As shown in FIG. 8, the phosphor substrate 60d includes an insulating substrate 10c and a light adjusting unit 22d provided on the insulating substrate 10c.
 光調整部22dは、図8及び図9に示すように、絶縁基板10c上に赤色の副画素Prbに重なるように設けられた赤色蛍光体層22rdと、絶縁基板10c上に緑色の副画素Pgbに重なるように設けられた緑色蛍光体層22gdと、絶縁基板10c上に青色の副画素Pbbに重なるように設けられた青色透過層22bdとを備えている。 As shown in FIGS. 8 and 9, the light adjusting unit 22d includes a red phosphor layer 22rd provided on the insulating substrate 10c so as to overlap the red subpixel Prb, and a green subpixel Pgb on the insulating substrate 10c. A green phosphor layer 22gd provided so as to overlap the blue sub-pixel Pbb, and a blue transmission layer 22bd provided so as to overlap the blue subpixel Pbb on the insulating substrate 10c.
 赤色蛍光体層22rdは、図8に示すように、バックライト70aからの青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 8, the red phosphor layer 22rd is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting blue light Lb from the backlight 70a into red light Lr is dispersed. is there.
 緑色蛍光体層22gdは、図8に示すように、バックライト70aからの青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 8, the green phosphor layer 22gd is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
 青色透過層22bdは、図8に示すように、バックライト70aからの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 8, the blue transmissive layer 22bd is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
 ここで、上述したように、青色の副画素Pbbが赤色の副画素Prb及び緑色の副画素Pgbよりも小さく形成されているので、赤色の副画素Prb、緑色の副画素Pgb及び青色の副画素Pbbのサイズによって、光調整部22dにおいて、青色の副画素Pbbに設けられた青色透過層22bdを透過する青色光Ltbの強度が、赤色の副画素Prbに設けられた赤色蛍光体層22rdに入射する青色光Lbの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gdに入射する青色光Lbの強度よりも低くなり、光調整部22dにおいて、青色の副画素Pbbに設けられた青色透過層22bdを透過した青色光Ltbの強度、赤色の副画素Prbに設けられた赤色蛍光体層22rdにより変換された赤色光Lrの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gdにより変換された緑色光Lgの強度を揃えることができる。 Here, as described above, since the blue subpixel Pbb is smaller than the red subpixel Prb and the green subpixel Pgb, the red subpixel Prb, the green subpixel Pgb, and the blue subpixel are formed. Depending on the size of Pbb, in the light adjusting unit 22d, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bd provided in the blue subpixel Pbb is incident on the red phosphor layer 22rd provided in the red subpixel Prb. The intensity of the blue light Lb is lower than the intensity of the blue light Lb incident on the green phosphor layer 22gd provided on the green subpixel Pgb, and the light adjustment unit 22d is provided on the blue subpixel Pbb. The intensity of the blue light Ltb transmitted through the blue transmission layer 22bd, the intensity of the red light Lr converted by the red phosphor layer 22rd provided in the red subpixel Prb, and green Intensity of the converted green light Lg by the green phosphor layer 22gd provided subpixel Pgb of can be made uniform.
 以上説明したように、本実施形態の液晶表示装置100dによれば、赤色及び緑色の各副画素Prb及びPgbでは、赤色蛍光体層22rd及び緑色蛍光体層22gdによる波長変換により赤色光Lr及び緑色光Lgの強度が青色光Lbの入射強度よりもそれぞれ低くなるものの、光調整部22dにおいて、青色の副画素Pbbに設けられた青色透過層22bdを透過する青色光Ltbの強度が、赤色の副画素Prbに設けられた赤色蛍光体層22rdに入射する青色光Lbの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gdに入射する青色光Lbの強度よりも低くなっているので、光調整部22dにおいて、青色の副画素Pbbに設けられた青色透過層22bdを透過した青色光Ltbの強度、赤色の副画素Prbに設けられた赤色蛍光体層22rdにより変換された赤色光Lrの強度、及び緑色の副画素Pgbに設けられた緑色蛍光体層22gdにより変換された緑色光Lgの強度を揃えることができる。これにより、液晶表示パネル50bに配列された赤色、緑色及び青色の各副画素Prb、Pgb及びPbbには、強度を揃えた状態で赤色光Lr、緑色光Lg及び青色光Ltbをそれぞれ入射させることができるので、液晶表示パネル50bを透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を各副画素Prb、Pgb及びPbb毎に調整して行う画像表示では、表示色の青みを抑制することができる。そして、液晶表示装置100dでは、表示色の青みが抑制されることにより、ホワイトバランスを調整することができるので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100d of this embodiment, in the red and green subpixels Prb and Pgb, the red light Lr and the green light are converted by the wavelength conversion by the red phosphor layer 22rd and the green phosphor layer 22gd. Although the intensity of the light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bd provided in the blue subpixel Pbb in the light adjusting unit 22d is red. Since it is lower than the intensity of the blue light Lb incident on the red phosphor layer 22rd provided in the pixel Prb and the intensity of the blue light Lb incident on the green phosphor layer 22gd provided in the green sub-pixel Pgb. In the light adjustment unit 22d, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bd provided in the blue subpixel Pbb is set in the red subpixel Prb. Was can be aligned intensity of the converted red light Lr by the red phosphor layer 22Rd, and the intensity of the green light Lg converted by a green phosphor layer 22gd provided a green subpixel Pgb. Accordingly, the red light Lr, the green light Lg, and the blue light Ltb are incident on the red, green, and blue sub-pixels Prb, Pgb, and Pbb arranged on the liquid crystal display panel 50b in a state where the intensities are uniform. Therefore, in the image display performed by adjusting the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50b for each sub-pixel Prb, Pgb, and Pbb, the blue of the display color is suppressed. can do. In the liquid crystal display device 100d, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
 また、本実施形態の液晶表示装置100dによれば、光調整部22dに遮光層が設けられていないので、各副画素Prb、Pgb及びPbbの開口率を向上させることができる。 Further, according to the liquid crystal display device 100d of the present embodiment, since the light adjusting unit 22d is not provided with the light shielding layer, the aperture ratios of the sub-pixels Prb, Pgb, and Pbb can be improved.
 《発明の実施形態5》
 図10は、本実施形態の液晶表示装置100eの断面図である。
<< Embodiment 5 of the Invention >>
FIG. 10 is a cross-sectional view of the liquid crystal display device 100e of this embodiment.
 上記各実施形態では、光調整部22a~22dを構成する赤色蛍光体層、緑色蛍光体層及び青色透過層の間に隔壁が設けられていない液晶表示装置100a~100dを例示したが、本実施形態では、光調整部22eを構成する赤色蛍光体層、緑色蛍光体層及び青色透過層の間に隔壁23aが設けられた液晶表示装置100eを例示する。 In each of the above-described embodiments, the liquid crystal display devices 100a to 100d in which the partition is not provided between the red phosphor layer, the green phosphor layer, and the blue transmission layer constituting the light adjustment units 22a to 22d are exemplified. In the embodiment, a liquid crystal display device 100e in which a partition wall 23a is provided between a red phosphor layer, a green phosphor layer, and a blue transmission layer that constitute the light adjusting unit 22e is illustrated.
 具体的に、液晶表示装置100eは、図10に示すように、複数の画素(Pa)がマトリクス状に配列された液晶表示パネル50aと、液晶表示パネル50aの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50aの背面側に設けられたバックライト70aと、液晶表示パネル50a(に貼り付けられた偏光板51b)及びバックライト70aの間に設けられ、バックライト70aからの青色光Lbを調整して液晶表示パネル50aに供給するための光調整部22eを含む蛍光体基板60eとを備えている。 Specifically, as shown in FIG. 10, the liquid crystal display device 100e includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the drawing) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back side of the liquid crystal display panel 50a, and a polarizing plate 51b attached to the liquid crystal display panel 50a ) And the backlight 70a, and a phosphor substrate 60e including a light adjusting unit 22e for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a.
 蛍光体基板60eは、図10に示すように、絶縁基板10cと、絶縁基板10c上に設けられた光調整部22eとを備えている。 As shown in FIG. 10, the phosphor substrate 60e includes an insulating substrate 10c and a light adjusting unit 22e provided on the insulating substrate 10c.
 光調整部22eは、図10に示すように、絶縁基板10c上に設けられた遮光層21eと、遮光層21e上に格子状に設けられた隔壁23aと、赤色の副画素(Pra)に重なるように隔壁23aの間に設けられた赤色蛍光体層22reと、緑色の副画素(Pga)に重なるように隔壁23aの間に設けられた緑色蛍光体層22geと、青色の副画素(Pba)に重なるように隔壁23aの間に設けられた青色透過層22beとを備えている。 As shown in FIG. 10, the light adjustment unit 22e overlaps the light shielding layer 21e provided on the insulating substrate 10c, the partition wall 23a provided in a lattice shape on the light shielding layer 21e, and the red sub-pixel (Pra). Thus, the red phosphor layer 22re provided between the barrier ribs 23a, the green phosphor layer 22ge provided between the barrier ribs 23a so as to overlap the green subpixel (Pga), and the blue subpixel (Pba). And a blue transmission layer 22be provided between the partition walls 23a.
 遮光層21eは、図10に示すように、赤色の副画素(Pra)に重なるように設けられた開口部(Ar)、緑色の副画素(Pgb)に重なるように設けられた開口部(Ag)、及び青色の副画素(Pbb)に重なるように設けられた開口部(Ab)を備えている。ここで、青色の副画素(Pba)に重なる開口部(Ab)の面積は、赤色の副画素(Pra)に重なる開口部(Ar)、及び緑色の副画素(Pga)に重なる開口部(Ag)の各面積の1/20~1/2程度になっている。なお、遮光層21eは、光反射性を有していてもよい。 As shown in FIG. 10, the light shielding layer 21e has an opening (Ar) provided so as to overlap the red subpixel (Pra) and an opening (Ag) provided so as to overlap the green subpixel (Pgb). ) And an opening (Ab) provided so as to overlap with the blue sub-pixel (Pbb). Here, the area of the opening (Ab) that overlaps the blue subpixel (Pba) is the opening (Ar) that overlaps the red subpixel (Pra) and the opening (Ag) that overlaps the green subpixel (Pga). ) Is about 1/20 to 1/2 of each area. The light shielding layer 21e may have light reflectivity.
 隔壁23aは、透明樹脂層(厚さ10μm~数10μm程度)である。 The partition wall 23a is a transparent resin layer (thickness of about 10 μm to several tens of μm).
 赤色蛍光体層22reは、図10に示すように、バックライト70aからの青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 10, the red phosphor layer 22re is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
 緑色蛍光体層22geは、図10に示すように、バックライト70aからの青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 10, the green phosphor layer 22ge is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
 青色透過層22beは、図10に示すように、バックライト70aからの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 10, the blue transmission layer 22be is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
 ここで、上述したように、光調整部22eの遮光層21eでは、青色の副画素(Pba)に重なる開口面積が、赤色及び緑色の各副画素(Pra及びPga)に重なる開口面積の1/20~1/2程度になっているので、赤色の副画素(Pra)、緑色の副画素(Pga)及び青色の副画素(Pba)に重なる遮光層21eの各開口した部分の面積比によって、光調整部22eにおいて、青色の副画素(Pba)に設けられた青色透過層22beを透過する青色光Ltbの強度が、赤色の副画素(Pra)に設けられた赤色蛍光体層22reに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22geに入射する青色光Lbの強度の1/20~1/2程度になり、光調整部22eにおいて、青色の副画素(Pba)に設けられた青色透過層22beを透過した青色光Ltbの強度、赤色の副画素(Pra)に設けられた赤色蛍光体層22reにより変換された赤色光Lrの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22geにより変換された緑色光Lgの強度を揃えることができる。 Here, as described above, in the light shielding layer 21e of the light adjustment unit 22e, the opening area overlapping the blue subpixel (Pba) is 1 / of the opening area overlapping the red and green subpixels (Pra and Pga). Since it is about 20 to 1/2, depending on the area ratio of each opened portion of the light shielding layer 21e overlapping the red subpixel (Pra), the green subpixel (Pga), and the blue subpixel (Pba), In the light adjustment unit 22e, the intensity of the blue light Ltb transmitted through the blue transmission layer 22be provided in the blue subpixel (Pba) is incident on the red phosphor layer 22re provided in the red subpixel (Pra). The intensity of the blue light Lb and the intensity of the blue light Lb incident on the green phosphor layer 22ge provided in the green sub-pixel (Pga) are about 1/20 to 1/2. Sub-pixel The intensity of the blue light Ltb transmitted through the blue transmission layer 22be provided in Pba), the intensity of the red light Lr converted by the red phosphor layer 22re provided in the red subpixel (Pra), and the green subpixel The intensities of the green light Lg converted by the green phosphor layer 22ge provided in (Pga) can be made uniform.
 以上説明したように、本実施形態の液晶表示装置100eによれば、赤色及び緑色の各副画素(Pra及びPga)では、赤色蛍光体層22re及び緑色蛍光体層22geによる波長変換により赤色光Lr及び緑色光Lgの強度が青色光Lbの入射強度よりもそれぞれ低くなるものの、光調整部22eにおいて、青色の副画素(Pba)に設けられた青色透過層22beを透過する青色光Ltbの強度が、赤色の副画素(Pra)に設けられた赤色蛍光体層22reに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22geに入射する青色光Lbの強度よりも低くなっているので、光調整部22eにおいて、青色の副画素(Pba)に設けられた青色透過層22beを透過した青色光Ltbの強度、赤色の副画素(Pra)に設けられた赤色蛍光体層22reにより変換された赤色光Lrの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22geにより変換された緑色光Lgの強度を揃えることができる。これにより、液晶表示パネル50aに配列された赤色、緑色及び青色の各副画素(Pra、Pga及びPba)には、強度を揃えた状態で赤色光Lr、緑色光Lg及び青色光Ltbをそれぞれ入射させることができるので、液晶表示パネル50aを透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を各副画素(Pra、Pga及びPba)毎にそれぞれ調整して行う画像表示では、表示色の青みを抑制することができる。そして、液晶表示装置100eでは、表示色の青みが抑制されることにより、ホワイトバランスを調整することができるので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100e of the present embodiment, in each of the red and green sub-pixels (Pra and Pga), the red light Lr is obtained by wavelength conversion by the red phosphor layer 22re and the green phosphor layer 22ge. Although the intensity of the green light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22be provided in the blue subpixel (Pba) in the light adjustment unit 22e is low. The intensity of the blue light Lb incident on the red phosphor layer 22re provided in the red subpixel (Pra) and the intensity of the blue light Lb incident on the green phosphor layer 22ge provided in the green subpixel (Pga) Since the intensity is lower than the intensity, the intensity of the blue light Ltb transmitted through the blue transmission layer 22be provided in the blue sub-pixel (Pba) in the light adjustment unit 22e, red The intensity of the red light Lr converted by the red phosphor layer 22re provided in the sub-pixel (Pra) and the green light Lg converted by the green phosphor layer 22ge provided in the green sub-pixel (Pga) The strength can be made uniform. As a result, red light Lr, green light Lg, and blue light Ltb are incident on the red, green, and blue sub-pixels (Pra, Pga, and Pba) arranged on the liquid crystal display panel 50a with the same intensity. In the image display performed by adjusting the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a for each sub-pixel (Pra, Pga, and Pba), Blueness of color can be suppressed. In the liquid crystal display device 100e, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
 また、本実施形態の液晶表示装置100eによれば、光調整部22eには、赤色蛍光層22re、緑色蛍光層22ge、青色透過層22beの間を分離する隔壁23aが設けられているので、赤色蛍光層22reで変換された赤色光Lr、緑色蛍光層22geで変換された緑色光Lg、及び青色透過層22beを透過した青色光Ltbの間における混色を抑制することができる。 Further, according to the liquid crystal display device 100e of the present embodiment, the light adjusting unit 22e is provided with the partition wall 23a that separates the red fluorescent layer 22re, the green fluorescent layer 22ge, and the blue transmissive layer 22be. Color mixing among the red light Lr converted by the fluorescent layer 22re, the green light Lg converted by the green fluorescent layer 22ge, and the blue light Ltb transmitted through the blue transmission layer 22be can be suppressed.
 また、本実施形態の液晶表示装置100eによれば、光調整部22eには、隔壁23aに重なるように遮光層21eが設けられているので、赤色蛍光層22reで変換された赤色光Lr、緑色蛍光層22geで変換された緑色光Lg、及び青色透過層22beを透過した青色光Ltbの間における混色を隔壁23bにより抑制することができると共に、青色の副画素(Pba)に設けられた青色透過層22beを透過する青色光Ltbの強度を、赤色の副画素(Pra)に設けられた赤色蛍光体層22reに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22geに入射する青色光Lbの強度よりも低くすることができる。 Further, according to the liquid crystal display device 100e of the present embodiment, since the light adjusting unit 22e is provided with the light shielding layer 21e so as to overlap the partition wall 23a, the red light Lr converted by the red fluorescent layer 22re, green The color mixture between the green light Lg converted by the fluorescent layer 22ge and the blue light Ltb transmitted through the blue transmission layer 22be can be suppressed by the partition wall 23b, and the blue transmission provided in the blue subpixel (Pba) can be suppressed. The intensity of the blue light Ltb that passes through the layer 22be is the same as the intensity of the blue light Lb that is incident on the red phosphor layer 22re provided in the red subpixel (Pra), and the green that is provided in the green subpixel (Pga). It can be made lower than the intensity of the blue light Lb incident on the phosphor layer 22ge.
 また、本実施形態の液晶表示装置100eによれば、隔壁23bに重なる遮光層21eが光反射性を有している場合には、バックライト70aからの青色光Lbのうち、遮光層21eの間を通過しなかった青色光Lrbが遮光層21e及びバックライト70aに設けられた反射シートで順に反射して再利用されるので、バックライト70aからの青色光Lbの利用効率を向上させることができる。 In addition, according to the liquid crystal display device 100e of the present embodiment, when the light shielding layer 21e overlapping the partition wall 23b has light reflectivity, the blue light Lb from the backlight 70a has a space between the light shielding layers 21e. Since the blue light Lrb that has not passed through the light is sequentially reflected and reused by the reflection sheet provided on the light shielding layer 21e and the backlight 70a, the utilization efficiency of the blue light Lb from the backlight 70a can be improved. .
 《発明の実施形態6》
 図11は、本実施形態の液晶表示装置100fの断面図である。
Embodiment 6 of the Invention
FIG. 11 is a cross-sectional view of the liquid crystal display device 100f of this embodiment.
 上記実施形態5では、遮光層21eの上方に隔壁23aが設けられた液晶表示装置100eを例示したが、本実施形態では、遮光層21fの下方に隔壁23bが設けられた液晶表示装置100fを例示する。 In the fifth embodiment, the liquid crystal display device 100e in which the partition wall 23a is provided above the light shielding layer 21e is illustrated, but in this embodiment, the liquid crystal display device 100f in which the partition wall 23b is provided below the light shielding layer 21f is illustrated. To do.
 具体的に、液晶表示装置100fは、図11に示すように、複数の画素(Pa)がマトリクス状に配列された液晶表示パネル50aと、液晶表示パネル50aの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50aの背面側に設けられたバックライト70aと、液晶表示パネル50a(に貼り付けられた偏光板51b)及びバックライト70aの間に設けられ、バックライト70aからの青色光Lbを調整して液晶表示パネル50aに供給するための光調整部22fを含む蛍光体基板60fとを備えている。 Specifically, as shown in FIG. 11, the liquid crystal display device 100f includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back side of the liquid crystal display panel 50a, and a polarizing plate 51b attached to the liquid crystal display panel 50a ) And a backlight 70a, and a phosphor substrate 60f including a light adjusting unit 22f for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a.
 蛍光体基板60fは、図11に示すように、絶縁基板10cと、絶縁基板10c上に設けられた光調整部22fとを備えている。 As shown in FIG. 11, the phosphor substrate 60f includes an insulating substrate 10c and a light adjusting unit 22f provided on the insulating substrate 10c.
 光調整部22fは、図11に示すように、絶縁基板10c上に格子状に設けられた隔壁23bと、赤色の副画素(Pra)に重なるように隔壁23bの間に設けられた赤色蛍光体層22rfと、緑色の副画素(Pga)に重なるように隔壁23bの間に設けられた緑色蛍光体層22gfと、青色の副画素(Pba)に重なるように隔壁23bの間に設けられた青色透過層22bfと、隔壁23b上に設けられた遮光層21fとを備えている。 As shown in FIG. 11, the light adjusting unit 22f includes a red phosphor provided between the barrier ribs 23b provided in a grid pattern on the insulating substrate 10c and the barrier ribs 23b so as to overlap the red sub-pixel (Pra). A blue color provided between the green phosphor layer 22gf provided between the barrier rib 23b so as to overlap the layer 22rf and the green subpixel (Pga), and a blue color provided between the barrier rib 23b so as to overlap the blue subpixel (Pba). A transmissive layer 22bf and a light shielding layer 21f provided on the partition wall 23b are provided.
 隔壁23bは、透明樹脂層(厚さ10μm~数10μm程度)である。 The partition wall 23b is a transparent resin layer (thickness of about 10 μm to several tens of μm).
 遮光層21fは、図11に示すように、赤色の副画素(Pra)に重なるように設けられた開口部(Ar)、緑色の副画素(Pgb)に重なるように設けられた開口部(Ag)、及び青色の副画素(Pbb)に重なるように設けられた開口部(Ab)を備えている。ここで、青色の副画素(Pba)に重なる開口部(Ab)の面積は、赤色の副画素(Pra)に重なる開口部(Ar)、及び緑色の副画素(Pga)に重なる開口部(Ag)の各面積の1/20~1/2程度になっている。なお、遮光層21fは、光反射性を有していてもよい。 As shown in FIG. 11, the light shielding layer 21f has an opening (Ar) provided so as to overlap the red subpixel (Pra) and an opening (Ag) provided so as to overlap the green subpixel (Pgb). ) And an opening (Ab) provided so as to overlap with the blue sub-pixel (Pbb). Here, the area of the opening (Ab) that overlaps the blue subpixel (Pba) is the opening (Ar) that overlaps the red subpixel (Pra) and the opening (Ag) that overlaps the green subpixel (Pga). ) Is about 1/20 to 1/2 of each area. The light shielding layer 21f may have light reflectivity.
 赤色蛍光体層22rfは、図11に示すように、バックライト70aからの青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 11, the red phosphor layer 22rf is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting blue light Lb from the backlight 70a into red light Lr is dispersed. is there.
 緑色蛍光体層22gfは、図11に示すように、バックライト70aからの青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 11, the green phosphor layer 22gf is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
 青色透過層22bfは、図11に示すように、バックライト70aからの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 11, the blue transmissive layer 22bf is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
 ここで、上述したように、光調整部22fの遮光層21fでは、青色の副画素(Pba)に重なる開口面積が、赤色及び緑色の各副画素(Pra及びPga)に重なる開口面積の1/20~1/2程度になっているので、赤色の副画素(Pra)、緑色の副画素(Pga)及び青色の副画素(Pba)に重なる遮光層21fの各開口した部分の面積比によって、光調整部22fにおいて、青色の副画素(Pba)に設けられた青色透過層22bfを透過する青色光Ltbの強度が、赤色の副画素(Pra)に設けられた赤色蛍光体層22rfに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22gfに入射する青色光Lbの強度の1/20~1/2程度になり、光調整部22fにおいて、青色の副画素(Pba)に設けられた青色透過層22bfを透過した青色光Ltbの強度、赤色の副画素(Pra)に設けられた赤色蛍光体層22rfにより変換された赤色光Lrの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22gfにより変換された緑色光Lgの強度を揃えることができる。 Here, as described above, in the light shielding layer 21f of the light adjustment unit 22f, the opening area overlapping the blue subpixel (Pba) is 1 / of the opening area overlapping the red and green subpixels (Pra and Pga). Since it is about 20 to 1/2, depending on the area ratio of each opened portion of the light shielding layer 21f overlapping the red subpixel (Pra), the green subpixel (Pga), and the blue subpixel (Pba), In the light adjustment unit 22f, the intensity of the blue light Ltb that passes through the blue transmission layer 22bf provided in the blue subpixel (Pba) is incident on the red phosphor layer 22rf provided in the red subpixel (Pra). The intensity of the blue light Lb and the intensity of the blue light Lb incident on the green phosphor layer 22gf provided in the green sub-pixel (Pga) are about 1/20 to 1/2. Sub-pixel The intensity of the blue light Ltb transmitted through the blue transmission layer 22bf provided in Pba), the intensity of the red light Lr converted by the red phosphor layer 22rf provided in the red subpixel (Pra), and the green subpixel The intensities of the green light Lg converted by the green phosphor layer 22gf provided in (Pga) can be made uniform.
 以上説明したように、本実施形態の液晶表示装置100fによれば、赤色及び緑色の各副画素(Pra及びPga)では、赤色蛍光体層22rf及び緑色蛍光体層22gfによる波長変換により赤色光Lr及び緑色光Lgの強度が青色光Lbの入射強度よりもそれぞれ低くなるものの、光調整部22fにおいて、青色の副画素(Pba)に設けられた青色透過層22bfを透過する青色光Ltbの強度が、赤色の副画素(Pra)に設けられた赤色蛍光体層22rfに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22gfに入射する青色光Lbの強度よりも低くなっているので、光調整部22fにおいて、青色の副画素(Pba)に設けられた青色透過層22bfを透過した青色光Ltbの強度、赤色の副画素(Pra)に設けられた赤色蛍光体層22rfにより変換された赤色光Lrの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22gfにより変換された緑色光Lgの強度を揃えることができる。これにより、液晶表示パネル50aに配列された赤色、緑色及び青色の各副画素(Pra、Pga及びPba)には、強度を揃えた状態で赤色光Lr、緑色光Lg及び青色光Ltbをそれぞれ入射させることができるので、液晶表示パネル50aを透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を各副画素(Pra、Pga及びPba)毎にそれぞれ調整して行う画像表示では、表示色の青みを抑制することができる。そして、液晶表示装置100fでは、表示色の青みが抑制されることにより、ホワイトバランスを調整することができるので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100f of the present embodiment, in each of the red and green sub-pixels (Pra and Pga), the red light Lr is obtained by wavelength conversion using the red phosphor layer 22rf and the green phosphor layer 22gf. Although the intensity of the green light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bf provided in the blue subpixel (Pba) in the light adjustment unit 22f is low. The intensity of the blue light Lb incident on the red phosphor layer 22rf provided in the red sub-pixel (Pra) and the intensity of the blue light Lb incident on the green phosphor layer 22gf provided in the green sub-pixel (Pga) Since the intensity is lower than the intensity, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bf provided in the blue sub-pixel (Pba) in the light adjustment unit 22f, red Of the red light Lr converted by the red phosphor layer 22rf provided in the sub-pixel (Pra) of the green light and the green light Lg converted by the green phosphor layer 22gf provided in the green sub-pixel (Pga) The strength can be made uniform. As a result, red light Lr, green light Lg, and blue light Ltb are incident on the red, green, and blue sub-pixels (Pra, Pga, and Pba) arranged on the liquid crystal display panel 50a with the same intensity. In the image display performed by adjusting the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a for each sub-pixel (Pra, Pga, and Pba), Blueness of color can be suppressed. In the liquid crystal display device 100f, since the white balance can be adjusted by suppressing the blue color of the display color, the blue color of the display color can be suppressed and an appropriate white balance can be obtained.
 また、本実施形態の液晶表示装置100fによれば、光調整部22fには、赤色蛍光層22rf、緑色蛍光層22gf、青色透過層22bfの間を分離する隔壁23bが設けられているので、赤色蛍光層22rfで変換された赤色光Lr、緑色蛍光層22gfで変換された緑色光Lg、及び青色透過層22bfを透過した青色光Ltbの間における混色を抑制することができる。 Further, according to the liquid crystal display device 100f of the present embodiment, the light adjusting unit 22f is provided with the partition wall 23b that separates the red fluorescent layer 22rf, the green fluorescent layer 22gf, and the blue transmissive layer 22bf. Color mixing between the red light Lr converted by the fluorescent layer 22rf, the green light Lg converted by the green fluorescent layer 22gf, and the blue light Ltb transmitted through the blue transmission layer 22bf can be suppressed.
 また、本実施形態の液晶表示装置100fによれば、光調整部22fには、隔壁23bに重なるように遮光層21fが設けられているので、赤色蛍光層22rfで変換された赤色光Lr、緑色蛍光層22gfで変換された緑色光Lg、及び青色透過層22bfを透過した青色光Ltbの間における混色を隔壁23bにより抑制することができると共に、青色の副画素(Pba)に設けられた青色透過層22bfを透過する青色光Ltbの強度を、赤色の副画素(Pra)に設けられた赤色蛍光体層22rfに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22gfに入射する青色光Lbの強度よりも低くすることができる。 Further, according to the liquid crystal display device 100f of the present embodiment, since the light adjusting unit 22f is provided with the light shielding layer 21f so as to overlap the partition wall 23b, the red light Lr converted by the red fluorescent layer 22rf, green The color mixture between the green light Lg converted by the phosphor layer 22gf and the blue light Ltb transmitted through the blue transmission layer 22bf can be suppressed by the partition wall 23b, and the blue transmission provided in the blue sub-pixel (Pba) can be suppressed. The intensity of the blue light Ltb that is transmitted through the layer 22bf is the same as the intensity of the blue light Lb that is incident on the red phosphor layer 22rf provided in the red subpixel (Pra), and the green that is provided in the green subpixel (Pga). It can be made lower than the intensity of the blue light Lb incident on the phosphor layer 22gf.
 また、本実施形態の液晶表示装置100fによれば、隔壁23bに重なる遮光層21fが光反射性を有している場合には、バックライト70aからの青色光Lbのうち、遮光層21fの間を通過しなかった青色光Lrbが遮光層21f及びバックライト70aに設けられた反射シートで順に反射して再利用されるので、バックライト70aからの青色光Lbの利用効率を向上させることができる。 In addition, according to the liquid crystal display device 100f of the present embodiment, when the light shielding layer 21f overlapping the partition wall 23b has light reflectivity, the blue light Lb from the backlight 70a has a space between the light shielding layers 21f. Since the blue light Lrb that has not passed through the light is sequentially reflected and reused by the reflection sheet provided in the light shielding layer 21f and the backlight 70a, the utilization efficiency of the blue light Lb from the backlight 70a can be improved. .
 《発明の実施形態7》
 図12は、本実施形態の液晶表示装置100gの断面図である。
<< Embodiment 7 of the Invention >>
FIG. 12 is a cross-sectional view of the liquid crystal display device 100g of the present embodiment.
 上記実施形態5及び6では、隔壁23a及び23bに遮光層21e及び21fをそぞれぞれ重ねて配置させた液晶表示装置100e及び100fを例示したが、本実施形態では、隔壁23cが遮光性を有している液晶表示装置100gを例示する。 In the fifth and sixth embodiments, the liquid crystal display devices 100e and 100f in which the light shielding layers 21e and 21f are arranged on the partition walls 23a and 23b are illustrated. However, in the present embodiment, the partition wall 23c has a light shielding property. An example of a liquid crystal display device 100g including
 具体的に、液晶表示装置100gは、図12に示すように、複数の画素(Pa)がマトリクス状に配列された液晶表示パネル50aと、液晶表示パネル50aの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50aの背面側に設けられたバックライト70aと、液晶表示パネル50a(に貼り付けられた偏光板51b)及びバックライト70aの間に設けられ、バックライト70aからの青色光Lbを調整して液晶表示パネル50aに供給するための光調整部22gを含む蛍光体基板60gとを備えている。 Specifically, as shown in FIG. 12, the liquid crystal display device 100g includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the figure) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70a provided on the back side of the liquid crystal display panel 50a, and a polarizing plate 51b attached to the liquid crystal display panel 50a ) And the backlight 70a, and a phosphor substrate 60g including a light adjusting unit 22g for adjusting the blue light Lb from the backlight 70a and supplying it to the liquid crystal display panel 50a.
 蛍光体基板60gは、図12に示すように、絶縁基板10cと、絶縁基板10c上に設けられた光調整部22gとを備えている。 As shown in FIG. 12, the phosphor substrate 60g includes an insulating substrate 10c and a light adjusting unit 22g provided on the insulating substrate 10c.
 光調整部22gは、図12に示すように、絶縁基板10c上に格子状に設けられた隔壁23cと、赤色の副画素(Pra)に重なるように隔壁23cの間に設けられた赤色蛍光体層22rgと、緑色の副画素(Pga)に重なるように隔壁23cの間に設けられた緑色蛍光体層22ggと、青色の副画素(Pba)に重なるように隔壁23cの間に設けられた青色透過層22bgとを備えている。 As shown in FIG. 12, the light adjusting unit 22g includes a red phosphor provided between the partition wall 23c provided in a grid pattern on the insulating substrate 10c and the partition wall 23c so as to overlap the red sub-pixel (Pra). The blue color provided between the green phosphor layer 22gg provided between the layer 22rg and the partition 23c so as to overlap the green subpixel (Pga) and the partition 23c provided so as to overlap the blue subpixel (Pba). And a transmissive layer 22bg.
 隔壁23cは、遮光性を有する樹脂層(厚さ10μm~数10μm程度)である。 The partition wall 23c is a light-shielding resin layer (thickness of about 10 μm to several tens of μm).
 赤色蛍光体層22rgは、図12に示すように、バックライト70aからの青色光Lbを赤色光Lrに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 12, the red phosphor layer 22rg is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the red light Lr is dispersed. is there.
 緑色蛍光体層22ggは、図12に示すように、バックライト70aからの青色光Lbを緑色光Lgに変換するための蛍光体が分散された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 12, the green phosphor layer 22gg is a transparent resin layer (thickness of about 10 μm to several tens of μm) in which a phosphor for converting the blue light Lb from the backlight 70a into the green light Lg is dispersed. is there.
 青色透過層22bgは、図12に示すように、バックライト70aからの青色光Lbの一部を青色光Ltbとして透過するように構成された透明樹脂層(厚さ10μm~数10μm程度)である。 As shown in FIG. 12, the blue transmissive layer 22bg is a transparent resin layer (thickness of about 10 μm to several tens of μm) configured to transmit part of the blue light Lb from the backlight 70a as the blue light Ltb. .
 ここで、上述したように、光調整部22gの隔壁23cでは、青色の副画素(Pba)に重なる開口面積が、赤色及び緑色の各副画素(Pra及びPga)に重なる開口面積の1/20~1/2程度になっているので、赤色の副画素(Pra)、緑色の副画素(Pga)及び青色の副画素(Pba)に重なる隔壁23cの各開口した部分の面積比によって、光調整部22gにおいて、青色の副画素Pbaに設けられた青色透過層22bgを透過する青色光Ltbの強度が、赤色の副画素Praに設けられた赤色蛍光体層22rgに入射する青色光Lbの強度、及び緑色の副画素Pgaに設けられた緑色蛍光体層22ggに入射する青色光Lbの強度の1/20~1/2程度になり、光調整部22gにおいて、青色の副画素(Pba)に設けられた青色透過層22bgを透過した青色光Ltbの強度、赤色の副画素(Pra)に設けられた赤色蛍光体層22rgにより変換された赤色光Lrの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22ggにより変換された緑色光Lgの強度を揃えることができる。 Here, as described above, in the partition wall 23c of the light adjusting unit 22g, the opening area overlapping the blue subpixel (Pba) is 1/20 of the opening area overlapping the red and green subpixels (Pra and Pga). Since it is about ½, the light adjustment is performed according to the area ratio of each opened portion of the partition wall 23c overlapping the red subpixel (Pra), the green subpixel (Pga), and the blue subpixel (Pba). In the portion 22g, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bg provided in the blue subpixel Pba is equal to the intensity of the blue light Lb incident on the red phosphor layer 22rg provided in the red subpixel Pra. And about 1/20 to 1/2 of the intensity of the blue light Lb incident on the green phosphor layer 22gg provided in the green subpixel Pga, and is provided in the blue subpixel (Pba) in the light adjustment unit 22g. The intensity of the blue light Ltb transmitted through the blue transmission layer 22bg, the intensity of the red light Lr converted by the red phosphor layer 22rg provided in the red subpixel (Pra), and the green subpixel (Pga) The intensity of the green light Lg converted by the provided green phosphor layer 22gg can be made uniform.
 以上説明したように、本実施形態の液晶表示装置100gによれば、赤色及び緑色の各副画素(Pra及びPga)では、赤色蛍光体層22rg及び緑色蛍光体層22ggによる波長変換により赤色光Lr及び緑色光Lgの強度が青色光Lbの入射強度よりもそれぞれ低くなるものの、光調整部22gにおいて、青色の副画素(Pba)に設けられた青色透過層22bgを透過する青色光Ltbの強度が、赤色の副画素(Pra)に設けられた赤色蛍光体層22rgに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22ggに入射する青色光Lbの強度よりも低くなっているので、光調整部22gにおいて、青色の副画素(Pba)に設けられた青色透過層22bgを透過した青色光Ltbの強度、赤色の副画素(Pra)に設けられた赤色蛍光体層22rgにより変換された赤色光Lrの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22ggにより変換された緑色光Lgの強度を揃えることができる。これにより、液晶表示パネル50aに配列された赤色、緑色及び青色の各副画素(Pra、Pga及びPba)には、強度を揃えた状態で赤色光Lr、緑色光Lg及び青色光Ltbをそれぞれ入射させることができるので、液晶表示パネル50aを透過する赤色光Lr、緑色光Lg及び青色光Ltbの透過率を各副画素(Pra、Pga及びPba)毎にそれぞれ調整して行う画像表示では、表示色の青みを抑制することができる。そして、液晶表示装置100gでは、表示色の青みが抑制されることにより、ホワイトバランスを調整することができるので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100g of the present embodiment, in each of the red and green subpixels (Pra and Pga), the red light Lr is obtained by wavelength conversion using the red phosphor layer 22rg and the green phosphor layer 22gg. Although the intensity of the green light Lg is lower than the incident intensity of the blue light Lb, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bg provided in the blue subpixel (Pba) in the light adjustment unit 22g is low. , The intensity of the blue light Lb incident on the red phosphor layer 22rg provided in the red sub-pixel (Pra), and the intensity of the blue light Lb incident on the green phosphor layer 22gg provided in the green sub-pixel (Pga). Since the intensity is lower than the intensity, the intensity of the blue light Ltb transmitted through the blue transmission layer 22bg provided in the blue sub-pixel (Pba) in the light adjustment unit 22g, red The intensity of the red light Lr converted by the red phosphor layer 22rg provided in the sub-pixel (Pra) and the green light Lg converted by the green phosphor layer 22gg provided in the green sub-pixel (Pga) The strength can be made uniform. As a result, red light Lr, green light Lg, and blue light Ltb are incident on the red, green, and blue sub-pixels (Pra, Pga, and Pba) arranged on the liquid crystal display panel 50a with the same intensity. In the image display performed by adjusting the transmittance of the red light Lr, the green light Lg, and the blue light Ltb transmitted through the liquid crystal display panel 50a for each sub-pixel (Pra, Pga, and Pba), Blueness of color can be suppressed. In the liquid crystal display device 100g, the white balance can be adjusted by suppressing the bluish color of the display color, so that the appropriate white balance can be obtained by suppressing the bluish color of the display color.
 また、本実施形態の液晶表示装置100gによれば、光調整部22gには、隔壁23c自体が遮光性を有しているので、赤色蛍光層22rgで変換された赤色光Lr、緑色蛍光層22ggで変換された緑色光Lg、及び青色透過層22bgを透過した青色光Ltbの間における混色を隔壁23cにより抑制することができると共に、別途、遮光層を設けなくても、青色の副画素(Pba)に設けられた青色透過層22bgを透過する青色光Ltbの強度を、赤色の副画素(Pra)に設けられた赤色蛍光体層22rgに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22ggに入射する青色光Lbの強度よりも低くすることができる。 Further, according to the liquid crystal display device 100g of this embodiment, since the partition wall 23c itself has a light shielding property in the light adjusting unit 22g, the red light Lr converted by the red fluorescent layer 22rg and the green fluorescent layer 22gg. The color mixture between the green light Lg converted in step B and the blue light Ltb transmitted through the blue transmission layer 22bg can be suppressed by the partition wall 23c, and the blue subpixel (Pba) can be provided without a separate light shielding layer. ), The intensity of the blue light Ltb that passes through the blue transmission layer 22bg provided in the red sub-pixel (Pra), the intensity of the blue light Lb that enters the red phosphor layer 22rg provided in the red sub-pixel (Pra), and the green sub-pixel ( Pga) can be lower than the intensity of the blue light Lb incident on the green phosphor layer 22gg provided in Pga).
 《発明の実施形態8》
 図13は、本実施形態の液晶表示装置100hの断面図である。
<< Embodiment 8 of the Invention >>
FIG. 13 is a cross-sectional view of the liquid crystal display device 100h of this embodiment.
 上記各実施形態では、エッジライト型のバックライト70aを備えた液晶表示装置100a~100gを例示したが、本実施形態では、直下型のバックライト70bを備えた液晶表示装置100hを例示する。 In each of the above embodiments, the liquid crystal display devices 100a to 100g including the edge-light type backlight 70a are illustrated, but in this embodiment, the liquid crystal display device 100h including the direct type backlight 70b is illustrated.
 具体的に、液晶表示装置100hは、図13に示すように、複数の画素(Pa)がマトリクス状に配列された液晶表示パネル50aと、液晶表示パネル50aの表面(図中上面)及び裏面(背面、図中下面)にそれぞれ貼り付けられた一対の偏光板51a及び51bと、液晶表示パネル50aの背面側に設けられた青色光Lbを発するバックライト70bと、液晶表示パネル50a(に貼り付けられた偏光板51b)及びバックライト70bの間に設けられ、バックライト70bからの青色光Lbを調整して液晶表示パネル50aに供給するための光調整部22aを含む蛍光体基板60aとを備えている。 Specifically, as shown in FIG. 13, the liquid crystal display device 100h includes a liquid crystal display panel 50a in which a plurality of pixels (Pa) are arranged in a matrix, and a front surface (upper surface in the drawing) and a rear surface ( A pair of polarizing plates 51a and 51b attached to the back surface and the bottom surface in the drawing, a backlight 70b emitting blue light Lb provided on the back side of the liquid crystal display panel 50a, and a liquid crystal display panel 50a And a phosphor substrate 60a including a light adjusting unit 22a that is provided between the polarizing plate 51b) and the backlight 70b and adjusts the blue light Lb from the backlight 70b and supplies the blue light Lb to the liquid crystal display panel 50a. ing.
 バックライト70bは、反射シート(不図示)と、反射シートの上方に設けられ、各々、青色光を発する複数の点状光源(不図示)と、各点状光源の上方に一体に設けられた拡散シート(不図示)と、拡散シート上に設けられたプリズムシート(不図示)とを備え、各点状光源からの青色光を、反射シート、拡散シート及びプリズムシートを介して青色光Lb(図13参照)として出射するように構成されている。ここで、点状光源は、青色LEDなどにより構成されている。 The backlight 70b is provided above the reflection sheet (not shown) and the reflection sheet, and is integrally provided above each of the point light sources (not shown) that emit blue light and the point light sources. A diffusion sheet (not shown) and a prism sheet (not shown) provided on the diffusion sheet are provided, and blue light from each point light source is converted into blue light Lb (via the reflection sheet, the diffusion sheet, and the prism sheet). The light is emitted as shown in FIG. Here, the point light source is configured by a blue LED or the like.
 以上説明したように、本実施形態の液晶表示装置100hによれば、上記実施形態1と同様に、光調整部22aにおいて、青色の副画素(Pba)に設けられた青色透過層22baを透過する青色光Ltbの強度が、赤色の副画素(Pra)に設けられた赤色蛍光体層22raに入射する青色光Lbの強度、及び緑色の副画素(Pga)に設けられた緑色蛍光体層22gaに入射する青色光Lbの強度よりも低くなっているので、表示色の青みを抑制して、適切なホワイトバランスを得ることができる。 As described above, according to the liquid crystal display device 100h of the present embodiment, similarly to the first embodiment, the light adjustment unit 22a transmits the blue transmission layer 22ba provided in the blue subpixel (Pba). The intensity of the blue light Ltb is in the intensity of the blue light Lb incident on the red phosphor layer 22ra provided in the red sub-pixel (Pra) and the green phosphor layer 22ga provided in the green sub-pixel (Pga). Since it is lower than the intensity of the incident blue light Lb, it is possible to suppress the bluish color of the display color and obtain an appropriate white balance.
 なお、本実施形態では、上記実施形態1の液晶表示装置100aのバックライト70aを直下型のバックライト70bに置き換える構成を例示したが、上記実施形態2~7の液晶表示装置100b~gのバックライト70aを直下型のバックライト70bに置き換えてもよい。 In the present embodiment, the configuration in which the backlight 70a of the liquid crystal display device 100a of the first embodiment is replaced with the direct type backlight 70b is exemplified. However, the backlight of the liquid crystal display devices 100b to 100g of the second to seventh embodiments is exemplified. The light 70a may be replaced with a direct backlight 70b.
 また、上記実施形態5~7では、赤色、緑色及び青色の各副画素Pra、Pga及びPbaが互いに等しいサイズで形成された液晶表示パネル50aに対して、隔壁を有する光調整部が設けられた液晶表示装置を例示したが、隔壁を有する光調整部は、青色の副画素Pbbが赤色の副画素Prb及び緑色の副画素Pgbよりも小さく形成された液晶表示パネル50bに対して、設けられていてもよい。 In the fifth to seventh embodiments, the light adjustment unit having a partition is provided for the liquid crystal display panel 50a in which the red, green, and blue sub-pixels Pra, Pga, and Pba are formed with the same size. Although the liquid crystal display device has been exemplified, the light adjustment unit having the partition is provided for the liquid crystal display panel 50b in which the blue subpixel Pbb is formed smaller than the red subpixel Prb and the green subpixel Pgb. May be.
 また、上記各実施形態では、TFT基板を備えた液晶表示装置を例示したが、本発明は、その他のアクティブマトリクス基板を備えた液晶表示装置、及びパッシブマトリクス駆動方式の液晶表示装置などにも適用することができる。 Further, in each of the above embodiments, the liquid crystal display device including the TFT substrate is exemplified, but the present invention is also applied to a liquid crystal display device including other active matrix substrates, a liquid crystal display device of a passive matrix driving system, and the like. can do.
 また、上記各実施形態では、赤色層、緑色層及び青色層などが設けられたCF基板を備えた液晶表示装置を例示したが、本発明は、CF基板上の赤色層、緑色層及び青色層が省略された液晶表示装置にも適用することができる。 In each of the above embodiments, a liquid crystal display device including a CF substrate provided with a red layer, a green layer, a blue layer, and the like has been exemplified. However, the present invention is not limited to the red layer, the green layer, and the blue layer on the CF substrate. It can also be applied to a liquid crystal display device in which is omitted.
 以上説明したように、本発明は、青色光を発するバックライトに起因する表示色の青みを抑制して、適切なホワイトバランスを得ることができるので、液晶表示装置について有用である。 As described above, the present invention is useful for a liquid crystal display device because an appropriate white balance can be obtained by suppressing blueness of a display color caused by a backlight emitting blue light.
Pa,Pb    画素
Pra,Prb  赤色の副画素
Pga,Pgb  緑色の副画素
Pba,Pbb  青色の副画素
21a~21c,21e,21f  遮光層
22a~22g  光調整部
22ra~22rg  赤色蛍光体層
22ga~22gg  緑色蛍光体層
22ba~22bg  青色透過層
23a~23c  隔壁
50a,50b  液晶表示パネル
70a,70b  バックライト
100a~100h  液晶表示装置
Pa, Pb Pixels Pra, Prb Red subpixels Pga, Pgb Green subpixels Pba, Pbb Blue subpixels 21a-21c, 21e, 21f Light shielding layers 22a-22g Light adjustment units 22ra-22rg Red phosphor layers 22ga-22gg Green phosphor layers 22ba-22bg Blue transmission layers 23a- 23c Partition walls 50a, 50b Liquid crystal display panels 70a, 70b Backlights 100a-100h Liquid crystal display device

Claims (10)

  1.  画素を構成する赤色、緑色及び青色の各副画素が配列された液晶表示パネルと、
     上記液晶表示パネルの背面側に設けられ、青色光を発するバックライトと、
     上記液晶表示パネル及びバックライトの間に設けられ、上記バックライトから入射する青色光を調整して上記液晶表示パネルに供給する光調整部とを備え、
     上記光調整部が、上記赤色の副画素に重なるように設けられ上記入射する青色光を赤色光に変換する赤色蛍光体層と、上記緑色の副画素に重なるように設けられ上記入射する青色光を緑色光に変換する緑色蛍光体層と、上記青色の副画素に重なるように設けられ上記入射する青色光を透過する青色透過層とを備えた液晶表示装置であって、
     上記光調整部において、上記青色透過層を透過する青色光の強度が上記赤色蛍光体層及び緑色蛍光体層に入射する各青色光の強度よりも低くなるように構成されていることを特徴とする液晶表示装置。
    A liquid crystal display panel in which red, green and blue sub-pixels constituting the pixel are arranged;
    A backlight provided on the back side of the liquid crystal display panel and emitting blue light;
    A light adjusting unit provided between the liquid crystal display panel and the backlight, and adjusting the blue light incident from the backlight and supplying the blue light to the liquid crystal display panel;
    The light adjusting unit is provided so as to overlap the red sub-pixel and converts the incident blue light into red light; and the incident blue light provided so as to overlap the green sub-pixel A green phosphor layer that converts the light into green light, and a blue transmission layer that is provided so as to overlap the blue sub-pixel and that transmits the incident blue light,
    The light adjusting unit is configured such that the intensity of blue light transmitted through the blue transmission layer is lower than the intensity of each blue light incident on the red phosphor layer and the green phosphor layer. Liquid crystal display device.
  2.  請求項1に記載された液晶表示装置において、
     上記光調整部は、上記赤色、緑色及び青色の各副画素にそれぞれ重なるように開口した遮光層を有し、
     上記遮光層において、上記青色の副画素に重なるように開口した面積は、上記赤色及び緑色の各副画素に重なるように開口した面積よりもそれぞれ小さくなっていることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1,
    The light adjusting unit includes a light shielding layer that is opened so as to overlap the red, green, and blue sub-pixels,
    The liquid crystal display device according to claim 1, wherein an area of the light-shielding layer that is opened so as to overlap with the blue sub-pixel is smaller than an area of the light-shielding layer that is opened so as to overlap with the red and green sub-pixels.
  3.  請求項2に記載された液晶表示装置において、
     上記遮光層は、光反射性を有していることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 2,
    The liquid crystal display device, wherein the light shielding layer has light reflectivity.
  4.  請求項2又は3に記載された液晶表示装置において、
     上記青色の副画素に重なるように開口した面積は、上記赤色及び緑色の各副画素に重なるように開口した面積の1/2以下にそれぞれなっていることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 2 or 3,
    A liquid crystal display device, wherein an area opened so as to overlap with the blue sub-pixel is ½ or less of an area opened so as to overlap with each of the red and green sub-pixels.
  5.  請求項1又は2に記載された液晶表示装置において、
     上記青色の副画素は、上記赤色及び緑色の各副画素よりも小さく形成されていることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1 or 2,
    The liquid crystal display device, wherein the blue sub-pixel is formed smaller than the red and green sub-pixels.
  6.  請求項1に記載された液晶表示装置において、
     上記光調整部は、上記青色の副画素に設けられ該青色の副画素で開口した遮光層を有していることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1,
    The liquid crystal display device, wherein the light adjustment unit includes a light shielding layer provided in the blue subpixel and having an opening in the blue subpixel.
  7.  請求項1に記載された液晶表示装置において、
     上記光調整部には、上記赤色蛍光層、緑色蛍光層及び青色透過層の間を分離する隔壁が設けられていることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1,
    The liquid crystal display device, wherein the light adjusting unit is provided with a partition for separating the red fluorescent layer, the green fluorescent layer, and the blue transmitting layer.
  8.  請求項7に記載された液晶表示装置において、
     上記光調整部には、上記隔壁に重なるように遮光層が設けられていることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 7,
    The liquid crystal display device, wherein the light adjusting portion is provided with a light shielding layer so as to overlap the partition wall.
  9.  請求項8に記載された液晶表示装置において、
     上記遮光層は、光反射性を有していることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 8, wherein
    The liquid crystal display device, wherein the light shielding layer has light reflectivity.
  10.  請求項7に記載された液晶表示装置において、
     上記隔壁は、遮光性を有していることを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 7,
    The liquid crystal display device, wherein the partition wall has a light shielding property.
PCT/JP2011/005414 2010-10-04 2011-09-27 Liquid crystal display device WO2012046407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010224812 2010-10-04
JP2010-224812 2010-10-04

Publications (1)

Publication Number Publication Date
WO2012046407A1 true WO2012046407A1 (en) 2012-04-12

Family

ID=45927415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005414 WO2012046407A1 (en) 2010-10-04 2011-09-27 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012046407A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843814A (en) * 1994-07-28 1996-02-16 Matsushita Electric Ind Co Ltd Color picture display device
JP2003043483A (en) * 2001-08-01 2003-02-13 Seiko Epson Corp Lighting device, electrooptic device, and electronic equipment
JP2007065361A (en) * 2005-08-31 2007-03-15 Sony Corp Color liquid crystal display apparatus
JP2009543130A (en) * 2006-07-06 2009-12-03 インテマティックス・コーポレーション Photoluminescence color liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843814A (en) * 1994-07-28 1996-02-16 Matsushita Electric Ind Co Ltd Color picture display device
JP2003043483A (en) * 2001-08-01 2003-02-13 Seiko Epson Corp Lighting device, electrooptic device, and electronic equipment
JP2007065361A (en) * 2005-08-31 2007-03-15 Sony Corp Color liquid crystal display apparatus
JP2009543130A (en) * 2006-07-06 2009-12-03 インテマティックス・コーポレーション Photoluminescence color liquid crystal display

Similar Documents

Publication Publication Date Title
KR102119680B1 (en) Display apparatus and method for driving the same
JP6131434B2 (en) Color conversion layer, organic EL light emitting display panel having color conversion layer, and liquid crystal display panel
TWI544620B (en) Display panel
US10162220B2 (en) Lighting device, display device, and television device
KR102096436B1 (en) Backlight assembly and liquid crystal display including the same
JP6360966B2 (en) Lighting device, display device, and television receiver
TW201506459A (en) Display panel
US20130002986A1 (en) Display device
JP2015065168A (en) Backlight assembly
JP6496023B2 (en) Display device and television receiver
US20140043566A1 (en) Display device with increased optical efficiency
WO2016026181A1 (en) Colour liquid crystal display module structure and backlight module thereof
EP3270036A1 (en) Illumination device, display device, and television receiver
TW201426114A (en) Liquid crystal display
WO2012029701A1 (en) Liquid crystal display device, and color reproduction method thereof
JP2016058586A (en) Display device and television receiver
KR20110075548A (en) Liquid crystal display device
JP4985154B2 (en) Light source device, display device, and optical member
WO2016049956A1 (en) Field color sequential method liquid crystal display and color control method thereof
WO2019019570A1 (en) Quantum dot liquid crystal panel and liquid crystal display device
KR20210004019A (en) Color conversion sheet, backlight unit and display device
WO2012046407A1 (en) Liquid crystal display device
JP2008281866A (en) Liquid crystal display device
JP2010250992A (en) Lighting device, display device, and electronic equipment having display device
WO2013183753A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP