WO2012045847A1 - Antenne de grande dimension à ondes de surface et à large bande - Google Patents

Antenne de grande dimension à ondes de surface et à large bande Download PDF

Info

Publication number
WO2012045847A1
WO2012045847A1 PCT/EP2011/067518 EP2011067518W WO2012045847A1 WO 2012045847 A1 WO2012045847 A1 WO 2012045847A1 EP 2011067518 W EP2011067518 W EP 2011067518W WO 2012045847 A1 WO2012045847 A1 WO 2012045847A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
antenna
portions
approximately
conductive medium
Prior art date
Application number
PCT/EP2011/067518
Other languages
English (en)
Inventor
Sébastien PALUD
Philippe Piole
Pierre-Yves Jezequel
Jean-Yves Laurent
Laurent Prioul
Original Assignee
Tdf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdf filed Critical Tdf
Priority to AU2011311481A priority Critical patent/AU2011311481A1/en
Priority to CN201180048040.8A priority patent/CN103299481B/zh
Priority to ES11764763.6T priority patent/ES2509953T3/es
Priority to EP11764763.6A priority patent/EP2625741B1/fr
Priority to CA2812722A priority patent/CA2812722C/fr
Priority to US13/877,430 priority patent/US20130241790A1/en
Publication of WO2012045847A1 publication Critical patent/WO2012045847A1/fr
Priority to AU2016204050A priority patent/AU2016204050B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/04Adaptation for subterranean or subaqueous use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/265Open ring dipoles; Circular dipoles

Definitions

  • the present invention relates to a large-sized antenna for transmitting and / or receiving surface waves in a wide frequency band including in particular all or part of the low, medium and high frequencies between about 30 kHz and about 30 MHz, or waves. kilometers, MF and HF.
  • the antenna can be incorporated for example into a high power transmission system, in particular for the broadcasting of radio or television program signals, a surface wave radar system or a reception and interception system.
  • the patent application EP 1,594,186 A1 filed by the applicant discloses a large ground antenna for radiating a surface wave kilometer or hectometric.
  • This antenna comprises a metal ground plane, a metal excitation loop, and a metal link element.
  • the ground plane is buried horizontally near and under the surface of the ground.
  • the excitation loop is longer than approximately 25 m for LF and MF wavelengths and open between two extremities and extends parallel to the ground plane and horizontally above the ground surface at a height greater than About 2 m from the ground plane.
  • the metal connecting element is perpendicular to the loop and connects one end of the excitation loop to the ground plane.
  • the excitation loop and the connecting element are each constituted by at least one thin cylindrical element.
  • the opening of the excitation loop is small relative to the length of the loop to nearly eliminate any horizontal electric field component at the surface of the ground.
  • the ground wave is due to the injection of high currents in the ground, a consequence of an ohmic resistance of the weak antenna, without any lateral radiation of a space wave compared to a pylon antenna.
  • the patent application EP 1 594 186 A1 aims to significantly promote the propagation by surface waves and to minimize the radiation of a space wave by the radiating towers, in particular to avoid coupling of the antenna with structures close to the antenna above the ground, the ground antenna generates a significant space wave for angles close to the normal to the ground plane.
  • This space wave has a much lower power than that of the surface wave and is evanescent a few tens of kilometers above the surface of the ground.
  • the space wave can be reflected on layers of the ionosphere and cause fading phenomena in combination with a surface wave.
  • the space wave can disturb useful signals received from the ionosphere by other antennas. Conversely, the operation in reception of the antenna can be disturbed by space wave recovery.
  • the ground antenna has a large surface area and a relatively narrow bandwidth.
  • the present invention aims to overcome the various problems mentioned above and particularly to provide a large surface wave antenna which has increased ionospheric protection over short and medium distances, and a structure conducive to a reduction in the congestion of the antenna according to at least one dimension of the space and to a widening of the bandwidth.
  • a surface wave antenna comprising a metal excitation loop capable of being positioned at a height of at least about 1 m above the surface of a conductive medium and a feeding means capable of to be connected to the conducting medium, the loop having a length of approximately ⁇ / 2 and ⁇ denoting the operating wavelength of the antenna, is characterized in that the excitation loop comprises two approximately parallel portions and at least approximately ⁇ / 50 and able to extend approximately parallel to the surface of the conductive medium in a plane approximately perpendicular to said surface and to be traversed by currents of opposite directions, the most close to said surface having an opening between ends of the loop connected to the supply means.
  • Said two portions of the excitation loop according to the invention are lower and upper portions relative to the surface of the conductive medium, such as earth or sea, and can constitute approximately half of the loop, the remaining portions of the loop each having a length of at most ⁇ / 50 approximately.
  • the excitation loop is thus composed in large part of one or more pairs of lower and upper portions each extending in a plane approximately perpendicular to the surface of the conductive medium, the lower and upper portions of a pair being arranged in the loop so that they are the seat of currents of opposite directions.
  • the opening of the excitation loop is very small compared to the perimeter of the loop to almost eliminate any component of electric field parallel to the surface of the conductive medium, and therefore horizontal.
  • the antenna of the invention is very discreet and insensitive to any wind, blast, lightning, earthquake or explosion.
  • the antenna also has a very low radar echo area (SER).
  • the excitation loop may be flat and contained in a plane approximately perpendicular to the surface of the conductive medium.
  • the excitation loop may be rectangular and comprise two long sides formed by the two lower and upper portions and long of at most ⁇ / 4 approximately.
  • the size of the antenna can be reduced along longitudinal directions of the antenna by one or more folds of long portions of the excitation loop in planes perpendicular to the surface of the conducting medium.
  • the excitation loop may be distributed approximately into two half-loops which are superimposed on two planes approximately parallel to the surface of the conducting medium and distant at most ⁇ / 50 and which each have two portions to almost parallel, capable of being traversed by currents of opposite meanings.
  • Each of the half-loops may comprise more than two approximately parallel portions, two neighboring portions in each half-loop being able to be traversed by currents of opposite directions and two superposed portions of the half-loops being able to be traversed by currents in opposite directions.
  • the excitation loop may be circumscribed to a parallelepiped having large faces approximately parallel to the surface of the conductive medium.
  • the parallelepiped can be straight.
  • each of the half loops may extend zigzag on one of the large faces.
  • each of the half-loops may comprise two rectangular flat spirals having opposite directions and a common center and extending on one of the large faces.
  • the excitation loop is circumscribed to a cylinder having bases approximately parallel to the surface of the conductive medium, and each of the half-loops comprises two circular flat spirals having opposite directions and one common center and extending on one of the bases.
  • two portions of the excitation loop are approximately close parallel, superimposed and adjacent may be at least about ⁇ / 200 apart.
  • the antenna may comprise at least one metallic intermediate element which is connected to lower and upper portions of the superimposed excitation loop in a plane able to be approximately perpendicular to the surface of the conductive medium and which is located near small sides of the excitation loop approximately perpendicular to the superimposed portions.
  • the means for feeding the antenna may comprise a power supply device such as a transmission device if the antenna is transmitting, or a reception device if the antenna operates in reception, and one or two substantially vertical metallic connecting elements connecting the supply means to the propagation medium.
  • the supply means comprises only a metal connection element, which may include a terminal impedance, for connecting the excitation loop to the conductive medium; the terminals of the power supply device are connected to the ends of the loop, and the metal connecting element has one end connected to the negative terminal of the supply device and another end adapted to be connected to the conductive medium.
  • the supply means comprises two metal connection elements for connecting the excitation loop to the conductive medium; a metal connecting element has one end connected to one end of the loop and another end adapted to be connected to the conductive medium, the power supply device has a positive terminal connected to the other end of the loop , and another metal link element which may include an end impedance at one end connected to a negative terminal of the supply device and another end adapted to be connected to the conductive medium.
  • the invention remedies to maintain the surface wave radiation properties of the antenna by burying a metal mass element near and under the surface of the conductive medium and having a surface at less equal to the projection of the surface of the excitation loop on the surface of the conductive medium.
  • a metal connecting element which is unique according to the first embodiment, or which is one or the other of the metallic connection elements according to the second embodiment, then has its end adapted to be connected to the conductive medium, which is connected to the metal mass element.
  • FIG. 1 is a schematic vertical front view of an antenna with a rectangular loop and a power supply circuit according to a first embodiment of the invention, having a single connecting element connected to a conductive medium of high electrical conductivity;
  • FIG. 2 is a schematic vertical front view of an antenna with a rectangular loop according to the first embodiment and a supply circuit according to a second embodiment of the invention, having two connecting elements connected to a conductivity conducting medium. high electric;
  • FIGS. 3 and 4 are schematic vertical face views of an antenna respectively according to variants of the embodiments shown in FIGS. 1 and 2, for a conductive medium of low electrical conductivity;
  • FIG. 5 is a schematic vertical front view of an antenna according to another variant of the antenna shown in Figure 1, for expanding the bandwidth of the antenna;
  • FIG. 6 is a schematic perspective view of an antenna with a loop according to a second embodiment of the invention which is intended to reduce the longitudinal size of the antenna compared to the first embodiment of the loop, by folding the following way a central zenith axis with a loop of FIG. 1;
  • FIGS. 7 and 8 are respectively a front-end view and a right-side view along perpendicular vertical planes XOZ and YOZ of the antenna shown in FIG. 6;
  • FIG. 9 is a schematic perspective view of an antenna with a folded loop according to a third embodiment of the invention, intended to further reduce the longitudinal size of the antenna;
  • FIGS. 10, 11 and 12 are respectively a top view, a front view and a right side view of the antenna shown in FIG. 9;
  • FIG. 13 is a schematic perspective view of an antenna with a loop contained in a parallelepiped and folded following Archimedean spirals according to a fourth embodiment of the invention.
  • FIGS. 14 and 15 are respectively a view from above and a front view of the antenna shown in FIG. 13;
  • FIG. 16 is a schematic perspective view of an antenna with a loop contained in a cylinder and folded according to Archimedean spirals according to a fifth embodiment of the invention.
  • FIG. 17 and 18 are respectively a top view and a side view of the antenna shown in Figure 16.
  • a surface wave antenna according to the invention is able to operate at a useful wavelength ⁇ of emission or reception.
  • the useful wavelength ⁇ corresponds to the central frequency of the antenna bandwidth, which corresponds at least partially to Telec and / or MF and / or HF wavelengths.
  • the antenna according to the first embodiment essentially comprises a metal excitation loop B1 that is approximately vertical, and a power supply circuit comprising a power supply device A and a metal conductive connection element L1 n, which is approximately vertical. connecting the excitation loop to a conductive medium M of surface SM.
  • the term "approximately vertical" means that the excitation loop or the connecting element may extend in a plane perpendicular to the surface SM or in an oblique plane at an angle of a few degrees with a plane perpendicular to the surface.
  • the conducting medium M acts as a surface wave propagation vector transmitted or received by the antenna.
  • the medium M can have a high electrical conductivity like the sea, a swamp salt or salt lake, or lower electrical conductivity, such as soil or sand.
  • a reference sign to the drawings comprising the letter p, respectively n, designates an element or a portion of element or excitation loop connected to the positive or negative terminal of the power supply device. A or located on the side thereof along the excitation loop.
  • the metal excitation loop B1 extends approximately vertically above the surface SM at a height between h and H.
  • the loop B1 is rectangular and composed of two long sides. 11 p-11 n and S1 roughly horizontal and two sides roughly vertical V1 p and V1 n significantly smaller.
  • the large lower side 11 p-11 n is located at the height h relative to the surface SM.
  • the large upper side S1 is located at the height H relative to the surface SM.
  • the difference in height H - h is the length of the short sides V1 p and V1 n which is at least equal to ⁇ / 200 so as to reduce the coupling between the long sides 11 p-11 n and S1 of the loop to the origin of the creation of a mode of transmission for two-wire line decreasing the output of the antenna.
  • the difference in height H - h is at most equal to ⁇ / 50 so that the large sides 11 p-11 n and S1 of the loop B1 are close and the currents in them are in opposite directions.
  • the shape of the loop is not limited to a rectangle and is determined according to the purity of the essentially vertical polarization of a surface wave and the omnidirectionality at the SM surface desired for the antenna.
  • Height H is at least 2 m for LF and MF and at least 1 m for HF.
  • the average distance (H + h) / 2 between the loop B1 and the surface SM must not be too great in order to couple as much radioelectric energy as possible to the surface SM so that the antenna radiates a surface wave over above the SM surface.
  • the Heights h and H are not necessarily constant over the length of the loop, just as the difference H - h which is not necessarily constant; therefore the long sides 11 p-11 n and S1 are "nearly parallel" to each other and each of them is “nearly parallel” to the surface SM.
  • the discontinuity between the air and the conductive medium M at the periphery of the excitation loop favors a vertical polarization of the electric field with respect to which the horizontal electric field component is negligible in the surface wave propagation by the antenna , especially since the excitation loop is regular and almost closed.
  • the electric field lines are distributed almost uniformly to all the azimuths around the Z1 -Z1 axis of the loop which means that the antenna is omnidirectional.
  • the loop has a perimeter equal to the useful half-wavelength ⁇ / 2, to within ⁇ ⁇ / 8, or a length L / 2 ⁇ KIA of the long sides 11 p-11 n and S1 of the order from 25 m to 250 m for a central hectometric frequency of the useful band.
  • the shape of the excitation loop B1 is elongate and polygonal or elliptical so that two long portions such as the long sides 11 p-11 n and S1 are approximately parallel in a plane roughly perpendicular to the surface SM of the conductive medium M.
  • the profile of the loop is designed in such a way that the portions of the loop, such as the sides 11 p-11 n and S1 of a rectangular loop, located approximately parallel to the surface SM and of dimensions at least greater than approximately ⁇ / 50 are the seat of currents of opposite directions .
  • the large lower side 11 p-11 n consists of two portions approximately colinear 11 p and U n between the facing ends E1 p and E1 n of the loop B1 which define a small opening E1 p-E1 n whose width is very small vis-à-vis the wavelength ⁇ .
  • the opening E1 p-E1 n can be practiced anywhere along the long side 11 p-11 n. According to Figure 1, the opening E1 p-E1 n is in the middle of the large lower side 11 p-11 n. Given the narrowness of the opening with respect to the length of the loop, the loop is considered "closed".
  • the excitation loop B1 can be supported in a plane perpendicular to the surface SM by insulating posts (not shown) regularly distributed along the loop.
  • each pole supports both the long sides 11 p-11 n and S1.
  • the insulating posts may be fixed in the conductive medium M if the depth of the medium lends itself to it, or may be fixed on a support floating on the surface SM if the medium is water.
  • the excitation loop B1 is made of tube or multi-strand or single-strand wire.
  • the conductive connecting element L1 is approximately vertical and connects one E1 n of the ends of the loop B1 at the opening E1 p-E1 n to the conductive medium M.
  • the element L1 n closes the loop B1 on the conducting medium M located below the SM surface.
  • the element L1 n can be constituted by a peg or a metal tube of diameter preferably between 5 and 50 mm and having a lower end plunging a few tens of centimeters in the conductive medium M under the surface SM.
  • the material constitution of the excitation loop and the connecting element can also be realized according to other variants described in the patent application EP 1 594 186 A1, such as a sheet or a cage of parallel metal wires.
  • the link element L1 n may include a terminal impedance Zt which is optional and which may be replaced by a simple short circuit.
  • Terminal impedance can be reactive or resistive. It can be adjustable as needed to adjust the frequency of operation of the antenna corresponding to ⁇ , adjust the antenna bandwidth or adjust the input impedance of the antenna.
  • the influence of the capacitive and / or inductive and / or resistive character of the terminal impedance Zt on the operating characteristics of the antenna, such as the operating frequency, the bandwidth and the impedance matching, is similar to that described in patent application EP 1 594 186 A1.
  • the power supply device A feeds the loop B1 and can be a transmitting or receiving device depending on whether the antenna operates in transmission or reception.
  • the supply device A has positive and negative terminals respectively connected to the ends E1 p and E1 n of the loop B1 at the opening E1 p-E1 n, where appropriate by one or two d metallic intermediate elements L2p and L2n which may be electrical wires or have a constitution similar to that of the connecting element L1 n.
  • at least one of the intermediate elements L2p and L2n has a zero length and the corresponding terminal of the supply device A is directly connected to one end of the excitation loop B1.
  • another conductive connecting element L3n connects the negative terminal of the supply device A to the conducting medium M situated under the surface SM, as the second end of the connecting element L1 n opposite to the end E1 n of the excitation loop B1 and plunging into the conducting medium M under the surface SM.
  • the lengths of the connecting elements L2p and L3n are determined so that the real part of the impedance of the antenna brought back to the terminals of the supply device A is equal to the characteristic impedance of the supply device.
  • the antenna is operated above an imperfect conductive medium M with a low electrical conductivity such as earth or sand, located under the surface SM, as shown in FIGS. 3 and 4.
  • a metallic mass element EM is buried near and under the surface SM.
  • the metallic mass element EM is connected to the second end of the connecting element L1 n according to FIG. 3 corresponding to the first embodiment of the supply circuit, or to the ends of the connecting elements L3n and L1n in the medium.
  • M according to Figure 4 corresponding to the second embodiment of the supply circuit.
  • the depth to which the EM mass element is buried below the SM surface is relatively small, some tens of centimeters, to promote a surface wave above the SM surface and disadvantage any wave under the surface SM.
  • the EM mass element may be a metal wire or rod, or a solid plate or screen according to embodiments described in patent application EP 1 594 186 A1. It provides excellent electrical continuity to contribute to the omnidirectional nature of the antenna and thus maintain the surface wave radiation properties of the antenna.
  • the mass element P can be galvanized metal or coated in a plastic sheath, and be insensitive to chemical attack in the middle M.
  • the mass element EM may have various contours of the circular or polygonal type so that it covers a surface at least equal to or even much greater than the projection of the surface of the excitation loop on the surface SM. This feature avoids electric field edge effects between the excitation loop and the ground element and improves the confinement of the electric field lines under the excitation loop.
  • the plane element EM For an excitation loop extending in a vertical plane XOZ as shown in FIGS. 3 and 4, the plane element EM has a length at least equal to the length L / 2 of the long sides 11 p-11 n and S1 of the loop B1, greater than about half the length of the loop, and a width of at least a few tens of centimeters.
  • At least one intermediate metallic element Vip, Vin is connected, for example by welding, to the long sides 11 p-11 n and S1 of the excitation loop B1, as shown in FIG. Figure 5.
  • the metal intermediate element is approximately perpendicular to the long sides and may have a constitution similar to that of the loop B1.
  • one or more intermediate elements Vip are placed in one side of the loop B1 with respect to the opening E1 p-E1 n of the loop, and / or one or more intermediate elements Vin are placed in the other side. of the loop in relation to the opening.
  • the intermediate metal elements Vip and Vin are located near the longitudinal ends of the excitation loop B1, for example a few meters from the short sides V1 p and V1 n.
  • the intermediate elements are intended to widen the bandwidth of the antenna around the resonance frequency of the antenna, without significant changes in the antenna radiation characteristics.
  • each of these excitation loops may comprise one or more intermediate elements such as the Vip and Vin elements shown in FIG. 5, between the lower and upper portions of the excitation loop, or more generally between "half" loops. lower and upper excitation loop, to expand the bandwidth of the antennas.
  • the excitation loop B2 of an antenna is based on a folding of a first half of the excitation loop B1 comprising the portion U n of the large lower side. , the short side V1 n and one half of the large upper side S1 towards the second half of the loop B1 around the central zenith axis Z1 -Z1 of the loop B1, as indicated by the arrow F2 in Figure 5.
  • the loop B2 thus comprises approximately two "half" loops on the front faces ( Figure 7) and rear or the lower and upper faces of a long narrow parallelepiped almost straight. This parallelepiped enveloping the loop B2 has a length L / 4 approximately and a height H - h.
  • the parallelepiped extends not only longitudinally along a vertical plane XOZ ( Figure 7), but also laterally along a vertical plane YOZ ( Figure 8) perpendicular to the plane XOZ.
  • Two longitudinal upper portions S2p and S2n of the loop B2 corresponding to the two halves of the upper portion S1 of the loop B1 are connected by a short horizontal portion S21 p.
  • the end of the lower portion I2n of the loop B2 corresponding to the upper portion U n of the loop B1 folded backwards is connected by a short horizontal portion 121 n which is parallel to the portion S21 p and located with the ci on a lateral vertical side of the parallelepiped.
  • the loop B2 From the end E2p of the excitation loop B2 connected to the positive terminal of the supply device A, the loop B2 comprises a long longitudinal lower portion I2p, a short vertical portion V2p of height H - h, a long upper portion longitudinally S2p located above the portion I2p and delimiting with the portions I2p and V2p the front face of the parallelepiped, a short lateral portion S21 p, a long upper longitudinal portion S2n and delimiting with the portions S2p and S21 p the upper face of the parallelepiped, a short vertical portion V2n of height H - h located with the short portion V2p in a plane perpendicular to the longitudinal portions, a long longitudinal lower portion I2n located below the portion S2n and delimiting with the portions S2n and V2n the face rear of the parallelepiped, and a short lateral portion 121 n located below the portion S21 p delimiting with the portions I 2p and I2n the lower face of the
  • the length of the approximately horizontal lateral portions 121 n and S 21 p defines the width W of the loop B2 in a vertical plane Y 0 Z which is much smaller than ⁇ so that the two parallel portions situated in each of the longitudinal faces of the parallelepiped are traveled by currents of opposite meanings. Under these conditions, the secondary components of the electric field generated in horizontal planes are very strongly restricted in directions close to the central zenith axis Z2-Z2 of the B2 loop.
  • the length of the lateral portions 121 n and S 21 p is however at least equal to approximately ⁇ / 200 in order to avoid too high couplings between the longitudinal portions I2p and I2n and S2p and S2n which cause a significant reduction in the antenna efficiency. .
  • the involute of the folded excitation loop B2 is longer than the involute of the excitation loop B1.
  • the length of the involute of the folded loop B2 shown in FIG. 6 is a function of the length of the portions 121 n and S21 p.
  • the bandwidth is also reduced due to the increase in the quality factor of the antenna. However this bandwidth reduction can be compensated by the addition of intermediate metal elements Vip between the lower portions I2p and upper S2p and / or intermediate metal elements Vin between the lower portions I2n and upper S2n, as those shown in FIG.
  • the principle of the folding of the excitation loop on itself can be extended to multiple successive folds by means of a proportional increase of the involute of the antenna and a reduction of the bandwidth. for the same resonance frequency.
  • the excitation loop B3 of an antenna according to the third embodiment is based on folds of the thirds situated to the left and to the right of the loop B1 in FIG. rear of the central third of the loop B1.
  • the left third of the excitation loop B3 is located in a vertical front plane located in front of the central third of the loop B1 after folding around a zenith axis of the loop B1 located at the left end of the central third, as indicated by the arrow F3p in Figure 5.
  • the right third of the excitation loop B3 is located in a rear vertical plane located behind the central third of the loop B1 after folding around a zenith axis of the loop B1 located at the the right-hand end of the central third, as indicated by the arrow F3n in Figure 5.
  • the excitation loop B3 according to the third embodiment thus comprises approximately three thirds I3p-S3p ( Figure 1 1), I3cp-I3cn-S3c and I3n- S3n loop on each front vertical faces, central and rear of a narrow parallelepiped almost straight.
  • This parallelepiped enveloping the loop B3 has a length L / 6 approximately and a height H - h.
  • the loop B3 consists of approximately two "half" loops I3p-I3cp-I3cn-I3n and S3p-S3c-S3n (FIG. 11) on each of the large horizontal lower and upper faces of the long parallelepiped.
  • a left end of the lower front portion I3p of the loop B2 corresponding to the left third of the lower portion 11 p of the loop B1 folded forward and a left end of the upper front portion S3p of the loop B2 corresponding to the left third of the upper portion S1 p of the loop B1 folded forwardly are respectively connected by two short horizontal side portions 131 p and S31 p which are parallel and located in a left vertical side of the parallelepiped.
  • a right end of the lower rear portion I3n of the loop B2 corresponding to the right third of the lower portion U n of the loop B1 folded backwards and a right end of the upper rear portion S3n of the loop B2 corresponding to the right third of the upper portion S1 p of the loop B1 folded backwards are respectively connected by two short horizontal side portions 131 n and S31 n which are parallel and located in a vertical right side of the parallelepiped.
  • the loop B3 From the end E3p of the excitation loop B3 connected to the positive terminal of the supply device A, the loop B3 comprises the "half" -entrtion central longitudinal lower I3cp, the short lower side portion 131 p, the long portion lower longitudinal front I3p, a short vertical portion V3p of height H - h, the long upper longitudinal front portion S3p, the short upper lateral portion S31 p, the long upper central longitudinal portion S3c, the short upper lateral portion S31 n, the long longitudinal upper rear portion S3n, a short vertical portion V3n of height Hh, the long longitudinal rear lower portion I3n, the short lower side portion 131n and the "half" - lower central horizontal longitudinal portion I2n terminated by the other end E3n of the excitation loop B3.
  • the length of the horizontal lateral portions 131p, 131n, S31p and S31n defines the half-width W of the loop B3 in a vertical plane YOZ which is between ⁇ / 200 and ⁇ / 50 and therefore much smaller than ⁇ of in such a way that the two parallel longitudinal portions situated in each of the three longitudinal front, intermediate and rear faces and two adjacent parallel longitudinal portions of three lying in each of the two central and upper longitudinal faces of the parallelepiped are traversed as closely as possible by currents of opposite directions.
  • the length of the superimposed lateral portions 131p and S31p may be different from the length of the superimposed lateral portions 131n and S31n, and the face vertical containing the parallel longitudinal portions I3cp, I3cn and S3c may be at different distances from the front and rear faces.
  • the excitation loop B4 of an antenna according to the fourth embodiment shown in FIGS. 13 to 15 comprises approximately a "lower" half-loop. formed by two rectangular flat spirals I4p and I4n having opposite directions and a common center and an "upper half-loop" formed by two rectangular flat spirals S4p and S4n having opposite directions and a common center.
  • the half-loops I4p-I4n and S4p-S4n are respectively circumscribed to the large lower and upper faces of a parallelepiped approximately right height H - h, length 5xp1 and width 4xp2 according to the example shown in Figure 14
  • the longitudinal pitch p1 and the lateral pitch p2 of the turns of the spirals may be a priori different and are clearly less than ⁇ , for example between ⁇ / 120 and ⁇ / 80.
  • the large upper and lower faces of the parallelepiped are approximately parallel to the surface SM of the conductive medium M.
  • the upper spirals S4p and S4n are approximately superposed vertically on the lower spirals I4p and I4n, respectively.
  • Short vertical portions V4p and V4n of the excitation loop B4 have a height H - h and respectively connect peripheral ends of the spirals I4p and S4p and the peripheral ends of the spirals I4n and S4n.
  • the ends E4p and E4n of the opening of the loop B4 situated in the center of the half-loop I4p-I4n, the lower spirals I4p and I4n and the upper spirals S4p and S4n are respectively symmetrical with respect to a central zenith axis Z4-Z4 of the loop B4 passing through the centers of the spirals and the lower and upper faces of the parallelepiped.
  • the pitch may be variable for example to form lower and upper logarithmic spirals of the loop.
  • a variable pitch for each turn of the half-loops can be chosen insofar as the restrictions on the distance between the turns are respected so as to maintain a significant radiation efficiency of the same order of magnitude as in loops B2 and B3 obtained by folding.
  • the loop B5 according to the fifth embodiment shown in FIGS. 15 to 18 comprises approximately a lower half-loop formed by two circular circular Archimedean spirals I5p and I5n having opposite directions and a common center and a lower half-loop formed by two spirals.
  • circular circular Archimedean S5p and S5n having opposite directions and a common center.
  • the half loops I5p and I5n and S5p and S5n are respectively circumscribed to the lower and upper bases of a cylinder having a height H - h, a radius p and a zenith axis Z5 - Z5 passing through the centers of the spirals and the opening E5p-E5n of the loop B5 located in the center of the lower half-loop I5p-I5n.
  • the bases of the cylinder are approximately parallel to the surface SM of the conducting medium M and are for example circular or elliptical, or the cylinder is replaced by a prism polygonal bases.
  • Short vertical portions V5p and V5n of the excitation loop B5 have a height H - h and respectively connect peripheral ends of the spirals I5p and S5p and peripheral ends of the spirals I5n and S5n.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'antenne comprend une boucle d'excitation métallique (B1) à positionner à une hauteur (h) d'au moins 1 m environ au-dessus de la surface (SM) d'un milieu conducteur (M) et un moyen d'alimentation (A, L1n) à relier au milieu conducteur. Le périmètre de la boucle est la demi-longueur d'onde de fonctionnement λ/2 environ. La boucle comprend deux portions (I1p-I1n, S1) à peu près parallèles et distantes d'au plus λ/50 environ, aptes à s'étendre à peu près parallèlement à ladite surface dans un plan à peu près perpendiculaire à ladite surface et à être parcourues par des courants de sens opposés. La portion la plus proche de ladite surface comporte une ouverture entre des extrémités (E1p, E1n) de la boucle reliées au moyen d'alimentation. L'antenne est mieux protégée contre des ondes d'espace et son encombrement peut être réduit par repliement.

Description

Antenne de grande dimension à ondes de surface et à large bande
La présente invention concerne une antenne de grande dimension pour émettre et/ou recevoir des ondes de surface dans une large bande de fréquence incluant notamment tout ou partie des fréquences basses, moyennes et hautes comprises entre 30 kHz environ et 30 MHz environ, soit des ondes kilométriques, hectométrique et décamétriques.
L'antenne peut être incorporée par exemple dans un système d'émission de forte puissance notamment pour la diffusion de signaux de programmes radiophoniques ou de télévision, un système radar à ondes de surface ou un système de réception et d'interception.
Actuellement, des pylônes rayonnants de grandes dimensions sont utilisés pour émettre de fortes puissances dans les bandes hectométriques. Ces pylônes présentent l'inconvénient d'être coûteux, de nécessiter un important terrain de sécurité pour leur installation, et d'être peu esthétiques et discrets. Ils ne sont pas optimisés pour une diffusion essentiellement par ondes de surface.
Les antennes utilisant uniquement une onde de surface comme vecteur de propagation sont très peu nombreuses. Pour preuve, les systèmes radar à ondes de surface actuels utilisent des antennes de type fouet ou biconiques qui sont mal adaptées pour des applications radar.
Les pylônes rayonnants et en général toutes les antennes à polarisation verticale par exemple de type fouet ou biconique génèrent essentiellement un champ d'onde d'espace et sont coûteux et très peu discrets.
La demande de brevet EP 1 594 186 A1 déposée par le demandeur divulgue une antenne de sol de grande dimension pour rayonner une onde de surface kilométrique ou hectométrique. Cette antenne comprend un plan de masse métallique, une boucle d'excitation métallique, et un élément de liaison métallique. Le plan de masse est enfoui horizontalement à proximité et sous la surface du sol. La boucle d'excitation est plus longue que 25 m environ pour les longueurs d'ondes kilométriques et hectométriques et ouverte entre deux extrémités et s'étend parallèlement au plan de masse et horizontalement au-dessus de la surface du sol à une hauteur supérieure à 2 m environ par rapport au plan de masse. L'élément de liaison métallique est perpendiculaire à la boucle et relie l'une des extrémités de la boucle d'excitation au plan de masse. La boucle d'excitation et l'élément de liaison sont constitués chacun par au moins un élément cylindrique mince.
La discontinuité entre l'air et le sol, située sur et dans le sol à la périphérie de l'antenne, entre le couple sol et plan de masse métallique, d'une part, et le sol sans le plan de masse métallique, d'autre part, favorise la propagation d'une onde de sol omnidirectionnelle en polarisation verticale. L'ouverture de la boucle d'excitation est petite par rapport à la longueur de la boucle pour à peu près éliminer toute composante de champ électrique horizontale à la surface du sol. L'onde de sol est due à l'injection de courants élevés dans le sol, conséquence d'une résistance ohmique de l'antenne faible, sans aucun rayonnement latéral d'une onde d'espace comparativement à une antenne pylône.
Bien que la demande de brevet EP 1 594 186 A1 vise à favoriser nettement la propagation par ondes de surface et à minimiser le rayonnement d'une onde d'espace par les pylônes rayonnants, pour notamment éviter des couplages de l'antenne avec des structures proches de l'antenne au-dessus du sol, l'antenne de sol génère une onde d'espace non négligeable pour des angles proches de la normale au plan de sol. Cette onde d'espace a une puissance beaucoup plus faible que celle de l'onde de surface et est évanescente à quelques dizaines de kilomètre au-dessus de la surface du sol. Selon les bandes de fréquences, l'onde d'espace peut se réfléchir sur des couches de l'ionosphère et être à l'origine de phénomènes de fading en combinaison avec une onde de surface. Lorsque l'antenne fonctionne en émission, l'onde d'espace peut perturber des signaux utiles reçus de l'ionosphère par d'autres antennes. Inversement, le fonctionnement en réception de l'antenne peut être perturbé par une récupération d'ondes d'espace.
En outre, l'antenne de sol présente un encombrement surfacique important et une bande passante relativement étroite.
La présente invention a pour objectif de pallier les différents problèmes précités et particulièrement de fournir une antenne à ondes de surface de grande dimension qui présente une protection ionosphérique accrue sur courte et moyennes distances, et une structure propice à une réduction de l'encombrement de l'antenne suivant au moins une dimension de l'espace et à un élargissement de la bande passante.
Pour atteindre cet objectif, une antenne à ondes de surface comprenant une boucle d'excitation métallique apte à être positionnée à une hauteur d'au moins 1 m environ au-dessus de la surface d'un milieu conducteur et un moyen d'alimentation apte à être relié au milieu conducteur, la boucle ayant une longueur de λ/2 environ et λ désignant la longueur d'onde de fonctionnement de l'antenne, est caractérisée en ce que la boucle d'excitation comprend deux portions à peu près parallèles et distantes d'au plus λ/50 environ et aptes à s'étendre à peu près parallèlement à la surface du milieu conducteur dans un plan à peu près perpendiculaire à ladite surface et à être parcourues par des courants de sens opposés, la portion la plus proche de ladite surface comportant une ouverture entre des extrémités de la boucle reliées au moyen d'alimentation.
Lesdites deux portions de la boucle d'excitation selon l'invention sont des portions inférieure et supérieure par rapport à la surface du milieu conducteur, tel que de la terre ou la mer, et peuvent constituer approximativement des moitiés de la boucle, les portions restantes de la boucle ayant chacune une longueur d'au plus λ/50 environ. La boucle d'excitation est ainsi composée en très grande partie d'une ou de plusieurs paires de portions inférieure et supérieure s'étendant chacune dans un plan à peu près perpendiculaire à la surface du milieu conducteur, les portions inférieure et supérieure d'une paire étant agencées dans la boucle pour qu'elles soient le siège de courants de sens opposés. Ces conditions favorisent nettement la propagation d'une onde de sol omnidirectionnelle en polarisation verticale, dite onde de surface, à la discontinuité entre l'air et le milieu conducteur, à la périphérie de la boucle, au détriment de toute onde d'espace suivant un axe zénithal central à la boucle. L'antenne rayonne ainsi très peu d'onde d'espace en direction d'un axe zénithal central à l'antenne particulièrement parce que des courants en sens inverse, c'est-à-dire quasiment en opposition de phase, circulent dans des portions inférieure et supérieure parallèles de grande dimension. Ceci réduit très significativement la contribution de composantes de champ horizontales pour des angles proches de l'axe zénithal central à l'antenne.
L'ouverture de la boucle d'excitation est très petite par rapport au périmètre de la boucle pour à peu près éliminer toute composante de champ électrique parallèle à la surface du milieu conducteur, et donc horizontale.
Comme l'antenne selon la demande de brevet EP 1 594 186 A1 , l'antenne de l'invention est très discrète et insensible à tout vent, souffle, foudre, séisme ou explosion. L'antenne présente aussi une surface écho radar (SER) très faible. Selon une réalisation, la boucle d'excitation peut être plate et contenue dans un plan à peu près perpendiculaire à la surface du milieu conducteur. Par exemple, la boucle d'excitation peut être rectangulaire et comprendre deux grands côtés formés par les deux portions inférieure et supérieure et longs d'au plus λ/4 environ.
Selon un aspect de l'invention, l'encombrement de l'antenne peut être réduit suivant des directions longitudinales de l'antenne par un ou plusieurs repliements de longues portions de la boucle d'excitation dans des plans perpendiculaires à la surface du milieu conducteur. Dans ce cas, la boucle d'excitation peut être répartie approximativement en deux demi-boucles qui sont superposées sur deux plans à peu près parallèles à la surface du milieu conducteur et distants d'au plus λ/50 et qui ont chacune deux portions à peu près parallèles aptes à être parcourues par des courants de sens opposés. Chacune des demi-boucles peut comprendre plus de deux portions à peu près parallèles, deux portions voisines dans chaque demi-boucle étant aptes à être parcourues par des courants de sens opposés et deux portions superposées des demi-boucles étant aptes à être parcourues par des courants de sens opposés.
Selon certaines réalisations d'antenne "repliée", la boucle d'excitation peut être circonscrite à un parallélépipède ayant des grandes faces à peu près parallèles à la surface du milieu conducteur. Le parallélépipède peut être droit. Par exemple, chacune des demi- boucles peut s'étendre en zigzag sur l'une des grandes faces. Selon un autre exemple, chacune des demi-boucles peut comprendre deux spirales plates rectangulaires ayant des sens opposés et un centre commun et s'étendant sur l'une des grandes faces. Selon une autre réalisation d'antenne repliée, la boucle d'excitation est circonscrite à un cylindre ayant des bases à peu près parallèles à la surface du milieu conducteur, et chacune des demi-boucles comprend deux spirales plates circulaires ayant des sens opposés et un centre commun et s'étendant sur l'une des bases.
Pour réduire le couplage notamment entre des portions inférieure et supérieure à peu près parallèles, ou des portions à peu près parallèles dans une demi-boucle, et donc plus généralement entre les demi-boucles superposées, deux portions de la boucle d'excitation à peu près parallèles, superposées et voisines peuvent être distantes d'au moins λ/200 environ.
Afin d'élargir la bande passante de l'antenne, l'antenne peut comprendre au moins un élément intermédiaire métallique qui est relié à des portions inférieure et supérieure de la boucle d'excitation superposées dans un plan apte à être à peu près perpendiculaire à la surface du milieu conducteur et qui est situé à proximité de petits côtés de la boucle d'excitation à peu près perpendiculaires aux portions superposées.
S'agissant du moyen d'alimentation de l'antenne, celui-ci peut comprendre un dispositif d'alimentation en puissance tel qu'un dispositif d'émission si l'antenne fonctionne en émission, ou un dispositif de réception si l'antenne fonctionne en réception, et un ou deux éléments de liaison métalliques à peu près verticaux reliant le moyen d'alimentation au milieu de propagation. Selon une première réalisation, le moyen d'alimentation ne comprend qu'un élément de liaison métallique, pouvant inclure une impédance terminale, pour relier la boucle d'excitation au milieu conducteur; les bornes du dispositif d'alimentation en puissance sont reliées aux extrémités de la boucle, et l'élément de liaison métallique a une extrémité reliée à la borne négative du dispositif d'alimentation et une autre extrémité apte à être reliée au milieu conducteur. Selon une deuxième réalisation, le moyen d'alimentation comprend deux éléments de liaison métallique pour relier la boucle d'excitation au milieu conducteur; un élément de liaison métallique a une extrémité reliée à l'une des extrémités de la boucle et une autre extrémité apte à être reliée au milieu conducteur, le dispositif d'alimentation en puissance a une borne positive reliée à l'autre extrémité de la boucle, et un autre élément de liaison métallique pouvant inclure une impédance terminale a une extrémité reliée à une borne négative du dispositif d'alimentation et une autre extrémité apte à être reliée au milieu conducteur.
Lorsque le milieu conducteur présente une faible conductivité électrique, l'invention y remédie pour conserver les propriétés de rayonnement par ondes de surface de l'antenne en enfouissant un élément de masse métallique à proximité et sous la surface du milieu conducteur et ayant une surface au moins égale à la projection de la surface de la boucle d'excitation sur la surface du milieu conducteur. Un élément de liaison métallique, qui est unique selon la première réalisation, ou qui est l'un ou l'autre des éléments de liaison métallique selon la deuxième réalisation, a alors son extrémité apte à être reliée au milieu conducteur, qui est reliée à l'élément de masse métallique.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations de l'invention, données à titre d'exemples non limitatifs, en référence aux dessins annexés correspondants dans lesquels: - la figure 1 est une vue de face verticale schématique d'une antenne avec une boucle rectangulaire et un circuit d'alimentation selon une première réalisation de l'invention, présentant un élément de liaison unique relié à un milieu conducteur de conductivité électrique élevée;
- la figure 2 est une vue de face verticale schématique d'une antenne avec une boucle rectangulaire selon la première réalisation et un circuit d'alimentation selon une deuxième réalisation de l'invention, présentant deux éléments de liaison reliés à un milieu conducteur de conductivité électrique élevée;
- les figures 3 et 4 sont des vues de face verticale schématiques d'une antenne respectivement selon des variantes des réalisations montrées aux figures 1 et 2, pour un milieu conducteur de conductivité électrique faible;
- la figure 5 est une vue de face verticale schématique d'une antenne selon une autre variante de l'antenne montrée à la figure 1 , destinée à élargir la bande passante de l'antenne;
- la figure 6 est une vue en perspective schématique d'une antenne avec une boucle selon une deuxième réalisation de l'invention qui est destinée à réduire l'encombrement longitudinal de l'antenne comparativement à la première réalisation de la boucle, par repliement suivant un axe zénithal central à boucle de la figure 1 ;
- les figures 7 et 8 sont respectivement une vue de face avant et une vue de côté droit suivant des plans verticaux perpendiculaires XOZ et YOZ de l'antenne montrée à la figure 6;
- la figure 9 est une vue en perspective schématique d'une antenne avec une boucle repliée selon une troisième réalisation de l'invention, destinée à réduire davantage l'encombrement longitudinal de l'antenne;
- les figures 10, 1 1 et 12 sont respectivement une vue de dessus, une vue de face avant et une vue de côté droit de l'antenne montrée à la figure 9;
- la figure 13 est une vue en perspective schématique d'une antenne avec une boucle contenue dans un parallélépipède et repliée suivant des spirales d'Archimède selon une quatrième réalisation de l'invention; et
- les figures 14 et 15 sont respectivement une vue de dessus et une vue de face avant de l'antenne montrée à la figure 13;
- la figure 16 est une vue en perspective schématique d'une antenne avec une boucle contenue dans un cylindre et repliée suivant des spirales d'Archimède selon une cinquième réalisation de l'invention; et
- les figures 17 et 18 sont respectivement une vue de dessus et une vue de côté de l'antenne montrée à la figure 16.
En référence à la figure 1 , une antenne à ondes de surface selon l'invention est apte à fonctionner à une longueur d'onde utile λ d'émission ou de réception. La longueur d'onde utile λ correspond à la fréquence centrale de la bande passante de l'antenne qui correspond au moins partiellement à des longueurs d'onde kilométriques et/ou hectométriques et/ou décamétriques.
L'antenne selon la première réalisation comprend essentiellement une boucle d'excitation métallique B1 à peu près verticale, et un circuit d'alimentation comprenant un dispositif d'alimentation en puissance A et un élément de liaison conducteur métallique L1 n, à peu près vertical, reliant la boucle d'excitation à un milieu conducteur M de surface SM. Les termes "à peu près vertical" signifie que la boucle d'excitation ou l'élément de liaison peut s'étendre dans un plan perpendiculaire à la surface SM ou dans un plan oblique faisant un angle de quelques degrés avec un plan perpendiculaire à la surface SM; les termes "à peu près horizontal", ou bien "à peu près parallèle" et "à peu près perpendiculaire" employés dans la présente description ont une signification similaire par rapport à un plan ou une droite horizontal, ou bien par rapport à un plan ou une droite déterminé.
Le milieu conducteur M fait office de vecteur de propagation d'ondes de surface émises ou reçues par l'antenne. Le milieu M peut avoir une conductivité électrique élevée comme la mer, un marais salant ou un lac salé, ou une conductivité électrique plus faible, comme la terre ou le sable.
Dans la suite de la description, un signe de référence aux dessins comportant la lettre p, respectivement n, désigne un élément ou une portion d'élément ou de boucle d'excitation relié à la borne positive, respectivement négative, du dispositif d'alimentation A ou situé du côté de celle-ci le long de la boucle d'excitation.
La boucle d'excitation métallique B1 s'étend à peu près verticalement au-dessus de la surface SM à une hauteur comprise entre h et H. Selon la réalisation illustrée à la figure 1 , la boucle B1 est rectangulaire et composée de deux grands côtés 11 p-11 n et S1 à peu près horizontaux et de deux côtés à peu près verticaux V1 p et V1 n nettement plus petits. Le grand côté inférieur 11 p-11 n est situé à la hauteur h par rapport à la surface SM. Le grand côté supérieur S1 est situé à la hauteur H par rapport à la surface SM. La différence de hauteur H - h est la longueur des petits côtés V1 p et V1 n qui est au moins égale à λ/200 environ de manière à réduire le couplage entre les grands côtés 11 p-11 n et S1 de la boucle à l'origine de la création d'un mode de transmission pour ligne bifilaire diminuant le rendement de l'antenne. Afin de rayonner très peu d'ondes d'espace en direction d'un axe zénithal central Z1 -Z2 à la boucle B1 , la différence de hauteur H - h est au plus égale à λ/50 environ de façon à ce que les grands côtés 11 p-11 n et S1 de la boucle B1 se trouvent proches et les courants dans ceux-ci soient de sens opposés. Comme on le verra par la description des autres réalisations d'antenne, la forme de la boucle n'est pas limitée à un rectangle et est déterminée en fonction de la pureté de la polarisation essentiellement verticale d'une onde de surface et l'omnidirectivité à la surface SM souhaitées pour l'antenne.
La hauteur H est d'au moins 2 m environ pour les ondes kilométriques et hectométriques et d'au moins 1 m environ pour les ondes décamétriques. La distance moyenne (H + h)/2 entre la boucle B1 et la surface SM ne doit pas être trop grande afin de coupler le plus possible d'énergie radioélectrique à la surface SM pour que l'antenne rayonne une onde de surface au-dessus de la surface SM. Les hauteurs h et H ne sont pas nécessairement constantes sur la longueur de la boucle, tout comme la différence H - h qui n'est pas nécessairement constante; par conséquent les grands côtés 11 p-11 n et S1 sont "à peu près parallèles" entre eux et chacun d'eux est "à peu près parallèle" à la surface SM. La discontinuité entre l'air et le milieu conducteur M à la périphérie de la boucle d'excitation favorise une polarisation verticale du champ électrique par rapport à laquelle la composante de champ électrique horizontale est négligeable dans la propagation d'onde surface par l'antenne, d'autant plus que la boucle d'excitation est régulière et quasiment fermée. Les lignes de champ électrique sont distribuées quasiment uniformément vers tous les azimuts autour de l'axe Z1 -Z1 de la boucle ce qui signifie que l'antenne est omnidirective.
Typiquement la boucle a un périmètre égal à la demi-longueur d'onde utile λ/2, à ± λ/8 près environ, soit une longueur L/2 ~ KIA des grands côtés 11 p-11 n et S1 de l'ordre de 25 m à 250 m pour une fréquence centrale hectométrique de la bande utile. Selon d'autres réalisations, la forme de la boucle d'excitation B1 est longiligne et polygonale ou elliptique de sorte que deux longues portions telles que les grands côtés 11 p-11 n et S1 soient à peu près parallèles dans un plan à peu près perpendiculaire à la surface SM du milieu conducteur M. Toutefois, pour rayonner très peu d'ondes d'espace en direction d'un axe zénithal central Z1 -Z1 de la boucle, le profil de la boucle est conçu de façon à ce que les portions de la boucle, tels que les côtés 11 p-11 n et S1 d'une boucle rectangulaire, situées à peu près parallèlement à la surface SM et de dimensions au moins supérieures à λ/50 environ soient le siège de courants de sens opposés.
Le grand côté inférieur 11 p-11 n est constitué de deux portions à peu près colinéaires 11 p et U n entre les extrémités en regard E1 p et E1 n de la boucle B1 qui délimitent une petite ouverture E1 p-E1 n dont la largeur est très petite vis-à-vis de la longueur d'onde λ. L'ouverture E1 p-E1 n peut être pratiquée n'importe où le long du grand côté 11 p-11 n. Selon la figure 1 , l'ouverture E1 p-E1 n est au milieu du grand côté inférieur 11 p-11 n. Compte tenu de l'étroitesse de l'ouverture par rapport à la longueur de la boucle, la boucle est considérée comme "fermée". La boucle d'excitation B1 peut être soutenue dans un plan perpendiculaire à la surface SM par des poteaux isolants (non représentés) régulièrement répartis le long de la boucle. Par exemple chaque poteau soutien à la fois les grands côtés 11 p-11 n et S1 . Les poteaux isolants peuvent être fixés dans le milieu conducteur M si la profondeur du milieu s'y prête, ou être fixés sur un support flottant sur la surface SM si le milieu est de l'eau.
Selon l'application visée et les puissances d'utilisation, la boucle d'excitation B1 est réalisée en tube ou en fil métallique multibrin ou monobrin.
L'élément de liaison conducteur L1 n est à peu près vertical et relie l'une E1 n des extrémités de la boucle B1 au niveau de l'ouverture E1 p-E1 n au milieu conducteur M. L'élément L1 n referme la boucle B1 sur le milieu conducteur M situé sous la surface SM. L'élément L1 n peut être constitué par un piquet ou un tube métallique de diamètre compris préférentiellement entre 5 et 50 mm et ayant une extrémité inférieure plongeant de quelques dizaines de centimètre dans le milieu conducteur M sous la surface SM.
La constitution matérielle de la boucle d'excitation et de l'élément de liaison peut aussi être réalisée selon d'autres variantes décrites dans la demande de brevet EP 1 594 186 A1 , telles qu'une nappe ou une cage de fils métalliques parallèles.
L'élément de liaison L1 n peut inclure une impédance terminale Zt qui est optionnelle et qui peut être remplacée par un simple court- circuit. L'impédance terminale peut être réactive ou résistive. Elle peut être réglable selon les besoins pour ajuster la fréquence de fonctionnement de l'antenne correspondant à λ, ajuster la bande passante de l'antenne ou ajuster l'impédance d'entrée de l'antenne. L'influence du caractère capacitif et/ou inductif et/ou résistif de l'impédance terminale Zt sur les caractéristiques de fonctionnement de l'antenne, telles que la fréquence de fonctionnement, la bande passante et l'adaptation d'impédance, est similaire à celle décrite dans la demande de brevet EP 1 594 186 A1 .
Le dispositif d'alimentation en puissance A alimente la boucle B1 et peut être un dispositif d'émission ou de réception selon que l'antenne fonctionne en émission ou réception. Selon la figure 1 , le dispositif d'alimentation A a des bornes positive et négative reliées respectivement aux extrémités E1 p et E1 n de la boucle B1 au niveau de l'ouverture E1 p-E1 n, le cas échéant par un ou deux d'éléments intermédiaires métalliques L2p et L2n qui peuvent être des fils électriques ou avoir une constitution similaire à celle de l'élément de liaison L1 n. Dans une réalisation particulière, au moins l'un des éléments intermédiaires L2p et L2n a une longueur nulle et la borne correspondante du dispositif d'alimentation A est directement connectée à une extrémité de la boucle d'excitation B1 .
Selon la deuxième réalisation montrée figure 2, un autre élément de liaison conducteur L3n relie la borne négative du dispositif d'alimentation A au milieu conducteur M situé sous la surface SM, comme la deuxième extrémité de l'élément de liaison L1 n opposée à l'extrémité E1 n de la boucle d'excitation B1 et plongeant dans le milieu conducteur M sous la surface SM. Les longueurs des éléments de liaison L2p et L3n sont déterminées de sorte que la partie réelle de l'impédance de l'antenne ramenée aux bornes du dispositif d'alimentation A soit égale à l'impédance caractéristique du dispositif d'alimentation.
Dans des variantes des réalisations illustrées aux figures 1 et 2, l'antenne est exploitée au-dessus d'un milieu conducteur imparfait M à faible conductivité électrique tel que de la terre ou du sable, situé sous la surface SM, comme montré aux figures 3 et 4. Dans ces variantes, un élément de masse métallique EM est enfoui à proximité et sous la surface SM. L'élément de masse métallique EM est relié à la deuxième extrémité de l'élément de liaison L1 n selon la figure 3 correspondant à la première réalisation du circuit d'alimentation, ou aux extrémités des éléments de liaison L3n et L1 n dans le milieu M selon la figure 4 correspondant à la deuxième réalisation du circuit d'alimentation. La profondeur à laquelle l'élément de masse EM est enfoui en dessous de la surface SM est relativement petite, de quelques dizaines de centimètres environ, pour favoriser une onde de surface au-dessus de la surface SM et défavoriser toute onde guidée sous la surface SM. L'élément de masse EM peut être un fil ou une tige métallique, ou une plaque pleine ou grillagée selon des réalisations décrites dans la demande de brevet EP 1 594 186 A1. Il assure une excellente continuité électrique afin de contribuer au caractère omnidirectionnel de l'antenne et conserver ainsi les propriétés de rayonnement par ondes de surface de l'antenne. Lorsque le milieu conducteur M est particulièrement de l'eau de mer, l'élément de masse P peut être en métal galvanisé ou enrobé dans une gaine plastique, et être insensible aux attaques chimiques dans le milieu M.
L'élément de masse EM peut présenter divers contours du type circulaire ou polygonal afin qu'il recouvre une surface au moins égale, voire très supérieure, à la projection de la surface de la boucle d'excitation sur la surface SM. Cette caractéristique évite des effets de bords de champ électrique entre la boucle d'excitation et l'élément de masse et améliore le confinement des lignes de champ électrique sous la boucle d'excitation. Pour une boucle d'excitation s'étendant dans un plan vertical XOZ comme représenté aux figures 3 et 4, l'élément plan EM a une longueur au moins égale à la longueur L/2 des grands côtés 11 p-11 n et S1 de la boucle B1 , soit supérieure à environ la demi- longueur de la boucle, et une largeur au minimum de quelques dizaines de centimètres.
Selon une variante de la première réalisation de la boucle B1 , au moins un élément intermédiaire métallique Vip, Vin est relié, par exemple par soudure, aux grands côtés 11 p-11 n et S1 de la boucle d'excitation B1 , comme montré à la figure 5. L'élément intermédiaire métallique est à peu près perpendiculaire aux grands côtés et peut avoir une constitution similaire à celle de la boucle B1 . En variante, un ou plusieurs éléments intermédiaires Vip sont placés dans un seul côté de la boucle B1 par rapport à l'ouverture E1 p-E1 n de la boucle, et/ou un ou plusieurs éléments intermédiaires Vin sont placés dans l'autre côté de la boucle par rapport à l'ouverture. Les éléments intermédiaires métalliques Vip et Vin sont situés à proximité des extrémités longitudinales de la boucle d'excitation B1 , par exemple à quelques mètres des petits côtés V1 p et V1 n. Les éléments intermédiaires sont destinés à élargir la bande passante de l'antenne autour de la fréquence de résonance de l'antenne, sans modifications significatives des caractéristiques de rayonnement de l'antenne.
Bien que les antennes décrites ci-après et montrées aux figures 5 à 18 comprennent un circuit d'alimentation selon la première réalisation montrée à la figure 1 , les circuits d'alimentation montrés aux figures 2, 3 et 4 sont aptes à alimenter les boucles d'excitation de ces antennes. Chacune de ces boucles d'excitation peut comprendre un ou plusieurs éléments intermédiaires tels que les éléments Vip et Vin montrés à la figure 5, entre des portions inférieure et supérieure de la boucle d'excitation, ou plus généralement entre des "demi"-boucles inférieure et supérieure de la boucle d'excitation, pour élargir la bande passante des antennes.
En se référant maintenant aux figures 6 à 8, la boucle d'excitation B2 d'une antenne selon la deuxième réalisation est basée sur un repliement d'une première moitié de la boucle d'excitation B1 comprenant la portion U n du grand côté inférieur, le petit côté V1 n et une moitié du grand côté supérieur S1 vers la seconde moitié de la boucle B1 autour de l'axe zénithal central Z1 -Z1 de la boucle B1 , comme indiqué par la flèche F2 dans la figure 5. La boucle B2 comprend ainsi approximativement deux "demi"-boucles sur les faces avant (figure 7) et arrière ou les faces inférieure et supérieure d'un long parallélépipède étroit à peu près droit. Ce parallélépipède enveloppant la boucle B2 a une longueur L/4 environ et une hauteur H - h. Le parallélépipède s'étend non seulement longitudinalement suivant un plan vertical XOZ (figure 7), mais aussi latéralement suivant un plan vertical YOZ (figure 8) perpendiculaire au plan XOZ. Deux portions longitudinales supérieures S2p et S2n de la boucle B2 correspondant aux deux moitiés de la portion supérieure S1 de la boucle B1 sont raccordées par une courte portion horizontale S21 p. L'extrémité de la portion inférieure I2n de la boucle B2 correspondant à la portion supérieure U n de la boucle B1 rabattue vers l'arrière est raccordée par une courte portion horizontale 121 n qui est parallèle à la portion S21 p et située avec celle-ci sur un côté vertical latéral du parallélépipède. Depuis l'extrémité E2p de la boucle d'excitation B2 reliée à la borne positive du dispositif d'alimentation A, la boucle B2 comprend une longue portion inférieure longitudinale I2p, une courte portion verticale V2p de hauteur H - h, une longue portion supérieure longitudinale S2p située au-dessus de la portion I2p et délimitant avec les portions I2p et V2p la face avant du parallélépipède, une courte portion latérale S21 p, une longue portion supérieure longitudinale S2n et délimitant avec les portions S2p et S21 p la face supérieure du parallélépipède, une courte portion verticale V2n de hauteur H - h située avec la courte portion V2p dans un plan perpendiculaire aux portions longitudinales, une longue portion inférieure longitudinale I2n située au-dessous de la portion S2n et délimitant avec les portions S2n et V2n la face arrière du parallélépipède, et une courte portion latérale 121 n située au-dessous de la portion S21 p, délimitant avec les portions I2p et I2n la face inférieure du parallélépipède et terminée par l'autre extrémité E2n de la boucle d'excitation B2.
La longueur des portions latérales à peu près horizontales 121 n et S21 p définit la largeur W de la boucle B2 dans un plan vertical YOZ qui très inférieure à λ de manière à ce que les deux portions parallèles situées dans chacune des faces longitudinales du parallélépipède soient parcourues au plus près par des courants de sens opposés. Dans ces conditions, les composantes secondaires du champ électrique générées dans des plans horizontaux sont très fortement restreintes suivant des directions proches de l'axe zénithal central Z2- Z2 de la boucle B2. La longueur des portions latérales 121 n et S21 p est cependant au moins égale à λ/200 environ afin d'éviter des couplages trop élevés entre les portions longitudinales I2p et I2n et S2p et S2n qui entraînent une diminution importante du rendement de l'antenne. La développante de la boucle d'excitation repliée B2 est dans ce cas plus longue que la développante de la boucle d'excitation B1 . Pour une même fréquence de résonance, la longueur de la développante de la boucle repliée B2 présentée à la figure 6 est fonction de la longueur des portions 121 n et S21 p. La bande passante est également réduite en raison de l'augmentation du facteur de qualité de l'antenne. Cependant cette réduction de bande passante peut être compensée par l'adjonction d'éléments métalliques intermédiaires Vip entre les portions inférieure I2p et supérieure S2p et/ou d'éléments métalliques intermédiaires Vin entre les portions inférieure I2n et supérieure S2n, comme ceux montrés à la figure 5.
Le principe du repliement de la boucle d'excitation sur elle- même, tel que présenté aux figures 6 à 8, peut être étendu à de multiples repliements successifs moyennant une augmentation proportionnelle de la développante de l'antenne et une réduction de la bande passante pour une même fréquence de résonance.
En référence aux figures 9 à 12, la boucle d'excitation B3 d'une antenne selon la troisième réalisation est basée sur des repliements des tiers situés à gauche et à droite de la boucle B1 dans la figure 5 respectivement vers l'avant et l'arrière du tiers central de la boucle B1 . Le tiers gauche de la boucle d'excitation B3 est situé dans un plan vertical avant situé devant le tiers central de la boucle B1 après repliement autour d'un axe zénithal de la boucle B1 situé à l'extrémité gauche du tiers central, comme indiqué par la flèche F3p dans la figure 5. Le tiers droit de la boucle d'excitation B3 est situé dans un plan vertical arrière situé derrière le tiers central de la boucle B1 après repliement autour d'un axe zénithal de la boucle B1 situé à l'extrémité droite du tiers central, comme indiqué par la flèche F3n dans la figure 5. La boucle d'excitation B3 selon la troisième réalisation comprend ainsi approximativement trois tiers I3p-S3p (figure 1 1 ), I3cp-I3cn-S3c et I3n-S3n de boucle sur chacune de faces verticales avant, centrale et arrière d'un parallélépipède étroit à peu près droit. Ce parallélépipède enveloppant la boucle B3 a une longueur L/6 environ et une hauteur H - h. La boucle B3 est constituée approximativement de deux "demi"- boucles I3p-I3cp-I3cn-I3n et S3p-S3c-S3n (figure 1 1 ) sur chacune des grandes faces horizontales inférieure et supérieure du long parallélépipède. Une extrémité gauche de la portion inférieure avant I3p de la boucle B2 correspondant au tiers gauche de la portion inférieure 11 p de la boucle B1 rabattue vers l'avant et une extrémité gauche de la portion supérieure avant S3p de la boucle B2 correspondant au tiers gauche de la portion supérieure S1 p de la boucle B1 rabattue vers l'avant sont raccordées respectivement par deux courtes portions latérales horizontales 131 p et S31 p qui sont parallèles et situées dans un côté vertical gauche du parallélépipède. Une extrémité droite de la portion inférieure arrière I3n de la boucle B2 correspondant au tiers droit de la portion inférieure U n de la boucle B1 rabattue vers l'arrière et une extrémité droite de la portion supérieure arrière S3n de la boucle B2 correspondant au tiers droit de la portion supérieure S1 p de la boucle B1 rabattue vers l'arrière sont raccordées respectivement par deux courtes portions latérales horizontales 131 n et S31 n qui sont parallèles et situées dans un côté vertical droit du parallélépipède. Depuis l'extrémité E3p de la boucle d'excitation B3 reliée à la borne positive du dispositif d'alimentation A, la boucle B3 comprend la "demi"-portion longitudinale centrale inférieure I3cp, la courte portion latérale inférieure 131 p, la longue portion inférieure avant longitudinale I3p, une courte portion verticale V3p de hauteur H - h, la longue portion supérieure avant longitudinale S3p, la courte portion latérale supérieure S31 p, la longue portion supérieure centrale longitudinale S3c, la courte portion latérale supérieure S31 n, la longue portion supérieure arrière longitudinale S3n, une courte portion verticale V3n de hauteur H-h, la longue portion inférieure arrière longitudinale I3n, la courte portion latérale inférieure 131 n et la "demi"- portion longitudinale horizontale centrale inférieure I2n terminée par l'autre extrémité E3n de la boucle d'excitation B3.
La longueur des portions latérales horizontales 131 p, 131 n, S31 p et S31 n définit la demi-largeur W de la boucle B3 dans un plan vertical YOZ qui est comprise entre λ/200 et λ/50 et donc très inférieure à λ de manière à ce que les deux portions longitudinales parallèles situées dans chacune des trois faces longitudinales avant, intermédiaire et arrière et deux portions longitudinales parallèles voisines parmi trois situées dans chacune des deux faces longitudinales centrale et supérieure du parallélépipède soient parcourues au plus près par des courants de sens opposés. Toutefois en variante, la longueur des portions latérales superposées 131 p et S31 p peut être différente de la longueur des portions latérales superposées 131 n et S31 n, et la face verticale contenant les portions longitudinales parallèles I3cp, I3cn et S3c peut être à des distances différentes des faces avant et arrière. Ces conditions optimisent l'efficacité de rayonnement de l'antenne et minimisent l'émission ou la réception du champ électromagnétique dans les directions proches de l'axe zénithal central de l'antenne.
Au lieu de répartir en zigzag les portions longitudinales dans les faces inférieure et supérieure comme dans la boucle B3, la boucle d'excitation B4 d'une antenne selon la quatrième réalisation montrée aux figures 13 à 15 comprend approximativement une "demi"-boucle inférieure formée par deux spirales plates rectangulaires I4p et I4n ayant des sens opposés et un centre commun et une "demi"-boucle supérieure formée par deux spirales plates rectangulaires S4p et S4n ayant des sens opposés et un centre commun. Les demi-boucles I4p- I4n et S4p-S4n sont circonscrites respectivement aux grandes faces inférieure et supérieure d'un parallélépipède à peu près droit de hauteur H - h, de longueur 5xp1 et de largeur 4xp2 selon l'exemple illustré à la figure 14. Le pas longitudinal p1 et le pas latéral p2 des spires des spirales peuvent être a priori différents et sont nettement inférieur à λ, par exemple compris entre λ/120 et λ/80. Les grandes faces inférieure et supérieure du parallélépipède sont à peu près parallèles à la surface SM du milieu conducteur M. Les spirales supérieures S4p et S4n sont à peu près superposées verticalement respectivement aux spirales inférieures I4p et I4n. Des courtes portions verticales V4p et V4n de la boucle d'excitation B4 ont une hauteur H - h et relient respectivement des extrémités périphériques des spirales I4p et S4p et des extrémités périphériques des spirales I4n et S4n. Dans la réalisation illustrée aux figures 13 à 15, les extrémités E4p et E4n de l'ouverture de la boucle B4 située au centre de la demi-boucle I4p-I4n, les spirales inférieures I4p et I4n et les spirales supérieures S4p et S4n sont respectivement symétriques par rapport à un axe central zénithal Z4-Z4 de la boucle B4 passant par les centres des spirales et des faces inférieure et supérieure du parallélépipède.
Dans chacune des grandes faces inférieure et supérieure du parallélépipède, la propriété que deux portions voisines longitudinales ou transversales des demi-boucles sont parcourues par des courants de sens opposés est conservée. La réduction de l'encombrement de la boucle d'excitation B4 par enroulement de la boucle sur elle-même est plus réduit que dans les boucles précédentes.
En variante, au lieu que le pas soit constant, le pas peut être variable par exemple pour former des spirales logarithmiques inférieures et supérieures de la boucle. Plus généralement, un pas variable pour chaque spire des demi-boucles peut être choisi dans la mesure où les restrictions sur la distance entre les spires sont respectées de façon à conserver une efficacité de rayonnement significative du même ordre de grandeur que dans les boucles B2 et B3 obtenues par repliement.
La boucle B5 selon la cinquième réalisation montrée aux figures 15 à 18 comprend approximativement une demi-boucle inférieure formée par deux spirales d'Archimède circulaires plates I5p et I5n ayant des sens opposés et un centre commun et une demi-boucle inférieure formée par deux spirales d'Archimède circulaires plates S5p et S5n ayant des sens opposés et un centre commun. Les demi- boucles I5p et I5n et S5p et S5n sont circonscrites respectivement aux bases inférieure et supérieure d'un cylindre ayant une hauteur H - h, un rayon p et un axe zénithal Z5-Z5 passant par les centres des spirales et de l'ouverture E5p-E5n de la boucle B5 située au centre de la demi-boucle inférieure I5p-I5n. Les bases du cylindre sont à peu près parallèles à la surface SM du milieu conducteur M et sont par exemple circulaires ou elliptiques, ou bien le cylindre est remplacé par un prisme à bases polygonales. Des courtes portions verticales V5p et V5n de la boucle d'excitation B5 ont une hauteur H - h et relient respectivement des extrémités périphériques des spirales I5p et S5p et des extrémités périphériques des spirales I5n et S5n.

Claims

REVENDICATIONS
1 - Antenne à ondes de surface comprenant une boucle d'excitation métallique (B1 ) apte à être positionnée à une hauteur (h) d'au moins 1 m environ au-dessus de la surface (SM) d'un milieu conducteur (M) et un moyen d'alimentation (A, L1 n) apte à être relié au milieu conducteur, la boucle ayant une longueur de λ/2 environ et λ désignant la longueur d'onde de fonctionnement de l'antenne, caractérisée en ce que la boucle d'excitation (B1 ) comprend deux portions (11 p-11 n, S1 ) à peu près parallèles et distantes d'au plus λ/50 environ et aptes à s'étendre à peu près parallèlement à la surface (SM) du milieu conducteur (M) dans un plan à peu près perpendiculaire à ladite surface et à être parcourues par des courants de sens opposés, la portion (11 p-11 n) la plus proche de ladite surface comportant une ouverture entre des extrémités (E1 p, E1 n) de la boucle (B1 ) reliées au moyen d'alimentation (A, L1 n).
2 - Antenne selon la revendication 1 , dans laquelle la boucle d'excitation (B1 ) est rectangulaire et comprend deux grands côtés formés par lesdites deux portions (11 p-11 n, S1 ) et longs d'au plus λ/4 environ.
3 - Antenne selon la revendication 1 , dans laquelle la boucle d'excitation (B2) est répartie approximativement en deux demi-boucles qui sont superposées sur deux plans à peu près parallèles à la surface (SM) du milieu conducteur (M) et distants d'au plus λ/50 et qui ont chacune deux portions (I2p, I2n; S2p, S2n) à peu près parallèles aptes à être parcourues par des courants de sens opposés.
4 - Antenne selon la revendication 3, dans laquelle chacune des demi-boucles comprend plus de deux portions à peu près parallèles (I3p, I3cp-I3cn, I3n; S3p, S3c, S3n; ou I4p, I4n; S4p, S4n; ou I5p, I5n; S5p, S5n), deux portions voisines dans chaque demi-boucle étant aptes à être parcourues par des courants de sens opposés et deux portions superposées des demi-boucles étant aptes à être parcourues par des courants de sens opposés.
5 - Antenne selon la revendication 4, dans laquelle la boucle d'excitation (B3) est circonscrite à un parallélépipède ayant des grandes faces à peu près parallèles à la surface (SM) du milieu conducteur (M), et chacune des demi-boucles (I3p-I3cp-I3cn-I3n, S3p- S3c-S3n) s'étend en zigzag sur l'une des grandes faces.
6 - Antenne selon la revendication 4, dans laquelle la boucle d'excitation (B4) est circonscrite à un parallélépipède ayant des grandes faces à peu près parallèles à la surface (SM) du milieu conducteur (M), et chacune des demi-boucles comprend deux spirales plates rectangulaires (I4p, I4n; S4p, S4n) ayant des sens opposés et un centre commun et s'étendant sur l'une des grandes faces.
7 - Antenne selon la revendication 4, dans laquelle la boucle d'excitation (B5) est circonscrite à un cylindre ayant des bases à peu près parallèles à la surface (SM) du milieu conducteur (M), et chacune des demi-boucles comprend deux spirales plates circulaires (I5p, I5n; S5p, S5n) ayant des sens opposés et un centre commun et s'étendant sur l'une des bases.
8 - Antenne selon l'une des revendications 1 à 7, dans laquelle deux portions (11 p-11 n, S1 ; I2p, I2n; S2p, S2n) de la boucle d'excitation (B1 ; B2) à peu près parallèles, superposées et voisines sont distantes d'au moins λ/200 environ.
9 - Antenne selon l'une des revendications 1 à 8, comprenant au moins un élément intermédiaire métallique (Vip; Vin) qui est relié à des portions (11 p-11 n, S1 ) de la boucle d'excitation (B1 ) superposées dans un plan apte à être à peu près perpendiculaire à la surface (SM) du milieu conducteur (M) et qui est situé à proximité de petits côtés (V1 p, V1 n) de la boucle d'excitation (B1 ) à peu près perpendiculaires aux portions superposées. 10 - Antenne selon l'une des revendications 1 à 9, dans laquelle le moyen d'alimentation comprend un dispositif d'alimentation en puissance (A) ayant des bornes positive et négative reliées aux extrémités (E1 p, E1 n) de la boucle (B1 ), et un élément de liaison métallique (L1 n) ayant une extrémité reliée à la borne négative du dispositif d'alimentation et une autre extrémité apte à être reliée au milieu conducteur (M).
1 1 - Antenne selon l'une des revendications 1 à 9, dans laquelle le moyen d'alimentation comprend un élément de liaison métallique (L1 n) ayant une extrémité reliée à l'une (E1 n) des extrémités de la boucle (B1 ) et une autre extrémité apte à être reliée au milieu conducteur (M), un dispositif d'alimentation en puissance (A) ayant une borne positive reliée à l'autre extrémité (E1 p) de la boucle, et un élément de liaison métallique (L3n) ayant une extrémité reliée à une borne négative du dispositif d'alimentation et une autre extrémité apte à être reliée au milieu conducteur (M).
12 - Antenne selon la revendication 10 ou 1 1 , dans laquelle l'extrémité d'un élément de liaison métallique (L1 n; L3n) apte à être reliée au milieu conducteur (M) est apte à être reliée à un élément de masse métallique (EM) enfoui à proximité et sous la surface (SM) du milieu conducteur (M) et ayant une surface au moins égale à la projection de la surface de la boucle d'excitation (B1 ) sur la surface du milieu conducteur.
PCT/EP2011/067518 2010-10-07 2011-10-06 Antenne de grande dimension à ondes de surface et à large bande WO2012045847A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2011311481A AU2011311481A1 (en) 2010-10-07 2011-10-06 Large-area broadband surface-wave antenna
CN201180048040.8A CN103299481B (zh) 2010-10-07 2011-10-06 大型宽带表面波天线
ES11764763.6T ES2509953T3 (es) 2010-10-07 2011-10-06 Antena de grandes dimensiones de ondas de superficie y de banda ancha
EP11764763.6A EP2625741B1 (fr) 2010-10-07 2011-10-06 Antenne de grande dimension à ondes de surface et à large bande
CA2812722A CA2812722C (fr) 2010-10-07 2011-10-06 Antenne de grande dimension a ondes de surface et a large bande
US13/877,430 US20130241790A1 (en) 2010-10-07 2011-10-06 Large-area broadband surface-wave antenna
AU2016204050A AU2016204050B2 (en) 2010-10-07 2016-06-16 Large-area broadband surface-wave antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058165 2010-10-07
FR1058165A FR2965978B1 (fr) 2010-10-07 2010-10-07 Antenne de grande dimension a ondes de surface et a large bande

Publications (1)

Publication Number Publication Date
WO2012045847A1 true WO2012045847A1 (fr) 2012-04-12

Family

ID=44359843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067518 WO2012045847A1 (fr) 2010-10-07 2011-10-06 Antenne de grande dimension à ondes de surface et à large bande

Country Status (8)

Country Link
US (1) US20130241790A1 (fr)
EP (1) EP2625741B1 (fr)
CN (1) CN103299481B (fr)
AU (2) AU2011311481A1 (fr)
CA (1) CA2812722C (fr)
ES (1) ES2509953T3 (fr)
FR (1) FR2965978B1 (fr)
WO (1) WO2012045847A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030908B1 (fr) * 2014-12-18 2016-12-09 Stmicroelectronics Rousset Antenne pour dispositif electronique
FR3036543B1 (fr) * 2015-05-18 2017-05-12 Tdf Systeme antennaire a ondes de surface
FR3040111B1 (fr) * 2015-08-10 2017-12-01 Tdf Antenne a ondes de surface, reseau d'antennes et utilisation d'une antenne ou d'un reseau d'antennes
US10324163B2 (en) * 2015-09-10 2019-06-18 Cpg Technologies, Llc Geolocation using guided surface waves
US10396566B2 (en) * 2015-09-10 2019-08-27 Cpg Technologies, Llc Geolocation using guided surface waves
US10193229B2 (en) * 2015-09-10 2019-01-29 Cpg Technologies, Llc Magnetic coils having cores with high magnetic permeability
US10408915B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
US10408916B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
US11682841B2 (en) 2021-09-16 2023-06-20 Eagle Technology, Llc Communications device with helically wound conductive strip and related antenna devices and methods
CN114400459A (zh) * 2021-11-12 2022-04-26 南京隼眼电子科技有限公司 毫米波雷达阵列天线及雷达装置
US12027762B2 (en) 2022-02-10 2024-07-02 Eagle Technology, Llc Communications device with helically wound conductive strip with lens and related antenna device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098391A2 (fr) * 1999-11-03 2001-05-09 Andrew A.G. Antenne doublet replié
EP1594186A1 (fr) 2004-05-04 2005-11-09 Telediffusion De France Antenne de sol à boucle rayonnant en ondes kilométriques ou hectométriques
FR2910727A1 (fr) * 2006-12-21 2008-06-27 Tdf Sa Reseau d'antennes a onde de sol progressive kilometrique ou hectometrique

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1904773A (en) * 1931-03-10 1933-04-18 Christ J Aanenson Radio ground
US2994876A (en) * 1957-01-14 1961-08-01 Bengt Adolf Samuel Josephson Ultrashortwave antenna
US4030032A (en) * 1960-04-05 1977-06-14 Westinghouse Electric Corporation Radio transmission system
US5929825A (en) * 1998-03-09 1999-07-27 Motorola, Inc. Folded spiral antenna for a portable radio transceiver and method of forming same
US6369778B1 (en) * 1999-06-14 2002-04-09 Gregory A. Dockery Antenna having multi-directional spiral element
JP2002151939A (ja) * 2000-10-03 2002-05-24 Internatl Business Mach Corp <Ibm> アンテナ装置、情報処理装置および携帯電話
US6933907B2 (en) * 2003-04-02 2005-08-23 Dx Antenna Company, Limited Variable directivity antenna and variable directivity antenna system using such antennas
JP3805772B2 (ja) * 2004-01-13 2006-08-09 株式会社東芝 アンテナ装置及び携帯無線通信装置
US20050174297A1 (en) * 2004-02-09 2005-08-11 Cake Brian V. Compact ground-plane antenna
US7027008B2 (en) * 2004-05-28 2006-04-11 Information Station Specialists Antenna ground system
DE102004027839B4 (de) * 2004-06-08 2011-02-10 Infineon Technologies Ag Antennenstruktur
US20060044176A1 (en) * 2004-08-27 2006-03-02 Bae Systems Advanced Technologies, Inc. ELF/VLF wave generator using a virtual vertical electric dipole
US7292200B2 (en) * 2004-09-23 2007-11-06 Mobile Mark, Inc. Parasitically coupled folded dipole multi-band antenna
US20070040761A1 (en) * 2005-08-16 2007-02-22 Pharad, Llc. Method and apparatus for wideband omni-directional folded beverage antenna
JP4864733B2 (ja) * 2007-01-16 2012-02-01 株式会社東芝 アンテナ装置
US20100164816A1 (en) * 2007-03-27 2010-07-01 Honda Motor Co., Ltd. Antenna structure of rectangular loop antenna
US8223084B2 (en) * 2007-09-06 2012-07-17 Panasonic Corporation Antenna element
US8056819B2 (en) * 2008-10-14 2011-11-15 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Miniature and multi-band RF coil design
US8477079B2 (en) * 2009-02-13 2013-07-02 William N. Carr Multiple-cavity antenna
CN102473244B (zh) * 2009-11-04 2014-10-08 株式会社村田制作所 无线ic标签、读写器及信息处理系统
US10033198B2 (en) * 2014-09-11 2018-07-24 Cpg Technologies, Llc Frequency division multiplexing for wireless power providers
US9887557B2 (en) * 2014-09-11 2018-02-06 Cpg Technologies, Llc Hierarchical power distribution
US9882397B2 (en) * 2014-09-11 2018-01-30 Cpg Technologies, Llc Guided surface wave transmission of multiple frequencies in a lossy media
US10074993B2 (en) * 2014-09-11 2018-09-11 Cpg Technologies, Llc Simultaneous transmission and reception of guided surface waves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098391A2 (fr) * 1999-11-03 2001-05-09 Andrew A.G. Antenne doublet replié
EP1594186A1 (fr) 2004-05-04 2005-11-09 Telediffusion De France Antenne de sol à boucle rayonnant en ondes kilométriques ou hectométriques
FR2910727A1 (fr) * 2006-12-21 2008-06-27 Tdf Sa Reseau d'antennes a onde de sol progressive kilometrique ou hectometrique

Also Published As

Publication number Publication date
CN103299481B (zh) 2015-03-25
ES2509953T3 (es) 2014-10-20
CN103299481A (zh) 2013-09-11
AU2016204050B2 (en) 2018-06-28
EP2625741B1 (fr) 2014-07-16
FR2965978B1 (fr) 2012-10-19
US20130241790A1 (en) 2013-09-19
CA2812722C (fr) 2020-03-10
CA2812722A1 (fr) 2012-04-12
AU2011311481A1 (en) 2013-04-11
FR2965978A1 (fr) 2012-04-13
EP2625741A1 (fr) 2013-08-14
AU2016204050A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
EP2625741B1 (fr) Antenne de grande dimension à ondes de surface et à large bande
EP3298651B1 (fr) Système antennaire à ondes de surface
FR2840115A1 (fr) Antenne plane a polarisation rectiligne et circulaire
FR2482789A1 (fr) Perfectionnements apportes aux antennes constituees d&#39;elements coaxiaux
CA2029378A1 (fr) Antenne a polarisation circulaire, notamment pour reseau d&#39;antennes
EP1594186B1 (fr) Antenne de sol à boucle rayonnant en ondes kilométriques ou hectométriques
EP2543111B1 (fr) Structure antennaire à dipôles
FR2665025A1 (fr) Element de transition entre guides d&#39;ondes electromagnetiques, notamment entre un guide d&#39;ondes circulaire et un guide d&#39;ondes coaxial.
FR3013906A1 (fr) Antenne radio integree a meandres
EP3335267A1 (fr) Antenne à ondes de surface, réseau d&#39;antennes et utilisation d&#39;une antenne ou d&#39;un réseau d&#39;antennes
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
FR2737345A1 (fr) Antenne a entree adaptee pour radio portable
EP2449629B1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
CA2392696C (fr) Antenne ciseaux a large bande
EP1339134A1 (fr) Antenne monopolaire ou dipolaire à large bande
FR2910727A1 (fr) Reseau d&#39;antennes a onde de sol progressive kilometrique ou hectometrique
WO2016139403A1 (fr) Structure antennaire omnidirectionnelle large bande
FR3071968A1 (fr) Antenne a substrat ferromagnetique dispersif partiellement sature
EP0156684A1 (fr) Elément rayonnant des ondes électromagnétiques, et son application à une antenne à balayage électronique
WO2004006386A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires
WO2023117192A1 (fr) Dispositif antennaire à deux réseaux de dipôles et systeme de communication associe
EP4454060A1 (fr) Dispositif antennaire à deux réseaux de dipôles et systeme de communication associe
FR2966647A1 (fr) Antenne a fente et a ondes de surface de grande dimension
FR2668859A1 (fr) Dispositif pour engendrer un rayonnement electromagnetique mettant en óoeuvre une antenne a double resonance.
EP3092680A1 (fr) Antenne planaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11764763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2812722

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011311481

Country of ref document: AU

Date of ref document: 20111006

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011764763

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13877430

Country of ref document: US