EP1339134A1 - Antenne monopolaire ou dipolaire à large bande - Google Patents

Antenne monopolaire ou dipolaire à large bande Download PDF

Info

Publication number
EP1339134A1
EP1339134A1 EP03100406A EP03100406A EP1339134A1 EP 1339134 A1 EP1339134 A1 EP 1339134A1 EP 03100406 A EP03100406 A EP 03100406A EP 03100406 A EP03100406 A EP 03100406A EP 1339134 A1 EP1339134 A1 EP 1339134A1
Authority
EP
European Patent Office
Prior art keywords
antenna
strands
wire
radiating
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03100406A
Other languages
German (de)
English (en)
Inventor
Frédéric Lamour
Gil Maugrion
Ivan Wolk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1339134A1 publication Critical patent/EP1339134A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/44Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/005Damping of vibrations; Means for reducing wind-induced forces

Definitions

  • the invention relates to the field of broadband antennas (antenna with passive tuning box) of monopolar type or dipolar.
  • a passive tuning box 2 allows you to refine the adaptation of the antenna over very wide frequency bands.
  • the adaptation is all the easier when the angle ⁇ (angle that makes a radiating strand 1 relative to the vertical) is relatively large, generally from 10 ° to 45 °. Being able to adapt an antenna naturally without attenuator at a given TOS value (standing wave rate - VSWR in English) typically 2 to 3, is important because it allows guarantee good antenna performance by avoiding buffer values (attenuator) high.
  • a high angle value for example ⁇ > 15 °, is often incompatible with mechanical and operational constraints usual, such as the wind resistance, the weight, the implementation time, etc., especially for relatively low frequencies (HF band 2-30 MHz) or the bottom of the VHF band (a few tens of MHz) where the strands radiant are usually from a few meters to more than ten meters in length.
  • a solution consists in significantly strengthening the bases of the radiating strands especially for the radiating strands of the upper pole. This reinforcement comes with significant additional constraints on the cost, transport and tactical qualities of the antenna (heavier weight, increased assembly and disassembly time, number of operators required larger, heavier infrastructure to hold weight and hold upwind, etc.)
  • the wire antennas according to the prior art therefore have seldom strand angles greater than 15 ° (the angle is counted relative to the vertical axis of the figure). Adaptation is then adjusted with Self-Capacities cells and using buffers or attenuators.
  • the object of the present invention relates to an antenna where the ends of the radiating strands are connected for example to their base or to the base by means of a conductive wire capable of supporting the power antenna transmission.
  • the radiating strands of the upper pole are connected to the base of the upper pole.
  • the invention relates to a wire antenna comprising one or more several radiating strands, said strands being connected to a base, characterized in that at least one of said strands has a first end connected by means of a conducting wire to said base or connected to its second end.
  • the radiating strand is, for example, part of the upper pole of the antenna and the connecting wire is a metal wire or a metal wire coated with Teflon.
  • the invention relates for example to type antennas monopolar or dipolar which are used for example to the bands HF-VHF-UHF from a few MHz to a few hundred MHz.
  • the antenna manufacturing technique according to the invention allows to optimize the adaptation of the antenna while guaranteeing properties of tacticity and cost comparable to that of antennas tuned with buffers (attenuators).
  • Figure 3 shows schematically a first alternative embodiment of a broadband antenna according to the invention.
  • This wire antenna of mono-polar or dipolar type comprises for example 4 upper radiating strands referenced 4 in connection with a tuning box 5.
  • the polarization of the antenna is a vertical polarization.
  • the upper strands 4 for example make an angle of inclination ⁇ of the order of 5 to 20 °, for example from 10 ° to 15 ° approximately relative to the vertical.
  • the upper end 4s of a radiating strand is for example connected by means of a conducting wire, for example metallic 6, to the base 7 of the upper pole (for example at its end 4 i giving the antenna a look
  • a radiating strand 4 and the connecting wire is for example ensured by using banana type plugs known to those skilled in the art and capable of withstanding the power radiated by the antenna (these sheets are not shown in the figure for the sake of clarity) Any other means, such as welding, capable of making this connection can also be used.
  • the upper strands 4 are of metallic type, or composite (metal strands coated with composite).
  • the connecting wire 6 used is chosen in particular according to its power handling radiated by the antenna. It can be metallic and coated teflon.
  • the choice of the diameter of the connecting wire is for example a compromise between the mechanical resistance of the assembly, the resistance to power and wind resistance.
  • the length of the wire connecting the strand greater than the base is in particular a function of the curvature of the upper strand due to gravity.
  • such an architecture makes it possible to widen the band on the one hand, because the value of the angle ⁇ between the vertical and each metal wire is greater than the value of the angle ⁇ , on the other hand because the strands radiators thus formed appear thick and naturally offer broadband properties.
  • the number of upper strands connected can be equal to the number of upper strands of the antenna.
  • FIG. 4 represents an alternative embodiment where an upper strand 4 is connected by means of two connecting wires 6, 6 ′ to the base 7.
  • the contact point (A, B) of the wires to the base is located by example midway between the feet of the adjacent radiating strands (4 i-1 , 4 i + 1 ) to the strand concerned.
  • FIG. 5 represents a dipole type antenna where the upper wires 4 of the upper pole are connected.
  • the wires 10 of the lower pole can be moved apart significantly from the vertical by serving as guying 11, the principle of connection by wires metallic is not necessarily applied at this pole lower, the angle can take a significant value without difficulty.
  • the angle ⁇ 'made by a radiating strand 10 of the lower pole relative to the horizontal is approximately 45 °.
  • the strands of the antenna thus modified and with a "thick strand" structure significantly reduce variations of real and imaginary parts over a wide band (the resonant structure is less selective) and allow better adaptation with conventional passive elements (transformers, inductors, capacity).
  • Adjust adaptation then requires lower attenuator values than those used in the case of conventional antennas (according to the prior art) thus optimizing the antenna performance.
  • antennas HF for example 2-30 MHz, high powers, for example a few hundreds of Watt to a few kW, made up of radiating strands metal coated with composite material measuring more than 10 meters. They also apply to antennas used in ranges of frequency corresponding to the F-UHF or VHF bands varying from a few MHz to a few hundred MHz.
  • Figures 6 to 13 show the simulation results obtained on a dipole type antenna.
  • the simulation software is marketed by Nittany Scientific under the brand NEC Winpro.
  • the structure of the antenna used is given in Figure 6. It has an upper pole made up of 4 radiating strands 12, of length L equal to about 1.2 meters. The strands are arranged at 90 ° from each other others and each make an angle ⁇ of 10 ° relative to the vertical at their foot. They are connected to the base 13 by means of a wire 14.
  • the lower pole is made up of 4 radiating wires 15 of 1.2 meters in length arranged at 90 ° to each other. Each radiating wire is tilted 45 °.
  • the antenna phase center is located for example 2 meters above average ground 16.
  • the mast 17 supporting the antenna is made of composite.
  • the box agree 18 is located between the lower pole and the upper pole.
  • Figures 7, 8, 9, 10 show schematically the simulated representation respectively of a conventional antenna according to the prior art, of an antenna with 1 wire connecting the upper end of a strand and the foot of the strand, antenna with 2 wires connecting the end of each upper strand the two wires being halfway between two feet, of an antenna with rigid stranded wires superior.
  • FIG. 11 represents the associated TOS curves as a function of frequency.
  • Curve I corresponds to the conventional antenna ( Figure 7), the curve II at the one-wire antenna ( Figure 8), curve III at the two-wire antenna ( Figure 9), the IV curve with the wires alone ( Figure 10).
  • Figures 12 and 13 show the real part of the impedance input of the antenna and the imaginary part of the input impedance of the antenna respectively for a conventional antenna (curve V real part, curve VII imaginary part) and a wire antenna (curve VI real part, curve VIII imaginary part).
  • This drop in dynamics of the variations in the input impedance allows an adequate transformation ratio to obtain an antenna TOS less than or equal to 3 over a very large bandwidth (varying by example of 60 to 300 MHz in this case) with one wire per radiating strand against a maximum TOS of 4 for the conventional antenna.
  • the antenna structure with 2 wires per strand radiating offers a TOS less than or equal to 3.2.
  • the proposed solution allows in particular to make an antenna 6-30 MHz or 60-300 MHz with a TOS less than or equal to 3 having a very good efficiency (a single transformer with a 1: 4 ratio is sufficient).
  • Figures 14 and 15 show the impedance readings input of the antenna measured with the network analyzer and represented under form of TOS and Smith abacus respectively.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Antenne comportant un ou plusieurs brins rayonnants où au moins un brin rayonnant a ses deux extrémités reliées au moyen d'un ou de plusieurs fils conducteurs, les brins rayonnants faisant partie du pole supérieur de l'antenne. Application à des antennes de type monopolaire ou dipolaire dans des gammes de fréquence correspondant aux bandes HF, VHF ou UHV. <IMAGE>

Description

L'invention concerne le domaine des antennes large bande (antenne avec boíte d'accord à éléments passifs) de type monopolaire ou dipolaire.
Elle est appliquée par exemple pour des antennes filaires dans le cadre des systèmes de télécommunications ou de brouillage.
Dans des antennes filaires de type mono polaire (figure 1) ou dipolaire (figure 2) large bande, la technique classique la plus utilisée pour obtenir de bonnes propriétés sur une large bande consiste à élargir les pôles à l'aide de fils ou brins métalliques 1 pour le pôle supérieur et 3 pour le pôle inférieur.
Une boíte d'accord passive 2 permet d'affiner l'adaptation de l'antenne sur des bandes de fréquence très larges.
De cette façon, on obtient des antennes tactiques transportables (montables et démontables) ayant une prise au vent réduite. Un nombre élevé de brins garantit de bonnes propriétés d'omnidirection en azimut mais pénalise le temps de montage et les contraintes de prise au vent.
L'adaptation est d'autant plus aisée que l'angle α (angle que fait un brin rayonnant 1 par rapport à la verticale ) est relativement important, de 10° à 45° généralement. Pouvoir adapter une antenne naturellement sans atténuateur à une valeur de TOS donnée (taux d'ondes stationnaires - VSWR en anglais) typiquement de 2 à 3, est important car cela permet de garantir un bon rendement de l'antenne en évitant des valeurs de tampon (atténuateur) élevées.
Cependant, une valeur d'angle élevée, par exemple α > 15°, est souvent incompatible avec les contraintes mécaniques et opérationnelles usuelles, telles que la tenue au vent, le poids, le temps de mise en oeuvre, etc., notamment pour des fréquences relativement basses (bande HF 2-30 MHz) ou le bas de la bande VHF (quelques dizaines de MHz) où les brins rayonnants ont couramment de quelques mètres à plus d'une dizaine de mètres de longueur.
Afin de compenser ces contraintes mécaniques, une solution consiste à renforcer de façon importante les embases des brins rayonnants notamment pour les brins rayonnants du pôle supérieur. Ce renforcement s'accompagne toutefois de contraintes supplémentaires importantes sur le coût, le transport et les qualités tactiques de l'antenne (poids plus important, temps de montage et démontage accrus, nombre d'opérateurs nécessaires plus importants, infrastructures plus lourdes pour tenir un poids et une prise au vent supérieurs, etc.)
Les antennes filaires selon l'art antérieur présentent donc rarement des angles d'inclinaison des brins supérieurs à 15° (l'angle est compté par rapport à l'axe vertical de la figure). L'adaptation est ensuite ajustée avec des cellules Selfs-Capacités et à l'aide de tampons ou atténuateurs.
L'objet de la présente invention concerne une antenne où les extrémités des brins rayonnants sont reliés par exemple à leur base ou à l'embase au moyen d'un fil conducteur capable de supporter la puissance d'émission de l'antenne. Par exemple, les brins rayonnants du pôle supérieur sont reliés à l'embase du pôle supérieur.
L'invention concerne une antenne filaire comportant un ou plusieurs brins rayonnants, lesdits brins étant reliés à une embase, caractérisé en ce que au moins un desdits brins a une première extrémité reliée au moyen d'un fil conducteur à ladite embase ou relié à sa seconde extrémité.
Le brin rayonnant fait partie par exemple du pôle supérieur de l'antenne et le fil de liaison est un fil métallique ou un fil métallique enrobé de Teflon.
L'invention concerne par exemple les antennes de type monopolaire ou dipolaire qui sont utilisées par exemple aux bandes HF-VHF-UHF de quelques MHz à quelques centaines de MHz.
L'antenne selon l'invention présente notamment les avantages suivants :
  • Figure 00030001
    Un rendement amélioré par rapport aux antennes filaires habituelles,
  • Une conservation de leurs qualités tactiques et de leur facilité d'utilisation,
  • Un coût supplémentaire des fils métalliques reliant les brins supérieurs à l'embase du pôle négligeable par rapport au coût global,
  • Une nouvelle architecture qui ne pénalise pas la mise en oeuvre du système, ni le temps de montage et de démontage de l'antenne,
  • Un surplus de poids et d'encombrement des fils métalliques négligeables,
  • Une meilleure stabilité des brins lorsque ces derniers sont relativement longs (plusieurs mètres) et souples sous une contrainte de vent, et de fait une stabilisation du rayonnement en haut de bande où existent des risques de feuilletage des diagrammes en incurvant plus ou moins les brins supérieurs,
  • Par adjonction de fils métalliques une optimisation de l'adaptation de l'antenne en réalisant des brins épais et de ce fait l'amélioration sensible du rendement de l'antenne (tampons/atténuateurs de valeurs plus faibles nécessaires).
  • D'autres caractéristiques et avantages de l'antenne selon l'invention apparaítront mieux à la lecture de la description qui suit donnée à titre illustratif et nullement limitatif au regard des figures annexées qui représentent :
  • Les figures 1 et 2 des antennes filaires de type mono polaire ou dipolaire large bande selon l'art antérieur,
  • La figure 3 un premier exemple d'architecture d'antenne selon l'invention,
  • La figure 4 une variante de la figure 3,
  • La figure 5 l'application de la structure selon l'invention à une antenne de type dipolaire,
  • Les figures 6 à 13 un exemple d'antenne et des résultats de simulation obtenus sur différents types d'antenne,
  • Les figures 14 et 15, le TOS obtenu respectivement avec une antenne classique et sur une antenne modifiée selon l'invention.
  • La technique de fabrication d'antenne selon l'invention permet d'optimiser l'adaptation de l'antenne tout en garantissant des propriétés de tacticité et de coût comparables à celles des antennes accordées avec des tampons (atténuateurs).
    La figure 3 schématise une première variante de réalisation d'une antenne large bande selon l'invention.
    Cette antenne filaire de type mono-polaire ou dipolaire comporte par exemple 4 brins rayonnants supérieurs référencés 4 en liaison avec une boíte d'accord 5. La polarisation de l'antenne est une polarisation verticale. Les brins supérieurs 4 font par exemple un angle d'inclinaison α de l'ordre de 5 à 20°, par exemple de 10° à 15° environ par rapport à la verticale. L'extrémité supérieure 4s d'un brin rayonnant est par exemple reliée au moyen d'un fil conducteur par exemple métallique 6 à l'embase 7 du pôle supérieur (par exemple au niveau de son extrémité 4i donnant à l'antenne une allure d'un palmier. La liaison entre un brin rayonnant 4 et le fil de liaison (fil métallique 6) est par exemple assurée en utilisant des fiches de type banane connues de l'Homme du métier et capables de résister à la puissance rayonnée par l'antenne (ces fiches ne sont pas représentées sur la figure pour des soucis de clareté). Tout autre moyen, tel que la soudure, capable de réaliser cette liaison peut aussi être utilisé.
    Les brins supérieurs 4 sont de type métallique, ou composites (brins métalliques enrobés de composite).
    Le fil de liaison 6 utilisé est choisi notamment en fonction de sa tenue en puissance rayonnée par l'antenne. Il peut être métallique et enrobé de téflon. Le choix du diamètre du fil de liaison est par exemple un compromis entre la résistance mécanique de l'ensemble, la tenue à la puissance et la prise au vent. La longueur du fil reliant le brin supérieur à l'embase est notamment fonction de la courbure du brin supérieur du fait de la gravité.
    Avantageusement, une telle architecture permet d'élargir la bande de l'antenne d'une part, car la valeur de l'angle β entre la verticale et chaque fil métallique est supérieure à la valeur de l'angle α, d'autre part car les brins rayonnants ainsi formés apparaissent comme épais et offrent naturellement des propriétés large bande.
    Le nombre de brins supérieurs reliés peut être égal au nombre de brins supérieurs de l'antenne.
    La figure 4 représente une variante de réalisation où un brin supérieur 4 est relié au moyen de deux fils de liaison 6, 6' à l'embase 7. Le point de contact (A, B) des fils à l'embase se situe par exemple à mi-distance des pieds des brins rayonnants adjacents (4i-1, 4i+1) au brin concerné.
    Selon une autre variante de réalisation, la figure 5 représente une antenne de type dipolaire où les fils supérieurs 4 du pôle supérieur sont reliés. Les fils 10 du pôle inférieur peuvent être écartés de façon significative de la verticale en servant de haubanage 11, le principe de liaison par fils métalliques n'est pas nécessairement appliqué au niveau de ce pôle inférieur, l'angle pouvant prendre une valeur importante sans difficulté. Sur la figure l'angle α' que fait un brin rayonnant 10 du pôle inférieur par rapport à l'horizontal est de 45° environ.
    Dans les exemples donnés aux figures 4 et 5, les brins de l'antenne ainsi modifiés et à structure "brins épais" réduisent sensiblement les variations des parties réelles et imaginaires sur une large bande (la structure résonnante est moins sélective ) et permettent une meilleure adaptation avec des éléments passifs classiques (transformateurs, selfs, capacités).
    L'ajustement de l'adaptation se fait par des méthodes connues de l'Homme du métier qui ne seront pas détaillées. Ajuster l'adaptation nécessite alors des valeurs d'atténuateurs plus faibles que celles utilisées dans le cas d'antennes classiques (selon l'art antérieur) optimisant ainsi le rendement de l'antenne.
    Les exemples donnés précédemment s'appliquent à des antennes HF par exemple 2-30 MHz, de fortes puissances, par exemple de quelques centaines de Watt à quelques kW, constituées de brins rayonnants métalliques enrobés de matériau composite mesurant plus de 10 mètres. Ils s'appliquent aussi pour des antennes utilisées dans des gammes de fréquence correspondant aux bandes F-UHF ou VHF variant de quelques MHz à quelques centaines de MHz.
    Les figures 6 à 13 représentent les résultats de simulation obtenus sur une antenne de type dipolaire. Le logiciel de simulation est commercialisé par la société Nittany Scientific sous la marque NEC Winpro.
    La structure de l'antenne utilisée est donnée à la figure 6. Elle comporte un pôle supérieur constitué de 4 brins rayonnants 12, de longueur L égale à environ 1.2 mètres. Les brins sont disposés à 90° les uns des autres et font chacun un angle β de 10 ° par rapport à la verticale à leur pied. Ils sont reliés à l'embase 13 au moyen d'un fil 14.
    Le pôle inférieur est constitué de 4 fils rayonnants 15 de 1.2 mètres de longueur disposés à 90° les uns des autres. Chaque fil rayonnant est incliné de 45°. Le centre de phase de l'antenne est situé par exemple à 2 mètres au-dessus d'un sol 16 de type moyen.
    Le mât 17 support de l'antenne est en composite. La boíte d'accord 18 est située entre le pôle inférieur et le pôle supérieur.
    Les figures 7, 8, 9, 10 schématisent la représentation simulée respectivement d'une antenne classique selon l'art antérieur, d'une antenne avec 1 fil reliant l'extrémité supérieure d'un brin et le pied du brin, d'une antenne avec 2 fils reliant l'extrémité de chaque brin supérieur les deux fils étant à mi-chemin des deux pieds, d'une antenne avec fils rigides sans brin supérieur.
    La figure 11 représente les courbes TOS associées en fonction de la fréquence.
    La courbe I correspond à l'antenne classique (figure 7), la courbe II à l'antenne à un fil (figure 8), la courbe III à l'antenne à deux fils (figure 9), la courbe IV aux fils seuls (figure 10).
    Les figures 12 et 13 représentent la partie réelle de l'impédance d'entrée de l'antenne et la partie imaginaire de l'impédance d'entrée de l'antenne respectivement pour une antenne classique (courbe V partie réelle, courbe VII partie imaginaire) et une antenne à un fil (courbe VI partie réelle, courbe VIII partie imaginaire).
    Ces simulations mettent en évidence l'effet des fils reliés aux brins rayonnants. Ces derniers permettent de restreindre l'amplitude des variations des parties imaginaires et réelles de l'impédance d'entrée de l'antenne, ce qui est l'une des propriétés des antennes à structure plus large bande.
    Cette baisse de dynamique des variations de l'impédance d'entrée permet par un rapport de transformation adéquat d'obtenir une antenne à TOS inférieur ou égal à 3 sur une très grande largeur de bande (variant par exemple de 60 à 300 MHz dans le cas présent) avec un fil par brin rayonnant contre un TOS maximal de 4 pour l'antenne classique.
    On peut constater que la structure d'antenne avec 2 fils par brin rayonnant offre un TOS inférieur ou égal à 3.2.
    L'influence des fils seuls est donnée à la courbe IV figure 11. Ceux-ci permettent d'avoir un TOS inférieur ou égal à 3.5 dû à une inclinaison plus prononcée par rapport à la verticale, mais l'effet combiné des fils reliés aux brins rayonnants qui forment des brins épais apparaít plus efficace.
    La solution proposée permet notamment de réaliser une antenne 6-30 MHz ou 60-300 MHz avec un TOS inférieur ou égal à 3 ayant un très bon rendement (un seul transformateur de rapport 1: 4 suffit).
    Ces exemples sont donnés à titre illustratif et nullement limitatifs.
    Les figures 14 et 15 représentent les relevés d'impédance d'entrée de l'antenne mesurée à l'analyseur de réseau et représentés sous forme respectivement de TOS et d'abaque de Smith.
    L'effet de baisse du TOS sur la bande apparaít avec la modification de l'antenne, TOS maximal de 9 pour l'antenne classique et de 6 pour l'antenne modifiée. De même, pour l'abaque de Smith, il apparaít que les boucles de résonance sont moins prononcées avec l'antenne modifiée, rendant ainsi l'adaptation plus aisée.

    Claims (9)

    1. Antenne filaire monopolaire ou dipolaire à polarisation verticale comportant un ou plusieurs brins rayonnants, lesdits brins rayonnants étant reliés à une embase, caractérisé en ce que au moins un desdits brins a une première extrémité reliée au moyen d'un fil conducteur à ladite embase ou relié à sa seconde extrémité.
    2. Antenne selon la revendication 1 caractérisée en ce que le ou les brins rayonnants (4) reliés sont les brins du pôle supérieur.
    3. Antenne selon l'une des revendications 1 et 2 caractérisée en ce qu'un brin rayonnant (4) est relié au moyen de deux fils (6, 6') à mi-chemin entre le pied de chaque brin métallique.
    4. Antenne selon l'une des revendications 1 à 3 caractérisée en ce que le fil reliant les deux extrémités (6) est un fil métallique.
    5. Antenne selon l'une des revendications 1 à 3 caractérisée en ce que le fil reliant les deux extrémités est un fil métallique enrobé de Teflon.
    6. Antenne selon l'une des revendications 1 à 5 caractérisée en ce que les liaisons entre le fil conducteur (6) et un brin rayonnant (4) se font à l'aide de fiches de type banane.
    7. Antenne monopolaire comportant au moins une des caractéristiques de l'antenne selon les revendications 1 à 6.
    8. Antenne dipolaire comportant au moins une des caractéristiques de l'antenne selon les revendications 1 à 6.
    9. Utilisation de l'antenne selon l'une des revendications 1 à 8 dans la gamme de fréquence correspondant aux bandes F-UHF ou VHF, de quelques MHz à quelques centaines de MHz.
    EP03100406A 2002-02-22 2003-02-20 Antenne monopolaire ou dipolaire à large bande Withdrawn EP1339134A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0202303A FR2836601A1 (fr) 2002-02-22 2002-02-22 Antenne monopolaire ou dipolaire a large bande
    FR0202303 2002-02-22

    Publications (1)

    Publication Number Publication Date
    EP1339134A1 true EP1339134A1 (fr) 2003-08-27

    Family

    ID=27636424

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03100406A Withdrawn EP1339134A1 (fr) 2002-02-22 2003-02-20 Antenne monopolaire ou dipolaire à large bande

    Country Status (3)

    Country Link
    US (1) US6822621B2 (fr)
    EP (1) EP1339134A1 (fr)
    FR (1) FR2836601A1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1776734A2 (fr) * 2004-07-21 2007-04-25 Motorola, Inc. Antenne a large bande a perte dielectrique reduite

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7850729B2 (en) * 2002-07-18 2010-12-14 The University Of Cincinnati Deforming jacket for a heart actuation device
    US7148856B2 (en) * 2005-04-22 2006-12-12 Harris Corporation Electronic device including tetrahedral antenna and associated methods
    US7339542B2 (en) 2005-12-12 2008-03-04 First Rf Corporation Ultra-broadband antenna system combining an asymmetrical dipole and a biconical dipole to form a monopole
    DE102014103669A1 (de) * 2014-03-18 2015-09-24 Thyssenkrupp Ag Vorrichtung zum Senden- und/oder Empfangen von elektromagnetischen Wellen
    US10347974B1 (en) 2018-01-26 2019-07-09 Eagle Technology, Llc Deployable biconical radio frequency (RF) satellite antenna and related methods
    US10404294B1 (en) 2018-09-19 2019-09-03 Harris Global Communications, Inc. Wireless communication device with efficient broadband matching network and related methods

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1792662A (en) * 1925-03-31 1931-02-17 Western Electric Co Antenna system
    US3345635A (en) * 1965-10-11 1967-10-03 Collins Radio Co Folded vertical monopole antenna
    US3618105A (en) * 1970-03-06 1971-11-02 Collins Radio Co Orthogonal dipole antennas
    FR2501422A1 (fr) * 1981-03-06 1982-09-10 Dapa Systemes Antenne monocone
    GB2150359A (en) * 1983-11-25 1985-06-26 Thomson Csf A wide band antenna
    US5969687A (en) * 1996-03-04 1999-10-19 Podger; James Stanley Double-delta turnstile antenna

    Family Cites Families (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4187801A (en) * 1977-12-12 1980-02-12 Commonwealth Scientific Corporation Method and apparatus for transporting workpieces
    US4446357A (en) * 1981-10-30 1984-05-01 Kennecott Corporation Resistance-heated boat for metal vaporization
    DE3330092A1 (de) * 1983-08-20 1985-03-07 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum einstellen der oertlichen verdampfungsleistung an verdampfern in vakuumaufdampfprozessen
    US4885211A (en) * 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
    US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
    US4835542A (en) * 1988-01-06 1989-05-30 Chu Associates, Inc. Ultra-broadband linearly polarized biconical antenna
    US5258325A (en) * 1990-12-31 1993-11-02 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
    US5173713A (en) * 1991-01-14 1992-12-22 Laboratorie D'etudes Et De Researches Chimiques (Lerc) S.A. Three element inverted conical monopole with series inductance and resistance in each element
    US5429884A (en) * 1992-01-17 1995-07-04 Pioneer Electronic Corporation Organic electroluminescent element
    US5644321A (en) * 1993-01-12 1997-07-01 Benham; Glynda O. Multi-element antenna with tapered resistive loading in each element
    KR100291971B1 (ko) * 1993-10-26 2001-10-24 야마자끼 순페이 기판처리장치및방법과박막반도체디바이스제조방법
    US5673055A (en) * 1994-04-21 1997-09-30 The United States Of America As Represented By The Secretary Of The Navy Rosette-shaped monopole antenna top-load for increased antenna voltage and power capability
    US5817366A (en) * 1996-07-29 1998-10-06 Tdk Corporation Method for manufacturing organic electroluminescent element and apparatus therefor
    US5990845A (en) * 1997-07-02 1999-11-23 Tci International Broadband fan cone direction finding antenna and array
    JPH1161386A (ja) * 1997-08-22 1999-03-05 Fuji Electric Co Ltd 有機薄膜発光素子の成膜装置
    US6284052B2 (en) * 1998-08-19 2001-09-04 Sharp Laboratories Of America, Inc. In-situ method of cleaning a metal-organic chemical vapor deposition chamber
    JP3782245B2 (ja) * 1998-10-28 2006-06-07 Tdk株式会社 有機el表示装置の製造装置及び製造方法
    US6237529B1 (en) * 2000-03-03 2001-05-29 Eastman Kodak Company Source for thermal physical vapor deposition of organic electroluminescent layers
    US20020011205A1 (en) * 2000-05-02 2002-01-31 Shunpei Yamazaki Film-forming apparatus, method of cleaning the same, and method of manufacturing a light-emitting device
    US6486846B1 (en) * 2000-05-23 2002-11-26 Robert T. Hart E H antenna
    US6486849B2 (en) * 2001-02-14 2002-11-26 Raytheon Company Small L-band antenna

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1792662A (en) * 1925-03-31 1931-02-17 Western Electric Co Antenna system
    US3345635A (en) * 1965-10-11 1967-10-03 Collins Radio Co Folded vertical monopole antenna
    US3618105A (en) * 1970-03-06 1971-11-02 Collins Radio Co Orthogonal dipole antennas
    FR2501422A1 (fr) * 1981-03-06 1982-09-10 Dapa Systemes Antenne monocone
    GB2150359A (en) * 1983-11-25 1985-06-26 Thomson Csf A wide band antenna
    US5969687A (en) * 1996-03-04 1999-10-19 Podger; James Stanley Double-delta turnstile antenna

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1776734A2 (fr) * 2004-07-21 2007-04-25 Motorola, Inc. Antenne a large bande a perte dielectrique reduite
    EP1776734A4 (fr) * 2004-07-21 2008-02-13 Motorola Inc Antenne a large bande a perte dielectrique reduite

    Also Published As

    Publication number Publication date
    FR2836601A1 (fr) 2003-08-29
    US6822621B2 (en) 2004-11-23
    US20030214455A1 (en) 2003-11-20

    Similar Documents

    Publication Publication Date Title
    EP2625741B1 (fr) Antenne de grande dimension à ondes de surface et à large bande
    EP3298651B1 (fr) Système antennaire à ondes de surface
    FR2597266A1 (fr) Antenne a large bande
    EP1339134A1 (fr) Antenne monopolaire ou dipolaire à large bande
    EP1883991A1 (fr) Antenne monopole
    EP1540768B1 (fr) Antenne helicoidale a large bande
    FR2814285A1 (fr) Antenne helicoidale a pas variable, et procede correspondant
    WO2011107597A1 (fr) Structure antennaire à dipôles
    FR2665025A1 (fr) Element de transition entre guides d&#39;ondes electromagnetiques, notamment entre un guide d&#39;ondes circulaire et un guide d&#39;ondes coaxial.
    WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
    CA2392696C (fr) Antenne ciseaux a large bande
    EP3516736B1 (fr) Antenne à tiges ferromagnétiques bobinées et couplées entre elles
    CA2602920A1 (fr) Antenne a large bande d&#39;adaptation
    EP0116487B1 (fr) Antenne à plan de sol
    WO2023117192A1 (fr) Dispositif antennaire à deux réseaux de dipôles et systeme de communication associe
    FR2947391A1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
    FR2555822A1 (fr) Antenne a large bande pour, en particulier, telecommunications en ondes decametriques
    FR2494047A1 (fr) Antenne a reseau plan a polarisation variable et a faibles lobes secondaires
    BE479721A (fr)
    FR3043261A1 (fr) Antenne biconique omnidirectionnelle tres large bande, ensemble antenne cable coaxial la comprenant et ensemble d&#39;emission associe
    BE469230A (fr)
    BE476132A (fr)
    EP2736118A1 (fr) Système antennaire à boucles imbriquées et véhicule comprenant un tel système antennaire.
    FR2736470A1 (fr) Procede pour la conception d&#39;une antenne hyperfrequence protegee a surface rayonnante horizontale et antennes realisees selon ce procede
    BE465292A (fr)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO

    17P Request for examination filed

    Effective date: 20040213

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    17Q First examination report despatched

    Effective date: 20100518

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20101129