WO2012044045A1 - 무선 통신 시스템에서 수신 확인 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 수신 확인 전송 방법 및 장치 Download PDF

Info

Publication number
WO2012044045A1
WO2012044045A1 PCT/KR2011/007115 KR2011007115W WO2012044045A1 WO 2012044045 A1 WO2012044045 A1 WO 2012044045A1 KR 2011007115 W KR2011007115 W KR 2011007115W WO 2012044045 A1 WO2012044045 A1 WO 2012044045A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
nack
bits
terminal
nack bits
Prior art date
Application number
PCT/KR2011/007115
Other languages
English (en)
French (fr)
Inventor
서동연
김민규
양석철
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2013531484A priority Critical patent/JP5639717B2/ja
Priority to US13/824,514 priority patent/US8923273B2/en
Priority to KR1020137006256A priority patent/KR101486679B1/ko
Priority to EP11829551.8A priority patent/EP2624497B1/en
Priority to CN201180046373.7A priority patent/CN103119886B/zh
Priority to EP20180055.4A priority patent/EP3731445B1/en
Publication of WO2012044045A1 publication Critical patent/WO2012044045A1/ko
Priority to US14/552,829 priority patent/US9385851B2/en
Priority to US15/181,331 priority patent/US9680622B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1692Physical properties of the supervisory signal, e.g. acknowledgement by energy bursts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for transmitting a reception acknowledgment for a hybrid automatic repeat request (HARQ) in a wireless communication system.
  • HARQ hybrid automatic repeat request
  • LTE Long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PUCCH is an uplink control channel used for transmission of uplink control information such as a hybrid automatic repeat request (HARQ) ACK / NACK signal, a channel quality indicator (CQI), and a scheduling request (SR).
  • uplink control information such as a hybrid automatic repeat request (HARQ) ACK / NACK signal, a channel quality indicator (CQI), and a scheduling request (SR).
  • HARQ hybrid automatic repeat request
  • CQI channel quality indicator
  • SR scheduling request
  • 3GPP LTE-A (advanced) is an evolution of 3GPP LTE.
  • the technologies introduced in 3GPP LTE-A include carrier aggregation and multiple input multiple output (MIMO) supporting four or more antenna ports.
  • MIMO multiple input multiple output
  • Carrier aggregation uses a plurality of component carriers.
  • Component carriers are defined by center frequency and bandwidth.
  • One downlink component carrier or a pair of an uplink component carrier and a downlink component carrier corresponds to one cell.
  • a terminal receiving a service using a plurality of downlink component carriers may be said to receive a service from a plurality of serving cells.
  • a terminal does not always receive a service from a plurality of serving cells.
  • the serving cell may be added or deleted. As the number of serving cells changes, a mismatch may occur in setting of a serving cell between a terminal and a base station.
  • HARQ error One of the problems caused by a mismatch in the setting of the serving cell is a HARQ error.
  • the terminal transmits HARQ ACK / NACK for one serving cell, but the base station expects HARQ ACK / NACK for a plurality of serving cells.
  • HARQ errors can lead to data loss or service delays.
  • An object of the present invention is to provide an acknowledgment transmission method and apparatus for reducing HARQ error in a time division duplex (TDD) based wireless communication system.
  • TDD time division duplex
  • a method of transmitting acknowledgment in a wireless communication system may include determining, by the terminal, at least one downlink subframe to feed back an ACK / NACK in each of a plurality of serving cells and the number of ACK / NACK bits for the plurality of serving cells, wherein the terminal serves the plurality of servings Generating the combined ACK / NACK bits by arranging the ACK / NACK bits in ascending order of a cell index of a cell, and generating, by the terminal, encoding the combined ACK / NACK bits to generate encoded ACK / NACK bits Generating an ACK / NACK symbol by modulating the encoded ACK / NACK bit by the terminal, and transmitting, by the terminal, the ACK / NACK symbol to a base station.
  • Generating the combined ACK / NACK bits comprises: aligning the ACK / NACK bits of the first serving cell with the lowest cell index to generate the combined ACK / NACK bits, and following the lowest cell index. And adding the ACK / NCK bit of the second serving cell with the index to the combined ACK / NACK bit.
  • the method may further include determining whether the number of the ACK / NACK bits is greater than a specific value.
  • spatial bundling for performing a binary AND operation of ACK / NACK bits corresponding to at least two codewords in each subframe is applied to all subframes in all serving cells. can do.
  • a terminal for transmitting an acknowledgment in a wireless communication system includes an RF unit for transmitting a radio signal, and a processor connected to the RF unit, wherein the processor includes at least one downlink subframe to feed back an ACK / NACK in each of a plurality of serving cells and the plurality of servings.
  • Determine the number of ACK / NACK bits for the cell align the ACK / NACK bits in ascending order of cell indices of the plurality of serving cells, and generate a combined ACK / NACK bit, and combine the ACK / NACK bits.
  • Encodes to generate encoded ACK / NACK bits modulates the encoded ACK / NACK bits to generate ACK / NACK symbols, and transmits the ACK / NACK symbols to a base station.
  • a method of transmitting an acknowledgment in a time division duplex (TDD) system having a plurality of serving cells is proposed. Even if there is a mismatch in cell configuration between the base station and the terminal, HARQ error can be reduced.
  • TDD time division duplex
  • 1 shows a structure of a downlink radio frame in 3GPP LTE.
  • FIG. 2 shows a structure of an uplink subframe in 3GPP LTE.
  • FIG. 5 is an exemplary diagram illustrating a structure of a PUCCH format 3 in a normal CP.
  • FIG. 6 is a flowchart illustrating a method of performing HARQ using PUCCH format 3.
  • FIG. 9 shows a configuration of ACK / NACK information according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method of transmitting a receipt acknowledgment according to an embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • 3GPP LTE shows a structure of a downlink radio frame in 3GPP LTE. This can be referred to in section 4 of 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)", for TDD (Time Division Duplex) will be..
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • R-UTRA Physical Channels and Modulation
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • a subframe having indexes # 1 and # 6 is called a special subframe and includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • DL subframe In TDD, a downlink (DL) subframe and an uplink (UL) subframe coexist in one radio frame.
  • Table 1 shows an example of configuration of a radio frame.
  • 'D' represents a DL subframe
  • 'U' represents a UL subframe
  • 'S' represents a special subframe.
  • the terminal may know which subframe is the DL subframe or the UL subframe according to the configuration of the radio frame.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • PDCCH and other control channels are allocated to the control region, and PDSCH is allocated to the data region.
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (ACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • ACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for UL (uplink) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidatetae PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a radio network temporary identifier (RNTI)). Mask to the CRC.
  • CRC cyclic redundancy check
  • RNTI radio network temporary identifier
  • FIG. 2 shows a structure of an uplink subframe in 3GPP LTE.
  • the uplink subframe may be divided into a control region in which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a data region in which a physical uplink shared channel (PUSCH) carrying user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH is allocated to an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
  • m is a position index indicating a logical frequency domain position of an RB pair allocated to a PUCCH in a subframe. It is shown that an RB having the same m value occupies different subcarriers in two slots.
  • PUCCH supports multiple formats.
  • a PUCCH having a different number of bits per subframe may be used according to a modulation scheme dependent on the PUCCH format.
  • PUCCH format 1 is used for transmission of SR (Scheduling Request)
  • PUCCH format 1a / 1b is used for transmission of ACK / NACK signal for HARQ
  • PUCCH format 2 is used for transmission of CQI
  • PUCCH format 2a / 2b is used for CQI and Used for simultaneous transmission of ACK / NACK signals.
  • PUCCH format 1a / 1b is used when transmitting only the ACK / NACK signal in the subframe
  • PUCCH format 1 is used when the SR is transmitted alone.
  • PUCCH format 1 is used, and an ACK / NACK signal is modulated and transmitted on a resource allocated to the SR.
  • All PUCCH formats use a cyclic shift (CS) of the sequence in each OFDM symbol.
  • the cyclically shifted sequence is generated by cyclically shifting a base sequence by a specific cyclic shift amount.
  • the specific CS amount is indicated by the cyclic shift index (CS index).
  • n is the element index
  • N is the length of the base sequence.
  • b (n) is defined in section 5.5 of 3GPP TS 36.211 V8.7.0.
  • the length of the sequence is equal to the number of elements included in the sequence. u may be determined by a cell identifier (ID), a slot number in a radio frame, or the like.
  • ID cell identifier
  • the length N of the base sequence is 12 since one resource block includes 12 subcarriers. Different base sequences define different base sequences.
  • the cyclically shifted sequence r (n, I cs ) may be generated by cyclically shifting the basic sequence r (n) as shown in Equation 2 below.
  • I cs is a cyclic shift index indicating the CS amount (0 ⁇ I cs ⁇ N-1).
  • the available cyclic shift index of the base sequence refers to a cyclic shift index derived from the base sequence according to the CS interval. For example, if the length of the base sequence is 12 and the CS interval is 1, the total number of available cyclic shift indices of the base sequence is 12. Alternatively, if the length of the base sequence is 12 and the CS interval is 2, the total number of available cyclic shift indices of the base sequence is six.
  • the PUCCH is configured by using an orthogonal sequence index and a resource block index in addition to the cyclic shift index. That is, the orthogonal sequence index, the cyclic shift index, and the resource block index are parameters necessary for configuring the PUCCH and resources used to distinguish the PUCCH (or terminal).
  • the time, frequency, and code resources used for transmitting the ACK / NACK signal are called ACK / NACK resources or PUCCH resources.
  • An ACK / NACK resource index (called an ACK / NACK resource index or a PUCCH index) necessary for transmitting an ACK / NACK signal on a PUCCH is used to obtain an orthogonal sequence index, a cyclic shift index, a resource block index, and the three indexes. It may be represented by at least one of the indexes.
  • the ACK / NACK resource may include at least one of an orthogonal sequence, a cyclic shift, a resource block, and a combination thereof.
  • resource index n (1) PUUCH is defined in order for the UE to obtain the three parameters for configuring the PUCCH.
  • Resource index n (1) PUUCH n CCE + N (1) PUUCH , where n CCE is defined as the corresponding DCI (i.e., DL resource allocation used for reception of DL transport blocks corresponding to ACK / NACK signals). It is the number of the first CCE used for transmission, N (1) PUUCH is a parameter that the base station informs the terminal in a higher layer message.
  • the 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
  • the 3GPP LTE system supports up to 20MHz and may have different uplink and downlink bandwidths, but only one CC is supported for each of the uplink and the downlink.
  • Spectrum aggregation supports a plurality of CCs. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • CC or CC-pair may correspond to one cell.
  • a sync signal and a PBCH are transmitted in each CC, one DL CC may correspond to one cell. Accordingly, it can be said that a terminal communicating with a base station through a plurality of CCs receives a service from a plurality of serving cells.
  • 3 shows an example of a multi-carrier.
  • the number of DL CCs and UL CCs is not limited.
  • PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC. Since three DL CC-UL CC pairs are defined, the UE may be provided with services from three serving cells.
  • the UE may monitor the PDCCH in the plurality of DL CCs and receive DL transport blocks simultaneously through the plurality of DL CCs.
  • the terminal may transmit a plurality of UL transport blocks simultaneously through the plurality of UL CCs.
  • Each serving cell may be identified through a cell index (CI).
  • the CI may be unique within the cell or may be terminal-specific.
  • CI 0, 1, 2 is assigned to the first to third serving cells is shown.
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency and performs an initial connection establishment process, which is a terminal, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, can be established after the RRC connection is established, and can be used to provide additional radio resources. At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, RRC message).
  • the CI of the primary cell can be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • a DL subframe and an UL subframe coexist in one radio frame.
  • the number of UL subframes is less than the number of DL subframes. Therefore, in case of lack of a UL subframe for transmitting the ACK / NACK signal, it supports to transmit a plurality of ACK / NACK signal for a plurality of DL transport block in one UL subframe.
  • bundling is to transmit an ACK when all of the decoding of the PDSCH (ie, downlink transport blocks) received by the UE is successful, and otherwise, transmit an NACK. This is called an AND operation.
  • bundling is not limited to an AND operation and may include various operations of compressing ACK / NACK bits corresponding to a plurality of transport blocks (or codewords).
  • bundling may indicate the value of counting the number of ACKs (or NACKs) or the number of consecutive ACKs.
  • channel selection is also referred to as ACK / NACK multiplexing.
  • the terminal selects one PUCCH resource among a plurality of PUCCH resources and transmits ACK / NACK.
  • the table below shows DL subframe n-k associated with UL subframe n according to UL-DL configuration in 3GPP LTE, where k ⁇ K and M are the number of elements of set K.
  • the UE Since three PDCCHs can be received from three UL subframes, the UE acquires three PUCCH resources (n (1) PUCCH, 0 , n (1) PUCCH, 1 , n (1) PUCCH, 2 ). Can be. Examples of channel selection are shown in the following table.
  • HARQ-ACK (i) indicates ACK / NACK for an i-th downlink subframe among M downlink subframes.
  • DTX Continuous Transmission
  • a DL transport block is not received on a PDSCH in a corresponding DL subframe.
  • three PUCCH resources n (1) PUCCH, 0 , n (1) ) PUCCH, 1 , n (1) PUCCH, 2 ), and b (0) and b (1) are two bits transmitted using the selected PUCCH.
  • the NACK and the DTX are coupled. This is because a combination of reserved PUCCH resources and QPSK symbols cannot indicate all ACK / NACK states. However, in the absence of an ACK, the DTX decouples from the NACK.
  • the existing PUCCH format 1b may transmit only 2-bit ACK / NACK. However, channel selection links the allocated PUCCH resources with the actual ACK / NACK signal, indicating more ACK / NACK states.
  • an error of the ACK / NACK signal may occur due to the missing of the DL subframe.
  • M 3 and the base station transmits three DL transport blocks on three DL subframes.
  • the UE may not receive the second transport block at all because the PDCCH is lost in the second DL subframe, and may receive only the remaining first and third transport blocks.
  • bundling is used, an error occurs in which the UE transmits an ACK.
  • a Downlink Assignment Index (DAI) is included in the DL grant on the PDCCH.
  • the DAI includes sequential counter values for the connected M DL subframes.
  • the base station may know the loss of the third DL subframe.
  • the PUCCH format 3 is discussed in addition to the PUCCH format of the existing 3GPP LTE in preparation for the shortage of ACK / NACK bits.
  • FIG. 5 is an exemplary diagram illustrating a structure of a PUCCH format 3 in a normal CP.
  • One slot includes 7 OFDM symbols, and l is an OFDM symbol number in the slot and has a value of 0-6.
  • the symbol sequence d may be referred to as a set of modulation symbols.
  • the number of bits or the modulation scheme of the ACK / NACK signal is only an example and not a limitation.
  • One PUCCH uses 1 RB and one subframe includes a first slot and a second slot.
  • 5 shows that a first sequence d1 is transmitted in a first slot.
  • the symbol sequence is spread to the orthogonal sequence w i .
  • the symbol sequence corresponds to each data OFDM symbol, and the orthogonal sequence is used to distinguish the PUCCH (or terminal) by spreading the symbol sequence over the data OFDM symbols.
  • the orthogonal sequence may be selected from one of five orthogonal sequences of the following table according to the orthogonal sequence index i.
  • Two slots in a subframe may use different orthogonal sequence indices.
  • Each spread symbol sequence is cyclically shifted by a cell-specific cyclic shift value n cell cs (n s , l).
  • Each cyclically shifted symbol sequence is mapped to a corresponding data OFDM symbol and transmitted.
  • n cell cs (n s , l) is a cell-specific parameter determined by a pseudo-random sequence initialized based on a physical cell identity (PCI).
  • PCI physical cell identity
  • n cell cs (n s , l) depends on slot number n s in the radio frame and OFDM symbol number l in the slot.
  • a reference signal sequence used for demodulation of an ACK / NACK signal is mapped and transmitted to two RS OFDM symbols.
  • up to five terminals can be distinguished by changing an orthogonal sequence index. This means that up to five PUCCH formats 3 can be multiplexed on the same RB.
  • FIG. 6 is a flowchart illustrating a method of performing HARQ using PUCCH format 3.
  • the base station sends a resource configuration to the terminal (S610).
  • the resource setting may be transmitted through a Radio Resource Control (RRC) message for setting / modifying / resetting a radio bearer.
  • RRC Radio Resource Control
  • the resource setting includes information about a plurality of resource index candidates.
  • the plurality of resource index candidates may be a set of resource indices that may be set in the terminal.
  • the resource configuration may include information about four resource index candidates.
  • the base station transmits a DL grant to the terminal on the PDCCH (S620).
  • the DL grant includes DL resource allocation and resource index fields.
  • DL resource allocation includes resource allocation information indicating a PDSCH.
  • the resource index field indicates a resource index n PUCCH used for PUCCH setting among the plurality of resource index candidates. If there are four resource index candidates, the resource index field may have 2 bits.
  • the terminal receives the DL transport block on the PDSCH based on the DL resource allocation (S630).
  • the terminal generates a HARQ ACK / NACK signal for the DL transport block.
  • the terminal sets the PUCCH based on the resource index (S640).
  • the PUCCH resource includes an orthogonal sequence index used for spreading the ACK / NACK signal and a cyclic shift index for the reference signal.
  • the orthogonal sequence index used for spreading the ACK / NACK signal can be obtained as follows.
  • i 1 is an orthogonal sequence index used for the first slot
  • i 2 is an orthogonal sequence index used for the second slot
  • N SF is a spreading factor of the orthogonal sequence
  • n PUCCH is a resource index.
  • N SF is 5 since there are five data OFDM symbols in one slot.
  • the cyclic shift index Ics for the reference signal is selected from the cyclic shift index set ⁇ 0, 3, 6, 8, 10 ⁇ . More specifically, the orthogonal sequence index and the cyclic shift index Ics may be defined as shown in the following table.
  • the orthogonal sequence index and the cyclic shift index may correspond to 1: 1.
  • the second cyclic shift index Ics (5) ⁇ n cell cs (n s , l) + Ics ⁇ mod N may be determined for the symbol.
  • the UE determines a PUCCH resource based on the resource index n PUCCH , and sets a PUCCH having a structure as shown in FIG. 5 based on this.
  • the terminal transmits an ACK / NACK signal on the PUCCH (S650).
  • the PUCCH format 1 / 1a / 1b is implicitly allocated PUCCH resources from the resources of the PDCCH for the DL grant.
  • PUCCH format 3 is allocated PUCCH resources using a field that explicitly indicates PUCCH resources (called ACK / NACK resource indicator (ARI)).
  • the present invention proposes a scheme for transmitting ARI in LTE-A TDD system as follows.
  • the present invention proposes a method of transmitting ARI by borrowing 2-bit DAI in DL grant according to ACK / NACK transmission scheme in TDD.
  • Spatial bundling means ACK / NACK bundling for codewords for each DL CC for each DL subframe for each cell. For example, if two codewords are transmitted in each DL subframe, it is to perform a binary AND operation on the ACK / NACK bits for the two codewords to obtain a bundled ACK / NACK.
  • CC bundling means ACK / NACK bundling for all or some serving cells for each DL subframe.
  • Subframe bundling means ACK / NACK bundling for all or some DL subframes for each serving cell.
  • an ARI may be transmitted by using a DAI field of a PDCCH for scheduling a serving cell that does not participate in other ACK / NACK bundling.
  • a DAI field and / or a transmit power control (TPC) field of the PDCCH for scheduling a serving cell that does not participate in a specific ACK / NACK bundling may be used for ARI transmission.
  • TPC transmit power control
  • the DAI field of the PDCCH may be used as an ARI.
  • the UE may transmit 16-bit ACK / NACK signals to 48-bit encoded ACK / NACK signals without performing any ACK / NACK bundling and transmit them using PUCCH format 3.
  • the DAI in the DL grant is unnecessary, the DAI field can be borrowed as an ARI.
  • the terminal may perform transmission using PUCCH format 3 by converting an 8-bit ACK / NACK signal into a 48-bit encoded ACK / NACK signal without performing any ACK / NACK bundling.
  • the DAI in the DL grant is unnecessary, the DAI field can be borrowed as an ARI.
  • a 12 bit ACK / NACK signal is generated.
  • the UE converts the 12-bit ACK / NACK signal into a 48-bit encoded ACK / NACK signal and transmits it using PUCCH format 3.
  • the DAI field of the PDCCH scheduling the primary cell can be borrowed as an ARI, and the DAI of the PDCCH scheduling the secondary cell can be maintained.
  • the TPC of the PDCCH for scheduling the secondary cell may be borrowed as an ARI.
  • the DAI field of the PDCCH scheduling the primary cell can be borrowed as an ARI, and the DAI of the PDCCH scheduling the secondary cell can be maintained.
  • the TPC of the PDCCH for scheduling the secondary cell may be borrowed as an ARI.
  • Addition / change / release of the serving cell is performed through an RRC message.
  • a mismatch of the serving cell may occur at the time when the base station sends an RRC message to the terminal and when the HARQ is performed. This is because the RRC message is transmitted to the UE and the time taken for the UE to actually apply it is unclear. For example, after the base station instructs the addition of the secondary cell through the RRC message, and performs scheduling for the secondary cell, the terminal may still not recognize the added secondary cell.
  • FIG. 9 shows a configuration of ACK / NACK information according to an embodiment of the present invention.
  • 9A illustrates an example of configuring ACK / NACK information according to cell priority. Assume that the primary cell (or the cell with the lowest cell index) has the highest priority. An example of arranging ACK / NACK bits of a primary cell first and then ACK / NACK bits of a secondary cell is shown. Assume that the primary cell has the highest priority. An example of arranging ACK / NACK bits of a primary cell first and then ACK / NACK bits of a secondary cell is shown.
  • 9B illustrates an example of configuring ACK / NACK information according to cell priority when a plurality of DL subframes are connected. Although there are three subframes per cell, the number of subframes is not limited.
  • ACK / NACK bits may or may not be bundled.
  • FIG. 9C illustrates an example of configuring ACK / NACK information in an ascending order of CIs.
  • An example of arranging ACK / NACK bits of a cell having a lowest CI first and then ACK / NACK bits of a cell having a next CI is illustrated.
  • the ACK / NACK bits are arranged in a specified order for each cell, even if a mismatch of cell configuration occurs, the ACK / NACK bit positions of a high priority cell or a primary cell do not change, and thus, wrong HARQ may be prevented from being performed. .
  • ACK / NACK is a reception acknowledgment for the DL codeword, and a positive acknowledgment may be encoded as '1' and a negative acknowledgment as '0'. There is no limit to this.
  • the UE determines the number A of ACK / NACK bits for the plurality of serving cells and the plurality of DL subframes (S810). Assume that the number of serving cells is N cell , the number of DL subframes in serving cell c is B c , and the number of codewords in serving cell c is c c .
  • the ACK / NACK bits for the plurality of serving cells and the plurality of DL subframes may be represented by bit sequences ⁇ a 0 , a 1 , ..., a A-1 ⁇ .
  • 1-bit ACK / NACK a k is used for the corresponding cell c.
  • two bits of ACK / NACK a k and a k + 1 are used for the corresponding cell c.
  • a k is 1 bit ACK / NACK for the first codeword and a k + 1 is 1 bit ACK / NACK for the second codeword.
  • the terminal determines whether the number A of the ACK / NACK bits is greater than a specific value th (S820). This step is to determine whether to perform spatial bundling to match the number of bits of the ACK / NACK bits according to the capacity of the uplink channel. For example, the specific value th may be 20. If it is not necessary to determine whether to perform spatial bundling, this step may be omitted.
  • Spatial bundling is to perform a binary AND operation of ACK / NACK bits corresponding to at least two codewords of each subframe for all subframes of all serving cells. If there are 2 bits ACK / NACK a k and a k + 1 for 2 codewords in a specific subframe, a binary AND operation is performed to replace 1 bit ACK / NACK a k ' .
  • the terminal generates a combined ACK / NACK bit by arranging (bundled) ACK / NACK bits in a plurality of serving cells in ascending order of cell index (S840).
  • the CI starts at zero. That is, the lowest CI is 0, and the cell with the lowest CI may be a primary cell.
  • the combined ACK / NACK bits are ⁇ a 0 0,0 , a 1 0,1 , a 2 0,2 , a 3 1,0 , a 4 1,1 , a 5 1,2 , a 6 2,0 , a 7 2,1 , a 8 2,2 , a 9 3,0 , a 10 3,1 , a 11 3,2 ⁇ .
  • the terminal generates the encoded ACK / NACK bits by encoding the combined ACK / NACK bits (S850).
  • the encoding of the ACK / NACK bits is to adjust the number of bits to match the capacity of the uplink channel. For example, since the capacity of the PUCCH format 3 is 48 bits, the aforementioned 12-bit combined ACK / NACK bits may be encoded to generate 48 bits of encoded ACK / NACK bits.
  • the encoding method may use various methods such as repetition, concatenation, block coding, and the like, and the encoding method is not limited.
  • the terminal modulates the encoded ACK / NACK bit to generate an ACK / NACK symbol (S860).
  • the terminal transmits an ACK / NACK symbol to the base station on the uplink channel (S870).
  • PUCCH format 3 shown in FIG. 5 may be used as an uplink channel.
  • the uplink channel may be a PUSCH. If the uplink channel is a PUSCH, the encoded ACK / NACK bits may be multiplexed with the UL transport block and transmitted.
  • FIG. 11 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a memory 51, a processor 52, and an RF unit 53.
  • the memory 51 is connected to the processor 52 and stores various information for driving the processor 52.
  • the RF unit 53 is connected to the processor 52 and transmits and / or receives a radio signal.
  • the processor 52 implements the proposed functions, processes and / or methods. In the above-described embodiments, the operation of the base station 50 may be implemented by the processor 52.
  • the processor 52 may manage multiple cells and perform HARQ.
  • the terminal 60 includes a memory 61, a processor 62, and an RF unit 63.
  • the memory 61 is connected to the processor 62 and stores various information for driving the processor 62.
  • the RF unit 63 is connected to the processor 62 to transmit and / or receive a radio signal.
  • the processor 62 implements the proposed functions, processes and / or methods. In the above-described embodiments, the operation of the terminal 60 transmitting the acknowledgment may be implemented by the processor 62.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 수신 확인 전송 방법 및 장치가 제공된다. 단말이 복수의 서빙 셀 각각에서 ACK/NACK을 피드백할 적어도 하나의 하향링크 서브프레임 및 상기 복수의 서빙 셀에 대한 ACK/NACK 비트의 개수를 결정한다. 단말이 상기 복수의 서빙 셀의 셀 인덱스의 오름 차순으로 상기 ACK/NACK 비트를 정렬하여 결합된 ACK/NACK 비트를 생성한고, 결합된 ACK/NACK 비트를 전송한다.

Description

무선 통신 시스템에서 수신 확인 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 HARQ(hybrid automatic repeat request)를 위한 수신 확인(reception acknowledgement)을 전송하는 방법 및 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 LTE(long term evolution)는 유력한 차세대 이동통신 표준이다.
3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
PUCCH는 HARQ(hybrid automatic repeat request) ACK/NACK 신호, CQI(Channel Quality Indicator), SR(scheduling request)와 같은 상향링크 제어 정보의 전송에 사용되는 상향링크 제어 채널이다.
한편, 3GPP LTE의 진화인 3GPP LTE-A(advanced)가 진행되고 있다. 3GPP LTE-A에 도입되는 기술로는 반송파 집성(carrier aggregation)과 4개 이상의 안테나 포트를 지원하는 MIMO(multiple input multiple output)가 있다.
반송파 집성은 다수의 요소 반송파(component carrier)를 사용한다. 요소 반송파는 중심 주파수와 대역폭으로 정의된다. 하나의 하향링크 요소 반송파 또는 상향링크 요소 반송파와 하향링크 요소 반송파의 쌍(pair)이 하나의 셀에 대응된다. 복수의 하향링크 요소 반송파를 이용하여 서비스를 제공받는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
다중 반송파 시스템에 단말이 항상 복수의 서빙 셀로부터 서비스를 제공받는 것은 아니다. 서비스 상황에 따라, 서빙 셀이 추가될 수도 있고 삭제될 수도 있다. 이렇게 서빙 셀의 개수가 변화함에 따라 단말과 기지국간 서빙 셀의 설정에 미스매치가 발생할 수 있다.
서빙 셀의 설정에 미스 매치로 인해 발생되는 문제점들 하나가 HARQ 오류이다. 예를 들어, 단말은 하나의 서빙 셀에 대한 HARQ ACK/NACK을 보내지만, 기지국은 복수의 서빙 셀에 대한 HARQ ACK/NACK을 기대하는 것이다. HARQ 오류는 데이터 손실이나 서비스 지연을 초래할 수 있다.
따라서, 복수의 서빙 셀을 사용하는 다중 반송파 시스템에서 HARQ 오류를 줄이는 기법이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 TDD(Time Division Duplex) 기반의 무선 통신 시스템에서 HARQ 오류를 줄이는 수신 확인 전송 방법 및 장치를 제공하는 데 있다.
일 양태에 있어서, 무선 통신 시스템에서 수신 확인 전송 방법이 제공된다. 상기 방법은 단말이 복수의 서빙 셀 각각에서 ACK/NACK을 피드백할 적어도 하나의 하향링크 서브프레임 및 상기 복수의 서빙 셀에 대한 ACK/NACK 비트의 개수를 결정하는 단계, 상기 단말이 상기 복수의 서빙 셀의 셀 인덱스의 오름 차순으로 상기 ACK/NACK 비트를 정렬하여 결합된 ACK/NACK 비트를 생성하는 단계, 상기 단말이 상기 결합된 ACK/NACK 비트를 인코딩하여 인코딩된 ACK/NACK 비트를 생성하는 단계, 상기 단말이 상기 인코딩된 ACK/NACK 비트를 변조하여 ACK/NACK 심벌을 생성하는 단계, 및 상기 단말이 상기 ACK/NACK 심벌을 기지국으로 전송하는 단계를 포함한다.
상기 결합된 ACK/NACK 비트를 생성하는 단계는 가장 낮은 셀 인덱스를 갖는 제1 서빙 셀의 ACK/NACK 비트를 정렬하여 상기 결합된 ACK/NACK 비트를 생성하는 단계, 및 상기 가장 낮은 셀 인덱스의 다음 인덱스를 갖는 제2 서빙 셀의 ACK/NCK 비트를 상기 결합된 ACK/NACK 비트에 추가하는 단계를 포함할 수 있다.
상기 방법은 상기 ACK/NACK 비트의 개수가 특정 값 보다 큰 지 여부를 결정하는 단계를 더 포함할 수 있다.
상기 ACK/NACK 비트의 개수가 상기 특정 값 보다 크면, 각 서브프레임에서 적어도 2개의 코드워드에 대응하는 ACK/NACK 비트의 이진 AND 동작을 수행하는 공간 번들링을 모든 서빙 셀에서 모든 서브프레임에 대해 적용할 수 있다.
다른 양태에서, 무선 통신 시스템에서 수신 확인을 전송하는 단말이 제공된다. 상기 단말은 무선 신호를 전송하는 RF부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 복수의 서빙 셀 각각에서 ACK/NACK을 피드백할 적어도 하나의 하향링크 서브프레임 및 상기 복수의 서빙 셀에 대한 ACK/NACK 비트의 개수를 결정하고, 상기 복수의 서빙 셀의 셀 인덱스의 오름 차순으로 상기 ACK/NACK 비트를 정렬하여 결합된 ACK/NACK 비트를 생성하고, 상기 결합된 ACK/NACK 비트를 인코딩하여 인코딩된 ACK/NACK 비트를 생성하고, 상기 인코딩된 ACK/NACK 비트를 변조하여 ACK/NACK 심벌을 생성하고, 및 상기 ACK/NACK 심벌을 기지국으로 전송한다.
복수의 서빙 셀이 있는 TDD(Time Division Duplex) 시스템에서 수신 확인을 전송하는 방법이 제안된다. 기지국과 단말 간 셀 설정의 미스 매치가 발생하더라도 HARQ 오류를 줄일 수있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 3은 다중 반송파의 일 예를 나타낸다
도 4는 DAI를 이용한 오류 검출의 예들을 나타낸다.
도 5는 노멀 CP에서 PUCCH 포맷 3의 구조를 나타낸 예시도이다.
도 6은 PUCCH 포맷 3를 이용한 HARQ 수행 방법을 나타낸 흐름도이다.
도 7은 ACK/NACK 전송의 일 예를 보여준다.
도 8은 ACK/NACK 전송의 다른 예를 보여준다.
도 9는 본 발명의 실시예에 따른 ACK/NACK 정보의 구성을 나타낸다.
도 10은 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸 흐름도이다.
도 11은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 4절을 참조할 수 있으며, TDD(Time Division Duplex)를 위한 것이다..
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0에 의하면, 정규 CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
인덱스 #1과 인덱스 #6을 갖는 서브프레임은 스페셜 서브프레임이라고 하며, DwPTS(Downlink Pilot Time Slot: DwPTS), GP(Guard Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD에서는 하나의 무선 프레임에 DL(downlink) 서브프레임과 UL(Uplink) 서브프레임이 공존한다. 표 1은 무선 프레임의 설정(configuration)의 일 예를 나타낸다.
표 1
UL-DL 설정 스위치 포인트 주기(Switch-point periodicity) 서브프레임 인덱스
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 스페셜 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, 단말은 무선 프레임의 설정에 따라 어느 서브프레임이 DL 서브프레임 또는 UL 서브프레임인지를 알 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/ NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidtae) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
도 2는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브 프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. m은 서브프레임 내에서 PUCCH에 할당된 RB 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다. 동일한 m 값을 갖는 RB이 2개의 슬롯에서 서로 다른 부반송파를 차지하고 있음을 보이고 있다.
3GPP TS 36.211 V8.7.0에 의하면, PUCCH는 다중 포맷을 지원한다. PUCCH 포맷에 종속된 변조 방식(modulation scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 PUCCH를 사용할 수 있다. PUCCH 포맷 1은 SR(Scheduling Request)의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ를 위한 ACK/NACK 신호의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 ACK/NACK 신호의 동시(simultaneous) 전송에 사용된다. 서브프레임에서 ACK/NACK 신호만을 전송할 때 PUCCH 포맷 1a/1b이 사용되고, SR이 단독으로 전송될 때, PUCCH 포맷 1이 사용된다. SR과 ACK/NACK을 동시에 전송할 때에는 PUCCH 포맷 1이 사용되고, SR에 할당된 자원에 ACK/NACK 신호를 변조하여 전송한다.
모든 PUCCH 포맷은 각 OFDM 심벌에서 시퀀스의 순환 쉬프트(cylic shift, CS)를 사용한다. 순환 쉬프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 쉬프트시켜 생성된다. 특정 CS 양은 순환 쉬프트 인덱스(CS index)에 의해 지시된다.
기본 시퀀스 ru(n)를 정의한 일 예는 다음 식과 같다.
수학식 1
Figure PCTKR2011007115-appb-M000001
여기서, u는 원시 인덱스(root index), n은 요소 인덱스로 0=n=N-1, N은 기본 시퀀스의 길이이다. b(n)은 3GPP TS 36.211 V8.7.0의 5.5절에서 정의되고 있다.
시퀀스의 길이는 시퀀스에 포함되는 요소(element)의 수와 같다. u는 셀 ID(identifier), 무선 프레임 내 슬롯 번호 등에 의해 정해질 수 있다. 기본시퀀스가 주파수 영역에서 하나의 자원 블록에 맵핑(mapping)된다고 할 때, 하나의 자원 블록이 12 부반송파를 포함하므로 기본 시퀀스의 길이 N은 12가 된다. 다른 원시 인덱스에 따라 다른 기본 시퀀스가 정의된다.
기본 시퀀스 r(n)을 다음 수학식 2와 같이 순환 쉬프트시켜 순환 쉬프트된 시퀀스 r(n, Ics)을 생성할 수 있다.
수학식 2
Figure PCTKR2011007115-appb-M000002
여기서, Ics는 CS 양을 나타내는 순환 쉬프트 인덱스이다(0≤Ics≤N-1).
기본 시퀀스의 가용(available) 순환 쉬프트 인덱스는 CS 간격(CS interval)에 따라 기본 시퀀스로부터 얻을 수(derive) 있는 순환 쉬프트 인덱스를 말한다. 예를 들어, 기본 시퀀스의 길이가 12이고, CS 간격이 1이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 개수는 12가 된다. 또는, 기본 시퀀스의 길이가 12이고, CS 간격이 2이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 수는 6이 된다.
PUCCH 포맷 1/1a/1b에서는 순환 쉬프트 인덱스외에 직교 시퀀스 인덱스, 자원 블록 인덱스를 추가적으로 사용하여 PUCCH를 구성한다. 즉, 직교 시퀀스 인덱스, 순환 쉬프트 인덱스 및 자원 블록 인덱스는 PUCCH를 구성하기 위해 필요한 파라미터이자, PUCCH(또는 단말)을 구분하는 데 사용되는 자원이다.
ACK/NACK 신호의 전송에 사용되는 시간, 주파수, 코드 자원을 ACK/NACK 자원 또는 PUCCH 자원이라 한다. ACK/NACK 신호를 PUCCH 상으로 전송하기 위해 필요한 ACK/NACK 자원의 인덱스(ACK/NACK 자원 인덱스 또는 PUCCH 인덱스라 함)는 직교 시퀀스 인덱스, 순환 쉬프트 인덱스, 자원 블록 인덱스 및 상기 3개의 인덱스를 구하기 위한 인덱스 중 적어도 어느 하나로 표현될 수 있다. ACK/NACK 자원은 직교 시퀀스, 순환 쉬프트, 자원 블록 및 이들의 조합 중 적어도 어느 하나를 포함할 수 있다.
3GPP LTE에서는 단말이 PUCCH를 구성하기 위한 상기 3개의 파라미터를 획득하기 위해, 자원 인덱스 n(1) PUUCH가 정의된다. 자원 인덱스 n(1) PUUCH = nCCE+N(1) PUUCH로 정의되는 데, nCCE는 대응하는 DCI(즉, ACK/NACK 신호에 대응하는 DL 전송 블록의 수신에 사용된 DL 자원 할당)의 전송에 사용되는 첫번째 CCE의 번호이고, N(1) PUUCH는 기지국이 단말에게 상위계층 메시지로 알려주는 파라미터이다.
이제 다중 반송파(multiple carrier) 시스템에 대해 기술한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크 각각에 하나의 CC만을 지원한다.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
CC 또는 CC-쌍(pair)는 하나의 셀에 대응될 수 있다. 각 CC에서 동기 신호와 PBCH이 전송된다고 할 때, 하나의 DL CC는 하나의 셀에 대응된다고 할 수 있다. 따라서, 복수의 CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
도 3은 다중 반송파의 일 예를 나타낸다.
DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다. DL CC-UL CC 쌍이 3개가 정의되므로, 단말은 3개의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
단말은 복수의 DL CC에서 PDCCH를 모니터링하고, 복수의 DL CC를 통해 동시에 DL 전송 블록을 수신할 수 있다. 단말은 복수의 UL CC를 통해 동시에 복수의 UL 전송 블록을 전송할 수 있다.
DL CC #1과 UL CC #1의 쌍이 제1 서빙 셀이 되고, DL CC #2과 UL CC #2의 쌍이 제2 서빙 셀이 되고, DL CC #3이 제3 서빙 셀이 된다고 하자. 각 서빙 셀에는 셀 인덱스(Cell index, CI)를 통해 식별될 수 있다. CI는 셀 내에서 고유할 수 있고, 또는 단말-특정적일 수 있다. 여기서는, 제1 내지 제3 서빙셀에 CI=0, 1, 2가 부여된 예를 보여준다.
서빙 셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 단말인 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
이제 3GPP LTE TDD(Time Division Duplex)에서의 HARQ를 위한 ACK/NACK 전송에 대해 기술한다.
TDD는 FDD(Frequency Division Duplex)와 달리 하나의 무선 프레임에 DL 서브프레임과 UL 서브프레임이 공존한다. 일반적으로 UL 서브프레임의 개수가 DL 서브프레임의 개수보다 적다. 따라서, ACK/NACK 신호를 전송하기 위한 UL 서브프레임이 부족한 경우를 대비하여, 복수의 DL 전송 블록에 대한 복수의 ACK/NACK 신호를 하나의 UL 서브프레임에서 전송하는 것을 지원하고 있다.
3GPP TS 36.213 V8.7.0 (2009-05)의 10.1절에 의하면, 채널 선택(channel selection)과 번들링(bundling)의 2가지 ACK/NACK 모드가 개시된다.
첫째로, 번들링은 단말이 수신한 PDSCH(즉, 하향링크 전송블록들)의 디코딩에 모두 성공하면 ACK을 전송하고, 이외의 경우는 NACK을 전송하는 것이다. 이를 AND 동작이라 한다.
다만, 번들링은 AND 동작에 제한되는 것은 아니고, 복수의 전송 블록(또는 코드워드)에 대응하는 ACK/NACK 비트들을 압축하는 다양한 동작을 포함할 수 있다. 예를 들어, 번들링은 ACK (또는 NACK)의 개수를 카운팅한 값이나 연속적인 ACK의 개수의 나타내도록 할 수 있다.
두번째로, 채널 선택은 ACK/NACK 다중화(multiplexing)이라고도 한다. 단말은 복수의 PUCCH 자원들 중 하나의 PUCCH 자원을 선택하여 ACK/NACK을 전송한다.
아래 표는 3GPP LTE에서 UL-DL 설정에 따른 UL 서브프레임 n과 연결된(associated) DL 서브프레임 n-k, 여기서, k∈K, M은 집합 K의 요소들의 개수,을 나타낸다.
표 2
UL-DL설정 서브프레임 n
0 1 2 3 4 5 6 7 8 9
0 - - 6 - 4 - - 6 - 4
1 - - 7,6 4 - - - 7,6 4 -
2 - - 8,7,4,6 - - - - 8,7,4,6 - -
3 - - 7,6,11 6,5 5,4 - - - - -
4 - - 12,8,7,11 6,5,4,7 - - - - - -
5 - - 13,12,9,8,7,5,4,11,6 - - - - - - -
6 - - 7 7 5 - - 7 7 -
UL 서브프레임 n에 M개의 DL 서브프레임들이 연결되어 있다고 하고, M=3을 고려하자.
3개의 UL 서브프레임들로부터 3개의 PDCCH를 수신할 수 있으므로, 단말은 3개의 PUCCH 자원(n(1) PUCCH,0, n(1) PUCCH,1, n(1) PUCCH,2)을 획득할 수 있다. 채널 선택의 예는 다음 표와 같다.
표 3
HARQ-ACK(0),HARQ-ACK(1),HARQ-ACK(2) n(1) PUCCH b(0),b(1)
ACK, ACK, ACK n(1) PUCCH,2 1,1
ACK, ACK, NACK/DTX n(1) PUCCH,1 1,1
ACK, NACK/DTX, ACK n(1) PUCCH,0 1,1
ACK, NACK/DTX, NACK/DTX n(1) PUCCH,0 0,1
NACK/DTX, ACK, ACK n(1) PUCCH,2 1,0
NACK/DTX, ACK, NACK/DTX n(1) PUCCH,1 0,0
NACK/DTX, NACK/DTX, ACK n(1) PUCCH,2 0,0
DTX, DTX, NACK n(1) PUCCH,2 0,1
DTX, NACK, NACK/DTX n(1) PUCCH,1 1,0
NACK, NACK/DTX, NACK/DTX n(1) PUCCH,0 1,0
DTX, DTX, DTX N/A N/A
HARQ-ACK(i)는 M개의 하향링크 서브프레임들 중 i번째 하향링크 서브프레임에 대한 ACK/NACK을 나타낸다. DTX(DTX(Discontinuous Transmission)는 해당되는 DL 서브프레임에서 PDSCH 상으로 DL 전송 블록을 수신하지 못함을 의미한다. 상기 표 3에 의하면, 3개의 PUCCH 자원(n(1) PUCCH,0, n(1) PUCCH,1, n(1) PUCCH,2)이 있고, b(0), b(1)은 선택된 PUCCH을 이용하여 전송되는 2개의 비트이다.
예를 들어, 단말이 3개의 DL 서브프레임에서 3개의 DL 전송블록들을 모두 성공적으로 수신하면, 단말은 n(1) PUCCH,2을 이용하여 비트 (1,1)을 PUCCH 상으로 전송한다. 단말이 첫번째(i=0) DL 서브프레임에서 DL 전송 블록의 디코딩에 실패하고, 나머지는 디코딩에 성공하면, 단말은 n(1) PUCCH,2을 이용하여 비트 (1,0)을 PUCCH 상으로 전송한다.
채널 선택에서, 적어도 하나의 ACK이 있으면, NACK과 DTX는 짝지워진다(couple). 이는 예약된(reserved) PUCCH 자원과 QPSK 심벌의 조합으로는 모든 ACK/NACK 상태를 나타낼 수 없기 때문이다. 하지만, ACK이 없으면, DTX는 NACK과 분리된다(decouple).
기존 PUCCH format 1b는 2비트의 ACK/NACK 만을 전송할 수 있다. 하지만, 채널 선택은 할당된 PUCCH 자원들과 실제 ACK/NACK 신호를 링크하여, 보다 많은 ACK/NACK 상태를 나타내는 것이다.
한편, UL 서브프레임 n에 M개의 DL 서브프레임들이 연결되어 있다고 할 때, DL 서브프레임의 손실(missing)으로 인한 ACK/NACK 신호의 오류가 발생할 수 있다. M=3이고, 기지국이 3개의 DL 서브프레임을 통해 3개의 DL 전송블록을 전송한다고 하자. 단말은 2번째의 DL 서브프레임에서 PDCCH를 잃어버려 2번째 전송블록을 전혀 수신하지 못하고, 나머지 첫번째와 세번째 전송블록 만을 수신할 수 있다. 이때, 번들링이 사용된다면 단말은 ACK 을 전송하게 되는 오류가 발생한다.
이러한 오류를 해결하기 위해서 DAI(Downlink Assignment Index)가 PDCCH 상의 DL 그랜트에 포함된다. DAI는 연결된 M개의 DL 서프레임에 대해 순차적인 카운터값을 포함한다.
도 4는 DAI를 이용한 오류 검출의 예들을 나타낸다.
도 4의 (A)에서, 단말은 2번째 DL 서브프레임을 놓쳐, DAI=2를 수신하지 못한다. 이때, 단말은 DAI=3을 수신함에 따라, 자신에 DAI=2에 해당되는 DL 서브프레임을 놓친 것을 알 수 있다.
도 4의 (B)에서, 단말은 3번째 DL 서브프레임을 놓쳐, DAI=3를 수신하지 못한다. 이 때, 단말은 3번째 DL 서브프레임을 놓친 것을 알 수 없다. 하지만, 3GPP LTE에서는 마지막에 수신한 PDCCH의 첫번째 CCE를 기반으로 하여 PUCCH를 구성하도록 함으로써 기지국이 DL 서브프레임의 손실을 알 수 있도록 한다. 즉, 단말은 DAI=2에 해당되는 DL 서브프레임의 PDCCH의 자원을 기반으로 한 PUCCH 자원을 이용하여 ACK/NACK을 전송한다. 기지국은 DAI=3에 해당되는 DL 서브프레임이 아닌 DAI=2에 해당되는 DL 서브프레임에 해당되는 PUCCH 자원으로 ACK/NACK이 수신되므로 3번째 DL 서브프레임의 손실을 알 수 있다.
한편, 복수의 서빙 셀이 사용됨에 따라, ACK/NACK 비트 수가 부족해질 것에 대비하여, 기존 3GPP LTE의 PUCCH 포맷외에 추가적으로 PUCCH 포맷 3가 논의되고 있다.
도 5는 노멀 CP에서 PUCCH 포맷 3의 구조를 나타낸 예시도이다.
하나의 슬롯은 7 OFDM 심벌을 포함하고, l은 슬롯 내의 OFDM 심벌 번호로 0~6의 값을 갖는다. l=1, 5인 2개의 OFDM 심벌은 기준신호를 위한 RS OFDM 심벌이 되고, 나머지 OFDM 심벌들은 ACK/NACK 신호를 위한 데이터 OFDM 심벌이 된다.
48비트의 인코딩된(encoded) ACK/NACK 신호를 QPSK(quadrature phase-shift keying) 변조하여, 심벌 시퀀스 d={d(0), d(1), ..., d(23)}를 생성한다. d(n)(n=0,1,...,23)는 복소(complex-valued) 변조 심벌이다. 심벌 시퀀스 d는 변조 심벌들의 집합이라 할 수 있다. ACK/NACK 신호의 비트 수나 변조 방식은 예시에 불과하고 제한이 아니다.
하나의 PUCCH는 1 RB를 사용하고, 한 서브프레임은 제1 슬롯과 제2 슬롯을 포함한다. 심벌 시퀀스 d={d(0), d(1), ..., d(23)}는 길이 12의 2개의 시퀀스 d1={d(0),…, d(11)}과 d2={d(12),…,d(23)}으로 나누어지고, 제1 시퀀스 d1은 제1 슬롯에서 전송되고, 제2 시퀀스 d2는 제2 슬롯에서 전송된다. 도 5는 제1 시퀀스 d1가 제1 슬롯에서 전송되는 것을 보이고 있다.
심벌 시퀀스는 직교 시퀀스 wi로 확산된다. 심벌 시퀀스는 각 데이터 OFDM 심벌에 대응하고, 직교 시퀀스는 데이터 OFDM 심벌들에 걸쳐서 심벌 시퀀스를 확산시켜 PUCCH(또는 단말)을 구분하는 데 사용된다.
직교 시퀀스는 확산 계수 K=5이고, 5개의 요소를 포함한다. 직교 시퀀스는 직교 시퀀스 인덱스 i에 따라 다음 표의 5개의 직교 시퀀스들 중 하나가 선택될 수 있다.
표 4
Index (i) [ wi(0), wi(1), wi(2), wi(3), wi(4) ]
0 [ +1, +1, +1, +1, +1 ]
1 [ +1, ej2π/5, ej4π/5 , ej6π/5, ej8π/5 ]
2 [ +1, ej4π/5, ej8π/5 , ej2π/5, ej6π/5 ]
3 [ +1, ej6π/5, ej2π/5 , ej8π/5, ej4π/5 ]
4 [ +1, ej8π/5, ej6π/5 , ej4π/5, ej2π/5 ]
서브프레임 내 2개의 슬롯이 서로 다른 직교 시퀀스 인덱스를 사용할 수 있다.
확산된 심벌 시퀀스 각각은 셀-특정적 순환 쉬프트 값 ncell cs(ns,l) 만큼 순환쉬프트된다. 순환 쉬프트된 심벌 시퀀스 각각은 해당되는 데이터 OFDM 심벌로 맵핑되어, 전송된다.
ncell cs(ns,l)는 PCI(Physical Cell Identity)를 기반으로 초기화되는 의사 난수 시퀀스(pseudo-random sequence)에 의해 결정되는 셀-특정적 파라미터이다. ncell cs(ns,l)는 무선 프레임 내 슬롯 번호 ns와 슬롯 내 OFDM 심벌 번호 l에 따라 달라진다.
2개의 RS OFDM 심벌에는 ACK/NACK 신호의 복조에 사용되는 기준신호 시퀀스가 맵핑되어 전송된다.
전술한 바와 같이, ACK/NACK 신호는 확산 계수 K=5인 직교 시퀀스로 확산되므로, 직교 시퀀스 인덱스를 달리함으로써 최대 5 단말을 구분할 수 있다. 이는 동일한 RB에 최대 5개의 PUCCH 포맷 3가 다중화될 수 있음을 의미한다.
도 6은 PUCCH 포맷 3를 이용한 HARQ 수행 방법을 나타낸 흐름도이다.
기지국은 단말에게 자원 설정을 보낸다(S610). 자원 설정은 무선 베어러(radio bearer)를 설정/수정/재설정하는 RRC(Radio Resource Control) 메세지를 통해 전송될 수 있다.
자원 설정은 복수의 자원 인덱스 후보에 관한 정보를 포함한다. 복수의 자원 인덱스 후보는 단말에게 설정될 수 있는 자원 인덱스들의 집합일 수 있다. 자원 설정은 4개의 자원 인덱스 후보에 관한 정보를 포함할 수 있다.
기지국은 단말에게 DL 그랜트(grant)를 PDCCH 상으로 전송한다(S620). DL 그랜트는 DL 자원 할당과 자원 인덱스 필드를 포함한다. DL 자원 할당은 PDSCH를 지시하는 자원 할당 정보를 포함한다. 자원 인덱스 필드는 상기 복수의 자원 인덱스 후보 중 PUCCH 설정에 사용되는 자원 인덱스 nPUCCH를 가리킨다. 4개의 자원 인덱스 후보가 있다면, 자원 인덱스 필드는 2비트를 가질 수 있다.
단말은 DL 자원 할당을 기반으로 PDSCH 상으로 DL 전송 블록을 수신한다(S630). 단말은 DL 전송 블록에 대한 HARQ ACK/NACK 신호를 생성한다.
단말은 자원 인덱스를 기반으로 PUCCH를 설정한다(S640). 도 5의 구조에서, PUCCH 자원은 ACK/NACK 신호의 확산에 사용되는 직교 시퀀스 인덱스 및 기준 신호를 위한 순환 쉬프트 인덱스를 포함한다.
ACK/NACK 신호의 확산에 사용되는 직교 시퀀스 인덱스는 다음과 같이 구할 수 있다.
수학식 3
Figure PCTKR2011007115-appb-M000003
여기서, i1은 제1 슬롯에 사용되는 직교 시퀀스 인덱스, i2은 제2 슬롯에 사용되는 직교 시퀀스 인덱스, NSF는 직교 시퀀스의 확산 계수, nPUCCH는 자원 인덱스이다.
PUCCH가 하나의 서브프레임 즉, 2 슬롯에서 전송되므로 2개의 직교 시퀀스 인덱스가 결정된다. 한 슬롯에 5개의 데이터 OFDM 심벌이 있으므로 NSF는 5이다.
기준 신호를 위한 순환 쉬프트 인덱스 Ics는 순환 쉬프트 인덱스 집합 {0, 3, 6, 8, 10}으로부터 선택된다. 보다 구체적으로, 직교 시퀀스 인덱스와 순환 쉬프트 인덱스 Ics는 다음 표와 같은 관계가 정의될 수 있다.
표 5
i1 또는 i2 Ics
0 0
1 3
2 6
3 8
4 10
즉, 직교 시퀀스 인덱스와 순환 쉬프트 인덱스는 1:1로 대응될 수 있다.
순환 쉬프트 인덱스를 기반으로 2개의 RS OFDM 심벌에 대한 순환 쉬프트를 구한다. 예를 들어, 단말은 l=1인 RS OFDM 심벌에 대해 제1 순환 쉬프트 인덱스 Ics(1)={ ncell cs(ns,l)+ Ics } mod N 를 결정하고, l=5인 RS OFDM 심벌에 대해 제2 순환 쉬프트 인덱스 Ics(5)={ ncell cs(ns,l)+ Ics } mod N 를 결정할 수 있다.
단말은 자원 인덱스 nPUCCH를 기반으로 PUCCH 자원을 결정하고, 이를 기반으로 도 5에 나타난 바와 같은 구조의 PUCCH를 설정한다.
단말은 PUCCH 상으로 ACK/NACK 신호를 전송한다(S650).
제 1 실시예 : ACK/NACK 자원 할당
전술한 바와 같이, PUCCH 포맷 1/1a/1b는 DL 그랜트에 대한 PDCCH의 자원으로부터 묵시적으로(implicitly) PUCCH 자원을 할당받는다. PUCCH 포맷 3는 PUCCH 자원을 명시적으로(explicitily) 가리키는 필드(이를 ARI(ACK/NACK resource indicator)라 함)을 이용하여 PUCCH 자원을 할당받는다.
본 발명은 LTE-A TDD 시스템에서 ARI를 전송하는 기법을 다음과 같이 제안한다.
보다 구체적으로, TDD에서의 ACK/NACK 전송 방식에 따라 DL 그랜트 내의 2 비트 DAI를 차용하여 ARI를 전송하는 방안을 제안한다.
먼저 다음과 같은 용어를 정의한다.
- 공간 번들링(spatial bundling)은 셀 별로 각 DL 서브프레임에 대해 DL CC 별로 코드워드들에 대한 ACK/NACK 번들링을 의미한다. 예를 들어, 각 DL 서브프레임에서 2개의 코드워드가 전송된다면, 2개의 코드워드에 대한 ACK/NACK 비트들에 대해 이진 AND 동작(binary AND operation)을 수행하여 번들링된 ACK/NACK을 얻는 것이다.
- CC 번들링은 각 DL 서브프레임에 대해 모든 혹은 일부 서빙 셀에 대한 ACK/NACK 번들링을 의미한다.
- 서브프레임 번들링은 각 서빙 셀에 대해 모든 혹은 일부 DL 서브프레임에 대한 ACK/NACK 번들링을 의미한다.
특정 ACK/NACK 번들링(예, 공간 번들링) 이외에 다른 ACK/NACK 번들링에 참여하지 않는 서빙 셀을 스케줄링하는 PDCCH의 DAI 필드를 차용하여 ARI가 전송될 수 있다.
특정 ACK/NACK 번들링에 참여하지 않는 서빙 셀을 스케줄링하는 PDCCH의 DAI 필드 및/또는 TPC(transmit power control) 필드가 ARI 전송에 사용될 수 있다.
아무런 ACK/NACK 번들링을 하지 않고 PUCCH 포맷 3를 이용할 때, PDCCH의 DAI 필드는 ARI로써 사용될 수 있다.
도 7은 ACK/NACK 전송의 일 예를 보여준다.
4개의 DL 서브프레임이 하나의 UL 서브프레임과 연결되어 있고, 하나의 DL 서브프레임에서 2개의 코드워드가 전송된다고 하자. 하나의 코드워드 당 하나의 ACK/NACK 비트가 요구되므로, 16 비트의 ACK/NACK 신호가 생성된다. 따라서, 단말은 어떤 ACK/NACK 번들링을 수행하지 않고, 16 비트의 ACK/NACK 신호를 48 비트의 인코딩된 ACK/NACK 신호로 바꾸어, PUCCH 포맷 3를 이용하여 전송할 수 있다. 이 때, DL 그랜트 내의 DAI는 불필요하므로, DAI 필드를 ARI로 차용할 수 있다.
공간 번들링이 적용된다고 하자. 2개의 코드워드 당 하나의 ACK/NACK 비트가 요구되므로, 8 비트의 ACK/NACK 신호가 생성된다. 단말은 어떤 ACK/NACK 번들링을 수행하지 않고, 8 비트의 ACK/NACK 신호를 48 비트의 인코딩된 ACK/NACK 신호로 바꾸어, PUCCH 포맷 3를 이용하여 전송할 수 있다. 이 때, DL 그랜트 내의 DAI는 불필요하므로, DAI 필드를 ARI로 차용할 수 있다.
도 8은 ACK/NACK 전송의 다른 예를 보여준다.
1차 셀과 2개의 2차 셀이 있다고 하자. 1차 셀에서는 아무런 번들링이 수행되지 않고, 2차 셀에서는 CC 번들링이 수행된다고 하자. 따라서, 12 비트의 ACK/NACK 신호가 생성된다. 단말은 12 비트의 ACK/NACK 신호를 48 비트의 인코딩된 ACK/NACK 신호로 바꾸어, PUCCH 포맷 3를 이용하여 전송할 수 있다.
1차 셀에서는 아무런 번들링도 수행되지 않으므로, DAI 가 불필요하다. 하지만, 2차 셀에서는 셀간 번들링을 수행하므로 번들링해야하는 총 PDCCH의 개수에 관한 DAI가 필요하다.
따라서, 1차 셀을 스케줄링하는 PDCCH의 DAI 필드는 ARI로 차용하고, 2차 셀을 스케쥴링하는 PDCCH의 DAI는 유지할 수 있다. 이때, 2차 셀을 스케쥴링하는 PDCCH의 TPC를 ARI로 차용할 수 있다.
마찬가지로, 1차 셀에서 공간 번들링이 수행되더라도 DAI는 불필요하다. 따라서, 1차 셀을 스케줄링하는 PDCCH의 DAI 필드는 ARI로 차용하고, 2차 셀을 스케쥴링하는 PDCCH의 DAI는 유지할 수 있다. 이때, 2차 셀을 스케쥴링하는 PDCCH의 TPC를 ARI로 차용할 수 있다.
제 2 실시예: ACK/NACK 정보의 구성
전술한 바와 같이 LTE-A TDD에서는 복수의 서브프레임과 복수의 서빙 셀에 대한 ACK/NACK을 전송하는 것이 필요하다.
복수의 서빙 셀에 대한 ACK/NACK을 생성할 때, 기지국과 단말간 서빙 셀의 설정에 대한 미스매치를 고려할 필요가 있다.
서빙 셀의 추가/변경/해제는 RRC 메시지를 통해 수행된다. 그런데, HARQ는 물리계층에서 수행되는 바, 기지국이 RRC 메시지를 단말로 보내는 시점과 HARQ가 수행되는 시점에서 서빙 셀의 미스매치가 발생할 수 있다. RRC 메시지가 단말로 전송되고 단말이 실제로 이를 적용하는 데 걸리는 시간이 불명확하기 때문이다. 예를 들어, 기지국이 RRC 메시지를 통해 2차 셀의 추가를 명령한 후, 2차 셀에 대한 스케줄링을 수행하고 있지만, 단말은 여전히 추가된 2차 셀을 인식하지 못할 수 있다.
도 9는 본 발명의 실시예에 따른 ACK/NACK 정보의 구성을 나타낸다.
도 9의 (A)는 셀 우선 순위에 따라 ACK/NACK 정보를 구성하는 예이다. 1차 셀(또는 가장 낮은 셀 인덱스를 갖는 셀)의 우선순위가 가장 높다고 하자. 1차 셀의 ACK/NACK 비트들을 먼저 배치한 후 2차 셀의 ACK/NACK 비트들을 배치하는 예를 나타낸다. 1차 셀의 우선순위가 가장 높다고 하자. 1차 셀의 ACK/NACK 비트들을 먼저 배치한 후 2차 셀의 ACK/NACK 비트들을 배치하는 예를 나타낸다.
도 9의 (B)는 복수의 DL 서브프레임이 연결된 경우 셀 우선 순위에 따라 ACK/NACK 정보를 구성하는 예이다. 셀 당 3개의 서브프레임이 있는 것을 예시하고 있으나 서브프레임의 개수에 제한이 있는 것은 아니다.
서브프레임 당 복수의 코드워드가 전송될 경우, ACK/NACK 비트는 번들링될 수도 있고 번들링되지 않을 수도 있다.
도 9의 (C)는 CI의 오름 차순(ascending order)으로 ACK/NACK 정보를 구성하는 예이다. 가장 낮은 CI를 갖는 셀의 ACK/NACK 비트들을 먼저 배치한 후 다음 CI를 갖는 셀의 ACK/NACK 비트들을 배치하는 예를 나타낸다.
셀 별로 지정된 순서로 ACK/NACK 비트들을 배치할 경우, 셀 설정의 미스 매치가 발생하더라도 우선순위가 높은 셀 또는 1차 셀의 ACK/NACK 비트 위치는 변하지 않으므로 잘못된 HARQ가 수행되는 것을 방지할 수 있다.
도 10은 본 발명의 일 실시예에 따른 수신 확인 전송 방법을 나타낸 흐름도이다. 이 방법은 단말에 의해 수행될 수 있다. 1 비트 ACK/NACK은 DL 코드워드에 대한 수신 확인(reception acknowledgement)으로 긍정적 확인(positive acknowledgement)은 '1'로, 부정적 확인은 '0'으로 인코드될 수 있으나, ACK/NACK 정보의 인코딩 방식에 제한이 있는 것은 아니다.
단말은 복수의 서빙 셀과 복수의 DL 서브프레임에 대한 ACK/NACK 비트의 개수(A)를 결정한다(S810). 서빙 셀의 개수를 Ncell이라 하고, 서빙셀 c에서 DL 서브프레임의 개수를 Bc라고 하고, 서빙셀 c에서 코드워드의 개수를 Cc라고 하자.
수학식 4
Figure PCTKR2011007115-appb-M000004
복수의 서빙 셀과 복수의 DL 서브프레임에 대한 ACK/NACK 비트들은 비트 시퀀스 {a0, a1, ..., aA-1}로 나타낼 수 있다. 예를 들어, 싱글 코드워드 전송일 때, 해당되는 셀 c에 대해 1비트 ACK/NACK ak가 사용된다. 2 코드워드 전송일 때, 해당되는 셀 c에 대해 2비트 ACK/NACK ak, ak+1이 사용된다. ak는 첫번째 코드워드에 대한 1비트 ACK/NACK, ak+1는 두번째 코드워드에 대한 1비트 ACK/NACK이다.
단말은 ACK/NACK 비트의 개수(A)가 특정값(th) 보다 큰지 여부를 결정한다(S820). 이 단계는 상향링크 채널의 용량에 따라 ACK/NACK 비트의 비트 수를 맞추기 위해 공간 번들링을 수행할지 여부를 판단하기 위함이다. 예를 들어, 특정값(th)은 20일 수 있다. 만약 공간 번들링의 수행 여부를 판단할 필요가 없으면 본 단계는 생략될 수 있다.
단말은 ACK/NACK 비트의 개수(A)가 특정값(th) 보다 크면 공간 번들링을 수행한다(S830). 공간 번들링은 모든 서빙 셀의 모든 서브프레임에 대해 각 서브프레임의 적어도 2개의 코드워드에 대응하는 ACK/NACK 비트들의 이진 AND 동작을 수행하는 것이다. 특정 서브프레임에서 2 코드워드에 대한 2비트 ACK/NACK ak, ak+1이 있다면, 이진 AND 동작을 수행하여 1비트 ACK/NACK ak'으로 대체한다.
단말은 복수의 서빙 셀이 셀 인덱스의 오름 차순으로 (번들링된) ACK/NACK 비트들을 배열하여 결합된(combined) ACK/NACK 비트를 생성한다(S840). CI가 0부터 시작한다고 하자. 즉, 가장 낮은 CI가 0이고, 가장 낮은 CI를 갖는 셀은 1차 셀일 수 았다.
예를 들어, 비트 시퀀스 {a0, a1, ..., aA-1}에서, 1코드워드 전송이고, 4개의 셀이 있으며, 셀당 3개의 DL 서브프레임이 있다고 하자. 따라서, A=12이다. ak i,s는 CI가 i (i=0,1,2,3)인 셀의 s번째(s=0,1,2) 서브프레임의 1비트 ACK/NACK 이라고 하자. 결합된 ACK/NACK 비트는 {a0 0,0, a1 0,1, a2 0,2, a3 1,0, a4 1,1, a5 1,2, a6 2,0, a7 2,1, a8 2,2, a9 3,0, a10 3,1, a11 3,2}과 같이 생성된다.
셀 별로 지정된 순서로 ACK/NACK 비트들을 배치함으로써, 셀 설정의 미스 매치가 발생하더라도 적어도 1차 셀의 ACK/NACK 비트 위치는 변하지 않는다. 따라서 1차 셀에서 잘못된 HARQ가 수행되는 것을 방지할 수 있다.
단말은 결합된 ACK/NACK 비트를 인코딩하여 인코딩된 ACK/NACK 비트를 생성한다(S850). ACK/NACK 비트의 인코딩은 상향링크 채널의 용량에 맞도록 비트 수를 맞추기 위함이다. 예를 들어, PUCCH 포맷 3의 용량은 48 비트이므로 전술한 12비트의 결합된 ACK/NACK 비트를 인코딩하여 48 비트의 인코딩된 ACK/NACK 비트를 생성할 수 있다. 인코딩 방식은 반복(repetition), 연쇄(concatenation), 블록 코딩 등 다양한 방식을 사용할 수 있으며, 인코딩 방식에 제한은 없다.
단말은 인코딩된 ACK/NACK 비트를 변조하여 ACK/NACK 심벌을 생성한다(S860). 예를 들어, PUCCH 포맷 3를 위해, 48비트의 인코딩된 ACK/NACK 비트를 QPSK 변조하여, 심벌 시퀀스 d={d(0), d(1), ..., d(23)}를 생성할 수 있다.
단말은 상향링크 채널 상으로 ACK/NACK 심벌을 기지국으로 전송한다(S870). 상향링크 채널로 도 5에 나타난 PUCCH 포맷 3가 사용될 수 있다. 또는 상향링크 채널은 PUSCH 일 수 있다. 상향링크 채널이 PUSCH 이면, 인코딩된 ACK/NACK 비트는 UL 전송 블록과 다중화되어 전송될 수 있다.
도 11은 본 발명의 실시예가 구현되는 무선 통신 시스템을 나타낸 블록도이다.
기지국(50)은 메모리(memory, 51), 프로세서(processor, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(51)는 프로세서(52)와 연결되어, 프로세서(52)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(52)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(52)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예들에서 기지국(50)의 동작은 프로세서(52)에 의해 구현될 수 있다. 프로세서(52)는 다중 셀을 관리하고, HARQ를 수행할 수 있다.
단말(60)은 메모리(61), 프로세서(62) 및 RF부(63)을 포함한다. 메모리(61)는 프로세서(62)와 연결되어, 프로세서(62)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(62)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(62)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예들에서 수신 확인을 전송하는 단말(60)의 동작은 프로세서(62)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 무선 통신 시스템에서 수신 확인 전송 방법에 있어서,
    단말이 복수의 서빙 셀 각각에서 ACK/NACK을 피드백할 적어도 하나의 하향링크 서브프레임 및 상기 복수의 서빙 셀에 대한 ACK/NACK 비트의 개수를 결정하는 단계;
    상기 단말이 상기 복수의 서빙 셀의 셀 인덱스의 오름 차순으로 상기 ACK/NACK 비트를 정렬하여 결합된 ACK/NACK 비트를 생성하는 단계;
    상기 단말이 상기 결합된 ACK/NACK 비트를 인코딩하여 인코딩된 ACK/NACK 비트를 생성하는 단계;
    상기 단말이 상기 인코딩된 ACK/NACK 비트를 변조하여 ACK/NACK 심벌을 생성하는 단계; 및
    상기 단말이 상기 ACK/NACK 심벌을 기지국으로 전송하는 단계를 포함하는 수신 확인 전송 방법.
  2. 제 1 항에 있어서, 상기 결합된 ACK/NACK 비트를 생성하는 단계는
    가장 낮은 셀 인덱스를 갖는 제1 서빙 셀의 ACK/NACK 비트를 정렬하여 상기 결합된 ACK/NACK 비트를 생성하는 단계; 및
    상기 가장 낮은 셀 인덱스의 다음 인덱스를 갖는 제2 서빙 셀의 ACK/NCK 비트를 상기 결합된 ACK/NACK 비트에 추가하는 단계를 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
  3. 제 2 항에 있어서, 상기 가장 낮은 셀 인덱스는 0인 것을 특징으로 하는 수신 확인 전송 방법.
  4. 제 1 항에 있어서, 상기 ACK/NACK 비트의 개수가 특정 값 보다 큰 지 여부를 결정하는 단계를 더 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
  5. 제 4 항에 있어서, 상기 ACK/NACK 비트의 개수가 상기 특정 값 보다 크면, 각 서브프레임에서 적어도 2개의 코드워드에 대응하는 ACK/NACK 비트의 이진 AND 동작을 수행하는 공간 번들링을 모든 서빙 셀에서 모든 서브프레임에 대해 적용하는 것을 특징으로 하는 수신 확인 전송 방법.
  6. 제 1 항에 있어서, 상기 무선 통신 시스템은 TDD(Time Division Duplex) 시스템인 것을 특징으로 하는 수신 확인 전송 방법.
  7. 제 1 항에 있어서, 상기 인코딩된 ACK/NACK 비트의 비트 수는 48이고, 상기 인코딩된 ACK/NACK 비트는 QPSK(quadrature phase shift keying)를 이용하여 변조되는 것을 특징으로 하는 수신 확인 전송 방법.
  8. 제 7 항에 있어서, 상기 ACK/NACK 심벌을 전송하는 단계는
    상기 ACK/NACK 심벌을 직교 시퀀스로 확산하는 단계; 및
    상기 확산된 ACK/NACK 심벌을 전송하는 단계를 포함하는 것을 특징으로 하는 수신 확인 전송 방법.
  9. 무선 통신 시스템에서 수신 확인을 전송하는 단말에 있어서,
    무선 신호를 전송하는 RF부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    복수의 서빙 셀 각각에서 ACK/NACK을 피드백할 적어도 하나의 하향링크 서브프레임 및 상기 복수의 서빙 셀에 대한 ACK/NACK 비트의 개수를 결정하고;
    상기 복수의 서빙 셀의 셀 인덱스의 오름 차순으로 상기 ACK/NACK 비트를 정렬하여 결합된 ACK/NACK 비트를 생성하고;
    상기 결합된 ACK/NACK 비트를 인코딩하여 인코딩된 ACK/NACK 비트를 생성하고;
    상기 인코딩된 ACK/NACK 비트를 변조하여 ACK/NACK 심벌을 생성하고; 및
    상기 ACK/NACK 심벌을 기지국으로 전송하는 것를 특징으로 하는 단말.
  10. 제 9 항에 있어서, 상기 프로세서는
    가장 낮은 셀 인덱스를 갖는 제1 서빙 셀의 ACK/NACK 비트를 정렬하여 상기 결합된 ACK/NACK 비트를 생성하고; 및
    상기 가장 낮은 셀 인덱스의 다음 인덱스를 갖는 제2 서빙 셀의 ACK/NCK 비트를 상기 결합된 ACK/NACK 비트에 추가하여,
    상기 결합된 ACK/NACK 비트를 생성하는 것을 특징으로 하는 단말.
  11. 제 10 항에 있어서, 상기 가장 낮은 셀 인덱스는 0인 것을 특징으로 하는 단말.
  12. 제 1 항에 있어서, 상기 프로세서는 상기 ACK/NACK 비트의 개수가 특정 값 보다 큰 지 여부를 결정하는 것을 특징으로 하는 단말.
  13. 제 12 항에 있어서, 상기 프로세서는 상기 ACK/NACK 비트의 개수가 상기 특정 값 보다 크면, 각 서브프레임에서 적어도 2개의 코드워드에 대응하는 ACK/NACK 비트의 이진 AND 동작을 수행하는 공간 번들링을 모든 서빙 셀에서 모든 서브프레임에 대해 적용하는 것을 특징으로 하는 단말.
  14. 제 9 항에 있어서, 상기 인코딩된 ACK/NACK 비트의 비트 수는 48이고, 상기 인코딩된 ACK/NACK 비트는 QPSK(quadrature phase shift keying)를 이용하여 변조되는 것을 특징으로 하는 단말.
  15. 제 14 항에 있어서, 상기 프로세서는
    상기 ACK/NACK 심벌을 직교 시퀀스로 확산하고; 및
    상기 확산된 ACK/NACK 심벌을 전송하여,
    상기 ACK/NACK 심벌을 전송하는 것을 특징으로 하는 단말.
PCT/KR2011/007115 2010-09-28 2011-09-28 무선 통신 시스템에서 수신 확인 전송 방법 및 장치 WO2012044045A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013531484A JP5639717B2 (ja) 2010-09-28 2011-09-28 無線通信システムにおける受信確認送信方法及び装置
US13/824,514 US8923273B2 (en) 2010-09-28 2011-09-28 Method and apparatus for transmitting reception confirmation in wireless system
KR1020137006256A KR101486679B1 (ko) 2010-09-28 2011-09-28 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
EP11829551.8A EP2624497B1 (en) 2010-09-28 2011-09-28 Method and apparatus for transmitting reception confirmation in wireless system
CN201180046373.7A CN103119886B (zh) 2010-09-28 2011-09-28 在无线系统中发送接收确认的方法和装置
EP20180055.4A EP3731445B1 (en) 2010-09-28 2011-09-28 Method and apparatus for transmitting reception confirmation in wireless system
US14/552,829 US9385851B2 (en) 2010-09-28 2014-11-25 Method and apparatus for transmitting reception confirmation in wireless system
US15/181,331 US9680622B2 (en) 2010-09-28 2016-06-13 Method and apparatus for transmitting reception confirmation in wireless system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38745910P 2010-09-28 2010-09-28
US61/387,459 2010-09-28

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/824,514 A-371-Of-International US8923273B2 (en) 2010-09-28 2011-09-28 Method and apparatus for transmitting reception confirmation in wireless system
US14/522,829 Continuation US20150115026A1 (en) 2013-10-24 2014-10-24 Fluid Movement Tracking System, Especially Suitable for Water and Crude Oil Produced in Connection With Oil and Gas Well Operations
US14/552,829 Continuation US9385851B2 (en) 2010-09-28 2014-11-25 Method and apparatus for transmitting reception confirmation in wireless system

Publications (1)

Publication Number Publication Date
WO2012044045A1 true WO2012044045A1 (ko) 2012-04-05

Family

ID=45893384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007115 WO2012044045A1 (ko) 2010-09-28 2011-09-28 무선 통신 시스템에서 수신 확인 전송 방법 및 장치

Country Status (6)

Country Link
US (3) US8923273B2 (ko)
EP (2) EP2624497B1 (ko)
JP (2) JP5639717B2 (ko)
KR (1) KR101486679B1 (ko)
CN (1) CN103119886B (ko)
WO (1) WO2012044045A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542645A (ja) * 2010-09-28 2013-11-21 ゼットティーイー コーポレーション 肯定/否定応答メッセージのマッピング方法及び端末
US20140036749A1 (en) * 2012-08-03 2014-02-06 Research In Motion Limited Carrier aggregation acknowledgement bits
JP2015520579A (ja) * 2012-05-17 2015-07-16 サムスン エレクトロニクス カンパニー リミテッド セルラ移動通信システムで協力通信のためのチャンネル推定方法及び装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923273B2 (en) * 2010-09-28 2014-12-30 Lg Electronics Inc. Method and apparatus for transmitting reception confirmation in wireless system
KR101867311B1 (ko) * 2010-12-21 2018-07-19 주식회사 골드피크이노베이션즈 Ack/nack 자원 할당 방법 및 장치와 이를 이용한 ack/nack 신호 전송 방법
CN102075949B (zh) * 2010-12-22 2013-03-20 大唐移动通信设备有限公司 一种基于ca技术进行数据传输的方法及装置
CN102638879A (zh) * 2011-02-12 2012-08-15 北京三星通信技术研究有限公司 一种分配ack/nack信道资源的方法
JP2013017016A (ja) 2011-07-04 2013-01-24 Sharp Corp 基地局装置、移動局装置、通信システムおよび通信方法
US9461720B2 (en) * 2012-08-13 2016-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods of receiving retransmissions including discontinuous transmission indicators in MIMO systems
WO2014047911A1 (zh) * 2012-09-28 2014-04-03 华为技术有限公司 正确/非正确应答的反馈方法、用户设备及系统
USRE49578E1 (en) * 2012-10-24 2023-07-11 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving common channel information in wireless communication system
DK3261280T3 (da) * 2012-12-18 2019-07-15 Lg Electronics Inc Fremgangsmåde og apparat til at modtage ack/nack i trådløst kommunikationssystem
US9918299B2 (en) 2013-08-06 2018-03-13 Sun Patent Trust Wireless communication method for device to device communication and user equipment
ES2774667T3 (es) 2013-10-04 2020-07-22 Lg Electronics Inc Método mediante el cual un terminal transmite ACK/NACK en un sistema de comunicación inalámbrica y dispositivo para el mismo
WO2015062033A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 数据包接收状态的反馈方法、发送节点及接收节点
CN104753654A (zh) * 2013-12-31 2015-07-01 上海贝尔股份有限公司 一种编码和解码harq反馈信息的方法、装置和系统
CN107113096B (zh) 2014-12-31 2020-03-31 Lg 电子株式会社 在无线通信系统中发送ack/nack的方法和使用该方法的设备
CN105812110B (zh) * 2015-01-03 2019-09-03 上海朗帛通信技术有限公司 一种增强的ca通信方法和装置
CN106063176B (zh) * 2015-01-30 2019-10-22 华为技术有限公司 一种用户设备、网络设备,以及确认信息的传输方法
KR102080982B1 (ko) 2015-02-06 2020-02-24 애플 인크. 비면허 무선 주파수 대역에서의 시분할 lte 전송을 위한 방법 및 장치
CN107409325B (zh) * 2015-03-31 2021-11-30 株式会社Ntt都科摩 用户终端、无线通信系统及无线通信方法
US10645679B2 (en) 2015-11-18 2020-05-05 Qualcomm Incorporated Hybrid automatic repeat request (HARQ) payload mapping for short physical uplink control channel (PUCCH) on a shared communication medium
CN107710664B (zh) * 2015-11-20 2021-04-23 Oppo广东移动通信有限公司 传输数据的方法、终端和基站
WO2017093186A1 (en) * 2015-12-01 2017-06-08 Ipcom Gmbh & Co. Kg Ack/nack messaging in a single frequency network
CN108432312B (zh) 2015-12-31 2022-08-02 日本电气株式会社 用于传输和接收上行链路信息的方法和装置
JP6897815B2 (ja) * 2015-12-31 2021-07-07 日本電気株式会社 Ue及びueによって行われる方法
WO2017195306A1 (ja) * 2016-05-11 2017-11-16 富士通株式会社 無線通信システム、無線送信局、及び、無線受信局
EP3442147A4 (en) 2016-05-12 2019-04-17 Huawei Technologies Co., Ltd. FEEDBACK TUNING METHOD AND FEEDBACK METHOD PROCESSING AND DEVICE
CN110419237A (zh) * 2017-04-24 2019-11-05 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
CN109474403B (zh) * 2017-09-08 2020-12-08 电信科学技术研究院 一种传输方法、装置、终端、基站及存储介质
JPWO2019082279A1 (ja) * 2017-10-24 2020-08-06 富士通株式会社 端末装置、基地局装置、無線通信システム及び無線通信方法
JP6489336B2 (ja) * 2018-01-18 2019-03-27 サン パテント トラスト 無線通信方法、ユーザ機器および集積回路
CN110149707B (zh) * 2018-02-13 2022-04-22 华为技术有限公司 物理上行控制信道发送方法、接收方法及相关设备
CN110876204B (zh) * 2018-08-31 2023-04-07 中国信息通信研究院 一种移动通信系统、网络设备、终端设备和数据调度方法
CA3105883A1 (en) 2018-11-02 2020-05-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining uplink control information and communications device
JP2020022167A (ja) * 2019-08-28 2020-02-06 オッポ広東移動通信有限公司 データ伝送方法、端末及び基地局
JP7290188B2 (ja) * 2020-02-07 2023-06-13 日本電気株式会社 基地局によって行われる方法、ueによって行われる方法、基地局及びue
WO2022174818A1 (zh) * 2021-02-20 2022-08-25 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置
WO2023010550A1 (en) * 2021-08-06 2023-02-09 Apple Inc. Scheduling for multiple pdsch/pusch operations

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439367A (en) * 2006-06-20 2007-12-27 Nec Corp Separate ACK/NACK channel from a control channel
CN101227233B (zh) * 2008-02-01 2013-01-16 中兴通讯股份有限公司 时分双工系统中物理上行控制信号的发送方法和装置
KR100905385B1 (ko) * 2008-03-16 2009-06-30 엘지전자 주식회사 무선통신 시스템에서 제어신호의 효율적인 전송방법
US8537853B2 (en) * 2008-03-20 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Side information bits of ACK and NACK bits in multiple ACK/NACK transmission
US8942080B2 (en) * 2008-04-17 2015-01-27 Texas Instruments Incorporated Transmission of bundled ACK/NAK bits
CN101500260B (zh) * 2008-04-29 2011-09-14 华为技术有限公司 为用户分配应答信道的方法、装置和系统
US8867430B2 (en) * 2008-10-31 2014-10-21 Lg Electronics Inc. Method and apparatus for performing HARQ process in wireless communication system
US8473800B2 (en) * 2009-02-11 2013-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for ACK/NACK reporting
KR101643636B1 (ko) * 2009-06-02 2016-07-29 엘지전자 주식회사 무선 통신 시스템에서 ack/nack 시퀀스 정보를 송신하는 방법 및 이를 위한 장치
KR101761610B1 (ko) * 2009-08-26 2017-07-26 엘지전자 주식회사 시간-슬롯 기반으로 다중 αck/nack을 전송하는 방법
EP2293486A1 (en) * 2009-09-03 2011-03-09 Panasonic Corporation Feedback scheme for providing feedback on plural transmissions
US8300585B2 (en) * 2009-09-04 2012-10-30 Intel Corporation Method and apparatus for transmitting an ACK/NACK signal in a wireless communication system
US8923273B2 (en) * 2010-09-28 2014-12-30 Lg Electronics Inc. Method and apparatus for transmitting reception confirmation in wireless system
EP2966800A1 (en) * 2011-04-29 2016-01-13 Interdigital Patent Holdings, Inc. Carrier aggregation with subframe restrictions

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8", 3GPP TS 36.211 V8.7.0, May 2009 (2009-05-01)
3GPP TS 36.213 V8.7.0, May 2009 (2009-05-01)
HUAWEI: "A/N Codebook Design for carrier Aggregation using Format 2 and DFT-S-OFDM", 3GPP TSG RAN WG #61BIS, R1-103886, 28 June 2010 (2010-06-28), XP050449283 *
LG ELECTRONICS: "Details on DFT-S-OFDM format for CA PUCCH", 3GPP TSG RAN WG1 #62, RL-104757, 23 August 2010 (2010-08-23), XP050450136 *
LG ELECTRONICS: "Discussion on ACK/NACK transmission for TDD in LTE-A", 3GPP TSG RAN WG1 #62, R1-104640, 23 August 2010 (2010-08-23), XP050449925 *
SAMSUNG: "Discussion on ACK/NACK bundling method for LTE-A TDD", 3GPP TSG RAN WG1 #62, RL-104579, 23 August 2010 (2010-08-23), XP050449875 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542645A (ja) * 2010-09-28 2013-11-21 ゼットティーイー コーポレーション 肯定/否定応答メッセージのマッピング方法及び端末
JP2015520579A (ja) * 2012-05-17 2015-07-16 サムスン エレクトロニクス カンパニー リミテッド セルラ移動通信システムで協力通信のためのチャンネル推定方法及び装置
US9787504B2 (en) 2012-05-17 2017-10-10 Samsung Electronics Co., Ltd Channel estimation method and apparatus for cooperative communication in a cellular mobile communication system
US20140036749A1 (en) * 2012-08-03 2014-02-06 Research In Motion Limited Carrier aggregation acknowledgement bits
CN104685815A (zh) * 2012-08-03 2015-06-03 黑莓有限公司 载波聚合应答比特
US9258741B2 (en) * 2012-08-03 2016-02-09 Blackberry Limited Carrier aggregation acknowledgement bits
US9520967B2 (en) 2012-08-03 2016-12-13 Blackberry Limited Carrier aggregation acknowledgement bits
TWI604706B (zh) * 2012-08-03 2017-11-01 黑莓有限公司 載波聚合確認位元
CN104685815B (zh) * 2012-08-03 2018-01-12 黑莓有限公司 载波聚合应答比特

Also Published As

Publication number Publication date
EP2624497A1 (en) 2013-08-07
JP2015015776A (ja) 2015-01-22
US9680622B2 (en) 2017-06-13
EP3731445A1 (en) 2020-10-28
CN103119886B (zh) 2016-01-20
JP2013540394A (ja) 2013-10-31
US20160301510A1 (en) 2016-10-13
EP2624497A4 (en) 2017-07-05
JP5639717B2 (ja) 2014-12-10
CN103119886A (zh) 2013-05-22
EP2624497B1 (en) 2020-09-02
KR101486679B1 (ko) 2015-01-26
KR20130051479A (ko) 2013-05-20
JP6042857B2 (ja) 2016-12-14
US8923273B2 (en) 2014-12-30
US20130188535A1 (en) 2013-07-25
EP3731445B1 (en) 2023-11-01
US20150092715A1 (en) 2015-04-02
US9385851B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
WO2012044045A1 (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2012091490A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2011052949A2 (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2012134107A2 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2011078568A2 (ko) 무선 통신 시스템에서 상향링크 harq 수행 장치 및 방법
WO2010101411A2 (en) Method and apparatus for transmitting harq ack/nack signal in multi-antenna system
WO2014123379A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2017135682A1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
WO2015065111A1 (en) Method and apparatus for simultaneous transmission of downlink harq-ack and sr
WO2015065000A1 (en) Method and apparatus of transmitting control information considering tdd-fdd ca
WO2011139064A2 (ko) 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2019156466A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2010123331A2 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
WO2015115818A1 (ko) Harq ack/nack 전송방법 및 장치
WO2016108657A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2016111599A1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2013129868A1 (en) Mobile communication system and channel transmission/reception method thereof
WO2013191519A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2011074839A2 (en) Apparatus and method of transmitting reception acknowledgement in wireless communication system
WO2014046374A1 (ko) 상향링크 제어정보 전송 방법 및 장치
WO2018225998A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2014017746A1 (ko) Harq 수행 방법 및 단말
WO2011013968A2 (ko) 무선 통신 시스템에서 수신 확인 수신 방법 및 장치
WO2013137682A1 (ko) 상향링크 제어정보 전송 방법 및 장치
WO2013077677A1 (ko) 제어 채널 모니터링 방법 및 무선기기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046373.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006256

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13824514

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013531484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829551

Country of ref document: EP