WO2012043908A1 - 방사선 검출기 및 방사선 검출 방법 - Google Patents

방사선 검출기 및 방사선 검출 방법 Download PDF

Info

Publication number
WO2012043908A1
WO2012043908A1 PCT/KR2010/006691 KR2010006691W WO2012043908A1 WO 2012043908 A1 WO2012043908 A1 WO 2012043908A1 KR 2010006691 W KR2010006691 W KR 2010006691W WO 2012043908 A1 WO2012043908 A1 WO 2012043908A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
charge
back light
charge collection
electrode layer
Prior art date
Application number
PCT/KR2010/006691
Other languages
English (en)
French (fr)
Inventor
김중석
고병훈
문범진
윤정기
Original Assignee
(주)디알텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디알텍 filed Critical (주)디알텍
Priority to PCT/KR2010/006691 priority Critical patent/WO2012043908A1/ko
Publication of WO2012043908A1 publication Critical patent/WO2012043908A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/246Measuring radiation intensity with semiconductor detectors utilizing latent read-out, e.g. charge stored and read-out later
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector

Definitions

  • a radiation detector and detection method for detecting radiation such as X-rays to generate image data is provided.
  • the digital radiation detector is a device for acquiring a digital image by detecting information in a human body as an electrical image signal by an image detection sensor by direct X-ray irradiation without a film.
  • Digital radiation detectors are divided into direct and indirect methods according to the method of detecting a radiographic image.
  • the direct method is a method of directly detecting an electrical signal generated by radiation transmitted through the human body using amorphous selenium (or amorphous silicon) and TFT (Thin Film Transistor).
  • the indirect method uses a fluorescent material such as CsI, which converts radiation into visible light, and acquires a radiographic image by using a light receiving device such as a CCD or a photodiode. .
  • the radiation detector using a conventional TFT generates a large amount of noise, and also decreases the detectable quantum efficiency (DQE) because the noise tends to increase together with a large area. Since one thin film transistor is required for each pixel in the panel, the large area is difficult and the cost is increased.
  • DQE detectable quantum efficiency
  • Radiation detectors and radiation detection methods are provided that can increase the resolution of an image and improve complex manufacturing processes.
  • a radiation detector and a radiation detection method capable of increasing the resolution of an image and improving a complicated manufacturing process may be provided.
  • FIG. 1 is a cross-sectional view of a radiation detector according to an embodiment.
  • FIG. 2 is a view showing the operation of two photoconductive layers sandwiching a charge collection layer.
  • FIG 3 is a cross-sectional view of a radiation detector according to an embodiment using a PDP-based backlight.
  • 4A to 4E are views illustrating an operation of the radiation detector of FIG. 3 when the charge collection layer is made of metal.
  • 5A to 5D are diagrams illustrating an operation process of the radiation detector of FIG. 3 when the charge collection layer is a dielectric.
  • 6A to 6D are diagrams illustrating an operation process of the radiation detector of FIG. 3 when the charge collecting layer is formed of a dielectric and a metal.
  • FIG. 7 is a flowchart illustrating a radiation detection operation according to an embodiment.
  • FIG. 8 is a cross-sectional view of a radiation detector according to another embodiment.
  • FIG. 9 is a view showing a cross section of a radiation detector according to another embodiment.
  • a radiation detector includes an upper electrode layer for transmitting radiation, a first photoconductive layer that exhibits photoconductivity by radiation, a charge collection layer that collects charge due to photoconductivity in the first photoconductive layer, and a readout.
  • a microlens layer and a back light irradiator configured to apply back light to the second light conductive layer through the microlens layer and the lower transparent electrode layer on a pixel basis.
  • a radiation detector includes an upper electrode layer for transmitting radiation, a first photoconductive layer that exhibits photoconductivity by radiation, a charge collection layer that collects charge due to photoconductivity in the first photoconductive layer, and a readout.
  • FIG. 1 is a cross-sectional view of a radiation detector according to an embodiment.
  • the radiation detector 10 includes an upper electrode layer 101, a first photoconductive layer 102, a charge collection layer 103, a second photoconductive layer 104, a lower transparent electrode layer 105, and a data processor 200. Include.
  • the upper electrode layer 101 transmits radiation incident from the outside to the first photoconductive layer 102.
  • X-ray, alpha-ray, gamma-ray, and the like may be used as the radiation.
  • the first photoconductive layer 102 exhibits photoconductivity by radiation transmitted through the upper electrode layer 101. That is, the first photoconductive layer 102 generates a pair of positive charges (or holes) and negative charges (or electrons) upon irradiation. The first photoconductive layer 102 generates a pair of positive and negative charges in proportion to the signal strength of the transmitted radiation. When there is an object such as a human body or an object requiring irradiation by radiation on the upper electrode layer 101, the amount of radiation transmitted to the first photoconductive layer 102 may vary according to the component of the object.
  • the first photoconductive layer 102 may be an amorphous selenium compound containing amorphous selenium (a-Se, amorphous selenium), As 2 Se 3 or As.
  • the charge collection layer 103 collects charges (positive charges and negative charges) generated by the photoconductivity of the first photoconductive layer 102, and operates as floating electrodes. Collecting charge by the charge collection layer 103 means blocking charges accumulated between the first photoconductive layer 102 and the charge collection layer 103 by the charge collection layer 103.
  • the charge collection layer 103 may be composed of a metal layer, a dielectric layer or a combination of a metal layer and a dielectric layer.
  • the second photoconductive layer 104 exhibits photoconductivity by back light for reading.
  • the second photoconductive layer 104 generates a pair of positive and negative charges in proportion to the signal strength of the transmitted back light.
  • the second photoconductive layer 104 may be an amorphous selenium compound containing amorphous selenium (a-Se, amorphous selenium), As 2 Se 3 or As.
  • back light means the light irradiated from the back surface of the radiation direction.
  • a system capable of irradiating light on a pixel basis such as a liquid crystal display (LCD), a plasma display panel (PDP), a light emitting diode (LED), a field emission display (FED), a laser, or the like may be used.
  • LCD liquid crystal display
  • PDP plasma display panel
  • LED light emitting diode
  • FED field emission display
  • laser a laser, or the like
  • the lower transparent electrode layer 105 is charged with a charge corresponding to the charge collected by the charge collection layer 103.
  • the lower transparent electrode layer 105 is formed of a transparent material so that the back light can reach the second photoconductive layer 104.
  • the lower transparent electrode layer 105 may be formed of a material such as indium tin oxide (ITO) and indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the data processor 200 generates a radiographic image by reading a signal corresponding to the charged charge from the lower transparent electrode layer 105.
  • the radiation detector 10 of FIG. 1 shows a cross section of a structure corresponding to one pixel of a radiation detector actually used, and is read out to the lower transparent electrode layer 105 for each pixel or pixel column in a pixel array constituting a radiographic image. The entire radiographic image may be obtained using the received signal.
  • FIG. 2 is a view showing the operation of two photoconductive layers sandwiching a charge collection layer.
  • the radiation When the radiation is irradiated, radiation is transmitted to the first photoconductive layer 102 through the upper electrode layer 101, and a positive and negative pair of charges is generated in the first photoconductive layer 102.
  • the electric field is formed by the high voltage (eg, 4 kV) applied to the upper electrode layer 101, and the positive and negative pairs generated in the first photoconductive layer 102 are distributed in different directions along the electric field. Therefore, positive or negative charges are collected in the charge collection layer 103.
  • a negative (-) potential is applied to the upper electrode layer 101, the positive charge generated in the first photoconductive layer 102 moves to the upper electrode layer 101, and the negative charge moves to the charge collection layer 103.
  • the first photoconductive layer 102 and the second photoconductive layer 104 formed with the charge collection layer 103 interposed therebetween may operate as a series connected capacitor, as shown in FIG. .
  • C 1 and C 2 represent capacitances of the first photoconductive layer 102 and the second photoconductive layer 104, respectively, and V 1 and V 2 represent the first photoconductive layer 102 and the second, respectively. The voltage of the photoconductive layer 104 is shown. Also, And Since there is a relationship Is established.
  • the thickness d 1 of the first photoconductive layer 102 is formed to be much thicker than the thickness d 2 of the second photoconductive layer 104.
  • the thickness d 1 of the first photoconductive layer 102 may be about 500 ⁇ m
  • the thickness d 2 of the second photoconductive layer 102 may be about 7 to 12 ⁇ m. Therefore, the magnitude of the electric field E 2 across the second photoconductive layer 104 is greater than the magnitude of the electrical field E 1 across the first photoconductive layer 102.
  • a high voltage is applied to the upper electrode layer 101 in the image recording step, and is set to ground in the reading process, most of the electric field is applied to the second photoconductive layer 104.
  • the charge (positive charge or negative charge) generated in the first photoconductive layer 102 is caused by the energy barrier difference between the charge collection layer 103 and the first photoconductive layer 102.
  • Blocking Blocked electrons allow electrons to cross the barrier when the energy barrier is lowered by an external electric field or temperature change. Since the electric field applied to the first photoconductive layer 102 is relatively smaller than the electric field applied to the second photoconductive layer 104, the energy barrier between the first photoconductive layer 102 and the charge collection layer 103 is reduced. Since there is no external energy that can be exceeded, the charge is blocked in the charge collection layer 103.
  • the energy band at the junction between the charge collection layer 103 and the first photoconductive layer 102 is the difference between the work function of the conductive material constituting the charge collection layer 103 and the work function of the first photoconductive layer 102. It depends on the physical properties, such as the thickness and the specific resistance of the charge collecting layer 103 and the first photoconductive layer 102 can be adjusted according to the characteristics.
  • the charge collection layer 103 may be composed of a metal layer, a dielectric layer, or a combination of a metal layer and a dielectric layer.
  • the charge collection layer 103 is a metal layer, silver, copper, gold, aluminum, calcium, tungsten, zinc, nickel, iron, platinum, tin, lead, manganese, constantan, mercury, and nichrome , Carbon, germanium, silicon, glass, quartz, polyethylene terephthalate (PET), teflon, and the like may be used.
  • organic dielectric materials such as BCB, parylene, aC: H (F), polyimide (PI), polyarylene ether (Farorinated Amorphous Carbon), SiO 2 , Si 3 Inorganic dielectric materials such as N 4 , Polysilsequioxane, Methyl silane and the like, porous dielectric materials such as Xetogel / Aerogel, PCL (Polycaprolactone) and the like may be used.
  • the charge collection layer 103 is composed of a metal layer, a dielectric layer, or a combination of the metal layer and the dielectric layer, the charge generated in the first photoconductive layer 102 can be efficiently transferred, the manufacturing is simple, and the short time The radiation detector can be manufactured at low cost. In particular, compared to the case where the doped semiconductor is used for the charge collection layer 103, the manufacturing cost can be reduced and easily manufactured.
  • FIG. 3 is a diagram illustrating an example of a cross section of a PDP-based radiation detector.
  • the radiation detector 20 of FIG. 3 includes an upper electrode layer 101, a first photoconductive layer 102, a charge collection layer 103, a second photoconductive layer 104, a lower transparent electrode layer 105, and an intermediate substrate ( 106 and PDP 110.
  • the radiation detector 20 includes an upper electrode layer 101, a first photoconductive layer 102, a charge collection layer 103, a second photoconductive layer 104, and a lower transparent electrode layer 105.
  • the PDP 110 are sequentially stacked.
  • the intermediate substrate 106 supports the upper electrode layer 101, the first photoconductive layer 102, the charge collection layer 103, the second photoconductive layer 104, and the lower transparent electrode layer 105. Can be used.
  • the upper electrode layer 101, the first photoconductive layer 102, the charge collection layer 103, the second photoconductive layer 104, and the lower transparent electrode layer 105 have the same configuration as that of FIG. 1.
  • the PDP 110 provides plasma light as back light.
  • the PDP 110 may include a first substrate 111, a partition wall 112, a gas layer 113, a fluorescent layer 114, an insulating layer 115, an electrode 116, and a second substrate 117. .
  • the first substrate 111 and the second substrate 117 are disposed to face each other.
  • the partition wall 112 forms a cell structure inside the two substrates 111 and 117. Specifically, the partition wall 112 is formed between the first substrate 111 and the insulating layer 115 to form a sealed cell structure.
  • the partition wall 112 is formed to distinguish the pixels of the PDP 110.
  • the partition wall 112 prevents cross talk between pixels, and may be enclosed in two directions or have various shapes such as two directions, six directions, and eight directions according to a desired pixel shape, and determine a resolution of the substrate.
  • the partition wall 112 may be manufactured by a conventional PDP manufacturing method, and the area and height may be adjusted to increase the response area of the radiation in each pixel.
  • the gas layer 113 is included in the inner chamber of the cell structure formed by the partition wall 112 and generates plasma light emission by the electrode 117. Plasma light is provided to the lower transparent electrode layer 105.
  • the fluorescent layer 114 is formed so that the plasma light generated from the gas layer 113 is reflected to transmit the plasma light of higher illumination to the lower transparent electrode layer 105.
  • the fluorescent layer 114 may be formed on one side surface of the partition wall 112 and the insulating layer 115 as shown in FIG. 1.
  • the fluorescent layer 114 may be optionally included.
  • the insulating layer 115 is formed on the second substrate 117 and may be formed of a dielectric layer.
  • the insulating layer 115 prevents a short between the electrodes 116 arranged in pixel units and prevents leakage current.
  • the electrode 116 transfers power to generate a plasma to the gas layer 113.
  • 4A to 4E are diagrams illustrating an operation process of the radiation detector in which the charge collection layer 103 is formed of a metal layer.
  • the radiation detector 30 of FIGS. 4A-4E is identical to the radiation detector 20 of FIG. 3 except that the charge collection layer 103 is formed of a metal layer 103-1.
  • + represents a positive charge and-represents a negative charge.
  • the negative charge generated in the first photoconductive layer 102 is transferred to the charge collection layer 103, so that the charge collection layer 103 collects the negative charge of the first photoconductive layer 102.
  • the operation of collecting charges by the charge collection layer 103 means that charges are accumulated at the interface between the first photoconductive layer 102 and the charge collection layer 103.
  • the negative charge that accumulates at the interface between the charge collection layer 103 and the first photoconductive layer 102 is blocked by the weak electric field E 1 across the first photoconductive layer 102, as described with reference to FIG. 2. .
  • the collection of positive and negative charge pairs and charges generated in the first photoconductive layer 102 will vary depending on the component and shape of the object, the collection of positive and negative charge pairs and charges generated in the first photoconductive layer 102.
  • the amount of negative charge collected in layer 103 will also vary.
  • the negative charge collected by the charge collection layer 103 corresponds to the detected image.
  • the second photoconductive layer 104 functions as a capacitor.
  • the charge collection layer 103 is disposed on the lower transparent electrode layer 105. There is a positive charge. Positive charges corresponding to the number of negative charges collected by the charge collection layer 103 are charged to the lower transparent electrode layer 105.
  • the second photoconductive layer 104 generates a pair of positive and negative charges due to the reached plasma light. Since light is emitted only on the pixels of the first line of the PDP 110, positive and negative pairs are generated in the region corresponding to the pixels of the first line of the second photoconductive layer 104. As shown in FIG. 4C, the positive and negative charges generated in the second photoconductive layer 104 are caused by electrical attraction due to the positive charges charged in the negative and lower transparent electrode layers 105 collected in the charge collection layer 103. Are separated.
  • the negative charge generated by the second photoconductive layer 104 is transferred to the data processing unit 200 in the region corresponding to the pixel of the first line by the positive charge charged on the lower transparent electrode layer 105. It can be read and processed into an image signal.
  • the positive charge generated in the second photoconductive layer 104 is moved to the charge collection layer 103 by the negative charge collected by the charge collection layer 103, so that the charge collection layer 103 is neutralized.
  • the pixel electrode of the first line of the PDP 110 is turned off and a voltage is applied to the pixel electrode of the second line.
  • a pair of positive and negative charges are generated in a region corresponding to the pixels of the second line of the second photoconductive layer 104.
  • the positive and negative charges generated in the second photoconductive layer 104 are separated by electrical attraction by the negative charges collected in the charge collection layer 103 and the positive charges charged in the lower transparent electrode layer 105.
  • the negative charges generated in the area corresponding to the second line of the second photoconductive layer 104 by the positive charges charged on the lower transparent electrode layer 105 may be read by the data processor 200 to process an image signal.
  • the above-described operation may be performed on the pixels of the third line, so that the negative charges generated in the region corresponding to the third line of the second photoconductive layer 104 may be read by the data processor 200 to process image signals.
  • the above operation is performed for all the pixel lines of the radiation detector 30, a radiographic image of an object positioned on the radiation detector 30 may be obtained.
  • 5A-5D show the operation of the radiation detector 40 in which the charge collection layer 103 of FIG. 3 is composed of a dielectric layer 103-2.
  • 5A-5D are the same as the radiation detector 20 of FIG. 3 except that the charge collection layer 103 is formed of a dielectric layer 103-2.
  • FIG. 5B Due to the negative charge transferred from the first photoconductive layer 102 to the dielectric layer 103-2, polarization occurs in the dielectric layer 103-2, and a dipole of the polarized dielectric layer 103-2 is illustrated in FIG. 5B. It is arranged as shown in.
  • the positive pole of the dipole When the positive pole of the dipole is disposed as shown in FIG. 5B, a positive charge is charged to the lower transparent electrode layer 105.
  • the lower transparent electrode layer 105 is charged with a positive charge corresponding to the number of dipoles polarized in the dielectric layer 103-2.
  • the second photoconductive layer 104 generates a pair of positive and negative charges due to the reached plasma light. As shown in FIG. 5C, light is emitted only to pixels of the first line of the PDP 110, so that a pair of positive and negative charges are generated in a region corresponding to the pixels of the first line of the second photoconductive layer 104. The generated positive and negative charges are separated by electrical attraction by the dipoles polarized in the dielectric layer 103-2 and the positive charges charged in the lower transparent electrode layer 105.
  • the negative charge generated by the second photoconductive layer 104 is transferred to the data processor 200 in a region corresponding to the pixel of the first line due to the positive charge charged on the lower transparent electrode layer 105. It can be read and processed into an image signal.
  • the positive charge generated in the second photoconductive layer 104 is moved to the dielectric layer 103-2 by a dipole polarized by the dielectric layer 103-2.
  • the second line of the second photoconductive layer 104 in the region corresponding to the second line.
  • Positive and negative charge pairs are generated only in the region corresponding to the pixel of.
  • the generated positive and negative charges are separated by the electric attraction by the positive charges charged on the dipole and the lower transparent electrode layer 105 of the dielectric layer 103-2.
  • the negative charges generated in the area corresponding to the second line of the second photoconductive layer 104 by the positive charges charged on the lower transparent electrode layer 105 may be read by the data processor 200 to process an image signal.
  • FIG. 6A to 6D are diagrams illustrating an operation process of the radiation detector in which the charge collection layer 103 of FIG. 3 includes a dielectric layer 103-2 and a metal layer 103-1.
  • 6A-6D are the same as the radiation detector 20 of FIG. 3 except that the charge collection layer 103 is formed of a dielectric layer 103-2 and a metal layer 103-1. .
  • FIG. 6B Due to the negative charge transferred from the first photoconductive layer 102 to the dielectric layer 103-2, polarization occurs in the dielectric layer 103-2, and the dipole of the polarized dielectric layer 103-2 is shown in FIG. 6B. It is arranged as shown in.
  • the positive pole of the dipole when the positive pole of the dipole is disposed, the positive charge corresponding to the dipole is charged in the metal layer 103-1.
  • negative charges are charged to the lower transparent electrode layer 105 by positive charges charged by the metal layer 103-1.
  • the lower transparent electrode layer 105 is charged with negative charges corresponding to the number of dipoles polarized in the dielectric layer 103-2.
  • the second photoconductive layer 104 generates a pair of positive and negative charges due to the reached plasma light. As shown in FIG. 6C, light is emitted only to pixels of the first line of the PDP 110, so that positive and negative pairs are generated only in the region corresponding to the pixels of the first line of the second photoconductive layer 104.
  • the positive and negative charges generated in the second photoconductive layer 104 are separated by electrical attraction by the positive charges collected in the metal layer 103-1 and the negative charges charged in the lower transparent electrode layer 105.
  • the positive charge generated by the second photoconductive layer 104 is transferred to the data processor 200 in the region corresponding to the pixel of the first line by the negative charge charged on the lower transparent electrode layer 105. It can be read and processed into an image signal.
  • the second line of the second photoconductive layer 104 in the region corresponding to the second line.
  • Positive and negative charge pairs are generated only in the region corresponding to the pixel of.
  • the generated positive and negative charges are separated by electrical attraction by the positive charges collected in the metal layer 103-1 and the negative charges charged on the lower transparent electrode layer 105.
  • the positive charges generated in the area corresponding to the second line of the second photoconductive layer 104 by the negative charges charged on the lower transparent electrode layer 105 may be read by the data processor 200 to process an image signal.
  • the above-described operation is performed on the pixels of the third line so that the positive charge generated in the region corresponding to the third line of the second photoconductive layer 104 is read by the data processor 200 to be processed as an image signal.
  • all of the above operations are performed on all pixel lines of the radiation detector 50, a radiographic image of the object may be obtained.
  • FIG. 7 is a flowchart illustrating a radiation detection method according to an embodiment of the present invention.
  • a high voltage is applied to the upper electrode layer 101 (710), and radiation is irradiated (720) in this state.
  • the positive and negative pairs are then generated in the first photoconductive layer 102 (730).
  • the generated positive and negative charge pairs are separated toward the upper electrode layer 101 and the charge collection layer 103, respectively, and positive or negative charges are accumulated and collected in the charge collection layer 103 (740).
  • a negative ( ⁇ ) potential is applied to the upper electrode layer 101, negative charges may be collected in the charge collection layer 103.
  • the lower transparent electrode layer 105 is charged with charges of opposite polarity corresponding to the charges collected in the charge collection layer 103.
  • the positive or negative charge generated in the second photoconductive layer 104 reads a signal corresponding to the charge collected in the charge collection layer 103 from the lower transparent electrode layer 105 (780).
  • signals are read for all the pixel arrays, a radiographic image is generated using the read signals (790).
  • the charge collection layer 103 is the dielectric layer 103-2
  • dipoles formed by polarization are arranged in the charge collection layer 103 by polarized positive or negative charges of the charge collection layer 103.
  • charging occurs in response to the dipoles arranged in the charge collection layer 103, whereby positive or negative charges generated in the second photoconductive layer 104 are transferred to the lower transparent electrode layer 105.
  • the signal corresponding to the dipole of the charge collection layer 103 in the lower transparent electrode layer 105 can be read using the charge transferred from the second photoconductive layer 104.
  • the charge collection layer 103 includes a metal layer 103-1 and a dielectric layer 103-2, the dielectric layer 103-2 is in contact with the first photoconductive layer 102, and the metal layer 103- When 1) is in contact with the second photoconductive layer 104, the dielectric layer 103-2 is polarized by positive or negative charges generated in the first photoconductive layer 102 and separated toward the charge collection layer 103. Dipoles are generated and arranged. According to this dipole arrangement, a charge corresponding to the dipole will be charged to the metal layer 103-1.
  • a charge for example, a positive charge of opposite polarity to that of the lower transparent electrode layer 105 charged by the metal layer 103-1, is charged, and in the signal reading step, the second photoconductive layer 104 is charged.
  • the positive charges generated by the back light are attracted to the positive charges charged on the lower transparent electrode layer 105 to correspond to the charges charged on the dipoles of the dielectric layer 103-2 or the metal layer 103-1 on the lower transparent electrode layer 105. Can be read.
  • FIG. 8 is a diagram illustrating a radiation detector according to another embodiment.
  • the radiation detector 60 includes an upper electrode layer 101, a first photoconductive layer 102, a charge collection layer 103, a second photoconductive layer 104, a lower transparent electrode layer 105, and a microlens layer 120. And a PDP 110.
  • the radiation detector 60 differs from the radiation detector 20 in FIG. 3 in that it includes a microlens layer 120 instead of the intermediate substrate 106 between the lower transparent electrode layer 105 and the PDP 110.
  • the remaining components 101, 102, 103, 104, 105, 110 are all identical.
  • the microlens layer 120 includes microlenses formed in pixel units.
  • the microlens 121 included in the microlens layer 120 and formed in the pixel unit collects the back light so that the back light passes through the micro lens 121 so that the back light is irradiated only to the corresponding pixel area. Can be formed.
  • the microlens 121 may be formed as a convex lens.
  • the charge collection layer 103 may be formed of a metal layer, a dielectric layer, or a combination of a metal layer and a dielectric layer.
  • Operation of the radiation detector 60 is similar to that of the radiation detector 20 of FIG. 3.
  • charges generated in the first photoconductive layer 102 are collected in the charge collection layer 103, and in the image reading process, radiographic images are read corresponding to the charges collected in the charge collection layer 103.
  • radiographic image reading process when the first line of the PDP 110 is turned on, when light is emitted from the first line, the back light corresponding to the first line of the pixel of the PDP 110 emits the microlens layer 120. It passes through the lower transparent electrode layer 105 to reach the second photoconductive layer 104.
  • the back light corresponding to the first line of the PDP 110 pixels is integrated without being transmitted to the surrounding pixels outside the irradiated pixel area of the back light. It may pass through 105 to reach the second photoconductive layer 104. Accordingly, positive and negative charge pairs are generated only in the second photoconductive layer 104 in the region corresponding to the first line of the PDP 110 pixels, and during the image reading process, the PDP 110 pixels of the charge collection layer 103 The signal corresponding to the charge charged in the region corresponding to the first line can be read. Therefore, when generating a radiographic image by scanning in units of pixels, noise and a high resolution radiographic image may be obtained.
  • FIG. 9 is a diagram illustrating a radiation detector according to another embodiment.
  • the radiation detector 70 of FIG. 9 includes an upper electrode layer 101, a first photoconductive layer 102, a charge collection layer 103, a second photoconductive layer 104, a lower transparent electrode layer 105, and an intermediate substrate ( 106 and PDP 110.
  • the radiation detector 70 differs from the radiation detector 20 in FIG. 3 in that a plurality of partitions 131 are included in the second photoconductive layer 104, and the remaining components 101, 102, 103, 104, 105, and 110 are all the same.
  • the partition wall 131 included in the second photoconductive layer 104 is formed to distinguish the pixels.
  • the partition wall of the second light conductive layer 104 is formed in the pixel area in which the back light is irradiated outside the pixel area irradiated with the back light when a pair of positive and negative charges are generated in the second light conductive layer 104 by the back light. It can be formed to prevent generated charges from escaping or entering charges generated outside the pixel region into the pixel region.
  • the partition wall 131 may be formed in the same manner as the partition wall 112.
  • the operation of the radiation detector 70 is similar to the operation of the radiation detector 20 of FIG. 3. Therefore, charges generated in the first photoconductive layer 102 are collected in the charge collection layer 103, and in the image reading process, a radiographic image corresponding to the charges collected in the charge collection layer 103 is read.
  • the radiographic image reading process when the first line of the PDP 110 is turned on, when light is emitted from the first line, the back light corresponding to the first line of the pixel of the PDP 110 may move the lower transparent electrode layer 105. It transmits and reaches the second photoconductive layer 104. Accordingly, positive and negative pairs are generated only in the second photoconductive layer 104 in the region corresponding to the first line of the PDP 110 pixels.
  • the signal corresponding to the charge charged in the region corresponding to the first line of the PDP 110 pixel of the charge collection layer 103 can be read.
  • the charges generated in the region other than the intended pixel region are lower transparent electrode layers. Entry into the intended pixel region by the barrier rib formed in the 105 is prevented so that only the positive or negative charge of the region corresponding to the first line intended for back light irradiation can be read into the lower transparent electrode layer 104.
  • the partition wall formed in the lower transparent electrode layer 105 it is possible to prevent the charge generated in the pixel area intended for back light irradiation of the second photoconductive layer 104 to escape to the outside of the pixel. Therefore, when generating a radiographic image by scanning in units of pixels, noise and a high resolution radiographic image may be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measurement Of Radiation (AREA)

Abstract

영상의 해상도를 높이고 복잡한 제조 공정을 개선할 수 있는 방사선 검출기 및 방사선 검출 방법이 제공된다. 방사선 검출기는, 방사선을 전달하는 상부 전극층과, 방사선에 의해 광 도전성을 나타내는 제1 광 도전층과, 제1 광 도전층에서 광 도전성에 의한 전하를 수집하는 전하 수집층과, 판독을 위한 배면광에 의해 광 도전성을 나타내는 제2 광 도전층과, 전하 수집층에 의해 수집된 전하에 의해 대전되는 하부 투명 전극층과, 하부 투명 전극층 및 배면광 조사부 사이에 배치되며, 픽셀 단위로 형성된 마이크로렌즈 층과, 픽셀 단위로 마이크로렌즈 층 및 하부 투명 전극층을 통해 제2 광 도전층으로 배면광을 인가하는 배면광 조사부를 포함한다.

Description

방사선 검출기 및 방사선 검출 방법
엑스선과 같은 방사선을 검출하여 이미지 데이터를 생성하는 방사선 검출기 및 검출 방법에 관한 것이다.
디지털 방사선 검출기는 방사선 영상을 필름 없이 직접 엑스선 조사에 의하여 인체 내의 정보를 영상 검출 센서에서 전기적 영상 신호로 검출하여 디지털 영상을 획득하기 위한 장치이다. 디지털 방사선 검출기는 방사선 영상을 검출하는 방식에 따라 크게 직접 방식과 간접 방식으로 나누어진다. 직접 방식은 통상적으로 비정질 셀레늄(또는 비정질 실리콘)과 TFT(Thin Film Transistor)를 이용하여 인체를 투과한 방사선에 의해 발생된 전기적 신호를 직접 검출하는 방식이다. 간접 방식은, 방사선을 가시광선으로 바꿔주는 CsI와 같은 형광 물질을 사용하여 형광체에서 발생된 빛을 CCD 또는 광 다이오드 등의 수광 소자를 사용하여 방사선 영상을 획득하는 것으로, 직접 방식에 비해 해상도가 떨어진다.
종래의 TFT를 이용한 방사선 검출기는 노이즈가 크게 발생되며, 또한 대면적으로 갈수록 노이즈가 함께 증가하는 경향이 있으므로 DQE(detective quantum efficiency)를 감소하게 한다. 패널 내부의 픽셀 하나 당 한 개의 박막 트랜지스터가 필요하므로, 대면적이 어렵고 비용이 증가하게 된다.
영상의 해상도를 높이고 복잡한 제조 공정을 개선할 수 있는 방사선 검출기 및 방사선 검출 방법이 요구된다.
영상의 해상도를 높이고 복잡한 제조 공정을 개선할 수 있는 방사선 검출기 및 방사선 검출 방법이 제공된다.
일 실시예에 따르면, 영상의 해상도를 높이고 복잡한 제조 공정을 개선할 수 있는 방사선 검출기 및 방사선 검출 방법을 제공할 수 있다.
도 1은 일 실시예에 따른 방사선 검출기의 단면을 나타내는 도면이다.
도 2는 전하 수집층을 사이에 두는 2개의 광 도전층의 동작을 나타내는 도면이다.
도 3은 PDP 기반의 배면광을 이용하는 일 실시예에 따른 방사선 검출기의 단면을 나타내는 도면이다.
도 4a 내지 도 4e는 전하 수집층이 메탈인 경우 도 3의 방사선 검출기의 동작 과정을 나타내는 도면이다.
도 5a 내지 도 5d는 전하 수집층이 유전체인 경우 도 3의 방사선 검출기의 동작 과정을 나타내는 도면이다.
도 6a 내지 도 6d는 전하 수집층이 유전체 및 메탈로 구성되는 경우 도 3의 방사선 검출기의 동작 과정을 나타내는 도면이다.
도 7은 일 실시예에 따른 방사선 검출 동작을 나타내는 순서도이다.
도 8은 다른 실시예에 따른 방사선 검출기의 단면을 나타내는 도면이다.
도 9는 또 다른 실시예에 따른 방사선 검출기의 단면을 나타내는 도면이다.
일 측면에 따른 방사선 검출기는, 방사선을 전달하는 상부 전극층과, 방사선에 의해 광 도전성을 나타내는 제1 광 도전층과, 제1 광 도전층에서 광 도전성에 의한 전하를 수집하는 전하 수집층과, 판독을 위한 배면광에 의해 광 도전성을 나타내는 제2 광 도전층과, 전하 수집층에 의해 수집된 전하에 의해 대전되는 하부 투명 전극층과, 하부 투명 전극층 및 배면광 조사부 사이에 배치되며, 픽셀 단위로 형성된 마이크로렌즈 층과, 픽셀 단위로 마이크로렌즈 층 및 하부 투명 전극층을 통해 제2 광 도전층으로 배면광을 인가하는 배면광 조사부를 포함한다.
다른 측면에 따른 방사선 검출기는, 방사선을 전달하는 상부 전극층과, 방사선에 의해 광 도전성을 나타내는 제1 광 도전층과, 제1 광 도전층에서 광 도전성에 의한 전하를 수집하는 전하 수집층과, 판독을 위한 배면광에 의해 광 도전성을 나타내며, 픽셀을 구분하기 위한 격벽을 포함하는 제2 광 도전층과, 전하 수집층에 의해 수집된 전하에 의해 대전되는 하부 투명 전극층과, 픽셀 단위로 하부 투명 전극층을 통해 제2 광 도전층으로 배면광을 인가하는 배면광 조사부를 포함한다.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 일 실시예에 따른 방사선 검출기의 단면을 나타내는 도면이다.
방사선 검출기(10)는 상부 전극층(101), 제1 광 도전층(102), 전하 수집층(103), 제2 광 도전층(104) 및 하부 투명 전극층(105) 및 데이터 처리부(200)를 포함한다.
상부 전극층(101)은 외부로터 입사되는 방사선을 제1 광 도전층(102)으로 전달한다. 여기에서, 방사선은, 엑스선(X-ray), 알파선(α-ray), 감마선(γ-ray) 등이 이용될 수 있다.
제1 광 도전층(102)은 상부 전극층(101)을 통해 전달된 방사선에 의해 광 도전성을 나타낸다. 즉, 제1 광 도전층(102)은 방사선 조사에 따라 양전하(또는 정공) 및 음전하(또는 전자) 쌍을 생성한다. 제1 광 도전층(102)은 전달된 방사선의 신호 강도에 비례하여 양전하 및 음전하 쌍을 생성한다. 상부 전극층(101) 위에 방사선에 의한 조사가 필요한 인체 또는 물체와 같은 대상체가 있는 경우, 대상체의 성분에 따라 제1 광 도전층(102)에 전달되는 방사선 양이 달라질 수 있다. 제1 광 도전층(102)은 비정질셀레늄(a-Se, amorphous selenium), As2Se3 또는 As 등을 함유한 비정질셀레늄 화합물일 수 있다.
전하 수집층(103)은 제1 광 도전층(102)의 광 도전성에 의해 생성된 전하(양전하 및 음전하)를 수집하여, 플로팅 전극(floating electrode)으로 동작한다. 전하 수집층(103)이 전하를 수집하는 것은, 전하 수집층(103)에 의해 제1 광 도전층(102)과 전하 수집층(103) 사이에 쌓이는 전하를 블로킹하는 것을 의미한다. 일 실시예에 따르면, 전하 수집층(103)은 메탈층, 유전체층 또는 메탈층 및 유전체층의 조합으로 구성될 수 있다.
제2 광 도전층(104)은 판독을 위한 배면광에 의해 광 도전성을 나타낸다. 제2 광 도전층(104)은 전달된 배면광의 신호 강도에 비례하여 양전하 및 음전하 쌍을 생성한다. 제2 광 도전층(104)은 비정질셀레늄(a-Se, amorphous selenium), As2Se3 또는 As 등을 함유한 비정질셀레늄 화합물일 수 있다.
여기에서, 배면광은 방사선의 조사 방향의 배면에서 조사되는 광을 의미한다. 배면 광원으로는, LCD(liquid crystal display), PDP(plasma display panel), LED(light emitting diode), FED(field emission display), 레이저 등과 같이 픽셀 단위로 광을 조사할 수 있는 시스템이 이용될 수 있다.
하부 투명 전극층(105)은 전하 수집층(103)에 의해 수집된 전하에 대응하는 전하가 대전된다. 하부 투명 전극층(105)은 배면광이 제2 광 도전층(104)에 도달될 수 있도록 투명한 물질로 형성된다. 하부 투명 전극층(105)은 ITO(Indium Tin Oxide) 및 IZO(Indium Zinc Oxide)와 같은 물질로 형성될 수 있다. 제2 광 도전층(104)에서 배면광에 의해 양전하 및 음전하 쌍이 생성되면, 하부 투명 전극층(105)에는 전하 수집층(103)에서 수집된 전하에 대응하는 반대 극성의 전하가 대전된다.
데이터 처리부(200)는 하부 투명 전극층(105)으로부터 대전된 전하에 대응하는 신호를 판독하여 방사선 영상을 생성한다. 도 1의 방사선 검출기(10)는 실제 이용되는 방사선 검출기의 한 픽셀에 대응하는 구조의 단면을 나타내는 것으로, 방사선 영상을 구성하는 픽셀 어레이에서 픽셀 별로 또는 픽셀 열 단위로 하부 투명 전극층(105)에 판독된 신호를 이용하여 전체 방사선 영상이 획득될 수 있다.
도 2는 전하 수집층을 사이에 두는 2개의 광 도전층의 동작을 나타내는 도면이다.
방사선이 조사되면, 상부 전극층(101)을 통해 방사선이 제1 광 도전층(102)에 전달되고, 제1 광 도전층(102)내에서 양전하 및 음전하 쌍이 생성된다. 상부 전극층(101)에 인가된 고전압(예를 들어, 4kV)에 의해 전기장이 형성되고, 제1 광 도전층(102)에서 생된 양전하 및 음전하 쌍은 전기장을 따라 서로 다른 방향으로 분포된다. 따라서, 전하 수집층(103)에는 양전하 또는 음전하가 수집된다. 상부 전극층(101)에 음(-) 전위가 인가되면, 제1 광 도전층(102)에서 발생된 양전하는 상부 전극층(101)으로 이동하고, 음전하는 전하 수집층(103)으로 이동한다.
전하 수집층(103)을 사이에 두고 형성된 제1 광 도전층(102) 및 제2 광 도전층(104)은 회로적인 관점에서, 도 2에 도시된 바와 같이, 직렬 연결된 커패시터로서 동작할 수 있다.
[규칙 제91조에 의한 정정 29.10.2010] 
커패시턴스(C)와 에너지(W)는
Figure WO-DOC-FIGURE-31a
의 관계에 있으며, 제1 광 도전층(102)의 전하량(Q1) 및 제2 광 도전층(104)의 전하량(Q2)는 동일하므로,
Figure WO-DOC-FIGURE-31b
이 성립한다. 여기에서, C1 및 C2는 각각 제1 광 도전층(102) 및 제2 광 도전층(104)의 커패시턴스를 나타내고, V1 및 V2는 각각 제1 광 도전층(102) 및 제2 광 도전층(104)의 전압을 나타낸다. 또한,
Figure WO-DOC-FIGURE-31c
Figure WO-DOC-FIGURE-31d
의 관계가 있으므로,
Figure WO-DOC-FIGURE-31e
가 성립된다.
제1 광 도전층(102)의 두께(d1)는 제2 광 도전층(104)의 두께(d2)보다 훨씬 두껍게 되도록 형성된다. 예를 들어, 제1 광 도전층(102)의 두께(d1)는 대략 500㎛이고, 제2 광 도전층(102)의 두께(d2)는 대략 7 내지 12㎛일 수 있다. 따라서, 제2 광 도전층(104)에 걸리는 전기장(E2)의 크기는 제1 광 도전층(102)에 걸리는 전기장(E1)의 크기보다 크게 된다. 또한, 상부 전극층(101)에 영상 기록 단계에서 고전압을 걸었다가, 판독 과정에서는 그라운드로 설정되므로, 제2 광 도전층(104)에 대부분의 전기장이 걸리게 된다.
도 2에 도시된 바와 같은 구조에서, 제1 광 도전층(102)에서 생성된 전하(양전하 또는 음전하)는 전하 수집층(103)과 제1 광 도전층(102) 사이의 에너지 장벽 차이에 의해 블로킹(blocking)된다. 블로킹된 전자는 외부에 전기장이나 온도 변화에 의해 에너지 장벽이 낮아지면, 전자가 장벽을 지나갈 수 있게 된다. 제1 광 도전층(102)에 걸리는 전기장은 상대적으로 제2 광 도전층(104)에 걸리는 전기장보다 훨씬 작기 때문에, 제1 광 도전층(102)과 전하 수집층(103) 사이의 에너지 장벽을 넘을 수 있는 외부 에너지가 없으므로, 전하가 전하 수집층(103)에 블로킹된다.
전하 수집층(103)에서 음전하가 블로킹된 경우, 제2 광 도전층(104)에 배면광이 조사되면, 제2 광 도전층(104) 내부에서 양전하 및 음전하 쌍이 생성된다. 이 경우, 제2 광 도전층(104)의 양전하는 전하 수집층(103)쪽으로 이동하여, 전하 수집층(103)의 표면은 중성화(neutralization)된다. 제2 광 도전층(104)에서 생성된 음전하는 하부 투명 전극층(105)으로 이동하여 판독된다. 이와 같은 방법으로, 전하 수집층(103)에서 수집된 음전하들이 판독되고, 영상 처리 과정을 거처 방사선 영상이 획득될 수 있다.
전하 수집층(103)과 제1 광 도전층(102)의 접합면에서의 에너지 밴드는 전하 수집층(103)을 구성하는 전도성 물질의 일함수와 제1 광 도전층(102)의 일함수 차이에 의존적이며, 전하 수집층(103)과 제1 광 도전층(102)의 두께 및 비저항 등 물성적은 특성에 따라 조절될 수 있다.
이와 같은 원리에 의해 전하 수집층(103)에 방사선 조사에 따른 영상에 대응하는 전하를 수집하기 위해서, 전하 수집층(103)은 메탈층, 유전체층, 또는 메탈층 및 유전체층의 조합으로 구성될 수 있다. 전하 수집층(103)이 메탈층인 경우, 은, 구리, 금, 알루미늄, 칼슘, 텅스텐, 아연, 니켈, 철, 플래티늄, 주석, 납, 망간, 콘스탄탄(constantan), 수은, 니크롬(nichrome), 카본, 게르마늄, 실리콘, 유리, 쿼츠(Quartz), PET(polyethylene terephthalate), 테플론 등이 이용될 수 있다. 유전체층으로는, BCB, 파릴린(Parylene), a-C:H(F), PI(Polyimide), 폴리아릴렌 에테르(Polyarylene ether), FAC(Fluorinated Amorphous Carbon)과 같은 유기 유전 물질, SiO2, Si3N4, Polysilsequioxane, Methyl silane 등과 같은 무기 유전 물질, Xetogel/Aerogel, PCL(Polycaprolactone) 등과 같은 다공성 유전 물질 등이 이용될 수 있다. 전하 수집층(103)을 메탈층, 유전체층, 또는 메탈층 및 유전체층의 조합으로 구성하면, 제1 광 도전층(102)에서 생성된 전하를 효율적으로 전달받을 수 있으며, 제조가 간단하며, 짧은 시간에 저비용으로 방사선 검출기를 제조할 수 있다. 특히, 전하 수집층(103)을 도핑된 반도체를 이용하는 경우에 비하여 제조 비용을 줄이고 쉽게 제조할 있게 된다.
도 3은 PDP 기반의 방사선 검출기의 단면의 일 예를 나타내는 도면이다.
도 3의 방사선 검출기(20)는 상부 전극층(101), 제1 광 도전층(102), 전하 수집층(103), 제2 광 도전층(104), 하부 투명 전극층(105), 중간 기판(106) 및 PDP(110)를 포함한다. 도 1에 도시된 바와 같이, 방사선 검출기(20)는 상부 전극층(101), 제1 광 도전층(102), 전하 수집층(103), 제2 광 도전층(104), 하부 투명 전극층(105) 및 PDP(110)이 순서대로 적층되어 형성된다. 중간 기판(106)은 상부 전극층(101), 제1 광 도전층(102), 전하 수집층(103), 제2 광 도전층(104), 하부 투명 전극층(105)을 지지하는 것으로 유리 등이 이용될 수 있다.
상부 전극층(101), 제1 광 도전층(102), 전하 수집층(103), 제2 광 도전층(104), 하부 투명 전극층(105)은 도 1의 구성과 동일하다.
PDP(110)는 배면광으로서 플라즈마 광을 제공한다. PDP(110)는 제1 기판(111), 격벽(112), 가스층(113), 형광층(114), 절연층(115), 전극(116) 및 제2 기판(117)을 포함할 수 있다.
제1 기판(111) 및 제2 기판(117)은 서로 대향하도록 배치된다.
격벽(112)은 2개의 기판(111, 117) 내부에 셀 구조를 형성한다. 구체적으로는, 격벽(112)은 제1 기판(111)과 절연층(115) 사이에 형성되어, 밀폐된 셀 구조를 형성시킨다. 격벽(112)은 PDP(110)의 픽셀을 구분하도록 형성된다. 격벽(112)은 픽셀 간의 크로스 토크를 방지하며, 2방향으로 둘러 싸여져 있거나 원하는 픽셀 모양에 따라 2 방향, 6 방향, 8 방향 등 여러 가지 모양을 가질 수 있으며, 기판의 해상력을 결정한다. 격벽(112)은 기존의 PDP 제작 방법으로 제작될 수 있으며, 각 픽셀 내에서 방사선의 반응 면적을 높이기 위하여 면적 및 높이가 조정될 수 있다.
가스층(113)은 격벽(112)에 의해 형성되는 셀 구조의 내부 챔버에 포함되어, 전극(117)에 의하여 플라즈마 발광을 일으킨다. 플라즈마 광은 하부 투명 전극층(105)에 제공된다.
형광층(114)은 가스층(113)에서 발생된 플라즈마 광이 반사되어 하부 투명 전극층(105)에 더 높은 조도의 플라즈마 광이 전달되도록 형성된다. 형광층(114)은 도 1에 도시된 바와 같이 격벽(112)과 절연층(115)의 일 측면에 형성될 수 있다. 형광층(114)은 선택적으로 포함될 수 있다.
절연층(115)은 제2 기판(117) 위에 형성되며, 유전체층으로 형성될 수 있다. 절연층(115)은 픽셀 단위로 배치되는 전극(116) 간 쇼트를 방지하며, 누설 전류를 방지하기 위한 층이다. 전극(116)은 가스층(113)에 플라즈마를 발생시키기 위한 전원을 전달한다.
도 4a 내지 도 4e는 전하 수집층(103)이 메탈층으로 형성되는 방사선 검출기의 동작 과정을 나타내는 도면이다.
도 4a 내지 도 4e의 방사선 검출기(30)는 전하 수집층(103)이 메탈층(103-1)으로 형성되는 점을 제외하고 도 3의 방사선 검출기(20)와 동일하다. 도면에서, +는 양전하를 나타내고, -는 음전하를 나타낸다.
도 4a에 도시된 바와 같이, X선과 같은 방사선이 조사되면, 상부 전극층(101)을 통해 방사선이 제1 광 도전층(102)에 전달되고, 제1 광 도전층(102)내에서 양전하 및 음전하 쌍이 생성된다. 상부 전극층(101)에 높은 전압이 인가되어, 양전하 및 음전하가 상하로 분리된다. 제1 광 도전층(102)에 음 전위가 걸리면, 양전하는 상부 전극층(101)쪽으로 이동하고, 음전하는 전하 수집층(103)쪽으로 이동한다.
제1 광 도전층(102)에서 생성된 음전하는 전하 수집층(103)으로 이동되어, 전하 수집층(103)은 제1 광 도전층(102)의 음전하를 수집한다. 전술한 바와 같이, 전하 수집층(103)이 전하를 수집하는 동작은, 제1 광 도전층(102)과 전하 수집층(103) 사이의 계면에 전하가 쌓이는 것을 의미한다. 전하 수집층(103)과 제1 광 도전층(102)의 계면에서 쌓이는 음전하는 도 2를 참조하여 설명한 바와 같이, 제1 광 도전층(102)에 걸리는 약한 전기장(E1)에 의해 블로킹된다. 방사선 검출기(30) 위에 인체와 같은 대상물이 있는 경우, 방사선의 대상물을 투과한 정도가 대상물의 성분 및 형태에 따라 다를 것이므로, 제1 광 도전층(102)에서 생성되는 양전하 및 음전하 쌍 및 전하 수집층(103)에서 수집되는 음전하의 양도 달라질 것이다. 따라서, 전하 수집층(103)에 의해 수집된 음전하는 검출되는 영상에 대응한다.
또한, 전하 수집층(103)에 음전하가 수집되면, 제2 광 도전층(104)이 커패시터로 기능하게 되어, 도 4b에 도시된 바와 같이, 하부 투명 전극층(105)에는 전하 수집층(103)에는 양전하가 대전된다. 하부 투명 전극층(105)에는 전하 수집층(103)에서 수집된 음전하의 개수에 대응하는 양전하가 대전된다.
다음으로, 영상 판독 과정에 대하여 설명한다. PDP(110)의 픽셀 어레이 중 첫 번째 라인의 픽셀들을 턴 온 하면, 첫 번째 라인의 픽셀들에서 플라즈마 광이 방출된다. 그러면, PDP(110) 픽셀의 첫 번째 라인에 대응되는 플라즈마 광이 하부 투명 전극층(105)을 투과하여 제2 광 도전층(104)에 도달한다.
제2 광 도전층(104)은 도달된 플라즈마 광으로 인하여 양전하 및 음전하 쌍을 생성한다. PDP(110)의 첫 번째 라인의 픽셀에만 광이 방출되므로, 제2 광 도전층(104)의 첫 번째 라인의 픽셀에 대응하는 영역에서 양전하 및 음전하 쌍이 생성된다. 도 4c에 도시된 바와 같이, 제2 광 도전층(104)에서 생성된 양전하 및 음전하는 전하 수집층(103)에 수집된 음전하 및 하부 투명 전극층(105)에 대전된 양전하에 의하여 전기적 인력에 의해 분리된다.
도 4d에 도시된 바와 같이, 하부 투명 전극층(105)에 대전된 양전하에 의해 첫 번째 라인의 픽셀에 대응하는 영역에서 제2 광 도전층(104)에 의해 생성된 음전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다. 제2 광 도전층(104)에서 생성된 양전하는 전하 수집층(103)에 의해 수집된 음전하에 의하여 전하 수집층(103)으로 이동하여, 전하 수집층(103)은 중성화된다.
다음으로, 도 4e를 참조하면, PDP(110)의 첫 번째 라인의 픽셀 전극을 오프하고, 2번째 라인의 픽셀 전극에 전압을 인가한 것을 나타낸다. 2번째 라인의 픽셀들에서 플라즈마 광이 발생되면, 제2 광 도전층(104)의 2번째 라인의 픽셀에 대응하는 영역에서 양전하 및 음전하 쌍이 생성된다. 제2 광 도전층(104)에서 생성된 양전하 및 음전하는 전하 수집층(103)에 수집된 음전하 및 하부 투명 전극층(105)에 대전된 양전하에 의하여 전기적 인력에 의해 분리된다. 하부 투명 전극층(105)에 대전된 양전하에 의해 제2 광 도전층(104)의 2번째 라인에 대응하는 영역에서 생성된 음전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다.
3번째 라인의 픽셀에 대해서도 전술한 동작이 수행되어, 제2 광 도전층(104)의 3번째 라인에 대응하는 영역에서 생성된 음전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다. 이와 같은 동작이, 방사선 검출기(30)의 전체 픽셀 라인에 대해 모두 수행되면, 방사선 검출기(30) 상부에 위치되는 대상체에 대한 방사선 영상이 획득될 수 있다.
도 5a 내지 도 5d는 도 3의 전하 수집층(103)이 유전체층(103-2)으로 구성되는 방사선 검출기(40)의 동작을 나타낸다.
도 5a 내지 도 5d 방사선 검출기(40)는 전하 수집층(103)이 유전체층(103-2)으로 형성되는 점을 제외하고 도 3의 방사선 검출기(20)와 동일하다.
도 5a에 도시된 바와 같이, 방사선이 조사되면, 상부 전극층(101)을 통해 방사선이 제1 광 도전층(102)에 전달되고, 제1 광 도전층(102)내에서 양전하 및 음전하 쌍이 생성된다. 상부 전극층(101)에 높은 전압이 인가되어, 양전하 및 음전하가 상하로 분리된다. 예를 들어, 제1 광 도전층(102)에 음 전위가 걸리면, 제1 광 도전층(102)의 양전하는 상부 전극층(101)쪽으로 이동하고, 음전하는 유전체층(103-2)쪽으로 이동한다.
제1 광 도전층(102)에서 유전체층(103-2)쪽으로 이동된 음전하에 의해서, 유전체층(103-2) 내부에서 분극이 일어나고, 분극된 유전체층(103-2)의 쌍극자(dipole)가 도 5b에 도시된 바와 같이 배열된다.
도 5b에 도시된 바와 같이 쌍극자의 +극이 배치되면, 하부 투명 전극층(105)에는 양전하가 대전된다. 하부 투명 전극층(105)에는 유전체층(103-2)에서 분극된 쌍극자의 개수에 대응하는 양전하가 대전된다.
다음으로, 영상 판독 과정에 대하여 설명한다.
상부 전극층(101)을 접지 연결하고, 이 상태에서, PDP(110)의 픽셀 어레이의 첫 번째 라인의 픽셀들을 턴 온 하면, 첫 번째 라인의 픽셀들에서 플라즈마 광이 방출된다. 그러면, 방출된 플라즈마 광은 PDP(110) 픽셀의 첫 번째 라인에 대응되는 영역의 하부 투명 전극층(105)을 투과하여 제2 광 도전층(104)에 도달한다.
제2 광 도전층(104)은 도달된 플라즈마 광으로 인하여 양전하 및 음전하 쌍을 생성한다. 도 5c에 도시된 바와 같이, PDP(110)의 첫 번째 라인의 픽셀에만 광이 방출되므로, 제2 광 도전층(104)의 첫 번째 라인의 픽셀에 대응하는 영역에서 양전하 및 음전하 쌍이 생성된다. 생성된 양전하 및 음전하는 유전체층(103-2)에 분극된 쌍극자 및 하부 투명 전극층(105)에 대전된 양전하에 의하여 전기적 인력에 의해 분리된다.
도 5d에 도시된 바와 같이, 하부 투명 전극층(105)에 대전된 양전하에 의해 첫 번째 라인의 픽셀에 대응하는 영역에서 제2 광 도전층(104)에 의해 생성된 음전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다. 제2 광 도전층(104)에서 생성된 양전하는 유전체층(103-2)에 의해 분극된 쌍극자에 의하여 유전체층(103-2)으로 이동된다.
다음으로, PDP(110)의 첫 번째 라인의 픽셀을 오프하고, 2번째 라인의 픽셀 전극에 전압을 인가하면, 2번째 라인에 대응하는 영역에서, 제2 광 도전층(104)의 2번째 라인의 픽셀에 대응하는 영역에서만 양전하 및 음전하 쌍이 생성된다. 생성된 양전하 및 음전하는 유전체층(103-2)의 쌍극자 및 하부 투명 전극층(105)에 대전된 양전하에 의하여 전기적 인력에 의해 분리된다. 하부 투명 전극층(105)에 대전된 양전하에 의해 제2 광 도전층(104)의 2번째 라인에 대응하는 영역에서 생성된 음전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다.
다음으로, 세 번째 라인의 픽셀에 대해서도 전술한 동작이 수행되어, 제2 광 도전층(104)의 3번째 라인에 대응하는 영역에서 생성된 음전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다. 이와 같은 동작이, 방사선 검출기(40)의 전체 픽셀 라인에 대해 모두 수행되면, 대상체에 대한 방사선 영상이 획득될 수 있다.
도 6a 내지 도 6d는 도 3의 전하 수집층(103)이 유전체층(103-2) 및 메탈층(103-1)로 구성되는 방사선 검출기의 동작 과정을 나타내는 도면이다.
도 6a 내지 도 6d 방사선 검출기(50)는 전하 수집층(103)이 유전체층(103-2) 및 메탈층(103-1)으로 형성되는 점을 제외하고 도 3의 방사선 검출기(20)와 동일하다.
도 6a에 도시된 바와 같이, 방사선이 조사되면, 상부 전극층(101)을 통해 방사선이 제1 광 도전층(102)에 전달되고, 제1 광 도전층(102)내에서 양전하 및 음전하 쌍이 생성된다. 상부 전극층(101)에 높은 전압이 인가되어, 양전하 및 음전하가 상하로 분리된다. 예를 들어, 상부전극층(101)에 음 전위가 걸리면, 제1 광 도전층(102)의 양전하는 상부 전극층(101)쪽으로 이동하고, 제1 광 도전층(102)의 음전하는 유전체층(103-2)쪽으로 이동한다.
제1 광 도전층(102)에서 유전체층(103-2)쪽으로 이동된 음전하에 의해서, 유전체층(103-2) 내부에서 분극이 일어나고, 분극된 유전체층(103-2)의 쌍극자(dipole)가 도 6b에 도시된 바와 같이 배치된다.
도 6b에 도시된 바와 같이, 쌍극자의 +극이 배치되면, 메탈층(103-1)에는 쌍극자에 대응하는 양전하가 대전된다. 또한, 하부 투명 전극층(105)에는 메탈층(103-1)에서 대전된 양전하에 의해 음전하가 대전된다. 하부 투명 전극층(105)에는 유전체층(103-2)에서 분극된 쌍극자의 개수에 대응하는 음전하가 대전된다.
다음으로, 영상 판독 과정에 대하여 설명한다. 상부 전극층(101)을 접지 연결하고, 이 상태에서, PDP(110)의 픽셀 어레이의 첫 번째 라인의 픽셀들을 턴 온 하면, 첫 번째 라인의 픽셀들에서 플라즈마 광이 방출된다. 그러면, 플라즈마 광은 PDP(110) 픽셀의 첫 번째 라인에 대응되는 영역의 하부 투명 전극층(105)을 투과하여 제2 광 도전층(104)에 도달한다.
제2 광 도전층(104)은 도달된 플라즈마 광으로 인하여 양전하 및 음전하 쌍을 생성한다. 도 6c에 도시된 바와 같이, PDP(110)의 첫 번째 라인의 픽셀에만 광이 방출되므로, 제2 광 도전층(104)의 첫 번째 라인의 픽셀에 대응하는 영역에서만 양전하 및 음전하 쌍이 생성된다. 제2 광 도전층(104)에서 생성된 양전하 및 음전하는 메탈층(103-1)에 수집된 양전하 및 하부 투명 전극층(105)에 대전된 음전하에 의하여 전기적 인력에 의해 분리된다.
도 6d에 도시된 바와 같이, 하부 투명 전극층(105)에 대전된 음전하에 의해 첫 번째 라인의 픽셀에 대응하는 영역에서 제2 광 도전층(104)에 의해 생성된 양전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다.
다음으로, PDP(110)의 첫 번째 라인의 픽셀을 오프하고, 2번째 라인의 픽셀 전극에 전압을 인가하면, 2번째 라인에 대응하는 영역에서, 제2 광 도전층(104)의 2 번째 라인의 픽셀에 대응하는 영역에서만 양전하 및 음전하 쌍이 생성된다. 생성된 양전하 및 음전하는 메탈층(103-1)에 수집된 양전하 및 하부 투명 전극층(105)에 대전된 음전하에 의하여 전기적 인력에 의해 분리된다. 하부 투명 전극층(105)에 대전된 음전하에 의해 제2 광 도전층(104)의 2번째 라인에 대응하는 영역에서 생성된 양전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다.
다음으로, 3번째 라인의 픽셀에 대해서도 전술한 동작이 수행되어, 제2 광 도전층(104)의 3번째 라인에 대응하는 영역에서 생성된 양전하가 데이터 처리부(200)로 판독되어 영상 신호 처리될 수 있다. 이와 같은 동작이, 방사선 검출기(50)의 전체 픽셀 라인에 대해 모두 수행되면, 대상체에 대한 방사선 영상이 획득될 수 있다.
도 7은 본 발명의 일 실시예에 따른 방사선 검출 방법을 나타내는 순서도이다.
상부 전극층(101)에 고전압이 인가되고(710), 이 상태에서 방사선이 조사된다(720). 그러면, 제1 광 도전층(102)에서 양전하 및 음전하 쌍이 생성된다(730). 생성된 양전하 및 음전하 쌍이 각각 상부 전극층(101) 및 전하 수집층(103)쪽으로 분리되고, 양전하 또는 음전하가 전하 수집층(103)에 누적되어 수집된다(740). 예를 들어, 상부 전극층(101)에 음(-) 전위가 인가되면, 전하 수집층(103)에는 음전하가 수집될 수 있다. 이에 따라, 하부 투명 전극층(105)에는 전하 수집층(103)에 수집된 전하에 대응하는 반대 극성의 전하로 대전된다.
상부 전극층(101)에 고전압 인가가 중단되고, 접지 연결된다(750). 플라즈마 광과 같은 배면광이 조사되면(760), 그에 따라 제2 광 도전층(104)에서 양전하 및 음전하 쌍이 생성된다(770).
제2 광 도전층(104)에서 생성된 양전하 또는 음전하가 하부 투명 전극층(105)으로부터 전하 수집층(103)에 수집된 전하에 대응하는 신호를 판독한다(780). 모든 픽셀 어레이 전체에 대해 신호가 판독되면, 판독된 신호를 이용하여 방사선 영상을 생성한다(790).
전하 수집층(103)은 유전체층(103-2)인 경우, 전하 수집층(103)의 분극된 양전하 또는 음전하에 의하여, 전하 수집층(103)에서 분극에 의한 쌍극자가 생성되어 배열된다. 그러면, 하부 투명 전극층(105)에서는 전하 수집층(103)에서 배열된 쌍극자에 대응하여 대전이 일어나고, 그에 따라 제2 광 도전층(104)에서 생성된 양전하 또는 음전하가 하부 투명 전극층(105)으로 이끌려져서, 제2 광 도전층(104)으로부터 전달된 전하를 이용하여 하부 투명 전극층(105)에서 전하 수집층(103)의 쌍극자에 대응하는 신호가 판독될 수 있다.
전하 수집층(103)은 메탈층(103-1) 및 유전체층(103-2)을 포함하여 구성되고, 유전체층(103-2)이 제1 광 도전층(102)에 접하고, 메탈층(103-1)이 제2 광 도전층(104)에 접하는 경우, 제1 광 도전층(102)에서 생성되어 전하 수집층(103)쪽으로 분리된 양전하 또는 음전하에 의하여, 유전체층(103-2)에서 분극에 의한 쌍극자가 생성되어 배열된다. 이러한 쌍극자 배열에 따라 메탈층(103-1)에 쌍극자에 대응하는 전하가 대전될 것이다.
이에 따라, 하부 투명 전극층(105)에 메탈층(103-1)에 의해 대전된 전하와 반대 극성의 전하 예를 들어, 양전하가 대전되고, 신호 판독 단계에서는, 제2 광 도전층(104)에서 배면광에 의해 생성된 양전하가 하부 투명 전극층(105)에 대전된 양전하로 이끌려서, 하부 투명 전극층(105)에서 유전체층(103-2)의 쌍극자 또는 메탈층(103-1)에서 대전된 전하에 대응하는 신호가 판독될 수 있다.
도 8은 다른 실시예에 따른 방사선 검출기를 나타내는 도면이다.
방사선 검출기(60)는 상부 전극층(101), 제1 광 도전층(102), 전하 수집층(103), 제2 광 도전층(104), 하부 투명 전극층(105), 마이크로렌즈 층(120) 및 PDP(110)를 포함한다.
방사선 검출기(60)는 도 3의 방사선 검출기(20)에 비하여 하부 투명 전극층(105)과 PDP(110) 사이에 중간 기판(106) 대신 마이크로렌즈층(120)을 포함하는 점에서 차이가 있으며, 나머지 구성요소(101, 102, 103, 104, 105, 110)는 모두 동일하다.
마이크로렌즈층(120)은 픽셀 단위로 형성된 마이크로렌즈들을 포함한다. 마이크로렌즈층(120)에 포함되어, 픽셀 단위로 형성된 마이크로렌즈(121)는, 배면광이 마이크로렌즈(121)를 통과하여, 대응하는 픽셀 영역에만 배면광이 조사되도록 하기 위하여 배면광을 집광하도록 형성될 수 있다. 마이크로렌즈(121)는 볼록렌즈로 형성될 수 있다.
전하 수집층(103)은, 전술한 바와 같이, 메탈층, 유전체층 또는 메탈층 및 유전체층의 조합으로 형성될 수 있다.
방사선 검출기(60)의 동작은 도 3의 방사선 검출기(20)의 동작과 유사하다. 따라서, 전하 수집층(103)에 제1 광 도전층(102)에서 생성된 전하가 수집되고, 영상 판독 과정에서, 전하 수집층(103)에 수집된 전하에 대응하는 방사선 영상 판독된다. 방사선 영상 판독과정에서, PDP(110)의 첫 번째 라인을 턴 온 하면, 첫 번째 라인에서 빛이 방출되면, PDP(110) 픽셀의 첫 번째 라인에 대응되는 배면광이 마이크로렌즈층(120)을 거쳐서 하부 투명 전극층(105)을 투과하여 제2 광 도전층(104)에 도달한다.
마이크로렌즈층(120)의 마이크로렌즈(121)에 의해서, PDP(110) 픽셀의 첫 번째 라인에 대응되는 배면광은 배면광의 조사된 픽셀 영역 외부의 주변 픽셀로 전달되지 않고 집적되어 하부 투명 전극(105)을 투과하여 제2 광 도전층(104)에 도달될 수 있다. 따라서, PDP(110) 픽셀의 첫 번째 라인에 대응하는 영역의 제2 광 도전층(104)에서만 양전하 및 음전하 쌍이 생성되고, 영상 판독 과정에서, 전하 수집층(103)의 PDP(110) 픽셀의 첫 번째 라인에 대응하는 영역에 대전된 전하에 대응하는 신호가 판독될 수 있다. 따라서, 픽셀 단위로 스캔하는 방식으로 방사선 영상을 생성할 때, 노이즈를 저감하고 고해상도의 방사선 영상을 획득할 수 있다.
도 9는 또 다른 실시예에 따른 방사선 검출기를 나타내는 도면이다.
도 9의 방사선 검출기(70)는 상부 전극층(101), 제1 광 도전층(102), 전하 수집층(103), 제2 광 도전층(104), 하부 투명 전극층(105), 중간 기판(106) 및 PDP(110)를 포함한다.
방사선 검출기(70)는 도 3의 방사선 검출기(20)에 비하여 제2 광 도전층(104)에 다수 개의 격벽(131)이 포함되는 점에서 차이가 있으며, 나머지 구성요소(101, 102, 103, 104, 105, 110)는 모두 동일하다.
제2 광 도전층(104)에 포함된 격벽(131)은 픽셀을 구분하도록 형성된다. 제2 광 도전층(104)의 격벽은, 배면광에 의해 제2 광 도전층(104)에 양전하 및 음전하 쌍이 생성될 때, 배면광에 조사되는 픽셀 영역 외부로 배면광이 조사된 픽셀 영역에서 생성된 전하가 빠져나가거나 픽셀 영역 외부에서 생성된 전하가 픽셀 영역으로 들어오는 것을 방지하도록 형성될 수 있다. 격벽(131)은 격벽(112)과 같은 방식으로 형성될 수 있다.
방사선 검출기(70)의 동작은 도 3의 방사선 검출기(20)의 동작과 유사하다. 따라서, 전하 수집층(103)에 제1 광 도전층(102)에서 생성된 전하가 수집되고, 영상 판독 과정에서, 전하 수집층(103)에 수집된 전하에 대응하는 방사선 영상이 판독된다. 방사선 영상 판독과정에서, PDP(110)의 첫 번째 라인을 턴 온 하면, 첫 번째 라인에서 빛이 방출되면, PDP(110) 픽셀의 첫 번째 라인에 대응되는 배면광이 하부 투명 전극층(105)을 투과하여 제2 광 도전층(104)에 도달한다. 따라서, PDP(110) 픽셀의 첫 번째 라인에 대응하는 영역의 제2 광 도전층(104)에서만 양전하 및 음전하 쌍이 생성된다. 따라서, 전하 수집층(103)의 PDP(110) 픽셀의 첫 번째 라인에 대응하는 영역에 대전된 전하에 대응하는 신호가 판독될 수 있다.
이 때, 제2 광 도전층(104)의 배면광 조사가 의도된 픽셀 영역 외의 주변 영역에서 전하(즉, 양전하 및 음전하 쌍)이 생성되더라도, 의도된 픽셀 영역 외의 영역에서 생성된 전하는 하부 투명 전극층(105)에 형성된 격벽에 의하여 의도된 픽셀 영역 내로 들어오는 것이 방지되어, 배면광 조사가 의도된 첫 번째 라인에 대응하는 영역의 양전하 또는 음전하만 하부 투명 전극층(104)으로 판독될 수 있다. 또한, 하부 투명 전극층(105)에 형성된 격벽에 의하여, 제2 광 도전층(104)의 배면광 조사가 의도된 픽셀 영역에서 생성된 전하가 픽셀 외부로 빠져나가는 것이 방지될 수 있다. 따라서, 픽셀 단위로 스캔하는 방식으로 방사선 영상을 생성할 때, 노이즈를 저감하고 고해상도의 방사선 영상을 획득할 수 있다.
이상의 설명은 본 발명의 일 실시예에 불과할 뿐, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현할 수 있을 것이다. 따라서, 본 발명의 범위는 전술한 실시예에 한정되지 않고 특허 청구범위에 기재된 내용과 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.

Claims (14)

  1. 방사선을 전달하는 상부 전극층;
    상기 전달된 방사선에 의해 광 도전성을 나타내는 제1 광 도전층;
    상기 제1 광 도전층에서 광 도전성에 의하여 생성되는 전하를 수집하는 전하 수집층;
    판독을 위한 배면광에 의해 광 도전성을 나타내는 제2 광 도전층;
    상기 전하 수집층에 의해 수집된 전하에 의해 대전되는 하부 투명 전극층;
    상기 하부 투명 전극층 및 상기 배면광 조사부 사이에 배치되며, 픽셀 단위로 형성된 마이크로렌즈 층; 및
    픽셀 단위로 상기 마이크로렌즈 층 및 상기 하부 투명 전극층을 통해 상기 제2 광 도전층으로 배면광을 인가하는 배면광 조사부를 포함하는 방사선 검출기.
  2. 제1항에 있어서,
    상기 마이크로렌즈층에 포함되어, 픽셀 단위로 형성된 마이크로렌즈는, 상기 배면광이 상기 마이크로렌즈를 통과하여, 대응하는 픽셀 영역에만 배면광이 조사되도록 상기 배면광을 집광하는 볼록렌즈로 형성되는 방사선 검출기.
  3. 제1항에 있어서,
    상기 전하 수집층은 메탈인 방사선 검출기.
  4. 제1항에 있어서,
    상기 전하 수집층은 유전체인 방사선 검출기.
  5. 제1항에 있어서,
    상기 전하 수집층은 메탈층 및 유전체층을 포함하는 방사선 검출기.
  6. 제1항에 있어서,
    상기 전하 수집층에서 전하를 수집하는 과정에서 상기 상부 전극층에 고전압이 인가되고, 상기 하부 투명 전극층으로부터 전하를 판독하는 과정에서 상기 상부 전극층은 접지되는 방사선 검출기.
  7. 제1항에 있어서,
    상기 배면광 조사부는,
    서로 대향하는 2개의 기판과, 상기 2개의 기판 내부에 셀 구조를 형성하는 격벽, 상기 격벽에 의해 형성되는 셀 구조의 내부 챔버에 포함되어 플라즈마 발광을 일으키는 가스층을 포함하며, 상기 하부 투명 전극층에 상기 배면광으로서 상기 플라즈마 광을 제공하는 플라즈마 디스플레이 패널을 포함하는 방사선 검출기.
  8. 제1항에 있어서,
    상기 배면광 조사에 따라 상기 하부 투명 전극층으로부터 상기 전하 수집층에 수집된 전하에 대응하는 신호를 판독하고, 상기 판독된 신호를 이용하여 방사선 영상을 생성하는 데이터 처리부를 더 포함하는 방사선 검출기.
  9. 방사선을 전달하는 상부 전극층;
    상기 방사선에 의해 광 도전성을 나타내는 제1 광 도전층;
    상기 제1 광 도전층에서 광 도전성에 의한 전하를 수집하는 전하 수집층;
    판독을 위한 배면광에 의해 광 도전성을 나타내며, 픽셀을 구분하기 위한 격벽을 포함하는 제2 광 도전층;
    상기 전하 수집층에 의해 수집된 전하에 의해 대전되는 하부 투명 전극층;
    픽셀 단위로 상기 하부 투명 전극층을 통해 상기 제2 광 도전층으로 배면광을 인가하는 배면광 조사부를 포함하는 방사선 검출기.
  10. 제9항에 있어서,
    상기 제2 광 도전층의 격벽은, 상기 배면광에 의해 상기 제2 광 도전층에 양전하 및 음전하 쌍이 생성될 때, 상기 배면광에 조사되는 픽셀 영역 외부로 상기 생성된 전하가 빠져나가거나 상기 픽셀 영역 외부에서 생성된 전하가 상기 픽셀 영역으로 들어오는 것을 방지하도록 형성되는 방사선 검출기.
  11. 제9항에 있어서,
    상기 전하 수집층은 메탈인 방사선 검출기.
  12. 제9항에 있어서,
    상기 전하 수집층은 유전체인 방사선 검출기.
  13. 제9항에 있어서,
    상기 전하 수집층은 메탈층 및 유전체층을 포함하는 방사선 검출기.
  14. 제9항에 있어서,
    상기 배면광 조사부는,
    서로 대향하는 2개의 기판과, 상기 2개의 기판 내부에 셀 구조를 형성하는 격벽, 상기 격벽에 의해 형성되는 셀 구조의 내부 챔버에 포함되어 플라즈마 발광을 일으키는 가스층을 포함하며, 상기 하부 투명 전극층에 상기 플라즈마 광을 제공하는 플라즈마 디스플레이 패널을 포함하는 방사선 검출기.
PCT/KR2010/006691 2010-09-30 2010-09-30 방사선 검출기 및 방사선 검출 방법 WO2012043908A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/006691 WO2012043908A1 (ko) 2010-09-30 2010-09-30 방사선 검출기 및 방사선 검출 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/006691 WO2012043908A1 (ko) 2010-09-30 2010-09-30 방사선 검출기 및 방사선 검출 방법

Publications (1)

Publication Number Publication Date
WO2012043908A1 true WO2012043908A1 (ko) 2012-04-05

Family

ID=45893331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006691 WO2012043908A1 (ko) 2010-09-30 2010-09-30 방사선 검출기 및 방사선 검출 방법

Country Status (1)

Country Link
WO (1) WO2012043908A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030031927A (ko) * 2003-01-30 2003-04-23 학교법인 인제학원 패시브 매트릭스 형태의 엑스레이 검출기
US20030189175A1 (en) * 2002-04-03 2003-10-09 Lee Ji Ung Imaging array and methods for fabricating same
WO2007125862A1 (ja) * 2006-04-28 2007-11-08 Sumitomo Heavy Industries, Ltd. 放射線検出器および放射線検査装置
WO2007129742A1 (ja) * 2006-05-09 2007-11-15 Kabushiki Kaisha Toshiba 放射線検出器及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189175A1 (en) * 2002-04-03 2003-10-09 Lee Ji Ung Imaging array and methods for fabricating same
KR20030031927A (ko) * 2003-01-30 2003-04-23 학교법인 인제학원 패시브 매트릭스 형태의 엑스레이 검출기
WO2007125862A1 (ja) * 2006-04-28 2007-11-08 Sumitomo Heavy Industries, Ltd. 放射線検出器および放射線検査装置
WO2007129742A1 (ja) * 2006-05-09 2007-11-15 Kabushiki Kaisha Toshiba 放射線検出器及びその製造方法

Similar Documents

Publication Publication Date Title
US6259085B1 (en) Fully depleted back illuminated CCD
US9277896B2 (en) Radiation detection apparatus and radiation detection system
US8816294B2 (en) Photo diode for detecting X-ray and manufacturing method thereof
CN101467256A (zh) 放射线成像装置和放射线成像系统
CN104779261A (zh) 放射线检测器
US20090032719A1 (en) Image detection device
CN104396017B (zh) 制造x射线平板检测器的方法和x射线平板检测器tft阵列基板
CN107658361A (zh) 主动矩阵式影像感测装置
KR101164653B1 (ko) 방사선 검출기 및 방사선 검출 방법
WO2016010292A1 (en) Radiation detector
KR101217808B1 (ko) 방사선 검출기 및 방사선 검출 방법
WO2012043906A1 (ko) 방사선 검출기 및 방사선 검출 방법
WO2015084068A1 (ko) 엑스선 디텍터 및 이를 이용한 엑스선 영상장치와 이의 구동방법
JP2002217444A (ja) 放射線検出装置
KR20120057422A (ko) 엑스레이 검출기의 어레이 기판 및 그 제조방법
WO2012043908A1 (ko) 방사선 검출기 및 방사선 검출 방법
WO2012008635A1 (ko) 엑스선 검출기 및 검출방법
KR20180044681A (ko) 검출효율이 향상된 디지털 엑스레이 검출장치 및 그 제조방법
JP2013065825A (ja) 光電変換基板、放射線検出器、及び放射線画像撮影装置
CN103972249B (zh) 主动矩阵式影像感测面板及装置
JP2012114166A (ja) 検出装置及び放射線検出システム
WO2012043907A1 (ko) 방사선 검출 장치 및 방사선 검출 방법
KR20030031927A (ko) 패시브 매트릭스 형태의 엑스레이 검출기
WO2024080622A1 (ko) 엑스선 디텍터
WO2012128415A1 (ko) 격벽이 형성된 디지털 엑스선 영상 검출장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/06/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10857909

Country of ref document: EP

Kind code of ref document: A1