WO2012043859A1 - Particles each containing aminocarboxylic acid (salt), and granular detergent composition - Google Patents

Particles each containing aminocarboxylic acid (salt), and granular detergent composition Download PDF

Info

Publication number
WO2012043859A1
WO2012043859A1 PCT/JP2011/072806 JP2011072806W WO2012043859A1 WO 2012043859 A1 WO2012043859 A1 WO 2012043859A1 JP 2011072806 W JP2011072806 W JP 2011072806W WO 2012043859 A1 WO2012043859 A1 WO 2012043859A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
mass
aminocarboxylic acid
containing particles
component
Prior art date
Application number
PCT/JP2011/072806
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 西山
孝太郎 松井
達生 永野
大佑 小林
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010224126A external-priority patent/JP2013253118A/en
Priority claimed from JP2011049624A external-priority patent/JP2013253120A/en
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Priority to KR1020137006841A priority Critical patent/KR20130115226A/en
Publication of WO2012043859A1 publication Critical patent/WO2012043859A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts

Definitions

  • detergent compositions for clothing and the like are required to have a sterilizing effect in addition to a cleaning effect.
  • a composition in which an oxidation catalyst containing a chelating agent having a coordination position of 5 or less and a metal compound and a surfactant are blended has been proposed.
  • the chelating agent aminocarboxylates such as methylglycine diacetate, iminodisuccinate, and hydroxyiminodisuccinate are used (see Patent Document 1).
  • aminocarboxylate itself has a hygroscopic property, it tends to be agglomerated with other detergent raw materials when blended into a granular detergent composition. Therefore, the granular detergent composition containing an aminocarboxylate has a problem that solidification is likely to occur (so-called caking is likely to occur).
  • At least one polyethylene glycol or at least one nonionic surfactant or a mixture thereof, or methyl alcohol glycine diacetate (x) as an aminocarboxylate salt, or polyvinyl alcohol, polyvinyl pyrrolidone, polyalkylene glycol And a mixed powder or mixed granule in which a polymer (y) selected from the group consisting of derivatives thereof is used in combination has been proposed (see Patent Document 2).
  • the conventional granulated product of the oxidation catalyst has insufficient solubility in water (particularly solubility in water at a low temperature of about 10 ° C.).
  • a zinc compound (a) and an aminocarboxylic acid or a salt thereof (b) are contained, and the molar ratio represented by (a) / (b) is 0.5-6.
  • Aminocarboxylic acid (salt) -containing particles are contained, and the molar ratio represented by (a) / (b) is 0.5-6.
  • Aminocarboxylic acid (salt) -containing particles are contained, and the molar ratio represented by (a) / (b) is 0.5-6.
  • (2) The aminocarboxylic acid (salt) -containing particles according to (1) above, wherein the zinc compound is a sulfate.
  • aminocarboxylic acid (salt) -containing particles and a granular detergent composition that hardly cause solidification.
  • aminocarboxylic acid (salt) -containing particles means particles containing one or both of aminocarboxylic acid and aminocarboxylic acid salt.
  • melting point refers to a value measured by the melting point measurement method described in JIS K0064-1992 “Method for measuring melting point and melting range of chemical products”.
  • the moisture absorption rate of the aminocarboxylic acid (salt) -containing particles is preferably 50% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. When the moisture absorption is less than or equal to the upper limit, solidification is less likely to occur when blended in a granular detergent composition or the like.
  • the “moisture absorption rate” refers to a value measured by the following procedure. First, the sample is spread on a glass petri dish (inner diameter: 85 mm) so as to have a thickness of 5 mm, and is placed in a thermostat set at a temperature of 45 ° C. and a relative humidity of 80%. Next, at every elapsed time (every 60 minutes), the mass of the glass petri dish with the sample spread is measured in the thermostat and the change with time is recorded. And a moisture absorption rate (mass%) is calculated
  • “sample collection amount”, “sample preparation amount”, and “measurement value” are as follows.
  • the average particle size of the aminocarboxylic acid (salt) -containing particles is usually 150 to 2000 ⁇ m, preferably 200 to 1200 ⁇ m, more preferably 50 to 500 ⁇ m, still more preferably 70 to 350 ⁇ m, and more preferably 80 to 300 ⁇ m. Particularly preferred.
  • the average particle size is equal to or greater than the lower limit, dusting is suppressed when mixing with other detergent raw materials.
  • the solubility to water improves that it is below an upper limit.
  • the “average particle diameter” is measured as a volume-based median diameter by a laser light scattering method using a particle size distribution analyzer (LDSA-3400A (17ch), manufactured by Tohnichi Computer Applications Co., Ltd.).
  • the measurement object is classified using a 9-stage sieve having a mesh opening of 1680 ⁇ m, 1410 ⁇ m, 1190 ⁇ m, 1000 ⁇ m, 710 ⁇ m, 500 ⁇ m, 350 ⁇ m, 250 ⁇ m, and 149 ⁇ m and a tray.
  • the 9-stage sieve is stacked above the pan so that the openings gradually increase, and a sample of 100 g / time is placed on the top of the sieve having the top opening of 1680 ⁇ m.
  • the water content of the aminocarboxylic acid (salt) -containing particles is preferably 8% by mass or less, more preferably 5% by mass or less, and further preferably 0.3 to 4% by mass.
  • the moisture content indicates a value measured using an infrared moisture meter (product name: Kett moisture meter, manufactured by Kett Scientific Laboratory).
  • component (a) As the zinc compound (a) (hereinafter also referred to as “component (a)”), since granular detergent compositions and the like are usually used by being put into water, those which are easily dissolved in water are preferable. Includes a water-soluble salt of zinc. Examples of the water-soluble salts include nitrates, sulfates, chlorides, acetates, perchlorates, cyanides, ammonium chlorides, tartrates, gluconates, and hydrates thereof. Can do.
  • zinc nitrate, zinc sulfide, zinc sulfate, zinc chloride, zinc acetate, zinc cyanide, zinc chloride ammonium, zinc tartrate, zinc perchlorate, zinc gluconate, etc. are preferable.
  • zinc sulfate is more preferable, and anhydrous zinc sulfate, zinc sulfate monohydrate, and zinc sulfate heptahydrate are particularly preferable.
  • the dehydration / transition temperature of the component (a) exists within the range of temperature conditions during kneading or granulation when producing aminocarboxylic acid (salt) -containing particles. Then, the hardness of the aminocarboxylic acid (salt) -containing particles changes abruptly, making it difficult to obtain a uniform (homogeneous) granulated product. Therefore, as the component (a), the dehydration / transition temperature is preferably outside the range of temperature conditions during kneading or granulation, the low temperature side is 55 ° C. or lower, and the high temperature side is 70 ° C. or higher. More preferably, the low temperature side is 43 to 50 ° C., and the high temperature side is 73 to 280 ° C.
  • Dehydration / transition temperature of component (a) indicates a value observed by transition point measurement by differential scanning calorimetry (DSC).
  • the dehydration / transition temperature is determined by setting the temperature at the peak top of the endothermic peak obtained by DSC.
  • any commercially available heat flow rate type or heat guarantee type may be used.
  • ⁇ -alumina is used as a reference, and a polyhydrate of zinc compound (a) is arranged on the sample side. Measurement temperature range: 0 to 100 ° C., temperature increase rate: 2 ° C./min.
  • the dehydration / transition temperature is the peak top temperature of an endothermic peak of 10 mJ / min or more observed at 20 ° C. or more.
  • the endothermic peak observed on the highest temperature side of 100 ° C. or lower is defined as the dehydration / transition temperature.
  • the dehydration / transition temperature is calculated by changing the measurement temperature range to 0 to 300 ° C. and performing the same measurement.
  • a component may be used individually by 1 type and may use 2 or more types together.
  • the content of the component (a) is preferably 10 to 80% by mass, more preferably 20 to 55% by mass in terms of anhydride.
  • the content of the component (a) is equal to or higher than the lower limit, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is further reduced and solidification hardly occurs.
  • it is at most the upper limit value it becomes easy to achieve a blending balance with an aminocarboxylic acid or a salt thereof (b) described later, and the effect of the present invention is improved.
  • the aminocarboxylic acid or its salt (b) includes ethylenediaminetetraacetic acid or its salt, ⁇ -alanine diacetic acid or its salt, the following general formula (b1) or (b2 ) And the like.
  • X 11 to X 14 each independently represents a hydrogen atom, an alkali metal, an alkaline earth metal or a cationic ammonium
  • R represents a hydrogen atom or a hydroxyl group
  • n 1 represents 0 or 1 Represents an integer.
  • A represents an alkyl group, a carboxy group, a sulfo group, an amino group, a hydroxyl group or a hydrogen atom
  • X 21 to X 23 each independently represent a hydrogen atom, an alkali metal, an alkaline earth metal or a cation.
  • N 2 represents an integer of 0 to 5.
  • examples of the alkali metal in X 11 to X 14 include sodium and potassium.
  • examples of the alkaline earth metal in X 11 to X 14 include calcium and magnesium. Note that when at least one of X 11 to X 14 is an alkaline earth metal, it corresponds to 1/2 atom.
  • X 11 is calcium
  • —COOX 11 becomes “—COO ⁇ 1/2 (Ca)”.
  • Examples of the cationic ammonium in X 11 to X 14 include alkanolamines such as monoethanolamine and diethanolamine, and specific examples include those in which 1 to 3 hydrogen atoms of ammonium are substituted with alkanol groups. .
  • the alkanol group preferably has 1 to 3 carbon atoms.
  • X 11 to X 14 are preferably alkali metals.
  • X 11 to X 14 may be the same or different from each other.
  • R may be a hydrogen atom or a hydroxyl group.
  • n 1 is preferably 1.
  • the compound represented by the formula (b1) include iminodisuccinic acid, 3-hydroxy-2,2′-iminodisuccinic acid or a salt thereof, and iminodisuccinic acid or a salt thereof is preferable.
  • the salt include alkali metal salts such as sodium salt and potassium salt, alkanolamine salts such as monoethanolamine salt and diethanolamine salt, and sodium salt and potassium salt are particularly preferable.
  • the alkyl group in A may be either linear or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 18 carbon atoms.
  • a part of the hydrogen atoms may be substituted with a substituent.
  • the substituent include a sulfo group (—SO 3 H), an amino group (—NH 2 ), a hydroxyl group, and a nitro group (—NO 2 ).
  • A may be any of an alkyl group, a carboxy group, a sulfo group, an amino group, a hydroxyl group, and a hydrogen atom, and a hydrogen atom is particularly preferable.
  • the alkali metal, alkaline earth metal and cationic ammonium in X 21 to X 23 are the same as the alkali metal, alkaline earth metal and cationic ammonium in X 11 to X 14 respectively. Things. Among these, X 21 to X 23 are preferably alkali metals. X 21 to X 23 may be the same or different from each other.
  • n 2 is preferably an integer of 0 to 2, and 1 is particularly preferable.
  • the compound represented by the formula (b2) include, for example, nitrilotriacetic acid, methylglycine diacetic acid, dicarboxymethylglutamic acid, L-aspartic acid-N, N-diacetic acid, serine diacetic acid or salts thereof.
  • nitrilotriacetic acid, methylglycine diacetic acid or a salt thereof is preferable, and methylglycine diacetic acid or a salt thereof is particularly preferable.
  • the salt include alkali metal salts such as sodium salt and potassium salt, alkanolamine salts such as monoethanolamine salt and diethanolamine salt, and sodium salt and potassium salt are particularly preferable.
  • a component may be used individually by 1 type and may use 2 or more types together.
  • the compound represented by the general formula (b1) or (b2) is preferable, and the compound represented by the general formula (b2) is more preferable.
  • the content of the component (b) is preferably 10 to 80% by mass, and more preferably 35 to 75% by mass.
  • the blending effect of the component (b) (the effect of forming a chelate compound by coordination with metal ions) is more easily obtained.
  • it is at most the upper limit value it becomes easy to achieve a blending balance with the component (a), and the effect of the present invention is improved.
  • the component (b) since the hygroscopicity of the aminocarboxylic acid (salt) -containing particles can be kept lower, it is preferable to use those having an average neutralization degree of 80% or more, and 90% or more. It is more preferable to use a thing, and it is especially preferable to use what is 100%.
  • degree of neutralization means the molar fraction of the neutralized carboxylic acid relative to the total carboxylic acid in the molecule. It is 1.0 when all carboxylic acids in the molecule are neutralized, and 0 when all are in acid form (—COOH).
  • “(a) / (b)” indicates the content ratio (molar ratio) of the component (a) to the component (b).
  • the mixing ratio of the component (a) and the component (b) in the aminocarboxylic acid (salt) -containing particles is such that the molar ratio represented by (a) / (b) is 0.5 to 6, Is preferably ⁇ 5.8, more preferably 0.5 ⁇ 5.5.
  • the molar ratio represented by (a) / (b) is equal to or greater than the lower limit, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is reduced, and solidification hardly occurs.
  • the concentration of the component (b) is sufficiently secured.
  • the aminocarboxylic acid (salt) -containing particles may contain other components as needed in addition to the components (a) and (b).
  • Other components include bases such as sodium bicarbonate, sodium hydroxide and potassium hydroxide; crystalline aluminosilicates (A-type zeolite, P-type zeolite, X-type zeolite, etc.), amorphous aluminosilicates, clay minerals ( Coating components such as talc and montmorillonite); binders such as polyethylene glycol, polyvinyl pyrrolidone and polyvinyl alcohol.
  • the content of the base is preferably 0.001 to 10% by mass, more preferably 0.002 to 1% by mass, and further preferably 0.003 to 0.1% by mass.
  • the content of the base is at least the lower limit value
  • the component (b) tends to change to a structure that hardly absorbs moisture.
  • it is below the upper limit, it becomes easy to balance with other blending components, and the concentration of the component (b) is sufficiently secured.
  • the content of the coating component is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass.
  • the aminocarboxylic acid (salt) -containing particles are unlikely to be agglomerated and the fluidity is improved.
  • it is below the upper limit it becomes easy to balance with other blending components, and the concentration of the component (b) is sufficiently secured.
  • an organic binder (c) is preferable.
  • the organic binder (c) has a function as a binder, is a solid at room temperature, and is preferably a water-soluble organic compound that melts when heated.
  • a component (c) an organic compound having a melting point of 25 to 100 ° C. is more preferable, an organic compound having a melting point of 25 to 80 ° C. is more preferable, an organic compound having a melting point of 40 to 80 ° C. is particularly preferable, Is most preferably an organic compound having a temperature of 45 to 75 ° C.
  • the component (c) does not include the component (d), the component (e), the component (a), and the component (b) in the present invention.
  • component (c) examples include polyethylene glycol, polypropylene glycol, block polymers of ethylene oxide and propylene oxide, and nonionic surfactants having a melting point of 45 ° C. or higher.
  • polyethylene glycol is preferable, polyethylene glycol having an average molecular weight of 400 to 30000 is more preferable, polyethylene glycol having an average molecular weight of 1000 to 20000 is further preferable, and polyethylene glycol having an average molecular weight of 4000 to 20000 is particularly preferable.
  • “average molecular weight” indicates a value in terms of polyethylene glycol conversion by gel permeation chromatography.
  • a component may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the binder (c) is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and particularly preferably 8 to 20% by mass.
  • the content of the binder (c) is 3% by mass or more, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles can be further reduced.
  • fine powder is less likely to be generated during pulverization.
  • the content of the binder (c) is 30% by mass or less, the blending balance of the component (a) and the component (b) is particularly well maintained, and the solubility in water is improved.
  • the aminocarboxylic acid (salt) -containing particles may also contain an anionic surfactant (d) and a nonionic surfactant (e) having a melting point of less than 45 ° C.
  • anionic surfactant (d) examples include linear or branched alkyl (average carbon number 8 to 18) benzene sulfonate, long chain alkyl (average carbon number 10 to 20) sulfonate, long Chain olefin (average carbon number 10-20) sulfonate, long chain monoalkyl (average carbon number 10-20) sulfate ester, polyoxyethylene (average degree of polymerization 1-10) long chain alkyl (average carbon number 10-10) 20) Ether sulfate ester salt, polyoxyethylene (average degree of polymerization 3 to 30) alkyl (average carbon number 6 to 12) phenyl ether sulfate ester salt, ⁇ -sulfo fatty acid ester salt (average carbon number 12 to 20); long chain Monoalkyl, dialkyl or sesquialkyl phosphates; polyoxyethylene monoalkyl, dialkyl or sesquialkyl phosphates are used
  • the above “long chain” may be linear or branched, and may have a saturated or unsaturated bond.
  • the salt form in the component (d) include alkali metal salts such as sodium and potassium, amine salts, ammonium salts and the like, and alkali metal salts are preferable.
  • a component may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the component (d) is preferably 1 to 20% by mass, more preferably 3 to 18% by mass, and particularly preferably 5 to 15% by mass.
  • the solubility of the aminocarboxylic acid (salt) -containing particles in water is improved.
  • the content of the component (d) is 20% by mass or less, the blending balance of the component (a) and the component (b) is kept good, and the bleaching effect is improved.
  • Nonionic surfactant (e) having a melting point of less than 45 ° C. When the aminocarboxylic acid (salt) -containing particles of the present invention are produced, the component (e) is easily melted by heating and sufficiently mixed with other raw materials. Thereby, kneading
  • the melting point of the component (e) is preferably 43 ° C. or less, more preferably 15 to 41 ° C.
  • Examples of the component (e) include polyethylene glycol addition type nonionic surfactants and polyethylene glycol-polypropylene glycol addition type nonionic surfactants.
  • polyethylene glycol addition type nonionic surfactants are exemplified.
  • 3 to 80 moles (preferably 5 to 50 moles) of ethylene glycol or ethylene oxide are added per 1 mole of aliphatic alcohol having 8 to 20 carbon atoms (preferably 10 to 18 carbon atoms), and the melting point is less than 45 ° C.
  • the component (e) include polyoxyethylene alkyl ethers (preferably having 5 to 15 moles of ethylene glycol or ethylene oxide added thereto and alkyl having 12 to 18 carbon atoms).
  • the component (e) one type may be used alone, or two or more types may be used in combination.
  • the content of the component (e) is preferably 1 to 9% by mass, more preferably 2 to 9% by mass, and further preferably 3 to 8% by mass.
  • the solubility of the aminocarboxylic acid (salt) -containing particles in water is improved.
  • the aminocarboxylic acid (salt) -containing particles when the content of the component (e) is 9% by mass or less, when the aminocarboxylic acid (salt) -containing particles are produced, for example, the extrusion pressure at the time of extrusion from the extruder does not become too low, and the extrudate is maintained. The formability becomes better. And the aminocarboxylic acid (salt) containing particle
  • the aminocarboxylic acid (salt) -containing particles of the present invention it is preferable to blend a polyvalent carboxylic acid as a solubility improver, particularly under the condition that the laundry washing solution exhibits alkalinity.
  • the polyvalent carboxylic acid include succinic acid and citric acid.
  • the content of the polyvalent carboxylic acid is preferably 5% by mass or less, and more preferably 3% by mass or less. If it is 5 mass% or less, it will become easy to take especially the compounding balance with (a) component.
  • the lower limit value is preferably 1% by mass or more because the effect of improving solubility is easily obtained.
  • cationic surfactants amphoteric surfactants, aluminosilicate salts such as zeolite as grinding aids; carbonates such as sodium carbonate and calcium carbonate, amorphous silica; calcium silicate, magnesium silicate, etc.
  • bleaching activators such as organic peracid precursors, 1-hydroxyethane-1,1-diphosphone
  • Examples include heavy metal chelating agents other than the component (b) such as acids or salts thereof, clay minerals, fluorescent brighteners, ultraviolet absorbers, antioxidants, antibacterial agents, and pigments.
  • Specific examples of the medium chain or long chain fatty acid include fatty acids having 8 to 10 carbon atoms in the acyl group as the medium chain fatty acid, and long chain fatty acids having 12 to 18 carbon atoms in the acyl group. Fatty acids are mentioned.
  • the “medium chain or long chain” may be linear or branched, and may have a saturated or unsaturated bond.
  • the content of the medium-chain or long-chain fatty acid is preferably 0.1 to 5% by mass, and more preferably 0.5 to 4% by mass.
  • Organic peracid precursors react with hydrogen peroxide (oxygen-based bleaching component) generated from peroxides such as sodium percarbonate to produce organic peracids with strong bleaching power, thereby bleaching clothing, etc. It is effective.
  • the organic peracid precursor is an unstable component that is likely to deteriorate over time, such as when the oxidation promoting effect is reduced due to the interaction with other components when blended in a granular detergent or a bleaching agent. For this reason, since it is difficult to obtain the effect of blending, it is preferable that the aminocarboxylic acid (salt) -containing particles of the present invention do not contain an organic peracid precursor.
  • flavor, etc. can be mix
  • aminocarboxylic acid (salt) -containing particles zinc compound (a), aminocarboxylic acid or salt thereof (b), organic binder (c), anionic surfactant (d), and melting point of less than 45 ° C.
  • Aminocarboxylic acid (salt) -containing particles containing a nonionic surfactant (e) are preferable.
  • the content of the zinc compound (a) is 10 to 80% by mass, and the aminocarboxylic acid or The content of the salt (b) is more preferably 10 to 80% by mass.
  • the mixing ratio of the anionic surfactant (d) and the zinc compound (a) is preferably 0.05 to 0.44 in terms of mass ratio represented by (d) / (a), and is 0.10. More preferably, it is ⁇ 0.40.
  • (d) / (a) is equal to or higher than the lower limit, the effect of suppressing moisture absorption is easily obtained, and when (d) / (a) is equal to or lower than the upper limit, solubility in water is improved.
  • the blending ratio of the nonionic surfactant (e) having a melting point of less than 45 ° C. and the zinc compound (a) is 0.05 to 0.36 in mass ratio represented by (e) / (a). It is preferably 0.06 to 0.30.
  • (e) / (a) is at least the lower limit, solubility in water is improved, and when (e) / (a) is at most the upper limit, aminocarboxylic acid (salt) -containing particles are produced. In this case, the extrusion pressure at the time of extrusion does not become too low, the shape retention is improved, and the solidification of the granulated product is easily suppressed.
  • the mixing ratio of the aminocarboxylic acid or its salt (b) and the zinc compound (a) is preferably 0.44 to 2.0 in terms of mass ratio represented by (b) / (a). More preferably, it is 48 to 1.9.
  • (b) / (a) is at least the lower limit, when producing aminocarboxylic acid (salt) -containing particles, the extrusion pressure during extrusion does not become too high, and (b) / (a) is the upper limit. If it is less than the value, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is easily suppressed.
  • the blending ratio of the organic binder (c), the anionic surfactant (d) and the nonionic surfactant (e) having a melting point of less than 45 ° C. is (c) / [(d) + (e)] Is preferably 0.7 to 2.0, and more preferably 0.8 to 1.5.
  • (c) / [(d) + (e)] is within the above range, the shape retention of the aminocarboxylic acid (salt) -containing particles is improved while maintaining good solubility in water. Hygroscopicity is easily suppressed.
  • the “mass ratio represented by (e) / (a)” is the content (mass%) of the component (e) relative to the content (mass%) of the ingredient (a) in the aminocarboxylic acid (salt) -containing particles. ) Ratio.
  • the “mass ratio represented by (b) / (a)” is the content (mass%) of the component (b) relative to the content (mass%) of the ingredient (a) in the aminocarboxylic acid (salt) -containing particles. ) Ratio.
  • Mass ratio represented by (c) / [(d) + (e)] is the total content (mass of component (d) and component (e) in the aminocarboxylic acid (salt) -containing particles. %) Of the content (mass%) of the component (c).
  • Method (I) A method of adding (a) component (powder) and mixing after adding water or the like by spraying or the like while mixing component (b).
  • water examples include water and an aqueous solution of the above base.
  • the component (a) is likely to change to a structure in which the component (b) hardly absorbs moisture.
  • the pH of the aqueous solution is preferably 8 to 12, and more preferably 8 to 10.
  • the spray amount of water or the like may be appropriately controlled so as to be within the preferable range of the water content described above, and is 0.2 to 5 masses with respect to 100 mass parts in total of the components (a) and (b).
  • coated component can also be added further.
  • the aminocarboxylic acid (salt) -containing particles are less likely to be agglomerated and the fluidity is improved.
  • a Redige mixer M20 type, manufactured by Matsubo Co., Ltd.
  • a high speed mixer a pro-shear mixer, and the like can be used.
  • the mixing condition is such that the stirring speed is, for example, the rotational speed of the main shaft, preferably 100 to 350 rpm, more preferably 150 to 250 rpm.
  • the temperature is preferably 30 to 70 ° C, more preferably 40 to 60 ° C.
  • Method (II) A method in which component (a), component (b) and water are mixed to prepare a slurry, and the slurry is spray-dried.
  • the spray drying conditions are such that the spray pressure (gauge pressure) is preferably 2 to 4 MPa, more preferably 2.5 to 3 MPa.
  • the gas temperature supplied from the lower part of the spray drying tower is preferably 170 to 300 ° C., more preferably 230 to 270 ° C., and the gas temperature discharged from the top of the spray drying tower is 70 ° C. It is preferably set to ⁇ 125 ° C., more preferably 90 to 110 ° C.
  • Method (III) A method in which the component (a) and the component (b) are mixed and then a liquid binder is added and mixed.
  • the liquid binder the binders exemplified above as other components can be used, and a water-soluble polymer that is solid at room temperature and dissolves when heated is preferable.
  • polyethylene glycol is particularly preferable because it is easy to handle.
  • the polyethylene glycol preferably has an average molecular weight of 1,000 to 20,000, more preferably an average molecular weight of 4,000 to 10,000. When the average molecular weight is not less than the lower limit value, the fluidity becomes better, and when it is not more than the upper limit value, the solubility becomes better.
  • An average molecular weight here shows the average molecular weight described in the cosmetics raw material reference
  • a liquid binder By adding a liquid binder, sufficient shearing force is imparted during stirring, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is further reduced, and solidification hardly occurs.
  • a mixer used in the method (III) a Redige mixer (M20 type, manufactured by Matsubo Co., Ltd.), a high speed mixer, a pro-shear mixer, or the like can be used.
  • the mixing condition is such that the stirring speed is, for example, the rotational speed of the main shaft, preferably 100 to 350 rpm, more preferably 150 to 250 rpm.
  • the temperature is preferably 30 to 70 ° C, more preferably 40 to 60 ° C.
  • the mixing efficiency is increased. Therefore, it is preferable to perform the crushing operation by rotating the chopper at 1000 to 5000 rpm while rotating the main shaft.
  • components (c), (d), and (e) may be added as appropriate.
  • the components (a) to (e) are kneaded.
  • the method for performing the kneading is not particularly limited, and examples thereof include a method using a conventionally known batch type or continuous type kneader.
  • a horizontal type having a stirring blade that rotates the component (c), the component (d), the component (e), and the component (b) in the vertical direction.
  • the mixture is introduced into a chamber, and a batch type kneader is heated to 40 to 80 ° C. to perform stirring and mixing.
  • a kneaded product is obtained by introducing the component (a) into the horizontal chamber and kneading and kneading.
  • the stirring blade rotates in a direction perpendicular to the horizontal axis of the horizontal chamber, and the rotation speed is preferably about 120 to 360 rpm.
  • stirring blades can be used, and among them, a skid type shovel blade is preferable. It is also preferable to use a chopper blade rotating at 3000 to 6000 rpm together with the stirring blade.
  • a pro shear mixer manufactured by Taiheiyo Kiko Co., Ltd.
  • a ladyge mixer a ribbon mixer, a turbulizer, a pug mixer, a Spartan luzer (above, Fuji Powdal Co., Ltd.); tabletop kneader (Irie Shokai Co., Ltd.) and the like.
  • a continuous kneader for example, a closed consolidation apparatus (preferably a horizontal type) heated to a temperature at which the component (e) melts (preferably 25 to 100 ° C., more preferably 40 to 80 ° C.).
  • a closed consolidation apparatus preferably a horizontal type heated to a temperature at which the component (e) melts (preferably 25 to 100 ° C., more preferably 40 to 80 ° C.).
  • the above-mentioned component (c), component (d), component (e), and component (b) are mixed in advance after powder mixing or while mixing component (a).
  • a powder mixture is prepared by introduction and powder mixing, and a kneaded product is obtained by applying a shearing force to the powder mixture and kneading gently at that temperature.
  • the hermetic consolidation apparatus (preferably a horizontal continuous kneader) is continuously heated to a temperature at which the component (A) and the component (e) are melted, and powder mixed therein (a )
  • the powder mixture of the components is continuously introduced and kneaded and kneaded to obtain a kneaded product.
  • Such kneading and kneading can be performed using a single-screw or twin-screw kneading extruder in addition to the kneader.
  • the continuous kneader used here include a KRC kneader manufactured by Kurimoto Steel Corporation, an extruder manufactured by Nara Machinery, and the like.
  • the method using a continuous kneader is preferable because the hygroscopicity of the finally obtained aminocarboxylic acid (salt) -containing particles can be suppressed and solidification is less likely to occur.
  • the components (c) to (e) and (b) are first mixed with powder, A method in which the component (a) is added and kneaded gently is preferred.
  • the temperature during kneading is preferably in a temperature range that does not include the dehydration / transition temperature of component (a), and is a temperature that is 3 ° C. higher than the melting point of component (e). More preferably, the temperature is 5 to 20 ° C. higher than the melting point of the component (c).
  • the kneading and kneading in the kneading step is preferably performed substantially without adding water.
  • the storage stability of the aminocarboxylic acid (salt) -containing particles is improved.
  • the final content of the aminocarboxylic acid (salt) -containing particles is (a) component 10 to 80% by mass, and (b) component 10 to Each component is blended so as to be 80% by mass.
  • both the component (d) and the component (b) are preferably used as they are because the storage stability of the aminocarboxylic acid (salt) -containing particles is improved.
  • the component (d) is used by mixing with a slight amount of inorganic salt (sodium chloride, sodium sulfate, aluminosilicate, calcium carbonate, etc.) from the viewpoint that the component (d) can be easily powdered. Also good.
  • a powder having an average particle size of 30 to 800 ⁇ m is preferably used, a powder of 50 to 600 ⁇ m is more preferable, and a powder of 60 to 550 ⁇ m is more preferable.
  • A When the average particle diameter of a component is more than a lower limit, the powdering of (a) component itself is suppressed. On the other hand, when the average particle size of the component (a) is not more than the upper limit value, a uniform kneaded product is easily obtained.
  • a powder having an average particle size of 30 to 1500 ⁇ m is preferably used, a powder of 50 to 1300 ⁇ m is more preferable, and a powder of 60 to 1200 ⁇ m is more preferable.
  • the average particle size of the component (b) is equal to or greater than the lower limit, the dusting of the component (b) itself is suppressed, and the caking prevention effect due to hygroscopicity is improved.
  • the average particle size of the component (b) is not more than the upper limit value, a uniform kneaded product is easily obtained.
  • the temperature of the kneaded product after the kneading is preferably 50 to 65 ° C, more preferably 53 to 63 ° C.
  • the temperature of the kneaded product is equal to or higher than the lower limit, a homogeneous kneaded product is formed, the solubility is improved, and the storage stability is also improved.
  • the temperature of the kneaded product is not more than the upper limit value, the shape retention after extrusion granulation is improved and the solubility is also improved.
  • Hardness of the kneaded material indicates a value obtained by converting the hardness of the kneaded material into a load, which is measured using a hard meter (manufactured by Fujiwara Seisakusho).
  • the temperature at the time of kneading and kneading may be adjusted, or the blending amount of the component (e) may be adjusted.
  • the kneaded material obtained in the kneading step is extruded and granulated. Specifically, the kneaded product obtained in the kneading step is put into a uniaxial or biaxial screw kneading extruder to be extruded to form strands such as a cylindrical shape, a prismatic shape, and a triangular shape; a spherical shape, a plate shape, or a noodle shape. Get a granulate. Especially, it is preferable to extrude the kneaded material obtained in the kneading step through a die in order to obtain a desired diameter.
  • the hole diameter of the die is preferably about 0.5 to 1.4 mm, and more preferably about 0.8 to 1.2 mm.
  • the temperature of the extrudate after extrusion granulation is preferably 48 to 70 ° C, more preferably 52 to 67 ° C.
  • the extrusion pressure does not become too high, and the burden (load) on the apparatus is easily reduced.
  • the temperature of the extrudate is equal to or lower than the upper limit value, coalescence of the granulated product is easily suppressed during the granulating (grinding) operation described later.
  • the extrusion power in the extruder when extruding the kneaded product is preferably 4 to 50 kwh / t, more preferably 4.5 to 48 kwh / t, still more preferably 5 to 45 kwh / t, It is particularly preferably 5.5 to 40 kwh / t.
  • the extrusion power is 4 kwh / t or more, the storage stability of the resulting aminocarboxylic acid (salt) -containing particles is improved.
  • the extrusion power is 50 kwh / t or less, the extrudate does not become too hard, and it is difficult for fine powder to be generated during pulverization.
  • the solubility of aminocarboxylic acid (salt) -containing particles in water is improved.
  • the extruder include pelleter double (manufactured by Fuji Paudal Co., Ltd.), twin dome gran (manufactured by Fuji Powdal Co., Ltd.), and multi-gran (manufactured by Dalton Co., Ltd.).
  • a method of attaching a mesh plate to the outlet of the kneaded product in a kneading apparatus and passing the mesh plate to obtain a granulated product can be mentioned.
  • an apparatus applicable to this method for example, Extrude Ohmics manufactured by Hosokawa Micron Corporation can be cited.
  • the rotational speed of the high-speed rotary knife cutter is preferably about 30 to 100 m / s.
  • the pulverizer include a comminator (manufactured by Fuji Powder Co., Ltd.), a Fitzmill (manufactured by Hosokawa Micron Corporation), a speed mill (manufactured by Okada Seiko Co., Ltd.), and the like.
  • the extrudate is preferably made into a granulated product having an average particle size of 200 to 700 ⁇ m, more preferably a granulated product having a particle size of 250 to 450 ⁇ m.
  • the particle diameter of the granulated product is not less than the lower limit, the storage stability of the aminocarboxylic acid (salt) -containing particles is improved.
  • the particle size of the granulated product is not more than the upper limit, the solubility of the aminocarboxylic acid (salt) -containing particles in water is improved.
  • the ratio of the granulated particles having a particle diameter of less than 150 ⁇ m is preferably 14% by mass or less, more preferably 0.2 to 10% by mass with respect to the total aminocarboxylic acid (salt) -containing particles. .
  • the amount is not more than the upper limit, dust generation is less likely to occur, and the fluidity of the aminocarboxylic acid (salt) -containing particles is improved.
  • the method for producing aminocarboxylic acid (salt) -containing particles of the present invention may have other steps other than the kneading step and the granulating step described above. Examples of the other steps include a step of further covering the surface of the granulated product obtained in the granulation step.
  • the method (I), the method (III) or the (IV) is preferable from the viewpoint of energy efficiency related to production.
  • the granular detergent composition of the present invention contains the aminocarboxylic acid (salt) -containing particles of the present invention.
  • the average particle size of the granular detergent composition is preferably 200 to 1500 ⁇ m, more preferably 250 to 1000 ⁇ m, and even more preferably 280 to 500 ⁇ m.
  • production of a fine powder is suppressed as this average particle diameter is more than a lower limit, and the solubility to water improves on the other hand when it is below an upper limit.
  • the bulk density of the granular detergent composition is preferably 0.3 to 1.5 g / mL, more preferably 0.6 to 1.2 g / mL, even more preferably 0.7 to 0.9 g / mL. If the bulk density is equal to or higher than the lower limit value, the space (storage location) required for storing the granular detergent composition can be reduced, which is advantageous. On the other hand, if it is below an upper limit, the solubility in water of a granular detergent composition will become favorable.
  • the bulk density is a value measured by a method according to JIS K3362-1998.
  • the water content of the granular detergent composition is preferably 15% by mass or less, more preferably 2 to 9% by mass, and further preferably 4 to 8% by mass. If this water content is below an upper limit, solidification of a granular detergent composition will become harder to arise.
  • the content of aminocarboxylic acid (salt) -containing particles is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and even more preferably 1 to 12% by mass.
  • the detergent raw materials surfactants, peroxides, etc.
  • the amount is not more than the upper limit value, it becomes easy to achieve a blending balance with other detergent raw materials, and a sufficient cleaning effect and the like are easily obtained.
  • detergent raw material other than the aminocarboxylic acid (salt) -containing particles in the granular detergent composition those usually blended in detergent compositions for clothing and the like can be used.
  • Detergent raw materials include, for example, surfactants (anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc.), inorganic builder, organic builder, alkaline agent, sulfate and other particle strength retaining agents, Bleaching agent such as percarbonate or granulated product thereof, recontamination (deposition) inhibitor, dye, pigment, fragrance, enzyme agent (for example, protease, lipase, cellulase, amylase, etc.), bleach activator or granulated product thereof , Reducing agents such as sulfites and thiosulfates, optical brighteners, ultraviolet absorbers, softeners (such as bentonite), foam control agents (such as silicone), surface modifiers, oil absorbers, antioxidants, Examples include antibacterial
  • the manufacturing method of a granular detergent composition can be manufactured with a well-known manufacturing method. For example, after preparing a slurry by dispersing and dissolving a detergent raw material such as a surfactant, an inorganic builder, an organic builder, or an alkali agent in water, the slurry is spray-dried to obtain spray-dried particles. Next, the spray-dried particles and other detergent raw materials are kneaded, extruded, granulated, or pulverized to obtain a powder. Thereafter, the granular detergent composition can be obtained by mixing the powder, aminocarboxylic acid (salt) -containing particles, and other detergent raw materials.
  • a detergent raw material such as a surfactant, an inorganic builder, an organic builder, or an alkali agent in water
  • the slurry is spray-dried to obtain spray-dried particles.
  • the spray-dried particles and other detergent raw materials are kneaded, extruded, granul
  • the aminocarboxylic acid (salt) -containing particles of the present invention have reduced hygroscopicity. Therefore, even if the granular detergent composition containing the aminocarboxylic acid (salt) -containing particles contains hygroscopic aminocarboxylic acid (salt), solidification hardly occurs.
  • the reason why the granular detergent composition containing the aminocarboxylic acid (salt) -containing particles hardly causes solidification is not clear, but is presumed as follows.
  • the aminocarboxylic acid (salt) -containing particles of the present invention by containing the component (a) and the component (b) in a predetermined molar ratio, the surface vicinity of the component particles (b) Therefore, it is considered that it is less affected by the environment and has a lower hygroscopicity than the case of only the component particles (b). Accordingly, it is considered that the granular detergent composition of the present invention hardly causes solidification and hardly causes so-called caking.
  • the granular detergent composition of the present invention has a sterilizing effect in addition to the cleaning effect.
  • the reason for having such an effect is considered to be that the component (a) and the component (b) form a complex in water, and this complex exhibits a sterilizing effect or a bactericidal effect.
  • ⁇ Measuring method of average particle diameter> (Measuring method 1)
  • the average particle diameter of each particle of Examples A1 to A17, Comparative Examples A1 to A8, and Reference Examples A1 to A4 was measured using a particle size distribution analyzer (LDSA-3400A (17ch), manufactured by Tohnichi Computer Applications Co., Ltd.).
  • the volume-based median diameter was measured by a laser light scattering method.
  • the moisture content is 5 g of sample using an infrared moisture meter (product name: Kett moisture meter manufactured by Kett Science Laboratory Co., Ltd.), when the sample surface temperature is 130 ° C. (when measuring a granular detergent composition). ) Or 170 ° C. (when measuring spray-dried particles), measurement was performed under the conditions of a measurement time of 20 minutes.
  • infrared moisture meter product name: Kett moisture meter manufactured by Kett Science Laboratory Co., Ltd.
  • ⁇ Calculation method of moisture absorption rate (actual measurement)> First, the sample was spread on a glass petri dish (inner diameter 85 mm) so as to have a thickness of 5 mm, and placed in a thermostat set at a temperature of 45 ° C. and a relative humidity of 80%. Next, at every elapsed time (every 60 minutes), the mass of the glass petri dish in which the sample was spread was measured in the thermostat and the change with time was recorded. And the moisture absorption rate (actual measurement) (mass%) was calculated
  • the calculated moisture absorption value (% by mass) was determined by the following formula (2).
  • metal salt means zinc sulfate monohydrate or anhydrous sodium sulfate.
  • MGDA blending amount” and metal salt blending amount are “(b) MGDA” and “(a) zinc sulfate monohydrate” or “anhydrous sodium sulfate” shown in Tables A1 to A4, respectively. Content.
  • the “moisture absorption rate of MGDA alone” is 83.4% by mass (Comparative Example A1).
  • the “moisture absorption rate of the metal salt alone” is 4.7% by mass (reference example A1) when the metal salt is zinc sulfate monohydrate, and 0.5% by mass (reference example A2) when it is anhydrous sodium sulfate. is there.
  • the aminocarboxylic acid (salt) is other than MGDA, the calculation is performed by replacing “MGDA” in the following formula (2) with each aminocarboxylic acid (salt).
  • ⁇ Evaluation method of solidification property of granular detergent composition A three-layer paper in which coated cardboard (basis weight: 350 g / m 2 ), wax sand paper (basis weight: 30 g / m 2 ) and kraft pulp paper (basis weight: 70 g / m 2 ) are laminated in this order. Using this, a box having a bottom surface of 150 mm ⁇ 90 mm and a height of 85 mm was produced. 500 g of the granular detergent composition of each example was placed in this box and placed in a thermostatic bath set at a temperature of 30 ° C. and a relative humidity of 80% for 48 hours.
  • the raw materials used in this example are as follows.
  • Zinc compounds (a) Zinc sulfate monohydrate: manufactured by Shinyo Co., Ltd., trade name “dry zinc sulfate”, average particle size 70 ⁇ m.
  • Component comparison component (a ′) Anhydrous sodium sulfate: manufactured by Shikoku Kasei Co., Ltd., trade name “neutral anhydrous sodium sulfate A0”, average particle size 89 ⁇ m.
  • Aminocarboxylic acid or salt thereof (b) MGDA: trisodium methylglycine diacetate, manufactured by BASF, trade name “Trilon M Powder”, coordination position 4, content (pure content) 83% by mass, average particle size 63 ⁇ m.
  • NTA nitrilotriacetic acid trisodium, manufactured by BASF, trade name “Trilon A92R”, pure content 92% by mass, average particle size 63 ⁇ m.
  • IDS tetrasodium iminodisuccinate, manufactured by LANXESS, trade name “Baypure CX100”, pure content 80% by mass, average particle size 100 ⁇ m.
  • Sodium bicarbonate Made by Junsei Chemical Co., Ltd., special grade.
  • Zeolite Type A zeolite, manufactured by Thai silicate, trade name “Zeolite Na-4A”, pure content 80% by mass, average particle size 3 ⁇ m.
  • Polyethylene glycol manufactured by Lion Corporation, trade name “PEG # 6000P”, average molecular weight 6000, melting point 56-61 ° C.
  • MES paste ⁇ -sulfo fatty acid alkyl ester salt-containing paste
  • Paste composition ⁇ -sulfo fatty acid alkyl ester salt (MES-Na) 63 mass%, nonionic surfactant (polyoxyethylene alkyl ether described later) 16 mass% %, Impurities such as di-salt and methylsulfate 8% by mass, moisture 13% by mass
  • ⁇ -sulfo fatty acid alkyl ester salt fatty acid chain lengths of 16 and 18, carbon numbers of 16 and carbon numbers of 18 Mixing ratio C16 / C18 8/2 (mass ratio).
  • LAS-K linear alkyl (10 to 14 carbon atoms) benzene sulfonic acid [manufactured by Lion Corporation, Rypon LH-200 (LAS-H pure content 96 mass%)] > The compound neutralized with 48 mass% potassium hydroxide aqueous solution at the time of slurry preparation for spray-drying particle preparation.
  • LAS-H linear alkyl (carbon number 10 to 14) benzenesulfonic acid [manufactured by Lion Corporation, Rypon LH-200 (pure content 96% by mass)].
  • Polyoxyethylene alkyl ether ECOROL 26 (trade name, manufactured by ECOGREN; alcohol having an alkyl group having 12 to 16 carbon atoms) an average of 15 moles of ethylene oxide adduct (melting point: 40 ° C.). Pure content 90% by mass, moisture content 10% by mass. Soap: fatty acid sodium having 12 to 18 carbon atoms (C) [manufactured by Lion Corporation, pure content 67% by mass, titer 40 to 45 ° C .; fatty acid composition C12 0.7% by mass, C14 11.4% by mass, C16 29. 2 mass%, C18F0 (stearic acid) 0.7 mass%, C18F1 (oleic acid) 56.8 mass%, C18F2 (linoleic acid) 1.2 mass%; molecular weight 289].
  • C fatty acid sodium having 12 to 18 carbon atoms
  • Zeolite Type A zeolite, manufactured by Thai silicate, trade name “Zeolite Na-4A”, pure content 80% by mass, average particle size 3 ⁇ m.
  • MA agent acrylic acid-maleic acid copolymer salt, manufactured by Nippon Shokubai Co., Ltd., trade name “AQUALIC TL-400”, pure content 40% by mass.
  • Potassium carbonate Potassium carbonate (powder) (Asahi Glass Co., Ltd.) average particle size 490 ⁇ m, bulk density 1.30 g / cm 3 .
  • Sodium carbonate granular ash (manufactured by Asahi Glass Co., Ltd.) Average particle size 320 ⁇ m, bulk density 1.07 g / cm 3 .
  • Anhydrous sodium sulfate manufactured by Shikoku Kasei Co., Ltd., trade name “neutral anhydrous sodium sulfate A0”.
  • Sodium percarbonate granulated product manufactured by Zhejiang JINKE CHEMICALS, trade name “SPCC”, effective oxygen amount 13.8% by mass, average particle size 870 ⁇ m.
  • Carboxymethyl cellulose manufactured by Daicel Chemical Industries, Ltd., trade name “CMC Daicel 1190”, mass average molecular weight of about 300,000, and degree of etherification of 0.70.
  • Fluorescent agent Ciba Japan Co., Ltd., trade name “Chino Pearl CBS-X”.
  • Dye 20% by mass aqueous dispersion of ultramarine (made by Dainichi Seika Kogyo Co., Ltd.).
  • Perfume Perfume composition A shown in Tables 11 to 18 described in JP-A-2002-146399.
  • Granulated product of bleach activator mass ratio of OBS12 (sodium 4-dodecanoyloxybenzenesulfonate), PEG6000, AOS (sodium ⁇ -olefinsulfonate having 14 carbon atoms) and A-type zeolite powder 70/20/5/5 granulated product.
  • aminocarboxylic acid (salt) -containing particles ⁇ Production example of aminocarboxylic acid (salt) -containing particles>
  • the aminocarboxylic acid (salt) -containing particles of each example were prepared according to the compositions shown in Tables A1 to A4. In the table, the content of the compounding component indicates a pure equivalent amount.
  • Example A1 A MGDA is introduced at 40 ° C. into a Redige mixer (M20 type, manufactured by Matsubo Co., Ltd.) with a scissors blade-shaped excavator and a clearance between the shovel and the wall surface of 5 mm, and water (MGDA 100 mass) while rotating the spindle at 200 rpm. 1.0 parts by mass) was sprayed. After spraying was completed, zinc sulfate monohydrate was added at 40 ° C., and stirring was performed while the main shaft was rotated at 200 rpm (the chopper was stopped). After 5 minutes from the start of stirring, MGDA-containing particles were obtained.
  • Examples A2, A3 According to the composition shown in Table A1, MGDA-containing particles were obtained in the same manner as in Example A1, except that the blending amounts of zinc sulfate monohydrate and MGDA were changed.
  • Example A4 MGDA-containing particles were obtained in the same manner as in Example A2, except that 1% by mass aqueous sodium hydrogen carbonate (bicarbonate) solution (pH 8.5 / 25 ° C.) was sprayed instead of water.
  • aqueous sodium hydrogen carbonate (bicarbonate) solution pH 8.5 / 25 ° C.
  • Example A5 A spray drying slurry preparation device, that is, a mixing tank having a stirring blade including a stirring blade and a rotating shaft and having a circulation line with a pump, water (36% by mass in the slurry for spray drying), MGDA and zinc sulfate monohydrate A Japanese product was introduced. Thereafter, stirring was continued for 10 minutes, the temperature was adjusted to 75 ° C., and a slurry for spray drying was prepared at a scale of a blending amount of 200 kg / batch. The rotation speed of the stirring blade at this time was set to 60 rpm.
  • the obtained slurry for spray drying is transferred to a spray drying tower, sprayed at a spray pressure of 2.5 MPa (gauge pressure) from a pressure spray nozzle installed near the top of the spray drying tower, and spray-dried particles
  • MGDA-containing particles were obtained.
  • a gas at a temperature of 230 to 270 ° C. is supplied from the lower part of the spray drying tower, and a high temperature gas is supplied to the spray drying tower by discharging from the top of the spray drying tower at a temperature of 90 to 110 ° C. did.
  • the temperature of the supplied high-temperature gas was appropriately adjusted in order to obtain MGDA-containing particles having a desired water content (3% by mass).
  • Example A6 A MGDA was introduced at 40 ° C. into a Redige mixer (M20 type, manufactured by Matsubo Co., Ltd.) equipped with a scissors blade-shaped excavator and the clearance between the shovel and the wall surface was 5 mm, and water was sprayed while rotating the main shaft at 200 rpm. . After spraying is completed, zinc sulfate monohydrate is charged at 40 ° C., stirring is performed while the main shaft is rotated at 200 rpm (the chopper is stopped), and after 5 minutes from the start of stirring, zeolite is charged at 40 ° C. Then, MGDA-containing particles were obtained by stirring (chopper stopped) for 5 minutes while rotating the main shaft at 200 rpm.
  • a Redige mixer M20 type, manufactured by Matsubo Co., Ltd.
  • Example A7 A Rougege mixer (M20 type, manufactured by Matsubo Co., Ltd.) with a scissors blade-shaped excavator and a jacket temperature controlled to 65 ° C. and a clearance between the shovel and the wall surface of 5 mm, MGDA at 60 ° C., and zinc sulfate at 60 ° C. Monohydrate was added and stirred (chopper stopped) while rotating the main shaft at 200 rpm. Five minutes after the start of the stirring, the chopper was rotated at 4000 rpm (the rotational speed of the main shaft was unchanged), and polyethylene glycol at 25 ° C. was added and stirred for 5 minutes to obtain MGDA-containing particles.
  • M20 type manufactured by Matsubo Co., Ltd.
  • Example A8 According to the composition shown in Table A2, NTA-containing particles were obtained in the same manner as in Example A1, except that the amount of zinc sulfate monohydrate was changed and MGDA was changed to a predetermined amount of NTA.
  • Example A9 According to the composition shown in Table A2, IDS-containing particles were obtained in the same manner as in Example A1, except that the blending amount of zinc sulfate monohydrate was changed and MGDA was changed to a predetermined amount of IDS.
  • Example A2 MGDA-containing particles were obtained in the same manner as in Example A1, except that anhydrous sodium sulfate was used instead of zinc sulfate monohydrate.
  • the average particle diameter was measured by the method described above, and the moisture absorption rate (actual measurement) and the calculated moisture absorption rate were calculated. The results are also shown in Tables A1 to A4.
  • the aminocarboxylic acid (salt) -containing particles of Examples A1 to A9 according to the present invention have a moisture absorption rate (compared with the aminocarboxylic acid (salt) alone of Comparative Examples A1, A5, and A6). It can be seen that the actual measurement is very low. Further, from the comparison between Examples A1 to A9 and Comparative Examples A2 to A4, the aminocarboxylic acid (salt) -containing particles of Examples A1 to A9 have a moisture absorption rate (actual measurement) / calculated moisture absorption rate of 30 to 75%. It can be seen that the moisture absorption rate (actual measurement) is significantly lower than the calculated value of moisture absorption rate. Therefore, it was confirmed that the aminocarboxylic acid (salt) -containing particles of Examples A1 to A9 according to the present invention have low hygroscopicity.
  • Example A10 In accordance with the composition shown in Table A5, each compounding component was put into a reactor having a stirrer and a jacket, dissolved and dispersed in water (jacket temperature of the stirrer 75 ° C.), and spray-dried particles having a solid content concentration of 60% by mass. A slurry for preparation was prepared.
  • this slurry for preparing spray-dried particles is spray-dried using a countercurrent drying tower under the following conditions, and zeolite (obtained spray-dried particles obtained) as a coating for coating the spray-dried particles from the bottom of the spray-drying tower.
  • the spray dried particles were obtained by introducing 1 part by mass to 100 parts by mass.
  • Spray drying conditions ⁇ Spray dryer: counter-current type, tower diameter 2.0m, effective length 5.0m ⁇ Atomization method: Pressurized nozzle method ⁇ Spraying pressure: 30 kg / cm 2 ⁇ Hot air inlet temperature: 250 °C -Hot air outlet temperature: 100 ° C The obtained spray-dried particles had an average particle size of 300 ⁇ m, a bulk density of 0.30 g / mL, and a water content of 5.0% by mass (moisture content measurement conditions: 170 ° C., 20 minutes).
  • the obtained dough-like material is put into a pelleter double (product name: EXD-100 type, manufactured by Fuji Paudal Co., Ltd.) and extruded from a die having a hole diameter of about 10 mm and a thickness of 10 mm and simultaneously cut (perimeter of the cutter of the pelleter).
  • the speed was 5 m / s) to obtain a pellet-shaped formed body (diameter: about 10 mm, length: 70 mm or less (substantially 5 mm or more)).
  • Fitzmill manufactured by Hosokawa Micron Co., Ltd., DKA- was added to 74.8% by mass of the obtained pellet-shaped molded body by adding 5.2% by mass of zeolite as a grinding aid and arranged in three stages in the presence of air blowing. 6 type) to obtain a powder.
  • the grinding conditions were as follows. The temperature of the obtained powder was 30 ⁇ 10 ° C. [Crushing conditions] -Air temperature: 15 ⁇ 3 degreeC. ⁇ Blowing rate (ratio of gas / solid): 2.8 ⁇ 0.25 m 3 / kg. -Screen diameter: 6 mm for the first stage, 4 mm for the second stage, and 2 mm for the third stage. -Crusher rotation speed: 470 rpm (circumferential speed about 60 m / s). Processing speed: 230 g / hr.
  • a horizontal cylindrical rolling drum (diameter 0.70 m, length 1.40 m, inclination angle 3 °, thickness 1 mm ⁇ height 50 mm ⁇ length 350 mm baffle 15 so that the processing speed is 240 kg / hr.
  • Example A1 80.0% by mass of the powder, 1.8% by mass of zeolite, 5.0% by mass of sodium percarbonate granule, 1.0% by mass of carboxymethylcellulose, and MGDA of Example A1
  • 10 mass% of the contained particles are added and mixed, and at the same time, 0.5 mass% of polyoxyethylene alkyl ether is sprayed at a spray pressure of 0.5 to 1.5 MPa using a pressure cone nozzle K series (manufactured by Ikeuchi Co., Ltd.). Sprayed.
  • a granular detergent composition (average particle diameter of 360 ⁇ m, bulk density of 0.85 g / mL) was obtained.
  • the moisture content of the obtained granular detergent composition was 7.0 mass% (measuring conditions of moisture content 130 ° C., 20 minutes).
  • Examples A11 to A17, Comparative Examples A7 to A8 A granular detergent in the same manner as in Example A10 except that the aminocarboxylic acid (salt) -containing particles of Examples A2, A4 to A9 and Comparative Examples A1 to A2 were used instead of the MGDA-containing particles of Example A1.
  • a composition was obtained.
  • Example A10 a granular detergent composition was obtained in the same manner as in Example A10, except that the zinc sulfate monohydrate of Reference Example A1 was used instead of the MGDA-containing particles of Example A1.
  • the average particle diameters of Examples B1 to B10 and Comparative Examples B1 and B2 were measured by the measuring method 2 or a method according to the same among the above-mentioned [Measuring method of average particle diameter].
  • the dehydration / transition temperature was measured in the same manner as described above.
  • the compositions of the aminocarboxylic acid (salt) -containing particles produced by the production methods of each example are shown in Tables B1 to B3.
  • the raw materials used in this example are as follows.
  • Anionic surfactant (d) AOS-Na: ⁇ -olefin sulfonic acid Na salt having 14 to 18 carbon atoms, manufactured by Lion Corporation, trade name “Lipolane PJ-400”, average particle size 200 ⁇ m.
  • AS-Na Alkyl sulfate sodium salt having an alkyl group having 10 to 18 carbon atoms, manufactured by Shin Nippon Rika Co., Ltd., trade name “Sinoline 90TK-T”, average particle size 150 ⁇ m.
  • -Nonionic surfactant having a melting point of less than 45 ° C
  • natural alcohol EO ethylene oxide
  • LMAO-90 pure content 90% by mass
  • POE alkyl ether 9): natural alcohol EO 9 mol adduct having 12 to 16 carbon atoms, manufactured by Lion Co., Ltd., trade name “Leox CL-90”, pure content 100 mass%, melting point 28 ° C.
  • Zinc compounds (a) Zinc sulfate monohydrate: manufactured by Horiike Sangyo Co., Ltd. BR> A trade name “ZNS-13”, average particle size 200 ⁇ m, dehydration and transition temperature 270 ° C.
  • Aminocarboxylic acid or salt thereof (b) MGDA: trisodium methylglycine diacetate, manufactured by BASF Japan Ltd., trade name “Trilon M powder”, average particle size 80 ⁇ m; average neutralization degree 100%.
  • Citric acid Made by Junsei Co., Ltd., reagent grade.
  • composition of granular detergent (blending component blending amount): MES-Na 9.0% by mass, LAS-Na 1.0% by mass, polyoxyethylene alkyl ether 4.0% by mass, soap 5.0% by mass, sodium carbonate balance , Potassium carbonate 4.0% by mass, sodium sulfate 13.0% by mass, zeolite 15.0% by mass, acrylic acid-maleic acid copolymer salt 2.0% by mass, fluorescent brightener 0.1% by mass, water 7. 0% by mass, enzyme 1.0% by mass, sodium percarbonate granulated product 5.0% by mass, bleach activator granulated product 1.0% by mass, aminocarboxylic acid (salt) -containing particles 1.0% by mass
  • Preparation method of granular detergent [Drying process] Polyoxyethylene alkyl ether, MES-Na, part of zeolite (for grinding aid, post-mixing step), enzyme, sodium percarbonate granule, bleach activator granule, amino An aqueous slurry having a solid content of 62% by mass was obtained by stirring a predetermined amount of all the components except the carboxylic acid (salt) -containing particles at a preparation temperature of 80 ° C. for 17 minutes.
  • a part of the zeolite represents 30% by mass of the total amount of the zeolite.
  • the aqueous slurry was spray-dried to prepare spray-dried particles having a water content of 5% by mass.
  • a part of polyoxyethylene alkyl ether, MES-Na, and a small amount (1 part by weight with respect to 100 parts by weight of the spray-dried particles) of tap water (Edogawa, Tokyo) was added to a continuous kneader (KRC-S4 type, manufactured by Kurimoto Seiko Co., Ltd.) and kneaded continuously at a temperature of 55 to 65 ° C.
  • the kneaded material obtained by the kneading kneading was extruded while being continuously fed to a pelleter (made by Fuji Powder, die hole diameter 10 mm ⁇ ) to form a pellet-shaped solid detergent.
  • Fitzmill made by Hosokawa Micron Co., Ltd., DKA-3 type
  • the granulated product was obtained by pulverizing and granulating so that the average particle size was 300 to 500 ⁇ m.
  • the production capacity at this time was set to 180 kg / hr.
  • a part of said polyoxyethylene alkyl ether remove excludes the part used by a post-mixing process, and shows 70 mass% part of polyoxyethylene alkyl ether whole quantity.
  • Post-mixing process The granulated product obtained in the granulation step, the remaining polyoxyethylene alkyl ether (for 30% by mass), the remaining zeolite (for post-mixing step), the enzyme, and the sodium percarbonate granulated product, The bleach activator granulated product and the aminocarboxylic acid (salt) -containing particles are mixed with a horizontal cylindrical rolling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, drum inner wall surface of vessel 131.7 L and inner wall surface).
  • the mixture was mixed for 1 minute under the conditions of a filling rate of 30% by volume, a rotational speed of 22 rpm, and 25 ° C. to produce granular detergents of each example.
  • a filling rate of 30% by volume, a rotational speed of 22 rpm, and 25 ° C. was produced.
  • only polyoxyethylene alkyl ether (30% by mass) was added using a pressure nozzle while spraying so that the droplet diameter was 40 to 150 ⁇ m.
  • the granular detergents obtained in each example had a bulk density in the range of 0.82 to 0.88 g / cm 3 .
  • MES-Na ⁇ -sulfo fatty acid alkyl ester salt-containing paste
  • paste composition ⁇ -sulfo fatty acid alkyl ester salt (MES-Na) 63% by mass, nonionic surfactant (polyoxyethylene alkyl ether described later) 16% by mass, Impurities such as di-salt and methyl sulfate, 8% by mass, moisture 13% by mass
  • MES-Na ⁇ -sulfo fatty acid alkyl ester salt-containing paste
  • nonionic surfactant polyoxyethylene alkyl ether described later
  • Impurities such as di-salt and methyl sulfate, 8% by mass, moisture 13% by mass
  • Polyoxyethylene alkyl ether ECOROL 26 (trade name, manufactured by ECOGREN; alcohol having an alkyl group having 12 to 16 carbon atoms) an average of 15 moles of ethylene oxide adduct (melting point: 40 ° C.). Pure content 90% by mass, moisture content 10% by mass.
  • Soap C12-18 fatty acid sodium [manufactured by Lion Corporation, pure mass 67 mass%, titer 40-45 ° C; fatty acid composition C12 0.7 mass%, C14 11.4 mass%, C16 29.2 mass% C18F0 (stearic acid) 0.7% by mass, C18F1 (oleic acid) 56.8% by mass, C18F2 (linoleic acid) 1.2% by mass; molecular weight 289].
  • Sodium carbonate granular ash (manufactured by Asahi Glass Co., Ltd.) Average particle size 320 ⁇ m, bulk density 1.07 g / cm 3 .
  • Potassium carbonate Potassium carbonate (powder) (Asahi Glass Co., Ltd.) average particle size 490 ⁇ m, bulk density 1.30 g / cm 3 .
  • Sodium sulfate manufactured by Shikoku Kasei Co., Ltd., trade name “neutral anhydrous sodium sulfate A0”.
  • Zeolite Type A zeolite, manufactured by Thai silicate, trade name “Zeolite Na-4A”, pure content 80% by mass, average particle size 3 ⁇ m.
  • Acrylic acid-maleic acid copolymer salt sodium salt of a copolymer of acrylic acid and maleic acid, trade name “Socaran CP7”, manufactured by BASF Japan Ltd.
  • Optical brightener Ciba Specialty Chemicals Co., Ltd., trade name “Chino Pearl CBS-X”.
  • Water enzyme Protease (sabinase 12T) / Amylase (Stainzyme 12T) / Lipase (LIPEX100T) / Cellulase (CellClean 4500T) Mixture of.
  • Sodium percarbonate granulated product manufactured by Zhejiang JINKE CHEMICALS, trade name “SPCC”, effective oxygen amount 13.8% by mass, average particle size 870 ⁇ m.
  • Granulated bleach activator OBS12 (sodium 4-dodecanoyloxybenzene sulfonate), PEG-6000, AOS (sodium ⁇ -olefin sulfonate having 14 carbon atoms), and A-type zeolite powder Granulated product having a mass ratio of 70/20/5/5.
  • Aminocarboxylic acid (salt) -containing particles Aminocarboxylic acid (salt) -containing particles of Examples B1 to B10 and Comparative Examples B1 and B2 described later.
  • Aminocarboxylic acid (salt) -containing particles were produced by the following production methods in accordance with the blending components and contents (mass%) of the compositions shown in Tables B1 to B3.
  • the content of the component (a) indicates the amount as a hydrated salt containing water molecules.
  • Other components indicate the amount in terms of pure content.
  • the table shows the temperature (° C.) of the kneaded material obtained in the kneading step, the hardness (g) of the kneaded material, and the kneading power (A) when the kneading was performed.
  • the hardness (g) of the kneaded material was measured using a hard meter (manufactured by Fujiwara Seisakusho) with the temperature measurement for the kneaded material immediately after the kneading step. Die pore diameter (mm ⁇ ), extrusion power (A), extrudate temperature (° C), air current value (A), extrusion power (kwh / t), extrusion time (minutes), extrusion rate (kg) ) Is shown in the table.
  • Example B1 [Kazuwa process] Warm water was circulated in the jacket of an S-1KRC kneader manufactured by Kurimoto Steel Corporation, and the kneader body was heated to 60 ° C. and maintained at that temperature. Subsequently, all components except the component (a) shown in Table B1 were powder-mixed at room temperature, and then the component (a) was mixed to prepare a powder mixture having a total amount of 1.5 kg. This powder mixture was continuously added to the kneader for 15 minutes while continuing the operation, and after the addition, a kneaded product was obtained by performing a kneading kneading operation.
  • Example B2 [Kazuwa process] Hot water was circulated in the jacket of a PNV-5 type table kneader (manufactured by Irie Shokai Co., Ltd.), and the kneader body was heated to 60 ° C. to maintain the temperature. Subsequently, components other than the component (a) in the composition shown in Table B1 were introduced into a horizontal chamber having a stirring blade rotating in the vertical direction. Next, after performing the kneading operation at a rotating speed of the stirring blade of 45 rpm, the component (a) heated to 58 ° C.
  • Examples B3 to B8, B10 to B12 Aminocarboxylic acid (salt) -containing particles were obtained by performing the same operations as in Example B1 according to the compositions and production conditions shown in Tables B1 and B2. The powder mixture was charged for 15 to 30 minutes per 1.5 kg of the total amount of the components.
  • Example B9 [Kazuwa process] Warm water was circulated in the jacket of the S-1KRC kneader manufactured by Kurimoto Steel Corporation, and the kneader body was heated to 57 ° C. and maintained at that temperature. Next, according to the composition and production conditions shown in Table B2, all the components (a) to (e) were powdered together to prepare a powder mixture of a total amount of 1.5 kg. This powder mixture was continuously charged into the kneader while continuing the operation, and after the charging, a kneading operation was performed to obtain a kneaded product. The powder mixture was charged for 15 to 30 minutes per 1.5 kg of the total amount of the components. [Granulation process] The obtained kneaded product was subjected to the same operation as in the granulating step in Example B1 to obtain aminocarboxylic acid (salt) -containing particles.
  • Example B1 According to the composition and production conditions shown in Table B3, the same operations as in Example B9 (powder mixing, kneading kneading, extrusion granulation of all the components (a) to (e) together) Aminocarboxylic acid (salt) -containing particles were obtained. The powder mixture was charged for 15 to 30 minutes per 1.5 kg of the total amount of the components.
  • Dissolution rate (%) (measured value of electrical conductivity / maximum value of electrical conductivity) ⁇ 100
  • the time required for the dissolution rate (%) to be 90% or more was determined as the dissolution time (seconds). Specifically, taking the time (seconds) on the horizontal axis and the electric conductivity value on the vertical axis, the measurement is continued until the electric conductivity is balanced over time, and all the aminocarboxylic acid (salt) -containing particles are dissolved.
  • the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is a characteristic that serves as an indicator of the solidification properties of the aminocarboxylic acid (salt) -containing particles themselves and the solidification properties of the detergent when blended in a detergent.
  • the hygroscopic evaluation of the aminocarboxylic acid (salt) -containing particles was performed as follows.
  • the aminocarboxylic acid (salt) -containing particles (samples) obtained in each example were spread on a glass petri dish (inner diameter 85 mm) to a thickness of 5 mm and placed in a thermostatic chamber set at a temperature of 45 ° C. and a relative humidity of 80%. I put it in. Next, every 60 minutes, the mass of the glass petri dish with the sample spread was measured in the thermostat and the change with time was recorded. And the moisture absorption (mass%) was calculated
  • “measured value”, “sample preparation amount”, and “sample collection amount” are as follows. Measured value: Mass of the glass petri dish with the sample spread, measured after 48 hours in total.
  • Sample charge The mass of a glass petri dish with the sample spread, which is measured after standing for 1 minute at a temperature of 25 ° C. before being placed in a thermostatic bath.
  • Sample collection amount A value obtained by subtracting the mass of the glass petri dish measured after standing for 1 minute at a temperature of 25 ° C. from the sample preparation amount.
  • the hygroscopicity of the aminocarboxylic acid (salt) -containing particles was evaluated according to the following evaluation criteria. Those whose evaluation results were A, B, and C were regarded as acceptable. (Evaluation criteria) A: The moisture absorption rate was less than 5% by mass. B: The moisture absorption was 5% by mass or more and less than 10% by mass. C: The moisture absorption was 10% by mass or more and less than 20% by mass. D: The moisture absorption was 20% by mass or more and less than 40% by mass. E: The moisture absorption was 40% by mass or more.
  • the residual amount of the granular detergent remaining on the sieve was measured, and the solidification property of the detergent was evaluated according to the following evaluation criteria. Those whose evaluation results were A and B were regarded as acceptable. (Evaluation criteria) A: The remaining amount of the granular detergent remaining on the sieve was less than 50 g. B: The remaining amount of the granular detergent remaining on the sieve was 50 g or more and less than 100 g. C: The remaining amount of the granular detergent remaining on the sieve was 100 g or more and less than 300 g. D: The residual amount of the granular detergent remaining on the sieve was 300 g or more.
  • aminocarboxylic acid (salt) -containing particles of the present invention are less likely to solidify and have excellent solubility in water, they can be suitably used as a raw material for detergents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Particles each containing an aminocarboxylic acid (salt), each of which comprises (a) a zinc compound and (b) an aminocarboxylic acid or a salt thereof, and which are characterized in that the (a)/(b) ratio is 0.5-6 by mole.

Description

アミノカルボン酸(塩)含有粒子及び粒状洗剤組成物Aminocarboxylic acid (salt) -containing particles and granular detergent composition
 本発明は、アミノカルボン酸(塩)含有粒子及び粒状洗剤組成物に関する。
 本願は、2010年10月1日に、日本に出願された特願2010-224126号、及び2011年3月7日に、日本に出願された特願2011-049624号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to aminocarboxylic acid (salt) -containing particles and granular detergent compositions.
This application claims priority based on Japanese Patent Application No. 2010-224126 filed in Japan on October 1, 2010 and Japanese Patent Application No. 2011-049624 filed on March 7, 2011 in Japan. , The contents of which are incorporated herein.
 近年、消費者の清潔への意識の高まりから、衣料用などの洗剤組成物には、洗浄効果に加えて、除菌効果も有していることが求められている。
 このような洗剤組成物としては、配位座が5以下のキレート剤と金属化合物とを含有する酸化触媒と、界面活性剤とを配合したものが提案されている。前記キレート剤としては、メチルグリシンジ酢酸塩、イミノジコハク酸塩、ヒドロキシイミノジコハク酸塩等のアミノカルボン酸塩が用いられている(特許文献1参照)。
In recent years, due to increasing consumer awareness of cleanliness, detergent compositions for clothing and the like are required to have a sterilizing effect in addition to a cleaning effect.
As such a detergent composition, a composition in which an oxidation catalyst containing a chelating agent having a coordination position of 5 or less and a metal compound and a surfactant are blended has been proposed. As the chelating agent, aminocarboxylates such as methylglycine diacetate, iminodisuccinate, and hydroxyiminodisuccinate are used (see Patent Document 1).
 しかし、アミノカルボン酸塩は、それ自体が吸湿性を有するため、粒状洗剤組成物に配合した場合、他の洗剤原料と塊状になりやすい。そのため、アミノカルボン酸塩を含有する粒状洗剤組成物においては、固化が生じやすい(いわゆるケーキングを起こしやすい)という問題があった。 かかる問題の改善を図るため、アミノカルボン酸塩としてメチルグリシンジ酢酸塩(x)と共に、少なくとも1つのポリエチレングリコール又は少なくとも1つのノニオン界面活性剤又はその混合物、又はポリビニルアルコール、ポリビニルピロリドン、ポリアルキレングリコール及びその誘導体からなる群から選択されたポリマー(y)を併用した混合粉末又は混合顆粒が提案されている(特許文献2参照)。 However, since aminocarboxylate itself has a hygroscopic property, it tends to be agglomerated with other detergent raw materials when blended into a granular detergent composition. Therefore, the granular detergent composition containing an aminocarboxylate has a problem that solidification is likely to occur (so-called caking is likely to occur). In order to improve such a problem, at least one polyethylene glycol or at least one nonionic surfactant or a mixture thereof, or methyl alcohol glycine diacetate (x) as an aminocarboxylate salt, or polyvinyl alcohol, polyvinyl pyrrolidone, polyalkylene glycol And a mixed powder or mixed granule in which a polymer (y) selected from the group consisting of derivatives thereof is used in combination has been proposed (see Patent Document 2).
 また、従来の酸化触媒の造粒物は、水に対する溶解性(特に低温10℃付近の水への溶解性)が不充分である。 In addition, the conventional granulated product of the oxidation catalyst has insufficient solubility in water (particularly solubility in water at a low temperature of about 10 ° C.).
国際公開第09/078459号パンフレットWO09 / 0748459 pamphlet 特表2008-505236号公報Special table 2008-505236 gazette
 しかしながら、特許文献2に記載された技術では、アミノカルボン酸塩の吸湿性が低減されず、粒状洗剤組成物の固化を充分に防止できない。
 本発明は、上記事情に鑑みてなされたものであり、固化を生じにくいアミノカルボン酸(塩)含有粒子及び粒状洗剤組成物を提供することを課題とする。
However, with the technique described in Patent Document 2, the hygroscopicity of the aminocarboxylate is not reduced, and solidification of the granular detergent composition cannot be sufficiently prevented.
This invention is made | formed in view of the said situation, and makes it a subject to provide the aminocarboxylic acid (salt) containing particle | grains and granular detergent composition which are hard to produce solidification.
 本発明者らは鋭意検討した結果、上記課題を解決するために以下の手段を提供する。 As a result of intensive studies, the present inventors provide the following means in order to solve the above problems.
(1)亜鉛化合物(a)と、アミノカルボン酸又はその塩(b)とを含有し、(a)/(b)で表されるモル比が0.5~6であることを特徴とするアミノカルボン酸(塩)含有粒子。
(2) 亜鉛化合物が硫酸塩であることを特徴とする前記(1)に記載のアミノカルボン酸(塩)含有粒子。
(3) さらに、有機結合剤(c)とアニオン性界面活性剤(d)と、融点が45℃未満の非イオン性界面活性剤(e)とを含有することを特徴とする前記(1)又は(2)に記載のアミノカルボン酸(塩)含有粒子。
(4) 前記亜鉛化合物(a)の含有量が、10~80質量%であり、かつ、前記アミノカルボン酸又はその塩(b)の含有量が、10~80質量%である前記(1)~(3)のいずれか一項に記載のアミノカルボン酸(塩)含有粒子。(5)前記(1)~(4)のいずれか一項に記載のアミノカルボン酸(塩)含有粒子を含有することを特徴とする粒状洗剤組成物。
(1) A zinc compound (a) and an aminocarboxylic acid or a salt thereof (b) are contained, and the molar ratio represented by (a) / (b) is 0.5-6. Aminocarboxylic acid (salt) -containing particles.
(2) The aminocarboxylic acid (salt) -containing particles according to (1) above, wherein the zinc compound is a sulfate.
(3) The above (1), further comprising an organic binder (c), an anionic surfactant (d), and a nonionic surfactant (e) having a melting point of less than 45 ° C. Or the aminocarboxylic acid (salt) containing particle | grains as described in (2).
(4) The above (1), wherein the content of the zinc compound (a) is 10 to 80% by mass, and the content of the aminocarboxylic acid or a salt thereof (b) is 10 to 80% by mass. The aminocarboxylic acid (salt) -containing particles according to any one of (3) to (3). (5) A granular detergent composition comprising the aminocarboxylic acid (salt) -containing particles according to any one of (1) to (4).
 本発明によれば、固化を生じにくいアミノカルボン酸(塩)含有粒子及び粒状洗剤組成物を提供することができる。 According to the present invention, it is possible to provide aminocarboxylic acid (salt) -containing particles and a granular detergent composition that hardly cause solidification.
 本発明において「アミノカルボン酸(塩)含有粒子」とは、アミノカルボン酸若しくはアミノカルボン酸塩の一方又は両方を含有する粒子を意味する。 In the present invention, “aminocarboxylic acid (salt) -containing particles” means particles containing one or both of aminocarboxylic acid and aminocarboxylic acid salt.
 本発明において「融点」とは、JIS K0064-1992「化学製品の融点及び溶融範囲測定方法」に記載されている融点測定法によって測定された値を示す。 In the present invention, “melting point” refers to a value measured by the melting point measurement method described in JIS K0064-1992 “Method for measuring melting point and melting range of chemical products”.
(アミノカルボン酸(塩)含有粒子)
 本発明のアミノカルボン酸(塩)含有粒子は、亜鉛化合物(a)と、アミノカルボン酸又はその塩(b)とを含有する。
該アミノカルボン酸(塩)含有粒子は、吸湿性が低いため、粒状洗剤組成物などに配合した場合でも固化を生じにくい(ケーキングを起こしにくい)。したがって、該アミノカルボン酸(塩)含有粒子は、繊維処理用や住居用の洗浄に使用するための粉末状の組成物(洗浄剤、漂白剤)に配合するのに好適であり、特に衣料用の粒状洗剤組成物(漂白性能を有するものを含む)に配合するのに好適である。
(Aminocarboxylic acid (salt) -containing particles)
The aminocarboxylic acid (salt) -containing particles of the present invention contain a zinc compound (a) and an aminocarboxylic acid or a salt thereof (b).
Since the aminocarboxylic acid (salt) -containing particles have low hygroscopicity, solidification hardly occurs even when they are blended into a granular detergent composition (caking is not likely to occur). Therefore, the aminocarboxylic acid (salt) -containing particles are suitable for blending into a powdery composition (cleaning agent, bleaching agent) for use in fiber processing or residential cleaning, especially for clothing. It is suitable for blending into a granular detergent composition (including those having bleaching performance).
 アミノカルボン酸(塩)含有粒子の吸湿率は、好ましくは50質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは20質量%以下である。
 この吸湿率が上限値以下であると、粒状洗剤組成物などに配合した場合に固化がより生じにくくなる。
The moisture absorption rate of the aminocarboxylic acid (salt) -containing particles is preferably 50% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less.
When the moisture absorption is less than or equal to the upper limit, solidification is less likely to occur when blended in a granular detergent composition or the like.
 本発明において、「吸湿率」とは、以下の手順により測定される値をいう。まず、試料をガラス製シャーレ(内径85mm)に厚さ5mmとなるように
広げ、温度45℃、相対湿度80%に設定した恒温槽に入れる。
 次に、経過時間ごと(60分間ごと)に、前記の試料が広げられたガラス製シャーレの質量を前記恒温槽内で測定し、その経時変化を記録する。
 そして、吸湿率(質量%)を、以下に示す式(1)によって求める。式(1)中、「試料の採取量」、「サンプル仕込み量」、「測定値」は以下の通りである。
 測定値:合計で48時間経過後に測定される、試料が広げられたガラス製シャーレの質量。
 サンプル仕込み量:恒温槽に入れる前に、温度25℃で1分間静置した後に測定される、試料が広げられたガラス製シャーレの質量。
 試料の採取量:前記サンプル仕込み量から、温度25℃で1分間静置した後に測定される前記ガラス製シャーレの質量を差し引いた値。
In the present invention, the “moisture absorption rate” refers to a value measured by the following procedure. First, the sample is spread on a glass petri dish (inner diameter: 85 mm) so as to have a thickness of 5 mm, and is placed in a thermostat set at a temperature of 45 ° C. and a relative humidity of 80%.
Next, at every elapsed time (every 60 minutes), the mass of the glass petri dish with the sample spread is measured in the thermostat and the change with time is recorded.
And a moisture absorption rate (mass%) is calculated | required by Formula (1) shown below. In the formula (1), “sample collection amount”, “sample preparation amount”, and “measurement value” are as follows.
Measured value: Mass of the glass petri dish with the sample spread, measured after 48 hours in total.
Sample charge: The mass of a glass petri dish with the sample spread, which is measured after standing for 1 minute at a temperature of 25 ° C. before being placed in a thermostatic bath.
Sample collection amount: A value obtained by subtracting the mass of the glass petri dish measured after standing for 1 minute at a temperature of 25 ° C. from the sample preparation amount.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 アミノカルボン酸(塩)含有粒子の平均粒子径は通常150~2000μmであり、200~1200μmであることが好ましく、50~500μmであることがより好ましく、70~350μmがさらに好ましく、80~300μmが特に好ましい。平均粒子径が下限値以上であると、他の洗剤原料と混合する際に粉立ちが抑制される。一方、上限値以下であると、水への溶解性が向上する。
 本発明において、「平均粒子径」は、粒度分布測定装置(LDSA-3400A(17ch)、東日コンピューターアプリケーションズ株式会社製)を用いて、レーザー光散乱法により、体積基準のメジアン径として測定される値であるか(測定方法1)、又は、以下の方法(測定方法2)によって求めた値である。
(平均粒子径の測定方法)(測定方法2)
 まず、測定対象物(サンプル)について、目開き1680μm、1410μm、1190μm、1000μm、710μm、500μm、350μm、250μm、149μmの9段の篩と受け皿を用いて分級操作を行う。
 分級操作は、まず受け皿の上方に該9段の篩を、上に向かって目開きが次第に大きくなるように積み重ね、最上部の目開き1680μmの篩の上から100g/回のサンプルを入れる。次いで、蓋をしてロータップ型ふるい振盪機(飯田製作所社製、タッピング:156回/分、ローリング:290回/分)に取り付け、10分間振動させた後、それぞれの篩および受け皿上に残留したサンプルを篩目ごとに回収して、サンプルの質量を測定する。
 受け皿と各篩との質量頻度を積算していくと、積算の質量頻度が、50%以上となる最初の篩の目開きをaμmとし、aμmよりも一段大きい篩の目開きをbμmとし、受け皿からaμmの篩までの質量頻度の積算をc%、また、aμmの篩上の質量頻度をd%として、下式より平均粒子径(質量50%)を求める。
The average particle size of the aminocarboxylic acid (salt) -containing particles is usually 150 to 2000 μm, preferably 200 to 1200 μm, more preferably 50 to 500 μm, still more preferably 70 to 350 μm, and more preferably 80 to 300 μm. Particularly preferred. When the average particle size is equal to or greater than the lower limit, dusting is suppressed when mixing with other detergent raw materials. On the other hand, the solubility to water improves that it is below an upper limit.
In the present invention, the “average particle diameter” is measured as a volume-based median diameter by a laser light scattering method using a particle size distribution analyzer (LDSA-3400A (17ch), manufactured by Tohnichi Computer Applications Co., Ltd.). It is a value (measurement method 1) or a value obtained by the following method (measurement method 2).
(Measurement method of average particle diameter) (Measurement method 2)
First, the measurement object (sample) is classified using a 9-stage sieve having a mesh opening of 1680 μm, 1410 μm, 1190 μm, 1000 μm, 710 μm, 500 μm, 350 μm, 250 μm, and 149 μm and a tray.
In the classification operation, first, the 9-stage sieve is stacked above the pan so that the openings gradually increase, and a sample of 100 g / time is placed on the top of the sieve having the top opening of 1680 μm. Next, it was covered and attached to a low-tap type sieve shaker (manufactured by Iida Seisakusho, tapping: 156 times / minute, rolling: 290 times / minute), and after shaking for 10 minutes, it remained on each sieve and saucer. Samples are collected for each mesh and the sample mass is measured.
When the mass frequency of the tray and each sieve is integrated, the opening of the first sieve where the integrated mass frequency is 50% or more is set to a μm, and the opening of the sieve that is one step larger than a μm is set to b μm. The average particle diameter (mass 50%) is obtained from the following equation, where c is the integration of mass frequency from the sieve to a μm sieve and c% is the mass frequency on the sieve of a μm.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 アミノカルボン酸(塩)含有粒子の水分含有量は、好ましくは8質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは0.3~4質量%である。
 本発明において、水分含有量は、赤外線水分計(株式会社ケット科学研究所製、製品名:Kett水分計)を用いて測定される値を示す。
The water content of the aminocarboxylic acid (salt) -containing particles is preferably 8% by mass or less, more preferably 5% by mass or less, and further preferably 0.3 to 4% by mass.
In the present invention, the moisture content indicates a value measured using an infrared moisture meter (product name: Kett moisture meter, manufactured by Kett Scientific Laboratory).
<亜鉛化合物(a)>
 亜鉛化合物(a)(以下「(a)成分」ともいう。)としては、粒状洗剤組成物などが通常、水中に投入して使用されることから、水に溶解しやすいものが好ましく、具体的には、亜鉛の水溶性塩が挙げられる。
 該水溶性塩としては、硝酸塩、硫酸塩、塩化物、酢酸塩、過塩素酸塩、シアン化塩、塩化アンモニウム塩、酒石酸塩、グルコン酸塩等が挙げられ、それらの水和物も用いることができる。
 (a)成分としては、硝酸亜鉛、硫化亜鉛、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、シアン化亜鉛、塩化アンモニウム亜鉛、酒石酸亜鉛、過塩素酸亜鉛、グルコン酸亜鉛等が好ましく、なかでも、取扱い易さ、安全性、価格等から、硫酸亜鉛がより好ましく、無水硫酸亜鉛、硫酸亜鉛一水和物、硫酸亜鉛七水和物が特に好ましい。
<Zinc compound (a)>
As the zinc compound (a) (hereinafter also referred to as “component (a)”), since granular detergent compositions and the like are usually used by being put into water, those which are easily dissolved in water are preferable. Includes a water-soluble salt of zinc.
Examples of the water-soluble salts include nitrates, sulfates, chlorides, acetates, perchlorates, cyanides, ammonium chlorides, tartrates, gluconates, and hydrates thereof. Can do.
As the component (a), zinc nitrate, zinc sulfide, zinc sulfate, zinc chloride, zinc acetate, zinc cyanide, zinc chloride ammonium, zinc tartrate, zinc perchlorate, zinc gluconate, etc. are preferable. In view of safety, safety, and price, zinc sulfate is more preferable, and anhydrous zinc sulfate, zinc sulfate monohydrate, and zinc sulfate heptahydrate are particularly preferable.
 (a)成分として含水塩を用いる場合、アミノカルボン酸(塩)含有粒子を製造する際の捏和混練又は造粒時の温度条件の範囲に、当該(a)成分の脱水・転移温度が存在すると、アミノカルボン酸(塩)含有粒子の硬さが急激に変化し、均一(均質)な造粒物を得ることが難しくなる。このことから、当該(a)成分としては、その脱水・転移温度が、捏和混練又は造粒時の温度条件の範囲を外れていることが好ましく、低温側が55℃以下、高温側が70℃以上であるものがより好ましく、低温側が43~50℃、高温側が73~280℃であるものがさらに好ましい。 When a hydrate salt is used as the component (a), the dehydration / transition temperature of the component (a) exists within the range of temperature conditions during kneading or granulation when producing aminocarboxylic acid (salt) -containing particles. Then, the hardness of the aminocarboxylic acid (salt) -containing particles changes abruptly, making it difficult to obtain a uniform (homogeneous) granulated product. Therefore, as the component (a), the dehydration / transition temperature is preferably outside the range of temperature conditions during kneading or granulation, the low temperature side is 55 ° C. or lower, and the high temperature side is 70 ° C. or higher. More preferably, the low temperature side is 43 to 50 ° C., and the high temperature side is 73 to 280 ° C.
 「(a)成分の脱水・転移温度」は、示差走査熱量測定(DSC)による転移点測定によって観測される値を示す。この脱水・転移温度は、DSCによって得られる吸熱ピークのピークトップの温度とすることにより決定される。DSC測定に関しては、市販されている熱流速型、熱保障型の何れの型を用いてもよい。測定の一例を示すと、リファレンスにα-アルミナを用い、サンプル側に亜鉛化合物(a)の多含水和物を配置する。測定温度範囲:0~100℃、昇温速度:2℃/minの条件で行う。脱水・転移温度は、20℃以上に観測される10mJ/min以上の吸熱ピークのピークトップの温度とする。吸熱
ピークが複数存在する場合には、100℃以下の最も高温側に観測される吸熱ピークを脱水・転移温度とする。
 なお、100℃以下に吸熱ピークが存在しない亜鉛化合物(a)については、測定温度範囲を0~300℃に変更して同様に測定することにより脱水・転移温度を算出する。
“Dehydration / transition temperature of component (a)” indicates a value observed by transition point measurement by differential scanning calorimetry (DSC). The dehydration / transition temperature is determined by setting the temperature at the peak top of the endothermic peak obtained by DSC. For the DSC measurement, any commercially available heat flow rate type or heat guarantee type may be used. As an example of measurement, α-alumina is used as a reference, and a polyhydrate of zinc compound (a) is arranged on the sample side. Measurement temperature range: 0 to 100 ° C., temperature increase rate: 2 ° C./min. The dehydration / transition temperature is the peak top temperature of an endothermic peak of 10 mJ / min or more observed at 20 ° C. or more. When there are a plurality of endothermic peaks, the endothermic peak observed on the highest temperature side of 100 ° C. or lower is defined as the dehydration / transition temperature.
For the zinc compound (a) having no endothermic peak at 100 ° C. or lower, the dehydration / transition temperature is calculated by changing the measurement temperature range to 0 to 300 ° C. and performing the same measurement.
 (a)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 アミノカルボン酸(塩)含有粒子中、(a)成分の含有量は、無水物換算で、10~80質量%が好ましく、20~55質量%がさらに好ましい。
 (a)成分の含有量が下限値以上であると、アミノカルボン酸(塩)含有粒子の吸湿性がより低減されて固化が生じにくくなる。一方、上限値以下であると、後述のアミノカルボン酸又はその塩(b)との配合バランスがとりやすくなり、本発明の効果が向上する。
(A) A component may be used individually by 1 type and may use 2 or more types together.
In the aminocarboxylic acid (salt) -containing particles, the content of the component (a) is preferably 10 to 80% by mass, more preferably 20 to 55% by mass in terms of anhydride.
When the content of the component (a) is equal to or higher than the lower limit, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is further reduced and solidification hardly occurs. On the other hand, when it is at most the upper limit value, it becomes easy to achieve a blending balance with an aminocarboxylic acid or a salt thereof (b) described later, and the effect of the present invention is improved.
<アミノカルボン酸又はその塩(b)>
 アミノカルボン酸又はその塩(b)(以下「(b)成分」ともいう。)としては、エチレンジアミンテトラ酢酸又はその塩、β-アラニン二酢酸又はその塩、下記の一般式(b1)又は(b2)で表される化合物などが挙げられる。
<Aminocarboxylic acid or salt thereof (b)>
The aminocarboxylic acid or its salt (b) (hereinafter also referred to as “component (b)”) includes ethylenediaminetetraacetic acid or its salt, β-alanine diacetic acid or its salt, the following general formula (b1) or (b2 ) And the like.
Figure JPOXMLDOC01-appb-C000003
[式(b1)中、X11~X14は、それぞれ独立に、水素原子、アルカリ金属、アルカリ土類金属又はカチオン性アンモニウムを表し、Rは水素原子又は水酸基を表し、nは0又は1の整数を表す。式(b2)中、Aはアルキル基、カルボキシ基、スルホ基、アミノ基、水酸基又は水素原子を表し、X21~X23は、それぞれ独立に、水素原子、アルカリ金属、アルカリ土類金属又はカチオン性アンモニウムを表し、nは0~5の整数を表す。]
Figure JPOXMLDOC01-appb-C000003
[In the formula (b1), X 11 to X 14 each independently represents a hydrogen atom, an alkali metal, an alkaline earth metal or a cationic ammonium, R represents a hydrogen atom or a hydroxyl group, and n 1 represents 0 or 1 Represents an integer. In the formula (b2), A represents an alkyl group, a carboxy group, a sulfo group, an amino group, a hydroxyl group or a hydrogen atom, and X 21 to X 23 each independently represent a hydrogen atom, an alkali metal, an alkaline earth metal or a cation. N 2 represents an integer of 0 to 5. ]
 前記式(b1)中、X11~X14におけるアルカリ金属としては、ナトリウム、カリウム等が挙げられる。
 X11~X14におけるアルカリ土類金属としては、カルシウム、マグネシウム等が挙げられる。なお、X11~X14のうちの少なくとも1つがアルカリ土類金属である場合には1/2原子分に相当する。たとえばX11がカルシウムの場合、-COOX11は、「-COO 1/2(Ca)」となる。
 X11~X14におけるカチオン性アンモニウムとしては、モノエタノールアミン、ジエタノールアミン等のアルカノールアミンが挙げられ、具体的には、アンモニウムの水素原子の1~3個がアルカノール基で置換されたものが挙げられる。アルカノール基の炭素数は1~3が好ましい。
 上記のなかでも、X11~X14は、アルカリ金属であることが好ましい。
 X11~X14は、それぞれ、同じであってもよく、異なっていてもよい。
In the formula (b1), examples of the alkali metal in X 11 to X 14 include sodium and potassium.
Examples of the alkaline earth metal in X 11 to X 14 include calcium and magnesium. Note that when at least one of X 11 to X 14 is an alkaline earth metal, it corresponds to 1/2 atom. For example, when X 11 is calcium, —COOX 11 becomes “—COO 1/2 (Ca)”.
Examples of the cationic ammonium in X 11 to X 14 include alkanolamines such as monoethanolamine and diethanolamine, and specific examples include those in which 1 to 3 hydrogen atoms of ammonium are substituted with alkanol groups. . The alkanol group preferably has 1 to 3 carbon atoms.
Among the above, X 11 to X 14 are preferably alkali metals.
X 11 to X 14 may be the same or different from each other.
 前記式(b1)中、Rは水素原子、水酸基のいずれであってもよい。
 前記式(b1)中、nは、1であることが好ましい。
In the formula (b1), R may be a hydrogen atom or a hydroxyl group.
In the formula (b1), n 1 is preferably 1.
 式(b1)で表される化合物の具体例としては、たとえばイミノジコハク酸、3-ヒドロキシ-2,2’-イミノジコハク酸又はそれらの塩等が挙げられ、イミノジコハク酸又はその塩が好ましい。
 該塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、モノエタノールアミン塩、ジエタノールアミン塩等のアルカノールアミン塩等が挙げられ、ナトリウム塩、カリウム塩が特に好ましい。
Specific examples of the compound represented by the formula (b1) include iminodisuccinic acid, 3-hydroxy-2,2′-iminodisuccinic acid or a salt thereof, and iminodisuccinic acid or a salt thereof is preferable.
Examples of the salt include alkali metal salts such as sodium salt and potassium salt, alkanolamine salts such as monoethanolamine salt and diethanolamine salt, and sodium salt and potassium salt are particularly preferable.
 前記式(b2)中、Aにおけるアルキル基は、直鎖状又は分岐鎖状のいずれでもよい。
アルキル基の炭素数は1~30が好ましく、1~18がより好ましい。該アルキル基は、その水素原子の一部が置換基で置換されていてもよい。該置換基としては、スルホ基(-SOH)、アミノ基(-NH)、水酸基、ニトロ基(-NO)等が挙げられる。
 Aは、アルキル基、カルボキシ基、スルホ基、アミノ基、水酸基、水素原子のいずれであってもよく、なかでも水素原子が特に好ましい。
In the formula (b2), the alkyl group in A may be either linear or branched.
The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 18 carbon atoms. In the alkyl group, a part of the hydrogen atoms may be substituted with a substituent. Examples of the substituent include a sulfo group (—SO 3 H), an amino group (—NH 2 ), a hydroxyl group, and a nitro group (—NO 2 ).
A may be any of an alkyl group, a carboxy group, a sulfo group, an amino group, a hydroxyl group, and a hydrogen atom, and a hydrogen atom is particularly preferable.
 前記式(b2)中、X21~X23におけるアルカリ金属、アルカリ土類金属、カチオン性アンモニウムとしては、それぞれ、前記X11~X14におけるアルカリ金属、アルカリ土類金属、カチオン性アンモニウムと同様のものが挙げられる。
 これらのなかでも、X21~X23は、アルカリ金属であることが好ましい。
 X21~X23は、それぞれ、同じであってもよく、異なっていてもよい。
In the formula (b2), the alkali metal, alkaline earth metal and cationic ammonium in X 21 to X 23 are the same as the alkali metal, alkaline earth metal and cationic ammonium in X 11 to X 14 respectively. Things.
Among these, X 21 to X 23 are preferably alkali metals.
X 21 to X 23 may be the same or different from each other.
 前記式(b2)中、nは、0~2の整数であることが好ましく、1が特に好ましい。 In the formula (b2), n 2 is preferably an integer of 0 to 2, and 1 is particularly preferable.
 式(b2)で表される化合物の具体例としては、たとえばニトリロトリ酢酸、メチルグリシンジ酢酸、ジカルボキシメチルグルタミン酸、L-アスパラギン酸-N,N-二酢酸、セリン二酢酸又はそれらの塩等が挙げられ、なかでもニトリロトリ酢酸、メチルグリシンジ酢酸又はそれらの塩が好ましく、メチルグリシンジ酢酸又はその塩が特に好ましい。
 該塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、モノエタノールアミン塩、ジエタノールアミン塩等のアルカノールアミン塩等が挙げられ、ナトリウム塩、カリウム塩が特に好ましい。
Specific examples of the compound represented by the formula (b2) include, for example, nitrilotriacetic acid, methylglycine diacetic acid, dicarboxymethylglutamic acid, L-aspartic acid-N, N-diacetic acid, serine diacetic acid or salts thereof. Among them, nitrilotriacetic acid, methylglycine diacetic acid or a salt thereof is preferable, and methylglycine diacetic acid or a salt thereof is particularly preferable.
Examples of the salt include alkali metal salts such as sodium salt and potassium salt, alkanolamine salts such as monoethanolamine salt and diethanolamine salt, and sodium salt and potassium salt are particularly preferable.
 (b)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 上記のなかでも、(b)成分としては、固化がより生じにくいことから、前記一般式(b1)又は(b2)で表される化合物が好ましく、一般式(b2)で表される化合物がより好ましい。
 アミノカルボン酸(塩)含有粒子中、(b)成分の含有量は、10~80質量%が好ましく、35~75質量%がさらに好ましい。(b)成分の含有量が下限値以上であると、(b)成分の配合効果(金属イオンに配位してキレート化合物をつくる効果)がより得られやすくなる。一方、上限値以下であると、前記(a)成分との配合バランスがとりやすくなり、本発明の効果が向上する。
(B) A component may be used individually by 1 type and may use 2 or more types together.
Among these, as the component (b), since the solidification is less likely to occur, the compound represented by the general formula (b1) or (b2) is preferable, and the compound represented by the general formula (b2) is more preferable. preferable.
In the aminocarboxylic acid (salt) -containing particles, the content of the component (b) is preferably 10 to 80% by mass, and more preferably 35 to 75% by mass. When the content of the component (b) is equal to or higher than the lower limit, the blending effect of the component (b) (the effect of forming a chelate compound by coordination with metal ions) is more easily obtained. On the other hand, when it is at most the upper limit value, it becomes easy to achieve a blending balance with the component (a), and the effect of the present invention is improved.
 前記一般式(b1)~(b2)で表される化合物を、たとえばアミノカルボン酸(塩)含有粒子を製造する際の捏和工程で配合すると、末端基の「-COOX」の一部又は全部が「-COO」となり、当該化合物はバインダとして作用する、と考えられる。 When the compounds represented by the general formulas (b1) to (b2) are blended in, for example, a kneading step when producing aminocarboxylic acid (salt) -containing particles, a part or all of the terminal group “—COOX” Becomes “—COO ” and the compound is considered to act as a binder.
 また、(b)成分としては、アミノカルボン酸(塩)含有粒子の吸湿性がより低く抑えられることから、平均中和度が80%以上であるものを用いることが好ましく、90%以上であるものを用いることがより好ましく、100%であるものを用いることが特に好ましい。
 ここでいう「中和度」とは、分子中の全カルボン酸に対する、中和されたカルボン酸のモル分率を意味する。分子中の全カルボン酸が中和されると1.0、全部が酸型(-COOH)である場合は0である。
Further, as the component (b), since the hygroscopicity of the aminocarboxylic acid (salt) -containing particles can be kept lower, it is preferable to use those having an average neutralization degree of 80% or more, and 90% or more. It is more preferable to use a thing, and it is especially preferable to use what is 100%.
As used herein, “degree of neutralization” means the molar fraction of the neutralized carboxylic acid relative to the total carboxylic acid in the molecule. It is 1.0 when all carboxylic acids in the molecule are neutralized, and 0 when all are in acid form (—COOH).
 本発明において「(a)/(b)」は、(b)成分に対する(a)成分の含有割合(モル比)を示す。
 アミノカルボン酸(塩)含有粒子中の(a)成分と(b)成分との混合割合は、(a)/(b)で表されるモル比が0.5~6であり、0.5~5.8であることが好ましく、0.5~5.5であることがより好ましい。
 (a)/(b)で表されるモル比が下限値以上であると、アミノカルボン酸(塩)含有粒子の吸湿性が低減されて固化が生じにくくなる。一方、(a)/(b)で表されるモル比が上限値以下であると、(b)成分の濃度が充分に確保される。
In the present invention, “(a) / (b)” indicates the content ratio (molar ratio) of the component (a) to the component (b).
The mixing ratio of the component (a) and the component (b) in the aminocarboxylic acid (salt) -containing particles is such that the molar ratio represented by (a) / (b) is 0.5 to 6, Is preferably ˜5.8, more preferably 0.5˜5.5.
When the molar ratio represented by (a) / (b) is equal to or greater than the lower limit, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is reduced, and solidification hardly occurs. On the other hand, when the molar ratio represented by (a) / (b) is not more than the upper limit, the concentration of the component (b) is sufficiently secured.
<その他成分>
 アミノカルボン酸(塩)含有粒子は、前記の(a)成分、(b)成分以外に、その他成分を必要に応じて含有してもよい。
 その他成分としては、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等の塩基;結晶性アルミノ珪酸塩(A型ゼオライト、P型ゼオライト、X型ゼオライト等)、非晶質アルミノ珪酸塩、粘土鉱物(タルク、モンモリロナイト等)等の被覆用成分;ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール等の結合剤が挙げられる。
 アミノカルボン酸(塩)含有粒子中、塩基の含有量は、0.001~10質量%が好ましく、0.002~1質量%がより好ましく、0.003~0.1質量%がさらに好ましい。塩基の含有量が下限値以上であると、アミノカルボン酸(塩)含有粒子を調製する際、(b)成分が水分を吸いにくい構造に変化しやすくなる。一方、上限値以下であれば、他の配合成分とのバランスをとりやすくなり、(b)成分の濃度が充分に確保される。
 アミノカルボン酸(塩)含有粒子中、被覆用成分の含有量は、0.5~5質量%が好ましく、1~3質量%がより好ましい。被覆用成分の含有量が下限値以上であると、アミノカルボン酸(塩)含有粒子は塊状となりにくく、流動性が向上する。一方、上限値以下であれば、他の配合成分とのバランスをとりやすくなり、(b)成分の濃度が充分に確保される。
<Other ingredients>
The aminocarboxylic acid (salt) -containing particles may contain other components as needed in addition to the components (a) and (b).
Other components include bases such as sodium bicarbonate, sodium hydroxide and potassium hydroxide; crystalline aluminosilicates (A-type zeolite, P-type zeolite, X-type zeolite, etc.), amorphous aluminosilicates, clay minerals ( Coating components such as talc and montmorillonite); binders such as polyethylene glycol, polyvinyl pyrrolidone and polyvinyl alcohol.
In the aminocarboxylic acid (salt) -containing particles, the content of the base is preferably 0.001 to 10% by mass, more preferably 0.002 to 1% by mass, and further preferably 0.003 to 0.1% by mass. When the content of the base is at least the lower limit value, when preparing the aminocarboxylic acid (salt) -containing particles, the component (b) tends to change to a structure that hardly absorbs moisture. On the other hand, if it is below the upper limit, it becomes easy to balance with other blending components, and the concentration of the component (b) is sufficiently secured.
In the aminocarboxylic acid (salt) -containing particles, the content of the coating component is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass. When the content of the coating component is equal to or more than the lower limit, the aminocarboxylic acid (salt) -containing particles are unlikely to be agglomerated and the fluidity is improved. On the other hand, if it is below the upper limit, it becomes easy to balance with other blending components, and the concentration of the component (b) is sufficiently secured.
 前記結合剤としては、有機結合剤(c)が好ましい。 As the binder, an organic binder (c) is preferable.
[有機結合剤(c)]
 有機結合剤(c)は、バインダとしての機能を有し、常温で固体であり、熱を加えることにより溶融する水溶性の有機化合物が好ましい。
 なかでも、(c)成分としては、融点が25~100℃の有機化合物がより好ましく、融点が25~80℃の有機化合物がさらに好ましく、融点が40~80℃の有機化合物が特に好ましく、融点が45~75℃の有機化合物が最も好ましい。
 ただし、(c)成分は、本発明における(d)成分、(e)成分、(a)成分及び(b)成分を含まないものとする。
[Organic binder (c)]
The organic binder (c) has a function as a binder, is a solid at room temperature, and is preferably a water-soluble organic compound that melts when heated.
Among them, as the component (c), an organic compound having a melting point of 25 to 100 ° C. is more preferable, an organic compound having a melting point of 25 to 80 ° C. is more preferable, an organic compound having a melting point of 40 to 80 ° C. is particularly preferable, Is most preferably an organic compound having a temperature of 45 to 75 ° C.
However, the component (c) does not include the component (d), the component (e), the component (a), and the component (b) in the present invention.
 (c)成分として具体的には、たとえば、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキシドとプロピレンオキシドとのブロックポリマー、融点が45℃以上の非イオン性界面活性剤が挙げられる。なかでもポリエチレングリコールが好ましく、平均分子量が400~30000のポリエチレングリコールがより好ましく、平均分子量が1000~20000のポリエチレングリコールがさらに好ましく、平均分子量が4000~20000のポリエチレングリコールが特に好ましい。
 ここでの「平均分子量」は、ゲルパーミエーションクロマトグラフィーによるポリエチレングリコール換算基準の値を示す。
Specific examples of the component (c) include polyethylene glycol, polypropylene glycol, block polymers of ethylene oxide and propylene oxide, and nonionic surfactants having a melting point of 45 ° C. or higher. Among these, polyethylene glycol is preferable, polyethylene glycol having an average molecular weight of 400 to 30000 is more preferable, polyethylene glycol having an average molecular weight of 1000 to 20000 is further preferable, and polyethylene glycol having an average molecular weight of 4000 to 20000 is particularly preferable.
Here, “average molecular weight” indicates a value in terms of polyethylene glycol conversion by gel permeation chromatography.
 (c)成分は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 アミノカルボン酸(塩)含有粒子中、結合剤(c)の含有量は、3~30質量%が好ましく、5~25質量%がより好ましく、8~20質量%が特に好ましい。
 結合剤(c)の含有量が3質量%以上であると、アミノカルボン酸(塩)含有粒子の吸湿性がより低く抑えられる。また、アミノカルボン酸(塩)含有粒子の製造において、粉砕の際に微粉がより発生しにくくなる。一方、結合剤(c)の含有量が30質量%以下であると、特に(a)成分と(b)成分との配合バランスが良好に保たれ、水に対する溶解性が向上する。
(C) A component may be used individually by 1 type and may be used in combination of 2 or more type.
In the aminocarboxylic acid (salt) -containing particles, the content of the binder (c) is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and particularly preferably 8 to 20% by mass.
When the content of the binder (c) is 3% by mass or more, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles can be further reduced. Further, in the production of aminocarboxylic acid (salt) -containing particles, fine powder is less likely to be generated during pulverization. On the other hand, when the content of the binder (c) is 30% by mass or less, the blending balance of the component (a) and the component (b) is particularly well maintained, and the solubility in water is improved.
 また、アミノカルボン酸(塩)含有粒子は、アニオン性界面活性剤(d)、融点が45℃未満の非イオン性界面活性剤(e)を含有していてもよい。 The aminocarboxylic acid (salt) -containing particles may also contain an anionic surfactant (d) and a nonionic surfactant (e) having a melting point of less than 45 ° C.
[アニオン性界面活性剤(d)]
 アニオン性界面活性剤(d)としては、たとえば、直鎖状又は分岐鎖状アルキル(平均炭素数8~18)ベンゼンスルホン酸塩、長鎖アルキル(平均炭素数10~20)スルホン酸塩、長鎖オレフィン(平均炭素数10~20)スルホン酸塩、長鎖モノアルキル(平均炭素数10~20)硫酸エステル塩、ポリオキシエチレン(平均重合度1~10)長鎖アルキル(平均炭素数10~20)エーテル硫酸エステル塩、ポリオキシエチレン(平均重合度3~30)アルキル(平均炭素数6~12)フェニルエーテル硫酸エステル塩、α-スルホ脂肪酸エステル塩(平均炭素数12~20);長鎖モノアルキル、ジアルキル又はセスキアルキルリン酸塩;ポリオキシエチレンモノアルキル、ジアルキル又はセスキアルキルリン酸塩等が用いられる。
 上記のなかでも、(d)成分としては、直鎖状又は分岐鎖状アルキル(平均炭素数8~18)ベンゼンスルホン酸塩、長鎖アルキル(平均炭素数10~20)スルホン酸塩、長鎖オレフィン(平均炭素数10~20)スルホン酸塩、長鎖モノアルキル(平均炭素数10~20)硫酸エステル塩、α-スルホ脂肪酸エステル塩(平均炭素数12~20)が好ましく、長鎖アルキル(平均炭素数10~20)スルホン酸塩、長鎖オレフィン(平均炭素数10~20)スルホン酸塩が特に好ましい。
 なお、上記の「長鎖」は、直鎖状又は分岐鎖状でもよく、飽和又は不飽和結合を有していてもよい。
 (d)成分における塩の形態は、ナトリウム、カリウム等のアルカリ金属塩、アミン塩、アンモニウム塩などが挙げられ、アルカリ金属塩が好ましい。
[Anionic surfactant (d)]
Examples of the anionic surfactant (d) include linear or branched alkyl (average carbon number 8 to 18) benzene sulfonate, long chain alkyl (average carbon number 10 to 20) sulfonate, long Chain olefin (average carbon number 10-20) sulfonate, long chain monoalkyl (average carbon number 10-20) sulfate ester, polyoxyethylene (average degree of polymerization 1-10) long chain alkyl (average carbon number 10-10) 20) Ether sulfate ester salt, polyoxyethylene (average degree of polymerization 3 to 30) alkyl (average carbon number 6 to 12) phenyl ether sulfate ester salt, α-sulfo fatty acid ester salt (average carbon number 12 to 20); long chain Monoalkyl, dialkyl or sesquialkyl phosphates; polyoxyethylene monoalkyl, dialkyl or sesquialkyl phosphates are used
Among the above, as the component (d), linear or branched alkyl (average carbon number 8 to 18) benzene sulfonate, long chain alkyl (average carbon number 10 to 20) sulfonate, long chain Olefin (average carbon number 10-20) sulfonate, long chain monoalkyl (average carbon number 10-20) sulfate ester salt, α-sulfo fatty acid ester salt (average carbon number 12-20) are preferred, and long chain alkyl ( Particularly preferred are sulfonates having an average carbon number of 10 to 20) and long-chain olefins (average carbon number of 10 to 20).
The above “long chain” may be linear or branched, and may have a saturated or unsaturated bond.
Examples of the salt form in the component (d) include alkali metal salts such as sodium and potassium, amine salts, ammonium salts and the like, and alkali metal salts are preferable.
 (d)成分は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 アミノカルボン酸(塩)含有粒子中、(d)成分の含有量は、1~20質量%が好ましく、3~18質量%がより好ましく、5~15質量%が特に好ましい。
 (d)成分の含有量が1質量%以上であると、アミノカルボン酸(塩)含有粒子の水に対する溶解性が向上する。一方、(d)成分の含有量が20質量%以下であると、(a)成分と(b)成分との配合バランスが良好に保たれ、漂白効果が向上する。
(D) A component may be used individually by 1 type and may be used in combination of 2 or more type.
In the aminocarboxylic acid (salt) -containing particles, the content of the component (d) is preferably 1 to 20% by mass, more preferably 3 to 18% by mass, and particularly preferably 5 to 15% by mass.
When the content of the component (d) is 1% by mass or more, the solubility of the aminocarboxylic acid (salt) -containing particles in water is improved. On the other hand, when the content of the component (d) is 20% by mass or less, the blending balance of the component (a) and the component (b) is kept good, and the bleaching effect is improved.
[融点が45℃未満の非イオン性界面活性剤(e)]
 本発明のアミノカルボン酸(塩)含有粒子を製造する際、(e)成分は、加温によって容易に溶融してその他の原料と充分に混ざり合う。これにより、捏和混練が良好に行われて適度な硬さを有するアミノカルボン酸(塩)含有粒子が調製される。
 (e)成分の融点は43℃以下であることが好ましく、15~41℃であることがより好ましい。
 (e)成分としては、たとえば、ポリエチレングリコール付加型非イオン性界面活性剤、ポリエチレングリコール-ポリプロピレングリコール付加型非イオン性界面活性剤が挙げられ、なかでもポリエチレングリコール付加型非イオン性界面活性剤が好ましく、炭素数8~20(好ましくは10~18)の脂肪族アルコール1モル当たりにエチレングリコール又はエチレンオキシド3~80モル(好ましくは5~50モル)が付加したもので、かつ、融点45℃未満のものがより好ましい。
 (e)成分として具体的には、ポリオキシエチレンアルキルエーテル(好ましくは、エチレングリコール又はエチレンオキシド5~15モルが付加し、かつ、アルキルの炭素数が12~18のもの)が挙げられる。
[Nonionic surfactant (e) having a melting point of less than 45 ° C.]
When the aminocarboxylic acid (salt) -containing particles of the present invention are produced, the component (e) is easily melted by heating and sufficiently mixed with other raw materials. Thereby, kneading | mixing is performed favorably and the aminocarboxylic acid (salt) containing particle | grains which have moderate hardness are prepared.
The melting point of the component (e) is preferably 43 ° C. or less, more preferably 15 to 41 ° C.
Examples of the component (e) include polyethylene glycol addition type nonionic surfactants and polyethylene glycol-polypropylene glycol addition type nonionic surfactants. Among these, polyethylene glycol addition type nonionic surfactants are exemplified. Preferably, 3 to 80 moles (preferably 5 to 50 moles) of ethylene glycol or ethylene oxide are added per 1 mole of aliphatic alcohol having 8 to 20 carbon atoms (preferably 10 to 18 carbon atoms), and the melting point is less than 45 ° C. Are more preferred.
Specific examples of the component (e) include polyoxyethylene alkyl ethers (preferably having 5 to 15 moles of ethylene glycol or ethylene oxide added thereto and alkyl having 12 to 18 carbon atoms).
 (e)成分は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 アミノカルボン酸(塩)含有粒子中、(e)成分の含有量は、1~9質量%が好ましく、2~9質量%がより好ましく、3~8質量%がさらに好ましい。
 (e)成分の含有量が1質量%以上であると、アミノカルボン酸(塩)含有粒子の水に対する溶解性が向上する。一方、(e)成分の含有量が9質量%以下であると、アミノカルボン酸(塩)含有粒子を製造する際、たとえば押出機から押し出す際の押出し圧が低くなりすぎず、押出物の保形性がより良好となる。そして、得られるアミノカルボン酸(塩)含有粒子は合一を起こしにくい物性を有し、輸送の際における付着、固化の発生が抑制されやすい。
As the component (e), one type may be used alone, or two or more types may be used in combination.
In the aminocarboxylic acid (salt) -containing particles, the content of the component (e) is preferably 1 to 9% by mass, more preferably 2 to 9% by mass, and further preferably 3 to 8% by mass.
When the content of the component (e) is 1% by mass or more, the solubility of the aminocarboxylic acid (salt) -containing particles in water is improved. On the other hand, when the content of the component (e) is 9% by mass or less, when the aminocarboxylic acid (salt) -containing particles are produced, for example, the extrusion pressure at the time of extrusion from the extruder does not become too low, and the extrudate is maintained. The formability becomes better. And the aminocarboxylic acid (salt) containing particle | grains obtained have a physical property which is hard to raise | generate coalescence, and it is easy to suppress the generation | occurrence | production of adhesion | attachment and solidification in the case of transport.
 本発明のアミノカルボン酸(塩)含有粒子においては、特に洗濯洗液がアルカリ性を呈する条件下で、溶解性改善剤として多価カルボン酸を配合することが好ましい。
 多価カルボン酸としては、コハク酸、クエン酸が挙げられる。アミノカルボン酸(塩)含有粒子中、該多価カルボン酸の含有量は5質量%以下が好ましく、3質量%以下がより好ましい。5質量%以下であれば、特に(a)成分との配合バランスをとりやすくなる。一方、下限値は、溶解性の改善効果が得られやすくなることから、1質量%以上であることが好ましい。
In the aminocarboxylic acid (salt) -containing particles of the present invention, it is preferable to blend a polyvalent carboxylic acid as a solubility improver, particularly under the condition that the laundry washing solution exhibits alkalinity.
Examples of the polyvalent carboxylic acid include succinic acid and citric acid. In the aminocarboxylic acid (salt) -containing particles, the content of the polyvalent carboxylic acid is preferably 5% by mass or less, and more preferably 3% by mass or less. If it is 5 mass% or less, it will become easy to take especially the compounding balance with (a) component. On the other hand, the lower limit value is preferably 1% by mass or more because the effect of improving solubility is easily obtained.
 また、その他の成分としては、衣料用等の洗剤、漂白剤に通常配合されているものが挙げられる。具体的には、カチオン性界面活性剤、両性界面活性剤、粉砕助剤としてのゼオライト等のアルミノケイ塩;炭酸ナトリウム、炭酸カルシウム等の炭酸塩、非晶質シリカ;ケイ酸カルシウム、ケイ酸マグネシウム等のケイ酸塩、その他無機塩(硫酸ナトリウム、塩化ナトリウム等)、中鎖若しくは長鎖の脂肪酸又はその塩、有機過酸前駆体などの漂白活性化剤、1-ヒドロキシエタン-1,1-ジホスホン酸又はその塩等の(b)成分以外の重金属キレート剤、粘土鉱物、蛍光増白剤、紫外線吸収剤、酸化防止剤、抗菌剤、顔料などが挙げられる。
 中鎖若しくは長鎖の脂肪酸として具体的には、中鎖の脂肪酸としてはアシル基の炭素数が8~10の脂肪酸が挙げられ、長鎖の脂肪酸としてはアシル基の炭素数が12~18の脂肪酸が挙げられる。なお、「中鎖若しくは長鎖」は、直鎖状又は分岐鎖状でもよく、飽和又は不飽和結合を有していてもよい。アミノカルボン酸(塩)含有粒子中、中鎖又は長鎖の脂肪酸の含有量は、0.1~5質量%が好ましく、0.5~4質量%がより好ましい。
 有機過酸前駆体は、過炭酸ナトリウム等の過酸化物から発生する過酸化水素(酸素系漂白成分)と反応して、漂白力の強い有機過酸を生じることにより、衣料等に対して漂白効果を発揮するものである。しかし、有機過酸前駆体は、粒状洗剤や漂白剤等に配合した場合、その他の成分との相互作用により酸化促進効果が低下する等、経時で劣化しやすく不安定な成分である。このため、配合した分の効果が得られにくいことから、本発明のアミノカルボン酸(塩)含有粒子においては有機過酸前駆体を含有しないことが好ましい。
また、その他成分としては、本発明の効果を損なわない範囲で色素、香料なども配合することができる。
Moreover, what is normally mix | blended with detergents and bleaches for clothes etc. is mentioned as another component. Specifically, cationic surfactants, amphoteric surfactants, aluminosilicate salts such as zeolite as grinding aids; carbonates such as sodium carbonate and calcium carbonate, amorphous silica; calcium silicate, magnesium silicate, etc. Silicates, other inorganic salts (sodium sulfate, sodium chloride, etc.), medium or long chain fatty acids or salts thereof, bleaching activators such as organic peracid precursors, 1-hydroxyethane-1,1-diphosphone Examples include heavy metal chelating agents other than the component (b) such as acids or salts thereof, clay minerals, fluorescent brighteners, ultraviolet absorbers, antioxidants, antibacterial agents, and pigments.
Specific examples of the medium chain or long chain fatty acid include fatty acids having 8 to 10 carbon atoms in the acyl group as the medium chain fatty acid, and long chain fatty acids having 12 to 18 carbon atoms in the acyl group. Fatty acids are mentioned. The “medium chain or long chain” may be linear or branched, and may have a saturated or unsaturated bond. In the aminocarboxylic acid (salt) -containing particles, the content of the medium-chain or long-chain fatty acid is preferably 0.1 to 5% by mass, and more preferably 0.5 to 4% by mass.
Organic peracid precursors react with hydrogen peroxide (oxygen-based bleaching component) generated from peroxides such as sodium percarbonate to produce organic peracids with strong bleaching power, thereby bleaching clothing, etc. It is effective. However, the organic peracid precursor is an unstable component that is likely to deteriorate over time, such as when the oxidation promoting effect is reduced due to the interaction with other components when blended in a granular detergent or a bleaching agent. For this reason, since it is difficult to obtain the effect of blending, it is preferable that the aminocarboxylic acid (salt) -containing particles of the present invention do not contain an organic peracid precursor.
Moreover, as other components, a pigment | dye, a fragrance | flavor, etc. can be mix | blended in the range which does not impair the effect of this invention.
 アミノカルボン酸(塩)含有粒子としては、亜鉛化合物(a)、アミノカルボン酸又はその塩(b)、有機結合剤(c)、アニオン性界面活性剤(d)と、融点が45℃未満の非イオン性界面活性剤(e)とを含有するアミノカルボン酸(塩)含有粒子が好ましく、なかでも、亜鉛化合物(a)の含有量が10~80質量%であり、かつ、アミノカルボン酸又はその塩(b)の含有量が、10~80質量%であることがより好ましい。 As aminocarboxylic acid (salt) -containing particles, zinc compound (a), aminocarboxylic acid or salt thereof (b), organic binder (c), anionic surfactant (d), and melting point of less than 45 ° C. Aminocarboxylic acid (salt) -containing particles containing a nonionic surfactant (e) are preferable. Among them, the content of the zinc compound (a) is 10 to 80% by mass, and the aminocarboxylic acid or The content of the salt (b) is more preferably 10 to 80% by mass.
 アニオン性界面活性剤(d)と亜鉛化合物(a)との配合比率は、(d)/(a)で表される質量比で0.05~0.44であることが好ましく、0.10~0.40であることがより好ましい。(d)/(a)が下限値以上であると、吸湿抑制の効果が得られやすくなり、(d)/(a)が上限値以下であると、水に対する溶解性の向上が図られる。 The mixing ratio of the anionic surfactant (d) and the zinc compound (a) is preferably 0.05 to 0.44 in terms of mass ratio represented by (d) / (a), and is 0.10. More preferably, it is ˜0.40. When (d) / (a) is equal to or higher than the lower limit, the effect of suppressing moisture absorption is easily obtained, and when (d) / (a) is equal to or lower than the upper limit, solubility in water is improved.
 融点が45℃未満の非イオン性界面活性剤(e)と亜鉛化合物(a)との配合比率は、(e)/(a)で表される質量比で0.05~0.36であることが好ましく、0.06~0.30であることがより好ましい。(e)/(a)が下限値以上であると、水に対する溶解性の向上が図られ、(e)/(a)が上限値以下であると、アミノカルボン酸(塩)含有粒子を製造する際、押出し時の押出し圧が低くなり過ぎることがなく保形性が向上し、造粒物の固化が抑制されやすい。 The blending ratio of the nonionic surfactant (e) having a melting point of less than 45 ° C. and the zinc compound (a) is 0.05 to 0.36 in mass ratio represented by (e) / (a). It is preferably 0.06 to 0.30. When (e) / (a) is at least the lower limit, solubility in water is improved, and when (e) / (a) is at most the upper limit, aminocarboxylic acid (salt) -containing particles are produced. In this case, the extrusion pressure at the time of extrusion does not become too low, the shape retention is improved, and the solidification of the granulated product is easily suppressed.
 アミノカルボン酸又はその塩(b)と亜鉛化合物(a)との配合比率は、(b)/(a)で表される質量比で0.44~2.0であることが好ましく、0.48~1.9であることがより好ましい。(b)/(a)が下限値以上であると、アミノカルボン酸(塩)含有粒子を製造する際、押出し時の押出し圧が高くなり過ぎることがなく、(b)/(a)が上限値以下であると、アミノカルボン酸(塩)含有粒子の吸湿性が抑制されやすい。 The mixing ratio of the aminocarboxylic acid or its salt (b) and the zinc compound (a) is preferably 0.44 to 2.0 in terms of mass ratio represented by (b) / (a). More preferably, it is 48 to 1.9. When (b) / (a) is at least the lower limit, when producing aminocarboxylic acid (salt) -containing particles, the extrusion pressure during extrusion does not become too high, and (b) / (a) is the upper limit. If it is less than the value, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is easily suppressed.
 有機結合剤(c)とアニオン性界面活性剤(d)と融点が45℃未満の非イオン性界面活性剤(e)との配合比率は、(c)/[(d)+(e)]で表される質量比で0.7~2.0であることが好ましく、0.8~1.5であることがより好ましい。(c)/[(d)+(e)]が上記範囲内であると、水に対して良好な溶解性を維持しつつ、アミノカルボン酸(塩)含有粒子の保形性が向上し、吸湿性が抑制されやすくなる。 The blending ratio of the organic binder (c), the anionic surfactant (d) and the nonionic surfactant (e) having a melting point of less than 45 ° C. is (c) / [(d) + (e)] Is preferably 0.7 to 2.0, and more preferably 0.8 to 1.5. When (c) / [(d) + (e)] is within the above range, the shape retention of the aminocarboxylic acid (salt) -containing particles is improved while maintaining good solubility in water. Hygroscopicity is easily suppressed.
 「(d)/(a)で表される質量比」は、アミノカルボン酸(塩)含有粒子中の(a)成分の含有量(質量%)に対する、(d)成分の含有量(質量%)の比率を示す。 The “mass ratio represented by (d) / (a)” is the content (mass%) of the component (d) relative to the content (mass%) of the ingredient (a) in the aminocarboxylic acid (salt) -containing particles. ) Ratio.
 「(e)/(a)で表される質量比」は、アミノカルボン酸(塩)含有粒子中の(a)成分の含有量(質量%)に対する、(e)成分の含有量(質量%)の比率を示す。 The “mass ratio represented by (e) / (a)” is the content (mass%) of the component (e) relative to the content (mass%) of the ingredient (a) in the aminocarboxylic acid (salt) -containing particles. ) Ratio.
 「(b)/(a)で表される質量比」は、アミノカルボン酸(塩)含有粒子中の(a)成分の含有量(質量%)に対する、(b)成分の含有量(質量%)の比率を示す。 The “mass ratio represented by (b) / (a)” is the content (mass%) of the component (b) relative to the content (mass%) of the ingredient (a) in the aminocarboxylic acid (salt) -containing particles. ) Ratio.
 「(c)/[(d)+(e)]で表される質量比」は、アミノカルボン酸(塩)含有粒子中の(d)成分と(e)成分との合計の含有量(質量%)に対する、(c)成分の含有量(質量%)の比率を示す。  “Mass ratio represented by (c) / [(d) + (e)]” is the total content (mass of component (d) and component (e) in the aminocarboxylic acid (salt) -containing particles. %) Of the content (mass%) of the component (c). *
<アミノカルボン酸(塩)含有粒子の製造方法>
 アミノカルボン酸(塩)含有粒子の製造方法としては、具体的には以下の方法(I)~(III)、及び(IV)が挙げられる。
<Method for producing aminocarboxylic acid (salt) -containing particles>
Specific methods for producing aminocarboxylic acid (salt) -containing particles include the following methods (I) to (III) and (IV).
 方法(I):(b)成分(粉末状)を混ぜながら、水等を噴霧等の方法で添加した後、(a)成分(粉末状)を加えて混合する方法。
 水等としては、水、上記塩基の水溶液が挙げられる。水等の噴霧等により、(a)成分によって、(b)成分が水分を吸いにくい構造に変化しやすくなる。塩基の水溶液を添加する場合、その水溶液のpHは8~12が好ましく、8~10がより好ましい。水等の噴霧量は、上述した水分含有量の好適な範囲となるように適宜制御すればよく、(a)成分と(b)成分との合計100質量部に対して0.2~5質量部が好ましく、0.2~3質量部がより好ましい。
 (a)成分(粉末状)を加えて混合した後、上記被覆用成分をさらに加えることもできる。被覆用成分をさらに加えることにより、アミノカルボン酸(塩)含有粒子は塊状となりにくく、流動性が向上する。
 方法(I)で使用する混合機としては、レディゲミキサー(M20型、株式会社マツボー製)、ハイスピードミキサー、プローシェアーミキサー等を使用することができる。
 混合条件は、撹拌速度がたとえば主軸の回転数で、好ましくは100~350rpmであり、より好ましくは150~250rpmである。温度が、好ましくは30~70℃であり、より好ましくは40~60℃である。
Method (I): A method of adding (a) component (powder) and mixing after adding water or the like by spraying or the like while mixing component (b).
Examples of water include water and an aqueous solution of the above base. By spraying water or the like, the component (a) is likely to change to a structure in which the component (b) hardly absorbs moisture. When an aqueous solution of a base is added, the pH of the aqueous solution is preferably 8 to 12, and more preferably 8 to 10. The spray amount of water or the like may be appropriately controlled so as to be within the preferable range of the water content described above, and is 0.2 to 5 masses with respect to 100 mass parts in total of the components (a) and (b). Part is preferable, and 0.2 to 3 parts by mass is more preferable.
(A) After adding and mixing a component (powder form), the said coating | coated component can also be added further. By further adding the coating component, the aminocarboxylic acid (salt) -containing particles are less likely to be agglomerated and the fluidity is improved.
As the mixer used in the method (I), a Redige mixer (M20 type, manufactured by Matsubo Co., Ltd.), a high speed mixer, a pro-shear mixer, and the like can be used.
The mixing condition is such that the stirring speed is, for example, the rotational speed of the main shaft, preferably 100 to 350 rpm, more preferably 150 to 250 rpm. The temperature is preferably 30 to 70 ° C, more preferably 40 to 60 ° C.
 方法(II):(a)成分と、(b)成分と、水とを混合してスラリーを調製し、該スラリーを噴霧乾燥する方法。
 噴霧乾燥の条件は、噴霧圧力(ゲージ圧)が、好ましくは2~4MPaであり、より好ましくは2.5~3MPaである。
 温度は、噴霧乾燥塔の下部より供給するガス温度を、170~300℃とすることが好ましく、230~270℃とすることがより好ましく、噴霧乾燥塔の塔頂より排出するガス温度を、70~125℃とすることが好ましく、90~110℃とすることがより好ましい。
Method (II): A method in which component (a), component (b) and water are mixed to prepare a slurry, and the slurry is spray-dried.
The spray drying conditions are such that the spray pressure (gauge pressure) is preferably 2 to 4 MPa, more preferably 2.5 to 3 MPa.
As for the temperature, the gas temperature supplied from the lower part of the spray drying tower is preferably 170 to 300 ° C., more preferably 230 to 270 ° C., and the gas temperature discharged from the top of the spray drying tower is 70 ° C. It is preferably set to ˜125 ° C., more preferably 90 to 110 ° C.
 方法(III):(a)成分と(b)成分とを混合した後、液体状の結合剤を加えて混合する方法。
 液体状の結合剤としては、上記でその他成分として例示した結合剤を使用することができ、常温で固体であり、加熱すると溶解する水溶性の高分子が好ましい。なかでも取扱いが容易であることから、ポリエチレングリコールが特に好ましい。ポリエチレングリコールとしては、平均分子量1000~20000のものが好ましく、平均分子量4000~10000のものがより好ましい。該平均分子量が下限値以上であると、流動性がより良好となり、一方、上限値以下であると、溶解性がより良好となる。ここでの平均分子量は、化粧品原料基準(第2版注解)に記載された平均分子量を示す。液体状の結合剤を加えることにより、撹拌の際に充分なせん断力が付与され、アミノカルボン酸(塩)含有粒子の吸湿性がより低減されて固化が生じにくくなる。
 方法(III)で使用する混合機としては、レディゲミキサー(M20型、株式会社マツボー製)、ハイスピードミキサー、プローシェアーミキサー等を使用することができる。
 混合条件は、撹拌速度がたとえば主軸の回転数で、好ましくは100~350rpmであり、より好ましくは150~250rpmである。温度が、好ましくは30~70℃であり、より好ましくは40~60℃である。
 結合剤を加えて混合する際、混合効率が高まることから、主軸を回転させながらチョッパーを1000~5000rpmで回転させて粉砕操作を行うことが好ましい。
Method (III): A method in which the component (a) and the component (b) are mixed and then a liquid binder is added and mixed.
As the liquid binder, the binders exemplified above as other components can be used, and a water-soluble polymer that is solid at room temperature and dissolves when heated is preferable. Among these, polyethylene glycol is particularly preferable because it is easy to handle. The polyethylene glycol preferably has an average molecular weight of 1,000 to 20,000, more preferably an average molecular weight of 4,000 to 10,000. When the average molecular weight is not less than the lower limit value, the fluidity becomes better, and when it is not more than the upper limit value, the solubility becomes better. An average molecular weight here shows the average molecular weight described in the cosmetics raw material reference | standard (2nd edition comment). By adding a liquid binder, sufficient shearing force is imparted during stirring, the hygroscopicity of the aminocarboxylic acid (salt) -containing particles is further reduced, and solidification hardly occurs.
As a mixer used in the method (III), a Redige mixer (M20 type, manufactured by Matsubo Co., Ltd.), a high speed mixer, a pro-shear mixer, or the like can be used.
The mixing condition is such that the stirring speed is, for example, the rotational speed of the main shaft, preferably 100 to 350 rpm, more preferably 150 to 250 rpm. The temperature is preferably 30 to 70 ° C, more preferably 40 to 60 ° C.
When mixing by adding a binder, the mixing efficiency is increased. Therefore, it is preferable to perform the crushing operation by rotating the chopper at 1000 to 5000 rpm while rotating the main shaft.
 なお、上記方法(I)~方法(III)において、成分(c)、(d)、(e)を適宜添加してもよい。 In the methods (I) to (III), components (c), (d), and (e) may be added as appropriate.
 方法(IV): 前記(a)~(e)成分を捏和混練する捏和工程と、当該捏和工程で得られる混練物を押し出し造粒する造粒工程とを有する。 Method (IV): A kneading step of kneading and kneading the components (a) to (e), and a granulating step of extruding and granulating the kneaded product obtained in the kneading step.
[捏和工程]
 捏和工程では、前記(a)~(e)成分を捏和混練する。
 当該捏和混練を行う方法は、特に限定されず、たとえば従来公知のバッチ式又は連続式の混練機を用いる方法が挙げられる。
[Kazuwa process]
In the kneading step, the components (a) to (e) are kneaded.
The method for performing the kneading is not particularly limited, and examples thereof include a method using a conventionally known batch type or continuous type kneader.
 バッチ式の混練機を用いる場合、たとえば、前記の(c)成分と、(d)成分と、(e)成分と、(b)成分とを、縦方向に回転する撹拌羽根を内部に有する横型チャンバー内に導入し、バッチ式の混練機を40~80℃に加温して撹拌混合を行う。次いで、当該横型チャンバー内に、(a)成分を導入して捏和混練することにより混練物が得られる。
 撹拌羽根は、横型チャンバーの水平軸に対して垂直方向に回転し、その回転速さは120~360rpm程度であることが好ましい。撹拌羽根は、種々のものを使用することができ、なかでもスキ型ショベル羽根が好ましい。また、撹拌羽根とともに、3000~6000rpmで回転するチョッパー羽根を併用することも好ましい。
 このような撹拌羽根を備えた横型チャンバーを有する混練機としては、たとえば、プローシェアーミキサ(太平洋機工株式会社製);レディーゲミキサー、リボンミキサー、タービュライザー、パグミキサー、スパルタンリュザー(以上、不二パウダル株式会社製);卓上ニーダー(株式会社入江商会製)等が挙げられる。
In the case of using a batch-type kneader, for example, a horizontal type having a stirring blade that rotates the component (c), the component (d), the component (e), and the component (b) in the vertical direction. The mixture is introduced into a chamber, and a batch type kneader is heated to 40 to 80 ° C. to perform stirring and mixing. Next, a kneaded product is obtained by introducing the component (a) into the horizontal chamber and kneading and kneading.
The stirring blade rotates in a direction perpendicular to the horizontal axis of the horizontal chamber, and the rotation speed is preferably about 120 to 360 rpm. Various types of stirring blades can be used, and among them, a skid type shovel blade is preferable. It is also preferable to use a chopper blade rotating at 3000 to 6000 rpm together with the stirring blade.
Examples of the kneading machine having a horizontal chamber equipped with such a stirring blade include, for example, a pro shear mixer (manufactured by Taiheiyo Kiko Co., Ltd.); a ladyge mixer, a ribbon mixer, a turbulizer, a pug mixer, a Spartan luzer (above, Fuji Powdal Co., Ltd.); tabletop kneader (Irie Shokai Co., Ltd.) and the like.
 連続式の混練機を用いる場合、たとえば、(e)成分が溶融する温度(好ましくは25~100℃、より好ましくは40~80℃)に加温した密閉式の圧密化処理装置(好ましくは横型連続式のニーダー)内で、前記の(c)成分と、(d)成分と、(e)成分と、(b)成分とを予め粉体混合した後若しくは混合しながら、(a)成分を導入して粉体混合することにより粉体混合物を調製し、その温度下で該粉体混合物に剪断力を加えて捏和混練することにより混練物が得られる。
 または、密閉式の圧密化処理装置(好ましくは、横型連続式のニーダー)を、(A)成分及び(e)成分が溶融する温度に加温し続け、そこへ、予め粉体混合した(a)~(e)成分の粉体混合物を連続的に導入して捏和混練することにより混練物が得られる。
 このような捏和混練は、ニーダーのほかに、一軸又は二軸スクリュー混練押出機などを用いて行うこともできる。ここで用いる連続式の混練機としては、たとえば、株式会社栗本鐵工所製のKRCニーダー、奈良機械製エクストルーダー等が挙げられる。
When a continuous kneader is used, for example, a closed consolidation apparatus (preferably a horizontal type) heated to a temperature at which the component (e) melts (preferably 25 to 100 ° C., more preferably 40 to 80 ° C.). In the continuous kneader), the above-mentioned component (c), component (d), component (e), and component (b) are mixed in advance after powder mixing or while mixing component (a). A powder mixture is prepared by introduction and powder mixing, and a kneaded product is obtained by applying a shearing force to the powder mixture and kneading gently at that temperature.
Alternatively, the hermetic consolidation apparatus (preferably a horizontal continuous kneader) is continuously heated to a temperature at which the component (A) and the component (e) are melted, and powder mixed therein (a ) To (e) The powder mixture of the components is continuously introduced and kneaded and kneaded to obtain a kneaded product.
Such kneading and kneading can be performed using a single-screw or twin-screw kneading extruder in addition to the kneader. Examples of the continuous kneader used here include a KRC kneader manufactured by Kurimoto Steel Corporation, an extruder manufactured by Nara Machinery, and the like.
 上記方法のなかでも、最終的に得られるアミノカルボン酸(塩)含有粒子の吸湿性が低く抑えられ、固化をより生じにくいことから、連続式の混練機を用いる方法が好ましい。
 また、固化を生じにくく、水に対する溶解性に優れたアミノカルボン酸(塩)含有粒子が得られやすいことから、(c)~(e)及び(b)成分をまず粉体混合し、その後、(a)成分を加えて捏和混練する方法が好ましい。
Among the above methods, the method using a continuous kneader is preferable because the hygroscopicity of the finally obtained aminocarboxylic acid (salt) -containing particles can be suppressed and solidification is less likely to occur.
In addition, since it is easy to obtain aminocarboxylic acid (salt) -containing particles that hardly cause solidification and have excellent solubility in water, the components (c) to (e) and (b) are first mixed with powder, A method in which the component (a) is added and kneaded gently is preferred.
 捏和工程において、捏和混練を行う際の温度は、(a)成分の脱水・転移温度が含まれない温度範囲であることが好ましく、(e)成分の融点より3℃以上高い温度であることがより好ましく、(c)成分の融点より5~20℃高い温度であることがさらに好ましい。
 捏和混練を(a)成分の脱水・転移温度が含まれない温度範囲で行うことにより、押出機から押し出す際の押出し圧が一定(安定)になり、均質な押出物が得られやすく、かつ、保形性が良好となる。
In the kneading step, the temperature during kneading is preferably in a temperature range that does not include the dehydration / transition temperature of component (a), and is a temperature that is 3 ° C. higher than the melting point of component (e). More preferably, the temperature is 5 to 20 ° C. higher than the melting point of the component (c).
By performing kneading in a temperature range that does not include the dehydration / transition temperature of component (a), the extrusion pressure when extruding from the extruder becomes constant (stable), and a homogeneous extrudate is easily obtained, and , Shape retention becomes good.
 また、捏和工程における捏和混練は、実質上、水を添加しないで行うことが好ましい。
 捏和混練を、実質上水を添加しないで行うことにより、アミノカルボン酸(塩)含有粒子の保存安定性が良好となる。
In addition, the kneading and kneading in the kneading step is preferably performed substantially without adding water.
By performing kneading and kneading substantially without adding water, the storage stability of the aminocarboxylic acid (salt) -containing particles is improved.
 前記(a)~(e)成分を捏和混練する際、最終的に得られるアミノカルボン酸(塩)含有粒子中の含有量が(a)成分10~80質量%、(b)成分10~80質量%となるように、各成分をそれぞれ配合する。加えて、各成分はそれぞれ以下のものを用いることが好ましい。
 (d)成分、(b)成分はいずれも、アミノカルボン酸(塩)含有粒子の保存安定性が向上することから、粉体状のものをそのまま用いることが好ましい。
 (d)成分は、(d)成分自体の粉末化を容易に図ることができる点から、若干量の無機塩(塩化ナトリウム、硫酸ナトリウム、アルミノケイ酸塩、炭酸カルシウム等)と混合して用いてもよい。
 (a)成分は、平均粒子径が30~800μmの粉体を用いることが好ましく、50~600μmの粉体を用いることがより好ましく、60~550μmの粉体を用いることがさらに好ましい。(a)成分の平均粒子径が下限値以上であると、(a)成分自体の粉立ちが抑制される。一方、(a)成分の平均粒子径が上限値以下であると、均一な混練物が得られやすくなる。
 (b)成分は、平均粒子径が30~1500μmの粉体を用いることが好ましく、50~1300μmの粉体を用いることがより好ましく、60~1200μmの粉体を用いることがさらに好ましい。(b)成分の平均粒子径が下限値以上であると、(b)成分自体の粉立ちが抑制され、また、吸湿性による固結防止効果が向上する。一方、(b)成分の平均粒子径が上限値以下であると、均一な混練物が得られやすくなる。
When kneading the components (a) to (e), the final content of the aminocarboxylic acid (salt) -containing particles is (a) component 10 to 80% by mass, and (b) component 10 to Each component is blended so as to be 80% by mass. In addition, it is preferable to use the following for each component.
Both the component (d) and the component (b) are preferably used as they are because the storage stability of the aminocarboxylic acid (salt) -containing particles is improved.
The component (d) is used by mixing with a slight amount of inorganic salt (sodium chloride, sodium sulfate, aluminosilicate, calcium carbonate, etc.) from the viewpoint that the component (d) can be easily powdered. Also good.
As the component (a), a powder having an average particle size of 30 to 800 μm is preferably used, a powder of 50 to 600 μm is more preferable, and a powder of 60 to 550 μm is more preferable. (A) When the average particle diameter of a component is more than a lower limit, the powdering of (a) component itself is suppressed. On the other hand, when the average particle size of the component (a) is not more than the upper limit value, a uniform kneaded product is easily obtained.
As the component (b), a powder having an average particle size of 30 to 1500 μm is preferably used, a powder of 50 to 1300 μm is more preferable, and a powder of 60 to 1200 μm is more preferable. When the average particle size of the component (b) is equal to or greater than the lower limit, the dusting of the component (b) itself is suppressed, and the caking prevention effect due to hygroscopicity is improved. On the other hand, when the average particle size of the component (b) is not more than the upper limit value, a uniform kneaded product is easily obtained.
 捏和混練を行った後の混練物の温度は、50~65℃であることが好ましく、53~63℃であることがより好ましい。
 混練物の温度が下限値以上であると、均質な混練物が形成されて溶解性が改善し、保存安定性も改善する。一方、混練物の温度が上限値以下であると、押出造粒後の保形性が向上し、溶解性も向上する。
The temperature of the kneaded product after the kneading is preferably 50 to 65 ° C, more preferably 53 to 63 ° C.
When the temperature of the kneaded product is equal to or higher than the lower limit, a homogeneous kneaded product is formed, the solubility is improved, and the storage stability is also improved. On the other hand, when the temperature of the kneaded product is not more than the upper limit value, the shape retention after extrusion granulation is improved and the solubility is also improved.
 捏和混練を行った後の混練物の硬度は、50~900gであることが好ましく、200~700gであることがより好ましい。
 混練物の硬度が下限値以上であると、混練物が柔らかくなりすぎず、押出後の合一による溶解性の低下を抑制でき、一方、混練物の硬度が上限値以下であると、混練物が硬くなりすぎず、押出時の動力上昇による溶解性の低下、保存安定性の劣化を抑制できる。
 「混練物の硬度」は、ハードメーター(藤原製作所製)を用いて測定される、混練物の硬さを荷重換算した値を示す。
 混練物の硬度を前記の好適な範囲に制御するには、たとえば、捏和混練を行う際の温度を調節したり、(e)成分の配合量を調整したりすればよい。
The hardness of the kneaded product after the kneading is preferably 50 to 900 g, more preferably 200 to 700 g.
If the hardness of the kneaded product is not less than the lower limit value, the kneaded product will not be too soft, and a decrease in solubility due to coalescence after extrusion can be suppressed, while if the hardness of the kneaded product is not more than the upper limit value, Does not become too hard, and it is possible to suppress a decrease in solubility and deterioration in storage stability due to an increase in power during extrusion.
“Hardness of the kneaded material” indicates a value obtained by converting the hardness of the kneaded material into a load, which is measured using a hard meter (manufactured by Fujiwara Seisakusho).
In order to control the hardness of the kneaded material within the above-mentioned preferable range, for example, the temperature at the time of kneading and kneading may be adjusted, or the blending amount of the component (e) may be adjusted.
[造粒工程]
 造粒工程では、前記捏和工程で得られる混練物を押し出し造粒する。
 具体的には、前記捏和工程で得られる混練物を、一軸又は二軸スクリュー混練押出機に投入して押し出すことにより、円筒形、角柱、三角柱などのストランド;球状、板状又はヌードル状の造粒物を得る。
 なかでも、前記捏和工程で得られる混練物を、所望の径が得られるようにするため、ダイスを通して押し出すことが好ましい。ダイスの孔径は、直径0.5~1.4mm程度が好ましく、直径0.8~1.2mm程度がより好ましい。
[Granulation process]
In the granulation step, the kneaded material obtained in the kneading step is extruded and granulated.
Specifically, the kneaded product obtained in the kneading step is put into a uniaxial or biaxial screw kneading extruder to be extruded to form strands such as a cylindrical shape, a prismatic shape, and a triangular shape; a spherical shape, a plate shape, or a noodle shape. Get a granulate.
Especially, it is preferable to extrude the kneaded material obtained in the kneading step through a die in order to obtain a desired diameter. The hole diameter of the die is preferably about 0.5 to 1.4 mm, and more preferably about 0.8 to 1.2 mm.
 押出し造粒を行った後の押出物の温度は、48~70℃であることが好ましく、52~67℃であることがより好ましい。
 押出物の温度が下限値以上であると、押出しの圧力が高くなりすぎず、装置への負担(負荷)が軽減されやすい。一方、押出物の温度が上限値以下であると、後述の整粒(粉砕)操作の際、造粒物の合一が抑制されやすい。
The temperature of the extrudate after extrusion granulation is preferably 48 to 70 ° C, more preferably 52 to 67 ° C.
When the temperature of the extrudate is equal to or higher than the lower limit, the extrusion pressure does not become too high, and the burden (load) on the apparatus is easily reduced. On the other hand, when the temperature of the extrudate is equal to or lower than the upper limit value, coalescence of the granulated product is easily suppressed during the granulating (grinding) operation described later.
 混練物を押し出す際の押出機における押出動力は、4~50kwh/tであることが好ましく、4.5~48kwh/tであることがより好ましく、5~45kwh/tであることがさらに好ましく、5.5~40kwh/tであることが特に好ましい。
 押出動力が4kwh/t以上であると、得られるアミノカルボン酸(塩)含有粒子の保存安定性が向上する。一方、押出動力が50kwh/t以下であると、押出物が硬くなりすぎず、粉砕の際に微粉が発生しにくくなる。また、アミノカルボン酸(塩)含有粒子の水に対する溶解性が向上する。
 押出機としては、たとえば、ペレッターダブル(不二パウダル株式会社製)、ツインドームグラン(不二パウダル株式会社製)、マルチグラン(株式会社ダルトン製)等が挙げられる。
The extrusion power in the extruder when extruding the kneaded product is preferably 4 to 50 kwh / t, more preferably 4.5 to 48 kwh / t, still more preferably 5 to 45 kwh / t, It is particularly preferably 5.5 to 40 kwh / t.
When the extrusion power is 4 kwh / t or more, the storage stability of the resulting aminocarboxylic acid (salt) -containing particles is improved. On the other hand, if the extrusion power is 50 kwh / t or less, the extrudate does not become too hard, and it is difficult for fine powder to be generated during pulverization. In addition, the solubility of aminocarboxylic acid (salt) -containing particles in water is improved.
Examples of the extruder include pelleter double (manufactured by Fuji Paudal Co., Ltd.), twin dome gran (manufactured by Fuji Powdal Co., Ltd.), and multi-gran (manufactured by Dalton Co., Ltd.).
 また、捏和工程で捏和混練を行って混練物を得る操作と、造粒工程で押出し造粒を行う操作とを一つの装置で行ってもよい。この方法としては、たとえば、捏和混練を行う装置における混練物の排出口にメッシュ板を取り付け、このメッシュ板を通過させて造粒物を得る方法が挙げられる。
 この方法に適用可能な装置としては、たとえば、ホソカワミクロン株式会社製のエクストルード・オーミックスが挙げられる。
Moreover, you may perform operation which performs kneading kneading | mixing in a kneading process, and obtaining extrusion kneading in a granulation process with one apparatus. As this method, for example, a method of attaching a mesh plate to the outlet of the kneaded product in a kneading apparatus and passing the mesh plate to obtain a granulated product can be mentioned.
As an apparatus applicable to this method, for example, Extrude Ohmics manufactured by Hosokawa Micron Corporation can be cited.
 押出し造粒を行った後、得られた押出物の長さを揃えるために、高速回転ナイフカッター等を備えた粉砕機(破砕造粒機)を用いて、衝撃と剪断力を該押出物に与えて粉砕することにより整粒を行うことが好ましい。
 高速回転ナイフカッターの回転速度は、周速30~100m/s程度であることが好ましい。
 粉砕機としては、たとえば、コミニューター(不二パウダル株式会社製)、フィッツミル(ホソカワミクロン株式会社製)、スピードミル(岡田精工株式会社製)等が挙げられる。
 かかる整粒により、該押出物を、平均粒子径200~700μmの造粒物とすることが好ましく、250~450μmの造粒物とすることがより好ましい。造粒物の粒子径が下限値以上であると、アミノカルボン酸(塩)含有粒子の保存安定性が向上する。一方、造粒物の粒子径が上限値以下であると、アミノカルボン酸(塩)含有粒子の水に対する溶解性が向上する。
 また、粒子径150μm未満の造粒粒子の割合を、アミノカルボン酸(塩)含有粒子の全体に対して14質量%以下とすることが好ましく、0.2~10質量%とすることがより好ましい。上限値以下であると、発塵がより発生しにくくなり、アミノカルボン酸(塩)含有粒子の流動性が向上する。
After extruding granulation, in order to make the length of the obtained extrudate, using a crusher (crushing granulator) equipped with a high-speed rotary knife cutter, impact and shear force are applied to the extrudate. It is preferable to adjust the size by giving and pulverizing.
The rotational speed of the high-speed rotary knife cutter is preferably about 30 to 100 m / s.
Examples of the pulverizer include a comminator (manufactured by Fuji Powder Co., Ltd.), a Fitzmill (manufactured by Hosokawa Micron Corporation), a speed mill (manufactured by Okada Seiko Co., Ltd.), and the like.
By such sizing, the extrudate is preferably made into a granulated product having an average particle size of 200 to 700 μm, more preferably a granulated product having a particle size of 250 to 450 μm. When the particle diameter of the granulated product is not less than the lower limit, the storage stability of the aminocarboxylic acid (salt) -containing particles is improved. On the other hand, when the particle size of the granulated product is not more than the upper limit, the solubility of the aminocarboxylic acid (salt) -containing particles in water is improved.
Further, the ratio of the granulated particles having a particle diameter of less than 150 μm is preferably 14% by mass or less, more preferably 0.2 to 10% by mass with respect to the total aminocarboxylic acid (salt) -containing particles. . When the amount is not more than the upper limit, dust generation is less likely to occur, and the fluidity of the aminocarboxylic acid (salt) -containing particles is improved.
 本発明のアミノカルボン酸(塩)含有粒子の製造方法は、上述した捏和工程及び造粒工程以外のその他の工程を有していてもよい。
 その他の工程としては、造粒工程で得られた造粒物表面を、さらに被覆する工程などが挙げられる。
The method for producing aminocarboxylic acid (salt) -containing particles of the present invention may have other steps other than the kneading step and the granulating step described above.
Examples of the other steps include a step of further covering the surface of the granulated product obtained in the granulation step.
 上記のなかでも、製造に関わるエネルギー効率の点から、方法(I)、方法(III)又は(IV)が好ましい。 Among these, the method (I), the method (III) or the (IV) is preferable from the viewpoint of energy efficiency related to production.
(粒状洗剤組成物)
 本発明の粒状洗剤組成物は、前記本発明のアミノカルボン酸(塩)含有粒子を含有する。
 粒状洗剤組成物の平均粒子径は200~1500μmが好ましく、250~1000μmがより好ましく、280~500μmがさらに好ましい。該平均粒子径が下限値以上であると、微粉末の発生が抑制され、一方、上限値以下であると、水への溶解性が向上する。
(Granular detergent composition)
The granular detergent composition of the present invention contains the aminocarboxylic acid (salt) -containing particles of the present invention.
The average particle size of the granular detergent composition is preferably 200 to 1500 μm, more preferably 250 to 1000 μm, and even more preferably 280 to 500 μm. Generation | occurrence | production of a fine powder is suppressed as this average particle diameter is more than a lower limit, and the solubility to water improves on the other hand when it is below an upper limit.
 粒状洗剤組成物の嵩密度は0.3~1.5g/mLが好ましく、より好ましくは0.6~1.2g/mLがより好ましく、0.7~0.9g/mLがさらに好ましい。該嵩密度が下限値以上であれば、粒状洗剤組成物の保管時に必要なスペース(保管場所)をより少なくでき、有利となる。一方、上限値以下であれば、粒状洗剤組成物の水への溶解性が良好となる。
 本発明において、嵩密度は、JIS K3362-1998に準じた方法により測定される値を示す。
The bulk density of the granular detergent composition is preferably 0.3 to 1.5 g / mL, more preferably 0.6 to 1.2 g / mL, even more preferably 0.7 to 0.9 g / mL. If the bulk density is equal to or higher than the lower limit value, the space (storage location) required for storing the granular detergent composition can be reduced, which is advantageous. On the other hand, if it is below an upper limit, the solubility in water of a granular detergent composition will become favorable.
In the present invention, the bulk density is a value measured by a method according to JIS K3362-1998.
 粒状洗剤組成物の水分含有量は、好ましくは15質量%以下であり、より好ましくは2~9質量%であり、さらに好ましくは4~8質量%である。該水分含有量が上限値以下であれば、粒状洗剤組成物の固化がより生じにくくなる。 The water content of the granular detergent composition is preferably 15% by mass or less, more preferably 2 to 9% by mass, and further preferably 4 to 8% by mass. If this water content is below an upper limit, solidification of a granular detergent composition will become harder to arise.
 粒状洗剤組成物中、アミノカルボン酸(塩)含有粒子の含有量は、0.1~20質量%が好ましく、0.5~15質量%がより好ましく、1~12質量%がさらに好ましい。
 アミノカルボン酸(塩)含有粒子の含有量が下限値以上であると、洗剤原料(界面活性剤、過酸化物など)と作用して洗浄漂白効果、除菌効果、殺菌効果等が発揮されやすくなる。一方、上限値以下であると、他の洗剤原料との配合バランスがとりやすくなり、充分な洗浄効果等が得られやすくなる。
In the granular detergent composition, the content of aminocarboxylic acid (salt) -containing particles is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and even more preferably 1 to 12% by mass.
When the content of the aminocarboxylic acid (salt) -containing particles is at least the lower limit, the detergent raw materials (surfactants, peroxides, etc.) act to exert a cleaning bleaching effect, a sterilizing effect, a bactericidal effect, etc. Become. On the other hand, when the amount is not more than the upper limit value, it becomes easy to achieve a blending balance with other detergent raw materials, and a sufficient cleaning effect and the like are easily obtained.
 粒状洗剤組成物における、アミノカルボン酸(塩)含有粒子以外の洗剤原料としては、衣料用等の洗剤組成物に通常配合されているものを用いることができる。
 洗剤原料は、たとえば、界面活性剤(アニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤、両性界面活性剤など)、無機ビルダー、有機ビルダー、アルカリ剤、硫酸塩等の粒子強度保持剤、過炭酸塩又はその造粒物等の漂白剤、再汚染(沈着)防止剤、染料、顔料、香料、酵素剤(たとえばプロテアーゼ、リパーゼ、セルラーゼ、アミラーゼ等)、漂白活性化剤又はその造粒物、亜硫酸塩、チオ硫酸塩等の還元剤、蛍光増白剤、紫外線吸収剤、柔軟化剤(ベントナイト等)、泡コントロール剤(たとえばシリコーン等)、表面改質剤、吸油剤、酸化防止剤、抗菌剤等が挙げられる。
As the detergent raw material other than the aminocarboxylic acid (salt) -containing particles in the granular detergent composition, those usually blended in detergent compositions for clothing and the like can be used.
Detergent raw materials include, for example, surfactants (anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc.), inorganic builder, organic builder, alkaline agent, sulfate and other particle strength retaining agents, Bleaching agent such as percarbonate or granulated product thereof, recontamination (deposition) inhibitor, dye, pigment, fragrance, enzyme agent (for example, protease, lipase, cellulase, amylase, etc.), bleach activator or granulated product thereof , Reducing agents such as sulfites and thiosulfates, optical brighteners, ultraviolet absorbers, softeners (such as bentonite), foam control agents (such as silicone), surface modifiers, oil absorbers, antioxidants, Examples include antibacterial agents.
 粒状洗剤組成物の製造方法は、公知の製造方法により製造できる。
 たとえば、界面活性剤、無機ビルダー、有機ビルダー、アルカリ剤等の洗剤原料を水に分散・溶解してスラリーを調製した後、該スラリーを噴霧乾燥して噴霧乾燥粒子を得る。次いで、該噴霧乾燥粒子と、その他洗剤原料とを捏和混練、押出し造粒又は粉砕等して粉体を得る。その後、該粉体と、アミノカルボン酸(塩)含有粒子と、その他洗剤原料とを混合することにより粒状洗剤組成物を得ることができる。
The manufacturing method of a granular detergent composition can be manufactured with a well-known manufacturing method.
For example, after preparing a slurry by dispersing and dissolving a detergent raw material such as a surfactant, an inorganic builder, an organic builder, or an alkali agent in water, the slurry is spray-dried to obtain spray-dried particles. Next, the spray-dried particles and other detergent raw materials are kneaded, extruded, granulated, or pulverized to obtain a powder. Thereafter, the granular detergent composition can be obtained by mixing the powder, aminocarboxylic acid (salt) -containing particles, and other detergent raw materials.
 本発明のアミノカルボン酸(塩)含有粒子は、吸湿性が低減されたものである。そのため、該アミノカルボン酸(塩)含有粒子を含有する粒状洗剤組成物は、吸湿性を有するアミノカルボン酸(塩)を含有していても固化を生じにくい。
 該アミノカルボン酸(塩)含有粒子を含有する粒状洗剤組成物が固化を生じにくい理由としては定かではないが以下のように推測される。
 本発明のアミノカルボン酸(塩)含有粒子は、亜鉛化合物(a)とアミノカルボン酸又はその塩(b)とを所定のモル比(a)/(b)=0.5~6で含有する。
 本発明のアミノカルボン酸(塩)含有粒子においては、(a)成分と(b)成分とを所定のモル比で含有することにより、(b)成分粒子の表面近傍が(a)成分によって水分を吸収しにくい構造に変化するため、(b)成分粒子のみの場合に比べて、環境の影響を受けにくく、吸湿性が低いと考えられる。これによって、本発明の粒状洗剤組成物は、固化が生じにくく、いわゆるケーキングを起こしにくいと考えられる。
The aminocarboxylic acid (salt) -containing particles of the present invention have reduced hygroscopicity. Therefore, even if the granular detergent composition containing the aminocarboxylic acid (salt) -containing particles contains hygroscopic aminocarboxylic acid (salt), solidification hardly occurs.
The reason why the granular detergent composition containing the aminocarboxylic acid (salt) -containing particles hardly causes solidification is not clear, but is presumed as follows.
The aminocarboxylic acid (salt) -containing particles of the present invention contain a zinc compound (a) and an aminocarboxylic acid or salt (b) in a predetermined molar ratio (a) / (b) = 0.5-6. .
In the aminocarboxylic acid (salt) -containing particles of the present invention, by containing the component (a) and the component (b) in a predetermined molar ratio, the surface vicinity of the component particles (b) Therefore, it is considered that it is less affected by the environment and has a lower hygroscopicity than the case of only the component particles (b). Accordingly, it is considered that the granular detergent composition of the present invention hardly causes solidification and hardly causes so-called caking.
 さらに、本発明の粒状洗剤組成物は、洗浄効果に加えて、除菌効果も有するものである。かかる効果を兼ね備えている理由としては、水中では(a)成分と(b)成分とが錯体を形成し、この錯体が除菌効果もしくは殺菌効果等を発揮するため、と考えられる。 Furthermore, the granular detergent composition of the present invention has a sterilizing effect in addition to the cleaning effect. The reason for having such an effect is considered to be that the component (a) and the component (b) form a complex in water, and this complex exhibits a sterilizing effect or a bactericidal effect.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。なお、「%」は特に断りがない限り「質量%」を示す。 Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples. “%” Means “% by mass” unless otherwise specified.
<平均粒子径の測定方法>(測定方法1)
 実施例A1~A17、比較例A1~A8、及び参考例A1~A4の各粒子の平均粒子径は、粒度分布測定装置(LDSA-3400A(17ch)、東日コンピューターアプリケーションズ株式会社製)を用いて、レーザー光散乱法により、体積基準のメジアン径として測定した。
<Measuring method of average particle diameter> (Measuring method 1)
The average particle diameter of each particle of Examples A1 to A17, Comparative Examples A1 to A8, and Reference Examples A1 to A4 was measured using a particle size distribution analyzer (LDSA-3400A (17ch), manufactured by Tohnichi Computer Applications Co., Ltd.). The volume-based median diameter was measured by a laser light scattering method.
<嵩密度の測定方法>
 本実施例において、嵩密度は、JIS K3362-1998に準じた方法により測定した。
<Method for measuring bulk density>
In this example, the bulk density was measured by a method according to JIS K3362-1998.
<水分含有量の測定方法>
 本実施例において、水分含有量は、赤外線水分計(株式会社ケット科学研究所製、製品名:Kett水分計)を用いて、試料5g、試料表面温度130℃(粒状洗剤組成物を測定する場合)又は170℃(噴霧乾燥粒子を測定する場合)、測定時間20分間の条件で測定した。
<Method for measuring water content>
In this example, the moisture content is 5 g of sample using an infrared moisture meter (product name: Kett moisture meter manufactured by Kett Science Laboratory Co., Ltd.), when the sample surface temperature is 130 ° C. (when measuring a granular detergent composition). ) Or 170 ° C. (when measuring spray-dried particles), measurement was performed under the conditions of a measurement time of 20 minutes.
<吸湿率(実測)の算出方法>
 まず、試料をガラス製シャーレ(内径85mm)に厚さ5mmとなるように広げ、温度45℃、相対湿度80%に設定した恒温槽に入れた。次いで、経過時間ごと(60分間ごと)に、前記の試料が広げられたガラス製シャーレの質量を前記恒温槽内で測定し、その経時変化を記録した。そして、吸湿率(実測)(質量%)を上述した式(1)によって求めた。
<Calculation method of moisture absorption rate (actual measurement)>
First, the sample was spread on a glass petri dish (inner diameter 85 mm) so as to have a thickness of 5 mm, and placed in a thermostat set at a temperature of 45 ° C. and a relative humidity of 80%. Next, at every elapsed time (every 60 minutes), the mass of the glass petri dish in which the sample was spread was measured in the thermostat and the change with time was recorded. And the moisture absorption rate (actual measurement) (mass%) was calculated | required by Formula (1) mentioned above.
<吸湿率計算値の算出方法>
 吸湿率計算値(質量%)を以下に示す式(2)によって求めた。
 式(2)中、「金属塩」は、硫酸亜鉛一水和物又は無水硫酸ナトリウムを意味する。
 「MGDAの配合量」と「金属塩の配合量」は、それぞれ、表A1~A4に示す「(b)MGDA」と、「(a)硫酸亜鉛一水和物」又は「無水硫酸ナトリウム」の含有量である。
 「MGDA単体の吸湿率」は83.4質量%(比較例A1)である。
 「金属塩単体の吸湿率」は、金属塩が硫酸亜鉛一水和物の場合は4.7質量%(参考例A1)、無水硫酸ナトリウムの場合は0.5質量%(参考例A2)である。
 なお、アミノカルボン酸(塩)がMGDA以外の場合は、下記式(2)における「MGDA」をそれぞれのアミノカルボン酸(塩)に置き換えて計算する。
<Calculation method of moisture absorption value>
The calculated moisture absorption value (% by mass) was determined by the following formula (2).
In the formula (2), “metal salt” means zinc sulfate monohydrate or anhydrous sodium sulfate.
“MGDA blending amount” and “metal salt blending amount” are “(b) MGDA” and “(a) zinc sulfate monohydrate” or “anhydrous sodium sulfate” shown in Tables A1 to A4, respectively. Content.
The “moisture absorption rate of MGDA alone” is 83.4% by mass (Comparative Example A1).
The “moisture absorption rate of the metal salt alone” is 4.7% by mass (reference example A1) when the metal salt is zinc sulfate monohydrate, and 0.5% by mass (reference example A2) when it is anhydrous sodium sulfate. is there.
When the aminocarboxylic acid (salt) is other than MGDA, the calculation is performed by replacing “MGDA” in the following formula (2) with each aminocarboxylic acid (salt).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
<粒状洗剤組成物の固化性の評価方法>
 コートボール紙(坪量:350g/m)、ワックスサンド紙(坪量:30g/m)及びクラフトパルプ紙(坪量:70g/m)がこの順序で積層した3層からなる紙を用いて、底面150mm×90mm,高さ85mmの箱を作製した。
 この箱に各例の粒状洗剤組成物を500gずつ入れ、温度30℃、相対湿度80%に設定した恒温槽に48時間入れた。その後、前記箱の中から粒状洗剤組成物を、目開き5mmの篩の上にゆっくり流出させた。そして、篩の上に残った粒状洗剤組成物の残量を測定し、下記の評価基準で、粒状洗剤組成物の固化性を評価した。
 評価基準
  A:篩の上に残った粒状洗剤組成物の残量が25g未満であった。
  B:篩の上に残った粒状洗剤組成物の残量が25g以上50g未満であった。
  C:篩の上に残った粒状洗剤組成物の残量が50g以上であった。
<Evaluation method of solidification property of granular detergent composition>
A three-layer paper in which coated cardboard (basis weight: 350 g / m 2 ), wax sand paper (basis weight: 30 g / m 2 ) and kraft pulp paper (basis weight: 70 g / m 2 ) are laminated in this order. Using this, a box having a bottom surface of 150 mm × 90 mm and a height of 85 mm was produced.
500 g of the granular detergent composition of each example was placed in this box and placed in a thermostatic bath set at a temperature of 30 ° C. and a relative humidity of 80% for 48 hours. Thereafter, the granular detergent composition was slowly poured out of the box onto a sieve having an opening of 5 mm. And the residual amount of the granular detergent composition which remained on the sieve was measured, and the solidification property of the granular detergent composition was evaluated by the following evaluation criteria.
Evaluation criteria A: The remaining amount of the granular detergent composition remaining on the sieve was less than 25 g.
B: The remaining amount of the granular detergent composition remaining on the sieve was 25 g or more and less than 50 g.
C: The residual amount of the granular detergent composition remaining on the sieve was 50 g or more.
<使用した原料>
 本実施例において使用した原料は下記の通りである。
<Used raw materials>
The raw materials used in this example are as follows.
・亜鉛化合物(a)
硫酸亜鉛一水和物:信陽株式会社製、商品名「乾燥硫酸亜鉛」、平均粒子径70μm。
・ Zinc compounds (a)
Zinc sulfate monohydrate: manufactured by Shinyo Co., Ltd., trade name “dry zinc sulfate”, average particle size 70 μm.
・(a)成分の比較成分(a’)
 無水硫酸ナトリウム:四国化成株式会社製、商品名「中性無水芒硝A0」、平均粒子径89μm。
(A) Component comparison component (a ′)
Anhydrous sodium sulfate: manufactured by Shikoku Kasei Co., Ltd., trade name “neutral anhydrous sodium sulfate A0”, average particle size 89 μm.
・アミノカルボン酸又はその塩(b)
 MGDA:メチルグリシンジ酢酸3ナトリウム、BASF社製、商品名「Trilon M Powder」、配位座4、含有率(純分)83質量%、平均粒子径63μm。
 NTA:ニトリロトリ酢酸三ナトリウム、BASF社製、商品名「Trilon A92R」、純分92質量%、平均粒子径63μm。
 IDS:イミノジコハク酸四ナトリウム、ランクセス社製、商品名「Baypure CX100」、純分80質量%、平均粒子径100μm。
Aminocarboxylic acid or salt thereof (b)
MGDA: trisodium methylglycine diacetate, manufactured by BASF, trade name “Trilon M Powder”, coordination position 4, content (pure content) 83% by mass, average particle size 63 μm.
NTA: nitrilotriacetic acid trisodium, manufactured by BASF, trade name “Trilon A92R”, pure content 92% by mass, average particle size 63 μm.
IDS: tetrasodium iminodisuccinate, manufactured by LANXESS, trade name “Baypure CX100”, pure content 80% by mass, average particle size 100 μm.
・その他成分
 炭酸水素ナトリウム:純正化学株式会社製、特級。
 ゼオライト:A型ゼオライト、タイシリケート社製、商品名「ゼオライトNa-4A」、純分80質量%、平均粒子径3μm。
 ポリエチレングリコール:ライオン株式会社製、商品名「PEG♯6000P」、平均分子量6000、融点56~61℃。
・ Other ingredients Sodium bicarbonate: Made by Junsei Chemical Co., Ltd., special grade.
Zeolite: Type A zeolite, manufactured by Thai silicate, trade name “Zeolite Na-4A”, pure content 80% by mass, average particle size 3 μm.
Polyethylene glycol: manufactured by Lion Corporation, trade name “PEG # 6000P”, average molecular weight 6000, melting point 56-61 ° C.
・洗剤原料
 MESペースト:α-スルホ脂肪酸アルキルエステル塩含有ペースト[ペースト組成:α-スルホ脂肪酸アルキルエステル塩(MES-Na)63質量%、ノニオン界面活性剤
(後述のポリオキシエチレンアルキルエーテル)16質量%、ジ塩及びメチル硫酸塩等の不純物8質量%、水分13質量%]、α-スルホ脂肪酸アルキルエステル塩の脂肪酸鎖長は炭素数16と18、炭素数16のものと炭素数18のものとの混合割合C16/C18=8/2(質量比)。
 LAS-K:直鎖アルキル(炭素数10~14)ベンゼンスルホン酸[ライオン株式会社製、ライポンLH-200(LAS-H 純分96質量%)]を、後述の<粒状洗剤組成物の製造例>における噴霧乾燥粒子調製用スラリー調製時に48質量%水酸化カリウム水溶液で中和した化合物。
 LAS-H:直鎖アルキル(炭素数10~14)ベンゼンスルホン酸[ライオン株式会社製、ライポンLH-200(純分96質量%)]。
 ポリオキシエチレンアルキルエーテル:ECOROL26(商品名、ECOGREEN社製;炭素数12~16のアルキル基を有するアルコール)の酸化エチレン平均15モル付加体(融点40℃)。純分90質量%、水分含有量10質量%。
 石鹸:炭素数(C)12~18の脂肪酸ナトリウム[ライオン株式会社製、純分67質量%、タイター40~45℃;脂肪酸組成 C12 0.7質量%、C14 11.4質量%、C16 29.2質量%、C18F0(ステアリン酸)0.7質量%、C18F1(オレイン酸)56.8質量%、C18F2(リノール酸)1.2質量%;分子量289]。
・ Detergent raw material MES paste: α-sulfo fatty acid alkyl ester salt-containing paste [Paste composition: α-sulfo fatty acid alkyl ester salt (MES-Na) 63 mass%, nonionic surfactant (polyoxyethylene alkyl ether described later) 16 mass% %, Impurities such as di-salt and methylsulfate 8% by mass, moisture 13% by mass], α-sulfo fatty acid alkyl ester salt fatty acid chain lengths of 16 and 18, carbon numbers of 16 and carbon numbers of 18 Mixing ratio C16 / C18 = 8/2 (mass ratio).
LAS-K: linear alkyl (10 to 14 carbon atoms) benzene sulfonic acid [manufactured by Lion Corporation, Rypon LH-200 (LAS-H pure content 96 mass%)] > The compound neutralized with 48 mass% potassium hydroxide aqueous solution at the time of slurry preparation for spray-drying particle preparation.
LAS-H: linear alkyl (carbon number 10 to 14) benzenesulfonic acid [manufactured by Lion Corporation, Rypon LH-200 (pure content 96% by mass)].
Polyoxyethylene alkyl ether: ECOROL 26 (trade name, manufactured by ECOGREN; alcohol having an alkyl group having 12 to 16 carbon atoms) an average of 15 moles of ethylene oxide adduct (melting point: 40 ° C.). Pure content 90% by mass, moisture content 10% by mass.
Soap: fatty acid sodium having 12 to 18 carbon atoms (C) [manufactured by Lion Corporation, pure content 67% by mass, titer 40 to 45 ° C .; fatty acid composition C12 0.7% by mass, C14 11.4% by mass, C16 29. 2 mass%, C18F0 (stearic acid) 0.7 mass%, C18F1 (oleic acid) 56.8 mass%, C18F2 (linoleic acid) 1.2 mass%; molecular weight 289].
 ゼオライト:A型ゼオライト、タイシリケート社製、商品名「ゼオライトNa-4A」、純分80質量%、平均粒子径3μm。
 MA剤:アクリル酸-マレイン酸コポリマー塩、株式会社日本触媒製、商品名「アクアリックTL-400」、純分40質量%。
 炭酸カリウム:炭酸カリウム(粉末)(旭硝子株式会社製)平均粒子径490μm、嵩密度1.30g/cm
 炭酸ナトリウム:粒灰(旭硝子株式会社製)平均粒子径320μm、嵩密度1.07g/cm
 無水硫酸ナトリウム:四国化成株式会社製、商品名「中性無水芒硝A0」。
Zeolite: Type A zeolite, manufactured by Thai silicate, trade name “Zeolite Na-4A”, pure content 80% by mass, average particle size 3 μm.
MA agent: acrylic acid-maleic acid copolymer salt, manufactured by Nippon Shokubai Co., Ltd., trade name “AQUALIC TL-400”, pure content 40% by mass.
Potassium carbonate: Potassium carbonate (powder) (Asahi Glass Co., Ltd.) average particle size 490 μm, bulk density 1.30 g / cm 3 .
Sodium carbonate: granular ash (manufactured by Asahi Glass Co., Ltd.) Average particle size 320 μm, bulk density 1.07 g / cm 3 .
Anhydrous sodium sulfate: manufactured by Shikoku Kasei Co., Ltd., trade name “neutral anhydrous sodium sulfate A0”.
 過炭酸ナトリウム造粒物:Zhejiang JINKE CHEMICALS社製、商品名「SPCC」、有効酸素量13.8質量%、平均粒子径870μm。
 カルボキシメチルセルロース:ダイセル化学工業株式会社製、商品名「CMCダイセル1190」、質量平均分子量約30万、エーテル化度0.70。
 蛍光剤:チバジャパン株式会社製、商品名「チノパールCBS-X」。
 色素:群青(大日精化工業株式会社製)の20質量%水分散液。
 香料:特開2002-146399号公報に記載の表11~18に示す香料組成物A。
 酵素:プロテアーゼ(サビナーゼ12T)/アミラーゼ(ステインザイム12T)/リパーゼ(LIPEX100T)/セルラーゼ(セルクリーン4500T)(以上、すべてノボザイムズ・ジャパン株式会社製)=2/1/1/1(質量比)の混合物。
 漂白活性化剤造粒物:OBS12(4-ドデカノイルオキシベンゼンスルホン酸ナトリウム)と、PEG6000と、AOS(炭素数14のα-オレフィンスルホン酸ナトリウム粉末品)と、A型ゼオライト粉末との質量比70/20/5/5の造粒物。
Sodium percarbonate granulated product: manufactured by Zhejiang JINKE CHEMICALS, trade name “SPCC”, effective oxygen amount 13.8% by mass, average particle size 870 μm.
Carboxymethyl cellulose: manufactured by Daicel Chemical Industries, Ltd., trade name “CMC Daicel 1190”, mass average molecular weight of about 300,000, and degree of etherification of 0.70.
Fluorescent agent: Ciba Japan Co., Ltd., trade name “Chino Pearl CBS-X”.
Dye: 20% by mass aqueous dispersion of ultramarine (made by Dainichi Seika Kogyo Co., Ltd.).
Perfume: Perfume composition A shown in Tables 11 to 18 described in JP-A-2002-146399.
Enzyme: Protease (sabinase 12T) / Amylase (Stainzyme 12T) / Lipase (LIPEX100T) / Cellulase (CellClean 4500T) (all manufactured by Novozymes Japan Ltd.) = 2/1/1/1 (mass ratio) blend.
Granulated product of bleach activator: mass ratio of OBS12 (sodium 4-dodecanoyloxybenzenesulfonate), PEG6000, AOS (sodium α-olefinsulfonate having 14 carbon atoms) and A-type zeolite powder 70/20/5/5 granulated product.
<アミノカルボン酸(塩)含有粒子の製造例>
 各例のアミノカルボン酸(塩)含有粒子を、表A1~A4に示す組成に従って調製した。
 表中、配合成分の含有量は純分換算量を示す。
<Production example of aminocarboxylic acid (salt) -containing particles>
The aminocarboxylic acid (salt) -containing particles of each example were prepared according to the compositions shown in Tables A1 to A4.
In the table, the content of the compounding component indicates a pure equivalent amount.
(実施例A1)
 鋤刃状ショベルを具備し、ショベル-壁面間のクリアランスが5mmのレディゲミキサー(M20型、株式会社マツボー製)に、40℃でMGDAを投入し、主軸を200rpmで回転させながら水(MGDA100質量部に対して1.0質量部)を噴霧した。
 噴霧完了後、40℃で硫酸亜鉛一水和物を投入し、主軸を200rpmで回転させながら撹拌(チョッパーは停止)し、該撹拌を開始してから5分後にMGDA含有粒子を得た。
(Example A1)
A MGDA is introduced at 40 ° C. into a Redige mixer (M20 type, manufactured by Matsubo Co., Ltd.) with a scissors blade-shaped excavator and a clearance between the shovel and the wall surface of 5 mm, and water (MGDA 100 mass) while rotating the spindle at 200 rpm. 1.0 parts by mass) was sprayed.
After spraying was completed, zinc sulfate monohydrate was added at 40 ° C., and stirring was performed while the main shaft was rotated at 200 rpm (the chopper was stopped). After 5 minutes from the start of stirring, MGDA-containing particles were obtained.
(実施例A2、A3)
 表A1に示す組成に従い、硫酸亜鉛一水和物とMGDAの配合量を変更した他は、実施例A1と同様にしてMGDA含有粒子を得た。
(Examples A2, A3)
According to the composition shown in Table A1, MGDA-containing particles were obtained in the same manner as in Example A1, except that the blending amounts of zinc sulfate monohydrate and MGDA were changed.
(実施例A4)
 水の代わりに、1質量%炭酸水素ナトリウム(重曹)水溶液(pH8.5/25℃)を噴霧した他は、実施例A2と同様にしてMGDA含有粒子を得た。
(Example A4)
MGDA-containing particles were obtained in the same manner as in Example A2, except that 1% by mass aqueous sodium hydrogen carbonate (bicarbonate) solution (pH 8.5 / 25 ° C.) was sprayed instead of water.
(実施例A5)
 噴霧乾燥用スラリーの調製装置、すなわち撹拌羽根と回転軸からなる撹拌翼を備え、ポンプ付き循環ラインを有する配合槽に、水(噴霧乾燥用スラリー中36質量%)と、MGDA及び硫酸亜鉛一水和物とを投入した。その後、撹拌を10分間継続し、温度を75℃に調整し、配合量200kg/バッチのスケールで噴霧乾燥用スラリーの調製を行った。
このときの撹拌翼の回転数は60rpmに設定した。
 得られた噴霧乾燥用スラリーを、噴霧乾燥塔に移送し、該噴霧乾燥塔の塔頂付近に設置された圧力噴霧ノズルから、噴霧圧力2.5MPa(ゲージ圧)で噴霧を行い、噴霧乾燥粒子としてMGDA含有粒子を得た。その際、230~270℃の温度のガスを噴霧乾燥塔の下部より供給し、90~110℃の温度となって噴霧乾燥塔の塔頂より排出することにより、噴霧乾燥塔に高温ガスを供給した。なお、供給される高温ガスの温度は、所望とする水分含有量(3質量%)のMGDA含有粒子を得るために適宜、調整した。
(Example A5)
A spray drying slurry preparation device, that is, a mixing tank having a stirring blade including a stirring blade and a rotating shaft and having a circulation line with a pump, water (36% by mass in the slurry for spray drying), MGDA and zinc sulfate monohydrate A Japanese product was introduced. Thereafter, stirring was continued for 10 minutes, the temperature was adjusted to 75 ° C., and a slurry for spray drying was prepared at a scale of a blending amount of 200 kg / batch.
The rotation speed of the stirring blade at this time was set to 60 rpm.
The obtained slurry for spray drying is transferred to a spray drying tower, sprayed at a spray pressure of 2.5 MPa (gauge pressure) from a pressure spray nozzle installed near the top of the spray drying tower, and spray-dried particles As a result, MGDA-containing particles were obtained. At that time, a gas at a temperature of 230 to 270 ° C. is supplied from the lower part of the spray drying tower, and a high temperature gas is supplied to the spray drying tower by discharging from the top of the spray drying tower at a temperature of 90 to 110 ° C. did. In addition, the temperature of the supplied high-temperature gas was appropriately adjusted in order to obtain MGDA-containing particles having a desired water content (3% by mass).
(実施例A6)
 鋤刃状ショベルを具備し、ショベル-壁面間のクリアランスが5mmのレディゲミキサー(M20型、株式会社マツボー製)に、40℃でMGDAを投入し、主軸を200rpmで回転させながら水を噴霧した。
 噴霧完了後、40℃で硫酸亜鉛一水和物を投入し、主軸を200rpmで回転させながら撹拌(チョッパーは停止)し、該撹拌を開始してから5分後、40℃でゼオライトを投入し、主軸を200rpmで回転させながら撹拌(チョッパーは停止)を5分間行うことによりMGDA含有粒子を得た。
(Example A6)
A MGDA was introduced at 40 ° C. into a Redige mixer (M20 type, manufactured by Matsubo Co., Ltd.) equipped with a scissors blade-shaped excavator and the clearance between the shovel and the wall surface was 5 mm, and water was sprayed while rotating the main shaft at 200 rpm. .
After spraying is completed, zinc sulfate monohydrate is charged at 40 ° C., stirring is performed while the main shaft is rotated at 200 rpm (the chopper is stopped), and after 5 minutes from the start of stirring, zeolite is charged at 40 ° C. Then, MGDA-containing particles were obtained by stirring (chopper stopped) for 5 minutes while rotating the main shaft at 200 rpm.
(実施例A7)
 鋤刃状ショベルを具備し、ジャケット温度を65℃に制御したショベル-壁面間のクリアランスが5mmのレディゲミキサー(M20型、株式会社マツボー製)に、60℃のMGDAと、60℃の硫酸亜鉛一水和物とを投入し、主軸を200rpmで回転させながら撹拌(チョッパーは停止)した。該撹拌を開始してから5分後、チョッパーを4000rpmで回転させ(主軸の回転数はそのまま)、25℃のポリエチレングリコールを投入して5分間撹拌した後、MGDA含有粒子を得た。
(Example A7)
A Rougege mixer (M20 type, manufactured by Matsubo Co., Ltd.) with a scissors blade-shaped excavator and a jacket temperature controlled to 65 ° C. and a clearance between the shovel and the wall surface of 5 mm, MGDA at 60 ° C., and zinc sulfate at 60 ° C. Monohydrate was added and stirred (chopper stopped) while rotating the main shaft at 200 rpm. Five minutes after the start of the stirring, the chopper was rotated at 4000 rpm (the rotational speed of the main shaft was unchanged), and polyethylene glycol at 25 ° C. was added and stirred for 5 minutes to obtain MGDA-containing particles.
(実施例A8)
 表A2に示す組成に従い、硫酸亜鉛一水和物の配合量を変更し、MGDAを所定量のNTAに変更した他は、実施例A1と同様にしてNTA含有粒子を得た。
(Example A8)
According to the composition shown in Table A2, NTA-containing particles were obtained in the same manner as in Example A1, except that the amount of zinc sulfate monohydrate was changed and MGDA was changed to a predetermined amount of NTA.
(実施例A9)
 表A2に示す組成に従い、硫酸亜鉛一水和物の配合量を変更し、MGDAを所定量のIDSに変更した他は、実施例A1と同様にしてIDS含有粒子を得た。
(Example A9)
According to the composition shown in Table A2, IDS-containing particles were obtained in the same manner as in Example A1, except that the blending amount of zinc sulfate monohydrate was changed and MGDA was changed to a predetermined amount of IDS.
(比較例A1)
 原料のMGDA(BASF社製、商品名「Trilon M Powder」)をそのまま用いた。
(Comparative Example A1)
The raw material MGDA (manufactured by BASF, trade name “Trilon M Powder”) was used as it was.
(比較例A2)
 硫酸亜鉛一水和物の代わりに、無水硫酸ナトリウムを使用した他は、実施例A1と同様にしてMGDA含有粒子を得た。
(Comparative Example A2)
MGDA-containing particles were obtained in the same manner as in Example A1, except that anhydrous sodium sulfate was used instead of zinc sulfate monohydrate.
(比較例A3、A4)
 表A3に示す組成に従い、硫酸亜鉛一水和物とMGDAの配合量を変更した他は、実施例A1と同様にしてMGDA含有粒子を得た。
(Comparative Examples A3 and A4)
According to the composition shown in Table A3, MGDA-containing particles were obtained in the same manner as in Example A1, except that the blending amounts of zinc sulfate monohydrate and MGDA were changed.
(参考例A1)
 原料の硫酸亜鉛一水和物(信陽株式会社製、商品名「乾燥硫酸亜鉛」)をそのまま用いた。
(Reference Example A1)
The raw material zinc sulfate monohydrate (manufactured by Shinyo Co., Ltd., trade name “dry zinc sulfate”) was used as it was.
(参考例A2)
 原料の無水硫酸ナトリウム(四国化成株式会社製、商品名「中性無水芒硝A0」)をそのまま用いた。
(Reference Example A2)
The raw material anhydrous sodium sulfate (manufactured by Shikoku Kasei Co., Ltd., trade name “neutral anhydrous sodium sulfate A0”) was used as it was.
(比較例A5)
 原料のNTA(BASF社製、商品名「Trilon A92R」)をそのまま用いた。
(Comparative Example A5)
The raw material NTA (trade name “Trilon A92R” manufactured by BASF Corporation) was used as it was.
(比較例A6)
 原料のIDS(ランクセス社製、商品名「Baypure CX100」)をそのまま用いた。
(Comparative Example A6)
The raw material IDS (trade name “Baypure CX100” manufactured by LANXESS) was used as it was.
 各例の粒子について、上述した方法により、平均粒子径を測定し、また、吸湿率(実測)と吸湿率計算値をそれぞれ算出した。その結果を表A1~A4に併記した。 For the particles of each example, the average particle diameter was measured by the method described above, and the moisture absorption rate (actual measurement) and the calculated moisture absorption rate were calculated. The results are also shown in Tables A1 to A4.
  (表A1)
Figure JPOXMLDOC01-appb-I000005
(Table A1)
Figure JPOXMLDOC01-appb-I000005
  (表A2)
Figure JPOXMLDOC01-appb-I000006
(Table A2)
Figure JPOXMLDOC01-appb-I000006
  (表A3)
Figure JPOXMLDOC01-appb-I000007
(Table A3)
Figure JPOXMLDOC01-appb-I000007
  (表A4)
Figure JPOXMLDOC01-appb-I000008
(Table A4)
Figure JPOXMLDOC01-appb-I000008
 表A1~A4の結果から、本発明に係る実施例A1~A9のアミノカルボン酸(塩)含有粒子は、比較例A1、A5、A6のアミノカルボン酸(塩)単体に比べて、吸湿率(実測)が非常に低いことが分かる。
 また、実施例A1~A9と比較例A2~A4との対比から、実施例A1~A9のアミノカルボン酸(塩)含有粒子は、吸湿率(実測)/吸湿率計算値が30~75%であり、吸湿率(実測)が吸湿率計算値に比べて顕著に低いことが分かる。
 したがって、本発明に係る実施例A1~A9のアミノカルボン酸(塩)含有粒子は、吸湿性が低いことが確認できた。
From the results of Tables A1 to A4, the aminocarboxylic acid (salt) -containing particles of Examples A1 to A9 according to the present invention have a moisture absorption rate (compared with the aminocarboxylic acid (salt) alone of Comparative Examples A1, A5, and A6). It can be seen that the actual measurement is very low.
Further, from the comparison between Examples A1 to A9 and Comparative Examples A2 to A4, the aminocarboxylic acid (salt) -containing particles of Examples A1 to A9 have a moisture absorption rate (actual measurement) / calculated moisture absorption rate of 30 to 75%. It can be seen that the moisture absorption rate (actual measurement) is significantly lower than the calculated value of moisture absorption rate.
Therefore, it was confirmed that the aminocarboxylic acid (salt) -containing particles of Examples A1 to A9 according to the present invention have low hygroscopicity.
<粒状洗剤組成物の製造例>
 各例の粒状洗剤組成物を、以下に示す方法により調製した。
<Production example of granular detergent composition>
The granular detergent composition of each example was prepared by the method shown below.
(実施例A10)
 表A5に示す組成に従い、各配合成分を、撹拌機及びジャケットを有する反応装置内に投入して水に溶解分散させ(撹拌機のジャケット温度75℃)、固形分濃度60質量%の噴霧乾燥粒子調製用スラリーを調製した。
(Example A10)
In accordance with the composition shown in Table A5, each compounding component was put into a reactor having a stirrer and a jacket, dissolved and dispersed in water (jacket temperature of the stirrer 75 ° C.), and spray-dried particles having a solid content concentration of 60% by mass. A slurry for preparation was prepared.
  (表A5)
Figure JPOXMLDOC01-appb-I000009
(Table A5)
Figure JPOXMLDOC01-appb-I000009
 次いで、この噴霧乾燥粒子調製用スラリーを、向流式乾燥塔を用いて以下の条件で噴霧乾燥し、噴霧乾燥塔の下部より、噴霧乾燥粒子をコートする被覆剤としてゼオライト(得られる噴霧乾燥粒子100質量部に対して1質量部)を導入して噴霧乾燥粒子を得た。
 [噴霧乾燥の条件]
  ・噴霧乾燥装置:向流式、塔径2.0m、有効長5.0m
  ・微粒化方式:加圧ノズル方式
  ・噴霧圧力:30kg/cm
  ・熱風入口温度:250℃
  ・熱風出口温度:100℃
 得られた噴霧乾燥粒子の平均粒子径は300μm、嵩密度は0.30g/mL、水分含有量は5.0質量%(水分含有量の測定条件170℃、20分間)であった。
Next, this slurry for preparing spray-dried particles is spray-dried using a countercurrent drying tower under the following conditions, and zeolite (obtained spray-dried particles obtained) as a coating for coating the spray-dried particles from the bottom of the spray-drying tower. The spray dried particles were obtained by introducing 1 part by mass to 100 parts by mass.
[Spray drying conditions]
・ Spray dryer: counter-current type, tower diameter 2.0m, effective length 5.0m
・ Atomization method: Pressurized nozzle method ・ Spraying pressure: 30 kg / cm 2
・ Hot air inlet temperature: 250 ℃
-Hot air outlet temperature: 100 ° C
The obtained spray-dried particles had an average particle size of 300 μm, a bulk density of 0.30 g / mL, and a water content of 5.0% by mass (moisture content measurement conditions: 170 ° C., 20 minutes).
 次いで、得られた噴霧乾燥粒子52.05質量%と、MESペースト18.6質量%と、ポリオキシエチレンアルキルエーテル3.6質量%と、蛍光剤0.1質量%と、水0.45質量%とを、連続ニーダー(栗本鐵工所社製、KRC-S4型)に投入し、捏和(ニーダーの回転数135rpm、ジャケット温度:ジャケット入り口5℃、出口25℃(ジャケットに通水して冷却))してドウ状物を調製した。得られたドウ状物の温度は55±15℃であった。
 得られたドウ状物を、ペレッターダブル(不二パウダル株式会社製、製品名:EXD-100型)に投入し、孔径約10mm、厚さ10mmのダイスから押し出すと同時に切断(ペレッターのカッター周速は5m/s)し、ペレット状成形体(直径約10mm、長さ70mm以下(実質的には5mm以上))を得た。
 得られたペレット状成形体74.8質量%に、粉砕助剤としてのゼオライト5.2質量%を添加し、送風共存下で3段直列に配置されたフィッツミル(ホソカワミクロン株式会社製、DKA-6型)を用いて粉砕して粉体を得た。粉砕条件は以下の通りとした。得られた粉体の温度は30±10℃であった。
 [粉砕条件]
  ・送風温度:15±3℃。
  ・送風量(気/固の比率):2.8±0.25m/kg。
  ・スクリーン径:1段目6mm、2段目4mm、3段目2mm。
  ・粉砕機回転数:470rpm(周速約60m/s)。
  ・処理速度:230g/hr。
Next, 52.05% by mass of the obtained spray-dried particles, 18.6% by mass of MES paste, 3.6% by mass of polyoxyethylene alkyl ether, 0.1% by mass of the fluorescent agent, and 0.45% by mass of water % Into a continuous kneader (manufactured by Kurimoto Steel Works, KRC-S4 type), and Kazuwa (kneader rotation speed 135 rpm, jacket temperature: jacket inlet 5 ° C., outlet 25 ° C. (water passed through the jacket) The dough-like material was prepared by cooling)). The temperature of the resulting dough was 55 ± 15 ° C.
The obtained dough-like material is put into a pelleter double (product name: EXD-100 type, manufactured by Fuji Paudal Co., Ltd.) and extruded from a die having a hole diameter of about 10 mm and a thickness of 10 mm and simultaneously cut (perimeter of the cutter of the pelleter). The speed was 5 m / s) to obtain a pellet-shaped formed body (diameter: about 10 mm, length: 70 mm or less (substantially 5 mm or more)).
Fitzmill (manufactured by Hosokawa Micron Co., Ltd., DKA-) was added to 74.8% by mass of the obtained pellet-shaped molded body by adding 5.2% by mass of zeolite as a grinding aid and arranged in three stages in the presence of air blowing. 6 type) to obtain a powder. The grinding conditions were as follows. The temperature of the obtained powder was 30 ± 10 ° C.
[Crushing conditions]
-Air temperature: 15 ± 3 degreeC.
・ Blowing rate (ratio of gas / solid): 2.8 ± 0.25 m 3 / kg.
-Screen diameter: 6 mm for the first stage, 4 mm for the second stage, and 2 mm for the third stage.
-Crusher rotation speed: 470 rpm (circumferential speed about 60 m / s).
Processing speed: 230 g / hr.
 次いで、処理速度が240kg/hrになるように、水平円筒転動ドラム(直径0.70m、長さ1.40m、傾斜角3°、厚さ1mm×高さ50mm×長さ350mmの邪魔板15枚付き)に、前記粉体80.0質量%と、ゼオライト1.8質量%と、過炭酸ナトリウム造粒物5.0質量%と、カルボキシメチルセルロース1.0質量%と、実施例A1のMGDA含有粒子10質量%とを投入して混合すると同時に、ポリオキシエチレンアルキルエーテル0.5質量%を、圧力円錐ノズルKシリーズ(株式会社いけうち製)を用いて噴霧圧力0.5~1.5MPaで噴霧した。
 その後、色素(20質量%水分散液)0.1質量%と香料0.1質量%を噴霧した後、酵素1.0質量%と、漂白活性化剤造粒物0.5質量%とを添加して混合することにより粒状洗剤組成物(平均粒子径360μm、嵩密度0.85g/mL)を得た。
 なお、得られた粒状洗剤組成物の水分含有量は7.0質量%(水分含有量の測定条件130℃、20分間)であった。
Next, a horizontal cylindrical rolling drum (diameter 0.70 m, length 1.40 m, inclination angle 3 °, thickness 1 mm × height 50 mm × length 350 mm baffle 15 so that the processing speed is 240 kg / hr. 80.0% by mass of the powder, 1.8% by mass of zeolite, 5.0% by mass of sodium percarbonate granule, 1.0% by mass of carboxymethylcellulose, and MGDA of Example A1 At the same time, 10 mass% of the contained particles are added and mixed, and at the same time, 0.5 mass% of polyoxyethylene alkyl ether is sprayed at a spray pressure of 0.5 to 1.5 MPa using a pressure cone nozzle K series (manufactured by Ikeuchi Co., Ltd.). Sprayed.
Then, after spraying 0.1% by weight of pigment (20% by weight aqueous dispersion) and 0.1% by weight of fragrance, 1.0% by weight of enzyme and 0.5% by weight of bleach activator granules By adding and mixing, a granular detergent composition (average particle diameter of 360 μm, bulk density of 0.85 g / mL) was obtained.
In addition, the moisture content of the obtained granular detergent composition was 7.0 mass% (measuring conditions of moisture content 130 ° C., 20 minutes).
(実施例A11~A17、比較例A7~A8)
 実施例A1のMGDA含有粒子の代わりに、実施例A2、A4~A9、比較例A1~A2の各アミノカルボン酸(塩)含有粒子をそれぞれ使用した他は、実施例A10と同様にして粒状洗剤組成物を得た。
(Examples A11 to A17, Comparative Examples A7 to A8)
A granular detergent in the same manner as in Example A10 except that the aminocarboxylic acid (salt) -containing particles of Examples A2, A4 to A9 and Comparative Examples A1 to A2 were used instead of the MGDA-containing particles of Example A1. A composition was obtained.
(参考例A3)
 実施例A10の粒状洗剤組成物を調製する際、その途中で得られた噴霧乾燥粒子をそのまま用いた。
(Reference Example A3)
When preparing the granular detergent composition of Example A10, the spray-dried particles obtained in the middle were used as they were.
(参考例A4)
 実施例A10において、実施例A1のMGDA含有粒子の代わりに、参考例A1の硫酸亜鉛一水和物を使用した他は、実施例A10と同様にして粒状洗剤組成物を得た。
(Reference Example A4)
In Example A10, a granular detergent composition was obtained in the same manner as in Example A10, except that the zinc sulfate monohydrate of Reference Example A1 was used instead of the MGDA-containing particles of Example A1.
 各例の粒状洗剤組成物について、上述した方法により、固化性を評価し、また、吸湿率(実測)を算出した。その結果を表A6、A7に示した。 For the granular detergent composition of each example, the solidification property was evaluated by the method described above, and the moisture absorption rate (actual measurement) was calculated. The results are shown in Tables A6 and A7.
  (表A6)
Figure JPOXMLDOC01-appb-I000010
(Table A6)
Figure JPOXMLDOC01-appb-I000010
  (表A7)
Figure JPOXMLDOC01-appb-I000011
(Table A7)
Figure JPOXMLDOC01-appb-I000011
 表A6、A7の結果から、本発明に係る実施例A10~A17の粒状洗剤組成物は、比較例A7~A8の粒状洗剤組成物に比べて、固化を生じにくい(いわゆるケーキングを起こしにくい)ことが確認できた。 From the results of Tables A6 and A7, the granular detergent compositions of Examples A10 to A17 according to the present invention are less likely to cause solidification (so-called caking is less likely) than the granular detergent compositions of Comparative Examples A7 to A8. Was confirmed.
 実施例B1~B10、比較例B1、B2の平均粒子径は、上述した[平均粒子径の測定方法]のうち、測定方法2又はこれに準じた方法により測定した。脱水・転移温度は、上述した方法と同様にして測定した。
 各例の製造方法により製造したアミノカルボン酸(塩)含有粒子の組成を表B1~B3に示した。
 本実施例において使用した原料は下記の通りである。
The average particle diameters of Examples B1 to B10 and Comparative Examples B1 and B2 were measured by the measuring method 2 or a method according to the same among the above-mentioned [Measuring method of average particle diameter]. The dehydration / transition temperature was measured in the same manner as described above.
The compositions of the aminocarboxylic acid (salt) -containing particles produced by the production methods of each example are shown in Tables B1 to B3.
The raw materials used in this example are as follows.
・有機結合剤(c)
 PEG-6000:ライオン株式会社製、商品名「PEG#6000M」、平均分子量6000、融点60℃。
 PEG-4000:ライオン株式会社製、商品名「PEG#4000」、平均分子量4000、融点55℃。
・ Organic binder (c)
PEG-6000: manufactured by Lion Corporation, trade name “PEG # 6000M”, average molecular weight 6000, melting point 60 ° C.
PEG-4000: manufactured by Lion Corporation, trade name “PEG # 4000”, average molecular weight 4000, melting point 55 ° C.
・アニオン性界面活性剤(d)
 AOS-Na:炭素数14~18のα-オレフィンスルホン酸Na塩、ライオン株式会社製、商品名「リポランPJ-400」、平均粒子径200μm。
 AS-Na:炭素数10~18のアルキル基を持つアルキル硫酸ナトリウム塩、新日本理化株式会社製、商品名「シノリン90TK-T」、平均粒子径150μm。
Anionic surfactant (d)
AOS-Na: α-olefin sulfonic acid Na salt having 14 to 18 carbon atoms, manufactured by Lion Corporation, trade name “Lipolane PJ-400”, average particle size 200 μm.
AS-Na: Alkyl sulfate sodium salt having an alkyl group having 10 to 18 carbon atoms, manufactured by Shin Nippon Rika Co., Ltd., trade name “Sinoline 90TK-T”, average particle size 150 μm.
・融点が45℃未満の非イオン性界面活性剤(e)
 POEアルキルエーテル(EO=15):炭素数12~16の天然アルコールEO(エチレンオキシド)15モル付加物、ライオン株式会社製、商品名「LMAO-90」、純分90質量%、融点40℃。
 POEアルキルエーテル(EO=9):炭素数12~16の天然アルコールEO9モル付加物、ライオン株式会社製、商品名「レオックスCL-90」、純分100質量%、融点28℃。
-Nonionic surfactant (e) having a melting point of less than 45 ° C
POE alkyl ether (EO = 15): natural alcohol EO (ethylene oxide) 15 mol adduct having 12 to 16 carbon atoms, manufactured by Lion Corporation, trade name “LMAO-90”, pure content 90% by mass, melting point 40 ° C.
POE alkyl ether (EO = 9): natural alcohol EO 9 mol adduct having 12 to 16 carbon atoms, manufactured by Lion Co., Ltd., trade name “Leox CL-90”, pure content 100 mass%, melting point 28 ° C.
・亜鉛化合物(a)
 硫酸亜鉛・1水和物:堀池産業株式会社製・BR>A商品名「ZNS-13」、平均粒子径200μm、脱水・転移温度270℃。
・ Zinc compounds (a)
Zinc sulfate monohydrate: manufactured by Horiike Sangyo Co., Ltd. BR> A trade name “ZNS-13”, average particle size 200 μm, dehydration and transition temperature 270 ° C.
・アミノカルボン酸又はその塩(b)
 MGDA:メチルグリシン二酢酸三ナトリウム、BASFジャパン株式会社製、商品名「トリロンMパウダー」、平均粒子径80μm;平均中和度100%。
Aminocarboxylic acid or salt thereof (b)
MGDA: trisodium methylglycine diacetate, manufactured by BASF Japan Ltd., trade name “Trilon M powder”, average particle size 80 μm; average neutralization degree 100%.
・その他の成分
 クエン酸:純正化学株式会社製、試薬特級。
-Other ingredients Citric acid: Made by Junsei Co., Ltd., reagent grade.
 後述の[洗剤の固化性の評価]で用いた粒状洗剤は、下記の組成になるように、以下に示す調製方法によって調製した。
 粒状洗剤の組成(配合成分 配合量):MES-Na 9.0質量%、LAS-Na 1.0質量%、ポリオキシエチレンアルキルエーテル 4.0質量%、石鹸 5.0質量%、炭酸ナトリウム バランス、炭酸カリウム 4.0質量%、硫酸ナトリウム 13.0質量%、ゼオライト 15.0質量%、アクリル酸-マレイン酸コポリマー塩 2.0質量%、蛍光増白剤 0.1質量%、水 7.0質量%、酵素 1.0質量%、過炭酸ナトリウム造粒物 5.0質量%、漂白活性化剤造粒物 1.0質量%、アミノカルボン酸(塩)含有粒子1.0質量%
The granular detergent used in [Evaluation of solidification of detergent] described later was prepared by the preparation method shown below so as to have the following composition.
Composition of granular detergent (blending component blending amount): MES-Na 9.0% by mass, LAS-Na 1.0% by mass, polyoxyethylene alkyl ether 4.0% by mass, soap 5.0% by mass, sodium carbonate balance , Potassium carbonate 4.0% by mass, sodium sulfate 13.0% by mass, zeolite 15.0% by mass, acrylic acid-maleic acid copolymer salt 2.0% by mass, fluorescent brightener 0.1% by mass, water 7. 0% by mass, enzyme 1.0% by mass, sodium percarbonate granulated product 5.0% by mass, bleach activator granulated product 1.0% by mass, aminocarboxylic acid (salt) -containing particles 1.0% by mass
粒状洗剤の調製方法:
 [乾燥工程]
 ポリオキシエチレンアルキルエーテルと、MES-Naと、ゼオライトの一部(粉砕助剤用、後混合工程用)と、酵素と、過炭酸ナトリウム造粒物と、漂白活性化剤造粒物と、アミノカルボン酸(塩)含有粒子とを除く、所定量の全配合成分を、調製温度80℃で17分間撹拌することにより、固形分62質量%の水性スラリーを得た。
 なお、前記のゼオライトの一部(粉砕助剤用、後混合工程用)とは、ゼオライト全量の30質量%分を示す。
 次いで、前記水性スラリーを噴霧乾燥し、水分含有量が5質量%の噴霧乾燥粒子を調製した。
 [造粒工程]
 前記乾燥工程で得られた噴霧乾燥粒子と共に、ポリオキシエチレンアルキルエーテルの一部と、MES-Naと、少量(前記噴霧乾燥粒子100質量部に対して1質量部)の水道水(東京都江戸川区)とを、連続ニーダー(株式会社栗本鐵工所製、KRC-S4型)に投入し、温度55~65℃で連続的に捏和混練した。
 次いで、当該捏和混練により得られた混練物を、ペレッター(不二パウダル製、ダイス孔径10mmφ)に連続的に供給しながら押し出すことにより、ペレット状の固形洗剤を成形した。
 その後、フィッツミル(ホソカワミクロン株式会社製、DKA-3型)を3段直列に配置し、そこへ、前記固形洗剤と前記ゼオライトの一部(粉砕助剤用)とを15℃の冷風と共に導入し、平均粒子径が300~500μmとなるように粉砕造粒して造粒物を得た。
この時の製造能力を180kg/hrに設定した。
 なお、前記ポリオキシエチレンアルキルエーテルの一部とは、後混合工程で用いる分を除いたものであり、ポリオキシエチレンアルキルエーテル全量の70質量%分を示す。
 [後混合工程]
 前記造粒工程で得られた造粒物と、残りのポリオキシエチレンアルキルエーテル(30質量%分)と、残りのゼオライト(後混合工程用)と、酵素と、過炭酸ナトリウム造粒物と、漂白活性化剤造粒物と、アミノカルボン酸(塩)含有粒子とを、水平円筒型転動混合機(円筒直径585mm、円筒長さ490mm、容器131.7Lのドラム内部壁面に内部壁面とのクリアランス20mm、高さ45mmの邪魔板を2枚有するもの)を用いて、充填率30容積%、回転数22rpm、25℃の条件で1分間混合し、各例の粒状洗剤を製造した。
 その際、ポリオキシエチレンアルキルエーテル(30質量%分)のみ加圧ノズルを用い、液滴径が40~150μmとなるように噴霧しながら添加した。
 得られた各例の粒状洗剤は、嵩密度が0.82~0.88g/cmの範囲のものであった。
Preparation method of granular detergent:
[Drying process]
Polyoxyethylene alkyl ether, MES-Na, part of zeolite (for grinding aid, post-mixing step), enzyme, sodium percarbonate granule, bleach activator granule, amino An aqueous slurry having a solid content of 62% by mass was obtained by stirring a predetermined amount of all the components except the carboxylic acid (salt) -containing particles at a preparation temperature of 80 ° C. for 17 minutes.
In addition, a part of the zeolite (for the grinding aid and for the post-mixing step) represents 30% by mass of the total amount of the zeolite.
Subsequently, the aqueous slurry was spray-dried to prepare spray-dried particles having a water content of 5% by mass.
[Granulation process]
Along with the spray-dried particles obtained in the drying step, a part of polyoxyethylene alkyl ether, MES-Na, and a small amount (1 part by weight with respect to 100 parts by weight of the spray-dried particles) of tap water (Edogawa, Tokyo) Was added to a continuous kneader (KRC-S4 type, manufactured by Kurimoto Seiko Co., Ltd.) and kneaded continuously at a temperature of 55 to 65 ° C.
Next, the kneaded material obtained by the kneading kneading was extruded while being continuously fed to a pelleter (made by Fuji Powder, die hole diameter 10 mmφ) to form a pellet-shaped solid detergent.
After that, Fitzmill (made by Hosokawa Micron Co., Ltd., DKA-3 type) is arranged in three stages in series, and the solid detergent and a part of the zeolite (for grinding aid) are introduced together with cold air at 15 ° C. The granulated product was obtained by pulverizing and granulating so that the average particle size was 300 to 500 μm.
The production capacity at this time was set to 180 kg / hr.
In addition, a part of said polyoxyethylene alkyl ether remove | excludes the part used by a post-mixing process, and shows 70 mass% part of polyoxyethylene alkyl ether whole quantity.
[Post-mixing process]
The granulated product obtained in the granulation step, the remaining polyoxyethylene alkyl ether (for 30% by mass), the remaining zeolite (for post-mixing step), the enzyme, and the sodium percarbonate granulated product, The bleach activator granulated product and the aminocarboxylic acid (salt) -containing particles are mixed with a horizontal cylindrical rolling mixer (cylinder diameter: 585 mm, cylinder length: 490 mm, drum inner wall surface of vessel 131.7 L and inner wall surface). Using a baffle plate having a clearance of 20 mm and a height of 45 mm), the mixture was mixed for 1 minute under the conditions of a filling rate of 30% by volume, a rotational speed of 22 rpm, and 25 ° C. to produce granular detergents of each example.
At that time, only polyoxyethylene alkyl ether (30% by mass) was added using a pressure nozzle while spraying so that the droplet diameter was 40 to 150 μm.
The granular detergents obtained in each example had a bulk density in the range of 0.82 to 0.88 g / cm 3 .
 粒状洗剤の調製に使用した原料は下記の通りである。
 MES-Na:α-スルホ脂肪酸アルキルエステル塩含有ペースト[ペースト組成:α-スルホ脂肪酸アルキルエステル塩(MES-Na)63質量%、ノニオン界面活性剤(後述のポリオキシエチレンアルキルエーテル)16質量%、ジ塩及びメチル硫酸塩等の不純物8質量%、水分13質量%]を用いた。α-スルホ脂肪酸アルキルエステル塩(MES-Na)の脂肪酸鎖長は炭素数16と18、炭素数16のものと炭素数18のものとの混合割合C16/C18=8/2(質量比)。
 LAS-Na:直鎖アルキル(炭素数10~14)ベンゼンスルホン酸(LAS-H、ライオン株式会社製、ライポンLH-200、AV値(LAS-Hを1g中和するのに要する水酸化カリウムのmg数)=180.0)を48質量%水酸化ナトリウム水溶液で中和したもの。
 ポリオキシエチレンアルキルエーテル:ECOROL26(商品名、ECOGREEN社製;炭素数12~16のアルキル基を有するアルコール)の酸化エチレン平均15モル付加体(融点40℃)。純分90質量%、水分含有量10質量%。
 石鹸:炭素数C12~18の脂肪酸ナトリウム[ライオン株式会社製、純分67質量%、タイター40~45℃;脂肪酸組成 C12 0.7質量%、C14 11.4質量%、C16 29.2質量%、C18F0(ステアリン酸)0.7質量%、C18F1(オレイン酸)56.8質量%、C18F2(リノール酸)1.2質量%;分子量289]。
 炭酸ナトリウム:粒灰(旭硝子株式会社製)平均粒子径320μm、嵩密度1.07g/cm
 炭酸カリウム:炭酸カリウム(粉末)(旭硝子株式会社製)平均粒子径490μm、嵩密度1.30g/cm
 硫酸ナトリウム:四国化成株式会社製、商品名「中性無水芒硝A0」。
 ゼオライト:A型ゼオライト、タイシリケート社製、商品名「ゼオライトNa-4A」、純分80質量%、平均粒子径3μm。
 アクリル酸-マレイン酸コポリマー塩:アクリル酸とマレイン酸との共重合体のナトリウム塩、商品名「ソカランCP7」、BASFジャパン株式会社製。
 蛍光増白剤:チバスペシャルティケミカルズ株式会社製、商品名「チノパールCBS-X」。
 水
酵素:プロテアーゼ(サビナーゼ12T)/アミラーゼ(ステインザイム12T)/リパーゼ(LIPEX100T)/セルラーゼ(セルクリーン4500T)(以上、すべてノボザイムズ・ジャパン株式会社製)=2/1/1/1(質量比)の混合物。
 過炭酸ナトリウム造粒物:Zhejiang JINKE CHEMICALS社製、商品名「SPCC」、有効酸素量13.8質量%、平均粒子径870μm。
 漂白活性化剤造粒物:OBS12(4-ドデカノイルオキシベンゼンスルホン酸ナトリウム)と、PEG-6000と、AOS(炭素数14のα-オレフィンスルホン酸ナトリウム粉末品)と、A型ゼオライト粉末との質量比70/20/5/5の造粒物。
 アミノカルボン酸(塩)含有粒子:後述の実施例B1~B10、比較例B1、B2のアミノカルボン酸(塩)含有粒子。
The raw materials used for the preparation of the granular detergent are as follows.
MES-Na: α-sulfo fatty acid alkyl ester salt-containing paste [paste composition: α-sulfo fatty acid alkyl ester salt (MES-Na) 63% by mass, nonionic surfactant (polyoxyethylene alkyl ether described later) 16% by mass, Impurities such as di-salt and methyl sulfate, 8% by mass, moisture 13% by mass] were used. The fatty acid chain length of α-sulfo fatty acid alkyl ester salt (MES-Na) is 16 and 18 carbon atoms, and the mixing ratio of those having 16 carbon atoms and those having 18 carbon atoms is C16 / C18 = 8/2 (mass ratio).
LAS-Na: linear alkyl (carbon number 10-14) benzenesulfonic acid (LAS-H, manufactured by Lion Corporation, Lipon LH-200, AV value (potassium hydroxide required to neutralize 1 g of LAS-H) mg number) = 180.0) neutralized with 48 mass% aqueous sodium hydroxide solution.
Polyoxyethylene alkyl ether: ECOROL 26 (trade name, manufactured by ECOGREN; alcohol having an alkyl group having 12 to 16 carbon atoms) an average of 15 moles of ethylene oxide adduct (melting point: 40 ° C.). Pure content 90% by mass, moisture content 10% by mass.
Soap: C12-18 fatty acid sodium [manufactured by Lion Corporation, pure mass 67 mass%, titer 40-45 ° C; fatty acid composition C12 0.7 mass%, C14 11.4 mass%, C16 29.2 mass% C18F0 (stearic acid) 0.7% by mass, C18F1 (oleic acid) 56.8% by mass, C18F2 (linoleic acid) 1.2% by mass; molecular weight 289].
Sodium carbonate: granular ash (manufactured by Asahi Glass Co., Ltd.) Average particle size 320 μm, bulk density 1.07 g / cm 3 .
Potassium carbonate: Potassium carbonate (powder) (Asahi Glass Co., Ltd.) average particle size 490 μm, bulk density 1.30 g / cm 3 .
Sodium sulfate: manufactured by Shikoku Kasei Co., Ltd., trade name “neutral anhydrous sodium sulfate A0”.
Zeolite: Type A zeolite, manufactured by Thai silicate, trade name “Zeolite Na-4A”, pure content 80% by mass, average particle size 3 μm.
Acrylic acid-maleic acid copolymer salt: sodium salt of a copolymer of acrylic acid and maleic acid, trade name “Socaran CP7”, manufactured by BASF Japan Ltd.
Optical brightener: Ciba Specialty Chemicals Co., Ltd., trade name “Chino Pearl CBS-X”.
Water enzyme: Protease (sabinase 12T) / Amylase (Stainzyme 12T) / Lipase (LIPEX100T) / Cellulase (CellClean 4500T) Mixture of.
Sodium percarbonate granulated product: manufactured by Zhejiang JINKE CHEMICALS, trade name “SPCC”, effective oxygen amount 13.8% by mass, average particle size 870 μm.
Granulated bleach activator: OBS12 (sodium 4-dodecanoyloxybenzene sulfonate), PEG-6000, AOS (sodium α-olefin sulfonate having 14 carbon atoms), and A-type zeolite powder Granulated product having a mass ratio of 70/20/5/5.
Aminocarboxylic acid (salt) -containing particles: Aminocarboxylic acid (salt) -containing particles of Examples B1 to B10 and Comparative Examples B1 and B2 described later.
<アミノカルボン酸(塩)含有粒子の製造例>
 表B1~B3に示す組成の配合成分、含有量(質量%)に従い、下記の製造方法によりアミノカルボン酸(塩)含有粒子をそれぞれ製造した。
 表中、(a)成分の含有量は、水分子を含む含水塩(有り姿)としての量を示す。その他の成分は純分換算量を示す。
 捏和工程で得られた混練物の温度(℃)、混練物の硬度(g)、捏和混練を行った際の捏和動力(A)をそれぞれ表に示した。混練物の硬度(g)は、ハードメーター(藤原製作所製)を用い、捏和工程直後の混練物について、温度測定と合わせて測定を行った。
 造粒工程におけるダイスの孔径(mmφ)、押出動力(A)、押出物の温度(℃)、空電流値(A)、押出動力(kwh/t)、押出時間(分間)、押出量(kg)をそれぞれ表に示した。
<Production example of aminocarboxylic acid (salt) -containing particles>
Aminocarboxylic acid (salt) -containing particles were produced by the following production methods in accordance with the blending components and contents (mass%) of the compositions shown in Tables B1 to B3.
In the table, the content of the component (a) indicates the amount as a hydrated salt containing water molecules. Other components indicate the amount in terms of pure content.
The table shows the temperature (° C.) of the kneaded material obtained in the kneading step, the hardness (g) of the kneaded material, and the kneading power (A) when the kneading was performed. The hardness (g) of the kneaded material was measured using a hard meter (manufactured by Fujiwara Seisakusho) with the temperature measurement for the kneaded material immediately after the kneading step.
Die pore diameter (mmφ), extrusion power (A), extrudate temperature (° C), air current value (A), extrusion power (kwh / t), extrusion time (minutes), extrusion rate (kg) ) Is shown in the table.
(実施例B1)
 [捏和工程]
 株式会社栗本鐵工所製S-1KRCニーダーのジャケット内に温水を循環し、ニーダー本体を60℃に加温し、その温度に維持した。
 次いで、表B1に示す(a)成分を除く全ての成分を常温で粉体混合し、その後、(a)成分を混合して全量1.5kgの粉体混合物を調製した。この粉体混合物を、前記ニーダーに、運転を続けながら連続的に15分間で投入し、当該投入の後、捏和混練操作を行うことにより混練物を得た。
(Example B1)
[Kazuwa process]
Warm water was circulated in the jacket of an S-1KRC kneader manufactured by Kurimoto Steel Corporation, and the kneader body was heated to 60 ° C. and maintained at that temperature.
Subsequently, all components except the component (a) shown in Table B1 were powder-mixed at room temperature, and then the component (a) was mixed to prepare a powder mixture having a total amount of 1.5 kg. This powder mixture was continuously added to the kneader for 15 minutes while continuing the operation, and after the addition, a kneaded product was obtained by performing a kneading kneading operation.
 [造粒工程]
 得られた混練物を、連続的に、1.0mmφの孔を有するダイスが取り付けられた押出機(株式会社ダルトン製、マルチグランMG-55型)に投入し、当該ダイスを通して押し出すことにより造粒を行った。
 かかる押出し造粒により、押出物として長さ2~5mmのヌードル状造粒物を得た。
 その後、2.5mmφのスクリーンを設置したスピードミル(岡田精工株式会社製)に、当該ヌードル状造粒物を投入し、回転数3000rpmで粉砕を行い、アミノカルボン酸(塩)含有粒子を得た。
[Granulation process]
The obtained kneaded product is continuously put into an extruder (manufactured by Dalton Co., Ltd., Multigran MG-55 type) equipped with a die having 1.0 mmφ holes, and granulated by extruding through the die. Went.
By such extrusion granulation, a noodle-shaped granule having a length of 2 to 5 mm was obtained as an extrudate.
Thereafter, the noodle-shaped granule was put into a speed mill (Okada Seiko Co., Ltd.) equipped with a 2.5 mmφ screen, and pulverized at a rotation speed of 3000 rpm to obtain aminocarboxylic acid (salt) -containing particles. .
(実施例B2)
 [捏和工程]
 PNV-5型卓上ニーダー(株式会社入江商会製)のジャケット内に温水を循環し、当該ニーダー本体を60℃に加温してその温度を維持した。
 次いで、表B1に示す組成のうち(a)成分以外の成分を、縦方向に回転する撹拌羽根を内部に有する横型チャンバー内に導入した。
 次いで、撹拌羽根の回転数45rpmで混練操作を行った後、58℃に加温した(a)成分を当該横型チャンバー内に導入し、50分間捏和混練操作(撹拌羽根の回転数45rpm)を行うことにより混練物を得た。その際、各成分を合わせた全量1.5kgを当該ニーダーに投入した。
 [造粒工程]
 得られた混練物に対して、実施例B1における造粒工程と同様の操作を行い、アミノカルボン酸(塩)含有粒子を得た。
(Example B2)
[Kazuwa process]
Hot water was circulated in the jacket of a PNV-5 type table kneader (manufactured by Irie Shokai Co., Ltd.), and the kneader body was heated to 60 ° C. to maintain the temperature.
Subsequently, components other than the component (a) in the composition shown in Table B1 were introduced into a horizontal chamber having a stirring blade rotating in the vertical direction.
Next, after performing the kneading operation at a rotating speed of the stirring blade of 45 rpm, the component (a) heated to 58 ° C. was introduced into the horizontal chamber, and the kneading operation (the rotating speed of the stirring blade of 45 rpm) was performed for 50 minutes. A kneaded product was obtained by carrying out the process. At that time, a total amount of 1.5 kg of each component was put into the kneader.
[Granulation process]
The obtained kneaded product was subjected to the same operation as in the granulating step in Example B1 to obtain aminocarboxylic acid (salt) -containing particles.
(実施例B3~B8、B10~B12)
 表B1、B2に示す組成、製造条件に従い、実施例B1と同様の操作を行うことにより、アミノカルボン酸(塩)含有粒子を得た。粉体混合物の投入は、各成分を合わせた全量1.5kg当たり15~30分間で行った。
(Examples B3 to B8, B10 to B12)
Aminocarboxylic acid (salt) -containing particles were obtained by performing the same operations as in Example B1 according to the compositions and production conditions shown in Tables B1 and B2. The powder mixture was charged for 15 to 30 minutes per 1.5 kg of the total amount of the components.
(実施例B9)
 [捏和工程]
 株式会社栗本鐵工所製S-1KRCニーダーのジャケット内に温水を循環し、ニーダー本体を57℃に加温し、その温度に維持した。
 次いで、表B2に示す組成、製造条件に従い、(a)~(e)成分の全ての成分を一緒に粉体混合して、全量1.5kgの粉体混合物を調製した。この粉体混合物を、前記ニーダーに、運転を続けながら連続的に投入し、当該投入の後、捏和混練操作を行うことにより混練物を得た。粉体混合物の投入は、各成分を合わせた全量1.5kg当たり15~30分間で行った。
 [造粒工程]
 得られた混練物に対して、実施例B1における造粒工程と同様の操作を行い、アミノカルボン酸(塩)含有粒子を得た。
(Example B9)
[Kazuwa process]
Warm water was circulated in the jacket of the S-1KRC kneader manufactured by Kurimoto Steel Corporation, and the kneader body was heated to 57 ° C. and maintained at that temperature.
Next, according to the composition and production conditions shown in Table B2, all the components (a) to (e) were powdered together to prepare a powder mixture of a total amount of 1.5 kg. This powder mixture was continuously charged into the kneader while continuing the operation, and after the charging, a kneading operation was performed to obtain a kneaded product. The powder mixture was charged for 15 to 30 minutes per 1.5 kg of the total amount of the components.
[Granulation process]
The obtained kneaded product was subjected to the same operation as in the granulating step in Example B1 to obtain aminocarboxylic acid (salt) -containing particles.
(比較例B1)
 表B3に示す組成、製造条件に従い、実施例B9と同様の操作((a)~(e)成分の全ての成分を一緒に粉体混合、捏和混練、押出し造粒)を行うことにより、アミノカルボン酸(塩)含有粒子を得た。粉体混合物の投入は、各成分を合わせた全量1.5kg当たり15~30分間で行った。
(Comparative Example B1)
According to the composition and production conditions shown in Table B3, the same operations as in Example B9 (powder mixing, kneading kneading, extrusion granulation of all the components (a) to (e) together) Aminocarboxylic acid (salt) -containing particles were obtained. The powder mixture was charged for 15 to 30 minutes per 1.5 kg of the total amount of the components.
(比較例B2)
 表B3に示す組成、製造条件に従い、実施例B9と同様の操作((c)~(e)成分、(b)成分及びクエン酸の全ての成分を一緒に粉体混合、捏和混練、押出し造粒)を行うことにより、アミノカルボン酸(塩)含有粒子を得た。粉体混合物の投入は、各成分を合わせた全量1.5kg当たり19分間で行った。
(Comparative Example B2)
According to the composition and production conditions shown in Table B3, the same operations as in Example B9 (components (c) to (e), (b) and all components of citric acid were mixed together, kneaded and extruded. By performing granulation, aminocarboxylic acid (salt) -containing particles were obtained. The powder mixture was charged for 19 minutes per 1.5 kg of the total amount of the components.
<アミノカルボン酸(塩)含有粒子の評価>
 各例の製造方法により得られたアミノカルボン酸(塩)含有粒子について、下記の評価をそれぞれ行った。その結果を表B1~B3に併記した。
<Evaluation of aminocarboxylic acid (salt) -containing particles>
The following evaluation was performed about the aminocarboxylic acid (salt) containing particle | grains obtained by the manufacturing method of each example, respectively. The results are also shown in Tables B1 to B3.
[粒子径150μm未満の粒子の割合]
 各例で得られたアミノカルボン酸(塩)含有粒子について、前記「平均粒子径の測定方法」と同様の方法により分級操作した際、目開き149μmの篩を通過して受け皿上に回収された造粒物の質量頻度を測定し、粒子径150μm未満の粒子の割合(質量%)を求めた。
 この粒子径150μm未満の粒子の割合が小さいほど、微粉が発生しにくい造粒物であることを意味する。
[Proportion of particles having a particle diameter of less than 150 μm]
When the aminocarboxylic acid (salt) -containing particles obtained in each example were classified by the same method as the above-mentioned “Method for Measuring Average Particle Diameter”, the particles were collected on a tray through a sieve having a mesh size of 149 μm. The mass frequency of the granulated material was measured, and the ratio (mass%) of particles having a particle diameter of less than 150 μm was determined.
It means that the smaller the proportion of particles having a particle diameter of less than 150 μm, the more the granulated product is less likely to generate fine powder.
[アミノカルボン酸(塩)含有粒子の水に対する溶解性の評価]
 水温10℃のイオン交換水200mLを入れた200mLビーカー(内径61mm、高さ87mm)に、各例で得られたアミノカルボン酸(塩)含有粒子1gをそれぞれ添加し、マグネチックスターラーにより撹拌混合(スターラーピース:長さ20mm、直径5mm、回転数:200rpm)し、イオン交換水の電気伝導度の変化を電気伝導度計で経時的に測定した。
そして、イオン交換水中のアミノカルボン酸(塩)含有粒子の溶け残りがないことを確認した後、下式によって溶解率(%)を求めた。
 溶解率(%)=(電気伝導度の測定値/電気伝導度の最大値)×100
 次いで、該溶解率(%)が90%以上となるまでに要した時間を溶解時間(秒)として求めた。具体的には、横軸に時間(秒)、縦軸に電気伝導度値をとり、経時で電気伝導度が平衡になるまで測定を継続し、アミノカルボン酸(塩)含有粒子の全てが溶解したときの電気伝導度を100%として、その電気伝導度の90%に達するまでの時間を求めた。
 そして、下記の評価基準に従い、アミノカルボン酸(塩)含有粒子の水に対する溶解性について評価した。評価結果がA、Bであるものを合格とした。
 (評価基準)
  A:溶解時間が200秒未満であった。
  B:溶解時間が200秒以上、300秒未満であった。
  C:溶解時間が300秒以上、500秒未満であった。
  D:溶解時間が500秒以上であった。
[Evaluation of solubility of aminocarboxylic acid (salt) -containing particles in water]
1 g of aminocarboxylic acid (salt) -containing particles obtained in each example were added to a 200 mL beaker (inner diameter: 61 mm, height: 87 mm) containing 200 mL of ion-exchanged water having a water temperature of 10 ° C., and stirred and mixed with a magnetic stirrer ( A stirrer piece: 20 mm in length, 5 mm in diameter, and rotation speed: 200 rpm), and the change in the electric conductivity of ion-exchanged water was measured over time with an electric conductivity meter.
And after confirming that the aminocarboxylic acid (salt) containing particle | grains in ion-exchange water did not melt | dissolve, the dissolution rate (%) was calculated | required by the following Formula.
Dissolution rate (%) = (measured value of electrical conductivity / maximum value of electrical conductivity) × 100
Next, the time required for the dissolution rate (%) to be 90% or more was determined as the dissolution time (seconds). Specifically, taking the time (seconds) on the horizontal axis and the electric conductivity value on the vertical axis, the measurement is continued until the electric conductivity is balanced over time, and all the aminocarboxylic acid (salt) -containing particles are dissolved. Assuming that the electric conductivity was 100%, the time required to reach 90% of the electric conductivity was obtained.
And according to the following evaluation criteria, the solubility with respect to the water of aminocarboxylic acid (salt) containing particle | grains was evaluated. Those whose evaluation results were A and B were regarded as acceptable.
(Evaluation criteria)
A: The dissolution time was less than 200 seconds.
B: Dissolution time was 200 seconds or more and less than 300 seconds.
C: The dissolution time was 300 seconds or more and less than 500 seconds.
D: The dissolution time was 500 seconds or longer.
[アミノカルボン酸(塩)含有粒子の吸湿性の評価]
 アミノカルボン酸(塩)含有粒子の吸湿性は、アミノカルボン酸(塩)含有粒子自体の固化性、及び洗剤に配合した際の洗剤の固化性の指標となる特性である。該吸湿性が高いほど、アミノカルボン酸(塩)含有粒子又は洗剤は塊状となりやすく、固化しやすい。
 アミノカルボン酸(塩)含有粒子の吸湿性の評価は、以下のようにして行った。
 各例で得られたアミノカルボン酸(塩)含有粒子(試料)を、ガラス製シャーレ(内径85mm)に厚さ5mmとなるように広げ、温度45℃、相対湿度80%に設定した恒温槽に入れた。
 次に、60分間経過ごとに、試料が広げられたガラス製シャーレの質量を前記恒温槽内で測定し、その経時変化を記録した。
 そして、吸湿率(質量%)を、下式(1)によって求めた。式(1)中、「測定値」、「サンプル仕込み量」、「試料の採取量」は以下の通りである。
 測定値:合計で48時間経過後に測定される、試料が広げられたガラス製シャーレの質量。
 サンプル仕込み量:恒温槽に入れる前に、温度25℃で1分間静置した後に測定される、試料が広げられたガラス製シャーレの質量。
 試料の採取量:前記サンプル仕込み量から、温度25℃で1分間静置した後に測定される前記ガラス製シャーレの質量を差し引いた値。
[Evaluation of hygroscopicity of aminocarboxylic acid (salt) -containing particles]
The hygroscopicity of the aminocarboxylic acid (salt) -containing particles is a characteristic that serves as an indicator of the solidification properties of the aminocarboxylic acid (salt) -containing particles themselves and the solidification properties of the detergent when blended in a detergent. The higher the hygroscopicity, the more easily the aminocarboxylic acid (salt) -containing particles or detergents are agglomerated and solidified.
The hygroscopic evaluation of the aminocarboxylic acid (salt) -containing particles was performed as follows.
The aminocarboxylic acid (salt) -containing particles (samples) obtained in each example were spread on a glass petri dish (inner diameter 85 mm) to a thickness of 5 mm and placed in a thermostatic chamber set at a temperature of 45 ° C. and a relative humidity of 80%. I put it in.
Next, every 60 minutes, the mass of the glass petri dish with the sample spread was measured in the thermostat and the change with time was recorded.
And the moisture absorption (mass%) was calculated | required by the following Formula (1). In the formula (1), “measured value”, “sample preparation amount”, and “sample collection amount” are as follows.
Measured value: Mass of the glass petri dish with the sample spread, measured after 48 hours in total.
Sample charge: The mass of a glass petri dish with the sample spread, which is measured after standing for 1 minute at a temperature of 25 ° C. before being placed in a thermostatic bath.
Sample collection amount: A value obtained by subtracting the mass of the glass petri dish measured after standing for 1 minute at a temperature of 25 ° C. from the sample preparation amount.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(1)より求められた吸湿率(質量%)を基にして、下記の評価基準に従い、アミノカルボン酸(塩)含有粒子の吸湿性について評価した。評価結果がA、B、Cであるものを合格とした。
 (評価基準)
   A:吸湿率が5質量%未満であった。
   B:吸湿率が5質量%以上、10質量%未満であった。
   C:吸湿率が10質量%以上、20質量%未満であった。
   D:吸湿率が20質量%以上、40質量%未満であった。
   E:吸湿率が40質量%以上であった。
Based on the moisture absorption rate (mass%) obtained from the formula (1), the hygroscopicity of the aminocarboxylic acid (salt) -containing particles was evaluated according to the following evaluation criteria. Those whose evaluation results were A, B, and C were regarded as acceptable.
(Evaluation criteria)
A: The moisture absorption rate was less than 5% by mass.
B: The moisture absorption was 5% by mass or more and less than 10% by mass.
C: The moisture absorption was 10% by mass or more and less than 20% by mass.
D: The moisture absorption was 20% by mass or more and less than 40% by mass.
E: The moisture absorption was 40% by mass or more.
[洗剤の固化性の評価]
 各例で得られたアミノカルボン酸(塩)含有粒子を用いて前述の粒状洗剤をそれぞれ調製し、該粒状洗剤1000gをシールカートン洗剤容器(縦155mm×横95mm×高さ135mm)に充填し、この充填後のシールカートン洗剤容器を、温度45℃、相対湿度60%の恒温槽中で2週間保存した。
 その後、該シールカートン洗剤容器を恒温槽から取り出して開封後、その内容物の固化状態を以下の方法で確認した。
 前記シールカートン洗剤容器の中から粒状洗剤を、目開き5mmの篩の上にゆっくり流出させた。そして、篩の上に残った粒状洗剤の残量を測定し、下記の評価基準に従い、洗剤の固化性について評価した。評価結果がA、Bであるものを合格とした。
 (評価基準)
  A:篩の上に残った粒状洗剤の残量が50g未満であった。
  B:篩の上に残った粒状洗剤の残量が50g以上100g未満であった。
  C:篩の上に残った粒状洗剤の残量が100g以上300g未満であった。
  D:篩の上に残った粒状洗剤の残量が300g以上であった。
[Evaluation of solidification of detergent]
Using the aminocarboxylic acid (salt) -containing particles obtained in each example, the above granular detergent was prepared, and 1000 g of the granular detergent was filled in a seal carton detergent container (length 155 mm × width 95 mm × height 135 mm), The sealed carton detergent container after filling was stored in a thermostatic bath at a temperature of 45 ° C. and a relative humidity of 60% for 2 weeks.
Thereafter, the sealed carton detergent container was taken out of the thermostatic bath and opened, and the solidified state of the contents was confirmed by the following method.
The granular detergent was slowly discharged from the sealed carton detergent container onto a sieve having an opening of 5 mm. And the residual amount of the granular detergent remaining on the sieve was measured, and the solidification property of the detergent was evaluated according to the following evaluation criteria. Those whose evaluation results were A and B were regarded as acceptable.
(Evaluation criteria)
A: The remaining amount of the granular detergent remaining on the sieve was less than 50 g.
B: The remaining amount of the granular detergent remaining on the sieve was 50 g or more and less than 100 g.
C: The remaining amount of the granular detergent remaining on the sieve was 100 g or more and less than 300 g.
D: The residual amount of the granular detergent remaining on the sieve was 300 g or more.
  (表B1) 
Figure JPOXMLDOC01-appb-I000013
(Table B1)
Figure JPOXMLDOC01-appb-I000013
  (表B2)
Figure JPOXMLDOC01-appb-I000014
(Table B2)
Figure JPOXMLDOC01-appb-I000014
  (表B3)
Figure JPOXMLDOC01-appb-I000015
(Table B3)
Figure JPOXMLDOC01-appb-I000015
 表B1~B3の結果から、本発明に係る実施例B1~B10のアミノカルボン酸(塩)含有粒子は、水に対する溶解性に優れていることが確認できた。
 また、実施例B1~B10のアミノカルボン酸(塩)含有粒子を配合した粒状洗剤は、固化を生じにくいことも確認できた。
From the results in Tables B1 to B3, it was confirmed that the aminocarboxylic acid (salt) -containing particles of Examples B1 to B10 according to the present invention were excellent in solubility in water.
It was also confirmed that the granular detergents containing the aminocarboxylic acid (salt) -containing particles of Examples B1 to B10 hardly cause solidification.
 本発明のアミノカルボン酸(塩)含有粒子は、固化を生じにくく、また、水に対する溶解性も優れているため、洗剤の原料として好適に用いることができる。 Since the aminocarboxylic acid (salt) -containing particles of the present invention are less likely to solidify and have excellent solubility in water, they can be suitably used as a raw material for detergents.

Claims (5)

  1.  亜鉛化合物(a)と、
     アミノカルボン酸又はその塩(b)とを含有し、
     (a)/(b)で表されるモル比が0.5~6であることを特徴とするアミノカルボン酸(塩)含有粒子。
    A zinc compound (a);
    An aminocarboxylic acid or a salt thereof (b),
    Aminocarboxylic acid (salt) -containing particles, wherein the molar ratio represented by (a) / (b) is 0.5-6.
  2.  亜鉛化合物が硫酸塩であることを特徴とする請求項1に記載のアミノカルボン酸(塩)含有粒子。 The aminocarboxylic acid (salt) -containing particles according to claim 1, wherein the zinc compound is a sulfate.
  3.  さらに、有機結合剤(c)とアニオン性界面活性剤(d)と、融点が45℃未満の非イオン性界面活性剤(e)とを含有することを特徴とする請求項1又は2に記載のアミノカルボン酸(塩)含有粒子。 Furthermore, organic binder (c), anionic surfactant (d), and nonionic surfactant (e) whose melting | fusing point is less than 45 degreeC are contained, The 1 or 2 characterized by the above-mentioned. Of aminocarboxylic acid (salt) -containing particles.
  4.  前記亜鉛化合物(a)の含有量が、10~80質量%であり、かつ、前記アミノカルボン酸又はその塩(b)の含有量が、10~80質量%である請求項1~3のいずれか一項に記載のアミノカルボン酸(塩)含有粒子。 The content of the zinc compound (a) is 10 to 80% by mass, and the content of the aminocarboxylic acid or a salt (b) thereof is 10 to 80% by mass. The aminocarboxylic acid (salt) -containing particles according to claim 1.
  5.  請求項1~4のいずれか一項に記載のアミノカルボン酸(塩)含有粒子を含有することを特徴とする粒状洗剤組成物。 A granular detergent composition comprising the aminocarboxylic acid (salt) -containing particles according to any one of claims 1 to 4.
PCT/JP2011/072806 2010-10-01 2011-10-03 Particles each containing aminocarboxylic acid (salt), and granular detergent composition WO2012043859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137006841A KR20130115226A (en) 2010-10-01 2011-10-03 Particles each containing aminocarboxylic acid(salt), and granular detergent composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010224126A JP2013253118A (en) 2010-10-01 2010-10-01 Particle containing aminocarboxylic acid (salt), and granular detergent composition
JP2010-224126 2010-10-01
JP2011-049624 2011-03-07
JP2011049624A JP2013253120A (en) 2011-03-07 2011-03-07 Metal sulfate salt granule and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2012043859A1 true WO2012043859A1 (en) 2012-04-05

Family

ID=45893291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072806 WO2012043859A1 (en) 2010-10-01 2011-10-03 Particles each containing aminocarboxylic acid (salt), and granular detergent composition

Country Status (2)

Country Link
KR (1) KR20130115226A (en)
WO (1) WO2012043859A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519186A (en) * 2013-04-02 2016-06-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Composition, its manufacture, and its use as a dishwashing composition or for preparing a dishwashing composition
EP3755778B1 (en) 2018-02-23 2022-04-06 Unilever Global IP Limited Detergent solid composition comprising aminopolycarboxylate and inorganic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859299A (en) * 1981-08-08 1983-04-08 ザ・プロクタ−・エンド・ギヤンブル・カンパニ− Laundry composition
JP2006182862A (en) * 2004-12-27 2006-07-13 Lion Corp Granular detergent composition
WO2010103833A1 (en) * 2009-03-11 2010-09-16 ライオン株式会社 Granular detergent composition
JP2011057745A (en) * 2009-09-07 2011-03-24 Lion Corp Bleaching composition and method for treating textile product
WO2011118340A1 (en) * 2010-03-26 2011-09-29 ライオン株式会社 Bleach activator agglomerated substance and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859299A (en) * 1981-08-08 1983-04-08 ザ・プロクタ−・エンド・ギヤンブル・カンパニ− Laundry composition
JP2006182862A (en) * 2004-12-27 2006-07-13 Lion Corp Granular detergent composition
WO2010103833A1 (en) * 2009-03-11 2010-09-16 ライオン株式会社 Granular detergent composition
JP2011057745A (en) * 2009-09-07 2011-03-24 Lion Corp Bleaching composition and method for treating textile product
WO2011118340A1 (en) * 2010-03-26 2011-09-29 ライオン株式会社 Bleach activator agglomerated substance and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519186A (en) * 2013-04-02 2016-06-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Composition, its manufacture, and its use as a dishwashing composition or for preparing a dishwashing composition
EP3755778B1 (en) 2018-02-23 2022-04-06 Unilever Global IP Limited Detergent solid composition comprising aminopolycarboxylate and inorganic acid

Also Published As

Publication number Publication date
KR20130115226A (en) 2013-10-21

Similar Documents

Publication Publication Date Title
TW200524B (en)
SK285376B6 (en) Washing or cleaning agent, compound or treated raw material and a method of their preparation
JPH07509267A (en) Process and composition of compact detergent
JPH07509268A (en) detergent composition
WO2012043859A1 (en) Particles each containing aminocarboxylic acid (salt), and granular detergent composition
AU2010320064B2 (en) Method for producing detergent granules
JP2013253118A (en) Particle containing aminocarboxylic acid (salt), and granular detergent composition
WO2011118340A1 (en) Bleach activator agglomerated substance and method for producing same
KR101944345B1 (en) Granular detergent composition and method for producing same
JP5851408B2 (en) Granular detergent composition and method for producing the same
JP4176595B2 (en) Cleaning composition
JPH06506720A (en) Highly active paste agglomeration method for preparing surfactant granules useful in detergent compositions
JP5656696B2 (en) Method for producing granular detergent composition
JP2009149778A (en) Granule of bleaching activation component, cleanser composition containing it, and method for producing it
JP4854922B2 (en) Powder cleaning composition
JP3720632B2 (en) Base granule group
JP5331550B2 (en) High bulk density granular detergent composition and production method thereof
JP2013253120A (en) Metal sulfate salt granule and manufacturing method thereof
JP5470022B2 (en) High bulk density granular detergent composition
JP4667730B2 (en) Method for treating crystalline alkali metal silicate
JP5785747B2 (en) Granular detergent composition
JP2010215814A (en) High bulk density granular detergent composition
JP2007161761A (en) Detergent composition
JP4869708B2 (en) Method for producing powder detergent composition
JP2009185203A (en) Powdered detergent composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006841

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP