WO2012043732A1 - Film forming method - Google Patents

Film forming method Download PDF

Info

Publication number
WO2012043732A1
WO2012043732A1 PCT/JP2011/072412 JP2011072412W WO2012043732A1 WO 2012043732 A1 WO2012043732 A1 WO 2012043732A1 JP 2011072412 W JP2011072412 W JP 2011072412W WO 2012043732 A1 WO2012043732 A1 WO 2012043732A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
ion beam
ion
forming method
Prior art date
Application number
PCT/JP2011/072412
Other languages
French (fr)
Japanese (ja)
Inventor
志成 蘇
有美 小笠原
坂本 仁志
Original Assignee
株式会社エス・エフ・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エス・エフ・シー filed Critical 株式会社エス・エフ・シー
Priority to JP2011544738A priority Critical patent/JP5008211B2/en
Publication of WO2012043732A1 publication Critical patent/WO2012043732A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0026Activation or excitation of reactive gases outside the coating chamber
    • C23C14/0031Bombardment of substrates by reactive ion beams
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a film forming method.
  • a transparent conductive film having transparency has been used as an electrode for solar cells and organic EL elements.
  • the material for the transparent conductive film include tin oxide particles, antimony-containing tin oxide particles (ATO), tin-containing indium oxide (ITO), aluminum-containing zinc oxide (AZO), and gallium-containing zinc oxide (GZO).
  • ATO antimony-containing tin oxide particles
  • ITO tin-containing indium oxide
  • AZO aluminum-containing zinc oxide
  • GZO gallium-containing zinc oxide
  • the ITO film is currently often used for a transparent conductive film because of its high transparency to visible light and high conductivity.
  • indium as the raw material of the ITO film is a rare metal, and a material that can replace ITO in terms of resources and cost is required.
  • zinc oxide (ZnO) is known as an alternative material (see, for example, Patent Document 1).
  • JP 2010-020951 A (refer to claim 1)
  • Such a transparent conductive film made of zinc oxide has a problem that it has high resistivity and low conductivity.
  • a transparent conductive film is formed by a physical vapor deposition method (PVD method) such as a magnetron sputtering method or a chemical vapor deposition method (CVD method) such as thermal CVD or plasma CVD.
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • a film is formed on a substrate made of a material having low heat resistance such as a film (for example, film formation cannot be performed at 150 ° C. or lower) because the substrate temperature is too high. I can't.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, and it is possible to produce a film having high translucency and high conductivity without using indium, and to set the substrate temperature low.
  • An object of the present invention is to provide a film forming method that can perform the above process.
  • the film forming method of the present invention is a film forming method for forming a fluorine-doped zinc oxide film on a surface to be processed of a substrate by ion beam assisted vapor deposition, which contains zinc ions while irradiating an ion beam containing fluorine ions.
  • the film formation is performed by evaporating the evaporation source.
  • the ion beam assisted deposition method the film can be formed at a low temperature, and the film is formed while irradiating an ion beam containing fluorine ions, so that the fluorine doped oxide has high light transmittance and low resistivity.
  • a zinc film can be formed.
  • the ion beam containing fluorine ions is preferably an ion beam containing CxFy ions.
  • CxFy ions By containing CxFy ions, it is possible to easily form a fluorine-doped zinc oxide film having high light transmittance and low resistivity.
  • the zinc-containing vapor deposition source is zinc oxide
  • the ion beam is a beam further containing O 2 ions.
  • the current density of the ion beam is preferably 200 to 1500 ⁇ / cm 2 . By being in this range, acceleration of the ion beam is sufficient, vapor deposition particles and the ion beam are likely to react on the surface of the processing substrate S, and a desired film is easily formed.
  • the mixing ratio of CxFy gas and O 2 gas introduced into the ion beam apparatus is preferably 1:99 to 20:80. Within this range, a fluorine-doped zinc oxide film with good film quality can be easily formed.
  • the film forming method of the present invention it is possible to produce an excellent effect that a film having high translucency and high conductivity can be produced without using indium.
  • FIG. 1 It is the schematic which shows the structure of the film-forming apparatus. It is the schematic sectional drawing and schematic plan view which show the structure of an ion source. 2 is a graph showing measurement results of the film obtained in Example 1. FIG.
  • FIG. 1 is a diagram showing a schematic configuration example of an ion beam assisted deposition apparatus according to the present embodiment.
  • the vapor deposition apparatus 1 has a vacuum chamber 10.
  • a vacuum exhaust device 12 is provided at the exhaust port 11 of the vacuum chamber 10.
  • the inside of the vacuum chamber 10 can be evacuated by the evacuation device 12 to make the inside of the vacuum chamber 10 into a vacuum state.
  • Examples of such a vacuum exhaust device 12 include known vacuum pumps such as a turbo molecular pump and a cryopump. In this embodiment, a turbo molecular pump and a cryopump are used in combination.
  • a substrate installation section 13 for installing the processing substrate S is provided on the inner wall of the ceiling surface of the vacuum chamber 10.
  • the processing substrate S is, for example, a glass substrate. Further, as the processing substrate S, it is possible to use a film or the like because it can be performed at a low temperature (100 ° C. or less) in the present embodiment as described later.
  • the vapor deposition source installation unit 21 is provided at a position facing the substrate installation unit 13.
  • the vapor deposition source 22 is placed on the vapor deposition source installation unit 21 so as to face the processing substrate S.
  • the vapor deposition source 22 uses zinc oxide or zinc without using indium.
  • An electron beam device 23 is provided around the vapor deposition source installation unit 21. The electron beam device 23 is installed so that the emitted electron beam can be applied to the vapor deposition source 22. By irradiating the vapor deposition source 22 with the electron beam in this way, the vapor deposition source 22 melts, and vapor deposition particles adhere to and deposit on the processing surface of the processing substrate S.
  • an ion source 31 is provided in the vacuum chamber 10.
  • the vacuum chamber 10 is further provided with voltage application means 32.
  • the voltage application means 32 is, for example, a DC power supply, and the positive voltage side is connected to the ion source 31 and the negative voltage side is connected to the substrate installation unit 13.
  • the ion source 31 which is a film formation assist means of the vapor deposition source 22
  • gas is supplied from a gas supply line (not shown).
  • the ion source 31 When the gas is supplied, the ion source 31 generates ions therein, and emits an ion beam made of the generated ions toward the processing substrate S.
  • positively charged ions (O 2 + , F + ) are extracted from the plasma of O 2 gas and fluorine-containing gas introduced into the ion source 31 and accelerated by the acceleration voltage of the voltage application means 32. Release toward the processing substrate S.
  • the emitted ion beam reaches the processing surface of the processing substrate S by the electric field formed between the ion source 31 and the processing substrate S by the voltage application means 32, and reacts with the vapor deposition particles deposited on the processing surface. Or adheres to the deposited particles to form a desired film.
  • a fluorine-doped zinc oxide film is formed as the desired film.
  • the ion source 31 includes a housing 41 and an anode portion 42 that functions as an anode electrode housed in the housing 41.
  • the anode part 42 has a mortar-shaped recess 43 at the center thereof. A space formed by the recess 43 becomes an ion formation space 44.
  • the surface of the recess 43 of the anode part 42 is covered with a TiN film.
  • a filament 45 that also functions as a cathode is provided at a position facing the recess 43.
  • the filament 45 is provided with a voltage applying means (not shown), and a voltage can be applied by the filament 45.
  • the recess 43 is provided with a protrusion 46 at the bottom thereof.
  • the protrusion 46 protrudes toward the ion formation space 44 and has an arc shape in a sectional view.
  • the housing 41 is provided with a first through hole 51.
  • the first through hole 51 passes through the wall surface of the housing 41.
  • a gap 52 is provided between the casing 41 and the anode part 42.
  • the first through hole 51 faces the gap 52.
  • the anode portion 42 is provided with a second through hole 53 that penetrates the anode portion 42.
  • the second through-hole 53 faces the gap 52 on one end side and faces the ion formation space 44 on the other end side. That is, the gap 52 and the ion formation space 44 communicate with each other through the second through hole 53.
  • a plurality of second through holes 53 are provided in the anode portion 42.
  • the first through hole 51, the gap 52 and the second through hole 53 constitute a gas introduction path for introducing gas into the ion formation space 44. Since a gas supply line (not shown) communicates with the first through hole 51, the gas supplied from the gas supply line flows into the gas introduction path that communicates with the O 2 gas into the ion formation space 44 from the gas introduction path. And a gas containing fluorine.
  • a magnet 47 is provided on the side opposite to the concave portion 43 of the anode portion 42.
  • the magnet 47 forms a magnetic field perpendicular to the electric field formed between the filament 45 serving as the cathode and the anode portion 42, and plasma is formed in the ion formation space 44 when the gas is introduced.
  • a cooling means 48 is provided behind the protrusion 46 of the anode part 42 (on the opposite side to the ion formation space 44) in order to prevent the ion source 31 from becoming very hot.
  • the cooling means 48 is a water cooling means, and is configured such that the anode portion 42 can be cooled by allowing the coolant to pass through the cooling means 48.
  • the ion source 31 is configured such that a voltage is applied from the voltage application means 32 (see FIG. 1) to the anode portion 42, and the voltage applied by the voltage application means 32 is 200 V or less. .
  • a voltage is applied from the voltage application means 32 (see FIG. 1) to the anode portion 42, and the voltage applied by the voltage application means 32 is 200 V or less.
  • the voltage applied by the voltage application means 32 is 200 V or less.
  • a large current can flow even when a low voltage is applied, so that stable ionization is possible.
  • the inside of the vacuum chamber 10 is evacuated by the evacuation device 12 to obtain a vacuum state of about 10 ⁇ 5 Torr (1.33 ⁇ 10 ⁇ 4 Pa).
  • the vapor deposition source 22 which is zinc oxide is melted.
  • the evaporation source 22 evaporates, and zinc oxide is evaporated on the processing surface of the processing substrate S.
  • the output of the electron beam device 23 can be controlled so that the deposition rate of the zinc oxide film becomes a substantially constant deposition rate.
  • the deposition rate is preferably 0.1 to 5 nm / s. If the deposition rate is faster than this range, the density of the film becomes rough and the quality of the film deteriorates. If the deposition rate is slower than this range, it takes too much time to form the film, which is not practical.
  • the deposition source 22 is evaporated and deposited, and at the same time, the ion source 31 is irradiated with an ion beam to the processing substrate S.
  • the ion source 31 applies a voltage to the filament 45 while introducing gas from the gas introduction path into the ion formation space 44, and emits thermoelectrons.
  • the emitted thermoelectrons are accelerated and moved to the anode part 42 side by an electric field formed between the filament 45 functioning as a cathode and the anode part 42 while spirally moving by the magnetic field formed by the magnet 47.
  • the introduced gas is converted into plasma, that is, ionized, in the ion formation space 44.
  • the ion beam thus formed is irradiated toward the substrate serving as the ground. That is, positively charged ions (O 2 + , F + ) are extracted from the plasma of the O 2 gas introduced into the ion source 31 and the gas containing fluorine, and are accelerated by the acceleration voltage of the voltage application means 32 to be processed. Release toward the substrate S.
  • positively charged ions O 2 + , F +
  • the gas supplied to the ion source 31 is O 2 gas and fluorine-containing gas.
  • O 2 gas By introducing O 2 gas, a sufficiently oxidized zinc oxide film can be formed.
  • a fluorine-doped zinc oxide film can be formed by adding a fluorine-containing gas.
  • Such a fluorine-doped zinc oxide film has high conductivity and high light transmittance.
  • Examples of the gas containing fluorine include a fluorine-containing gas represented by CxFy.
  • CxFy gas x is a natural number of 0 or more and y is 1 or more.
  • Examples of such CxFy gas include C 2 F 4 , C 3 F 6 , C 4 F 8 , C 5 F 10 , C 4 F 10 , C 5 F 12 , C 2 F 2 , C 3 F 4 , Examples thereof include at least one fluorocarbon gas selected from C 4 F 6 , C 5 F 8 , CF 4 , C 2 F 6 , and C 3 F 8 , or fluorine gas. It is also possible to use a gas represented by CxFyIz.
  • These fluorine-containing gas and O 2 gas are supplied to the ion source 31 at a mixing ratio of 1:99 to 20:80 on a mol% basis. By being in this range, a desired zinc oxide film can be formed. If the proportion of the fluorine-containing gas is too small, a fluorine-doped film cannot be obtained. On the other hand, if the proportion of the fluorine-containing gas is too large, the amount of oxygen is too small to form a desired zinc oxide film. I can't.
  • the flow rate of the mixed gas of O 2 gas and CxFy gas is 0.5 to 5 sccm.
  • the dissociation rate of O 2 gas is preferably 70% or more. By being 70% or more, it can sufficiently react with the evaporated particles.
  • the current density of the ion beam from the ion source 31 is preferably 200 to 1500 ⁇ / cm 2 . By being in this range, acceleration of the ion beam is sufficient, vapor deposition particles and the ion beam are likely to react on the surface of the processing substrate S, and a desired film is easily formed.
  • the film formation temperature can be set to 100 ° C. or less, and for example, a PET film or the like can be used as the processing substrate S instead of a glass substrate.
  • a film formation assist by the ion source 31 can form a zinc oxide film with good film quality, and by introducing CxFy ions, the zinc oxide film can be doped with fluorine.
  • the obtained fluorine-doped zinc oxide film has, for example, an average of 90% or more for light having a wavelength of 380 to 780 nm, and can transmit 70% or more of waves having a wavelength of 370 nm or more, and has a resistivity of 1 .87 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, having high transmittance and low resistivity.
  • Example 1 First, the processing substrate S made of glass was placed in the vacuum chamber 10. Then, vacuum evacuation was performed by the vacuum evacuation device 12 so that the degree of vacuum was about 5 ⁇ 10 ⁇ 5 Torr (6.65 ⁇ 10 ⁇ 3 Pa). Next, the evaporation source 22 (zinc oxide) was melted by the electron beam device 23 so that the deposition rate was 0.5 nm / second.
  • O 2 gas and CF 4 gas are introduced into the ion source so that the mixing ratio is 99: 1, a voltage is applied from the voltage application means 32 at 90 V, and ions are released from the ion source to form a film. went.
  • Example 2 The film formation was performed under the same conditions as in Example 1 except that C 2 F 6 gas was used as CxFy gas.
  • Example 3 Film formation was performed under the same conditions as in Example 1 except that the mixing ratio of CF 4 gas and O 2 gas was changed to 20:80.
  • the light transmittance of each film formed in Example 1 was measured using spectroscopic measurement. The measurement results are shown in FIG. As shown in FIG. 3, the average for light having a wavelength of 380 to 780 nm (about 670 nm in the figure) is 91.45%, and in all cases, the light transmittance at a wavelength of 370 nm or more is 70%. Exceeded. In particular, 80% or more of light having a wavelength of 450 nm or more was transmitted.
  • Example 1 the electrical resistance at 10 locations on each film was measured by resistivity measurement, and the average electrical resistivity of each film was determined.
  • the resistivity was 1.87 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the resistivity was 1.85 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and in the case of Example 3, the resistivity was 1.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the resistivity was 1.87 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, and it was found that the obtained film had a low resistivity.
  • Example 4 film formation was performed under the same conditions except that a PET film was used as the processing substrate S instead of a glass substrate. It was possible to form a film on the PET film because the substrate temperature was low.
  • the gas supplied to the ion source 31 is O 2 gas and fluorine-containing gas, but is not limited thereto.
  • the fluorine-containing gas may be used.
  • a rare gas He gas, Ne gas, Ar gas, etc.
  • a fluorine-containing gas and a rare gas as a carrier gas may be mixed.
  • a transparent conductive film having a lower resistance than the conventional one can be formed, but by mixing the fluorine-containing gas as in the present embodiment, A transparent conductive film having high transmittance and low resistance can be formed.
  • the film forming method of the present invention it is possible to easily form a transparent conductive film having high transmittance and low resistance. Therefore, for example, it can be used in the field of manufacturing solar cell elements.

Abstract

This film forming method forms, on a surface to be treated of a substrate, a zinc oxide film fluorine-doped by an ion beam assisted deposition method, wherein the film formation is performed by depositing an evaporation source containing zinc while irradiating with an ion beam containing fluorine ions.

Description

成膜方法Deposition method
 本発明は成膜方法に関する。 The present invention relates to a film forming method.
 従来、太陽電池や有機EL素子には、透明性を有する透明導電膜が電極として用いられている。透明導電膜の材料として、酸化スズ粒子、アンチモン含有酸化スズ粒子(ATO)、スズ含有酸化インジウム(ITO)、アルミニウム含有酸化亜鉛(AZO)、ガリウム含有酸化亜鉛(GZO)などがある。これらの中でも、ITO膜は、可視光に対する高い透光性と高い導電性から、現在、透明導電膜によく用いられている。 Conventionally, a transparent conductive film having transparency has been used as an electrode for solar cells and organic EL elements. Examples of the material for the transparent conductive film include tin oxide particles, antimony-containing tin oxide particles (ATO), tin-containing indium oxide (ITO), aluminum-containing zinc oxide (AZO), and gallium-containing zinc oxide (GZO). Among these, the ITO film is currently often used for a transparent conductive film because of its high transparency to visible light and high conductivity.
 しかしながら、ITO膜の原料のインジウムはレアメタルであり、資源的にもコスト的にもITOに替わる材料が求められている。このため、例えば酸化亜鉛(ZnO)が代替材料として知られている(例えば、特許文献1参照)。 However, indium as the raw material of the ITO film is a rare metal, and a material that can replace ITO in terms of resources and cost is required. For this reason, for example, zinc oxide (ZnO) is known as an alternative material (see, for example, Patent Document 1).
特開2010-020951号公報(請求項1参照)JP 2010-020951 A (refer to claim 1)
 しかしながら、このような酸化亜鉛からなる透明導電膜は、抵抗率が高いと同時に導電性が低いという問題がある。また、このような透明導電膜はマグネトロンスパッタリング法などの物理気相蒸着法(PVD法)や熱CVDやプラズマCVDなどの化学気相蒸着法(CVD法)などにより成膜される。しかしながら、上述した特許文献1に記載された方法では、基板温度が高すぎて例えばフィルム等の耐熱性の低い材料(例えば150℃以下では成膜することができない)からなる基板には成膜することができない。 However, such a transparent conductive film made of zinc oxide has a problem that it has high resistivity and low conductivity. Such a transparent conductive film is formed by a physical vapor deposition method (PVD method) such as a magnetron sputtering method or a chemical vapor deposition method (CVD method) such as thermal CVD or plasma CVD. However, in the method described in Patent Document 1 described above, a film is formed on a substrate made of a material having low heat resistance such as a film (for example, film formation cannot be performed at 150 ° C. or lower) because the substrate temperature is too high. I can't.
 そこで、本発明の課題は、上記従来技術の問題点を解決することにあり、インジウムを用いずに、高い透光性と高い導電性とを有する膜を製造できると共に、基板温度を低く設定することができる成膜方法を提供しようとするものである。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and it is possible to produce a film having high translucency and high conductivity without using indium, and to set the substrate temperature low. An object of the present invention is to provide a film forming method that can perform the above process.
 本発明の成膜方法は、基板の被処理面にイオンビームアシスト蒸着法によりフッ素ドープした酸化亜鉛膜を成膜する成膜方法であって、フッ素イオンを含むイオンビームを照射しながら、亜鉛含有蒸着源を蒸着させて成膜を行うことを特徴とする。イオンビームアシスト蒸着法を用いることで、低温で成膜できると共に、フッ素イオンを含むイオンビームを照射しながら成膜を行うことで、高い光透過率であると共に、抵抗率の低いフッ素ドープした酸化亜鉛膜を成膜することが可能である。 The film forming method of the present invention is a film forming method for forming a fluorine-doped zinc oxide film on a surface to be processed of a substrate by ion beam assisted vapor deposition, which contains zinc ions while irradiating an ion beam containing fluorine ions. The film formation is performed by evaporating the evaporation source. By using the ion beam assisted deposition method, the film can be formed at a low temperature, and the film is formed while irradiating an ion beam containing fluorine ions, so that the fluorine doped oxide has high light transmittance and low resistivity. A zinc film can be formed.
 前記フッ素イオンを含むイオンビームが、CxFyイオンを含むイオンビームであることが好ましい。CxFyイオンを含むことで、高い光透過率であると共に、抵抗率の低いフッ素ドープした酸化亜鉛膜を簡易に成膜することが可能である。 The ion beam containing fluorine ions is preferably an ion beam containing CxFy ions. By containing CxFy ions, it is possible to easily form a fluorine-doped zinc oxide film having high light transmittance and low resistivity.
 本発明の好ましい実施形態としては、前記亜鉛含有蒸着源が酸化亜鉛であり、イオンビームは、さらにOイオンを含むビームであることがあげられる。 In a preferred embodiment of the present invention, the zinc-containing vapor deposition source is zinc oxide, and the ion beam is a beam further containing O 2 ions.
 また、前記イオンビームの電流密度が、200~1500μ/cmであることが好ましい。この範囲であることで、イオンビームの加速が十分であり、処理基板Sの表面で蒸着粒子とイオンビームとが反応しやすく、所望の膜を形成しやすい。 The current density of the ion beam is preferably 200 to 1500 μ / cm 2 . By being in this range, acceleration of the ion beam is sufficient, vapor deposition particles and the ion beam are likely to react on the surface of the processing substrate S, and a desired film is easily formed.
 前記イオンビームを形成する場合にイオンビーム装置に導入されるCxFyガスとOガスとの混合比が、1:99~20:80であることが好ましい。この範囲であることで、膜質のよいフッ素ドープした酸化亜鉛膜を簡易に成膜することが可能である。 When the ion beam is formed, the mixing ratio of CxFy gas and O 2 gas introduced into the ion beam apparatus is preferably 1:99 to 20:80. Within this range, a fluorine-doped zinc oxide film with good film quality can be easily formed.
 本発明の成膜方法によれば、インジウムを用いずに、高い透光性と高い導電性とを有する膜を製造できるという優れた効果を奏し得る。 According to the film forming method of the present invention, it is possible to produce an excellent effect that a film having high translucency and high conductivity can be produced without using indium.
成膜装置の構成を示す概略図である。It is the schematic which shows the structure of the film-forming apparatus. イオンソースの構成を示す概略断面図及び概略平面図である。It is the schematic sectional drawing and schematic plan view which show the structure of an ion source. 実施例1で得られた膜の測定結果を示すグラフである。2 is a graph showing measurement results of the film obtained in Example 1. FIG.
 図1は、本実施の形態によるイオンビームアシスト蒸着装置の概略構成例を示す図である。 FIG. 1 is a diagram showing a schematic configuration example of an ion beam assisted deposition apparatus according to the present embodiment.
 蒸着装置1は、真空チャンバ10を有する。真空チャンバ10の排気口11には真空排気装置12が設けられている。真空排気装置12により真空チャンバ10内を真空排気して真空チャンバ10内部を真空状態にすることが可能である。このような真空排気装置12としては、ターボ分子ポンプやクライオポンプ等の公知の真空ポンプがあげられ、本実施形態では、ターボ分子ポンプ及びクライオポンプを併用して用いている。 The vapor deposition apparatus 1 has a vacuum chamber 10. A vacuum exhaust device 12 is provided at the exhaust port 11 of the vacuum chamber 10. The inside of the vacuum chamber 10 can be evacuated by the evacuation device 12 to make the inside of the vacuum chamber 10 into a vacuum state. Examples of such a vacuum exhaust device 12 include known vacuum pumps such as a turbo molecular pump and a cryopump. In this embodiment, a turbo molecular pump and a cryopump are used in combination.
 真空チャンバ10の天井面内壁には、処理基板Sを設置するための基板設置部13が設けられている。処理基板Sは、例えばガラス基板である。また、処理基板Sとしては、本実施形態では後述するように低温(100℃以下)で実施することができることから、フィルム等を用いることも可能である。 A substrate installation section 13 for installing the processing substrate S is provided on the inner wall of the ceiling surface of the vacuum chamber 10. The processing substrate S is, for example, a glass substrate. Further, as the processing substrate S, it is possible to use a film or the like because it can be performed at a low temperature (100 ° C. or less) in the present embodiment as described later.
 この基板設置部13と対向する位置に、蒸着源設置部21が設けられている。蒸着源設置部21には、処理基板Sに対向して蒸着源22が載置されている。蒸着源22は、本実施形態では、インジウムを用いずに、酸化亜鉛又は亜鉛を用いている。蒸着源設置部21の周囲には、電子ビーム装置23が設けられている。電子ビーム装置23は、放出する電子ビームが蒸着源22に照射できるように設置されている。このように電子ビームが蒸着源22に照射されることで、蒸着源22が溶融して、蒸着粒子が処理基板Sの処理面に付着し堆積する。 The vapor deposition source installation unit 21 is provided at a position facing the substrate installation unit 13. The vapor deposition source 22 is placed on the vapor deposition source installation unit 21 so as to face the processing substrate S. In the present embodiment, the vapor deposition source 22 uses zinc oxide or zinc without using indium. An electron beam device 23 is provided around the vapor deposition source installation unit 21. The electron beam device 23 is installed so that the emitted electron beam can be applied to the vapor deposition source 22. By irradiating the vapor deposition source 22 with the electron beam in this way, the vapor deposition source 22 melts, and vapor deposition particles adhere to and deposit on the processing surface of the processing substrate S.
 また、真空チャンバ10内には、イオンソース31が設けられている。真空チャンバ10には、さらに電圧印加手段32が設けられている。電圧印加手段32は、例えばDC電源であり、正電圧側がこのイオンソース31に接続されると共に、負電圧側が基板設置部13に接続されている。 Also, an ion source 31 is provided in the vacuum chamber 10. The vacuum chamber 10 is further provided with voltage application means 32. The voltage application means 32 is, for example, a DC power supply, and the positive voltage side is connected to the ion source 31 and the negative voltage side is connected to the substrate installation unit 13.
 蒸着源22の成膜アシスト手段であるイオンソース31では、詳しくは後述するように、図示しないガス供給ラインからガスが供給される。ガスが供給されるとイオンソース31は、その内部でイオンを生成し、この生成したイオンからなるイオンビームを処理基板Sに向けて放出する。本実施形態ではイオンソース31に導入したOガスとフッ素を含むガスとのプラズマから、正に帯電したイオン(O  ,F)を引き出し、電圧印加手段32の加速電圧により加速して処理基板Sに向けて放出する。 As will be described in detail later, in the ion source 31 which is a film formation assist means of the vapor deposition source 22, gas is supplied from a gas supply line (not shown). When the gas is supplied, the ion source 31 generates ions therein, and emits an ion beam made of the generated ions toward the processing substrate S. In this embodiment, positively charged ions (O 2 + , F + ) are extracted from the plasma of O 2 gas and fluorine-containing gas introduced into the ion source 31 and accelerated by the acceleration voltage of the voltage application means 32. Release toward the processing substrate S.
 そして、放出されたイオンビームは、電圧印加手段32によりイオンソース31と処理基板Sとの間に形成された電界により、処理基板Sの処理面に到達し、処理面に堆積した蒸着粒子と反応し、又は蒸着粒子に付着して、所望の膜が形成される。本実施形態では、所望の膜としては、フッ素ドープされた酸化亜鉛膜を形成する。 The emitted ion beam reaches the processing surface of the processing substrate S by the electric field formed between the ion source 31 and the processing substrate S by the voltage application means 32, and reacts with the vapor deposition particles deposited on the processing surface. Or adheres to the deposited particles to form a desired film. In this embodiment, a fluorine-doped zinc oxide film is formed as the desired film.
 ここで、イオンソース31について図2を用いて詳細に説明する。 Here, the ion source 31 will be described in detail with reference to FIG.
 イオンソース31は、筐体41と、筐体41に収納されたアノード電極として機能するアノード部42とを備える。アノード部42は、その中央部にすり鉢状の凹部43を有している。この凹部43により形成される空間が、イオン形成空間44となる。アノード部42の凹部43の表面は、TiN膜に覆われている。これにより、後述するようにイオン形成空間44にOガスとフッ素を含むガスとが導入されてプラズマが形成された場合であっても、酸素イオンにより表面が荒れることがなく、かつ、酸素を含むプラズマを安定して形成することができる。 The ion source 31 includes a housing 41 and an anode portion 42 that functions as an anode electrode housed in the housing 41. The anode part 42 has a mortar-shaped recess 43 at the center thereof. A space formed by the recess 43 becomes an ion formation space 44. The surface of the recess 43 of the anode part 42 is covered with a TiN film. As a result, as described later, even when O 2 gas and fluorine-containing gas are introduced into the ion formation space 44 and plasma is formed, the surface is not roughened by oxygen ions, and oxygen is removed. The plasma containing it can be formed stably.
 この凹部43に対向する位置に、カソードとしても機能するフィラメント45が設けられている。このフィラメント45には、図示しない電圧印加手段が設けられていて、フィラメント45により電圧を印加されることが可能である。 A filament 45 that also functions as a cathode is provided at a position facing the recess 43. The filament 45 is provided with a voltage applying means (not shown), and a voltage can be applied by the filament 45.
 凹部43には、その底部に突起部46が設けられている。突起部46は、イオン形成空間44側に突出しており、断面視において円弧状となっている。このような突起部46が設けられていることで、カソードから放出された電子を効率よくイオン形成空間44に閉じこめることが可能である。 The recess 43 is provided with a protrusion 46 at the bottom thereof. The protrusion 46 protrudes toward the ion formation space 44 and has an arc shape in a sectional view. By providing such a protrusion 46, electrons emitted from the cathode can be efficiently confined in the ion formation space 44.
 筐体41には、第1貫通孔51が設けられている。第1貫通孔51は、筐体41の壁面を貫通している。また、筐体41とアノード部42との間には、間隙52が設けられている。間隙52に第1貫通孔51が臨んでいる。また、アノード部42には、アノード部42を貫通する第2貫通孔53が設けられている。第2貫通孔53は、一端側で間隙52に臨み、他端側で、イオン形成空間44に臨む。即ち、第2貫通孔53を介して、間隙52とイオン形成空間44とが連通している。なお、図2(b)に示すように、第2貫通孔53は、アノード部42に複数設けられている。 The housing 41 is provided with a first through hole 51. The first through hole 51 passes through the wall surface of the housing 41. A gap 52 is provided between the casing 41 and the anode part 42. The first through hole 51 faces the gap 52. The anode portion 42 is provided with a second through hole 53 that penetrates the anode portion 42. The second through-hole 53 faces the gap 52 on one end side and faces the ion formation space 44 on the other end side. That is, the gap 52 and the ion formation space 44 communicate with each other through the second through hole 53. As shown in FIG. 2B, a plurality of second through holes 53 are provided in the anode portion 42.
 この第1貫通孔51、間隙52及び第2貫通孔53により、イオン形成空間44にガスを導入するためのガス導入路が構成されている。図示しないガス供給ラインが第1貫通孔51に連通しているので、ガス供給ラインから供給されたガスが連通したガス導入路に流入し、ガス導入路から、イオン形成空間44にOガスとフッ素を含むガスとが導入される。 The first through hole 51, the gap 52 and the second through hole 53 constitute a gas introduction path for introducing gas into the ion formation space 44. Since a gas supply line (not shown) communicates with the first through hole 51, the gas supplied from the gas supply line flows into the gas introduction path that communicates with the O 2 gas into the ion formation space 44 from the gas introduction path. And a gas containing fluorine.
 また、アノード部42の凹部43とは逆側には、磁石47が設けられている。この磁石47により、カソードであるフィラメント45と、アノード部42との間に形成される電場に対して直交する磁場が形成され、ガス導入時にイオン形成空間44にプラズマが形成される。 Further, a magnet 47 is provided on the side opposite to the concave portion 43 of the anode portion 42. The magnet 47 forms a magnetic field perpendicular to the electric field formed between the filament 45 serving as the cathode and the anode portion 42, and plasma is formed in the ion formation space 44 when the gas is introduced.
 なお、この場合に非常にイオンソース31が高温になるのを抑制すべく、アノード部42の突起部46の後方(イオン形成空間44とは逆側)には、冷却手段48が設けられている。冷却手段48は、本実施形態では、水冷手段であり、冷却手段48の内部を冷却液が通過することで、アノード部42を冷却できるように構成されている。 In this case, a cooling means 48 is provided behind the protrusion 46 of the anode part 42 (on the opposite side to the ion formation space 44) in order to prevent the ion source 31 from becoming very hot. . In the present embodiment, the cooling means 48 is a water cooling means, and is configured such that the anode portion 42 can be cooled by allowing the coolant to pass through the cooling means 48.
 また、このイオンソース31では、電圧印加手段32(図1参照)からアノード部42に電圧が印加されるように構成されており、この電圧印加手段32により印加される電圧は、200V以下である。本実施形態では、エンドホール型のイオンソースであり、かつ、直流放電可能であるので、低電圧を印加しても大電流を流すことができるので、安定してイオン化することが可能である。 The ion source 31 is configured such that a voltage is applied from the voltage application means 32 (see FIG. 1) to the anode portion 42, and the voltage applied by the voltage application means 32 is 200 V or less. . In this embodiment, since it is an end-hole type ion source and DC discharge is possible, a large current can flow even when a low voltage is applied, so that stable ionization is possible.
 かかる蒸着装置1による成膜方法について説明する。 A film forming method using the vapor deposition apparatus 1 will be described.
 初めに、真空チャンバ10内を真空排気装置12により真空排気して、約10-5Torr(1.33×10-4Pa)程度の真空状態とする。 First, the inside of the vacuum chamber 10 is evacuated by the evacuation device 12 to obtain a vacuum state of about 10 −5 Torr (1.33 × 10 −4 Pa).
 その後、電子ビーム装置23から出射される電子ビームを蒸着源22に照射しながら掃引し、酸化亜鉛である蒸着源22を溶融する。これにより蒸着源22が蒸発し、処理基板Sの処理面に酸化亜鉛が蒸着される。酸化亜鉛膜の堆積速度は、ほぼ一定の蒸着速度になるように電子ビーム装置23の出力を制御することができる。その堆積速度は、好ましくは0.1~5nm/sである。この範囲より堆積速度が早いと、膜の密度が荒くなり膜質が低下してしまい、また、この範囲より堆積速度が遅いと成膜時間がかかり過ぎて実用的ではないため、この範囲が好ましい。 Thereafter, sweeping while irradiating the vapor deposition source 22 with the electron beam emitted from the electron beam device 23, the vapor deposition source 22 which is zinc oxide is melted. As a result, the evaporation source 22 evaporates, and zinc oxide is evaporated on the processing surface of the processing substrate S. The output of the electron beam device 23 can be controlled so that the deposition rate of the zinc oxide film becomes a substantially constant deposition rate. The deposition rate is preferably 0.1 to 5 nm / s. If the deposition rate is faster than this range, the density of the film becomes rough and the quality of the film deteriorates. If the deposition rate is slower than this range, it takes too much time to form the film, which is not practical.
 このように蒸着源22を蒸発させて蒸着させると同時に、イオンソース31からイオンビームを処理基板Sに照射する。本実施形態ではイオンソース31で、ガスをガス導入路からイオン形成空間44内に導入しながら、フィラメント45に電圧を印加して熱電子を放出させる。放出された熱電子は、磁石47により形成された磁場によりスパイラル運動しながら、カソードとして機能するフィラメント45とアノード部42との間に形成された電場により、アノード部42側へ加速され移動する。そして、導入されたガスがイオン形成空間44でプラズマ化、即ちイオン化される。これにより形成されたイオンビームが、アースである基板に向けて照射される。即ち、イオンソース31に導入したO ガスとフッ素を含むガスとのプラズマから、正に帯電したイオン(O  ,F)が引き出され、電圧印加手段32の加速電圧により加速されて処理基板Sに向けて放出する。 In this way, the deposition source 22 is evaporated and deposited, and at the same time, the ion source 31 is irradiated with an ion beam to the processing substrate S. In this embodiment, the ion source 31 applies a voltage to the filament 45 while introducing gas from the gas introduction path into the ion formation space 44, and emits thermoelectrons. The emitted thermoelectrons are accelerated and moved to the anode part 42 side by an electric field formed between the filament 45 functioning as a cathode and the anode part 42 while spirally moving by the magnetic field formed by the magnet 47. The introduced gas is converted into plasma, that is, ionized, in the ion formation space 44. The ion beam thus formed is irradiated toward the substrate serving as the ground. That is, positively charged ions (O 2 + , F + ) are extracted from the plasma of the O 2 gas introduced into the ion source 31 and the gas containing fluorine, and are accelerated by the acceleration voltage of the voltage application means 32 to be processed. Release toward the substrate S.
 このように、本実施形態では、イオンソース31に供給されるガスは、Oガスとフッ素含有ガスである。Oガスを導入することで、十分に酸化された酸化亜鉛膜を形成できる。またフッ素含有ガスを添加することで、フッ素ドープされた酸化亜鉛膜を形成することができる。このようなフッ素ドープされた酸化亜鉛膜は、高い導電率を有すると共に、高い光透過率を有する。 Thus, in this embodiment, the gas supplied to the ion source 31 is O 2 gas and fluorine-containing gas. By introducing O 2 gas, a sufficiently oxidized zinc oxide film can be formed. Moreover, a fluorine-doped zinc oxide film can be formed by adding a fluorine-containing gas. Such a fluorine-doped zinc oxide film has high conductivity and high light transmittance.
 フッ素を含むガスとしては、例えばCxFyで表されるフッ素含有ガスがあげられる。CxFyガスにおいては、xは0以上、yは1以上の自然数である。このようなCxFyガスとしては、例えば、C、C、C、C10、C10、C12、C、C、C、C、CF、C、及びCから選ばれた少なくとも一種のフロロカーボンガス、又はフッ素ガスがあげられる。また、CxFyIzで表されるガスを用いることも可能である。 Examples of the gas containing fluorine include a fluorine-containing gas represented by CxFy. In the CxFy gas, x is a natural number of 0 or more and y is 1 or more. Examples of such CxFy gas include C 2 F 4 , C 3 F 6 , C 4 F 8 , C 5 F 10 , C 4 F 10 , C 5 F 12 , C 2 F 2 , C 3 F 4 , Examples thereof include at least one fluorocarbon gas selected from C 4 F 6 , C 5 F 8 , CF 4 , C 2 F 6 , and C 3 F 8 , or fluorine gas. It is also possible to use a gas represented by CxFyIz.
 これらのフッ素含有ガスとOガスとをモル%基準で1:99~20:80の混合割合となるようにイオンソース31に供給する。この範囲であることで、所望の酸化亜鉛膜を形成することができる。フッ素含有ガスの割合が少なすぎれば、フッ素ドープされた膜とすることができず、他方で、フッ素含有ガスの割合が多すぎれば、酸素量が少なすぎて所望の酸化亜鉛膜を形成することができない。 These fluorine-containing gas and O 2 gas are supplied to the ion source 31 at a mixing ratio of 1:99 to 20:80 on a mol% basis. By being in this range, a desired zinc oxide film can be formed. If the proportion of the fluorine-containing gas is too small, a fluorine-doped film cannot be obtained. On the other hand, if the proportion of the fluorine-containing gas is too large, the amount of oxygen is too small to form a desired zinc oxide film. I can't.
 この場合に、OガスとCxFyガスとの混合ガスの流量は、0.5~5sccmである。 In this case, the flow rate of the mixed gas of O 2 gas and CxFy gas is 0.5 to 5 sccm.
 また、Oガスの解離率は、好ましくは70%以上である。70%以上であることで、十分に蒸発粒子と反応することができる。 The dissociation rate of O 2 gas is preferably 70% or more. By being 70% or more, it can sufficiently react with the evaporated particles.
 イオンソース31からのイオンビームの電流密度は、好ましくは、200~1500μ/cmである。この範囲であることで、イオンビームの加速が十分であり、処理基板Sの表面で蒸着粒子とイオンビームとが反応しやすく、所望の膜を形成しやすい。 The current density of the ion beam from the ion source 31 is preferably 200 to 1500 μ / cm 2 . By being in this range, acceleration of the ion beam is sufficient, vapor deposition particles and the ion beam are likely to react on the surface of the processing substrate S, and a desired film is easily formed.
 本実施形態では、イオンビームアシスト蒸着法を用いているので、基板に付着した蒸着粒子とイオンビームの反応性が高く、その結果、反応性を高めるために基板温度を高くする必要がない。このため、例えば、成膜温度を100℃以下とすることができ、例えば処理基板Sとしてガラス基板ではなくPETフィルム等を用いることができる。このようにイオンソース31により成膜アシストすることで膜質のよい酸化亜鉛膜を形成することができると共に、CxFyイオンを導入することで、酸化亜鉛膜にフッ素ドープすることが可能である。得られたフッ素ドープ酸化亜鉛膜は、例えば、380~780nmの波長の光での平均は90%以上であり、370nm以上の波長の波を70%以上透過することができると共に、抵抗率が1.87×10-4Ω・cm以下であり、高い透過率を有すると共に、低い抵抗率を有する。 In this embodiment, since the ion beam assisted vapor deposition method is used, the reactivity between the vapor deposition particles attached to the substrate and the ion beam is high, and as a result, it is not necessary to increase the substrate temperature in order to increase the reactivity. For this reason, for example, the film formation temperature can be set to 100 ° C. or less, and for example, a PET film or the like can be used as the processing substrate S instead of a glass substrate. As described above, a film formation assist by the ion source 31 can form a zinc oxide film with good film quality, and by introducing CxFy ions, the zinc oxide film can be doped with fluorine. The obtained fluorine-doped zinc oxide film has, for example, an average of 90% or more for light having a wavelength of 380 to 780 nm, and can transmit 70% or more of waves having a wavelength of 370 nm or more, and has a resistivity of 1 .87 × 10 −4 Ω · cm or less, having high transmittance and low resistivity.
 以下、実施例を用いて本実施形態のフッ素ドープした酸化亜鉛膜の成膜方法について詳細に説明する。 Hereinafter, the method for forming a fluorine-doped zinc oxide film according to the present embodiment will be described in detail using examples.
(実施例1)
 初めに、ガラスからなる処理基板Sを真空チャンバ10内に載置した。そして、真空排気装置12により、真空度が約5×10-5Torr(6.65×10-3Pa)となるように真空排気を行った。次いで、蒸着源22(酸化亜鉛)を電子ビーム装置23により堆積速度が0.5nm/秒となるように溶融した。
Example 1
First, the processing substrate S made of glass was placed in the vacuum chamber 10. Then, vacuum evacuation was performed by the vacuum evacuation device 12 so that the degree of vacuum was about 5 × 10 −5 Torr (6.65 × 10 −3 Pa). Next, the evaporation source 22 (zinc oxide) was melted by the electron beam device 23 so that the deposition rate was 0.5 nm / second.
 また、イオンソースに、Oガス及びCFガスを混合比率99:1となるように導入し、電圧印加手段32から90Vで電圧を印加して、イオンソースからイオンを放出して成膜を行った。 Further, O 2 gas and CF 4 gas are introduced into the ion source so that the mixing ratio is 99: 1, a voltage is applied from the voltage application means 32 at 90 V, and ions are released from the ion source to form a film. went.
(実施例2)
 実施例1とは、CxFyガスとしてCガスを用いたこと以外は同一の条件で成膜を行った。
(Example 2)
The film formation was performed under the same conditions as in Example 1 except that C 2 F 6 gas was used as CxFy gas.
(実施例3)
 実施例1とは、CFガス及びOガスの混合比を20:80に変更した以外は同一の条件で成膜を行った。
(Example 3)
Film formation was performed under the same conditions as in Example 1 except that the mixing ratio of CF 4 gas and O 2 gas was changed to 20:80.
 実施例1で成膜された各膜について、分光測定を用いて光透過率を測定した。測定結果を図3に示す。図3に示すように、380~780nm(図中では約670nm)の波長の光での平均は91.45%であり、また、全ての場合において、波長370nm以上の光透過率が70%を越えた。特に、450nm以上の波長の光は、80%以上が透過した。 The light transmittance of each film formed in Example 1 was measured using spectroscopic measurement. The measurement results are shown in FIG. As shown in FIG. 3, the average for light having a wavelength of 380 to 780 nm (about 670 nm in the figure) is 91.45%, and in all cases, the light transmittance at a wavelength of 370 nm or more is 70%. Exceeded. In particular, 80% or more of light having a wavelength of 450 nm or more was transmitted.
 また、実施例1~3で成膜された各膜について、それぞれ各膜上の10カ所の電気抵抗を抵抗率測定により測定し、各膜の平均電気抵抗率を求めた。実施例1の場合は、抵抗率が1.87×10-4Ω・cmであった。実施例2の場合には、抵抗率が1.85×10-4Ω・cm、実施例3の場合は抵抗率が1.2×10-4Ω・cmであった。 Further, for each film formed in Examples 1 to 3, the electrical resistance at 10 locations on each film was measured by resistivity measurement, and the average electrical resistivity of each film was determined. In the case of Example 1, the resistivity was 1.87 × 10 −4 Ω · cm. In the case of Example 2, the resistivity was 1.85 × 10 −4 Ω · cm, and in the case of Example 3, the resistivity was 1.2 × 10 −4 Ω · cm.
 このように、全ての実施例において抵抗率は1.87×10-4Ω・cm以下となり、得られた膜は低抵抗率であることが分かった。 Thus, in all the examples, the resistivity was 1.87 × 10 −4 Ω · cm or less, and it was found that the obtained film had a low resistivity.
(実施例4)
 実施例1とは、処理基板Sとしてガラス基板ではなくPETフィルムを用いた点以外は同一の条件で成膜を行った。基板温度が低いためか、PETフィルムに対して成膜することができた。
Example 4
In Example 1, film formation was performed under the same conditions except that a PET film was used as the processing substrate S instead of a glass substrate. It was possible to form a film on the PET film because the substrate temperature was low.
 上述した本実施形態では、イオンソース31に供給されるガスは、Oガスとフッ素含有ガスであったが、これに限定されない。例えば、蒸着源22として酸化亜鉛を用いる場合には、フッ素含有ガスだけであってもよい。また、フッ素含有ガス及びOガス以外にさらにキャリアガスとして希ガス(Heガス、Neガス、Arガス等)を混合してもよい。また、フッ素含有ガスとキャリアガスとしての希ガスを混合してもよい。なお、キャリアガスである希ガスのみをイオンソース31に供給しても、従来よりも低抵抗な透明導電膜を形成することができるが、本実施形態のようにフッ素含有ガスを混合することで、高透過率を有すると共に、低抵抗な透明導電膜を形成することができる。 In the present embodiment described above, the gas supplied to the ion source 31 is O 2 gas and fluorine-containing gas, but is not limited thereto. For example, when zinc oxide is used as the vapor deposition source 22, only the fluorine-containing gas may be used. In addition to the fluorine-containing gas and O 2 gas, a rare gas (He gas, Ne gas, Ar gas, etc.) may be further mixed as a carrier gas. Further, a fluorine-containing gas and a rare gas as a carrier gas may be mixed. Even if only the rare gas that is the carrier gas is supplied to the ion source 31, a transparent conductive film having a lower resistance than the conventional one can be formed, but by mixing the fluorine-containing gas as in the present embodiment, A transparent conductive film having high transmittance and low resistance can be formed.
 本発明の成膜方法によれば、簡易に、高透過率を有すると共に、低抵抗な透明導電膜を形成することができる。従って、例えば太陽電池素子製造分野において利用可能である。 According to the film forming method of the present invention, it is possible to easily form a transparent conductive film having high transmittance and low resistance. Therefore, for example, it can be used in the field of manufacturing solar cell elements.
1     蒸着装置
10   真空チャンバ
11   排気口
12   真空排気装置
13   基板設置部
21   蒸着源設置部
22   蒸着源
23   電子ビーム装置
31   イオンソース
32   電圧印加手段
DESCRIPTION OF SYMBOLS 1 Deposition apparatus 10 Vacuum chamber 11 Exhaust port 12 Vacuum exhaust apparatus 13 Substrate installation part 21 Deposition source installation part 22 Deposition source 23 Electron beam apparatus 31 Ion source 32 Voltage application means

Claims (6)

  1.  基板の被処理面にイオンビームアシスト蒸着法によりフッ素ドープした酸化亜鉛膜を成膜する成膜方法であって、
    フッ素イオンを含むイオンビームを照射しながら、亜鉛含有蒸着源を蒸着させて成膜を行うことを特徴とする成膜方法。
    A film forming method for forming a fluorine-doped zinc oxide film on a surface to be processed of a substrate by an ion beam assisted deposition method,
    A film forming method comprising performing film formation by evaporating a zinc-containing vapor deposition source while irradiating an ion beam containing fluorine ions.
  2.  前記フッ素イオンを含むイオンビームが、CxFyイオンを含むイオンビームであることを特徴とする請求項1記載の成膜方法。 The film forming method according to claim 1, wherein the ion beam containing fluorine ions is an ion beam containing CxFy ions.
  3.  前記亜鉛含有蒸着源が酸化亜鉛であり、イオンビームは、さらにOイオンを含むビームであることを特徴とする請求項1又は2に記載の成膜方法。 The film forming method according to claim 1, wherein the zinc-containing vapor deposition source is zinc oxide, and the ion beam is a beam further containing O 2 ions.
  4.  前記イオンビームの電流密度が、200~1500μ/cmであることを特徴とする請求項1~3のいずれか一項に記載の成膜方法。 4. The film forming method according to claim 1, wherein a current density of the ion beam is 200 to 1500 μ / cm 2 .
  5. 前記イオンビームを形成する場合にイオンビーム装置に導入されるCxFyガスとOガスとの混合比が、1:99~20:80であることを特徴とする請求項1~4のいずれか一項に記載の成膜方法。 5. The mixing ratio of CxFy gas and O 2 gas introduced into the ion beam apparatus when forming the ion beam is 1:99 to 20:80. The film forming method according to item.
  6.  ガスをイオン形成空間内に導入しながら、前記イオン形成空間内に対向するフィラメントに電圧を印加して熱電子を放出させ、放出された熱電子を電場に直行する磁場によりスパイラル運動させながら、イオン形成空間を構成するアノード側へ加速してイオン化させ、このイオン化により形成されたイオンビームを前記基板に向けて照射することを特徴とする請求項1~5のいずれか一項に記載の成膜方法。 While introducing a gas into the ion formation space, a voltage is applied to the filament facing the ion formation space to emit thermoelectrons, and the emitted thermoelectrons are spirally moved by a magnetic field perpendicular to the electric field. The film formation according to any one of claims 1 to 5, wherein the substrate is accelerated and ionized to form an ion forming space, and an ion beam formed by the ionization is irradiated toward the substrate. Method.
PCT/JP2011/072412 2010-10-01 2011-09-29 Film forming method WO2012043732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011544738A JP5008211B2 (en) 2010-10-01 2011-09-29 Deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-224397 2010-10-01
JP2010224397 2010-10-01

Publications (1)

Publication Number Publication Date
WO2012043732A1 true WO2012043732A1 (en) 2012-04-05

Family

ID=45893170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072412 WO2012043732A1 (en) 2010-10-01 2011-09-29 Film forming method

Country Status (3)

Country Link
JP (1) JP5008211B2 (en)
TW (1) TW201241204A (en)
WO (1) WO2012043732A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277118A (en) * 1985-06-03 1986-12-08 株式会社日立製作所 Conducting thin film and formation of conducting pattern
JPS63241805A (en) * 1987-03-27 1988-10-07 株式会社ブリヂストン Transparent conducting film and manufacture thereof
JPH04180551A (en) * 1990-11-15 1992-06-26 Seiko Epson Corp Formation of thin film of nitrogen-doped tantalum
JPH05271909A (en) * 1992-03-24 1993-10-19 Nissin Electric Co Ltd Production of zinc oxide film
JP2008147214A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Process for producing thin film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117503A (en) * 1984-11-14 1986-06-04 Shinku Kikai Kogyo Kk Formation of fluoride film
US6891330B2 (en) * 2002-03-29 2005-05-10 General Electric Company Mechanically flexible organic electroluminescent device with directional light emission
JP2005232534A (en) * 2004-02-19 2005-09-02 Akira Yamada Method for depositing fluoride film
JP4648813B2 (en) * 2005-09-30 2011-03-09 Hoya株式会社 Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element
EP2338178A1 (en) * 2008-10-21 2011-06-29 Applied Materials, Inc. Transparent conductive zinc oxide display film and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277118A (en) * 1985-06-03 1986-12-08 株式会社日立製作所 Conducting thin film and formation of conducting pattern
JPS63241805A (en) * 1987-03-27 1988-10-07 株式会社ブリヂストン Transparent conducting film and manufacture thereof
JPH04180551A (en) * 1990-11-15 1992-06-26 Seiko Epson Corp Formation of thin film of nitrogen-doped tantalum
JPH05271909A (en) * 1992-03-24 1993-10-19 Nissin Electric Co Ltd Production of zinc oxide film
JP2008147214A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Process for producing thin film

Also Published As

Publication number Publication date
JP5008211B2 (en) 2012-08-22
TW201241204A (en) 2012-10-16
JPWO2012043732A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
US8736947B2 (en) Materials and device stack for market viable electrochromic devices
US20150136585A1 (en) Method for sputtering for processes with a pre-stabilized plasma
US20100200393A1 (en) Sputter deposition method and system for fabricating thin film capacitors with optically transparent smooth surface metal oxide standoff layer
US20070181421A1 (en) Sputtering system providing large area sputtering and plasma-assisted reactive gas dissociation
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
Yasuda et al. Top-emission organic light emitting diode with indium tin oxide top-electrode films deposited by a low-damage facing-target type sputtering method
Pokorný et al. Generation of positive and negative oxygen ions in magnetron discharge during reactive sputtering of alumina
KR20070050143A (en) Methods for fabricating transparent conductive oxide electrode
WO2013073280A1 (en) Film member and method for producing same
CN101509122B (en) Process for producing microwave plasma of cuprous iodide semi-conducting film
JP5008211B2 (en) Deposition method
JP2005340225A (en) Organic el device
JP3719797B2 (en) Method for forming conductive thin film on organic thin film surface
JP3698506B2 (en) EL element and method of forming cathode electrode film on organic thin film surface
JP2002047559A (en) Ito film, and film deposition method thereof
WO2011040193A1 (en) Organic el and method for formation of electrode for organic el
US10443121B2 (en) Sustained self-sputtering of lithium for lithium physical vapor deposition
Bae et al. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system
JP2007305332A (en) Manufacturing method of organic electroluminescent element
Shigesato In Based TCOs
JP2002280171A (en) Organic electroluminescent element and its manufacturing method
JP2008108423A (en) Film forming method of oxide transparent conductive film and alkaline metal containing oxide transparent conductive film, and organic light device utilizing the oxide transparent conductive film
JP2001265250A (en) Substrate for display and method for manufacturing the same
TWI417410B (en) A manufacturing method of electric conduction film
JPH08288273A (en) Manufacture of tin barrier film and device therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011544738

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829285

Country of ref document: EP

Kind code of ref document: A1