WO2012043384A1 - Apparatus for etching silicon-containing material - Google Patents

Apparatus for etching silicon-containing material Download PDF

Info

Publication number
WO2012043384A1
WO2012043384A1 PCT/JP2011/071639 JP2011071639W WO2012043384A1 WO 2012043384 A1 WO2012043384 A1 WO 2012043384A1 JP 2011071639 W JP2011071639 W JP 2011071639W WO 2012043384 A1 WO2012043384 A1 WO 2012043384A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
virtual plane
substrate
processing gas
processed
Prior art date
Application number
PCT/JP2011/071639
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 福田
真弓 聡
俊介 功刀
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2012043384A1 publication Critical patent/WO2012043384A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles

Definitions

  • This invention relates to an apparatus for etching silicon-containing materials such as amorphous silicon.
  • an etching apparatus that etches a surface film of an object to be processed by spraying a processing gas from the nozzle onto the object to be processed while moving the object to be processed such as a glass substrate for a flat panel display relative to the nozzle in the transport direction.
  • a processing gas such as a glass substrate for a flat panel display relative to the nozzle in the transport direction.
  • the tip surface of this type of nozzle is a flat surface having a certain area.
  • the processing gas stays for a while between the tip surface of the nozzle and the object to be processed, so that the processing reaction is sufficiently caused.
  • three (a plurality of) blowing holes are formed side by side in the conveyance direction of the workpiece.
  • a pair of suction holes are formed on both sides in the transport direction across each blowing hole. The opening at the lower end of each suction hole and the opening at the lower end of the blowing hole are separated from each other in the transport direction.
  • the inventor performed an amorphous silicon etching process using the nozzle 5 having substantially the same structure as that described in Patent Documents 1 and 2.
  • the dimension along the conveyance direction (left-right direction in FIG. 14) of the tip surface 5e of the nozzle 5 is 300 mm
  • the dimension in the width direction (direction perpendicular to the paper surface in FIG. 14) perpendicular to the conveyance direction of the nozzle tip surface 5e is 640 mm.
  • the pitch of the three blowing holes 5a, 5a, 5a was 100 mm
  • the interval between each blowing hole 5a and the suction hole 5b was 25 mm.
  • Each blowout hole 5a and suction hole 5b were slit-shaped extending in the width direction.
  • a processing gas containing HF and O 3 was blown out from the three blowing holes 5a, 5a, and 5a while the glass substrate 9 coated with amorphous silicon was carried in the carrying direction by the roller conveyor 6.
  • a plurality of streaky processing irregularities extending in the width direction were formed on the surface of the glass substrate 9 at a pitch of 100 mm in the transport direction.
  • an amorphous silicon etching process was similarly performed using a nozzle 5X having only one blowing hole 5a.
  • the dimension along the conveying direction (left-right direction in FIG. 15) of the tip surface 5e of the nozzle 5X is 22 mm, and one blowing hole 5a is provided at the exact center.
  • the dimensions of the nozzle 5X in the width direction (direction perpendicular to the paper surface of FIG. 15) and the point that the blowout holes 5a are slit-shaped extending in the width direction are the same as those of the nozzle 5 (FIG. 15).
  • the amount of etching processing at the front end portion and the rear end portion in the traveling direction of the substrate 9 was lower than that at the center portion.
  • a flat rectifying plate 7 facing the nozzle 5X is disposed slightly below the height at which the substrate 9 is conveyed, and an amorphous silicon etching process is performed.
  • the dimension along the conveying direction of the rectifying plate 7 was 63 mm, and the dimension of the rectifying plate 7 in the width direction (direction perpendicular to the paper surface of FIG. 16) was the same as that of the nozzle 5X.
  • the difference in etching processing amount between the front and rear end portions and the central portion in the traveling direction of the substrate 9 is reduced, but the etching processing amount is large at the front end portion in the traveling direction, and the etching processing amount is large at the rear end portion in the traveling direction. It has become smaller.
  • the blowout flow velocity from the nozzle 5X was 0.4 m / s, and the Reynolds number was 0.07. Therefore, it is considered that the processing gas newly blown out does not have a momentum enough to push out the processed gas blown out first. Therefore, the processed gas stays between the nozzle front end surface 5e and the substrate 9 to reduce the reaction component concentration in the newly blown processing gas. As a result, the etching processing amount on the surface of the substrate is reduced. This is thought to have caused variations.
  • the present invention has been made on the basis of the above knowledge, and an object of the present invention is to improve the uniformity of the etching process when etching a silicon-containing material such as amorphous silicon near atmospheric pressure.
  • the present invention provides an etching apparatus for etching a silicon-containing material by bringing a processing gas containing a fluorine-based reaction component into contact with a substrate to be processed containing the silicon-containing material under atmospheric pressure.
  • a support unit for supporting the substrate to be processed on a virtual plane;
  • a nozzle having a blowing hole for blowing out the processing gas and extending in the width direction of the virtual plane;
  • Transport means for moving the substrate to be processed relative to the nozzle in the transport direction along the virtual plane and perpendicular to the width direction;
  • the nozzles are extremely thin (the dimension in the transport direction is extremely small) and the tip edge extending in the width direction and a pair on both sides of the transport direction and approach each other as they approach the tip edge
  • a cross section perpendicular to the width direction is pointed toward the virtual plane, the blowing holes are distributed in the width direction and open to the tip edge, and the tip edge and the virtual side
  • a reaction field is defined between the pair of inclined side surfaces and the virtual plane, and diffusion spreads in a direction perpendicular to the virtual plane as the distance from the reaction field in the transport direction increases. It is characterized by a defined space.
  • the uniformity of the etching treatment of the silicon-containing material can be improved.
  • the processing gas is blown out from the blowing hole and comes into contact with the substrate to be processed in the reaction field. This contact causes an etching reaction of the silicon-containing material. Diffusion spaces are connected to both sides of the reaction field in the transport direction. The process gas diffuses into the diffusion space immediately after the contact in the reaction field. Since the diffusion space is expanded as the distance from the reaction field increases, diffusion resistance hardly occurs.
  • the processing gas blown earlier can be surely pushed out from the reaction field by the newly blown flow. Therefore, fresh process gas always contacts the substrate to be processed in the reaction field. Therefore, it can prevent that the density
  • Most of the etching reactions occur locally only within a narrow reaction field. The local etching rate in the reaction field is the same even when the front end of the substrate to be processed is located in the reaction field or when the central part of the substrate is located in the reaction field. Even when the rear end portion of the substrate in the traveling direction is located in the reaction field, it is almost uniform.
  • the processing gas is sufficiently diffused and the reaction component concentration is greatly reduced, so that the etching reaction hardly occurs. Therefore, the entire substrate to be processed can be etched almost uniformly. As a result, it is considered that even when a plurality of nozzles are arranged in the transport direction, it is possible to prevent or suppress the formation of streak-like processing unevenness extending in the width direction on the surface of the substrate to be processed.
  • the average flow velocity of the processing gas in the blowing holes is preferably 0.1 m / s to 1.0 m / s, more preferably 0.2 m / s to 0.6 m / s.
  • the nozzle may be formed with a suction hole connected to the gas suction means, and the suction hole may be opened at the tip edge so as to be in contact with the blowout hole.
  • the gas in the vicinity of the opening of the suction hole at the tip edge is locally sucked into the suction hole by the gas suction means in parallel with the blowing of the processing gas. For this reason, the processing gas is blown out from the blowing hole and comes into contact with the substrate to be processed, and is immediately sucked into the suction hole. Therefore, it is possible to more reliably prevent the treated gas from staying in the reaction field, and it is possible to more reliably prevent a decrease in the concentration of reaction components in the reaction field.
  • the flow state such as the flow velocity and direction of the processing gas in the reaction field can be made even more reliable regardless of the position of the substrate to be processed in the traveling direction. Therefore, the uniformity of the etching process can be further improved.
  • a rectifying plate facing the nozzle across the virtual plane is provided along the virtual plane, and the rectifying plate extends from the pair of inclined side surfaces to both sides in the transport direction.
  • the apparatus further includes a processing gas supply unit that supplies the processing gas to the nozzle, and the processing gas supply unit includes a plasma generation unit that includes a pair of electrodes that generate a discharge under atmospheric pressure between each other, and contains fluorine It is preferable that the fluorine-based reaction component is generated by introducing a raw material gas containing a component and a hydrogen-containing additive component into the space between the pair of electrodes and converting it into plasma.
  • fluorine-containing components PFC (perfluorocarbon) such as CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 , HFC (hydrofluorocarbon) such as CHF 3 , CH 2 F 2 , CH 3 F, etc.
  • the hydrogen-containing additive component is preferably water (H 2 O), and other examples include OH group-containing compounds such as alcohol and hydrogen peroxide.
  • near atmospheric pressure means a range of 1.013 ⁇ 10 4 to 50.663 ⁇ 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 ⁇ 10 6. 4 to 10.664 ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 to 10.9797 ⁇ 10 4 Pa is more preferable.
  • the uniformity of the etching treatment of the silicon-containing material can be improved.
  • FIG. 1 is a side view of an etching apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a plan sectional view taken along line II-II in FIG. 1. It is a perspective view of the nozzle of the said etching apparatus. It is side surface sectional drawing which expands and shows a part of nozzle of the said etching apparatus. It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus.
  • FIG. 11 is a bottom view of the nozzle of the etching apparatus according to the second embodiment, taken along line XI-XI in FIG. 10. It is a side view of the etching apparatus which concerns on 3rd Embodiment of this invention. It is a side view of the etching apparatus which concerns on 4th Embodiment of this invention. It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention. It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention. It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention. It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention. It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention.
  • the substrate 9 to be processed is composed of, for example, a glass substrate of a liquid crystal display panel and has a thin flat plate shape.
  • a surface of the substrate 9 to be processed (upper surface in FIG. 1) is coated with a silicon-containing material 9a (FIG. 4) to be etched.
  • the silicon-containing material is made of, for example, amorphous silicon.
  • the silicon-containing material may be single crystal silicon or polycrystalline silicon, and is not limited to silicon alone, but may be silicon nitride, silicon oxide, silicon carbide, or the like.
  • the etching apparatus 1 brings a processing gas into contact with the substrate 9 to be processed under atmospheric pressure and performs an etching process on the silicon-containing material.
  • the processing gas contains a fluorine-based reaction component. Examples of the fluorine-based reaction component include HF, COF 2 , OF 2 , and O 2 F 2 .
  • the processing gas further contains an oxidizing reaction component. Examples of the oxidizing reaction component include O 3 and O radicals.
  • the etching apparatus 1 includes a processing tank 2, a processing gas supply unit 10, a roller conveyor 20, and a nozzle 30.
  • the processing tank 2 accommodates the nozzle 30 and a part of the conveyor 20.
  • the pressure in the processing tank 2 is near atmospheric pressure.
  • the processing gas supply unit 10 includes a plasma generation unit 11 for generating a fluorine-based reaction component and an oxidizing reaction component supply unit 16.
  • the plasma generation unit 11 has a pair of electrodes 12 facing each other.
  • a solid dielectric layer (not shown) is provided on the opposing surface of both or one of the electrodes 12.
  • the power source 3 is connected to one electrode 12, and the other electrode 12 is electrically grounded.
  • a pulsed high-frequency electric field is applied between the pair of electrodes 12.
  • glow discharge is generated between the electrodes 12 near atmospheric pressure.
  • a fluorine raw material supply unit 14 is connected to a space 13 between the electrodes 12.
  • An addition unit 15 is connected to a path connecting the fluorine raw material supply unit 14 and the interelectrode space 13.
  • a raw material gas containing a fluorine-containing component is sent from the fluorine raw material supply unit 14, and a hydrogen-containing additive component from the addition unit 15 is added thereto.
  • the added source gas is introduced into the interelectrode space 13. Thereby, in the inter-electrode space 13, the source gas is turned into plasma (including excitation, decomposition, radicalization, and ionization), and a fluorine-based reaction component such as HF is generated.
  • fluorine-containing component used as a raw material for the fluorine-based reaction component examples include PFC (perfluorocarbon) such as CF 4 , C 2 F 4 , C 2 F 6 , and C 3 F 8 , CHF 3 , CH 2 F 2 , and CH 3 F.
  • PFC perfluorocarbon
  • HFC hydrofluorocarbon
  • fluorine-containing component it may be used SF 6, NF 3, XeF 2 , F 2 and the like.
  • CF 4 is used as the fluorine-containing component.
  • the fluorine raw material supply unit 14 dilutes the fluorine-containing component with the dilution component.
  • the diluent components, Ar, He, Ne, other rare gases Kr, etc. include inert gas such as N 2.
  • the dilution component plays a role as a carrier gas and a gas for plasma generation.
  • Ar is used as a dilution component.
  • the hydrogen-containing additive component is water vapor (H 2 O).
  • the addition part 15 is comprised with the vaporizer of water. Water is stored in the vaporizer 15 in a liquid state. Fluorine-based source gas (CF 4 + Ar) from the supply unit 14 is introduced into the liquid in the vaporizer 15 and bubbled. Alternatively, the raw material gas may be introduced to the upper part of the liquid level in the vaporizer 15 and the saturated vapor in the upper part may be pushed out by the raw material gas. Thereby, water vapor is added to the source gas. By adjusting the temperature of the vaporizer 15, it is possible to adjust the vapor pressure of water and thus the amount of addition.
  • CF 4 + Ar Fluorine-based source gas
  • a part of the raw material gas (CF 4 + Ar) is introduced into the vaporizer 15, the remainder bypasses the vaporizer 15, and the flow rate ratio between the part and the remainder is adjusted to reduce the amount of water added. You may adjust.
  • an OH group-containing compound, hydrogen peroxide, or the like may be used instead of water. Examples of the OH group-containing compound include alcohol.
  • the oxidizing reaction component supply unit 16 is configured by an ozonizer.
  • the ozonizer 16 generates O 3 as an oxidizing reaction component using O 2 as a raw material.
  • the oxidizing reaction component is not limited to O 3 but may be O radical or NOx. If the silicon-containing film to be etched is silicon oxide or the like, the oxidizing reaction component supply unit 16 may be omitted.
  • the roller conveyor 20 has a function as a support unit that supports the substrate 9 to be processed and a function as a transport unit that transports the substrate 9 to be processed.
  • the roller conveyor 20 has a shaft 21 and a roller 22.
  • a plurality of shafts 21 are arranged at intervals in the x direction (conveying direction, left and right in FIG. 1).
  • the axis of each shaft 21 is horizontally oriented in the y direction (width direction, the direction orthogonal to the plane of FIG. 1) perpendicular to the x direction.
  • a plurality of rollers 22 are provided on each shaft 21 at intervals in the y direction.
  • the substrate 9 to be processed is placed horizontally on the roller 22 in a flat state.
  • the roller conveyor 20 supports the substrate 9 to be processed on a virtual horizontal plane PL that is the height of the upper end of the roller 22 and conveys the substrate 9 to be processed in the x direction along the virtual plane PL.
  • a nozzle 30 is disposed above the roller conveyor 20 in the processing tank 2.
  • the nozzle 30 is supported by the upper part in the processing tank 2 with the mount which is not shown in figure.
  • the nozzle 30 extends long in the y direction (the width direction of the virtual plane).
  • the length of the nozzle 30 in the y direction is sufficiently larger than the dimension of the nozzle 30 in the x direction, and is preferably larger than the length of the substrate 9 to be processed in the y direction.
  • the central axis CL of the cross section perpendicular to the extending direction of the nozzle 30 is perpendicular to the virtual plane PL and thus perpendicular to the substrate 9 to be processed.
  • a blowing hole 31 is formed inside the nozzle 30. As shown in FIG. 4, the blowing hole 31 extends vertically along the central axis CL.
  • the blowout holes 31 are distributed over almost the entire length of the nozzle 30 in the longitudinal direction (y direction). Specifically, the blowout hole 31 extends long in the y direction and has a slit shape.
  • the blowing hole 31 may be configured by a large number of small holes arranged in the y direction instead of the slit shape.
  • the length (distribution width) in the y direction of the blowout holes 31 is slightly larger than the length in the y direction of the substrate 9 to be processed. In planar projection view, it is preferable that each end portion in the y direction of the blowing hole 31 slightly protrudes outward from the end portion on the same side in the y direction of the substrate 9 to be processed.
  • the blowout hole 31 may be configured by a large number of small holes arranged in the y direction.
  • the base end portion (upper end portion) of the blowing hole 31 is connected to the supply path 19 from the processing gas supply unit 10.
  • a rectification unit is provided between the supply path 19 and the processing gas supply unit 10.
  • the rectifying unit includes a chamber extending in the y direction, slits extending in the y direction, and a large number of small holes dispersed in the y direction.
  • the processing gas is made uniform in the y direction by passing through the rectifying unit.
  • the cross section perpendicular to the y direction of the upper portion 32 of the nozzle 30 is rectangular.
  • the cross section orthogonal to the y direction of the lower portion 33 of the nozzle 30 is tapered so as to point toward the virtual plane PL.
  • the nozzle lower portion 33 has a pair of inclined side surfaces 34 and 34 on both sides in the x direction, and a tip edge 35 facing the virtual plane PL.
  • the pair of inclined side surfaces 34, 34 are inclined surfaces that are inclined with respect to the central axis CL so as to approach each other toward the tip edge 35.
  • the pair of inclined side surfaces 34 and 34 are sufficiently close to each other, and a nozzle tip edge 35 is formed between the lower ends of the inclined side surfaces 34 and 34.
  • the nozzle tip edge 35 is extremely thin, that is, has a very small dimension in the x direction and extends long in a straight line in the y direction (the direction perpendicular to the plane of FIG. 1).
  • the tip (lower end) of the blowout hole 31 reaches the nozzle tip edge 35 and opens to form a blowout port. Nearly the entire nozzle tip edge 35 is a blowout port.
  • the width of the tip edge of the nozzle 30 in the x direction is the same as the width of the blowout hole 31 in the x direction, and is about 4 mm, for example.
  • the inclined side surface 34 and the inner surface of the blowout hole 31 on the same side of the center axis CL intersect each other at an acute angle to form a knife edge 35e.
  • the knife edge 35e extends in the y direction (a direction perpendicular to the paper surface of FIG. 4). Knife edges 35e, 35e on both sides across the central axis CL constitute both ends of the nozzle tip edge 35 in the x direction.
  • the horizontal distance L from the upper end of the inclined side surface 34 to the inner surface of the blowing hole 31 is preferably as small as possible from the viewpoint of processing uniformity. On the other hand, if the distance L is too small, it is difficult to process the nozzle 30.
  • the reaction field 1a is defined between the nozzle tip edge 35 and the virtual plane PL.
  • the reaction field 1a has substantially the same width as the nozzle tip edge 35 in the x direction and has substantially the same length as the nozzle tip edge 35 in the y direction (the direction perpendicular to the plane of FIG. 1). That is, the reaction field 1a has a very small dimension in the x direction (extremely thin) and extends long in a straight line in the y direction.
  • the width of the reaction field 1a in the x direction is, for example, about 2 mm.
  • a diffusion space 1e is defined between each of the pair of inclined side surfaces 34 of the nozzle 30 and the virtual plane PL. As a result, a diffusion space 1 e is defined between each inclined side surface 34 and the substrate 9 to be processed.
  • a pair of diffusion spaces 1e sandwich the reaction field 1a from both sides in the x direction. Each diffusion space 1e extends by the same length as the inclined side surface 34 in the y direction.
  • Each diffusion space 1e is connected to the reaction field 1a and expands in the vertical direction (direction perpendicular to the virtual plane PL) as it moves away from the reaction field 1a in the x direction, and the peripheral space of the nozzle 30 in the processing tank 2 It is connected to.
  • the reaction field 1a and the diffusion space 1e are at a pressure near atmospheric pressure.
  • a rectifying plate 40 is provided immediately below the nozzle 30.
  • the rectifying plate 40 is disposed between the two rollers 22 adjacent in the x direction.
  • the rectifying plate 40 has a flat plate shape that is horizontally oriented along the virtual plane PL and that extends long in the y direction.
  • the central portion in the x direction of the rectifying plate 40 just intersects the central axis CL of the nozzle 30.
  • the size of the rectifying plate 40 in the x direction is larger than the size of the nozzle 30 in the x direction, and both end portions of the rectifying plate 40 in the x direction extend from the pair of inclined side surfaces 34 and 34 to both sides in the x direction.
  • the dimension of the rectifying plate 40 in the y direction is larger than the dimension of the substrate 9 to be processed in the y direction, and further larger than the dimension of the blowing hole 31 in the y direction. Both ends of the rectifying plate 40 in the y direction protrude outward in the y direction from the substrate 9 to be processed, and further protrude outward in the y direction from the blowout holes 31.
  • the upper surface of the rectifying plate 40 is located slightly below the virtual plane PL.
  • the nozzle 30 and the current plate 40 face each other up and down across the virtual plane PL. Both end surfaces of the rectifying plate 40 in the x direction are downward inclined surfaces.
  • the operation of the etching apparatus 1 configured as described above will be described.
  • the substrate 9 to be processed is transported along the x direction by the roller conveyor 20.
  • the fluorine-based source gas (CF 4 + Ar + H 2 O) from the supply units 14 and 15 is turned into plasma by the plasma generation unit 11, and the ozone-containing gas (O 2 + O 3 ) from the ozonizer 16 is mixed therewith.
  • Process gas is obtained.
  • this processing gas is made uniform in the y direction by the rectifying unit (not shown), it is introduced into the blowing hole 31 and blown out from the tip (lower end) of the blowing hole 31.
  • the average blowing flow rate of the processing gas in the blowing holes 31 is preferably 0.1 m / s to 1.0 m / s, more preferably 0.2 m / s to 0.6 m / s. It is possible to prevent the airflow in the processing tank 2 from being disturbed by suppressing the blowout flow rate to be small.
  • the blowing flow rate can be adjusted by the supply flow rate of the processing gas.
  • the processing gas contacts the substrate 9 to be processed in the reaction field 1 a immediately below the nozzle tip edge 35.
  • This processing gas causes an etching reaction in the reaction field 1a.
  • the amorphous silicon film 9a is oxidized by O 3 in the processing gas, and further reacted with HF to be converted into a volatile component such as SiF 4 .
  • a volatile component such as SiF 4 .
  • the processing gas diffuses into the diffusion space 1e immediately after contacting the substrate 9 to be processed in the reaction field 1a. Since the diffusion space 1e is greatly expanded as it moves away from the reaction field 1a, almost no diffusion resistance is generated. Therefore, even if the blowing speed of the processing gas is small, the processing gas blown earlier can be easily pushed out from the reaction field 1a by the newly blown flow. Therefore, in the reaction field 1a, fresh process gas is always in contact with the substrate 9 to be processed. Therefore, it is possible to prevent the concentration of the reaction components in the reaction field 1a (HF and O 3) to decrease, thereby improving the etching rate.
  • HF and O 3 concentration of the reaction components in the reaction field 1a
  • the local etching rate in the reaction field 1a is such that the central part of the substrate 9 to be processed is located in the reaction field even when the front end of the substrate 9 to be processed is located in the reaction field 1a. Even when the rear end of the substrate 9 in the traveling direction is located in the reaction field, it is almost uniform.
  • the processing gas is sufficiently diffused and the concentration of the reaction component is greatly reduced, so that the etching reaction hardly occurs on the surface of the substrate 9 in the diffusion space 1e.
  • the rectifying plate 40 extends outward in the x direction from the pair of inclined side surfaces 34, the flow state of the processing gas in the diffusion space 1 e is also kept almost constant regardless of the traveling position of the substrate 9 to be processed. be able to. As a result, the entire substrate 9 can be etched uniformly. Furthermore, combined with the effect of preventing the turbulence of the airflow in the processing tank 2 due to the low blowout flow rate, the processing uniformity can be further improved.
  • the diffused treated gas is exhausted by an exhaust means (not shown).
  • FIG. 10 show modified examples of the shape of the nozzle 30.
  • the nozzle tip edge 35 ⁇ / b> A may be slightly flattened (cut flat) to have a planar shape. Even in this case, it is preferable that the width of the tip edge 35A in the x direction is as small as possible.
  • the width w2 from the inner surface of the blowing hole 31 to the outer end of the planar tip edge 35A is preferably w2 ⁇ 2 mm, more preferably w2 ⁇ 1 mm.
  • the reaction field 1a is defined between the tip edge 35A of the nozzle 3 and the virtual plane PL, and thus is defined between the tip edge 35A and the substrate 9 to be processed.
  • the width of the reaction field 1a in the x direction is substantially equal to the width of the nozzle tip edge 35A in the x direction and is larger than the width of the blowing hole 31 in the x direction.
  • the inclined side surface 34 may not be a flat surface. As shown in FIG. 6, the inclined side surface 34 may be a gentle concave curved surface. As shown in FIG. 7, the inclined side surface 34 may be a gently convex curved surface. As shown in FIG. 8, a convex portion 36 may be formed on the inclined side surface 34. As shown in FIG. 9, a concave portion 37 such as a groove may be formed on the inclined side surface 34. The convex portion 36 or the concave portion 37 may have a spot shape, or may have a bead shape or a stripe shape extending in the vertical direction or the y direction. The number of the convex portions 36 or the concave portions 37 may be one or plural.
  • a pair of suction holes 39 are formed inside the nozzle 30.
  • the pair of suction holes 39 are provided on both sides in the x direction with the blowout hole 31 in between.
  • Each suction hole 39 has a slit shape extending in the y direction, and is inclined so as to approach the central blowing hole 31 as it goes downward.
  • the lower end portion (suction port) of each suction hole 39 reaches the nozzle tip edge 35 and opens.
  • the inner surface of each suction hole 39 on the central axis CL side and the inner surface of the blowing hole 31 intersect at an acute angle at the nozzle tip edge 35.
  • the blowout holes 31 and the suction holes 39 on both sides thereof are arranged in contact with each other.
  • each suction hole 39 in the x direction is smaller than the width of the blowing hole 31 in the x direction (for example, about 2 mm), and preferably about one half (for example, 1 mm) of the width of the blowing hole 31 in the x direction.
  • the width of each suction hole 39 in the x direction may be substantially equal to the width of the blowing hole 31 in the x direction, or may be larger than the width of the blowing hole 31 in the x direction.
  • the suction hole 39 may be configured by a plurality of small holes arranged in the y direction.
  • a suction port 38 is provided in the upper portion 32 of the nozzle 30.
  • the upper end portion of the suction hole 39 is connected to the suction pump 4 (gas suction means) via the suction port 38.
  • the inclined side surface 34 of the nozzle 30 changes discontinuously in the vicinity of the tip edge 35, and a ridge line 34c is formed. Below the ridge line 34c, the inclination is small with respect to the virtual plane PL.
  • the gas near the lower end opening of the suction hole 39 is locally sucked into the suction hole 39 by the suction pump 4.
  • the processing gas is blown out from the blowing hole 31 and comes into contact with the substrate 9 immediately under the processing gas, and is immediately sucked into the suction hole 39. Therefore, it is possible to more reliably prevent the treated gas from staying in the reaction field 1a.
  • the to-be-processed substrate 9 can be surely brought into contact with only a fresh process gas, and the decrease in the concentration of the reaction components in the reaction field 1a can be prevented more reliably.
  • the flow of the processing gas in the reaction field 1a can be made uniform regardless of the position of the substrate 9 in the traveling direction. Therefore, the uniformity of the etching process can be further improved.
  • each nozzle 30 In the third embodiment shown in FIG. 12, three (plural) nozzles 30 are provided. Three nozzles 30 are arranged at intervals in the x direction. The processing gas is distributed to the blowing holes 31 of each nozzle 30. A rectifying plate 40 is disposed immediately below each nozzle 30. Corresponding nozzles 30 and rectifying plates 40 face each other up and down across the virtual plane PL. The configuration of each nozzle 30 is the same as that of the first embodiment, such that each nozzle 30 extends in the y direction (the direction orthogonal to the plane of FIG. 12), and the lower portion 33 is tapered.
  • FIG. 13 shows a fourth embodiment of the present invention.
  • the nozzles at both ends in the x direction in the third embodiment (FIG. 12) are exhaust nozzles 50.
  • the shape of the exhaust nozzle 50 is substantially the same as that of the processing gas blowing nozzle 30. That is, the exhaust nozzle 50 has a pair of inclined side surfaces 54 and 54 on both sides in the x direction and a leading edge 55 that faces the virtual plane PL, and extends long in the y direction (width direction orthogonal to the paper surface of FIG. 13). ing.
  • the inclined side surfaces 54 and 54 approach each other as they approach the tip edge 55.
  • the tip edge 55 is very thin and extends linearly in the y direction.
  • a cross section perpendicular to the y direction of the lower portion 53 of the exhaust nozzle 50 is tapered so as to point toward the virtual plane PL.
  • An exhaust hole 51 is formed in the exhaust nozzle 50.
  • the suction path 5 is connected to the upper end of the exhaust hole 51.
  • a suction path 5 is connected to the gas suction means 4.
  • the lower end of the exhaust hole 51 opens at the tip edge 55 and is distributed in a slit shape over substantially the entire length of the nozzle 50 in the longitudinal direction (y direction perpendicular to the paper surface of FIG. 13).
  • the exhaust hole 51 may be configured by a large number of small holes arranged in the y direction instead of the slit shape.
  • the blowout nozzle 30 is disposed just in the middle between the exhaust nozzles 50 and 50 at both ends.
  • the distance from the center axis CL of the blowout nozzle 30 to the center axis CL 50 of the exhaust nozzle 50 is, for example, several tens of mm ⁇ several hundred mm, where is about 100 mm.
  • blowout nozzle 30 may be arranged so as to be biased toward one of the exhaust nozzles 50.
  • the exhaust nozzle 50, 50 if just when the distance from the intermediate position to the center axis CL 50 of one of the exhaust nozzle 50 is about 100 mm, a blow nozzle 30, several tens mm (preferably from the intermediate position 20mm ) It may be arranged so as to be biased toward the one exhaust nozzle 50 within a range of about.
  • the gas around the exhaust nozzles 50, 50 at both ends is sucked into the exhaust hole 51 by driving the suction exhaust unit 4.
  • the gas around the lower end of each exhaust nozzle 50, that is, the tip edge 55 is sucked into the exhaust hole 51.
  • This suction flow can stabilize the gas flow f in the space between each exhaust nozzle 50 and the central blowing nozzle 30, and can further improve the uniformity of processing.
  • the conveying unit may be connected to the nozzle 30.
  • the substrate to be processed 9 may be stopped by moving the nozzle 30 in the transport direction.
  • the rectifying plate 40 may be omitted.
  • the gap g1 between the tip edge of the nozzle 30 and the upper surface of the substrate 9 to be processed may be made relatively large. This makes it easier to diffuse the processing gas from the reaction field 1a to the diffusion space 1e.
  • a plurality of embodiments may be combined with each other.
  • the plurality of nozzles 30 shown in FIG. 12 may be constituted by the nozzles 30 with the suction holes 39 shown in FIG. 10, or may be constituted by the deformed nozzles 30 shown in FIGS.
  • the shape of the exhaust nozzle 50 (FIG. 13) may be similar to the shape of the blowout nozzle 30 of FIGS.
  • the amorphous silicon film 9a on the surface of the glass substrate 9 was etched using the etching apparatus 1 shown in FIG.
  • the width of the blowing hole 31 in the x direction was 2 mm.
  • the length of the blowout hole 31 in the y direction was 600 mm, which was 100 mm larger than the dimension of the glass substrate 9 in the y direction.
  • Each end portion in the y direction of the blowing hole 31 protruded 50 mm outward from the glass substrate 9 in the y direction.
  • the dimension of the upper surface of the current plate 40 in the x direction was 63 mm.
  • the flow rate of the ozone-containing gas was 12.68 slm, and the ozone concentration was 230 g / m 3 .
  • This processing gas was blown out from the blowing hole 31 of the nozzle 30.
  • the blowing flow rate was 0.4 m / s.
  • the glass substrate 9 was transported in the x direction at a transport speed of 4 m / min, and was brought into contact with the processing gas in the reaction field 1a immediately below the tip edge of the nozzle 30.
  • the number of times the glass substrate 9 was passed through the reaction field 1a was three.
  • the amorphous silicon film 9a on the surface of the substrate 9 to be processed was uniformly etched. Processing unevenness depending on the position of the substrate 9 to be processed was not formed, and no stripe-shaped processing unevenness extending in the y direction was formed.
  • the present invention is applicable to the manufacture of semiconductor devices and liquid crystal display devices.

Abstract

The purpose of the present invention is to improve uniformity of etching of a silicon-containing material. A substrate (9) to be processed, said substrate being coated with a silicon-containing material (9a), is supported on a virtual plane (PL), and the substrate is relatively moved in the transfer direction (x) with respect to a nozzle (30). A processing gas containing a fluorine-based reactive component is brought into contact with a substrate to be processed (9) by blowing out the processing gas from a blow out port (31) of the nozzle (30). The nozzle (30) extends in the width direction (y) that orthogonally intersects the transfer direction (x), and a cross-section that orthogonally intersects the width direction (y) is tapered toward the virtual plane (PL). The blow out port (31) is opened in the tip of the nozzle (30). A reaction field (1a) is defined between the tip of the nozzle (30) and the virtual plane (PL), and a diffusion space (1e) is defined between the tilted side surface (34) of the nozzle (30) and the virtual plane (PL).

Description

シリコン含有物のエッチング装置Silicon-containing material etching equipment
 この発明は、アモルファスシリコン等のシリコン含有物をエッチングする装置に関する。 This invention relates to an apparatus for etching silicon-containing materials such as amorphous silicon.
 例えばフラットパネルディスプレイ用のガラス基板等の被処理物をノズルに対して搬送方向に相対移動させながら、ノズルから処理ガスを被処理物に吹き付けて、被処理物の表面膜をエッチング処理するエッチング装置は公知である(特許文献1、2等参照)。一般に、この種のノズルの先端面(被処理物との対向面)は、ある程度の面積を有する平面になっている。処理ガスがノズルの先端面と被処理物との間にしばらく留まることで、処理反応が十分に起きるようにしている。特許文献1、2のノズルには、例えば3つ(複数)の吹き出し孔が被処理物の搬送方向に並んで形成されている。各吹き出し孔を挟んで搬送方向の両側には一対の吸い込み孔が形成されている。各吸い込み孔の下端の開口と吹き出し孔の下端の開口とは、上記搬送方向に互いに離れている。 For example, an etching apparatus that etches a surface film of an object to be processed by spraying a processing gas from the nozzle onto the object to be processed while moving the object to be processed such as a glass substrate for a flat panel display relative to the nozzle in the transport direction. Is known (see Patent Documents 1 and 2, etc.). In general, the tip surface of this type of nozzle (the surface facing the object to be processed) is a flat surface having a certain area. The processing gas stays for a while between the tip surface of the nozzle and the object to be processed, so that the processing reaction is sufficiently caused. In the nozzles of Patent Documents 1 and 2, for example, three (a plurality of) blowing holes are formed side by side in the conveyance direction of the workpiece. A pair of suction holes are formed on both sides in the transport direction across each blowing hole. The opening at the lower end of each suction hole and the opening at the lower end of the blowing hole are separated from each other in the transport direction.
特開2009-129996号公報JP 2009-129996 A 特開2009-129998号公報JP 2009-129998 A
 図14に示すように、発明者は、特許文献1、2に記載のものとほぼ同じ構造のノズル5を用い、アモルファスシリコンのエッチング処理を行なった。ノズル5の先端面5eの搬送方向(図14の左右方向)に沿う寸法は300mmであり、ノズル先端面5eの搬送方向と直交する巾方向(図14の紙面と直交する方向)の寸法は640mmであった。3つの吹き出し孔5a,5a,5aのピッチは100mmであり、各吹き出し孔5aと吸い込み孔5bとの間隔は25mmであった。各吹き出し孔5a及び吸い込み孔5bは巾方向に延びるスリット状であった。アモルファスシリコンが被膜されたガラス基板9をコロコンベア6にて搬送方向に搬送しながら、HF及びOを含有する処理ガスを3つの吹き出し孔5a,5a,5aから吹き出した。すると、ガラス基板9の表面に、巾方向にそれぞれ延びるスジ状の処理ムラが、複数、搬送方向に100mmピッチで形成された。 As shown in FIG. 14, the inventor performed an amorphous silicon etching process using the nozzle 5 having substantially the same structure as that described in Patent Documents 1 and 2. The dimension along the conveyance direction (left-right direction in FIG. 14) of the tip surface 5e of the nozzle 5 is 300 mm, and the dimension in the width direction (direction perpendicular to the paper surface in FIG. 14) perpendicular to the conveyance direction of the nozzle tip surface 5e is 640 mm. Met. The pitch of the three blowing holes 5a, 5a, 5a was 100 mm, and the interval between each blowing hole 5a and the suction hole 5b was 25 mm. Each blowout hole 5a and suction hole 5b were slit-shaped extending in the width direction. A processing gas containing HF and O 3 was blown out from the three blowing holes 5a, 5a, and 5a while the glass substrate 9 coated with amorphous silicon was carried in the carrying direction by the roller conveyor 6. As a result, a plurality of streaky processing irregularities extending in the width direction were formed on the surface of the glass substrate 9 at a pitch of 100 mm in the transport direction.
 そこで、図15に示すように、吹き出し孔5aが1つだけのノズル5Xを用いて同様にアモルファスシリコンのエッチング処理を行なった。このノズル5Xの先端面5eの搬送方向(図15の左右方向)に沿う寸法は22mmであり、そのちょうど中央部に1つの吹き出し孔5aを設けた。ノズル5Xの巾方向(図15の紙面と直交する方向)の寸法、及び吹き出し孔5aが巾方向に延びるスリット状である点は、上記ノズル5(図15)と同様であった。すると、上記のスジ状の処理ムラが形成されることはなかった。一方、基板9の進行方向の前端部と後端部におけるエッチング処理量が中央部に比べて低下した。 Therefore, as shown in FIG. 15, an amorphous silicon etching process was similarly performed using a nozzle 5X having only one blowing hole 5a. The dimension along the conveying direction (left-right direction in FIG. 15) of the tip surface 5e of the nozzle 5X is 22 mm, and one blowing hole 5a is provided at the exact center. The dimensions of the nozzle 5X in the width direction (direction perpendicular to the paper surface of FIG. 15) and the point that the blowout holes 5a are slit-shaped extending in the width direction are the same as those of the nozzle 5 (FIG. 15). As a result, the above-mentioned streaky process unevenness was not formed. On the other hand, the amount of etching processing at the front end portion and the rear end portion in the traveling direction of the substrate 9 was lower than that at the center portion.
 更に、図16に示すように、基板9が搬送される高さの少し下に、上記ノズル5Xと対向する平らな整流板7を配置し、アモルファスシリコンのエッチング処理を行なった。整流板7の搬送方向(図16の左右方向)に沿う寸法は63mmであり、整流板7の巾方向(図16の紙面と直交する方向)の寸法はノズル5Xと同じであった。すると、基板9の進行方向の前後端部と中央部とのエッチング処理量の差は緩和されたが、進行方向の前端部ではエッチング処理量が大きく、進行方向の後端部ではエッチング処理量が小さくなった。 Further, as shown in FIG. 16, a flat rectifying plate 7 facing the nozzle 5X is disposed slightly below the height at which the substrate 9 is conveyed, and an amorphous silicon etching process is performed. The dimension along the conveying direction of the rectifying plate 7 (left and right direction in FIG. 16) was 63 mm, and the dimension of the rectifying plate 7 in the width direction (direction perpendicular to the paper surface of FIG. 16) was the same as that of the nozzle 5X. Then, the difference in etching processing amount between the front and rear end portions and the central portion in the traveling direction of the substrate 9 is reduced, but the etching processing amount is large at the front end portion in the traveling direction, and the etching processing amount is large at the rear end portion in the traveling direction. It has become smaller.
 ノズル5Xからの吹き出し流速は、0.4m/sであり、レイノルズ数は0.07であった。したがって、新たに吹き出される処理ガスには、先に吹き出された処理済みのガスを十分に押し出すほどの勢いが無いと考えられる。そのため、ノズル先端面5eと基板9との間に処理済みのガスが滞留して、新たに吹き出された処理ガス中の反応成分濃度を低下させ、この結果、基板の表面上におけるエッチング処理量のばらつきを招いたものと考えられる。 The blowout flow velocity from the nozzle 5X was 0.4 m / s, and the Reynolds number was 0.07. Therefore, it is considered that the processing gas newly blown out does not have a momentum enough to push out the processed gas blown out first. Therefore, the processed gas stays between the nozzle front end surface 5e and the substrate 9 to reduce the reaction component concentration in the newly blown processing gas. As a result, the etching processing amount on the surface of the substrate is reduced. This is thought to have caused variations.
 本発明は、上記の知見に基づいてなされたものであり、大気圧近傍下においてアモルファスシリコン等のシリコン含有物をエッチングする際に、エッチング処理の均一性を高めることを目的とする。 The present invention has been made on the basis of the above knowledge, and an object of the present invention is to improve the uniformity of the etching process when etching a silicon-containing material such as amorphous silicon near atmospheric pressure.
 上記の目的を達成するために、本発明は、大気圧近傍下においてフッ素系反応成分を含有する処理ガスを、シリコン含有物を含む被処理基板に接触させて前記シリコン含有物をエッチングするエッチング装置において、
 前記被処理基板を仮想の平面上に支持する支持部と、
 前記処理ガスを吹き出す吹き出し孔を有して前記仮想平面の巾方向に延びるノズルと、
 前記被処理基板を前記ノズルに対し前記仮想平面に沿いかつ前記巾方向と直交する搬送方向に相対移動させる搬送手段と、
 を備え、前記ノズルが、極細をなして(前記搬送方向の寸法が極めて小さく)前記巾方向に延びる先端縁と、前記搬送方向の両側において一対をなして前記先端縁に近づくにしたがって互いに接近する傾斜側面とを有して、前記巾方向と直交する断面が前記仮想平面に向かって尖り、前記吹き出し孔が前記巾方向に分布して前記先端縁に開口しており、前記先端縁と前記仮想平面との間に反応場が画成され、前記一対の傾斜側面と前記仮想平面との間には、前記反応場から前記搬送方向に遠ざかるにしたがって前記仮想平面と直交する方向に拡開する拡散空間が画成されていることを特徴とする。
In order to achieve the above object, the present invention provides an etching apparatus for etching a silicon-containing material by bringing a processing gas containing a fluorine-based reaction component into contact with a substrate to be processed containing the silicon-containing material under atmospheric pressure. In
A support unit for supporting the substrate to be processed on a virtual plane;
A nozzle having a blowing hole for blowing out the processing gas and extending in the width direction of the virtual plane;
Transport means for moving the substrate to be processed relative to the nozzle in the transport direction along the virtual plane and perpendicular to the width direction;
The nozzles are extremely thin (the dimension in the transport direction is extremely small) and the tip edge extending in the width direction and a pair on both sides of the transport direction and approach each other as they approach the tip edge A cross section perpendicular to the width direction is pointed toward the virtual plane, the blowing holes are distributed in the width direction and open to the tip edge, and the tip edge and the virtual side A reaction field is defined between the pair of inclined side surfaces and the virtual plane, and diffusion spreads in a direction perpendicular to the virtual plane as the distance from the reaction field in the transport direction increases. It is characterized by a defined space.
 上記特徴構成によれば、シリコン含有物のエッチング処理の均一性を高めることができる。発明者の実験によれば、ノズルが搬送方向に複数並べられていても、被処理基板の表面にスジ状の処理ムラが形成されるのを防止できた(後記の実施例1参照)。その理由は次のように考えられる。すなわち、処理ガスは、吹き出し孔から吹き出され、反応場において被処理基板と接触する。この接触によってシリコン含有物のエッチング反応が起きる。反応場の前記搬送方向の両側には拡散空間がそれぞれ連なっている。処理ガスは、反応場での上記接触の後、すぐに拡散空間へ拡散する。拡散空間が反応場から遠ざかるにしたがって拡開しているため、拡散抵抗は殆ど生じない。したがって、処理ガスの吹き出し流速がたとえ小さくても、新たに吹き出される流れによって、先に吹き出された処理ガスを反応場から確実に押し出すことができる。そのため、反応場では常に新鮮な処理ガスが被処理基板と接触する。したがって、反応場における処理ガス中の反応成分の濃度が低下するのを防止できる。上記エッチング反応の殆どは、狭い反応場内でのみ局所的に起きる。反応場での局所的なエッチングレートは、被処理基板の進行方向の前端部が反応場内に位置しているときも、被処理基板の中央部が反応場内に位置しているときも、被処理基板の進行方向の後端部が反応場内に位置しているときも、ほぼ一様である。拡散空間では、処理ガスが十分に拡散して、反応成分濃度が大きく低下するため、エッチング反応が殆ど起きない。したがって、被処理基板の全体をほぼ均一にエッチング処理することができる。この結果、ノズルが搬送方向に複数並べられていても、被処理基板の表面に、巾方向にそれぞれ延びるスジ状の処理ムラが形成されるのを防止又は抑制できると考えられる。 According to the above characteristic configuration, the uniformity of the etching treatment of the silicon-containing material can be improved. According to the inventor's experiment, even when a plurality of nozzles are arranged in the transport direction, it was possible to prevent the formation of streak-like processing unevenness on the surface of the substrate to be processed (see Example 1 described later). The reason is considered as follows. That is, the processing gas is blown out from the blowing hole and comes into contact with the substrate to be processed in the reaction field. This contact causes an etching reaction of the silicon-containing material. Diffusion spaces are connected to both sides of the reaction field in the transport direction. The process gas diffuses into the diffusion space immediately after the contact in the reaction field. Since the diffusion space is expanded as the distance from the reaction field increases, diffusion resistance hardly occurs. Therefore, even if the blowing speed of the processing gas is small, the processing gas blown earlier can be surely pushed out from the reaction field by the newly blown flow. Therefore, fresh process gas always contacts the substrate to be processed in the reaction field. Therefore, it can prevent that the density | concentration of the reaction component in the process gas in a reaction field falls. Most of the etching reactions occur locally only within a narrow reaction field. The local etching rate in the reaction field is the same even when the front end of the substrate to be processed is located in the reaction field or when the central part of the substrate is located in the reaction field. Even when the rear end portion of the substrate in the traveling direction is located in the reaction field, it is almost uniform. In the diffusion space, the processing gas is sufficiently diffused and the reaction component concentration is greatly reduced, so that the etching reaction hardly occurs. Therefore, the entire substrate to be processed can be etched almost uniformly. As a result, it is considered that even when a plurality of nozzles are arranged in the transport direction, it is possible to prevent or suppress the formation of streak-like processing unevenness extending in the width direction on the surface of the substrate to be processed.
 前記吹き出し孔における前記処理ガスの平均吹き出し流速は、好ましくは0.1m/s~1.0m/sであり、より好ましくは0.2m/s~0.6m/sである。処理ガスの吹き出し流速を小さく抑えることで、処理槽内の気流が乱れるのを防止できる。吹き出し流速が小さくても、エッチングレートを十分に確保できる。かつ、上述した拡散抵抗の低減効果と、処理槽内の気流の乱れ防止効果とが相俟って、処理の均一性を十分に確保できる。ここで、前記平均吹き出し流速は、吹き出し流量を吹き出し孔の断面積にて除すことにより得られる。 The average flow velocity of the processing gas in the blowing holes is preferably 0.1 m / s to 1.0 m / s, more preferably 0.2 m / s to 0.6 m / s. By suppressing the blowing flow rate of the processing gas to a small value, it is possible to prevent the airflow in the processing tank from being disturbed. Even if the blowing flow rate is small, a sufficient etching rate can be secured. In addition, the effect of reducing the diffusion resistance described above and the effect of preventing the turbulence of the airflow in the treatment tank can be combined to sufficiently ensure the uniformity of the treatment. Here, the average blowing flow rate is obtained by dividing the blowing flow rate by the cross-sectional area of the blowing hole.
 前記ノズルには、ガス吸引手段に連なる吸い込み孔が形成され、前記吸い込み孔が、前記吹き出し孔と接するようにして前記先端縁に開口していてもよい。
 エッチング処理の際は、処理ガスの吹き出しと併行して、ガス吸引手段によって、前記先端縁における吸い込み孔の開口近傍のガスを局所的に吸い込み孔内に吸い込む。このため、処理ガスは、吹き出し孔から吹き出されて被処理基板に接触した後、すぐに吸い込み孔に吸い込まれる。したがって、反応場に処理済みのガスが滞留するのを一層確実に防止でき、反応場における反応成分の濃度低下を一層確実に防止できる。更には、反応場内における処理ガスの流速や向き等の流れ状態を、被処理基板の進行方向の位置に依らず一層確実に一様にすることができる。よって、エッチング処理の均一性を一層向上させることができる。
The nozzle may be formed with a suction hole connected to the gas suction means, and the suction hole may be opened at the tip edge so as to be in contact with the blowout hole.
During the etching process, the gas in the vicinity of the opening of the suction hole at the tip edge is locally sucked into the suction hole by the gas suction means in parallel with the blowing of the processing gas. For this reason, the processing gas is blown out from the blowing hole and comes into contact with the substrate to be processed, and is immediately sucked into the suction hole. Therefore, it is possible to more reliably prevent the treated gas from staying in the reaction field, and it is possible to more reliably prevent a decrease in the concentration of reaction components in the reaction field. Furthermore, the flow state such as the flow velocity and direction of the processing gas in the reaction field can be made even more reliable regardless of the position of the substrate to be processed in the traveling direction. Therefore, the uniformity of the etching process can be further improved.
 前記仮想平面を挟んで前記ノズルと対向する整流板を前記仮想平面に沿うように設け、前記整流板が、前記一対の傾斜側面より前記搬送方向の両側に延び出ていることが好ましい。これによって、前記仮想平面が仮想の平面であっても、処理ガスが拡散空間へ拡散する流れの状態を被処理基板の進行位置に依らずほぼ一定に保つことができる。ひいては、反応場内での処理ガス流の状態を被処理基板の進行位置に依らず確実にほぼ一定に保つことができる。よって、エッチング処理の均一性を一層高めることができる。 It is preferable that a rectifying plate facing the nozzle across the virtual plane is provided along the virtual plane, and the rectifying plate extends from the pair of inclined side surfaces to both sides in the transport direction. As a result, even if the virtual plane is a virtual plane, the state of the flow in which the processing gas diffuses into the diffusion space can be kept substantially constant regardless of the traveling position of the substrate to be processed. As a result, the state of the processing gas flow in the reaction field can be reliably kept substantially constant regardless of the position of the substrate to be processed. Therefore, the uniformity of the etching process can be further improved.
 前記処理ガスを前記ノズルに供給する処理ガス供給部を更に備え、前記処理ガス供給部が、互いの間に大気圧近傍下で放電を生成する一対の電極を有するプラズマ生成部を含み、フッ素含有成分及び水素含有添加成分を含有する原料ガスを前記一対の電極間の空間に導入してプラズマ化することにより、前記フッ素系反応成分を生成することが好ましい。
 フッ素含有成分としては、CF、C、C、C等のPFC(パーフルオロカーボン)、CHF、CH、CHF等のHFC(ハイドロフルオロカーボン)の他、SF、NF、XeF、F等が挙げられる。水素含有添加成分は、好ましくは水(HO)であり、その他、アルコール等のOH基含有化合物や過酸化水素が挙げられる。
 この明細書において、大気圧近傍とは、1.013×10~50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10~10.664×10Paが好ましく、9.331×10~10.397×10Paがより好ましい。
The apparatus further includes a processing gas supply unit that supplies the processing gas to the nozzle, and the processing gas supply unit includes a plasma generation unit that includes a pair of electrodes that generate a discharge under atmospheric pressure between each other, and contains fluorine It is preferable that the fluorine-based reaction component is generated by introducing a raw material gas containing a component and a hydrogen-containing additive component into the space between the pair of electrodes and converting it into plasma.
As fluorine-containing components, PFC (perfluorocarbon) such as CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 , HFC (hydrofluorocarbon) such as CHF 3 , CH 2 F 2 , CH 3 F, etc. Other examples include SF 6 , NF 3 , XeF 2 , and F 2 . The hydrogen-containing additive component is preferably water (H 2 O), and other examples include OH group-containing compounds such as alcohol and hydrogen peroxide.
In this specification, the term “near atmospheric pressure” means a range of 1.013 × 10 4 to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 6. 4 to 10.664 × 10 4 Pa is preferable, and 9.331 × 10 4 to 10.9797 × 10 4 Pa is more preferable.
 本発明によれば、シリコン含有物のエッチング処理の均一性を高めることができる。 According to the present invention, the uniformity of the etching treatment of the silicon-containing material can be improved.
本発明の第1実施形態に係るエッチング装置の側面図である。1 is a side view of an etching apparatus according to a first embodiment of the present invention. 図1のII-II線に沿う平面断面図である。FIG. 2 is a plan sectional view taken along line II-II in FIG. 1. 上記エッチング装置のノズルの斜視図である。It is a perspective view of the nozzle of the said etching apparatus. 上記エッチング装置のノズルの一部を拡大して示す側面断面図である。It is side surface sectional drawing which expands and shows a part of nozzle of the said etching apparatus. 上記エッチング装置のノズルの変形例を示す側面断面図である。It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. 上記エッチング装置のノズルの変形例を示す側面断面図である。It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. 上記エッチング装置のノズルの変形例を示す側面断面図である。It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. 上記エッチング装置のノズルの変形例を示す側面断面図である。It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. 上記エッチング装置のノズルの変形例を示す側面断面図である。It is side surface sectional drawing which shows the modification of the nozzle of the said etching apparatus. 本発明の第2実施形態に係るエッチング装置のノズルの側面断面図である。It is side surface sectional drawing of the nozzle of the etching apparatus which concerns on 2nd Embodiment of this invention. 上記第2実施形態に係るエッチング装置のノズルの図10のXI-XI線に沿う底面図である。FIG. 11 is a bottom view of the nozzle of the etching apparatus according to the second embodiment, taken along line XI-XI in FIG. 10. 本発明の第3実施形態に係るエッチング装置の側面図である。It is a side view of the etching apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るエッチング装置の側面図である。It is a side view of the etching apparatus which concerns on 4th Embodiment of this invention. 本発明に至る過程における参考例としてのノズル装置の側面断面図である。It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention. 本発明に至る過程における参考例としてのノズル装置の側面断面図である。It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention. 本発明に至る過程における参考例としてのノズル装置の側面断面図である。It is side surface sectional drawing of the nozzle apparatus as a reference example in the process leading to this invention.
 以下、本発明の実施形態を図面にしたがって説明する。
 図1及び図2は、本発明の第1実施形態に係るエッチング装置1を示したものである。被処理基板9は、例えば液晶表示パネルのガラス基板にて構成され、薄い平板状になっている。被処理基板9の厚みtは、例えばt=0.4mm~1.1mm程度である。被処理基板9の表面(図1において上面)にはエッチング対象のシリコン含有物9a(図4)が被膜されている。シリコン含有物は、例えばアモルファスシリコンにて構成されている。シリコン含有物は、アモルファスシリコンの他、単結晶シリコンや多結晶シリコンであってもよく、シリコン単体に限られず、窒化シリコン、酸化シリコン、炭化シリコン等であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show an etching apparatus 1 according to a first embodiment of the present invention. The substrate 9 to be processed is composed of, for example, a glass substrate of a liquid crystal display panel and has a thin flat plate shape. The thickness t of the substrate 9 to be processed is, for example, about t = 0.4 mm to 1.1 mm. A surface of the substrate 9 to be processed (upper surface in FIG. 1) is coated with a silicon-containing material 9a (FIG. 4) to be etched. The silicon-containing material is made of, for example, amorphous silicon. In addition to amorphous silicon, the silicon-containing material may be single crystal silicon or polycrystalline silicon, and is not limited to silicon alone, but may be silicon nitride, silicon oxide, silicon carbide, or the like.
 エッチング装置1は、大気圧近傍下において処理ガスを被処理基板9に接触させ、シリコン含有物をエッチング処理する。処理ガスはフッ素系反応成分を含有する。フッ素系反応成分として、HF、COF、OF、O等が挙げられる。シリコン含有物がアモルファスシリコン等のシリコンである場合、処理ガスが酸化性反応成分を更に含有する。酸化性反応成分として、O、Oラジカル等が挙げられる。 The etching apparatus 1 brings a processing gas into contact with the substrate 9 to be processed under atmospheric pressure and performs an etching process on the silicon-containing material. The processing gas contains a fluorine-based reaction component. Examples of the fluorine-based reaction component include HF, COF 2 , OF 2 , and O 2 F 2 . When the silicon-containing material is silicon such as amorphous silicon, the processing gas further contains an oxidizing reaction component. Examples of the oxidizing reaction component include O 3 and O radicals.
 図1に示すように、エッチング装置1は、処理槽2と、処理ガス供給部10と、コロコンベア20と、ノズル30を備えている。処理槽2は、ノズル30とコンベア20の一部とを収容している。処理槽2内の圧力は大気圧近傍になっている。 As shown in FIG. 1, the etching apparatus 1 includes a processing tank 2, a processing gas supply unit 10, a roller conveyor 20, and a nozzle 30. The processing tank 2 accommodates the nozzle 30 and a part of the conveyor 20. The pressure in the processing tank 2 is near atmospheric pressure.
 処理ガス供給部10は、フッ素系反応成分を生成するためのプラズマ生成部11と、酸化性反応成分供給部16とを含む。プラズマ生成部11は、互いに対向する一対の電極12を有している。両方又は片方の電極12の対向面には固体誘電体層(図示省略)が設けられている。一方の電極12に電源3が接続され、他方の電極12が電気的に接地されている。電源3からの電力供給によって、一対の電極12どうしの間に例えばパルス状の高周波電界が印加される。これによって、電極12間に大気圧近傍下でグロー放電が生成される。 The processing gas supply unit 10 includes a plasma generation unit 11 for generating a fluorine-based reaction component and an oxidizing reaction component supply unit 16. The plasma generation unit 11 has a pair of electrodes 12 facing each other. A solid dielectric layer (not shown) is provided on the opposing surface of both or one of the electrodes 12. The power source 3 is connected to one electrode 12, and the other electrode 12 is electrically grounded. By supplying power from the power supply 3, for example, a pulsed high-frequency electric field is applied between the pair of electrodes 12. As a result, glow discharge is generated between the electrodes 12 near atmospheric pressure.
 電極12間の空間13にフッ素原料供給部14が接続されている。フッ素原料供給部14と電極間空間13を結ぶ経路に添加部15が接続されている。フッ素原料供給部14からフッ素含有成分を含む原料ガスが送出され、これに添加部15からの水素含有添加成分が添加される。添加後の原料ガスが電極間空間13に導入される。これにより、電極間空間13内において、上記原料ガスがプラズマ化(励起、分解、ラジカル化、イオン化を含む)され、HF等のフッ素系反応成分が生成される。 A fluorine raw material supply unit 14 is connected to a space 13 between the electrodes 12. An addition unit 15 is connected to a path connecting the fluorine raw material supply unit 14 and the interelectrode space 13. A raw material gas containing a fluorine-containing component is sent from the fluorine raw material supply unit 14, and a hydrogen-containing additive component from the addition unit 15 is added thereto. The added source gas is introduced into the interelectrode space 13. Thereby, in the inter-electrode space 13, the source gas is turned into plasma (including excitation, decomposition, radicalization, and ionization), and a fluorine-based reaction component such as HF is generated.
 フッ素系反応成分の原料となるフッ素含有成分としては、CF、C、C、C等のPFC(パーフルオロカーボン)、CHF、CH、CHF等のHFC(ハイドロフルオロカーボン)が挙げられる。更には、フッ素含有成分として、SF、NF、XeF、F等を用いてもよい。ここでは、フッ素含有成分として例えばCFが用いられている。 Examples of the fluorine-containing component used as a raw material for the fluorine-based reaction component include PFC (perfluorocarbon) such as CF 4 , C 2 F 4 , C 2 F 6 , and C 3 F 8 , CHF 3 , CH 2 F 2 , and CH 3 F. HFC (hydrofluorocarbon) such as Furthermore, as the fluorine-containing component, it may be used SF 6, NF 3, XeF 2 , F 2 and the like. Here, for example, CF 4 is used as the fluorine-containing component.
 フッ素原料供給部14は、フッ素含有成分を希釈成分にて希釈している。希釈成分としては、Ar、He、Ne、Kr等の希ガスの他、N等の不活性ガスが挙げられる。希釈成分は、フッ素含有成分を希釈する役割の他、キャリアガスとしての役割及びプラズマ生成用のガスとしての役割を担っている。ここでは、希釈成分として例えばArが用いられている。 The fluorine raw material supply unit 14 dilutes the fluorine-containing component with the dilution component. The diluent components, Ar, He, Ne, other rare gases Kr, etc., include inert gas such as N 2. In addition to the role of diluting the fluorine-containing component, the dilution component plays a role as a carrier gas and a gas for plasma generation. Here, for example, Ar is used as a dilution component.
 上記水素含有添加成分は、水蒸気(HO)である。添加部15は、水の気化器にて構成されている。気化器15内に水が液状態で蓄えられている。供給部14からのフッ素系原料ガス(CF+Ar)が、気化器15内の液中に導入されてバブリングされる。或いは、気化器15内の液面より上側部分に上記原料ガスを導入し、上記上側部分の飽和蒸気を上記原料ガスにて押し出してもよい。これによって、上記原料ガスに水蒸気が添加される。気化器15を温度調節することによって、水の蒸気圧ひいては添加量を調節できる。或いは、上記原料ガス(CF+Ar)の一部を気化器15内に導入し、残部は気化器15を迂回させ、上記一部と残部の流量比を調節することによって、水の添加量を調節してもよい。添加成分として、水に代えて、OH基含有化合物、過酸化水素等を用いてもよい。OH基含有化合物として、アルコールが挙げられる。 The hydrogen-containing additive component is water vapor (H 2 O). The addition part 15 is comprised with the vaporizer of water. Water is stored in the vaporizer 15 in a liquid state. Fluorine-based source gas (CF 4 + Ar) from the supply unit 14 is introduced into the liquid in the vaporizer 15 and bubbled. Alternatively, the raw material gas may be introduced to the upper part of the liquid level in the vaporizer 15 and the saturated vapor in the upper part may be pushed out by the raw material gas. Thereby, water vapor is added to the source gas. By adjusting the temperature of the vaporizer 15, it is possible to adjust the vapor pressure of water and thus the amount of addition. Alternatively, a part of the raw material gas (CF 4 + Ar) is introduced into the vaporizer 15, the remainder bypasses the vaporizer 15, and the flow rate ratio between the part and the remainder is adjusted to reduce the amount of water added. You may adjust. As an additive component, an OH group-containing compound, hydrogen peroxide, or the like may be used instead of water. Examples of the OH group-containing compound include alcohol.
 酸化性反応成分供給部16は、オゾナイザーにて構成されている。オゾナイザー16は、Oを原料にして、酸化性反応成分としてOを生成する。酸化性反応成分は、Oに限られず、OラジカルやNOxであってもよい。なお、エッチングすべきシリコン含有膜が酸化シリコン等である場合、酸化性反応成分供給部16を省略してもよい。 The oxidizing reaction component supply unit 16 is configured by an ozonizer. The ozonizer 16 generates O 3 as an oxidizing reaction component using O 2 as a raw material. The oxidizing reaction component is not limited to O 3 but may be O radical or NOx. If the silicon-containing film to be etched is silicon oxide or the like, the oxidizing reaction component supply unit 16 may be omitted.
 次に、コロコンベア20及びノズル30について説明する。コロコンベア20は、被処理基板9を支持する支持部としての機能と、被処理基板9を搬送する搬送手段としての機能を兼ねている。 Next, the roller conveyor 20 and the nozzle 30 will be described. The roller conveyor 20 has a function as a support unit that supports the substrate 9 to be processed and a function as a transport unit that transports the substrate 9 to be processed.
 周知の通り、コロコンベア20は、シャフト21と、コロ22を有している。複数のシャフト21が、互いにx方向(搬送方向、図1において左右)に間隔を置いて並べられている。各シャフト21の軸線が、上記x方向と直交するy方向(巾方向、図1の紙面直交方向)に水平に向けられている。各シャフト21に複数のコロ22がy方向に間隔を置いて設けられている。コロ22上に被処理基板9が平らな状態で水平に載置される。コロコンベア20は、被処理基板9をコロ22の上端部の高さの仮想の水平な平面PL上に支持し、かつ被処理基板9を上記仮想平面PLに沿うx方向に搬送する。 As is well known, the roller conveyor 20 has a shaft 21 and a roller 22. A plurality of shafts 21 are arranged at intervals in the x direction (conveying direction, left and right in FIG. 1). The axis of each shaft 21 is horizontally oriented in the y direction (width direction, the direction orthogonal to the plane of FIG. 1) perpendicular to the x direction. A plurality of rollers 22 are provided on each shaft 21 at intervals in the y direction. The substrate 9 to be processed is placed horizontally on the roller 22 in a flat state. The roller conveyor 20 supports the substrate 9 to be processed on a virtual horizontal plane PL that is the height of the upper end of the roller 22 and conveys the substrate 9 to be processed in the x direction along the virtual plane PL.
 図1に示すように、処理槽2内におけるコロコンベア20の上方にはノズル30が配置されている。ノズル30は、図示しない架台によって処理槽2内の上側部に支持されている。図2及び図3に示すように、ノズル30は、y方向(仮想平面の巾方向)に長く延びている。ノズル30のy方向の長さは、該ノズル30のx方向の寸法より充分に大きく、好ましくは被処理基板9のy方向の長さより大きい。図1に示すように、ノズル30の延び方向と直交する断面の中心軸CLは、垂直をなして仮想平面PLと直交し、ひいては被処理基板9と直交している。 As shown in FIG. 1, a nozzle 30 is disposed above the roller conveyor 20 in the processing tank 2. The nozzle 30 is supported by the upper part in the processing tank 2 with the mount which is not shown in figure. As shown in FIGS. 2 and 3, the nozzle 30 extends long in the y direction (the width direction of the virtual plane). The length of the nozzle 30 in the y direction is sufficiently larger than the dimension of the nozzle 30 in the x direction, and is preferably larger than the length of the substrate 9 to be processed in the y direction. As shown in FIG. 1, the central axis CL of the cross section perpendicular to the extending direction of the nozzle 30 is perpendicular to the virtual plane PL and thus perpendicular to the substrate 9 to be processed.
 ノズル30の内部には吹き出し孔31が形成されている。図4に示すように、吹き出し孔31は、中心軸CLに沿って上下に延びている。吹き出し孔31のx方向の幅wは、好ましくはw=1mm~6mm程度であり、より好ましくはw=4mm程度である。図2に示すように、吹き出し孔31は、ノズル30の長手方向(y方向)のほぼ全長にわたって分布している。詳細には、吹き出し孔31は、y方向に長く延び、スリット状になっている。吹き出し孔31が、スリット状に代えてy方向に配列された多数の小孔にて構成されていてもよい。吹き出し孔31のy方向の長さ(分布巾)は、被処理基板9のy方向の長さより少し大きい。平面投影視において、吹き出し孔31のy方向の各端部が、被処理基板9のy方向の同じ側の端部より外側に少し突出する程度が好ましい。吹出し孔31が、y方向に並べられた多数の小孔によって構成されていてもよい。 A blowing hole 31 is formed inside the nozzle 30. As shown in FIG. 4, the blowing hole 31 extends vertically along the central axis CL. The width w in the x direction of the blowout hole 31 is preferably about w = 1 mm to 6 mm, and more preferably about w = 4 mm. As shown in FIG. 2, the blowout holes 31 are distributed over almost the entire length of the nozzle 30 in the longitudinal direction (y direction). Specifically, the blowout hole 31 extends long in the y direction and has a slit shape. The blowing hole 31 may be configured by a large number of small holes arranged in the y direction instead of the slit shape. The length (distribution width) in the y direction of the blowout holes 31 is slightly larger than the length in the y direction of the substrate 9 to be processed. In planar projection view, it is preferable that each end portion in the y direction of the blowing hole 31 slightly protrudes outward from the end portion on the same side in the y direction of the substrate 9 to be processed. The blowout hole 31 may be configured by a large number of small holes arranged in the y direction.
 図1に示すように、吹き出し孔31の基端部(上端部)は、処理ガス供給部10からの供給路19に連なっている。図示は省略するが、供給路19と処理ガス供給部10との間に整流部が設けられている。整流部は、y方向に延びるチャンバーや、y方向に延びるスリットや、y方向に分散して配置された多数の小孔等を含む。処理ガスが、整流部を通過することによって、y方向に均一化される。 As shown in FIG. 1, the base end portion (upper end portion) of the blowing hole 31 is connected to the supply path 19 from the processing gas supply unit 10. Although illustration is omitted, a rectification unit is provided between the supply path 19 and the processing gas supply unit 10. The rectifying unit includes a chamber extending in the y direction, slits extending in the y direction, and a large number of small holes dispersed in the y direction. The processing gas is made uniform in the y direction by passing through the rectifying unit.
 図3及び図4に示すように、ノズル30における上側部分32のy方向と直交する断面は、長方形になっている。これに対し、ノズル30における下側部分33のy方向と直交する断面は、仮想平面PLに向かって尖るように先細になっている。ノズル下側部分33は、x方向の両側において一対をなす傾斜側面34,34と、仮想平面PLを向く先端縁35とを有している。一対の傾斜側面34,34は、先端縁35へ向かうにしたがって互いに接近するように、中心軸CLに対して傾斜する傾斜面になっている。ノズル30の先端(下端)において、一対の傾斜側面34,34が十分に近接し、これら傾斜側面34,34の下端どうし間にノズル先端縁35が形成されている。ノズル先端縁35は、極細をなし、すなわちx方向の寸法が極めて小さく、かつy方向(図1の紙面直交方向)に直線状に長く延びている。 As shown in FIGS. 3 and 4, the cross section perpendicular to the y direction of the upper portion 32 of the nozzle 30 is rectangular. On the other hand, the cross section orthogonal to the y direction of the lower portion 33 of the nozzle 30 is tapered so as to point toward the virtual plane PL. The nozzle lower portion 33 has a pair of inclined side surfaces 34 and 34 on both sides in the x direction, and a tip edge 35 facing the virtual plane PL. The pair of inclined side surfaces 34, 34 are inclined surfaces that are inclined with respect to the central axis CL so as to approach each other toward the tip edge 35. At the tip (lower end) of the nozzle 30, the pair of inclined side surfaces 34 and 34 are sufficiently close to each other, and a nozzle tip edge 35 is formed between the lower ends of the inclined side surfaces 34 and 34. The nozzle tip edge 35 is extremely thin, that is, has a very small dimension in the x direction and extends long in a straight line in the y direction (the direction perpendicular to the plane of FIG. 1).
 吹き出し孔31の先端(下端)が、ノズル先端縁35に達して開口し、吹き出し口を構成している。ノズル先端縁35のほぼ全体が吹き出し口になっている。ノズル30の先端縁のx方向の幅は、吹き出し孔31のx方向の幅と一致しており、例えば4mm程度である。ノズル30の先端(下端)において、中心軸CLよりも互いに同じ側における傾斜側面34と吹き出し孔31の内面とが鋭角に交差し、ナイフエッジ35eを構成している。ナイフエッジ35eは、y方向(図4の紙面と直交する方向)に延びている。中心軸CLを挟んで両側のナイフエッジ35e,35eが、ノズル先端縁35のx方向の両端部を構成している。 The tip (lower end) of the blowout hole 31 reaches the nozzle tip edge 35 and opens to form a blowout port. Nearly the entire nozzle tip edge 35 is a blowout port. The width of the tip edge of the nozzle 30 in the x direction is the same as the width of the blowout hole 31 in the x direction, and is about 4 mm, for example. At the tip (lower end) of the nozzle 30, the inclined side surface 34 and the inner surface of the blowout hole 31 on the same side of the center axis CL intersect each other at an acute angle to form a knife edge 35e. The knife edge 35e extends in the y direction (a direction perpendicular to the paper surface of FIG. 4). Knife edges 35e, 35e on both sides across the central axis CL constitute both ends of the nozzle tip edge 35 in the x direction.
 上記中心軸CLと傾斜側面34とのなす角度θは、θ=60°以下が好ましい。処理の均一性の観点からは、角度θは小さければ小さいほど好ましい。一方、θが小さ過ぎるとノズル30の加工が困難になる。そこで、角度θは、θ=20°~30°程度がより好ましい。角度θの下限を20°程度にすることで、ノズル30の加工を容易化できる。 The angle θ formed by the central axis CL and the inclined side surface 34 is preferably θ = 60 ° or less. From the viewpoint of processing uniformity, the smaller the angle θ, the better. On the other hand, if θ is too small, processing of the nozzle 30 becomes difficult. Therefore, the angle θ is more preferably about θ = 20 ° to 30 °. By setting the lower limit of the angle θ to about 20 °, the processing of the nozzle 30 can be facilitated.
 傾斜側面34の上端から吹き出し孔31の内面までの水平距離Lは、処理の均一性の観点からは、小さいほど好ましい。一方、距離Lが小さ過ぎるとノズル30の加工が困難になる。ノズル30の加工を考慮した水平距離Lは、L=10mm~30mm程度が好ましい。傾斜側面34の垂直方向の高さhは、処理の均一性の観点からは、大きいほど好ましく、例えばh=10mm以上であることが好ましい。 The horizontal distance L from the upper end of the inclined side surface 34 to the inner surface of the blowing hole 31 is preferably as small as possible from the viewpoint of processing uniformity. On the other hand, if the distance L is too small, it is difficult to process the nozzle 30. The horizontal distance L considering the processing of the nozzle 30 is preferably about L = 10 mm to 30 mm. The vertical height h of the inclined side surface 34 is preferably as large as possible from the viewpoint of processing uniformity, and for example, h = 10 mm or more is preferable.
 ノズル先端縁35と仮想平面PLとの間に反応場1aが画成されている。反応場1aは、x方向にノズル先端縁35と略同じ幅を有し、かつy方向(図1の紙面直交方向)にノズル先端縁35と略同じ長さを有している。すなわち、反応場1aは、x方向の寸法が極めて小さく(極細をなし)、かつy方向に直線状に長く延びている。反応場1aのx方向の幅は、例えば2mm程度である。被処理基板9が反応場1aを横切ることで、反応場1aにおいて被処理基板9の表面のシリコン含有膜9aのエッチング反応が起きる。 The reaction field 1a is defined between the nozzle tip edge 35 and the virtual plane PL. The reaction field 1a has substantially the same width as the nozzle tip edge 35 in the x direction and has substantially the same length as the nozzle tip edge 35 in the y direction (the direction perpendicular to the plane of FIG. 1). That is, the reaction field 1a has a very small dimension in the x direction (extremely thin) and extends long in a straight line in the y direction. The width of the reaction field 1a in the x direction is, for example, about 2 mm. When the substrate 9 to be processed crosses the reaction field 1a, an etching reaction of the silicon-containing film 9a on the surface of the substrate 9 to be processed occurs in the reaction field 1a.
 ノズル先端縁35と被処理基板9の上面とのギャップg1は、g1=1mm~10mmか好ましく、g1=3mm~7mmがより好ましい。 The gap g1 between the nozzle tip edge 35 and the upper surface of the substrate 9 to be processed is preferably g1 = 1 mm to 10 mm, and more preferably g1 = 3 mm to 7 mm.
 ノズル30の一対の傾斜側面34の各々と仮想平面PLとの間には、拡散空間1eが画成されている。ひいては、各傾斜側面34と被処理基板9との間に拡散空間1eが画成される。一対の拡散空間1eが、反応場1aをx方向の両側から挟んでいる。各拡散空間1eは、y方向に傾斜側面34と同じ長さだけ延びている。各拡散空間1eは、反応場1aに連なり、かつ反応場1aからx方向に遠ざかるにしたがって上下方向(仮想平面PLと直交する方向)に拡開して、処理槽2内におけるノズル30の周辺空間に連なっている。反応場1a及び拡散空間1eは、大気圧近傍の圧力になっている。 A diffusion space 1e is defined between each of the pair of inclined side surfaces 34 of the nozzle 30 and the virtual plane PL. As a result, a diffusion space 1 e is defined between each inclined side surface 34 and the substrate 9 to be processed. A pair of diffusion spaces 1e sandwich the reaction field 1a from both sides in the x direction. Each diffusion space 1e extends by the same length as the inclined side surface 34 in the y direction. Each diffusion space 1e is connected to the reaction field 1a and expands in the vertical direction (direction perpendicular to the virtual plane PL) as it moves away from the reaction field 1a in the x direction, and the peripheral space of the nozzle 30 in the processing tank 2 It is connected to. The reaction field 1a and the diffusion space 1e are at a pressure near atmospheric pressure.
 図1に示すように、ノズル30の直下には整流板40が設けられている。整流板40は、x方向に隣接する2つのコロ22どうしの間に配置されている。図1及び図2に示すように、整流板40は、仮想平面PLに沿うように水平に向けられ、かつy方向に長く延びる平板状になっている。整流板40のx方向の中央部が、ノズル30の中心軸CLとちょうど交差している。整流板40のx方向の寸法は、ノズル30のx方向の寸法より大きく、整流板40のx方向の両端部が、一対の傾斜側面34,34よりx方向の両側に延び出ている。整流板40のy方向の寸法は、被処理基板9のy方向の寸法より大きく、更には吹き出し孔31のy方向の寸法より大きい。整流板40のy方向の両端部が、被処理基板9よりy方向の外側へ突出し、更には吹き出し孔31よりy方向の外側へ突出している。図1に示すように、整流板40の上面は仮想平面PLの少し下側に位置している。図4に示すように、仮想平面PLと整流板40の上面との間のギャップg2は、g2=1mm~3mm程度が好ましい。ノズル30と整流板40が仮想平面PLを挟んで上下に対向している。整流板40のx方向の両端面は、下向きの斜面になっている。 As shown in FIG. 1, a rectifying plate 40 is provided immediately below the nozzle 30. The rectifying plate 40 is disposed between the two rollers 22 adjacent in the x direction. As shown in FIGS. 1 and 2, the rectifying plate 40 has a flat plate shape that is horizontally oriented along the virtual plane PL and that extends long in the y direction. The central portion in the x direction of the rectifying plate 40 just intersects the central axis CL of the nozzle 30. The size of the rectifying plate 40 in the x direction is larger than the size of the nozzle 30 in the x direction, and both end portions of the rectifying plate 40 in the x direction extend from the pair of inclined side surfaces 34 and 34 to both sides in the x direction. The dimension of the rectifying plate 40 in the y direction is larger than the dimension of the substrate 9 to be processed in the y direction, and further larger than the dimension of the blowing hole 31 in the y direction. Both ends of the rectifying plate 40 in the y direction protrude outward in the y direction from the substrate 9 to be processed, and further protrude outward in the y direction from the blowout holes 31. As shown in FIG. 1, the upper surface of the rectifying plate 40 is located slightly below the virtual plane PL. As shown in FIG. 4, the gap g2 between the virtual plane PL and the upper surface of the rectifying plate 40 is preferably about g2 = 1 mm to 3 mm. The nozzle 30 and the current plate 40 face each other up and down across the virtual plane PL. Both end surfaces of the rectifying plate 40 in the x direction are downward inclined surfaces.
 上記のように構成されたエッチング装置1の動作を説明する。
 被処理基板9をコロコンベア20によってx方向に沿って搬送する。併行して、供給部14,15からのフッ素系原料ガス(CF+Ar+HO)をプラズマ生成部11にてプラズマ化し、これにオゾナイザー16からのオゾン含有ガス(O+O)を混合して、処理ガスを得る。この処理ガスを上記整流部(図示せず)にてy方向に均一化したうえで、吹き出し孔31に導入し、吹き出し孔31の先端(下端)から吹き出す。吹き出し孔31における処理ガスの平均吹き出し流速は、好ましくは0.1m/s~1.0m/sであり、より好ましくは0.2m/s~0.6m/sである。吹き出し流速を小さく抑えることで、処理槽2内の気流が乱れるのを防止できる。吹き出し流速は、処理ガスの供給流量によって調節できる。
The operation of the etching apparatus 1 configured as described above will be described.
The substrate 9 to be processed is transported along the x direction by the roller conveyor 20. At the same time, the fluorine-based source gas (CF 4 + Ar + H 2 O) from the supply units 14 and 15 is turned into plasma by the plasma generation unit 11, and the ozone-containing gas (O 2 + O 3 ) from the ozonizer 16 is mixed therewith. Process gas is obtained. After this processing gas is made uniform in the y direction by the rectifying unit (not shown), it is introduced into the blowing hole 31 and blown out from the tip (lower end) of the blowing hole 31. The average blowing flow rate of the processing gas in the blowing holes 31 is preferably 0.1 m / s to 1.0 m / s, more preferably 0.2 m / s to 0.6 m / s. It is possible to prevent the airflow in the processing tank 2 from being disturbed by suppressing the blowout flow rate to be small. The blowing flow rate can be adjusted by the supply flow rate of the processing gas.
 処理ガスは、ノズル先端縁35の直下の反応場1aにおいて被処理基板9に接触する。この処理ガスが、反応場1a内でエッチング反応を起こす。具体的には、アモルファスシリコン膜9aが処理ガス中のOによって酸化され、更にHFと反応してSiF等の揮発性成分に変換される。これによって、アモルファスシリコン膜9aにおける反応場1a内に配置された部分をエッチングできる。 The processing gas contacts the substrate 9 to be processed in the reaction field 1 a immediately below the nozzle tip edge 35. This processing gas causes an etching reaction in the reaction field 1a. Specifically, the amorphous silicon film 9a is oxidized by O 3 in the processing gas, and further reacted with HF to be converted into a volatile component such as SiF 4 . As a result, the portion of the amorphous silicon film 9a disposed in the reaction field 1a can be etched.
 図4において太線矢印fにて示すように、処理ガスは、反応場1aにおいて被処理基板9と接触した後、すぐに拡散空間1eへ拡散する。拡散空間1eが反応場1aから遠ざかるにしたがって大きく拡開しているため、拡散抵抗が殆ど生じない。したがって、処理ガスの吹き出し流速が小さくても、新たに吹き出される流れによって、先に吹き出された処理ガスを反応場1aから簡単に押し出すことができる。そのため、反応場1aでは、常に新鮮な処理ガスが被処理基板9と接触する。したがって、反応場1aにおける反応成分(HF及びO)の濃度が低下するのを防止でき、エッチングレートを向上できる。 As shown by a thick arrow f in FIG. 4, the processing gas diffuses into the diffusion space 1e immediately after contacting the substrate 9 to be processed in the reaction field 1a. Since the diffusion space 1e is greatly expanded as it moves away from the reaction field 1a, almost no diffusion resistance is generated. Therefore, even if the blowing speed of the processing gas is small, the processing gas blown earlier can be easily pushed out from the reaction field 1a by the newly blown flow. Therefore, in the reaction field 1a, fresh process gas is always in contact with the substrate 9 to be processed. Therefore, it is possible to prevent the concentration of the reaction components in the reaction field 1a (HF and O 3) to decrease, thereby improving the etching rate.
 上記エッチング反応の殆どは、狭い反応場1a内でのみ局所的に起きる。反応場1aでの局所的なエッチングレートは、被処理基板9の進行方向の前端部が反応場1a内に位置しているときも、被処理基板9の中央部が反応場内に位置しているときも、被処理基板9の進行方向の後端部が反応場内に位置しているときも、ほぼ一様である。拡散空間1eでは処理ガスが十分に拡散して反応成分濃度が大きく低下するため、拡散空間1e内の基板9の表面上ではエッチング反応が殆ど起きない。しかも、整流板40が一対の傾斜側面34よりx方向の両外側へ延び出しているため、拡散空間1e内の処理ガスの流れ状態についても被処理基板9の進行位置に依らずほぼ一定に保つことができる。これによって、被処理基板9の全体を均一にエッチング処理することができる。更に、吹き出し流速が小さいことによる処理槽2内の気流の乱れ防止効果と相俟って、処理の均一性を一層向上させることができる。 Most of the etching reaction occurs locally only in the narrow reaction field 1a. The local etching rate in the reaction field 1a is such that the central part of the substrate 9 to be processed is located in the reaction field even when the front end of the substrate 9 to be processed is located in the reaction field 1a. Even when the rear end of the substrate 9 in the traveling direction is located in the reaction field, it is almost uniform. In the diffusion space 1e, the processing gas is sufficiently diffused and the concentration of the reaction component is greatly reduced, so that the etching reaction hardly occurs on the surface of the substrate 9 in the diffusion space 1e. In addition, since the rectifying plate 40 extends outward in the x direction from the pair of inclined side surfaces 34, the flow state of the processing gas in the diffusion space 1 e is also kept almost constant regardless of the traveling position of the substrate 9 to be processed. be able to. As a result, the entire substrate 9 can be etched uniformly. Furthermore, combined with the effect of preventing the turbulence of the airflow in the processing tank 2 due to the low blowout flow rate, the processing uniformity can be further improved.
 拡散した処理済みのガスは、図示しない排気手段にて排気される。 The diffused treated gas is exhausted by an exhaust means (not shown).
 次に、本発明の他の実施形態を説明する。以下の実施形態において既述の構成に関しては図面に同一符号を付して説明を省略する。
 図5~図10は、ノズル30の形状の変形例を示したものである。図5に示すように、ノズル先端縁35Aが少し平取り(平らにカット)されて面状になっていてもよい。その場合でも、先端縁35Aのx方向の幅は、できるだけ小さいことが好ましい。吹き出し孔31の内面から面状の先端縁35Aの外端までの間の幅w2は、好ましくはw2≦2mmであり、より好ましくはw2<1mmである。反応場1aは、ノズル3先端縁35Aと仮想平面PLの間に画成され、ひいては先端縁35Aと被処理基板9との間に画成される。反応場1aのx方向の幅は、ノズル先端縁35Aのx方向の幅と実質等しく、吹き出し孔31のx方向の幅より大きい。
Next, another embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the drawings for the configurations already described, and the description thereof is omitted.
5 to 10 show modified examples of the shape of the nozzle 30. FIG. As shown in FIG. 5, the nozzle tip edge 35 </ b> A may be slightly flattened (cut flat) to have a planar shape. Even in this case, it is preferable that the width of the tip edge 35A in the x direction is as small as possible. The width w2 from the inner surface of the blowing hole 31 to the outer end of the planar tip edge 35A is preferably w2 ≦ 2 mm, more preferably w2 <1 mm. The reaction field 1a is defined between the tip edge 35A of the nozzle 3 and the virtual plane PL, and thus is defined between the tip edge 35A and the substrate 9 to be processed. The width of the reaction field 1a in the x direction is substantially equal to the width of the nozzle tip edge 35A in the x direction and is larger than the width of the blowing hole 31 in the x direction.
 傾斜側面34は平坦面でなくてもよい。図6に示すように、傾斜側面34が、緩やかな凹曲面になっていてもよい。図7に示すように、傾斜側面34が、緩やかな凸曲面になっていてもよい。図8に示すように、傾斜側面34に凸部36が形成されていてもよい。図9に示すように、傾斜側面34に溝等の凹部37が形成されていてもよい。凸部36又は凹部37は、スポット状であってもよく、上下方向又はy方向に延びるビード状又はスジ状であっていてもよい。凸部36又は凹部37の数は、1つでもよく、複数でもよい。 The inclined side surface 34 may not be a flat surface. As shown in FIG. 6, the inclined side surface 34 may be a gentle concave curved surface. As shown in FIG. 7, the inclined side surface 34 may be a gently convex curved surface. As shown in FIG. 8, a convex portion 36 may be formed on the inclined side surface 34. As shown in FIG. 9, a concave portion 37 such as a groove may be formed on the inclined side surface 34. The convex portion 36 or the concave portion 37 may have a spot shape, or may have a bead shape or a stripe shape extending in the vertical direction or the y direction. The number of the convex portions 36 or the concave portions 37 may be one or plural.
 図10及び図11に示す第2実施形態では、ノズル30の内部に一対の吸い込み孔39が形成されている。一対の吸い込み孔39は、吹き出し孔31を挟んでx方向の両側に設けられている。各吸い込み孔39は、y方向に延びるスリット状をなし、かつ下へ向かうにしたがって中央の吹き出し孔31に近づくよう斜めになっている。各吸い込み孔39の下端部(吸い込み口)が、ノズル先端縁35に達して開口している。各吸い込み孔39の中心軸CL側の内面と吹き出し孔31の内面とが、ノズル先端縁35において鋭角に交差している。ノズル先端縁35において、吹き出し孔31とその両側の吸い込み孔39とが接するように並んでいる。各吸い込み孔39のx方向の幅は、吹き出し孔31のx方向の幅(例えば2mm程度)より小さく、好ましくは吹き出し孔31のx方向の幅の2分の1(例えば1mm)程度である。各吸い込み孔39のx方向の幅が、吹き出し孔31のx方向の幅と略等しくてもよく、吹き出し孔31のx方向の幅より大きくてもよい。吸い込み孔39が、y方向に並べられた複数の小孔によって構成されていてもよい。 In the second embodiment shown in FIGS. 10 and 11, a pair of suction holes 39 are formed inside the nozzle 30. The pair of suction holes 39 are provided on both sides in the x direction with the blowout hole 31 in between. Each suction hole 39 has a slit shape extending in the y direction, and is inclined so as to approach the central blowing hole 31 as it goes downward. The lower end portion (suction port) of each suction hole 39 reaches the nozzle tip edge 35 and opens. The inner surface of each suction hole 39 on the central axis CL side and the inner surface of the blowing hole 31 intersect at an acute angle at the nozzle tip edge 35. At the nozzle tip edge 35, the blowout holes 31 and the suction holes 39 on both sides thereof are arranged in contact with each other. The width of each suction hole 39 in the x direction is smaller than the width of the blowing hole 31 in the x direction (for example, about 2 mm), and preferably about one half (for example, 1 mm) of the width of the blowing hole 31 in the x direction. The width of each suction hole 39 in the x direction may be substantially equal to the width of the blowing hole 31 in the x direction, or may be larger than the width of the blowing hole 31 in the x direction. The suction hole 39 may be configured by a plurality of small holes arranged in the y direction.
 ノズル30上側部分32には、吸引ポート38が設けられている。吸い込み孔39の上端部が、吸引ポート38を介して吸引ポンプ4(ガス吸引手段)に連なっている。 A suction port 38 is provided in the upper portion 32 of the nozzle 30. The upper end portion of the suction hole 39 is connected to the suction pump 4 (gas suction means) via the suction port 38.
 ノズル30の傾斜側面34は、先端縁35の近くで傾斜角度が不連続的に変化し、稜線34cが形成されている。稜線34cより下側では仮想平面PLに対して傾斜が小さくなっている。 The inclined side surface 34 of the nozzle 30 changes discontinuously in the vicinity of the tip edge 35, and a ridge line 34c is formed. Below the ridge line 34c, the inclination is small with respect to the virtual plane PL.
 この実施形態によれば、ノズル30への処理ガス供給と併行して、吸引ポンプ4によって、吸い込み孔39の下端開口の近傍のガスを局所的に吸い込み孔39内へ吸い込む。このため、処理ガスは、吹き出し孔31から吹き出されて直下の被処理基板9に接触した後、すぐに吸い込み孔39に吸い込まれる。したがって、反応場1aに処理済みのガスが滞留するのを一層確実に防止できる。これにより、反応場1aでは、被処理基板9が確実に新鮮な処理ガスとのみ接触するようにでき、反応場1aにおける反応成分の濃度低下を一層確実に防止できる。更には、反応場1a内における処理ガスの流れを、被処理基板9の進行方向の位置に依らず確実に一様にすることができる。よって、エッチング処理の均一性を一層向上させることができる。 According to this embodiment, in parallel with the supply of the processing gas to the nozzle 30, the gas near the lower end opening of the suction hole 39 is locally sucked into the suction hole 39 by the suction pump 4. For this reason, the processing gas is blown out from the blowing hole 31 and comes into contact with the substrate 9 immediately under the processing gas, and is immediately sucked into the suction hole 39. Therefore, it is possible to more reliably prevent the treated gas from staying in the reaction field 1a. Thereby, in the reaction field 1a, the to-be-processed substrate 9 can be surely brought into contact with only a fresh process gas, and the decrease in the concentration of the reaction components in the reaction field 1a can be prevented more reliably. Furthermore, the flow of the processing gas in the reaction field 1a can be made uniform regardless of the position of the substrate 9 in the traveling direction. Therefore, the uniformity of the etching process can be further improved.
 図12に示す第3実施形態では、ノズル30が3つ(複数)設けられている。3つのノズル30が、x方向に間隔を置いて並べられている。各ノズル30の吹き出し孔31に処理ガスが分配される。各ノズル30の直下には、整流板40が配置されている。対応するノズル30と整流板40どうしが仮想平面PLを挟んで上下に対向している。各ノズル30がy方向(図12の紙面直交方向)に延びている点、下側部分33が先細に尖っている点等の各ノズル30の構成は、第1実施形態と同様である。 In the third embodiment shown in FIG. 12, three (plural) nozzles 30 are provided. Three nozzles 30 are arranged at intervals in the x direction. The processing gas is distributed to the blowing holes 31 of each nozzle 30. A rectifying plate 40 is disposed immediately below each nozzle 30. Corresponding nozzles 30 and rectifying plates 40 face each other up and down across the virtual plane PL. The configuration of each nozzle 30 is the same as that of the first embodiment, such that each nozzle 30 extends in the y direction (the direction orthogonal to the plane of FIG. 12), and the lower portion 33 is tapered.
 本発明によれば、ノズル30がx方向に複数並べられていても、被処理基板9にy方向に延びるスジ状の処理ムラが、ノズル30の配置間隔と同じ間隔で形成されるのを防止又は抑制できる。 According to the present invention, even when a plurality of nozzles 30 are arranged in the x direction, streaky process unevenness extending in the y direction on the substrate 9 to be processed is prevented from being formed at the same interval as the arrangement interval of the nozzles 30. Or it can be suppressed.
 図13は、本発明の第4実施形態を示したものである。この実施形態では、第3実施形態(図12)におけるx方向の両端のノズルが、排気ノズル50になっている。排気ノズル50の形状は、処理ガス吹出ノズル30とほぼ同一になっている。すなわち、排気ノズル50は、x方向の両側の一対の傾斜側面54,54と、仮想平面PLを向く先端縁55とを有し、y方向(図13の紙面と直交する巾方向)に長く延びている。傾斜側面54,54は、先端縁55に近づくにしたがって互いに接近している。先端縁55は、極細をなしてy方向に直線状に延びている。排気ノズル50の下側部分53のy方向と直交する断面は、仮想平面PLに向かって尖るように先細になっている。 FIG. 13 shows a fourth embodiment of the present invention. In this embodiment, the nozzles at both ends in the x direction in the third embodiment (FIG. 12) are exhaust nozzles 50. The shape of the exhaust nozzle 50 is substantially the same as that of the processing gas blowing nozzle 30. That is, the exhaust nozzle 50 has a pair of inclined side surfaces 54 and 54 on both sides in the x direction and a leading edge 55 that faces the virtual plane PL, and extends long in the y direction (width direction orthogonal to the paper surface of FIG. 13). ing. The inclined side surfaces 54 and 54 approach each other as they approach the tip edge 55. The tip edge 55 is very thin and extends linearly in the y direction. A cross section perpendicular to the y direction of the lower portion 53 of the exhaust nozzle 50 is tapered so as to point toward the virtual plane PL.
 排気ノズル50の内部には排気孔51が形成されている。排気孔51の上端部に吸引路5が連なっている。吸引路5がガス吸引手段4に連なっている。排気孔51の下端部は、先端縁55に開口し、かつノズル50の長手方向(図13の紙面と直交するy方向)のほぼ全長にわたってスリット状に分布している。排気孔51が、スリット状に代えてy方向に並んだ多数の小孔にて構成されていてもよい。 An exhaust hole 51 is formed in the exhaust nozzle 50. The suction path 5 is connected to the upper end of the exhaust hole 51. A suction path 5 is connected to the gas suction means 4. The lower end of the exhaust hole 51 opens at the tip edge 55 and is distributed in a slit shape over substantially the entire length of the nozzle 50 in the longitudinal direction (y direction perpendicular to the paper surface of FIG. 13). The exhaust hole 51 may be configured by a large number of small holes arranged in the y direction instead of the slit shape.
 吹出ノズル30は、両端の排気ノズル50,50のちょうど中間に配置されている。吹出ノズル30の中心軸CLから各排気ノズル50の中心軸CL50までの距離は、例えば数十mm~数百mmであり、ここでは100mm程度である。 The blowout nozzle 30 is disposed just in the middle between the exhaust nozzles 50 and 50 at both ends. The distance from the center axis CL of the blowout nozzle 30 to the center axis CL 50 of the exhaust nozzle 50 is, for example, several tens of mm ~ several hundred mm, where is about 100 mm.
 なお、吹出ノズル30を何れか一方の排気ノズル50の側に偏らせて配置してもよい。たとえば、排気ノズル50,50どうしのちょうど中間の位置から一方の排気ノズル50の中心軸CL50までの距離が100mm程度であるとき、吹出ノズル30を、上記中間位置から数十mm(好ましくは20mm)程度の範囲内で一方の排気ノズル50の側に偏らせて配置してもよい。 Note that the blowout nozzle 30 may be arranged so as to be biased toward one of the exhaust nozzles 50. For example, the exhaust nozzle 50, 50 if just when the distance from the intermediate position to the center axis CL 50 of one of the exhaust nozzle 50 is about 100 mm, a blow nozzle 30, several tens mm (preferably from the intermediate position 20mm ) It may be arranged so as to be biased toward the one exhaust nozzle 50 within a range of about.
 第4実施形態では、吸引排気手段4の駆動によって、両端の排気ノズル50,50の周辺のガスが排気孔51に吸い込まれる。特に、各排気ノズル50の下端すなわち先端縁55の周辺のガスが排気孔51に吸い込まれる。この吸込み流によって、各排気ノズル50を中央の吹出ノズル30との間の空間のガスの流れfを安定させることができ、処理の均一性を一層向上させることができる。 In the fourth embodiment, the gas around the exhaust nozzles 50, 50 at both ends is sucked into the exhaust hole 51 by driving the suction exhaust unit 4. In particular, the gas around the lower end of each exhaust nozzle 50, that is, the tip edge 55 is sucked into the exhaust hole 51. This suction flow can stabilize the gas flow f in the space between each exhaust nozzle 50 and the central blowing nozzle 30, and can further improve the uniformity of processing.
 本発明は、上記実施形態に限定されず、その趣旨を逸脱しない範囲で種々の改変態様を採用できる。
 例えば、搬送手段がノズル30に接続されていてもよい。ノズル30を搬送方向に移動させることにし、被処理基板9を静止させてもよい。
 整流板40を省略してもよい。
The present invention is not limited to the above embodiment, and various modifications can be adopted without departing from the spirit of the present invention.
For example, the conveying unit may be connected to the nozzle 30. The substrate to be processed 9 may be stopped by moving the nozzle 30 in the transport direction.
The rectifying plate 40 may be omitted.
 ノズル30の先端縁と被処理基板9の上面との間のギャップg1を比較的大きくしてもよい。これによって、処理ガスを反応場1aから拡散空間1eへより拡散させやすくなる。例えば、上記実施形態においては、ギャップg1の好適範囲は、g1=1mm~10mmであったが、g1=10mm~30mm程度にしてもよい。 The gap g1 between the tip edge of the nozzle 30 and the upper surface of the substrate 9 to be processed may be made relatively large. This makes it easier to diffuse the processing gas from the reaction field 1a to the diffusion space 1e. For example, in the above embodiment, the preferred range of the gap g1 is g1 = 1 mm to 10 mm, but it may be about g1 = 10 mm to 30 mm.
 複数の実施形態を互いに組み合わせてもよい。例えば、図12に示す複数のノズル30を、図10の吸い込み孔39付きのノズル30にて構成してもよく、図5~図9の変形形状のノズル30にて構成してもよい。排気ノズル50(図13)の形状を、図5~図9の吹出ノズル30と同様の形状にしてもよい。 A plurality of embodiments may be combined with each other. For example, the plurality of nozzles 30 shown in FIG. 12 may be constituted by the nozzles 30 with the suction holes 39 shown in FIG. 10, or may be constituted by the deformed nozzles 30 shown in FIGS. The shape of the exhaust nozzle 50 (FIG. 13) may be similar to the shape of the blowout nozzle 30 of FIGS.
 実施例を説明する。本発明が以下の実施例に限定されるものでないことは言うまでもない。
 図1に示すエッチング装置1を用い、ガラス基板9の表面のアモルファスシリコン膜9aをエッチングした。ノズル30全体の上下方向の寸法は、55mmであった、傾斜側面34の垂直高さhは、h=30mmであった。傾斜側面34の上端から吹き出し孔31の内面までの水平距離Lは、L=10mmであった。傾斜側面34の垂直面に対する角度θは、θ=20°弱であった。吹き出し孔31のx方向の幅は、2mmであった。吹き出し孔31のy方向の長さは、600mmであり、ガラス基板9のy方向の寸法より100mm大きかった。吹き出し孔31のy方向の各端部は、ガラス基板9よりy方向の外側へ50mm突出していた。整流板40の上面のx方向の寸法は63mmであった。
Examples will be described. Needless to say, the present invention is not limited to the following examples.
The amorphous silicon film 9a on the surface of the glass substrate 9 was etched using the etching apparatus 1 shown in FIG. The vertical dimension of the entire nozzle 30 was 55 mm, and the vertical height h of the inclined side surface 34 was h = 30 mm. The horizontal distance L from the upper end of the inclined side surface 34 to the inner surface of the blowing hole 31 was L = 10 mm. The angle θ of the inclined side surface 34 with respect to the vertical surface was θ = 20 ° slightly. The width of the blowing hole 31 in the x direction was 2 mm. The length of the blowout hole 31 in the y direction was 600 mm, which was 100 mm larger than the dimension of the glass substrate 9 in the y direction. Each end portion in the y direction of the blowing hole 31 protruded 50 mm outward from the glass substrate 9 in the y direction. The dimension of the upper surface of the current plate 40 in the x direction was 63 mm.
 処理ガスのフッ素系原料ガス成分は以下の通りであった。
  CF 0.8slm
  Ar 16.2slm
上記CF及びArの混合ガスに水(HO)を露点が13℃になるよう添加した。添加後のガスをプラズマ生成部11においてプラズマ化した。電源3の供給電力は直流で450V、9.0Aであり、これをVpp=12kV、25kHzの高周波パルス電圧に変換して電極12に供給した。更に、オゾナイザー16からのオゾン含有ガスを上記プラズマ化後のフッ素系ガスに混合して処理ガスを得た。オゾン含有ガスの流量は、12.68slmであり、オゾン濃度は、230g/mであった。この処理ガスをノズル30の吹き出し孔31から吹き出した。吹き出し流速は、0.4m/sであった。
The fluorine-based raw material gas components of the processing gas were as follows.
CF 4 0.8 slm
Ar 16.2 slm
Water (H 2 O) was added to the mixed gas of CF 4 and Ar so that the dew point was 13 ° C. The added gas was turned into plasma in the plasma generation unit 11. The power supplied from the power source 3 was 450 V and 9.0 A in direct current, and this was converted into a high-frequency pulse voltage of Vpp = 12 kV and 25 kHz and supplied to the electrode 12. Furthermore, the ozone-containing gas from the ozonizer 16 was mixed with the fluorinated gas after being converted to plasma to obtain a processing gas. The flow rate of the ozone-containing gas was 12.68 slm, and the ozone concentration was 230 g / m 3 . This processing gas was blown out from the blowing hole 31 of the nozzle 30. The blowing flow rate was 0.4 m / s.
 ガラス基板9を搬送速度4m/minにてx方向に搬送し、ノズル30の先端縁の直下の反応場1aにおいて上記処理ガスと接触させた。ガラス基板9を反応場1aに通した回数(スキャン回数)は、3回であった。ノズル30の先端縁と被処理基板9の上面との間のギャップg1は、g1=7mmであった。これによって、被処理基板9の表面のアモルファスシリコン膜9aを均一にエッチング処理できた。被処理基板9の進行方向の位置に依る処理ムラは形成されず、y方向に延びるスジ状の処理ムラも形成されなかった。 The glass substrate 9 was transported in the x direction at a transport speed of 4 m / min, and was brought into contact with the processing gas in the reaction field 1a immediately below the tip edge of the nozzle 30. The number of times the glass substrate 9 was passed through the reaction field 1a (number of scans) was three. The gap g1 between the tip edge of the nozzle 30 and the upper surface of the substrate 9 to be processed was g1 = 7 mm. As a result, the amorphous silicon film 9a on the surface of the substrate 9 to be processed was uniformly etched. Processing unevenness depending on the position of the substrate 9 to be processed was not formed, and no stripe-shaped processing unevenness extending in the y direction was formed.
 本発明は、半導体装置や液晶表示装置の製造に適用可能である。 The present invention is applicable to the manufacture of semiconductor devices and liquid crystal display devices.
1   エッチング装置
1a  反応場
1e  拡散空間
2   処理槽
3   電源
4   吸引ポンプ(ガス吸引手段)
9   被処理基板
9a  シリコン含有物
10  処理ガス供給部
11  プラズマ生成部
12  電極
13  放電空間(電極間空間)
14  フッ素原料供給部
15  添加部
16  オゾナイザー(酸化性反応成分供給部)
19  供給路
20  コロコンベア(支持部、搬送手段)
21  シャフト
22  コロ
30  ノズル
31  吹き出し孔
32  上側部分
33  下側部分
34  傾斜側面
35  先端縁
35A 面状の先端縁
35e ナイフエッジ
36  凸部
37  凹部
38  吸引ポート
39  吸い込み孔
40  整流板
50  排気ノズル
51  排気孔
53  下側部分
54  傾斜側面
55  先端縁
CL  中心軸
PL  仮想平面
DESCRIPTION OF SYMBOLS 1 Etching apparatus 1a Reaction field 1e Diffusion space 2 Processing tank 3 Power supply 4 Suction pump (gas suction means)
9 Substrate 9a Silicon-containing material 10 Processing gas supply unit 11 Plasma generation unit 12 Electrode 13 Discharge space (interelectrode space)
14 Fluorine raw material supply unit 15 Addition unit 16 Ozonizer (oxidation reaction component supply unit)
19 Supply path 20 Roller conveyor (support, transport means)
21 Shaft 22 Roller 30 Nozzle 31 Blowout hole 32 Upper part 33 Lower part 34 Inclined side surface 35 Tip edge 35A Plane tip edge 35e Knife edge 36 Convex part 37 Concave port 39 Suction port 39 Suction hole 40 Rectifier plate 50 Exhaust nozzle 51 Exhaust Hole 53 Lower portion 54 Inclined side surface 55 Tip edge CL Center axis PL Virtual plane

Claims (6)

  1.  大気圧近傍下においてフッ素系反応成分を含有する処理ガスを、シリコン含有物を含む被処理基板に接触させて前記シリコン含有物をエッチングするエッチング装置において、
     前記被処理基板を仮想の平面上に支持する支持部と、
     前記処理ガスを吹き出す吹き出し孔を有して前記仮想平面の巾方向に延びるノズルと、
     前記被処理基板を前記ノズルに対し前記仮想平面に沿いかつ前記巾方向と直交する搬送方向に相対移動させる搬送手段と、
     を備え、前記ノズルが、極細をなして前記巾方向に延びる先端縁と、前記搬送方向の両側において一対をなして前記先端縁に近づくにしたがって互いに接近する傾斜側面とを有して、前記巾方向と直交する断面が前記仮想平面に向かって尖り、前記吹き出し孔が前記巾方向に分布して前記先端縁に開口しており、前記先端縁と前記仮想平面との間に反応場が画成され、前記一対の傾斜側面と前記仮想平面との間には、前記反応場から前記搬送方向に遠ざかるにしたがって前記仮想平面と直交する方向に拡開する拡散空間が画成されていることを特徴とするエッチング装置。
    In an etching apparatus for etching a silicon-containing material by bringing a processing gas containing a fluorine-based reaction component into contact with a substrate to be processed containing the silicon-containing material under atmospheric pressure,
    A support unit for supporting the substrate to be processed on a virtual plane;
    A nozzle having a blowing hole for blowing out the processing gas and extending in the width direction of the virtual plane;
    Transport means for moving the substrate to be processed relative to the nozzle in the transport direction along the virtual plane and perpendicular to the width direction;
    The nozzle includes a tip edge that is extremely thin and extends in the width direction, and inclined side surfaces that form a pair on both sides in the transport direction and approach each other as they approach the tip edge. A cross section perpendicular to the direction is pointed toward the virtual plane, the blowing holes are distributed in the width direction and open to the tip edge, and a reaction field is defined between the tip edge and the virtual plane. In addition, a diffusion space is formed between the pair of inclined side surfaces and the virtual plane so as to expand in a direction orthogonal to the virtual plane as the distance from the reaction field increases in the transport direction. Etching equipment.
  2.  前記吹き出し孔における前記処理ガスの平均吹き出し流速が、0.1m/s~1.0m/sであることを特徴とする請求項1に記載のエッチング装置。 2. The etching apparatus according to claim 1, wherein an average blowing flow rate of the processing gas in the blowing hole is 0.1 m / s to 1.0 m / s.
  3.  前記吹き出し孔における前記処理ガスの平均吹き出し流速が、0.2m/s~0.6m/sであることを特徴とする請求項1又は2に記載のエッチング装置。 3. The etching apparatus according to claim 1, wherein an average blowing flow rate of the processing gas in the blowing hole is 0.2 m / s to 0.6 m / s.
  4.  前記ノズルには、ガス吸引手段に連なる吸い込み孔が形成され、前記吸い込み孔が、前記吹き出し孔と接するようにして前記先端縁に開口していることを特徴とする請求項1~3の何れか1項に記載のエッチング装置。 4. The nozzle according to claim 1, wherein a suction hole connected to the gas suction means is formed in the nozzle, and the suction hole is opened at the tip edge so as to be in contact with the blowout hole. 2. The etching apparatus according to item 1.
  5.  前記仮想平面を挟んで前記ノズルと対向する整流板を前記仮想平面に沿うように設け、前記整流板が、前記一対の傾斜側面より前記搬送方向の両側に延び出ていることを特徴とする請求項1~4の何れか1項に記載のエッチング装置。 A rectifying plate facing the nozzle across the virtual plane is provided along the virtual plane, and the rectifying plate extends from the pair of inclined side surfaces to both sides in the transport direction. Item 5. The etching apparatus according to any one of Items 1 to 4.
  6.  前記処理ガスを前記ノズルに供給する処理ガス供給部を更に備え、前記処理ガス供給部が、互いの間に大気圧近傍下で放電を生成する一対の電極を有するプラズマ生成部を含み、フッ素含有成分及び水素含有添加成分を含有する原料ガスを前記一対の電極間の空間に導入してプラズマ化することにより、前記フッ素系反応成分を生成することを特徴とする請求項1~5の何れか1項に記載のエッチング装置。 The apparatus further includes a processing gas supply unit that supplies the processing gas to the nozzle, and the processing gas supply unit includes a plasma generation unit that includes a pair of electrodes that generate a discharge under atmospheric pressure between each other, and contains fluorine 6. The fluorine-based reaction component is generated by introducing a raw material gas containing a component and a hydrogen-containing additive component into the space between the pair of electrodes to generate plasma. 2. The etching apparatus according to item 1.
PCT/JP2011/071639 2010-09-29 2011-09-22 Apparatus for etching silicon-containing material WO2012043384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010218932A JP2013251290A (en) 2010-09-29 2010-09-29 Silicone-containing material etching device
JP2010-218932 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043384A1 true WO2012043384A1 (en) 2012-04-05

Family

ID=45892835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071639 WO2012043384A1 (en) 2010-09-29 2011-09-22 Apparatus for etching silicon-containing material

Country Status (3)

Country Link
JP (1) JP2013251290A (en)
TW (1) TW201220391A (en)
WO (1) WO2012043384A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233433B (en) * 2014-04-16 2019-03-05 Agc株式会社 Etaching device, engraving method, the manufacturing method of substrate and substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006211A (en) * 2001-09-27 2004-01-08 Sekisui Chem Co Ltd Plasma treatment device
JP2009099880A (en) * 2007-10-19 2009-05-07 Sekisui Chem Co Ltd Plasma etching apparatus
JP2010087077A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Surface processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006211A (en) * 2001-09-27 2004-01-08 Sekisui Chem Co Ltd Plasma treatment device
JP2009099880A (en) * 2007-10-19 2009-05-07 Sekisui Chem Co Ltd Plasma etching apparatus
JP2010087077A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Surface processing apparatus

Also Published As

Publication number Publication date
JP2013251290A (en) 2013-12-12
TW201220391A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TWI415185B (en) Etching method and device
WO2003107409A1 (en) Oxide film forming method and oxide film forming apparatus
JP4540729B2 (en) Method and apparatus for etching silicon-containing film
JP2009099880A (en) Plasma etching apparatus
KR20090094404A (en) Etching method and apparatus, and subject to be processed
JP5670229B2 (en) Surface treatment method and apparatus
KR101248625B1 (en) Method and apparatus for etching silicon-containing film
WO2012043384A1 (en) Apparatus for etching silicon-containing material
JP2009224366A (en) Etching apparatus
JP2019071407A (en) Surface treatment method and apparatus
JP4783409B2 (en) Plasma CVD equipment
JP2004039993A (en) Plasma cvd method and plasma cvd apparatus
JP5743649B2 (en) Etching apparatus and method
JP2009260181A (en) Etching apparatus and method of manufacturing the same, etching method using the etching device and treated object
JP2010062433A (en) Method and apparatus for etching silicon-containing film
TWI428983B (en) Etching method and device
JP2009094209A (en) Etching method of silicon
JP2010245404A (en) Surface treatment apparatus
JP4693544B2 (en) Plasma generating electrode, plasma processing apparatus, and plasma processing method
JP2010245405A (en) Method for roughening silicon surface
JP2019071346A (en) Surface treatment method and apparatus
JP6941531B2 (en) Surface treatment equipment
JP2012216582A (en) Etching method for silicon-containing material
JP4394939B2 (en) Plasma deposition system
JP2019067898A (en) Etching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP