WO2012043030A1 - Surface brazing method of aluminum alloy material - Google Patents

Surface brazing method of aluminum alloy material Download PDF

Info

Publication number
WO2012043030A1
WO2012043030A1 PCT/JP2011/066790 JP2011066790W WO2012043030A1 WO 2012043030 A1 WO2012043030 A1 WO 2012043030A1 JP 2011066790 W JP2011066790 W JP 2011066790W WO 2012043030 A1 WO2012043030 A1 WO 2012043030A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
aluminum alloy
mass
temperature
alloy member
Prior art date
Application number
PCT/JP2011/066790
Other languages
French (fr)
Japanese (ja)
Inventor
貴訓 小久保
堀 久司
智浩 佐々木
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201180040501.7A priority Critical patent/CN103068512B/en
Priority to KR1020137007376A priority patent/KR101504046B1/en
Publication of WO2012043030A1 publication Critical patent/WO2012043030A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a method of brazing aluminum alloy members to each other without flux in an inert gas atmosphere using a brazing sheet.
  • the conventional brazing techniques have been based on line contact so that a fillet shape is obtained.
  • a brazing method for example, when the lower plate is a brazing sheet and a plate-like fin is joined vertically thereto, the molten brazing material flows on the brazing sheet to form a fillet.
  • brazing is generally performed using a flux in the air or in an inert gas atmosphere in order to suppress oxidation during brazing heating. ing.
  • a brazing sheet in which three or five clad layers are formed and an Al—Si alloy brazing material is clad as an intermediate material between a thin skin material and a core material is brazed in an inert gas with no flux.
  • a method has been developed.
  • an Al—Si alloy brazing material is used as an intermediate material between a thin skin material and a core material, and the thin skin material and the core material have a solidus temperature higher than the liquidus temperature of the brazing material.
  • An aluminum alloy is used, the thickness of the entire brazing sheet is 0.05 to 2.0 mm, and the clad rate of the thin skin material is set to 0.1 to 10%.
  • This thin skin material is a brazing material melted by heating.
  • an aluminum alloy brazing sheet that is brazed without flux in an inert gas atmosphere that is a thin skin material that melts in contact therewith.
  • a demand for a heat exchange system that cools heat generated by an in-vehicle IGBT or the like by surface contact is increasing, and a technique for brazing the surfaces of aluminum plate materials with a brazing material is required.
  • a brazing material is inserted between the surfaces of the aluminum plate material and brazing heating is performed, so that void defects or the like are likely to occur at the joint, and the use of flux makes it easy to contain the flux. ing.
  • the aluminum thin laminated plate material is made of a thin laminated plate material having a three-layer structure
  • the core material is made of a brazing material having a melting point of 600 ° C.
  • both skin materials are made of an aluminum alloy having a melting point higher than that of the core material, and
  • 0.1 to 6% (mass%, the same shall apply hereinafter) of Mg or 0.01 to 1% of Bi is further added to one or more of the core materials, and the entire overlapped member is pressed and adhered.
  • the aluminum alloy is heated to a temperature not lower than the liquidus temperature of the brazing material and not exceeding the minimum value of the solidus temperature of each member other than the brazing material.
  • Atmospheric flux-free superimposed brazing method has been developed of. Japanese Patent No.
  • 4547032 discloses an Al—Si brazing material containing, by mass, 0.1 to 5.0% Mg and 3 to 13% Si, with the balance being Al and inevitable impurities.
  • An aluminum clad material that is clad by a material and located on the outermost surface is heated by bringing the Al-Si brazing material and a member to be brazed into close contact with each other in a non-oxidizing atmosphere without pressure reduction, and heating the core material And a method for joining the brazing target member.
  • the brazing sheet used is a three-layer or five-layer clad material, although it can be laminated and brazed without flux in the atmosphere by the techniques proposed in the above-mentioned Patent Nos. 3780380 and 3701847. Cost will increase. Further, in the technique proposed in Japanese Patent No. 4547032, the contact state between the brazing material and the member to be brazed is merely ambiguously defined as “contact adhesion”, so that a stable brazed state is obtained. It was difficult. Therefore, it is desired to develop a surface brazing technique that is low in cost and stable in quality as compared with the prior art.
  • the present invention has been devised to solve such a problem, and an object thereof is to provide a technique for brazing two aluminum alloy members to each other with a single layer brazing sheet without flux. It is. It is another object of the present invention to provide a technique for brazing one aluminum alloy member and a skin material constituting the two-layer brazing sheet with a two-layer brazing sheet.
  • the surface brazing method for an aluminum alloy member of the present invention includes Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, with the balance being Al and inevitable impurities.
  • the aluminum alloy members are brazed to each other using a single layer brazing sheet made of a brazing material with a thickness of 15 to 200 ⁇ m, and the brazing sheet has a solidus temperature of 570 ° C.
  • the surface pressure of 0.6 gf / mm 2 or more is applied while maintaining the brazing temperature at 570 ° C. or higher in an inert gas atmosphere in a state of sandwiching the surfaces between the aluminum alloy members as described above.
  • it is characterized by brazing aluminum alloy members without flux. Further, it contains Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, and the balance is composed of Al and inevitable impurities, and the brazing material and solid phase have a thickness of 15 to 200 ⁇ m.
  • a method of brazing an aluminum alloy member and the skin material using a two-layer brazing sheet comprising a skin material made of an aluminum alloy plate having a linear temperature of 570 ° C. or higher, the two-layer brazing sheet 0.6 gf / mm 2 while maintaining the brazing temperature at 570 ° C. or higher in an inert gas atmosphere in a state where the brazing filler metal surface is in surface contact with an aluminum alloy member having a solidus temperature of 570 ° C. or higher.
  • the aluminum alloy member and the skin material may be brazed without flux while applying the above surface pressure.
  • Cu, Mn, and Zn as unavoidable impurities contained in the brazing material are each preferably less than 1.0% by mass.
  • the brazing material is preferably 15 to 150 ⁇ m thick, more preferably 20 to 100 ⁇ m thick.
  • the aluminum alloy member to be surface brazed is AA1000 type, and the oxide film formed on the brazed surface preferably has a thickness of 30 nm or less.
  • the solidus temperature of the aluminum alloy member or the aluminum alloy member and the skin material is preferably 580 ° C. or higher, and the brazing temperature is 580 ° C. or higher.
  • the holding time at the brazing temperature during surface brazing is preferably 2 minutes or more, particularly 5 minutes or more.
  • the inert gas at the time of surface brazing is nitrogen gas, and the oxygen concentration of the inert gas is 500 ppm or less.
  • a single layer brazing sheet or a two-layer brazing sheet allows two aluminum alloy members to be flux-free and a surface pressure between the two aluminum alloy members. And brazing the surface. Since a brazing sheet made of a three-layer or five-layer clad material is not used but a single-layer or two-layer brazing sheet is used, the overall cost can be reduced. Moreover, since the surface pressure is applied between the two aluminum alloy members without using the flux and brazing is performed, void defects or the like that are likely to occur between the two aluminum alloy members can be suppressed. Stable surface brazing can be performed.
  • FIG. 1 is a diagram for explaining the shape of an inverted T-shaped test piece.
  • FIG. 2 is a conceptual diagram illustrating a small brazing test furnace.
  • FIG. 3 is a conceptual diagram illustrating a shear test method.
  • FIG. 4 is a diagram showing the influence of brazing temperature and holding time.
  • FIG. 5 is a diagram showing the influence of the amount of Mg added in the brazing material.
  • FIG. 6 is a diagram showing the influence of the amount of Si added in the brazing material.
  • FIG. 7 is a diagram showing the influence of the impurity content in the brazing material.
  • FIG. 8 is a diagram showing the influence of the thickness of the brazing material.
  • FIG. 9 is a diagram illustrating the influence of the applied pressure during brazing.
  • FIG. 10 is a diagram showing the influence of the oxide film thickness on the surface of the Al alloy material to be brazed.
  • FIG. 11 is a diagram showing the influence of the oxygen concentration in the brazing atmosphere.
  • the brazing material is inserted between the surfaces of the aluminum alloy members to be joined and brazing heating is performed, so void defects are likely to occur at the joint, and flux is contained when using flux. It becomes an easy structure. For this reason, the quality of brazed products tends to vary.
  • the clad material of 3 layers or 5 layers is used as a brazing sheet, it is expensive. Therefore, the inventors of the present invention have reached the present invention in the process of earnestly studying a surface brazing method that is lower in cost and stable in quality than the prior art. Details will be described below.
  • a brazing sheet is sandwiched between two aluminum alloy members and the brazing sheet is sufficiently dissolved in a state where the brazing sheet is in contact with the brazing material. It is a method of wet brazing and brazing.
  • one aluminum alloy member may be an aluminum alloy plate, or both may be aluminum alloy plates.
  • an engaging portion may be provided so that parts made of aluminum alloy can be connected to each other, and a portion where the brazing sheet is sandwiched may be provided in the engaging portion.
  • the material to be joined is not limited to the aluminum alloy plate, and may be anything made of an aluminum alloy having a smooth surface that can be brazed at least partially.
  • the brazing filler metal is sufficiently dissolved in a state in which the brazing filler metal surface of the two-layer brazing sheet made of the brazing filler metal and the skin material is in surface contact with the aluminum alloy member.
  • the surface of the skin material constituting the brazing sheet is wetted with a brazing material and brazed.
  • the aluminum alloy member may be an aluminum alloy plate.
  • the material to be joined is not limited to the aluminum alloy plate, and may be anything made of an aluminum alloy having a smooth surface that can be brazed at least partially.
  • the aluminum alloy member to which the surface brazing method of the present invention is applied is made of an aluminum alloy having a solidus temperature of 570 ° C. or higher.
  • a brazing temperature of 570 ° C. or higher is required to sufficiently dissolve the brazing material, and as an aluminum alloy member to be joined, It is necessary to apply to those whose solidus temperature is 570 ° C. or higher. If the solidus temperature of the aluminum alloy member to be joined is less than 570 ° C., at least a part of the aluminum alloy member may be melted during surface brazing heating. A more preferable solidus temperature of the aluminum alloy member is 575 ° C. or higher. A more preferable solidus temperature of the aluminum alloy member is 580 ° C. or higher.
  • a skin material when a skin material is used in the second invention, it is necessary to use a skin material made of an aluminum alloy having a solidus temperature of 570 ° C. or higher.
  • the brazing filler metal surface of the two-layer brazing sheet composed of the brazing filler metal and the skin material is in surface contact with the aluminum alloy member, the brazing filler metal is sufficiently dissolved so that the interface between the aluminum alloy member and the skin material is brazed. Therefore, a brazing temperature of 570 ° C. or higher is required to sufficiently dissolve the brazing material.
  • the solidus temperature of the skin material constituting the two-layer brazing sheet needs to be 570 ° C. or higher.
  • the brazing sheet is composed of a single layer of brazing material having a predetermined thickness and composition, or has two layers of brazing material and skin material in order to reduce costs. Is in the point of using. First, the brazing material will be described.
  • Si As a brazing material, Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, the balance is an alloy having a component composition composed of Al and inevitable impurities, and has a thickness of 15 to 200 ⁇ m An aluminum alloy thin plate is used.
  • Si: 3 to 12% by mass Si is an element for lowering the temperature of the liquidus line of the brazing sheet depending on its content and improving wettability during surface brazing. When the Si content is less than 3% by mass, the temperature of the liquidus line of the brazing sheet becomes too high, and even if the brazing sheet reaches a predetermined brazing temperature, the brazing sheet is not sufficiently dissolved, and sufficient brazing is performed. Strength (shear stress) may not be obtained.
  • the Si content in the brazing filler metal is in the range of 3 to 12% by mass.
  • a more preferable Si content is in the range of 4 to 12% by mass.
  • a more preferable Si content is in the range of 5 to 12% by mass.
  • Mg 0.1 to 5.0% by mass Since Mg acts as a reducing agent when oxidized itself, Mg suppresses oxidation of aluminum at the interface between the aluminum alloy plate and the brazing material of the brazing sheet due to brazing heating, and improves wettability during surface brazing. It is considered to be an element for improvement. If the Mg content is less than 0.1% by mass, depending on the brazing temperature and holding time, the effect is insufficient and sufficient brazing strength (shear stress) may not be obtained. . When the Mg content exceeds 5.0% by mass, the load on the roll when hot rolling the ingot is increased, and ear cracks also occur, so that hot rolling becomes difficult.
  • the Mg content in the brazing filler metal is in the range of 0.1 to 5.0% by mass.
  • a more preferable Mg content is in the range of 0.2 to 4.0% by mass.
  • a more preferable Mg content is in the range of 0.3 to 3.0% by mass.
  • Remainder Al and inevitable impurities
  • inevitable impurities include Fe, Cu, Mn, Zn, etc. These elements include Fe: less than 1.0 mass%, Cu: less than 1.0 mass%, Mn: If it is the range of less than 1.0 mass% and Zn: less than 1.0 mass%, the effect of this invention is not prevented. Therefore, the content of the components as inevitable impurities is preferably less than 1.0% by mass.
  • Cr, Ni, Zr, Ti, V, B, Sr, Sb, Ca, Na, and the like can be considered, but Cr: less than 0.5 mass%, Ni: less than 0.5 mass% Zr: less than 0.2% by mass; Ti: less than 0.2% by mass; V: less than 0.1% by mass; B: less than 0.05% by mass; Sr: less than 0.05% by mass; If it is in the range of less than 05% by mass, Ca: less than 0.05% by mass, and Na: less than 0.01% by mass, the performance characteristics of the brazing sheet according to the present invention will not be significantly impaired. May be included.
  • the thickness of the brazing material constituting the brazing sheet 15 to 200 ⁇ m
  • the thickness of the brazing material constituting the single-layer brazing sheet according to the first invention may be any thickness that can achieve sound surface brazing. If the thickness is less than 15 ⁇ m, sufficient brazing strength may not be obtained. When the thickness exceeds 200 ⁇ m, the amount of the brazing material that oozes out from the joint surface becomes too large, resulting in an increase in cost. Accordingly, the thickness range of the brazing material is 15 to 200 ⁇ m.
  • a more preferable thickness range is 15 to 150 ⁇ m.
  • a more preferable thickness range is 20 to 100 ⁇ m.
  • Manufacturing method of single layer type brazing sheet made of brazing material For example, a single layer type brazing sheet made of 100 ⁇ m thick brazing material is manufactured as follows. Ingots, scraps, and the like as raw materials are blended and put into a melting furnace to melt a molten aluminum having a predetermined brazing material composition.
  • the melting furnace is generally a burner furnace in which the raw material is heated and melted directly by a burner flame. After the molten aluminum reaches a predetermined temperature, for example, 800 ° C., an appropriate amount of the flux for removing the debris is added, and the molten metal is stirred with a stirring rod to dissolve all raw materials.
  • an additional raw material such as Mg
  • an additional raw material such as Mg
  • the metal soot floating on the surface is removed.
  • the molten aluminum is cooled to a predetermined temperature, for example, 740 ° C.
  • the molten aluminum is poured out from the hot water outlet into a bowl, and if necessary, casting is started through an inline rotary degasser, a CFF filter, and the like.
  • a melting furnace and a holding furnace are provided side by side, after the molten metal melted in the melting furnace is transferred to the holding furnace, casting is started after further sedation or the like in the holding furnace.
  • the jacket of the DC casting machine may be a single pour, but may be a multi-pour that places importance on production efficiency. For example, while pouring through a dip tube and float into a water-cooled mold of 700 mm ⁇ 450 mm size, the lower mold is lowered at a casting speed of 60 mm / min, and direct water cooling (Direct) is performed on the solidified shell layer at the bottom of the water-cooled mold. While performing (Chill), the molten metal in the sump is solidified and cooled to obtain a slab having a predetermined size, for example, 700 mm ⁇ 450 mm ⁇ 4500 mm. After the end of casting, the front and rear ends of the slab are cut and double-sided with 25mm on one side.
  • Direct direct water cooling
  • the 400mm-thick slab is inserted into a soaking furnace and homogenized at 450-540 ° C for 1-12 hours ( HO treatment). After the homogenization treatment, the slab is taken out from the soaking furnace, subjected to several passes of hot rolling by a hot rolling mill, and, for example, cut in a state of 40 mm thickness to obtain a 40 mm thick hot rolled plate ( Flat plate) One sheet of 700 mm ⁇ 40 mm ⁇ 4000 mm is secured. Thereafter, most of the remaining hot-rolled sheets are subsequently hot-rolled in several passes by a hot rolling mill to obtain, for example, a 6 mm-thick hot-rolled sheet coil (Reroll).
  • the 6 mm thick hot rolled plate coil is subjected to several passes of cold rolling to obtain a single layer brazing sheet made of a brazing material having a predetermined thickness, for example, 100 ⁇ m.
  • a brazing material having a predetermined thickness, for example, 100 ⁇ m.
  • the coil is inserted into an annealer and subjected to an intermediate annealing treatment at a holding temperature of 300 to 450 ° C. It is desirable to soften the plate.
  • the skin material in the two-layer brazing sheet according to the second invention may be an aluminum alloy having a solidus temperature of 570 ° C.
  • the thickness of the skin material is preferably 100 ⁇ m or more.
  • a more preferable thickness of the skin material is 150 ⁇ m or more.
  • a more preferable thickness of the skin material is 200 ⁇ m or more.
  • the thickness of the skin material is larger than the thickness of the brazing material.
  • the brazing material type is AA4045 alloy and the thickness is 60 ⁇ m
  • a two-layer brazing sheet in which the skin material type is AA1100 alloy and the thickness is 500 ⁇ m may be used. 2.
  • a two-layer brazing sheet comprising a brazing material and a skin material
  • a two-layer brazing sheet comprising a brazing material having a thickness of 40 ⁇ m and a skin material having a thickness of 400 ⁇ m is produced as follows.
  • a slab of 700 mm ⁇ 450 mm ⁇ 4500 mm having a predetermined skin material composition is obtained by DC casting.
  • the slab after chamfering having a thickness of 400 mm made of the above-mentioned skin material composition and 40 mm made of the brazing material composition secured as described above.
  • a thick hot-rolled plate (flat plate) 700 mm ⁇ 40 mm ⁇ 4000 mm (one sheet) is temporarily joined in a state of being bonded on a 700 mm ⁇ 4000 mm surface.
  • This two-layer clad slab is inserted into a soaking furnace and subjected to a homogenization treatment (HO treatment) at 450 to 540 ° C. for 1 to 12 hours. After the homogenization treatment, the slab is taken out of the soaking furnace and subjected to several passes of hot rolling with a hot rolling mill to obtain, for example, a 6 mm thick hot rolled sheet coil (Reroll).
  • HO treatment homogenization treatment
  • Reroll 6 mm thick hot rolled sheet coil
  • This hot-rolled plate coil is subjected to several passes of cold rolling to form a two-layer type comprising a brazing material (thickness 40 ⁇ m) and a skin material (thickness 400 ⁇ m) having a predetermined thickness, for example, 440 ⁇ m Obtain a brazing sheet.
  • the coil is inserted into an annealer and subjected to an intermediate annealing treatment at a holding temperature of 300 to 450 ° C. It is desirable to soften the plate.
  • the second feature of the present invention is that a specific surface pressure is applied under an inert gas atmosphere in order to perform surface brazing without flux and to obtain a sufficient brazing strength (shear stress) at the joint surface. This is the point to braze.
  • a specific surface pressure is applied under an inert gas atmosphere in order to perform surface brazing without flux and to obtain a sufficient brazing strength (shear stress) at the joint surface. This is the point to braze.
  • the brazing sheet (brazing material) as described above under an inert gas atmosphere and wet the interface between the aluminum alloy members or the interface between the skin material and the aluminum alloy member. It is necessary to hold at a holding temperature of 570 ° C. or higher for a predetermined time. For this reason, even during brazing heating, it is necessary to perform brazing in an inert gas atmosphere in order to suppress oxidation of the brazing surface of the aluminum alloy member or the brazing material surface of the brazing sheet. .
  • the inert gas nitrogen gas, argon gas, helium gas, or the like can be used.
  • the oxygen concentration in the inert gas is preferably 500 ppm or less. If the oxygen concentration in the inert gas exceeds 500 ppm, the joint strength (shear stress) after surface brazing decreases. A more preferable oxygen concentration in the inert gas is 100 ppm. A more preferable oxygen concentration in the inert gas is 10 ppm or less. Specifically, for the industrial nitrogen gas, since the standard is defined as an oxygen concentration of 10 ppm or less, it is most preferable to use the industrial nitrogen gas from the viewpoint of cost.
  • the inert gas may be injected to replace the atmosphere in the heating device with the inert gas before reaching a predetermined holding temperature. Additional surface pressure: 0.6 gf / mm 2 or more
  • a brazing sheet (brazing material) having a predetermined composition is dissolved and the brazing material and the aluminum alloy member are in surface contact.
  • brazing heating is performed, and at this time, it is necessary to maintain a predetermined brazing temperature while applying a surface pressure of 0.6 gf / mm 2 or more to the joint surface.
  • a surface pressure of 0.6 gf / mm 2 or more it is possible to perform surface brazing by applying a surface pressure of 0.6 gf / mm 2 or more to the joint surface after reaching a predetermined holding temperature without applying surface pressure during brazing heating. Good.
  • the surface pressure is less than 0.6 gf / mm 2 , sufficient brazing strength (shear stress) cannot be obtained.
  • the surface pressure applied to the joint surface is high.
  • a more preferable surface pressure is 1.0 gf / mm 2 or more.
  • a more preferable surface pressure is 2.0 gf / mm 2 or more.
  • Brazing temperature condition maintained at 570 ° C. or higher
  • a brazing sheet (brazing material) having a predetermined composition is dissolved, and the interface between the aluminum alloy members or the skin material and the aluminum alloy member It is necessary that the brazing temperature be at least 570 ° C. or higher in order to wet the interface of the surface and reliably braze the surface to ensure sufficient brazing strength (shear strength).
  • the brazing temperature is less than 570 ° C.
  • the brazing material is not sufficiently dissolved, and sufficient brazing strength (shear strength) cannot be obtained.
  • the holding temperature is 575 ° C. or higher.
  • a more preferable holding temperature is 580 ° C. or higher.
  • Brazing holding time The holding time at the brazing temperature is preferably 2 minutes or more. Although depending on the brazing temperature, if the holding time is less than 2 minutes, sufficient brazing strength (shear strength) cannot be obtained due to uneven temperature at the joint surface. A more preferable holding time is 5 minutes or more.
  • the sedation was performed for 30 minutes, and the cocoon floating on the surface of the molten metal was removed with a stirring rod, and a disk sample was collected with a spoon as a mold for component analysis.
  • the crucible was sequentially taken out from the electric furnace using a jig, and molten aluminum was cast into five molds (70 mm ⁇ 70 mm ⁇ 15 mm) preheated to 200 ° C.
  • the disk sample of each sample was subjected to composition analysis by emission spectroscopic analysis. The results are shown in Table 1.
  • the ingot was chamfered by 3 mm after cutting the hot water to a thickness of 9 mm.
  • the ingot is charged into an electric heating furnace, heated to 480 ° C.
  • Hot rolling was applied. Thereafter, the hot-rolled plate was cold-rolled to obtain a cold-rolled plate having a thickness of 1.2 mm, and subjected to primary intermediate annealing at 390 ° C. for 2 hours in order to soften. Further, it was cold-rolled to form a cold rolled sheet having a thickness of 0.3 mm, and subjected to secondary intermediate annealing at 390 ° C. ⁇ 2 hours for softening. Further, cold rolling was performed to obtain a final cold rolled plate of 0.06 mm (60 ⁇ m).
  • the block B was erected at the center on the 35 mm ⁇ 35 mm surface of the block A so that the 15 mm ⁇ 8 mm surface of the block B (18 mm ⁇ 15 mm ⁇ 8 mm) of the block A was overlaid on the brazing sheet. Further, a weight of a predetermined mass for pressurization was placed on the upper surface of the block B, and the assembled block or the like was inserted into a test furnace covered with a quartz tube ( ⁇ 125 ⁇ 330 mm) as shown in FIG.
  • thermocouple attached to block A shows a predetermined brazing temperature while flowing industrial nitrogen gas (nitrogen with an oxygen concentration of 10 ppm or less) at a flow rate of 10 Nl / min to replace the atmosphere with inert gas
  • industrial nitrogen gas nitrogen with an oxygen concentration of 10 ppm or less
  • the output to the resistance wire was turned off and the assembled block or the like was cooled in the furnace.
  • the thermocouple attached to block A showed 400 ° C. or lower, the assembled block and the like were taken out of the furnace and cooled to room temperature.
  • the block A is preliminarily subjected to heat treatment at 600 ° C.
  • the oxide film thickness was 30 nm for the bonded material subjected to the heat treatment for 1 hour and the oxide film thickness was 90 nm for the bonded material subjected to the heat treatment at 600 ° C. for 5 hours.
  • Measurement of Shear Stress The inverted T-shaped test piece prepared as described above is fixed to a jig as shown in FIG. 3 and pressed from the end face (35 mm ⁇ 10 mm face) of the block A with an Amsler (strain rate: 1 mm). / Min), brazing strength (breaking shear stress) on the brazed surface was measured. The results are shown in Tables 2 to 9 and FIGS.
  • a D alloy brazing material (brazing material thickness: 60 ⁇ m) and a to-be-joined material (untreated material) are used, and industrial nitrogen ( A reverse T-shaped test piece was prepared by brazing under a condition of brazing temperature 605 ° C., holding time 10 minutes, and applied pressure 5.6 gf / mm 2 while flowing nitrogen (oxygen concentration of 10 ppm or less). It is.
  • the brazing temperature is preferably 580 ° C. or higher. It can also be seen that the brazing temperature holding time is preferably 2 minutes or longer, particularly 5 minutes or longer.
  • the preferable content of Mg is 0.5 to 3.0% by mass.
  • Si content sufficient shear stress is obtained for all the samples included in the range of 3.0 to 12.0% by mass, but some shear is obtained when the Si content is 3.0% by mass. The stress is low.
  • the preferable content of Si is 5.0 to 12.0% by mass.
  • Cu, Mn, and Zn which are unavoidable impurities, if it contains less than 1.0 mass%, it turns out that shear stress is hardly influenced.
  • the thickness of the brazing material if the thickness is 15 ⁇ m or more, sufficient shear stress is obtained for the time being, but when the thickness is 15 ⁇ m, the obtained shear stress is slightly low. Therefore, the thickness of the brazing material is preferably 20 ⁇ m or more. If it is too thick, the brazing filler metal becomes excessive, so that the upper limit is 200 ⁇ m as described above.
  • the applied pressure at the time of brazing if brazing is performed while applying a surface pressure of 0.6 gf / mm 2 or more, a sufficient shear stress is obtained for the time being.
  • a surface pressure of 1.0 gf / mm 2 or more in order to increase the shear stress.
  • the oxide film formed on the surface of the aluminum alloy member to be brazed exceeds 30 nm, the resulting shear stress is rapidly reduced. Therefore, the aluminum alloy member to be brazed should have an oxide film formed on the surface of less than 30 nm.
  • the atmosphere should be at least inert such as nitrogen. In particular, it can be seen that an inert gas atmosphere having an oxygen content of 500 ppm or less is preferable.

Abstract

Disclosed is a flux-free method of surface brazing two aluminum alloy members using a single-layer brazing sheet. While maintaining the brazing temperature at 570C or greater in an inert gas atmosphere and while applying a surface pressure of at least 0.6 gf/mm2, the aluminum alloy members, which have a solidus temperature of 570C or greater, are brazed flux-free in a state in which a single-layer brazing sheet 15-200μm thick comprising a brazing material (having a component composition of 3-12 mass% Si, 0.1-5.0 mass% Mg, and the remaining portion consisting of Al and unavoidable impurities) is positioned between and in surface contact with the aluminum alloy members.

Description

アルミニウム合金部材の面ろう付け方法Surface brazing method for aluminum alloy members
 本発明は、アルミニウム合金部材同士を、ブレージングシートを用いて不活性ガス雰囲気中、無フラックスで面ろう付けする方法に関する。 The present invention relates to a method of brazing aluminum alloy members to each other without flux in an inert gas atmosphere using a brazing sheet.
 例えばアルミニウム熱交換器のフィン材とチューブ材のろう付けに見られるように、これまでのろう付け技術は、フィレット形状が得られるような線接触を基本としていた。このようなろう付け法では、例えば下板がブレージングシートでありその上に板状のフィンを垂直に接合する場合に、溶融したろう材がブレージングシート上を流動してフィレットを形成することとなる。
 このような線接触を基本とするろう付け技術においては、ろう付け加熱中の酸化を抑制するため、大気中または不活性ガス雰囲気中においてフラックスを使用してろう付けすることが一般的に行なわれている。しかしながら、近年では、3層または5層のクラッド層を形成し、薄皮材と芯材との中間材としてAl−Si系合金ろう材をクラッドしたブレージングシートを不活性ガス中で無フラックスろう付けする方法が開発されている。
 例えば特許第3780380号公報では、薄皮材と芯材との中間材としてAl−Si系合金ろう材を用い、薄皮材及び芯材にはろう材の液相線温度より高い固相線温度を有するアルミニウム合金を用い、ブレージングシート全体の板厚が0.05~2.0mmであり、前記薄皮材のクラッド率が0.1~10%に設定され、この薄皮材は加熱によって溶融したろう材に接して溶解する薄皮材である不活性ガス雰囲気中で無フラックスでろう付けするアルミニウム合金ブレージングシートが提案されている。
 ところで、近年、車載用IGBT等の発熱を面接触で冷却する熱交換システムの需要が高まっており、アルミニウム板材の面同士をろう材によって面ろう付けする技術が必要とされている。
 この面ろう付け技術においては、アルミニウム板材の面同士の間にろう材を挿入してろう付け加熱を行なうため、接合部に空隙欠陥等が生じやすく、フラックスを使用するとフラックスを封じ込めやすい構造となっている。したがって、前記フィレット形成を基本とするろう付け技術に比べて非常に難しい技術となっている。
 この面ろう付けを大気中無フラックスで行なう技術について、例えば特許第3701847号公報によると、複数のアルミニウム母材の重ね合わせ界面に予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付けにおいて、アルミニウム薄合わせ板材が3層構造の薄合わせ板材からなり、その芯材は融点が600℃以下のろう材からなり、その両皮材は芯材より融点の高いアルミニウム合金からなり、かつ少なくとも皮材と芯材のいずれか一つ以上にMgを0.1~6%(質量%、以下同じ)あるいは更にBiを0.01~1%添加しており、重ね合わせた部材全体を加圧密着した状態で、ろう材の液相線温度以上でかつろう材以外の各部材の固相線温度の内の最低値を超えない範囲に加熱する事を特徴とするアルミニウム合金の大気中無フラックス重ねろう付け法が開発されている。
 また、特許第4547032号公報には、質量%で、Mgを0.1~5.0%、Siを3~13%含有し、残部がAlと不可避不純物からなるAl−Si系ろう材が芯材にクラッドされて最表面に位置するアルミニウムクラッド材を用い、減圧を伴わない非酸化性雰囲気で、前記Al−Si系ろう材とろう付け対象部材とを接触密着させて加熱し、前記芯材と前記ろう付け対象部材とを接合する方法が提示されている。
For example, as seen in the brazing of fins and tubes of aluminum heat exchangers, the conventional brazing techniques have been based on line contact so that a fillet shape is obtained. In such a brazing method, for example, when the lower plate is a brazing sheet and a plate-like fin is joined vertically thereto, the molten brazing material flows on the brazing sheet to form a fillet. .
In such a brazing technique based on line contact, brazing is generally performed using a flux in the air or in an inert gas atmosphere in order to suppress oxidation during brazing heating. ing. However, in recent years, a brazing sheet in which three or five clad layers are formed and an Al—Si alloy brazing material is clad as an intermediate material between a thin skin material and a core material is brazed in an inert gas with no flux. A method has been developed.
For example, in Japanese Patent No. 3780380, an Al—Si alloy brazing material is used as an intermediate material between a thin skin material and a core material, and the thin skin material and the core material have a solidus temperature higher than the liquidus temperature of the brazing material. An aluminum alloy is used, the thickness of the entire brazing sheet is 0.05 to 2.0 mm, and the clad rate of the thin skin material is set to 0.1 to 10%. This thin skin material is a brazing material melted by heating. There has been proposed an aluminum alloy brazing sheet that is brazed without flux in an inert gas atmosphere that is a thin skin material that melts in contact therewith.
By the way, in recent years, a demand for a heat exchange system that cools heat generated by an in-vehicle IGBT or the like by surface contact is increasing, and a technique for brazing the surfaces of aluminum plate materials with a brazing material is required.
In this surface brazing technique, a brazing material is inserted between the surfaces of the aluminum plate material and brazing heating is performed, so that void defects or the like are likely to occur at the joint, and the use of flux makes it easy to contain the flux. ing. Therefore, it is a very difficult technique compared to the brazing technique based on the fillet formation.
Regarding the technology for performing this surface brazing without flux in the atmosphere, for example, according to Japanese Patent No. 3701847, in the aluminum brazing performed by previously inserting an aluminum thin laminated plate material into the overlapping interface of a plurality of aluminum base materials, The aluminum thin laminated plate material is made of a thin laminated plate material having a three-layer structure, the core material is made of a brazing material having a melting point of 600 ° C. or less, both skin materials are made of an aluminum alloy having a melting point higher than that of the core material, and In addition, 0.1 to 6% (mass%, the same shall apply hereinafter) of Mg or 0.01 to 1% of Bi is further added to one or more of the core materials, and the entire overlapped member is pressed and adhered. In this state, the aluminum alloy is heated to a temperature not lower than the liquidus temperature of the brazing material and not exceeding the minimum value of the solidus temperature of each member other than the brazing material. Atmospheric flux-free superimposed brazing method has been developed of.
Japanese Patent No. 4547032 discloses an Al—Si brazing material containing, by mass, 0.1 to 5.0% Mg and 3 to 13% Si, with the balance being Al and inevitable impurities. An aluminum clad material that is clad by a material and located on the outermost surface is heated by bringing the Al-Si brazing material and a member to be brazed into close contact with each other in a non-oxidizing atmosphere without pressure reduction, and heating the core material And a method for joining the brazing target member.
 しかしながら、前述した特許第3780380号公報および特許第3701847号公報で提案された技術により、大気中無フラックスで重ねろう付けができるものの、用いるブレージングシートが3層又は5層のクラッド材であるためにコストが嵩むことになる。
 また、前記特許第4547032号公報で提案された技術では、ろう材とろう付け対象部材との接触状態を単に「接触密着」と曖昧に規定するのみであるため、安定したろう付け状態を得ることが困難であった。
 このため、従来技術に比べ低コストで品質の安定した面ろう付け技術の開発が望まれている。
 本発明は、このような課題を解決するために案出されたものであり、単層型ブレージングシートによって2つのアルミニウム合金部材同士を無フラックス面ろう付けする技術を提供することを目的とするものである。
 また、2層型ブレージングシートによって1つのアルミニウム合金部材と2層型ブレージングシートを構成する皮材とを無フラックス面ろう付けする技術を提供することを目的とするものである。
 本発明のアルミニウム合金部材の面ろう付け方法は、その目的を達成するために、Si:3~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材からなる単層ブレージングシートを用いてアルミニウム合金部材同士を面ろう付けする方法であって、前記ブレージングシートを固相線温度が570℃以上であるアルミニウム合金部材同士の間に挟みこみ面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度570℃以上に保持しつつ、0.6gf/mm以上の面圧を付加しながら無フラックスでアルミニウム合金部材同士をろう付けすることを特徴とする。
 また、Si:3~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材と固相線温度が570℃以上であるアルミニウム合金板からなる皮材とから構成される2層ブレージングシートを用いてアルミニウム合金部材と前記皮材とを面ろう付けする方法であって、前記2層ブレージングシートのろう材面を固相線温度が570℃以上であるアルミニウム合金部材と面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度570℃以上に保持しつつ、0.6gf/mm以上の面圧を付加しながら無フラックスで前記アルミニウム合金部材と前記皮材をろう付けしてもよい。
 前記ろう材に含まれる不可避的不純物としてのCu、Mn、Znは、それぞれ1.0質量%未満とすることが好ましい。
 また、前記ろう材は、厚さ15~150μm、さらには厚さ20~100μmとすることが好ましい。
 さらに、面ろう付けされるアルミニウム合金部材としては、AA1000系であり、特にろう付け面に形成されている酸化皮膜の厚みが30nm以下のものが好ましい。
 さらにまた、前記アルミニウム合金部材又は前記アルミニウム合金部材と前記皮材の固相線温度が580℃以上、かつ前記ろう付け温度が580℃以上であることが好ましい。
 そして、面ろう付け時の前記ろう付け温度における保持時間は2分以上に、特に5分以上とすることが好ましい。
 さらに、面ろう付け時の前記不活性ガスが窒素ガスで、特に前記不活性ガスの酸素濃度は500ppm以下とすることが好ましい。
 本発明により提供されるアルミニウム合金部材の面ろう付け方法によると、単層型ブレージングシート、或いは2層型ブレージングシートによって2つのアルミニウム合金部材をフラックスフリーで、かつ2つのアルミニウム合金部材間に面圧を付加して面ろう付けしている。
 3層又は5層のクラッド材からなるブレージングシートを用いるのではなく、単層型又は2層型のブレージングシートを用いているため、全体として低コスト化が図れる。またフラックスを用いることなく、2つのアルミニウム合金部材間に面圧を付加してろう付けしているため、両アルミニウム合金部材間に発生しやすい空隙欠陥等を抑制することができ、結果として品質の安定した面ろう付けが行える。
However, because the brazing sheet used is a three-layer or five-layer clad material, although it can be laminated and brazed without flux in the atmosphere by the techniques proposed in the above-mentioned Patent Nos. 3780380 and 3701847. Cost will increase.
Further, in the technique proposed in Japanese Patent No. 4547032, the contact state between the brazing material and the member to be brazed is merely ambiguously defined as “contact adhesion”, so that a stable brazed state is obtained. It was difficult.
Therefore, it is desired to develop a surface brazing technique that is low in cost and stable in quality as compared with the prior art.
The present invention has been devised to solve such a problem, and an object thereof is to provide a technique for brazing two aluminum alloy members to each other with a single layer brazing sheet without flux. It is.
It is another object of the present invention to provide a technique for brazing one aluminum alloy member and a skin material constituting the two-layer brazing sheet with a two-layer brazing sheet.
In order to achieve the object, the surface brazing method for an aluminum alloy member of the present invention includes Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, with the balance being Al and inevitable impurities. The aluminum alloy members are brazed to each other using a single layer brazing sheet made of a brazing material with a thickness of 15 to 200 μm, and the brazing sheet has a solidus temperature of 570 ° C. The surface pressure of 0.6 gf / mm 2 or more is applied while maintaining the brazing temperature at 570 ° C. or higher in an inert gas atmosphere in a state of sandwiching the surfaces between the aluminum alloy members as described above. However, it is characterized by brazing aluminum alloy members without flux.
Further, it contains Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, and the balance is composed of Al and inevitable impurities, and the brazing material and solid phase have a thickness of 15 to 200 μm. A method of brazing an aluminum alloy member and the skin material using a two-layer brazing sheet comprising a skin material made of an aluminum alloy plate having a linear temperature of 570 ° C. or higher, the two-layer brazing sheet 0.6 gf / mm 2 while maintaining the brazing temperature at 570 ° C. or higher in an inert gas atmosphere in a state where the brazing filler metal surface is in surface contact with an aluminum alloy member having a solidus temperature of 570 ° C. or higher. The aluminum alloy member and the skin material may be brazed without flux while applying the above surface pressure.
Cu, Mn, and Zn as unavoidable impurities contained in the brazing material are each preferably less than 1.0% by mass.
The brazing material is preferably 15 to 150 μm thick, more preferably 20 to 100 μm thick.
Further, the aluminum alloy member to be surface brazed is AA1000 type, and the oxide film formed on the brazed surface preferably has a thickness of 30 nm or less.
Furthermore, the solidus temperature of the aluminum alloy member or the aluminum alloy member and the skin material is preferably 580 ° C. or higher, and the brazing temperature is 580 ° C. or higher.
The holding time at the brazing temperature during surface brazing is preferably 2 minutes or more, particularly 5 minutes or more.
Furthermore, it is preferable that the inert gas at the time of surface brazing is nitrogen gas, and the oxygen concentration of the inert gas is 500 ppm or less.
According to the surface brazing method of an aluminum alloy member provided by the present invention, a single layer brazing sheet or a two-layer brazing sheet allows two aluminum alloy members to be flux-free and a surface pressure between the two aluminum alloy members. And brazing the surface.
Since a brazing sheet made of a three-layer or five-layer clad material is not used but a single-layer or two-layer brazing sheet is used, the overall cost can be reduced. Moreover, since the surface pressure is applied between the two aluminum alloy members without using the flux and brazing is performed, void defects or the like that are likely to occur between the two aluminum alloy members can be suppressed. Stable surface brazing can be performed.
 図1は、逆T字試験片の形状を説明する図である。
 図2は、小型ろう付け試験炉を説明する概念図である。
 図3は、せん断試験方法を説明する概念図である。
 図4は、ろう付け温度と保持時間の影響を示す図である。
 図5は、ろう材中のMg添加量の影響を示す図である。
 図6は、ろう材中のSi添加量の影響を示す図である。
 図7は、ろう材中の不純物含有量の影響を示す図である。
 図8は、ろう材の厚さの影響を示す図である。
 図9は、ろう付け時の加圧力の影響を示す図である。
 図10は、被ろう付けAl合金材表面の酸化物膜厚の影響を示す図である。
 図11は、ろう付け雰囲気中の酸素濃度の影響を示す図である。
FIG. 1 is a diagram for explaining the shape of an inverted T-shaped test piece.
FIG. 2 is a conceptual diagram illustrating a small brazing test furnace.
FIG. 3 is a conceptual diagram illustrating a shear test method.
FIG. 4 is a diagram showing the influence of brazing temperature and holding time.
FIG. 5 is a diagram showing the influence of the amount of Mg added in the brazing material.
FIG. 6 is a diagram showing the influence of the amount of Si added in the brazing material.
FIG. 7 is a diagram showing the influence of the impurity content in the brazing material.
FIG. 8 is a diagram showing the influence of the thickness of the brazing material.
FIG. 9 is a diagram illustrating the influence of the applied pressure during brazing.
FIG. 10 is a diagram showing the influence of the oxide film thickness on the surface of the Al alloy material to be brazed.
FIG. 11 is a diagram showing the influence of the oxygen concentration in the brazing atmosphere.
 通常、面ろう付けする際は、接合するアルミニウム合金部材の面同士の間にろう材を挿入してろう付け加熱を行なうため、接合部に空隙欠陥等が生じやすく、フラックスを使用するとフラックスを封じ込めやすい構造となってしまう。このためろう付け製品の品質にバラツキが生じ易い。また、従来の面ろう付け法では、3層または5層のクラッド材をブレージングシートとして用いているためにコスト高となっている。
 そこで、本発明者等は、従来技術に比べ低コストで品質の安定した面ろう付け法について鋭意検討を重ねる過程で、本発明に到達した。
 以下にその詳細を説明する。
 まず第1の発明は、2つのアルミニウム合金部材同士の間にろう材からなる単層ブレージングシートを挟み込み面接触させた状態で、ブレージングシートを十分に溶解させてアルミニウム合金部材同士の界面をろう材で濡らして面ろう付けする方法である。
 2つのアルミニウム合金部材のうち、一方のアルミニウム合金部材がアルミニウム合金板であってもよいし、両方ともアルミニウム合金板であっても構わない。例えばアルミニウム合金製の部品同士が連結できるように係合部を設けて、当該係合部にブレージングシートを挟み込める部位を設けるようにしてもよい。要するに本願第1発明において、被接合材はアルミニウム合金板に限定されず、少なくとも一部にろう付け可能な平滑面を有するアルミニウム合金製のものであれば何であってもよい。
 また第2の発明は、ろう材と皮材とからなる2層ブレージングシートのろう材面をアルミニウム合金部材と面接触させた状態で、前記ろう材を十分に溶解させてアルミニウム合金部材と2層ブレージングシートを構成する皮材の界面をろう材で濡らして面ろう付けする方法である。
 アルミニウム合金部材としては、アルミニウム合金板であってもよい。この第2の発明において、被接合材はアルミニウム合金板に限定されず、少なくとも一部にろう付け可能な平滑面を有するアルミニウム合金製のものであれば何であってもよい。
 本発明の面ろう付け法を適用するアルミニウム合金部材としては、固相線温度が570℃以上であるアルミニウム合金からなるものである。
 後記で詳述するAl−Si系のろう材を用いるとき、当該ろう材を十分に溶解するためには、570℃以上のろう付け温度が必要であり、被接合材であるアルミニウム合金部材としてはその固相線温度が570℃以上であるものに適用することが必要である。被接合材であるアルミニウム合金部材の固相線温度が570℃未満であると、面ろう付けの加熱において、アルミニウム合金部材の少なくとも一部が溶解してしまう可能性がある。より好ましいアルミニウム合金部材の固相線温度は575℃以上である。さらに好ましいアルミニウム合金部材の固相線温度は580℃以上である。
 また第2の発明において皮材を用いる場合、その皮材としても固相線温度が570℃以上であるアルミニウム合金からなるものを用いる必要がある。
 ろう材と皮材とからなる2層ブレージングシートのろう材面をアルミニウム合金部材と面接触させた状態で、前記ろう材を十分に溶解してアルミニウム合金部材と前記皮材との界面をろう材で濡らして面ろう付けすることになるため、前記ろう材を十分に溶解するには570℃以上のろう付け温度が必要である。このろう付け温度で皮材の溶解を抑制するには、2層ブレージングシートを構成する皮材の固相線温度は570℃以上であることが必要である。皮材の固相線温度が570℃未満であると、面ろう付け加熱によって、皮材の一部が溶解してしまう可能性がある。より好ましい皮材の固相線温度は575℃以上である。さらに好ましい皮材の固相線温度は580℃以上である。
 本発明の第一の特徴点は、コストを抑えるためにブレージングシートとして、所定の厚みと組成を有するろう材単層からなるものを使用するか、ろう材と皮材とからなる2層のものを使用した点にある。
 そこで、まずろう材について説明する。
 ろう材として、Si:3~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有する合金であって、厚さが15~200μmのアルミニウム合金薄板を用いる。
Si:3~12質量%
 Siは、その含有量によってブレージングシートの液相線の温度を下げるとともに、面ろう付け中の濡れ性を改善するための元素である。Si含有量が、3質量%未満であると、ブレージングシートの液相線の温度が高くなりすぎて、所定のろう付け温度に到達してもブレージングシートの溶解が不十分となり、十分なろう付け強度(せん断応力)が得られない可能性がある。Si含有量が、12質量%を超えると、鋳造中に鋳塊中央部に初晶Siが析出(晶出)する可能性が高くなり、仮に健全な熱延板が得られたとしてもミクロ的に均質な組織のブレージングシートを得ることが困難となる。
 したがって、ろう材中のSi含有量は、3~12質量%の範囲とする。より好ましいSi含有量は、4~12質量%の範囲である。さらに好ましいSi含有量は、5~12質量%の範囲である。
Mg:0.1~5.0質量%
 Mgは、自らが酸化されることにより、還元剤として作用するため、ろう付け加熱によるアルミニウム合金板とブレージングシートのろう材との界面におけるアルミニウムの酸化を抑制し、面ろう付け中の濡れ性を改善するための元素であると考えられる。Mg含有量が、0.1質量%未満であると、ろう付け温度や保持時間にもよるが、その効果が不十分となり、十分なろう付け強度(せん断応力)が得られない可能性がある。Mg含有量が、5.0質量%を超えると、鋳塊を熱延する際のロールへの負荷が大きくなり、また耳割れも生じるため、熱延が困難となる。
 したがって、ろう材中のMg含有量は、0.1~5.0質量%の範囲とする。より好ましいMg含有量は、0.2~4.0質量%の範囲である。さらに好ましいMg含有量は、0.3~3.0質量%の範囲である。
 残部:Alと不可避的不純物
 不可避的不純物としてはFe、Cu、Mn、Zn等が挙げられるが、これら元素については、Fe:1.0質量%未満、Cu:1.0質量%未満、Mn:1.0質量%未満、Zn:1.0質量%未満の範囲であれば、本発明の効果を妨げるものではない。したがって、不可避的不純物としての前記成分含有量はそれぞれ1.0質量%未満とすることが好ましい。
 また、その他の不純物元素として、Cr、Ni、Zr、Ti、V、B、Sr、Sb、Ca、Na等も考えられるが、Cr:0.5質量%未満、Ni:0.5質量%未満、Zr:0.2質量%未満、Ti:0.2質量%未満、V:0.1質量%未満、B:0.05質量%未満、Sr:0.05質量%未満、Sb:0.05質量%未満、Ca:0.05質量%未満、Na:0.01質量%未満の範囲であれば、本発明に係るブレージングシートの性能特性を大きく阻害することがないため、不可避的不純物として含んでいてもよい。Pb、Bi、Sn、Inについては、それぞれ0.02質量%未満、その他各0.02質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
ブレージングシートを構成するろう材の厚さ;15~200μm
 第1の発明に係る単層型ブレージングシートを構成するろう材の厚みは、健全な面ろう付けを達成できる厚みであればよい。厚みが15μm未満であると、十分なろう付け強度が得られない可能性がある。厚みが200μmを超えると、接合面から染み出すろう材の量が多くなりすぎて、コスト高となる。したがって、ろう材の厚みの範囲は、15~200μmとする。より好ましい厚みの範囲は、15~150μmである。さらに好ましい厚みの範囲は、20~100μmである。
ろう材からなる単層型ブレージングシートの製造方法
 例えば、100μm厚さのろう材からなる単層型ブレージングシートであれば、以下のように製造する。
 原料となるインゴット、スクラップ等を配合し、溶解炉に投入して、所定のろう材組成からなるアルミニウム溶湯を溶製する。溶解炉は、バーナーの火炎によって直接原料を加熱溶解するバーナー炉が一般的である。アルミニウム溶湯が所定の温度、例えば、800℃に達した後、適量の除滓用フラックスを投入して、攪拌棒により溶湯の攪拌を行い、全ての原料を溶解する。その後、成分調整のため、追加の原料、例えばMg等を投入し、30~60分程度の鎮静を行った後、表面に浮遊するメタル滓を除去する。アルミニウム溶湯が所定の温度、例えば、740℃にまで冷却された後、出湯口から樋に出湯し、必要に応じて、インライン回転脱ガス装置、CFFフィルター等を通し鋳造を開始する。なお、溶解炉と保持炉が併設されている場合には、溶解炉で溶製された溶湯を保持炉に移湯した後、保持炉でさらに鎮静等を行ってから鋳造を開始する。
 DC鋳造機のジャケットは、1本注ぎであってもよいが、生産効率を重視する多本注ぎのものであってもよい。例えば、700mm×450mmのサイズの水冷式鋳型内に、ディップチューブ、フロートを通して注湯しながら、鋳造速度60mm/minで下型を下げ、水冷式鋳型下部において凝固シェル層に対して直接水冷(Direct Chill)を行いつつ、サンプ内の溶湯を凝固冷却せしめ、所定の寸法、例えば、700mm×450mm×4500mm寸法のスラブを得る。鋳造終了後、スラブの先端、後端を切断して片面25mmの両面面削を施し、400mm厚さとしたスラブをソーキング炉に挿入して、450~540℃×1~12時間の均質化処理(HO処理)を施す。均質化処理後、スラブをソーキング炉から取り出して、熱間圧延機によって何パスかの熱間圧延を施して、例えば、40mm厚さとした状態で、切断して、40mm厚の熱間圧延板(平板)700mm×40mm×4000mmを1枚確保する。その後、残りの大部分の熱延板は引き続き熱間圧延機によって何パスかの熱間圧延を施し、例えば、6mm厚の熱間圧延板コイル(Reroll)を得る。
 この6mm厚の熱間圧延板コイルに何パスかの冷間圧延を施して、所定の厚さ、例えば、100μm厚さのろう材からなる単層型ブレージングシートを得る。なお、冷間圧延工程において、冷間圧延板の加工硬化が著しい場合には、必要に応じて、コイルをアニーラーに挿入し、保持温度300~450℃の中間焼鈍処理を施して、冷間圧延板を軟化させることが望ましい。
 第2の発明に係る2層型ブレージングシートを構成するろう材の厚みについても、同様である。15~200μmとする。
 なお、第2の発明に係る2層型ブレージングシートにおける皮材については、固相線温度が570℃以上であるアルミニウム合金であればよいのであって、その厚みについては特に限定はしない。
 しかしながら、ろう付け加熱温度にもよるが、皮材が薄すぎると、溶解したろう材が皮材から染み出すおそれがあるため、皮材の厚みは、100μm以上が好ましい。より好ましい皮材の厚みは150μm以上である。さらに好ましい皮材の厚みは200μm以上である。このように、第2の発明において、ろう材の厚みよりも皮材の厚みが厚い方が好ましい。例えば、ろう材の材種がAA4045合金で厚みが60μmである場合に、皮材の材種がAA1100合金で厚みが500μmである2層ブレージングシートを用いてもよい。
ろう材と皮材とからなる2層型ブレージングシートの製造方法
 例えば、40μm厚さのろう材と400μm厚さの皮材とならなる2層型ブレージングシートであれば、以下のように製造する。
 前述のように所定の皮材組成からなる700mm×450mm×4500mm寸法のスラブをDC鋳造によって得る。スラブの先端、後端を切断して片面25mmの両面面削を施した後、上記皮材組成からなる400mm厚の面削後スラブと、前述のように確保しておいたろう材組成からなる40mm厚の熱間圧延板(平板)700mm×40mm×4000mm(1枚)と、を700mm×4000mm面で貼り合わせた状態のまま仮接合する。この2層クラッドスラブをソーキング炉に挿入して、450~540℃×1~12時間の均質化処理(HO処理)を施す。均質化処理後、スラブをソーキング炉から取り出して、熱間圧延機によって何パスかの熱間圧延を施して、例えば、6mm厚の熱間圧延板コイル(Reroll)を得る。
 この熱間圧延板コイルに何パスかの冷間圧延を施して、所定の厚さ、例えば、440μm厚さのろう材(厚さ40μm)と皮材(厚さ400μm)とからなる2層型ブレージングシートを得る。なお、冷間圧延工程において、冷間圧延板の加工硬化が著しい場合には、必要に応じて、コイルをアニーラーに挿入し、保持温度300~450℃の中間焼鈍処理を施して、冷間圧延板を軟化させることが望ましい。
 本発明の第二の特徴点は、無フラックスで面ろう付けを行い、接合面において十分なろう付け強度(せん断応力)を得るためには、不活性ガス雰囲気下で特定の面圧を付加して面ろう付けを行う点である。
不活性ガス雰囲気下
 前述のようにブレージングシート(ろう材)を十分に溶解して、アルミニウム合金部材同士の界面、又は皮材とアルミニウム合金部材との界面を濡らして面ろう付けするためには、少なくとも保持温度570℃以上で所定時間保持することが必要である。
 このため、ろう付け加熱中であっても、アルミニウム合金部材のろう付け面の表面或いはブレージングシートのろう材面の酸化を抑制するために、不活性ガス雰囲気下で面ろう付けを行う必要がある。
 不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等が使用できる。また、不活性ガス中の酸素濃度は、500ppm以下であることが好ましい。不活性ガス中の酸素濃度が500ppmを超えると、面ろう付け後の接合強度(せん断応力)が低下する。
 より好ましい不活性ガス中の酸素濃度は100ppmである。さらに好ましい不活性ガス中の酸素濃度は10ppm以下である。具体的には、工業用窒素ガスについては、酸素濃度10ppm以下と規格が定められているので、コスト面からも工業用窒素ガスを使用することが最も好ましい。
 もちろん、ろう付け加熱中、ろう付け温度保持中及び冷却中は、加熱装置内を不活性ガス雰囲気で充満しておくことが好ましい。しかしながら、電磁誘導加熱のように急速加熱する場合には所定の保持温度に到達する前に、不活性ガスを噴射して加熱装置内の大気を不活性ガスに置換してもよい。
付加面圧;0.6gf/mm 以上
 本発明に係る面ろう付け方法において、所定の組成のブレージングシート(ろう材)を溶解して、ろう材とアルミニウム合金部材とを面接触させた状態で、ろう付け加熱を行うが、この際接合面に対して0.6gf/mm以上の面圧を付加しながら、所定のろう付け温度で保持する必要がある。もちろん、ろう付け加熱時には面圧を付加せずに、所定の保持温度に到達してから、接合面に対して0.6gf/mm以上の面圧を付加して面ろう付けを行ってもよい。
 面圧が0.6gf/mm未満の場合、十分なろう付け強度(せん断応力)を得ることができない。もちろん、面ろう付け後のろう付け強度(せん断応力)を十分に確保するためには接合面に対して付加する面圧は高い方が好ましい。したがって、より好ましい面圧は1.0gf/mm以上である。さらに好ましい面圧は2.0gf/mm以上である。
ろう付けの温度条件;570℃以上に保持
 本発明に係る面ろう付け方法において、所定の組成のブレージングシート(ろう材)を溶解して、アルミニウム合金部材同士の界面又は皮材とアルミニウム合金部材との界面を濡らして、確実に面ろう付けを行い、十分なろう付け強度(せん断強度)を確保するためには、少なくともろう付け温度570℃以上である必要がある。
 ろう付け温度が570℃未満である場合には、ろう材の溶解が不十分となり、十分なろう付け強度(せん断強度)が得られない。もちろん、保持温度が高い方がより十分なろう付け強度(せん断強度)が得られる。したがって、保持温度は、575℃以上とする。さらに好ましい保持温度は、580℃以上である。
ろう付けの保持時間
 ろう付け温度における保持時間は、2分以上であることが好ましい。ろう付け温度にもよるが、保持時間が2分未満であると、接合面における温度の不均一によって、十分なろう付け強度(せん断強度)が得られない。より好ましい保持時間は、5分以上である。
Normally, when brazing, the brazing material is inserted between the surfaces of the aluminum alloy members to be joined and brazing heating is performed, so void defects are likely to occur at the joint, and flux is contained when using flux. It becomes an easy structure. For this reason, the quality of brazed products tends to vary. Moreover, in the conventional surface brazing method, since the clad material of 3 layers or 5 layers is used as a brazing sheet, it is expensive.
Therefore, the inventors of the present invention have reached the present invention in the process of earnestly studying a surface brazing method that is lower in cost and stable in quality than the prior art.
Details will be described below.
First, in the first invention, a brazing sheet is sandwiched between two aluminum alloy members and the brazing sheet is sufficiently dissolved in a state where the brazing sheet is in contact with the brazing material. It is a method of wet brazing and brazing.
Of the two aluminum alloy members, one aluminum alloy member may be an aluminum alloy plate, or both may be aluminum alloy plates. For example, an engaging portion may be provided so that parts made of aluminum alloy can be connected to each other, and a portion where the brazing sheet is sandwiched may be provided in the engaging portion. In short, in the first invention of the present application, the material to be joined is not limited to the aluminum alloy plate, and may be anything made of an aluminum alloy having a smooth surface that can be brazed at least partially.
According to a second aspect of the present invention, the brazing filler metal is sufficiently dissolved in a state in which the brazing filler metal surface of the two-layer brazing sheet made of the brazing filler metal and the skin material is in surface contact with the aluminum alloy member. In this method, the surface of the skin material constituting the brazing sheet is wetted with a brazing material and brazed.
The aluminum alloy member may be an aluminum alloy plate. In the second invention, the material to be joined is not limited to the aluminum alloy plate, and may be anything made of an aluminum alloy having a smooth surface that can be brazed at least partially.
The aluminum alloy member to which the surface brazing method of the present invention is applied is made of an aluminum alloy having a solidus temperature of 570 ° C. or higher.
When using an Al—Si brazing material described in detail later, a brazing temperature of 570 ° C. or higher is required to sufficiently dissolve the brazing material, and as an aluminum alloy member to be joined, It is necessary to apply to those whose solidus temperature is 570 ° C. or higher. If the solidus temperature of the aluminum alloy member to be joined is less than 570 ° C., at least a part of the aluminum alloy member may be melted during surface brazing heating. A more preferable solidus temperature of the aluminum alloy member is 575 ° C. or higher. A more preferable solidus temperature of the aluminum alloy member is 580 ° C. or higher.
Further, when a skin material is used in the second invention, it is necessary to use a skin material made of an aluminum alloy having a solidus temperature of 570 ° C. or higher.
In a state where the brazing filler metal surface of the two-layer brazing sheet composed of the brazing filler metal and the skin material is in surface contact with the aluminum alloy member, the brazing filler metal is sufficiently dissolved so that the interface between the aluminum alloy member and the skin material is brazed. Therefore, a brazing temperature of 570 ° C. or higher is required to sufficiently dissolve the brazing material. In order to suppress the dissolution of the skin material at this brazing temperature, the solidus temperature of the skin material constituting the two-layer brazing sheet needs to be 570 ° C. or higher. If the solidus temperature of the skin material is less than 570 ° C., part of the skin material may be dissolved by surface brazing heating. A more preferable solidus temperature of the skin material is 575 ° C. or higher. A more preferable solidus temperature of the skin material is 580 ° C. or higher.
The first feature of the present invention is that the brazing sheet is composed of a single layer of brazing material having a predetermined thickness and composition, or has two layers of brazing material and skin material in order to reduce costs. Is in the point of using.
First, the brazing material will be described.
As a brazing material, Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, the balance is an alloy having a component composition composed of Al and inevitable impurities, and has a thickness of 15 to 200 μm An aluminum alloy thin plate is used.
Si: 3 to 12% by mass
Si is an element for lowering the temperature of the liquidus line of the brazing sheet depending on its content and improving wettability during surface brazing. When the Si content is less than 3% by mass, the temperature of the liquidus line of the brazing sheet becomes too high, and even if the brazing sheet reaches a predetermined brazing temperature, the brazing sheet is not sufficiently dissolved, and sufficient brazing is performed. Strength (shear stress) may not be obtained. If the Si content exceeds 12% by mass, there is a high possibility that primary Si precipitates (crystallizes) in the center of the ingot during casting, and even if a healthy hot-rolled sheet is obtained, it is microscopic. It becomes difficult to obtain a brazing sheet having a homogeneous structure.
Therefore, the Si content in the brazing filler metal is in the range of 3 to 12% by mass. A more preferable Si content is in the range of 4 to 12% by mass. A more preferable Si content is in the range of 5 to 12% by mass.
Mg: 0.1 to 5.0% by mass
Since Mg acts as a reducing agent when oxidized itself, Mg suppresses oxidation of aluminum at the interface between the aluminum alloy plate and the brazing material of the brazing sheet due to brazing heating, and improves wettability during surface brazing. It is considered to be an element for improvement. If the Mg content is less than 0.1% by mass, depending on the brazing temperature and holding time, the effect is insufficient and sufficient brazing strength (shear stress) may not be obtained. . When the Mg content exceeds 5.0% by mass, the load on the roll when hot rolling the ingot is increased, and ear cracks also occur, so that hot rolling becomes difficult.
Therefore, the Mg content in the brazing filler metal is in the range of 0.1 to 5.0% by mass. A more preferable Mg content is in the range of 0.2 to 4.0% by mass. A more preferable Mg content is in the range of 0.3 to 3.0% by mass.
Remainder: Al and inevitable impurities Examples of inevitable impurities include Fe, Cu, Mn, Zn, etc. These elements include Fe: less than 1.0 mass%, Cu: less than 1.0 mass%, Mn: If it is the range of less than 1.0 mass% and Zn: less than 1.0 mass%, the effect of this invention is not prevented. Therefore, the content of the components as inevitable impurities is preferably less than 1.0% by mass.
As other impurity elements, Cr, Ni, Zr, Ti, V, B, Sr, Sb, Ca, Na, and the like can be considered, but Cr: less than 0.5 mass%, Ni: less than 0.5 mass% Zr: less than 0.2% by mass; Ti: less than 0.2% by mass; V: less than 0.1% by mass; B: less than 0.05% by mass; Sr: less than 0.05% by mass; If it is in the range of less than 05% by mass, Ca: less than 0.05% by mass, and Na: less than 0.01% by mass, the performance characteristics of the brazing sheet according to the present invention will not be significantly impaired. May be included. About Pb, Bi, Sn, and In, each is less than 0.02 mass%, and each other is less than 0.02 mass%, and even if it contains an element outside the control in this range, the effect of the present invention is not hindered. .
The thickness of the brazing material constituting the brazing sheet; 15 to 200 μm
The thickness of the brazing material constituting the single-layer brazing sheet according to the first invention may be any thickness that can achieve sound surface brazing. If the thickness is less than 15 μm, sufficient brazing strength may not be obtained. When the thickness exceeds 200 μm, the amount of the brazing material that oozes out from the joint surface becomes too large, resulting in an increase in cost. Accordingly, the thickness range of the brazing material is 15 to 200 μm. A more preferable thickness range is 15 to 150 μm. A more preferable thickness range is 20 to 100 μm.
Manufacturing method of single layer type brazing sheet made of brazing material For example, a single layer type brazing sheet made of 100 μm thick brazing material is manufactured as follows.
Ingots, scraps, and the like as raw materials are blended and put into a melting furnace to melt a molten aluminum having a predetermined brazing material composition. The melting furnace is generally a burner furnace in which the raw material is heated and melted directly by a burner flame. After the molten aluminum reaches a predetermined temperature, for example, 800 ° C., an appropriate amount of the flux for removing the debris is added, and the molten metal is stirred with a stirring rod to dissolve all raw materials. Thereafter, for adjusting the components, an additional raw material, such as Mg, is added, and after calming for about 30 to 60 minutes, the metal soot floating on the surface is removed. After the molten aluminum is cooled to a predetermined temperature, for example, 740 ° C., the molten aluminum is poured out from the hot water outlet into a bowl, and if necessary, casting is started through an inline rotary degasser, a CFF filter, and the like. In the case where a melting furnace and a holding furnace are provided side by side, after the molten metal melted in the melting furnace is transferred to the holding furnace, casting is started after further sedation or the like in the holding furnace.
The jacket of the DC casting machine may be a single pour, but may be a multi-pour that places importance on production efficiency. For example, while pouring through a dip tube and float into a water-cooled mold of 700 mm × 450 mm size, the lower mold is lowered at a casting speed of 60 mm / min, and direct water cooling (Direct) is performed on the solidified shell layer at the bottom of the water-cooled mold. While performing (Chill), the molten metal in the sump is solidified and cooled to obtain a slab having a predetermined size, for example, 700 mm × 450 mm × 4500 mm. After the end of casting, the front and rear ends of the slab are cut and double-sided with 25mm on one side. The 400mm-thick slab is inserted into a soaking furnace and homogenized at 450-540 ° C for 1-12 hours ( HO treatment). After the homogenization treatment, the slab is taken out from the soaking furnace, subjected to several passes of hot rolling by a hot rolling mill, and, for example, cut in a state of 40 mm thickness to obtain a 40 mm thick hot rolled plate ( Flat plate) One sheet of 700 mm × 40 mm × 4000 mm is secured. Thereafter, most of the remaining hot-rolled sheets are subsequently hot-rolled in several passes by a hot rolling mill to obtain, for example, a 6 mm-thick hot-rolled sheet coil (Reroll).
The 6 mm thick hot rolled plate coil is subjected to several passes of cold rolling to obtain a single layer brazing sheet made of a brazing material having a predetermined thickness, for example, 100 μm. In the cold rolling process, if the work hardening of the cold rolled sheet is significant, if necessary, the coil is inserted into an annealer and subjected to an intermediate annealing treatment at a holding temperature of 300 to 450 ° C. It is desirable to soften the plate.
The same applies to the thickness of the brazing material constituting the two-layer brazing sheet according to the second invention. 15 to 200 μm.
The skin material in the two-layer brazing sheet according to the second invention may be an aluminum alloy having a solidus temperature of 570 ° C. or higher, and the thickness thereof is not particularly limited.
However, although depending on the brazing heating temperature, if the skin material is too thin, the melted brazing material may ooze out of the skin material, and therefore the thickness of the skin material is preferably 100 μm or more. A more preferable thickness of the skin material is 150 μm or more. A more preferable thickness of the skin material is 200 μm or more. Thus, in the second invention, it is preferable that the thickness of the skin material is larger than the thickness of the brazing material. For example, when the brazing material type is AA4045 alloy and the thickness is 60 μm, a two-layer brazing sheet in which the skin material type is AA1100 alloy and the thickness is 500 μm may be used.
2. Method for producing a two-layer brazing sheet comprising a brazing material and a skin material For example, a two-layer brazing sheet comprising a brazing material having a thickness of 40 μm and a skin material having a thickness of 400 μm is produced as follows.
As described above, a slab of 700 mm × 450 mm × 4500 mm having a predetermined skin material composition is obtained by DC casting. After cutting the front and rear ends of the slab and carrying out double-side chamfering of 25 mm on one side, the slab after chamfering having a thickness of 400 mm made of the above-mentioned skin material composition and 40 mm made of the brazing material composition secured as described above. A thick hot-rolled plate (flat plate) 700 mm × 40 mm × 4000 mm (one sheet) is temporarily joined in a state of being bonded on a 700 mm × 4000 mm surface. This two-layer clad slab is inserted into a soaking furnace and subjected to a homogenization treatment (HO treatment) at 450 to 540 ° C. for 1 to 12 hours. After the homogenization treatment, the slab is taken out of the soaking furnace and subjected to several passes of hot rolling with a hot rolling mill to obtain, for example, a 6 mm thick hot rolled sheet coil (Reroll).
This hot-rolled plate coil is subjected to several passes of cold rolling to form a two-layer type comprising a brazing material (thickness 40 μm) and a skin material (thickness 400 μm) having a predetermined thickness, for example, 440 μm Obtain a brazing sheet. In the cold rolling process, if the work hardening of the cold rolled sheet is significant, if necessary, the coil is inserted into an annealer and subjected to an intermediate annealing treatment at a holding temperature of 300 to 450 ° C. It is desirable to soften the plate.
The second feature of the present invention is that a specific surface pressure is applied under an inert gas atmosphere in order to perform surface brazing without flux and to obtain a sufficient brazing strength (shear stress) at the joint surface. This is the point to braze.
In order to sufficiently braze the brazing sheet (brazing material) as described above under an inert gas atmosphere and wet the interface between the aluminum alloy members or the interface between the skin material and the aluminum alloy member, It is necessary to hold at a holding temperature of 570 ° C. or higher for a predetermined time.
For this reason, even during brazing heating, it is necessary to perform brazing in an inert gas atmosphere in order to suppress oxidation of the brazing surface of the aluminum alloy member or the brazing material surface of the brazing sheet. .
As the inert gas, nitrogen gas, argon gas, helium gas, or the like can be used. The oxygen concentration in the inert gas is preferably 500 ppm or less. If the oxygen concentration in the inert gas exceeds 500 ppm, the joint strength (shear stress) after surface brazing decreases.
A more preferable oxygen concentration in the inert gas is 100 ppm. A more preferable oxygen concentration in the inert gas is 10 ppm or less. Specifically, for the industrial nitrogen gas, since the standard is defined as an oxygen concentration of 10 ppm or less, it is most preferable to use the industrial nitrogen gas from the viewpoint of cost.
Of course, it is preferable to fill the inside of the heating apparatus with an inert gas atmosphere during brazing heating, brazing temperature holding and cooling. However, in the case of rapid heating such as electromagnetic induction heating, the inert gas may be injected to replace the atmosphere in the heating device with the inert gas before reaching a predetermined holding temperature.
Additional surface pressure: 0.6 gf / mm 2 or more In the surface brazing method according to the present invention, a brazing sheet (brazing material) having a predetermined composition is dissolved and the brazing material and the aluminum alloy member are in surface contact. In this case, brazing heating is performed, and at this time, it is necessary to maintain a predetermined brazing temperature while applying a surface pressure of 0.6 gf / mm 2 or more to the joint surface. Of course, it is possible to perform surface brazing by applying a surface pressure of 0.6 gf / mm 2 or more to the joint surface after reaching a predetermined holding temperature without applying surface pressure during brazing heating. Good.
When the surface pressure is less than 0.6 gf / mm 2 , sufficient brazing strength (shear stress) cannot be obtained. Of course, in order to sufficiently secure the brazing strength (shear stress) after the surface brazing, it is preferable that the surface pressure applied to the joint surface is high. Therefore, a more preferable surface pressure is 1.0 gf / mm 2 or more. A more preferable surface pressure is 2.0 gf / mm 2 or more.
Brazing temperature condition: maintained at 570 ° C. or higher In the surface brazing method according to the present invention, a brazing sheet (brazing material) having a predetermined composition is dissolved, and the interface between the aluminum alloy members or the skin material and the aluminum alloy member It is necessary that the brazing temperature be at least 570 ° C. or higher in order to wet the interface of the surface and reliably braze the surface to ensure sufficient brazing strength (shear strength).
When the brazing temperature is less than 570 ° C., the brazing material is not sufficiently dissolved, and sufficient brazing strength (shear strength) cannot be obtained. Of course, the higher the holding temperature, the more sufficient brazing strength (shear strength) can be obtained. Accordingly, the holding temperature is 575 ° C. or higher. A more preferable holding temperature is 580 ° C. or higher.
Brazing holding time The holding time at the brazing temperature is preferably 2 minutes or more. Although depending on the brazing temperature, if the holding time is less than 2 minutes, sufficient brazing strength (shear strength) cannot be obtained due to uneven temperature at the joint surface. A more preferable holding time is 5 minutes or more.
ブレージングシートの作製
 所定の各種インゴットを計量、配合して、離型材を塗布した#30坩堝に9kgずつ(計13試料)の原材料を装入装填した。これら坩堝を電気炉内に挿入して、760℃で溶解して滓を除去し、その後、溶湯温度を740℃に保持した。次に小型回転脱ガス装置によって、溶湯に流量1Nl/分で窒素ガスを10分間吹き込み、脱ガス処理を行った。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去し、さらにスプーンで成分分析用鋳型にディスクサンプルを採取した。
 次いで、治具を用いて順次坩堝を電気炉内から取り出し、200℃に予熱しておいた5個の金型(70mm×70mm×15mm)にアルミニウム溶湯を鋳込んだ。各試料のディスクサンプルは、発光分光分析によって、組成分析を行なった。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 鋳塊は、押し湯を切断後、両面を3mmずつ面削して、厚み9mmとした。電気加熱炉にこの鋳塊を装入して、100℃/hrの昇温速度で480℃まで加熱し、480℃×1時間の均質化処理を行い、続いて熱間圧延機にて3mm厚さにまで熱間圧延を施した。
 この後、熱間圧延板に冷間圧延を施して、1.2mm厚さの冷延板とし、軟化させるために390℃×2時間の1次中間焼鈍を施した。さらに冷間圧延を施して、0.3mm厚さの冷延板とし、軟化させるため390℃×2時間の2次中間焼鈍を施した。さらに冷間圧延を施して、0.06mm(60μm)の最終冷間圧延板とした。なお、ろう材厚みのろう付け強度(せん断応力)に及ぼす影響を調査するために、D合金ろう材については、厚み15μm、20μm、30μm、60μm及び100μmの5水準の最終圧延板を作製した。
 この最終冷間圧延板を所定の大きさ(15mm×8mm)に切断して、複数枚のブレージングシート(ろう材)とした。
逆T字試験片の作製
 図1に示すようにAA1100合金製のブロックA(35mm×35mm×10mm)の35mm×35mmの面上中央にブレージングシート(15mm×8mm)を載置し、AA1100合金製のブロックB(18mm×15mm×8mm)における15mm×8mmの面を上記ブレージングシートに重ねるようにしてブロックAにおける35mm×35mmの面上中央にブロックBを立設した。
 さらにブロックBの上面に加圧するための所定の質量の分銅を載置し、図2に示すように石英管(φ125×330mm)で覆われた試験炉内に組み上げたブロック等を挿入した。雰囲気を不活性ガスに置換するため、流量10Nl/分で工業用窒素ガス(酸素濃度10ppm以下の窒素)を流しつつ、ブロックAに取り付けた熱電対が所定のろう付け温度を示すまで、PID制御により50℃/分の速度で加熱し、所定のろう付け温度で所定の時間保持した後、抵抗線への出力をOFFとして、組み上げたブロック等を炉冷した。ブロックAに取り付けた熱電対が400℃以下を示した後、組み上げたブロック等を炉から取り出して室温まで冷却した。
 また、ろう付け雰囲気による酸素濃度のろう付け強度(せん断応力)に及ぼす影響を調査するため、D合金ろう材(ろう材厚:60μm)については、工業用窒素(酸素濃度10ppm以下の窒素)の他、酸素濃度500ppmの窒素、酸素濃度2000ppmの窒素を流しながら、或いは窒素を流すことなく大気中で、ろう付け温度605℃、保持時間10分の条件下で、同様にして逆T字試験片の作製を行った。
 さらに、被接合材のろう付け面における酸化皮膜厚みのろう付け強度(せん断応力)に及ぼす影響を調査するため、ブロックAについて予め大気中で600℃×1hr加熱処理、600℃×5hr加熱処理を行い、酸化膜厚を厚くした被接合材(ブロックA)を準備した後、D合金ろう材(ろう材厚:60μm)を用いて、工業用窒素(酸素濃度10ppm以下の窒素)を流しながら、所定の条件下でろう付けを行い、同様にして逆T字試験片の作製を行った。
 なお、ろう付け前の被接合材表面における酸化膜厚の測定は、被接合材の断面におけるTEM観察によって行ない、加熱処理を施さない被接合材(無処理材)では酸化膜厚4nm、600℃×1hr加熱処理を施した被接合材では酸化膜厚30nm、600℃×5hr加熱処理を施した被接合材では酸化膜厚90nm、であることが判明した。
せん断応力の測定
 上記のようにして作製した逆T字試験片を図3のような治具に固定して、ブロックAの端面(35mm×10mmの面)からアムスラーによって加圧し(歪速度:1mm/分)、ろう付け面におけるろう付け強度(破断せん断応力)の測定を行った。
 その結果を表2~9、及び図4~11に示す。
 なお、上記実施例の説明中にあって、特に細かい条件の表示がないものについては、D合金ろう材(ろう材厚:60μm)及び被接合材(無処理材)を用い、工業用窒素(酸素濃度10ppm以下の窒素)を流しながら、ろう付け温度605℃、保持時間10分、加圧力5.6gf/mmの条件下でろう付けを行い、逆T字試験片の作製を行ったものである。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 まず、表2に示す結果から、ろう付け温度は580℃以上とすることが好ましいことがわかる。また、ろう付け温度保持時間は2分以上に、特に5分以上とすることが好ましいことがわかる。
 次にろう材を構成するアルミニウム合金中の成分の影響についてみると、605℃でろう付けした際に所望のせん断応力を得るには0.1質量%のMg含有で十分である。しかし、0.5質量%含まれていないと580℃でろう付けした際に所望のせん断応力が得られていない。また、Mg含有量が3.0質量%を超えた試料では605℃でのろう付けを行うとせん断応力が低下している。したがって、Mgの好ましい含有量は0.5~3.0質量%であることがわかる。
 Si含有量についてみると、3.0~12.0質量%の範囲で含む試料全てで、とりあえず十分なせん断応力が得られているが、Si含有量3.0質量%では、若干得られるせん断応力が低くなっている。したがって、したがって、Siの好ましい含有量は5.0~12.0質量%であることがわかる。
 不可避的不純物であるCu,Mn,Znについては、それぞれ1.0質量%未満の含有であれば、せん断応力にほとんど影響していないことがわかる。
 ろう材の厚さについては、15μm以上の厚さであれば、とりあえず十分なせん断応力が得られているが、その厚さが15μmの場合、若干得られるせん断応力が低くなっている。したがって、したがって、ろう材の厚さは20μm以上とすることが好ましい。厚すぎるとろう材が過剰となってしまうため上限は200μmであることは前記したとおりである。
 ろう付け時の付加圧力についてみると、0.6gf/mm以上の面圧を付加しながらろう付けを行えば、とりあえず十分なせん断応力が得られている。しかしながら、よりせん断応力を高めようとする場合には、1.0gf/mm以上の面圧を付加することが好ましいことがわかる。
 ろう付けするアルミニウム合金部材の表面に形成されている酸化物膜が30nmを超えていると、得られるせん断応力が急激に低下するようになる。したがって、ろう付けするアルミニウム合金部材は、表面に形成されている酸化物膜が30nm未満のものとするべきである。
 さらに、ろう付け時の雰囲気についてみると、少なくとも窒素等の不活性雰囲気とするべきであることがわかる。特に酸素含有量が500ppm以下の不活性ガス雰囲気とすることが好ましいことがわかる。
Preparation of brazing sheet Various predetermined ingots were weighed and blended, and 9 kg (total 13 samples) of raw materials were charged into a # 30 crucible coated with a release material. These crucibles were inserted into an electric furnace and melted at 760 ° C. to remove the soot, and then the molten metal temperature was kept at 740 ° C. Next, degassing treatment was performed by blowing nitrogen gas into the molten metal at a flow rate of 1 Nl / min for 10 minutes with a small rotary degassing apparatus. Thereafter, the sedation was performed for 30 minutes, and the cocoon floating on the surface of the molten metal was removed with a stirring rod, and a disk sample was collected with a spoon as a mold for component analysis.
Next, the crucible was sequentially taken out from the electric furnace using a jig, and molten aluminum was cast into five molds (70 mm × 70 mm × 15 mm) preheated to 200 ° C. The disk sample of each sample was subjected to composition analysis by emission spectroscopic analysis. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
The ingot was chamfered by 3 mm after cutting the hot water to a thickness of 9 mm. The ingot is charged into an electric heating furnace, heated to 480 ° C. at a heating rate of 100 ° C./hr, homogenized at 480 ° C. for 1 hour, and then 3 mm thick by a hot rolling mill. Hot rolling was applied.
Thereafter, the hot-rolled plate was cold-rolled to obtain a cold-rolled plate having a thickness of 1.2 mm, and subjected to primary intermediate annealing at 390 ° C. for 2 hours in order to soften. Further, it was cold-rolled to form a cold rolled sheet having a thickness of 0.3 mm, and subjected to secondary intermediate annealing at 390 ° C. × 2 hours for softening. Further, cold rolling was performed to obtain a final cold rolled plate of 0.06 mm (60 μm). In order to investigate the influence of the brazing material thickness on the brazing strength (shear stress), for the D alloy brazing material, final rolled sheets of five levels having thicknesses of 15 μm, 20 μm, 30 μm, 60 μm and 100 μm were prepared.
This final cold rolled sheet was cut into a predetermined size (15 mm × 8 mm) to obtain a plurality of brazing sheets (brazing materials).
Production of inverted T-shaped test piece As shown in FIG. 1, a brazing sheet (15 mm × 8 mm) is placed on the center of a 35 mm × 35 mm surface of block A (35 mm × 35 mm × 10 mm) made of AA1100 alloy, and made of AA1100 alloy. The block B was erected at the center on the 35 mm × 35 mm surface of the block A so that the 15 mm × 8 mm surface of the block B (18 mm × 15 mm × 8 mm) of the block A was overlaid on the brazing sheet.
Further, a weight of a predetermined mass for pressurization was placed on the upper surface of the block B, and the assembled block or the like was inserted into a test furnace covered with a quartz tube (φ125 × 330 mm) as shown in FIG. PID control until the thermocouple attached to block A shows a predetermined brazing temperature while flowing industrial nitrogen gas (nitrogen with an oxygen concentration of 10 ppm or less) at a flow rate of 10 Nl / min to replace the atmosphere with inert gas After heating at a rate of 50 ° C./min and holding at a predetermined brazing temperature for a predetermined time, the output to the resistance wire was turned off and the assembled block or the like was cooled in the furnace. After the thermocouple attached to block A showed 400 ° C. or lower, the assembled block and the like were taken out of the furnace and cooled to room temperature.
In addition, in order to investigate the influence of the oxygen concentration on the brazing strength (shear stress) by the brazing atmosphere, for the D alloy brazing material (brazing material thickness: 60 μm), industrial nitrogen (nitrogen having an oxygen concentration of 10 ppm or less) is used. In addition, an inverted T-shaped test piece in the same manner under the conditions of brazing temperature of 605 ° C. and holding time of 10 minutes in the air with or without flowing nitrogen of oxygen concentration of 500 ppm, 2000 ppm of oxygen. Was made.
Furthermore, in order to investigate the influence of the oxide film thickness on the brazing surface of the material to be joined on the brazing strength (shear stress), the block A is preliminarily subjected to heat treatment at 600 ° C. for 1 hour and 600 ° C. for 5 hours in the air. And after preparing a material to be bonded (block A) with a thick oxide film thickness, using a D alloy brazing material (brazing material thickness: 60 μm), while flowing industrial nitrogen (nitrogen having an oxygen concentration of 10 ppm or less), Brazing was performed under predetermined conditions, and an inverted T-shaped test piece was produced in the same manner.
In addition, the measurement of the oxide film thickness on the surface of the material to be bonded before brazing is performed by TEM observation on the cross section of the material to be bonded. It was found that the oxide film thickness was 30 nm for the bonded material subjected to the heat treatment for 1 hour and the oxide film thickness was 90 nm for the bonded material subjected to the heat treatment at 600 ° C. for 5 hours.
Measurement of Shear Stress The inverted T-shaped test piece prepared as described above is fixed to a jig as shown in FIG. 3 and pressed from the end face (35 mm × 10 mm face) of the block A with an Amsler (strain rate: 1 mm). / Min), brazing strength (breaking shear stress) on the brazed surface was measured.
The results are shown in Tables 2 to 9 and FIGS.
In addition, in the explanation of the above-mentioned examples, for those that do not have a particularly detailed indication, a D alloy brazing material (brazing material thickness: 60 μm) and a to-be-joined material (untreated material) are used, and industrial nitrogen ( A reverse T-shaped test piece was prepared by brazing under a condition of brazing temperature 605 ° C., holding time 10 minutes, and applied pressure 5.6 gf / mm 2 while flowing nitrogen (oxygen concentration of 10 ppm or less). It is.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
First, the results shown in Table 2 indicate that the brazing temperature is preferably 580 ° C. or higher. It can also be seen that the brazing temperature holding time is preferably 2 minutes or longer, particularly 5 minutes or longer.
Next, regarding the influence of the components in the aluminum alloy constituting the brazing material, it is sufficient to contain 0.1% by mass of Mg in order to obtain a desired shear stress when brazing at 605 ° C. However, if 0.5% by mass is not contained, a desired shear stress cannot be obtained when brazing at 580 ° C. In addition, in a sample having an Mg content exceeding 3.0% by mass, the shear stress is reduced when brazing at 605 ° C. is performed. Therefore, it can be seen that the preferable content of Mg is 0.5 to 3.0% by mass.
As for the Si content, sufficient shear stress is obtained for all the samples included in the range of 3.0 to 12.0% by mass, but some shear is obtained when the Si content is 3.0% by mass. The stress is low. Therefore, it can be seen that the preferable content of Si is 5.0 to 12.0% by mass.
About Cu, Mn, and Zn which are unavoidable impurities, if it contains less than 1.0 mass%, it turns out that shear stress is hardly influenced.
With regard to the thickness of the brazing material, if the thickness is 15 μm or more, sufficient shear stress is obtained for the time being, but when the thickness is 15 μm, the obtained shear stress is slightly low. Therefore, the thickness of the brazing material is preferably 20 μm or more. If it is too thick, the brazing filler metal becomes excessive, so that the upper limit is 200 μm as described above.
As for the applied pressure at the time of brazing, if brazing is performed while applying a surface pressure of 0.6 gf / mm 2 or more, a sufficient shear stress is obtained for the time being. However, it can be seen that it is preferable to apply a surface pressure of 1.0 gf / mm 2 or more in order to increase the shear stress.
When the oxide film formed on the surface of the aluminum alloy member to be brazed exceeds 30 nm, the resulting shear stress is rapidly reduced. Therefore, the aluminum alloy member to be brazed should have an oxide film formed on the surface of less than 30 nm.
Further, when looking at the atmosphere during brazing, it can be seen that the atmosphere should be at least inert such as nitrogen. In particular, it can be seen that an inert gas atmosphere having an oxygen content of 500 ppm or less is preferable.

Claims (11)

  1.  Si:3~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材からなる単層ブレージングシートを用いてアルミニウム合金部材同士を面ろう付けする方法であって、前記ブレージングシートを固相線温度が570℃以上であるアルミニウム合金部材同士の間に挟みこみ面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度570℃以上に保持しつつ、0.6gf/mm以上の面圧を付加しながら無フラックスでアルミニウム合金部材同士をろう付けすることを特徴とするアルミニウム合金部材の面ろう付け方法。 Single layer brazing made of brazing material having a composition of Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, the balance being Al and inevitable impurities, and a thickness of 15 to 200 μm A method in which aluminum alloy members are brazed to each other using a sheet, wherein the brazing sheet is sandwiched between aluminum alloy members having a solidus temperature of 570 ° C. or higher, and inactive in a state where they are in contact with each other. An aluminum alloy member characterized by brazing aluminum alloy members without flux while applying a surface pressure of 0.6 gf / mm 2 or more while maintaining a brazing temperature of 570 ° C. or higher in a gas atmosphere. Surface brazing method.
  2.  Si:3~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材と固相線温度が570℃以上であるアルミニウム合金からなる皮材とから構成される2層ブレージングシートを用いてアルミニウム合金部材と前記皮材とを面ろう付けする方法であって、前記2層ブレージングシートのろう材面を固相線温度が570℃以上であるアルミニウム合金部材と面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度570℃以上に保持しつつ、0.6gf/mm以上の面圧を付加しながら無フラックスで前記アルミニウム合金部材と前記皮材をろう付けすることを特徴とするアルミニウム合金部材の面ろう付け方法。 Si: 3 to 12% by mass, Mg: 0.1 to 5.0% by mass, the balance being a component composition consisting of Al and inevitable impurities, a brazing material having a thickness of 15 to 200 μm and a solidus temperature A method for brazing an aluminum alloy member and the skin material using a two-layer brazing sheet composed of a skin material made of an aluminum alloy having a temperature of 570 ° C. or higher, the brazing material of the two-layer brazing sheet A surface having a surface temperature of 0.6 gf / mm 2 or more while maintaining a brazing temperature of 570 ° C. or more in an inert gas atmosphere in a state where the surface is in surface contact with an aluminum alloy member having a solidus temperature of 570 ° C. or more. A surface brazing method for an aluminum alloy member, characterized by brazing the aluminum alloy member and the skin material without flux while applying pressure.
  3.  前記ろう材に含まれる不可避的不純物としてのCuが1.0質量%未満に制限されている請求項1又は2に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing aluminum alloy members according to claim 1 or 2, wherein Cu as an inevitable impurity contained in the brazing material is limited to less than 1.0 mass%.
  4.  前記ろう材に含まれる不可避的不純物としてのMnが1.0質量%未満に制限されている請求項1~3のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 4. The method of brazing an aluminum alloy member according to claim 1, wherein Mn as an inevitable impurity contained in the brazing material is limited to less than 1.0 mass%.
  5.  前記ろう材に含まれる不可避的不純物としてのZnが1.0質量%未満に制限されている請求項1~4のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 4, wherein Zn as an inevitable impurity contained in the brazing material is limited to less than 1.0 mass%.
  6.  前記ブレージングシートを構成するろう材は、厚さ15~150μmである請求項1~5のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 5, wherein the brazing material constituting the brazing sheet has a thickness of 15 to 150 µm.
  7.  前記アルミニウム合金部材は、そのろう付け面に厚さ30nm以下の厚さの酸化皮膜が形成されているものである請求項1~6のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 6, wherein the aluminum alloy member is formed with an oxide film having a thickness of 30 nm or less on a brazing surface thereof. .
  8.  前記ろう付け温度における保持時間が2分以上である請求項1~7のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 7, wherein a holding time at the brazing temperature is 2 minutes or more.
  9.  前記ろう付け温度における保持時間が5分以上である請求項1~8のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 8, wherein the holding time at the brazing temperature is 5 minutes or more.
  10.  前記不活性ガスが窒素ガスである請求項1~9のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 9, wherein the inert gas is nitrogen gas.
  11.  前記不活性ガスの酸素濃度が500ppm以下である請求項1~10のいずれか1項に記載のアルミニウム合金部材の面ろう付け方法。 The method for brazing an aluminum alloy member according to any one of claims 1 to 10, wherein an oxygen concentration of the inert gas is 500 ppm or less.
PCT/JP2011/066790 2010-09-29 2011-07-19 Surface brazing method of aluminum alloy material WO2012043030A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180040501.7A CN103068512B (en) 2010-09-29 2011-07-19 The face method for welding of aluminium alloy element
KR1020137007376A KR101504046B1 (en) 2010-09-29 2011-07-19 Surface brazing method of aluminum alloy material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010218791A JP5532520B2 (en) 2010-09-29 2010-09-29 Surface brazing method for aluminum alloy members
JP2010-218791 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043030A1 true WO2012043030A1 (en) 2012-04-05

Family

ID=45892507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066790 WO2012043030A1 (en) 2010-09-29 2011-07-19 Surface brazing method of aluminum alloy material

Country Status (5)

Country Link
JP (1) JP5532520B2 (en)
KR (1) KR101504046B1 (en)
CN (1) CN103068512B (en)
TW (1) TWI504460B (en)
WO (1) WO2012043030A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337326B1 (en) * 2011-12-02 2013-11-06 古河スカイ株式会社 Aluminum alloy material, aluminum alloy structure and manufacturing method thereof
JP5345264B1 (en) * 2012-01-27 2013-11-20 古河スカイ株式会社 Aluminum alloy material for heat exchanger fin, manufacturing method thereof, and heat exchanger using the aluminum alloy material
US20140117001A1 (en) * 2010-02-10 2014-05-01 Illinois Tool Works Inc. Aluminum alloy welding wire
US20140190952A1 (en) * 2010-02-10 2014-07-10 Illinois Tool Works Inc. Aluminum alloy welding wire
WO2017093627A1 (en) * 2015-12-01 2017-06-08 Constellium Neuf-Brisach Highly rigid thin sheet metal for car body
US10421159B2 (en) 2015-02-25 2019-09-24 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire
US10654135B2 (en) 2010-02-10 2020-05-19 Illinois Tool Works Inc. Aluminum alloy welding wire
US11370068B2 (en) 2015-02-25 2022-06-28 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915198B2 (en) * 2012-01-19 2016-05-11 日本軽金属株式会社 Surface brazing method of aluminum alloy member and copper alloy member
JP5906994B2 (en) * 2012-08-22 2016-04-20 日本軽金属株式会社 Surface brazing method for aluminum alloy members
CN103990912A (en) * 2013-02-17 2014-08-20 尼库·哈戈内 Base block for electrolysis and method for providing electric connectors for base block
CN103486772A (en) * 2013-06-04 2014-01-01 浙江三可热交换系统有限公司 Production method of subway train air conditioner micro-channel heat exchanger
CN105234572A (en) * 2015-11-03 2016-01-13 苏州新一磁业有限公司 Manufacturing and assembling method for metal LOGO
CN105568077B (en) * 2015-12-28 2018-09-21 新疆众和股份有限公司 A kind of welding al-si eutectic alloy bar and its preparation process
CN106319299A (en) * 2016-08-31 2017-01-11 中信戴卡股份有限公司 Novel aluminum alloy and preparing method thereof
CN109803785A (en) * 2017-02-22 2019-05-24 日本轻金属株式会社 Joint method
KR102212051B1 (en) 2019-12-02 2021-02-04 주식회사 홍산 The Automatic brazing device for connecting rod friction surface of radial type hydraulic motor for ship

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180489A (en) * 1996-12-20 1998-07-07 Sky Alum Co Ltd Production of non-oxidizing gas atmosphere non-flux brazing material and brazing method
JP2003126986A (en) * 2001-10-23 2003-05-08 Sky Alum Co Ltd Aluminum alloy brazing sheet, brazing method using it, and brazed product
JP2010168613A (en) * 2009-01-21 2010-08-05 Furukawa-Sky Aluminum Corp Single-layer brazing sheet for heat exchanger, and heat exchanger using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396038A (en) * 2002-08-23 2003-02-12 无锡银邦铝业有限公司 Al-alloy foil for soldering
CN1215918C (en) * 2002-09-27 2005-08-24 哈尔滨工业大学 Self-drill brazing filler material of aluminium alloy and aluminium base composite and preparation method
CN101214592A (en) * 2008-01-09 2008-07-09 桂林市庆通有色金属工艺材料开发有限公司 Aluminium base solder and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180489A (en) * 1996-12-20 1998-07-07 Sky Alum Co Ltd Production of non-oxidizing gas atmosphere non-flux brazing material and brazing method
JP2003126986A (en) * 2001-10-23 2003-05-08 Sky Alum Co Ltd Aluminum alloy brazing sheet, brazing method using it, and brazed product
JP2010168613A (en) * 2009-01-21 2010-08-05 Furukawa-Sky Aluminum Corp Single-layer brazing sheet for heat exchanger, and heat exchanger using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9770788B2 (en) * 2010-02-10 2017-09-26 Hobart Brothers Company Aluminum alloy welding wire
US9770787B2 (en) * 2010-02-10 2017-09-26 Hobart Brother Company Aluminum alloy welding wire
US11890703B2 (en) 2010-02-10 2024-02-06 Illinois Tool Works Inc. Aluminum alloy welding wire
US20140117001A1 (en) * 2010-02-10 2014-05-01 Illinois Tool Works Inc. Aluminum alloy welding wire
US20140190952A1 (en) * 2010-02-10 2014-07-10 Illinois Tool Works Inc. Aluminum alloy welding wire
US10654135B2 (en) 2010-02-10 2020-05-19 Illinois Tool Works Inc. Aluminum alloy welding wire
US11097380B2 (en) 2010-02-10 2021-08-24 Hobart Brothers Llc Aluminum alloy welding wire
JP5337326B1 (en) * 2011-12-02 2013-11-06 古河スカイ株式会社 Aluminum alloy material, aluminum alloy structure and manufacturing method thereof
JP2013249540A (en) * 2011-12-02 2013-12-12 Uacj Corp Aluminum alloy material, aluminum alloy structure and production method thereof
JP5345264B1 (en) * 2012-01-27 2013-11-20 古河スカイ株式会社 Aluminum alloy material for heat exchanger fin, manufacturing method thereof, and heat exchanger using the aluminum alloy material
US10421159B2 (en) 2015-02-25 2019-09-24 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire
US11370068B2 (en) 2015-02-25 2022-06-28 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire
WO2017093627A1 (en) * 2015-12-01 2017-06-08 Constellium Neuf-Brisach Highly rigid thin sheet metal for car body
US11459641B2 (en) 2015-12-01 2022-10-04 Constellium Neuf-Brisach Highly rigid sheet for car body

Also Published As

Publication number Publication date
CN103068512A (en) 2013-04-24
TWI504460B (en) 2015-10-21
CN103068512B (en) 2015-08-19
KR20130058055A (en) 2013-06-03
JP5532520B2 (en) 2014-06-25
KR101504046B1 (en) 2015-03-18
JP2012071335A (en) 2012-04-12
TW201213028A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
WO2012043030A1 (en) Surface brazing method of aluminum alloy material
JP6426587B2 (en) Aluminum brazing sheet
JP5915198B2 (en) Surface brazing method of aluminum alloy member and copper alloy member
JP4473908B2 (en) Aluminum alloy clad material for heat exchanger and manufacturing method thereof
EP2855063B2 (en) Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere
CN103906852A (en) Aluminum alloy for heat exchanger fin and manufacturing method therefor, as well as heat exchanger using said aluminum alloy
WO2015173984A1 (en) Aluminum alloy fin material for heat exchanger having exceptional brazeability and sagging resistance, and method for manufacturing same
JP5906994B2 (en) Surface brazing method for aluminum alloy members
JP7240978B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof
JP5537256B2 (en) Aluminum alloy brazing sheet
JP5713452B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof, and brazing method of aluminum heat exchanger
JP5466080B2 (en) Aluminum alloy brazing sheet
JP2010120216A (en) Sandwich panel
JP2003071588A (en) Brazing filler sheet, brazing sheet, and manufacturing method therefor
JP2004277756A (en) Aluminum alloy for fin by twin belt casting, and fin material
WO2022176420A1 (en) Aluminum alloy sheet and method for producing same, and heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040501.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137007376

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828591

Country of ref document: EP

Kind code of ref document: A1