WO2012043016A1 - Image-forming device and image-forming method - Google Patents

Image-forming device and image-forming method Download PDF

Info

Publication number
WO2012043016A1
WO2012043016A1 PCT/JP2011/066043 JP2011066043W WO2012043016A1 WO 2012043016 A1 WO2012043016 A1 WO 2012043016A1 JP 2011066043 W JP2011066043 W JP 2011066043W WO 2012043016 A1 WO2012043016 A1 WO 2012043016A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
lenticular
head
sheet
lens
Prior art date
Application number
PCT/JP2011/066043
Other languages
French (fr)
Japanese (ja)
Inventor
和也 真弓
吉田 直樹
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012043016A1 publication Critical patent/WO2012043016A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/14Printing apparatus specially adapted for conversion between different types of record
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2146Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/304Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface
    • B41J25/316Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface with tilting motion mechanisms relative to paper surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects

Definitions

  • the present invention relates to an image forming apparatus and an image forming method capable of forming a high-quality stereoscopic image by matching the longitudinal direction of a lenticular lens with the longitudinal direction of a linear image constituting a stereoscopic image.
  • an image forming apparatus that forms a stereoscopic image by printing a plurality of viewpoint images on a lenticular sheet in which a plurality of substantially semi-cylindrical lenticular lenses are arranged. Specifically, a lenticular sheet is conveyed, and a linear image of each viewpoint image is printed for each lenticular lens using a line head on the back of the lenticular sheet. For example, when printing six viewpoint images, six linear images are printed for each lenticular lens.
  • Patent Document 1 discloses a configuration in which a test pattern is printed and then read by a photosensor, and a movement amount from the printing position to the reading position of the photosensor is detected.
  • Patent Document 2 discloses a configuration in which a relative position of a lenticular lens with respect to a head is detected by an optical sensor provided in the head.
  • Patent Document 3 discloses a configuration in which the inclination angle of a lenticular lens is calculated by reading a lenticular sheet and calculating the inclination of a valley of the lenticular lens (convex lens) with respect to a reference parallel line.
  • JP-A-8-137034 Japanese Patent Laid-Open No. 2003-21878 JP 2007-127521 A
  • Patent Document 1 In the configuration described in Patent Document 1, only the amount of movement from the printing position to the reading position of the photosensor is detected, and the tilt of the lenticular lens and the head cannot be accurately detected. In the configuration described in Patent Document 2, only the relative position of the lenticular lens with respect to the head is detected, and the tilt of the lenticular lens and the head cannot be accurately detected. With the configuration described in Patent Document 3, it is possible to detect the tilt angle of the lenticular lens, but if the tilt angle is large with respect to the lens pitch, erroneous detection of the tilt angle occurs. In addition, none of Patent Documents 1 to 3 describes correction for head tilt.
  • the present invention has been made in view of such circumstances, and provides an image forming apparatus and an image forming method capable of forming a high-quality stereoscopic image even when the lenticular lens and the head are inclined. Objective.
  • the present invention conveys a lenticular sheet formed with a plurality of lenticular lenses arranged along the sub-scanning direction and a detection line along the longitudinal direction of the lenticular lens in the sub-scanning direction.
  • a plurality of detection sensors including first and second detection sensors disposed on a reference line in a main scanning direction orthogonal to the sub-scanning direction, provided in a conveyance path for the lenticular sheet, and the lenticular sheet
  • the detection line of the lenticular lens is detected by the plurality of detection sensors, and an inclination angle of the lenticular lens with respect to the reference line is calculated based on detection signals of the plurality of detection sensors, and a conveyance path of the lenticular sheet Arranged along the longitudinal direction intersecting the sub-scanning direction, and the lenticular sheet of the lenticular sheet
  • an inclination correction control unit that matches the inclination angle of the lenticular lens with the inclination angle of the head. That is, by using the virtual line connecting the first detection sensor and the second detection sensor as a reference line, angle correction is performed so that the tilt angle of the lenticular lens coincides with the tilt angle of the head, whereby a plurality of lenticular lenses on the lenticular sheet are corrected.
  • a plurality of linear images can be recorded with high accuracy corresponding to each, and a highly accurate stereoscopic image can be formed.
  • the detection line of the lenticular lens is formed by coloring a groove between the lenticular lenses in a longitudinal direction of the lenticular lens
  • the lens inclination measurement unit includes the plurality of lens inclination measuring units. Based on the detection signal of the detection sensor, an inclination angle of the colored groove with respect to the reference line is calculated. That is, by detecting a detection line in which grooves (valleys) between lenticular lenses are colored in the longitudinal direction of the lenticular lens, the adjacent peaks are identical to those in the case of detecting a non-colored lenticular lens peak. It is possible to prevent erroneous detection of a mountain.
  • the detection line of the lenticular lens is formed by coloring a peak of the lenticular lens in a longitudinal direction of the lenticular lens
  • the lens inclination measuring unit is configured to detect the plurality of detections.
  • An inclination angle of the colored mountain with respect to the reference line is calculated based on a detection signal of the sensor. That is, by detecting a detection line in which the lenticular lens peak is colored in the longitudinal direction of the lenticular lens, the adjacent peak is the same peak as in the case of detecting a non-colored lenticular lens peak. It is possible to prevent erroneous detection.
  • the detection line of the lenticular lens is formed in a shape lacking a mountain of the lenticular lens
  • the lens inclination measurement unit is based on detection signals of the plurality of detection sensors. Then, an inclination angle of the detection line formed in a shape lacking the mountain with respect to the reference line is calculated. That is, by detecting a detection line formed with a shape (skip shape) lacking the lenticular lens ridge, the adjacent ridges are compared with the case where a non-colored lenticular lens ridge is detected. It is possible to prevent erroneous detection as being.
  • the lenticular lens in the sub-scanning direction is detected.
  • a lens position detector for detecting the reference position is provided. In other words, even if there is a detection line on the lenticular sheet, the reference position of the lenticular lens can be accurately detected.
  • a plurality of the detection lines of the lenticular lens are formed in total on the lenticular sheet with one or more lenticular lenses interposed therebetween, and the lens inclination measuring unit is The tilt of the lenticular lens is calculated based on the detection signal of the detection sensor that has detected a plurality of detection lines.
  • At least one detection line of the lenticular lens is formed near both the front end and the rear end from the center of the lenticular sheet in the sub-scanning direction. That is, the detection line can be reliably detected even if the top and bottom direction (front and rear) is reversed and conveyed in the conveyance direction (sub-scanning direction) of the lenticular sheet.
  • a holding unit that holds the lenticular sheet conveyed on the conveyance path by the conveyance unit is provided, and the inclination correction control unit makes the holding unit perpendicular to the conveyance surface of the lenticular sheet.
  • the tilt angle of the lenticular lens is changed by rotating it around a certain axis.
  • the detection line of the lenticular lens is formed in a non-holding region that is not held by the holding part of the lenticular sheet, and the plurality of detection sensors are connected to the non-holding region from the non-holding region. Detect the detection line.
  • the head tilt detection sheet is transported by the transport unit, and the head tilt angle with respect to the reference line is detected while the head tilt detection sheet is held by the holding unit.
  • a detection pattern printing control unit that prints a detection pattern on the detection sheet by the head, the detection pattern is detected by the plurality of detection sensors, and the reference is based on detection signals of the plurality of detection sensors.
  • a head inclination angle measuring unit that calculates an inclination angle of the detection pattern with respect to a line and stores the inclination angle in the storage unit as the inclination angle of the head.
  • a bending amount storage unit that stores a bending amount in the longitudinal direction of the head, and a bending distortion of the viewpoint image formed on the lenticular sheet due to the bending of the head are canceled.
  • an image correction unit that corrects the curvature of the viewpoint image in accordance with the amount of curvature stored in the storage unit.
  • detection for detecting an inclination angle of the head with respect to the reference line in a state where the detection sheet is conveyed by the conveyance unit and the detection sheet is held by the holding unit A detection pattern printing control unit that prints a pattern on the detection sheet by the head, and the inclination detection pattern is detected by the plurality of detection sensors, and the reference line is detected based on detection signals of the plurality of detection sensors.
  • a head tilt angle measurement unit that calculates the tilt angle of the detection pattern and stores the tilt angle in the storage unit as the tilt angle of the head, and detection of the plurality of detection sensors that detect the detection pattern of the detection sheet Based on the signal, the bending amount with respect to the longitudinal direction of the head is calculated and stored in the storage unit;
  • An image correction unit that corrects the curvature of the viewpoint image in accordance with the amount of bending stored in the storage unit so as to cancel the distortion of the viewpoint image formed on the lenticular sheet due to the curvature of the lens. It is characterized by having.
  • a detection sensor for detecting the bending amount is arranged at the center between the first detection sensor and the second detection sensor.
  • four or more detection sensors are arranged as the plurality of detection sensors.
  • the plurality of detection sensors are arranged such that at least one of the intervals of the plurality of detection sensors in the main scanning direction is different from any other interval.
  • the present invention provides a transport unit that transports in the sub-scanning direction a lenticular sheet in which a plurality of lenticular lenses arranged in the sub-scanning direction and a detection line along the longitudinal direction of the lenticular lens are formed,
  • a plurality of detection sensors including first and second detection sensors provided on a reference line in a main scanning direction orthogonal to the sub-scanning direction and provided in the lenticular sheet conveyance path;
  • a plurality of linear images corresponding to each of the plurality of lenticular lenses is arranged on a surface opposite to the surface on which the lenticular lens is formed of the lenticular sheet, which is arranged along a longitudinal direction intersecting the scanning direction.
  • An image forming apparatus comprising: a head that records a plurality of viewpoint images on the lenticular sheet by recording; and a storage unit. Storing the inclination angle of the head in the longitudinal direction with respect to a line in the storage unit, detecting the detection lines of the lenticular sheet by the plurality of detection sensors, and based on detection signals of the plurality of detection sensors Calculating the tilt angle of the lenticular lens with respect to the reference line, and the tilt angle of the lenticular lens based on the calculated tilt angle of the lenticular lens and the tilt angle of the head stored in the storage unit; There is provided an image forming method for executing a step of matching the tilt angle of the head and a step of recording the plurality of viewpoint images by the head on the back surface of the lenticular sheet.
  • a high-quality stereoscopic image can be formed by matching the longitudinal direction of the lenticular lens with the longitudinal direction of the linear image.
  • FIG. 1 Schematic of an image forming apparatus to which the present invention is applied
  • Perspective view of lenticular sheet Top view showing an example of the detection sensor and its periphery Side view of angle detector Illustration of detection signal
  • the perspective view which shows a clamp unit and its periphery 1 is a block diagram showing the configuration of a printer control system in a first embodiment.
  • the flowchart which shows the flow of the example of an initial measurement process in 1st Embodiment.
  • Explanatory drawing which shows the state which printed the detection pattern for head inclination angle detection
  • Explanatory drawing which shows a mode that the detection pattern for head inclination angle detection is detected.
  • the flowchart which shows the flow of the example of the stereo image formation process in 1st Embodiment.
  • Its side view Sectional drawing which shows a mode that the detection line for lens inclination angle detection is detected A perspective view showing a state before the clamper is rotated.
  • the perspective view which shows a mode that the detection line LL of the lenticular sheet was made to correspond with the reference line Lb by clamper rotation.
  • Explanatory drawing which shows the state which rotated the head and made the inclination angle of a lenticular lens and the inclination angle of a head correspond.
  • a perspective view showing an example of a lenticular sheet in which a plurality of detection lines are formed Cross section
  • the perspective view which shows an example of the detection line formed in the shape which lacked the peak of the lenticular lens Sectional drawing which shows an example of the detection line formed by coloring the mountain of a lenticular lens Explanatory drawing which shows a mode that the lenticular lens adjacent to a detection line is detected.
  • the top view which shows an example of the detection sensor in 2nd Embodiment, and its periphery
  • the block diagram which shows the structure of the control system of the printer in 2nd Embodiment.
  • the flowchart which shows the flow of the example of an initial measurement process in 2nd Embodiment.
  • Explanatory drawing which shows the state which printed the detection pattern for detecting a head inclination and the curvature amount.
  • Explanatory drawing which shows a mode that the detection pattern is detecting with the detection sensor
  • Explanatory drawing used for explanation of measurement of head bending amount The flowchart which shows the flow of the example of the stereo image formation process in 2nd Embodiment.
  • FIG. 1 is a schematic configuration diagram showing a printer 2 to which the present invention is applied.
  • the printer 2 records a parallax image on the back surface of the lenticular sheet 3.
  • the lenticular sheet 3 has a large number of substantially semi-cylindrical lenticular lenses 4 (hereinafter sometimes simply referred to as “lenses”) arranged on the surface, and the back surface is flat.
  • the lenticular lens 4 is formed of a cylindrical lens and has a surface shape that forms a part of a cylinder.
  • the “lenticular lens” in the present invention is not limited to the shape shown in FIG. 2, and includes other cylindrical lenses.
  • a large number of lenses 4 are formed on the surface of the lenticular sheet 3 along the sub-scanning direction y (conveying direction), and the lenticular sheet 3 is in a state where the longitudinal direction of the lens 4 is substantially parallel to the main scanning direction x. Be transported.
  • an image area 5 is virtually divided for each lens 4, and one image area 5 corresponds to one lens 4.
  • Each image region 5 is virtually divided into a plurality of rows of minute regions 5a to 5f in the arrangement direction of the lens 4 corresponding to the number of viewpoints (six viewpoints in this example) for displaying a stereoscopic image, and parallax images
  • a linear image obtained by dividing the line is recorded in each of the plurality of minute areas 5a to 5f. For example, a first viewpoint parallax image is printed in the first minute region 5a.
  • the printer 2 is provided with a conveyance path 12 through which the lenticular sheet 3 supplied from the conveyance port 11 is conveyed.
  • a feed roller pair 15, a head 16 and a platen roller 17, an inclination angle detection unit 18, and a clamp unit 19 are arranged in the transport path 12 in order from the upstream side in the transport direction.
  • the clamp unit 19 is a clamper that switches between a clamper 23 as a holding unit that releasably clamps (holds) the tip of the lenticular sheet 3, and a closed state in which the lenticular sheet 3 is clamped and an open state in which the lenticular sheet 3 is unclamped.
  • An opening / closing mechanism 24 and a clamper driving mechanism 25 that reciprocates the clamper 23 along the transport path 12 are configured.
  • the clamper 23 is moved by the clamper driving mechanism 25 between a clamp position for clamping and releasing the tip of the lenticular sheet 3 fed by the feed roller pair 15 and a terminal position downstream of the clamp position.
  • the lenticular sheet 3 clamped by the clamper 23 reciprocates in the sub-scanning direction orthogonal to the main scanning direction. Further, the clamper driving mechanism 25 rotates the clamper 23 around an axis perpendicular to the transport surface of the transport path 12. That is, the lenticular sheet 3 can be rotated at an arbitrary angle around an axis perpendicular to the conveyance surface.
  • the transport path 12 near the upstream side of the platen roller 17 is provided with a return transport path 12a that extends obliquely downward toward the upstream side.
  • a discharge port (not shown) for discharging the recorded lenticular sheet 3 outside the printer 2 is provided at the tip of the return conveyance path 12a.
  • the head 16 and the platen roller 17 are disposed so as to sandwich the conveyance path 12.
  • an array of recording elements 16a in which a large number of heating elements are arranged in a line in a plurality of rows in the main scanning direction is formed below the head 16.
  • the head 16 moves between a pressing position where the recording film is pressed against the back surface of the lenticular sheet 3 on the platen roller 17 and a retracted position where the recording film is retracted upward from the pressing position.
  • an image receiving layer film 27, an ink film 28, and a back layer film 29 are attached to a film exchange mechanism 30.
  • the image receiving layer film 27 is heated by the head 16 while being superimposed on the back surface of the lenticular sheet 3, the transparent image receiving layer to which the color ink from the ink film 28 is attached is transferred to the back surface of the lenticular sheet 3.
  • the ink film 28 is a sublimation type ink film, and when heated by the head 16 in a state of being superimposed on the image receiving layer on the back surface of the lenticular sheet 3, yellow, magenta, and cyan inks are sublimated to adhere to the image receiving layer. .
  • the back layer film 29 transfers the white back layer onto the image when heated by the head 16 in a state of being superimposed on the image recorded on the lenticular sheet 3.
  • the head driving unit 32 drives the head 16.
  • the head driving unit 32 simultaneously generates heat generation amounts necessary for the transfer in the respective heating elements, and when recording an image using the ink film 28, the head driving unit 32 is based on the parallax image data. Each heating element generates heat.
  • the tilt angle detector 18 optically detects the tilt angle ⁇ L of the lens 4 of the lenticular sheet 3 conveyed by the clamp unit 19.
  • the tilt angle ⁇ L of the lens 4 is an angle formed by the longitudinal direction of the lens 4 and the main scanning direction.
  • the tilt angle detection unit 18 includes a first detection sensor 34 and a second detection sensor 36.
  • the first detection sensor 34 (S1) is disposed at a position facing one side end of the lenticular sheet 3.
  • the second detection sensor 36 (S2) is disposed at a position facing the other side end of the lenticular sheet 3.
  • Reference numeral L12 indicates a distance between the first detection sensor 34 (S1) and the second detection sensor 36 (S2).
  • the head 16 has a plurality of recording elements 16 a arranged along the longitudinal direction intersecting the sub-scanning direction in the conveyance path of the lenticular sheet 3 and arranged along the longitudinal direction of the head 16.
  • the head 16 records a plurality of linear images corresponding to each of the plurality of lenticular lenses 4 on the back surface of the lenticular sheet 3 opposite to the surface on which the lenticular lens 4 is formed. Record multiple viewpoint images.
  • the longitudinal direction of the head 16 is parallel to the main scanning direction. However, in practice, the head 16 may be inclined with respect to the main scanning direction. Such correction is necessary.
  • the first detection sensor 34 and the second detection sensor 36 are provided in the conveyance path of the lenticular sheet 3 and are arranged on the reference line Lb in the main scanning direction orthogonal to the sub-scanning direction. Based on the detection signals output from the plurality of detection sensors 34 and 36, the tilt angle of the lenticular lens 4 can be obtained.
  • each of the detection sensors 34 and 36 includes a light emitting diode (hereinafter referred to as “LED”) 38 and a photo sensor 39 that are arranged to face each other with the conveyance surface of the lenticular sheet 3 interposed therebetween.
  • a slit plate 40 is disposed between the photo sensor 39 and the conveyance surface of the lenticular sheet 3.
  • the slit plate 40 is formed with a slit hole 40a set to a width through which almost one light of the lens 4 passes.
  • the detection range is limited by the slit hole 40 a and is received by the photosensor 39.
  • the photo sensor 39 outputs a detection signal corresponding to the amount of received light.
  • the amount of light received by the photosensor 39 changes according to the position of the lens 4 with respect to each of the detection sensors 34 and 36, and the magnitude of the detection signal also changes.
  • the detection signal of this example increases to a maximum until the apex of the lens 4 faces the detection sensor 34, 36 until the boundary between the lenses 4 faces, then decreases, and the boundary between the lenses 4 decreases. When facing each other, it starts to increase again.
  • FIG. 5 is a perspective view showing the clamp unit 19 and its surroundings.
  • the clamper 23 includes a fixed plate 42 and a movable plate 43.
  • the fixed plate 42 is a flat plate whose length in the longitudinal direction is larger than the width of the lenticular sheet 3, and is arranged in parallel with the transport surface.
  • the movable plate 43 rotates between a holding position for holding the lenticular sheet 3 between the movable plate 43 and a holding release position for releasing the holding.
  • a spring (not shown) is disposed between the fixed plate 41 and the movable plate 43, and the movable plate 43 is urged toward the holding position by this spring.
  • the clamper opening / closing mechanism 24 includes a cam shaft 45 that rotates the movable plate 43 and a clamp release motor 46 that rotates the cam shaft 45.
  • the cam shaft 45 is disposed in the vicinity of the clamper 23 at the clamp position. By rotating the cam shaft 45 by the clamp release motor 46 and displacing the movable plate 43 between the holding position and the holding release position by the cam 45a attached to the cam shaft 45, the clamper 23 is opened and closed. Switch between states.
  • the clamper driving mechanism 25 includes a left motor 49 and a right motor 50, a left pulley 51 and a right pulley 52 attached to a rotating shaft, a left belt 53 hung on the left motor 49 and the left pulley 51, and a right motor. 50 and a right belt 54 hung on the right pulley 52.
  • Both ends of the clamper 23 are attached to the left and right belts 53 and 54 so as to be rotatable around an axis perpendicular to the conveying surface.
  • the left and right belts 53 and 54 move the clamper 23 in the sub-scanning direction.
  • the left motor 49 and the right motor 50 rotate in opposite directions, or when only one of them rotates, the left and right belts 53 and 54 rotate the clamper 23 around an axis perpendicular to the conveyance surface.
  • the clamper drive mechanism 25 includes a left guide rail 55 and a right guide rail 56 that guide the clamper 23 in the sub-scanning direction.
  • a left skew regulation guide 57 and a right skew regulation guide 58 are disposed inside the left and right guide rails 55 and 56.
  • the left and right skew regulation guides 57 and 58 regulate the skew angle of the lenticular sheet 3 fed from the feed roller pair 15 to the clamp unit 19 to be a predetermined angle or less.
  • a conveying means for conveying the lenticular sheet 3 in the sub-scanning direction is constituted by the feeding roller pair 15, the clamp unit 19, the left and right belts 53 and 54, and the like.
  • FIG. 6 is a block diagram showing the configuration of the control system of the printer 2 in the first embodiment.
  • the elements shown in FIGS. 1 to 5 are given the same reference numerals.
  • the CPU 60 controls each part of the printer 2 in an integrated manner.
  • the memory 61 stores a program and data for controlling the printer 2.
  • the motor driver 62 rotates and stops the feed roller pair 15 by the motor 21 according to the control of the CPU 60. Further, the motor driver 62 rotates the left and right belts 53 and 54 according to the control of the CPU 60.
  • the head retracting mechanism 64 moves the head 16 to the press contact position or the retracted position under the control of the CPU 60.
  • the tip detection sensor 65 (see FIG. 5) is disposed upstream of the clamp position, and outputs a tip detection signal to the CPU 60 when it detects passage of the tip of the lenticular sheet 3.
  • the head drive control unit 68 controls the drive of the head 16 by the head drive unit 32.
  • the clamper drive control unit 69 switches between a closed state and an open state of the clamper 23 by the clamper opening / closing mechanism 24. Further, the clamper drive control unit 69 controls the movement of the clamper 23 in the sub-scanning direction and the rotation of the clamper 23 by the clamper drive mechanism 25.
  • the clamper drive control unit 69 of this example controls holding and releasing of the sheet such as the lenticular sheet 3 by the clamper opening / closing mechanism 24. Further, the clamper drive control unit 69 of this example adjusts the tilt angle of the lens 4 of the lenticular sheet 3 by the clamper drive mechanism 25.
  • the tilt correction control unit 70 performs tilt correction control by rotating the clamper 23 by the clamper drive control unit 69. Details of the tilt correction control will be described later.
  • the detection pattern printing control unit 72 conveys the transparent sheet 82 by the feeding roller pair 15 and the like, abuts against the abutting surface 23 a of the clamper 23, and clamps the transparent sheet 82 by the clamper 23.
  • the detection pattern 83 for detecting the tilt angle of the head 16 is printed on the transparent sheet 82 by the head 16.
  • the head inclination measuring unit 73 detects the detection pattern 83 of the transparent sheet 82 by the first detection sensor S1 and the second detection sensor S2, as shown in FIG. 9, and detects the first detection sensor S1 and the second detection sensor S2. Based on the signal, the inclination angle ⁇ p of the detection pattern 83 with respect to the reference line Lb (main scanning direction x) connecting the first detection sensor S1 and the second detection sensor S2 is calculated, and the inclination angle ⁇ p is calculated as the inclination angle of the head 16. It is stored in the memory 61 as ⁇ h.
  • the lens inclination measuring unit 74 detects the detection line (LL in FIG. 11A) of the lenticular sheet 3 by the first detection sensor S1 and the second detection sensor S2 as shown in FIG. 12, and the first detection sensor S1 and the second detection sensor 2 are detected. Based on the detection signal of the sensor S2, an inclination angle in the longitudinal direction of the lenticular lens 4 with respect to a reference line (Lb in FIG. 8) connecting the first detection sensor S1 and the second detection sensor S2 is calculated.
  • the lens position detection unit 75 detects a peak 4b of the lenticular lens 4 adjacent to the detection line LL among the plurality of lenticular lenses 4 based on the detection signals of the detection sensors S1 and S2, as shown in FIG. The reference position of the lenticular lens 4 in the sub-scanning direction is detected.
  • the aforementioned tilt correction control unit 70 executes various tilt corrections based on the measurement results of the head tilt measuring unit 73 and the lens tilt measuring unit 74.
  • the tilt correction control unit 70 of this example is based on the tilt angle of the lenticular lens 4 calculated by the lens tilt measuring unit 74 and the head tilt angle calculated by the head tilt measuring unit 73 and stored in the memory 61. Then, tilt correction control is performed to match the tilt angle of the lenticular lens 4 with respect to the reference line Lb (main scanning direction) and the tilt angle of the head 16.
  • the detection pattern printing control unit 72 conveys the transparent sheet 82 (head inclination detection sheet), abuts against the abutting surface 23 a of the clamper 23, and the transparent sheet 82 is clamped by the clamper 23.
  • control is performed such that the detection pattern 83 for detecting the tilt angle ⁇ h of the head 16 with respect to the reference line Lb is printed on the transparent sheet 82 by the head 16.
  • the data converter 76 reads out the two viewpoint parallax images from the memory 61 and converts them into multi-viewpoint (for example, six viewpoints) parallax images.
  • the stereoscopic image recording control unit 77 drives the head 16 with the multi-viewpoint parallax image generated by the data conversion unit 76 via the head drive control unit 68 and the head drive unit 32, and the head 16 is placed behind the lenticular sheet 3. Thus, a stereoscopic image (a multi-view parallax image) is recorded.
  • FIG. 7 is a flowchart showing an exemplary flow of the initial measurement process in the first embodiment. This process is executed by the CPU 60 according to a program.
  • a virtual line Lb connecting the first detection sensor S1 and the second detection sensor S2 is a reference line along the main scanning direction x.
  • the origin information of the clamper 23 is held in the memory 61. Based on the origin information, the abutting surface 23a of the clamper 23 can be set parallel to the reference line Lb. It is assumed that the longitudinal direction of the head 16 is not parallel to the reference line Lb. Therefore, it is necessary to correct the inclination angle of the head 16 in the longitudinal direction.
  • the detection pattern printing control unit 72 conveys an unprinted transparent sheet 82 by the feeding roller pair 15 to abut against the abutting surface 23 a of the clamper 23, and the transparent sheet 82 by the clamper 23. Is detected (step S11), and the detection pattern 83 for detecting the tilt angle of the head 16 is moved to the transparent sheet 82 by the head 16 while the transparent sheet 82 is moved in the sub-scanning direction y by driving the belts 53 and 54. Printing is performed (step S12).
  • the head inclination measuring unit 73 drives the belts 53 and 54 to move the transparent sheet 82 in the sub-scanning direction in a state where the transparent sheet 82 printed with the detection pattern 83 is clamped by the clamper 23. While moving at y, the detection pattern 83 of the transparent sheet 82 is detected by the first detection sensor S1 and the second detection sensor S2 (step S13).
  • the head inclination measuring unit 73 is configured to use a reference line Lb (main scanning direction x) connecting the first detection sensor S1 and the second detection sensor S2 based on the detection signals of the first detection sensor S1 and the second detection sensor S2.
  • the calculated tilt angle ⁇ p is stored in the memory 61 as the tilt angle ⁇ h of the head 16 with respect to the reference line Lb (step S14).
  • the distance between the first detection sensor S1 and the second detection sensor S2 is L12
  • the detection position deviation amount of the detection pattern 83 between the first detection sensor S1 and the second detection sensor S2 is DH.
  • FIG. 10 is a flowchart showing a flow of an example of the stereoscopic image forming process in the first embodiment. This process is executed by the CPU 60 according to a program.
  • the tilt angle ⁇ h of the head 16 is acquired from the memory 61 (step S21).
  • Step S22 the lenticular sheet 3 shown in the perspective view of FIG. 11A and the side view of FIG. 11B is conveyed by the pair of feeding rollers 15 to abut against the abutting surface 23a of the clamper 23, and the lenticular sheet 3 is clamped by the clamper 23.
  • the lens inclination measuring unit 74 drives the belts 53 and 54 in the sub-scanning direction with the clamper 23 clamping the transparent sheet 82 on which the detection pattern 83 is printed. While moving at y, the detection line LL of the lenticular sheet 3 is detected by the first detection sensor S1 and the second detection sensor S2 (step S23).
  • FIG. 13A shows the lenticular sheet 3 before tilt correction.
  • the lens tilt measurement unit 74 is configured to use a reference line Lb (main scanning direction x) connecting the first detection sensor S1 and the second detection sensor S2 based on the detection signals of the first detection sensor S1 and the second detection sensor S2.
  • the inclination angle ⁇ L of the detection line LL with respect to () is calculated, and the calculated inclination angle ⁇ L is stored in the memory 61 (step S24).
  • the tilt correction control unit 70 rotates the clamper 23 by the tilt angle ⁇ L so that the detection line LL coincides with the reference line Lb by the clamper driving mechanism 25 (step S25).
  • the tilt correction control unit 70 rotates the clamper 23 by the tilt angle ⁇ h by the clamper driving mechanism 25 (step S26).
  • a stereoscopic image (a plurality of viewpoint images) is formed on the lenticular sheet 3 (step S27).
  • the lenticular sheet 3 on which a plurality of viewpoint images are recorded as a stereoscopic image is discharged (step S28).
  • the tilt correction control unit 70 calculates the tilt angle ⁇ L with respect to the reference line Lb of the lenticular lens 4 calculated by the lens tilt measuring unit 74 and the tilt angle ⁇ h with respect to the reference line Lb in the longitudinal direction Lh of the head 16 stored in the memory 61. Based on the above, tilt correction is performed so that the tilt angle of the lenticular lens 4 with respect to the reference line Lb coincides with the tilt angle ⁇ h with respect to the reference line Lb in the longitudinal direction Lh of the head 16.
  • the detection line LL in the lenticular sheet 3 shown in the perspective view of FIG. 15A and the side view of FIG. 15B is formed by coloring the groove 4 a between the lenticular lenses 4 in the longitudinal direction of the lenticular lens 4.
  • the lens inclination measurement unit 74 calculates the inclination angle in the longitudinal direction of the groove 4a with respect to the reference line Lb based on the detection signals of the detection sensors S1 and S2.
  • the detection lines LL are formed in total (two in this example) on the lenticular sheet 3 with a plurality of lenticular lenses 4 interposed therebetween.
  • one or more detection lines LL are formed near both the front end and the rear end of the lenticular sheet 3 in the sub-scanning direction. Further, the detection line LL of this example is formed in a non-clamping region (non-holding region) that is not clamped by the clamper 23 of the lenticular sheet 3.
  • FIG. 15 shows a clamp region CL1 on one side of the lenticular sheet 3 and a clamp region CL2 on the other side. The detection line LL is formed in an unclamped region between CL1 and CL2.
  • FIG. 16 shows a lenticular sheet 3 on which another example detection line LL2 is formed.
  • the detection line LL2 of this example is formed in a shape lacking the mountain 4b of the lenticular lens 4. That is, the detection line LL2 is formed by skipping (making a notch shape) at least a part of one or a plurality of peaks of the lenticular lens 4.
  • Such a lenticular sheet 3 can be formed using, for example, a mold.
  • FIG. 17 shows a lenticular sheet 3 on which another example detection line LL3 is formed.
  • the detection line LL3 in this example is formed by coloring the peak 4b of the lenticular lens 4 in the longitudinal direction of the lenticular lens 4.
  • FIG. 16 shows a clamp region CL1 on one side of the lenticular sheet 3 and a clamp region CL2 on the other side.
  • the detection line LL is formed in an unclamped region between CL1 and CL2.
  • FIG. 18 shows a state in which the reference position of the lenticular lens 4 in the sub-scanning direction is detected by detecting the crest 4b of the lenticular lens 4 adjacent to the detection line LL based on the detection signal of the detection sensor.
  • a third detection sensor 35 is arranged between the first detection sensor 34 (S1) and the second detection sensor 36 (S2). Configured.
  • the third detection sensor 35 (S3) is disposed closer to the first detection sensor 34 (S1) than the center of the first detection sensor 34 (S1) and the second detection sensor 36 (S2). That is, at least one interval among the intervals of the plurality of detection sensors 34, 35, and 36 in the main scanning direction is arranged differently from any other interval.
  • the interval L23 between the second detection sensor 36 (S2) and the third detection sensor 35 (S3) is larger than the interval L13 between the first detection sensor 34 and the third detection sensor 35.
  • the three detection sensors 34, 35, and 36 provided in the conveyance path of the lenticular sheet 3 are arranged in the main scanning direction so that at least one of the intervals is different from any of the other intervals.
  • the bending amount of the head 16 can be obtained based on detection signals output from the detection sensors 34, 35, and 36, as will be described later.
  • FIG. 20 is a block diagram showing the configuration of the control system of the printer 2 in the second embodiment.
  • the elements shown in FIGS. 1 to 6 are denoted by the same reference numerals, and description of matters already described in the first embodiment will be omitted below.
  • the head bending amount measuring unit 78 calculates the bending amount with respect to the longitudinal direction of the head 16 based on the detection signals of the plurality of detection sensors S 1, S 2, S 3 that have detected the detection pattern 83 of the transparent sheet 82 and stores it in the memory 61.
  • the image correction unit 79 corrects the viewpoint image according to the amount of curvature of the head 16 acquired from the memory 61 so as to cancel the distortion of the viewpoint image formed on the lenticular sheet 3 due to the curvature of the head 16.
  • FIG. 21 is a flowchart showing an exemplary flow of measurement processing in the second embodiment. This process is executed by the CPU 60 according to a program. Steps S41 to S44 are the same as steps S11 to S14 in the first embodiment shown in FIG.
  • FIG. 22A shows a state in which the detection pattern 83 is printed on the transparent sheet 82 with the curved head 16 in step S42. Since the head 16 is curved, the detection pattern 83 printed on the transparent sheet 82 by the head 16 is also curved.
  • the curvature of the head 16 is exaggerated for easy understanding of the invention. Actually, the curvature of the head 16 is minute, but in the example shown in FIG. 2, a linear image is printed by dividing the lenticular lens 4 into six minute areas 5a to 5f. If the amount of curvature of the head 16 is large with respect to the width of the regions 5a to 5f, an image that is difficult to view stereoscopically is formed.
  • FIG. 22B shows a state in which the detection pattern 83 on the transparent sheet 82 is detected by the first detection sensor S1 and the second detection sensor S2 in step S43.
  • step S45 the head bending amount measuring unit 78 detects the rotation of the clamper 23 in the direction opposite to the tilt direction of the head 16 by the tilt angle ⁇ h by the clamper driving mechanism 25 as shown in FIG.
  • the detection signal peaks of the sensor S1 and the detection sensor S2 are matched. As a result, the amount of bending can be accurately calculated.
  • the head bending amount measuring unit 78 calculates the bending amount Dc of the head 16 based on the detection signals of the detection sensors S1, S2, and S3, and stores it in the memory 61.
  • DH3 is the distance from the third detection sensor S3 to the end of the detection pattern 83, and is calculated based on the detection signal of the third detection sensor S3.
  • D3 is the amount of positional deviation of the third detection sensor S3 from the reference line Lb (see FIG. 9). D3 is stored in the memory 61 in advance.
  • step S53 the transparent sheet 82 is discharged.
  • FIG. 24 is a flowchart showing a flow of an example of the stereoscopic image forming process. Steps S61 to S66 are the same as steps S21 to S26 of the stereoscopic image forming process in the first embodiment shown in FIG.
  • step S67 the image correction unit 79 acquires the bending amount Dc of the head 16 from the memory 61.
  • step S69 based on the corrected viewpoint image, the head 16 prints a plurality of linear images for each lenticular lens 4 on the back surface of the lenticular sheet 3, so that a three-dimensional image (a plurality of images is displayed on the lenticular sheet 3). Viewpoint image).
  • step S70 the lenticular sheet 3 on which the stereoscopic image is recorded is discharged.
  • the three detection sensors S1, S2, and S3 are provided in the conveyance path.
  • the number of detection sensors may be increased, and four or more detection sensors may be arranged on the conveyance path.
  • the present invention is not limited to such a case.
  • a head rotating means for rotating the head 16 around an axis perpendicular to the conveying surface of the lenticular sheet 3 may be provided.
  • the inclination correction control unit 70 rotates the head 16 by the head rotating means.
  • the present invention is not limited to such a case.
  • the moving speeds of the left and right ends of the lenticular sheet 3 may be matched to convey the lenticular sheet 3 in the sub-scanning direction so that the lenticular sheet 3 does not rotate.
  • the holding means for holding the lenticular sheet 3 is not particularly limited to the clamper 23.

Abstract

An image-forming device is provided with: a conveyance unit for conveying a lenticular sheet in a sub-scanning direction, the lenticular sheet having a plurality of lenticular lenses formed in the surface thereof so as to align in the sub-scanning direction, and a detection line formed in the lengthwise direction of the lenticular lenses; a plurality of detection sensors including a first detection sensor and a second detection sensor positioned on the reference line in a principal scanning direction orthogonally intersecting the sub-scanning direction, and positioned on the conveyance track for the lenticular sheet; a lens tilt measurement unit for calculating the angle of tilt of the lenticular lenses in relation to the reference line, on the basis of a detection signal from the plurality of detection sensors, which detect the detection line on the lenticular sheet; a head for recording a plurality of perspective images in the lenticular sheet by recording a plurality of linear images, which correspond to each of the plurality of lenticular lenses, on the surface of the lenticular sheet opposite the surface on which the lenticular lenses are formed, the head being positioned on the conveyance track for the lenticular sheet in a lengthwise direction intersecting the sub-scanning direction; a recording unit for recording the angle of tilt of the head in the lengthwise direction in relation to the reference line; and a tilt correction control unit for matching the angle of tilt of the lenticular lenses and the angle of tilt of the head, on the basis of the angle of tilt of the lenticular lenses calculated by the lens tilt calculation unit and the angle of tilt of the head recorded in the recording unit.

Description

画像形成装置及び画像形成方法Image forming apparatus and image forming method
 本発明は、レンチキュラレンズの長手方向と立体画像を構成する線状画像の長手方向とを一致させて高品質の立体画像を形成することができる画像形成装置及び画像形成方法に関する。 The present invention relates to an image forming apparatus and an image forming method capable of forming a high-quality stereoscopic image by matching the longitudinal direction of a lenticular lens with the longitudinal direction of a linear image constituting a stereoscopic image.
 略半円柱状のレンチキュラレンズを複数並べたレンチキュラシートに複数の視点画像を印画することで、立体画像を形成する画像形成装置が知られている。具体的には、レンチキュラシートを搬送し、そのレンチキュラシートの背面に、ラインヘッドを用いてレンチキュラレンズごとに各視点画像の線状画像を印画する。例えば、6視点画像を印画する場合、レンチキュラレンズごとに、6本の線状画像を印画する。 There is known an image forming apparatus that forms a stereoscopic image by printing a plurality of viewpoint images on a lenticular sheet in which a plurality of substantially semi-cylindrical lenticular lenses are arranged. Specifically, a lenticular sheet is conveyed, and a linear image of each viewpoint image is printed for each lenticular lens using a line head on the back of the lenticular sheet. For example, when printing six viewpoint images, six linear images are printed for each lenticular lens.
 このような画像形成を行なう際に、立体画像の品質を向上させるためには、レンチキュラレンズと、各視点画像を構成する線状画像との位置合わせを精度良く行う必要がある。 When performing such image formation, in order to improve the quality of the three-dimensional image, it is necessary to accurately align the lenticular lens and the linear image constituting each viewpoint image.
 特許文献1には、テストパターンを印字した後、フォトセンサで読み取り、印字位置からフォトセンサの読み取り位置までの移動量を検出する構成が開示されている。 Patent Document 1 discloses a configuration in which a test pattern is printed and then read by a photosensor, and a movement amount from the printing position to the reading position of the photosensor is detected.
 特許文献2には、ヘッドに併設した光学センサにより、ヘッドに対するレンチキュラレンズの相対位置を検出する構成が開示されている。 Patent Document 2 discloses a configuration in which a relative position of a lenticular lens with respect to a head is detected by an optical sensor provided in the head.
 特許文献3には、レンチキュラシートの読み取りを行い、基準平行線に対するレンチキュラレンズ(凸レンズ)の谷の傾斜を算出することで、レンチキュラレンズの傾斜角度の算出を行なう構成が開示されている。 Patent Document 3 discloses a configuration in which the inclination angle of a lenticular lens is calculated by reading a lenticular sheet and calculating the inclination of a valley of the lenticular lens (convex lens) with respect to a reference parallel line.
特開平8-137034号公報JP-A-8-137034 特開2003-21878号公報Japanese Patent Laid-Open No. 2003-21878 特開2007-127521号公報JP 2007-127521 A
 高品質の立体画像を形成するためには、レンチキュラレンズの長手方向に対して、印画する線状画像の長手方向を正確に位置合わせする必要がある。即ち、レンチキュラレンズ及びヘッドの傾きを正確に検出するとともに、検出されたレンチキュラレンズ及びヘッドの傾きに基づいてレンチキュラレンズの長手方向と線状画像の長手方向とを一致させる必要がある。 In order to form a high-quality stereoscopic image, it is necessary to accurately align the longitudinal direction of the linear image to be printed with respect to the longitudinal direction of the lenticular lens. That is, it is necessary to accurately detect the tilt of the lenticular lens and the head, and to match the longitudinal direction of the lenticular lens and the longitudinal direction of the linear image based on the detected tilt of the lenticular lens and the head.
 特許文献1記載の構成では、印字位置からフォトセンサの読み取り位置までの移動量を検出しているだけであり、レンチキュラレンズ及びヘッドの傾きを正確に検出することができない。特許文献2記載の構成では、ヘッドに対するレンチキュラレンズの相対位置を検出しているだけであり、レンチキュラレンズ及びヘッドの傾きを正確に検出することができない。特許文献3記載の構成では、レンチキュラレンズの傾斜角度を検出することは可能だが、レンズピッチに対して傾斜角度が大きい場合には傾斜角度の誤検出が発生する。また、特許文献1~3のいずれも、ヘッドの傾きに対する補正に関して記載されていない。 In the configuration described in Patent Document 1, only the amount of movement from the printing position to the reading position of the photosensor is detected, and the tilt of the lenticular lens and the head cannot be accurately detected. In the configuration described in Patent Document 2, only the relative position of the lenticular lens with respect to the head is detected, and the tilt of the lenticular lens and the head cannot be accurately detected. With the configuration described in Patent Document 3, it is possible to detect the tilt angle of the lenticular lens, but if the tilt angle is large with respect to the lens pitch, erroneous detection of the tilt angle occurs. In addition, none of Patent Documents 1 to 3 describes correction for head tilt.
 本発明はこのような事情に鑑みてなされたもので、レンチキュラレンズ及びヘッドの傾きが存在する場合でも、高品質の立体画像を形成することができる画像形成装置及び画像形成方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an image forming apparatus and an image forming method capable of forming a high-quality stereoscopic image even when the lenticular lens and the head are inclined. Objective.
 前記目的を達成するために、本発明は、副走査方向に沿って並んだ複数のレンチキュラレンズと前記レンチキュラレンズの長手方向に沿った検出ラインとが形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1及び第2検出センサを含む複数の検出センサと、前記レンチキュラシートの前記検出ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するレンズ傾き測定部と、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの前記レンチキュラレンズが形成されている面とは反対側の面に、前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、前記基準線に対する前記ヘッドの長手方向の傾き角度を記憶する記憶部と、前記レンズ傾き算出部により算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させる傾き補正制御部と、を備えた画像形成装置を提供する。即ち、第1検出センサと第2検出センサとを結ぶ仮想ラインを基準線として、レンチキュラレンズの傾き角度をヘッドの傾き角度と一致させる角度補正を行うことにより、レンチキュラシート上の複数のレンチキュラレンズの各々に対応して複数の線状画像を精度良く記録することが可能となり、高精度の立体画像を形成できる。 In order to achieve the object, the present invention conveys a lenticular sheet formed with a plurality of lenticular lenses arranged along the sub-scanning direction and a detection line along the longitudinal direction of the lenticular lens in the sub-scanning direction. A plurality of detection sensors including first and second detection sensors disposed on a reference line in a main scanning direction orthogonal to the sub-scanning direction, provided in a conveyance path for the lenticular sheet, and the lenticular sheet The detection line of the lenticular lens is detected by the plurality of detection sensors, and an inclination angle of the lenticular lens with respect to the reference line is calculated based on detection signals of the plurality of detection sensors, and a conveyance path of the lenticular sheet Arranged along the longitudinal direction intersecting the sub-scanning direction, and the lenticular sheet of the lenticular sheet A head for recording a plurality of viewpoint images on the lenticular sheet by recording a plurality of linear images corresponding to each of the plurality of lenticular lenses on a surface opposite to the surface on which the lens is formed; Based on a storage unit that stores an inclination angle of the head in the longitudinal direction with respect to the reference line, an inclination angle of the lenticular lens calculated by the lens inclination calculation unit, and an inclination angle of the head stored in the storage unit. And an inclination correction control unit that matches the inclination angle of the lenticular lens with the inclination angle of the head. That is, by using the virtual line connecting the first detection sensor and the second detection sensor as a reference line, angle correction is performed so that the tilt angle of the lenticular lens coincides with the tilt angle of the head, whereby a plurality of lenticular lenses on the lenticular sheet are corrected. A plurality of linear images can be recorded with high accuracy corresponding to each, and a highly accurate stereoscopic image can be formed.
 本発明の一実施形態にて、前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズ間の溝を前記レンチキュラレンズの長手方向に着色して形成されており、前記レンズ傾き測定部は、前記複数の検出センサの検出信号に基づいて、前記着色された溝の前記基準線に対する傾き角度を算出する。即ち、レンチキュラレンズ間の溝(谷)を前記レンチキュラレンズの長手方向に着色した検出ラインを検出することで、非着色のレンチキュラレンズの山を検出する場合と比較して、隣の山を同一の山であると誤検出することを防ぐことが可能となる。 In one embodiment of the present invention, the detection line of the lenticular lens is formed by coloring a groove between the lenticular lenses in a longitudinal direction of the lenticular lens, and the lens inclination measurement unit includes the plurality of lens inclination measuring units. Based on the detection signal of the detection sensor, an inclination angle of the colored groove with respect to the reference line is calculated. That is, by detecting a detection line in which grooves (valleys) between lenticular lenses are colored in the longitudinal direction of the lenticular lens, the adjacent peaks are identical to those in the case of detecting a non-colored lenticular lens peak. It is possible to prevent erroneous detection of a mountain.
 本発明の一実施形態にて、前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズの山を前記レンチキュラレンズの長手方向に着色して形成されており、前記レンズ傾き測定部は、前記複数の検出センサの検出信号に基づいて、前記着色された山の前記基準線に対する傾き角度を算出する。即ち、レンチキュラレンズの山を前記レンチキュラレンズの長手方向に着色した検出ラインを検出することで、非着色のレンチキュラレンズの山を検出する場合と比較して、隣の山を同一の山であると誤検出することを防ぐことが可能となる。 In one embodiment of the present invention, the detection line of the lenticular lens is formed by coloring a peak of the lenticular lens in a longitudinal direction of the lenticular lens, and the lens inclination measuring unit is configured to detect the plurality of detections. An inclination angle of the colored mountain with respect to the reference line is calculated based on a detection signal of the sensor. That is, by detecting a detection line in which the lenticular lens peak is colored in the longitudinal direction of the lenticular lens, the adjacent peak is the same peak as in the case of detecting a non-colored lenticular lens peak. It is possible to prevent erroneous detection.
 本発明の一実施形態にて、前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズの山を欠いた形状で形成されており、前記レンズ傾き測定部は、前記複数の検出センサの検出信号に基づいて、前記山を欠いた形状で形成された前記検出ラインの前記基準線に対する傾き角度を算出する。即ち、前記レンチキュラレンズの山を欠いた形状(スキップ形状)で形成された検出ラインを検出することで、非着色のレンチキュラレンズの山を検出する場合と比較して、隣の山を同一の山であると誤検出することを防ぐことが可能となる。 In one embodiment of the present invention, the detection line of the lenticular lens is formed in a shape lacking a mountain of the lenticular lens, and the lens inclination measurement unit is based on detection signals of the plurality of detection sensors. Then, an inclination angle of the detection line formed in a shape lacking the mountain with respect to the reference line is calculated. That is, by detecting a detection line formed with a shape (skip shape) lacking the lenticular lens ridge, the adjacent ridges are compared with the case where a non-colored lenticular lens ridge is detected. It is possible to prevent erroneous detection as being.
 本発明の一実施形態にて、前記複数のレンチキュラレンズのうちで前記検出ラインに隣接した前記レンチキュラレンズを前記検出センサの検出信号に基づいて検出することで、前記レンチキュラレンズの前記副走査方向における基準位置を検出するレンズ位置検出部を備えた。即ち、レンチキュラシート上に検出ラインがあってもレンチキュラレンズの基準位置を正確に検出することができる。 In one embodiment of the present invention, by detecting the lenticular lens adjacent to the detection line among the plurality of lenticular lenses based on a detection signal of the detection sensor, the lenticular lens in the sub-scanning direction is detected. A lens position detector for detecting the reference position is provided. In other words, even if there is a detection line on the lenticular sheet, the reference position of the lenticular lens can be accurately detected.
 本発明の一実施形態にて、前記レンチキュラレンズの前記検出ラインは、前記レンチキュラシート上に一本以上の前記レンチキュラレンズを挟んで合計で複数本形成されており、前記レンズ傾き測定部は、前記複数本の検出ラインを検出した前記検出センサの検出信号に基づいて前記レンチキュラレンズの傾きを算出する。 In one embodiment of the present invention, a plurality of the detection lines of the lenticular lens are formed in total on the lenticular sheet with one or more lenticular lenses interposed therebetween, and the lens inclination measuring unit is The tilt of the lenticular lens is calculated based on the detection signal of the detection sensor that has detected a plurality of detection lines.
 本発明の一実施形態にて、前記レンチキュラレンズの前記検出ラインは、前記副走査方向にて前記レンチキュラシートの中央よりも前端寄りおよび後端寄りの両方にそれぞれ一本以上形成されている。即ち、レンチキュラシートの搬送方向(副走査方向)にて天地方向(前後)が逆転して搬送されても、検出ラインを確実に検出することができる。 In one embodiment of the present invention, at least one detection line of the lenticular lens is formed near both the front end and the rear end from the center of the lenticular sheet in the sub-scanning direction. That is, the detection line can be reliably detected even if the top and bottom direction (front and rear) is reversed and conveyed in the conveyance direction (sub-scanning direction) of the lenticular sheet.
 本発明の一実施形態にて、前記搬送部により前記搬送路上を搬送された前記レンチキュラシートを保持する保持部を備え、前記傾き補正制御部は、前記保持部を前記レンチキュラシートの搬送面に垂直な軸周りに回動させることで、前記レンチキュラレンズの傾き角度を変化させる。 In one embodiment of the present invention, a holding unit that holds the lenticular sheet conveyed on the conveyance path by the conveyance unit is provided, and the inclination correction control unit makes the holding unit perpendicular to the conveyance surface of the lenticular sheet. The tilt angle of the lenticular lens is changed by rotating it around a certain axis.
 本発明の一実施形態にて、前記レンチキュラレンズの前記検出ラインは、前記レンチキュラシートの前記保持部により保持されない非保持領域に形成されており、前記複数の検出センサは、前記非保持領域から前記検出ラインを検出する。 In one embodiment of the present invention, the detection line of the lenticular lens is formed in a non-holding region that is not held by the holding part of the lenticular sheet, and the plurality of detection sensors are connected to the non-holding region from the non-holding region. Detect the detection line.
 本発明の一実施形態にて、前記搬送部によりヘッド傾き検出用シートを搬送して、前記保持部により前記ヘッド傾き検出用シートを保持した状態で、前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、前記複数の検出センサにより前記検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、を備えた。 In one embodiment of the present invention, the head tilt detection sheet is transported by the transport unit, and the head tilt angle with respect to the reference line is detected while the head tilt detection sheet is held by the holding unit. A detection pattern printing control unit that prints a detection pattern on the detection sheet by the head, the detection pattern is detected by the plurality of detection sensors, and the reference is based on detection signals of the plurality of detection sensors. A head inclination angle measuring unit that calculates an inclination angle of the detection pattern with respect to a line and stores the inclination angle in the storage unit as the inclination angle of the head.
 本発明の一実施形態にて、前記ヘッドの長手方向における湾曲量を記憶する湾曲量記憶部と、前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部に記憶された前記湾曲量に応じて前記視点画像を湾曲補正する画像補正部と、を備えた。 In one embodiment of the present invention, a bending amount storage unit that stores a bending amount in the longitudinal direction of the head, and a bending distortion of the viewpoint image formed on the lenticular sheet due to the bending of the head are canceled. And an image correction unit that corrects the curvature of the viewpoint image in accordance with the amount of curvature stored in the storage unit.
 本発明の一実施形態にて、前記搬送部により検出用シートを搬送して、前記保持部により前記検出用シートを保持した状態で、前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、前記複数の検出センサにより前記傾き検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、前記検出用シートの前記検出パターンを検出した前記複数の検出センサの検出信号に基づいて、前記ヘッドの長手方向に対する前記湾曲量を算出し、前記記憶部に記憶させる湾曲量測定部と、前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部に記憶された前記湾曲量に応じて前記視点画像を湾曲補正する画像補正部と、を備えたことを特徴とする。 In one embodiment of the present invention, detection for detecting an inclination angle of the head with respect to the reference line in a state where the detection sheet is conveyed by the conveyance unit and the detection sheet is held by the holding unit. A detection pattern printing control unit that prints a pattern on the detection sheet by the head, and the inclination detection pattern is detected by the plurality of detection sensors, and the reference line is detected based on detection signals of the plurality of detection sensors. A head tilt angle measurement unit that calculates the tilt angle of the detection pattern and stores the tilt angle in the storage unit as the tilt angle of the head, and detection of the plurality of detection sensors that detect the detection pattern of the detection sheet Based on the signal, the bending amount with respect to the longitudinal direction of the head is calculated and stored in the storage unit; An image correction unit that corrects the curvature of the viewpoint image in accordance with the amount of bending stored in the storage unit so as to cancel the distortion of the viewpoint image formed on the lenticular sheet due to the curvature of the lens. It is characterized by having.
 本発明の一実施形態にて、前記第1検出センサと前記第2検出センサとの中央に前記湾曲量を検出するための検出センサを配置した。 In one embodiment of the present invention, a detection sensor for detecting the bending amount is arranged at the center between the first detection sensor and the second detection sensor.
 本発明の一実施形態にて、前記複数の検出センサとして4個以上の検出センサを配置した。 In one embodiment of the present invention, four or more detection sensors are arranged as the plurality of detection sensors.
 本発明の一実施形態にて、前記複数の検出センサは、前記主走査方向における前記複数の検出センサの各々の間隔のうち少なくともひとつの間隔が他のいずれかの間隔と異なり配列されている。 In one embodiment of the present invention, the plurality of detection sensors are arranged such that at least one of the intervals of the plurality of detection sensors in the main scanning direction is different from any other interval.
 また、本発明は、副走査方向に沿って並んだ複数のレンチキュラレンズと前記レンチキュラレンズの長手方向に沿った検出ラインとが形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1及び第2検出センサを含む複数の検出センサと、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの前記レンチキュラレンズが形成されている面とは反対側の面に、前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、記憶部と、を備えた画像形成装置が、前記基準線に対する前記ヘッドの長手方向の傾き角度を前記記憶部に記憶させておくステップと、前記レンチキュラシートの前記検出ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するステップと、算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させるステップと、前記レンチキュラシートの背面に、前記ヘッドにより前記複数の視点画像を記録するステップと、を実行する画像形成方法を提供する。 Further, the present invention provides a transport unit that transports in the sub-scanning direction a lenticular sheet in which a plurality of lenticular lenses arranged in the sub-scanning direction and a detection line along the longitudinal direction of the lenticular lens are formed, A plurality of detection sensors including first and second detection sensors provided on a reference line in a main scanning direction orthogonal to the sub-scanning direction and provided in the lenticular sheet conveyance path; A plurality of linear images corresponding to each of the plurality of lenticular lenses is arranged on a surface opposite to the surface on which the lenticular lens is formed of the lenticular sheet, which is arranged along a longitudinal direction intersecting the scanning direction. An image forming apparatus comprising: a head that records a plurality of viewpoint images on the lenticular sheet by recording; and a storage unit. Storing the inclination angle of the head in the longitudinal direction with respect to a line in the storage unit, detecting the detection lines of the lenticular sheet by the plurality of detection sensors, and based on detection signals of the plurality of detection sensors Calculating the tilt angle of the lenticular lens with respect to the reference line, and the tilt angle of the lenticular lens based on the calculated tilt angle of the lenticular lens and the tilt angle of the head stored in the storage unit; There is provided an image forming method for executing a step of matching the tilt angle of the head and a step of recording the plurality of viewpoint images by the head on the back surface of the lenticular sheet.
 本発明によれば、レンチキュラレンズの長手方向と線状画像の長手方向とを一致させることで、高品質の立体画像を形成することができる。 According to the present invention, a high-quality stereoscopic image can be formed by matching the longitudinal direction of the lenticular lens with the longitudinal direction of the linear image.
本発明を適用した画像形成装置の概略図Schematic of an image forming apparatus to which the present invention is applied レンチキュラシートの斜視図Perspective view of lenticular sheet 検出センサの一例及びその周辺を示す上面図Top view showing an example of the detection sensor and its periphery 角度検出部の側面図Side view of angle detector 検出信号の説明図Illustration of detection signal クランプユニット及びその周辺を示す斜視図The perspective view which shows a clamp unit and its periphery 第1実施形態におけるプリンタの制御系の構成を示すブロック図1 is a block diagram showing the configuration of a printer control system in a first embodiment. 第1実施形態における初期測定処理例の流れを示すフローチャートThe flowchart which shows the flow of the example of an initial measurement process in 1st Embodiment. ヘッド傾き角度検出用の検出パターンを印画した状態を示す説明図Explanatory drawing which shows the state which printed the detection pattern for head inclination angle detection ヘッド傾き角度検出用の検出パターンを検出している様子を示す説明図Explanatory drawing which shows a mode that the detection pattern for head inclination angle detection is detected. 第1実施形態における立体画像形成処理例の流れを示すフローチャートThe flowchart which shows the flow of the example of the stereo image formation process in 1st Embodiment. レンズ傾き角度検出用の検出ラインが形成されたレンチキュラシートの第1の例を示す斜視図The perspective view which shows the 1st example of the lenticular sheet | seat in which the detection line for lens inclination angle detection was formed. その側面図Its side view レンズ傾き角度検出用の検出ラインを検出している様子を示す断面図Sectional drawing which shows a mode that the detection line for lens inclination angle detection is detected クランパ回動前の様子を示す斜視図A perspective view showing a state before the clamper is rotated. クランパ回動によりレンチキュラシートの検出ラインLLを基準線Lbに一致させた様子を示す斜視図The perspective view which shows a mode that the detection line LL of the lenticular sheet was made to correspond with the reference line Lb by clamper rotation. ヘッドを回動してレンチキュラレンズの傾き角度とヘッドの傾き角度とを一致させた状態を示す説明図Explanatory drawing which shows the state which rotated the head and made the inclination angle of a lenticular lens and the inclination angle of a head correspond. 検出ラインが複数本形成されたレンチキュラシートの一例を示す斜視図A perspective view showing an example of a lenticular sheet in which a plurality of detection lines are formed その断面図Cross section レンチキュラレンズの山を欠いた形状で形成された検出ラインの一例を示す斜視図The perspective view which shows an example of the detection line formed in the shape which lacked the peak of the lenticular lens レンチキュラレンズの山を着色して形成された検出ラインの一例を示す断面図Sectional drawing which shows an example of the detection line formed by coloring the mountain of a lenticular lens 検出ラインに隣接したレンチキュラレンズを検出する様子を示す説明図Explanatory drawing which shows a mode that the lenticular lens adjacent to a detection line is detected. 第2実施形態における検出センサの一例及びその周辺を示す上面図The top view which shows an example of the detection sensor in 2nd Embodiment, and its periphery 第2実施形態におけるプリンタの制御系の構成を示すブロック図The block diagram which shows the structure of the control system of the printer in 2nd Embodiment. 第2実施形態における初期測定処理例の流れを示すフローチャートThe flowchart which shows the flow of the example of an initial measurement process in 2nd Embodiment. ヘッド傾き及び湾曲量を検出するための検出パターンを印画した状態を示す説明図Explanatory drawing which shows the state which printed the detection pattern for detecting a head inclination and the curvature amount. その検出パターンを検出センサで検出している様子を示す説明図Explanatory drawing which shows a mode that the detection pattern is detecting with the detection sensor ヘッドの湾曲量の測定の説明に用いる説明図Explanatory drawing used for explanation of measurement of head bending amount 第2実施形態における立体画像形成処理例の流れを示すフローチャートThe flowchart which shows the flow of the example of the stereo image formation process in 2nd Embodiment. 画像補正の説明に用いる説明図Explanatory drawing used to explain image correction
 以下、添付図面に従って、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明を適用したプリンタ2を示す概略構成図である。このプリンタ2は、レンチキュラシート3の背面に視差画像を記録する。 FIG. 1 is a schematic configuration diagram showing a printer 2 to which the present invention is applied. The printer 2 records a parallax image on the back surface of the lenticular sheet 3.
 レンチキュラシート3は、図2に示すように、表面に略半円柱状のレンチキュラレンズ4(以下単に「レンズ」ということもある)が多数配列され、背面が平面になっている。レンチキュラレンズ4は、シリンドリカルレンズからなり、円筒の一部をなす面形状を有する。なお、本発明における「レンチキュラレンズ」は、図2に示した形状のものに限定されず、他のシリンドリカルレンズを含む。 As shown in FIG. 2, the lenticular sheet 3 has a large number of substantially semi-cylindrical lenticular lenses 4 (hereinafter sometimes simply referred to as “lenses”) arranged on the surface, and the back surface is flat. The lenticular lens 4 is formed of a cylindrical lens and has a surface shape that forms a part of a cylinder. The “lenticular lens” in the present invention is not limited to the shape shown in FIG. 2, and includes other cylindrical lenses.
 レンチキュラシート3の表面にて多数のレンズ4は副走査方向y(搬送方向)に沿って並べて形成されており、レンチキュラシート3はレンズ4の長手方向を主走査方向xと略平行にした状態で搬送される。 A large number of lenses 4 are formed on the surface of the lenticular sheet 3 along the sub-scanning direction y (conveying direction), and the lenticular sheet 3 is in a state where the longitudinal direction of the lens 4 is substantially parallel to the main scanning direction x. Be transported.
 レンチキュラシート3の背面は、レンズ4ごとに画像領域5が仮想的に区画されており、ひとつのレンズ4に対してひとつの画像領域5が対応する。各画像領域5は、立体視画像を表示するための視点数(本例では6視点)に対応してレンズ4の配列方向に複数列の微小領域5a~5fに仮想的に区画され、視差画像を線状に分割した線状画像が複数の微小領域5a~5fの各々に記録される。例えば、第1微小領域5aには第1視点の視差画像が印画される。 On the back surface of the lenticular sheet 3, an image area 5 is virtually divided for each lens 4, and one image area 5 corresponds to one lens 4. Each image region 5 is virtually divided into a plurality of rows of minute regions 5a to 5f in the arrangement direction of the lens 4 corresponding to the number of viewpoints (six viewpoints in this example) for displaying a stereoscopic image, and parallax images A linear image obtained by dividing the line is recorded in each of the plurality of minute areas 5a to 5f. For example, a first viewpoint parallax image is printed in the first minute region 5a.
 図1に示すように、プリンタ2には、搬送口11から供給されたレンチキュラシート3が搬送される搬送路12が設けられている。搬送路12には、搬送方向上流側から順に、給送ローラ対15と、ヘッド16及びプラテンローラ17と、傾き角度検出部18と、クランプユニット19とが配置されている。 As shown in FIG. 1, the printer 2 is provided with a conveyance path 12 through which the lenticular sheet 3 supplied from the conveyance port 11 is conveyed. A feed roller pair 15, a head 16 and a platen roller 17, an inclination angle detection unit 18, and a clamp unit 19 are arranged in the transport path 12 in order from the upstream side in the transport direction.
 クランプユニット19は、レンチキュラシート3の先端を解除可能にクランプ(保持)する保持手段としてのクランパ23と、レンチキュラシート3をクランプした閉状態及びレンチキュラシート3のクランプを解除した開状態とを切り替えるクランパ開閉機構24と、クランパ23を搬送路12に沿って往復動させるクランパ駆動機構25とで構成されている。クランパ23は、クランパ駆動機構25により、給送ローラ対15により給送されるレンチキュラシート3の先端のクランプ及び解除を行なうクランプ位置と、クランプ位置よりも下流の終端位置との間で移動する。即ち、クランパ23にクランプされたレンチキュラシート3は、主走査方向と直交する副走査方向に往復動する。また、クランパ駆動機構25は、クランパ23を搬送路12の搬送面に垂直な軸周りに回動させる。即ち、レンチキュラシート3を搬送面に垂直な軸周りに任意の角度で回動させることが可能である。 The clamp unit 19 is a clamper that switches between a clamper 23 as a holding unit that releasably clamps (holds) the tip of the lenticular sheet 3, and a closed state in which the lenticular sheet 3 is clamped and an open state in which the lenticular sheet 3 is unclamped. An opening / closing mechanism 24 and a clamper driving mechanism 25 that reciprocates the clamper 23 along the transport path 12 are configured. The clamper 23 is moved by the clamper driving mechanism 25 between a clamp position for clamping and releasing the tip of the lenticular sheet 3 fed by the feed roller pair 15 and a terminal position downstream of the clamp position. That is, the lenticular sheet 3 clamped by the clamper 23 reciprocates in the sub-scanning direction orthogonal to the main scanning direction. Further, the clamper driving mechanism 25 rotates the clamper 23 around an axis perpendicular to the transport surface of the transport path 12. That is, the lenticular sheet 3 can be rotated at an arbitrary angle around an axis perpendicular to the conveyance surface.
 プラテンローラ17の上流側近傍の搬送路12には、上流側に向かって斜め下方に伸びる戻し搬送路12aが設けられている。戻し搬送路12aの先端には、プリンタ2の外に記録済みのレンチキュラシート3を排出するための排出口(図示せず)が設けられている。 The transport path 12 near the upstream side of the platen roller 17 is provided with a return transport path 12a that extends obliquely downward toward the upstream side. A discharge port (not shown) for discharging the recorded lenticular sheet 3 outside the printer 2 is provided at the tip of the return conveyance path 12a.
 ヘッド16とプラテンローラ17は、搬送路12を挟み込むように配置されている。ヘッド16の下部には、主走査方向に多数の発熱素子を複数列でライン状に配列した記録素子16aのアレイが形成されている。ヘッド16は、プラテンローラ17上のレンチキュラシート3の背面に記録用フィルムを圧接する圧接位置と、圧接位置から上方に退避した退避位置との間で移動する。 The head 16 and the platen roller 17 are disposed so as to sandwich the conveyance path 12. Below the head 16, an array of recording elements 16a in which a large number of heating elements are arranged in a line in a plurality of rows in the main scanning direction is formed. The head 16 moves between a pressing position where the recording film is pressed against the back surface of the lenticular sheet 3 on the platen roller 17 and a retracted position where the recording film is retracted upward from the pressing position.
 記録フィルムとして、受像層フィルム27、インクフィルム28、バック層フィルム29がある。各フィルム27~29は、フィルム交換機構30に取り付けられている。受像層フィルム27は、レンチキュラシート3の背面に重ね合わされた状態でヘッド16により加熱されたときに、インクフィルム28からのカラーインクを付着させる透明な受像層をレンチキュラシート3の背面に転写する。インクフィルム28は、昇華型のインクフィルムであり、レンチキュラシート3の背面の受像層に重ね合わされた状態でヘッド16により加熱されたときに、イエロー、マゼンタ、シアンのインクを昇華させて受像層に付着させる。バック層フィルム29は、レンチキュラシート3に記録された画像に重ね合わされた状態でヘッド16により加熱されたときに、白色のバック層を画像上に転写する。 There are an image receiving layer film 27, an ink film 28, and a back layer film 29 as recording films. Each film 27 to 29 is attached to a film exchange mechanism 30. When the image receiving layer film 27 is heated by the head 16 while being superimposed on the back surface of the lenticular sheet 3, the transparent image receiving layer to which the color ink from the ink film 28 is attached is transferred to the back surface of the lenticular sheet 3. The ink film 28 is a sublimation type ink film, and when heated by the head 16 in a state of being superimposed on the image receiving layer on the back surface of the lenticular sheet 3, yellow, magenta, and cyan inks are sublimated to adhere to the image receiving layer. . The back layer film 29 transfers the white back layer onto the image when heated by the head 16 in a state of being superimposed on the image recorded on the lenticular sheet 3.
 ヘッド駆動部32は、ヘッド16を駆動する。ヘッド駆動部32は、受像層、バック層を形成するときには、それらの転写に必要な発熱量を各発熱素子に同時に発生させ、インクフィルム28を用いて画像を記録するときには、視差画像データに基づいて各発熱素子を発熱させる。 The head driving unit 32 drives the head 16. When the image receiving layer and the back layer are formed, the head driving unit 32 simultaneously generates heat generation amounts necessary for the transfer in the respective heating elements, and when recording an image using the ink film 28, the head driving unit 32 is based on the parallax image data. Each heating element generates heat.
 傾き角度検出部18は、クランプユニット19により搬送されるレンチキュラシート3のレンズ4の傾き角度θLを光学的に検出する。レンズ4の傾き角度θLは、レンズ4の長手方向と主走査方向とがなす角度である。 The tilt angle detector 18 optically detects the tilt angle θL of the lens 4 of the lenticular sheet 3 conveyed by the clamp unit 19. The tilt angle θL of the lens 4 is an angle formed by the longitudinal direction of the lens 4 and the main scanning direction.
 図3に示すように、傾き角度検出部18は、第1検出センサ34および第2検出センサ36からなる。第1検出センサ34(S1)は、レンチキュラシート3の一方の側端部に対向する位置に配置されている。第2検出センサ36(S2)は、レンチキュラシート3の他の側端部に対向する位置に配置されている。符号L12は、第1検出センサ34(S1)と第2検出センサ36(S2)との間隔を示している。 As shown in FIG. 3, the tilt angle detection unit 18 includes a first detection sensor 34 and a second detection sensor 36. The first detection sensor 34 (S1) is disposed at a position facing one side end of the lenticular sheet 3. The second detection sensor 36 (S2) is disposed at a position facing the other side end of the lenticular sheet 3. Reference numeral L12 indicates a distance between the first detection sensor 34 (S1) and the second detection sensor 36 (S2).
 ヘッド16は、レンチキュラシート3の搬送路に副走査方向と交わる長手方向に沿って配置され、そのヘッド16の長手方向に沿って配列された複数の記録素子16aを有する。ヘッド16は、レンチキュラシート3のレンチキュラレンズ4が形成されている表面とは反対側の背面に、複数のレンチキュラレンズ4の各々に対応して複数の線状画像を記録することでレンチキュラシート3に複数の視点画像を記録する。なお、図3に示したようにヘッド16の長手方向は主走査方向と平行であることが好ましいが、実際には主走査方向に対して傾いて配設されている場合があるので、後述のような補正が必要である。 The head 16 has a plurality of recording elements 16 a arranged along the longitudinal direction intersecting the sub-scanning direction in the conveyance path of the lenticular sheet 3 and arranged along the longitudinal direction of the head 16. The head 16 records a plurality of linear images corresponding to each of the plurality of lenticular lenses 4 on the back surface of the lenticular sheet 3 opposite to the surface on which the lenticular lens 4 is formed. Record multiple viewpoint images. As shown in FIG. 3, it is preferable that the longitudinal direction of the head 16 is parallel to the main scanning direction. However, in practice, the head 16 may be inclined with respect to the main scanning direction. Such correction is necessary.
 第1検出センサ34および第2検出センサ36は、レンチキュラシート3の搬送路に設けられており、副走査方向と直交する主走査方向の基準線Lb上に配置されている。複数の検出センサ34、36から出力される検出信号に基づき、レンチキュラレンズ4の傾き角度を求めることができる。 The first detection sensor 34 and the second detection sensor 36 are provided in the conveyance path of the lenticular sheet 3 and are arranged on the reference line Lb in the main scanning direction orthogonal to the sub-scanning direction. Based on the detection signals output from the plurality of detection sensors 34 and 36, the tilt angle of the lenticular lens 4 can be obtained.
 図4Aに示すように、各検出センサ34、36は、レンチキュラシート3の搬送面を挟んで互いに対向して配置された発光ダイオード(以下「LED」という)38及びフォトセンサ39によって構成されている。フォトセンサ39とレンチキュラシート3の搬送面との間にはスリット板40が配置されている。スリット板40には、レンズ4のほぼ1個分の光が通過する幅に設定されたスリット孔40aが形成されている。LED38からレンチキュラシート3に向けて照射された光は、レンチキュラシート3を透過すると、スリット孔40aにより検出範囲が制限されて、フォトセンサ39により受光される。フォトセンサ39は受光量に応じた検出信号を出力する。 As shown in FIG. 4A, each of the detection sensors 34 and 36 includes a light emitting diode (hereinafter referred to as “LED”) 38 and a photo sensor 39 that are arranged to face each other with the conveyance surface of the lenticular sheet 3 interposed therebetween. . A slit plate 40 is disposed between the photo sensor 39 and the conveyance surface of the lenticular sheet 3. The slit plate 40 is formed with a slit hole 40a set to a width through which almost one light of the lens 4 passes. When the light emitted from the LED 38 toward the lenticular sheet 3 passes through the lenticular sheet 3, the detection range is limited by the slit hole 40 a and is received by the photosensor 39. The photo sensor 39 outputs a detection signal corresponding to the amount of received light.
 図4Bに示すように、各検出センサ34、36に対するレンズ4の位置に応じてフォトセンサ39の受光量が変わり、検出信号の大きさも変化する。本例の検出信号は、各検出センサ34、36にレンズ4間の境界が対向してからレンズ4の頂点が対向するまで増加して極大となり、その後は減少して、レンズ4間の境界が対向すると再び増加に転じる。 As shown in FIG. 4B, the amount of light received by the photosensor 39 changes according to the position of the lens 4 with respect to each of the detection sensors 34 and 36, and the magnitude of the detection signal also changes. The detection signal of this example increases to a maximum until the apex of the lens 4 faces the detection sensor 34, 36 until the boundary between the lenses 4 faces, then decreases, and the boundary between the lenses 4 decreases. When facing each other, it starts to increase again.
 図5は、クランプユニット19及びその周辺を示す斜視図である。図5に示すように、クランパ23は、固定板42及び可動板43を含んで構成されている。固定板42は、長手方向の長さがレンチキュラシート3の幅よりも大きな平板であり、搬送面と平行に配置されている。可動板43は、固定板42との間でレンチキュラシート3を狭持する狭持位置と、狭持を解除する狭持解除位置との間で回動する。固定板41と可動板43との間にはバネ(図示を省略)が配置され、このバネにより可動板43は狭持位置に向けて付勢されている。 FIG. 5 is a perspective view showing the clamp unit 19 and its surroundings. As shown in FIG. 5, the clamper 23 includes a fixed plate 42 and a movable plate 43. The fixed plate 42 is a flat plate whose length in the longitudinal direction is larger than the width of the lenticular sheet 3, and is arranged in parallel with the transport surface. The movable plate 43 rotates between a holding position for holding the lenticular sheet 3 between the movable plate 43 and a holding release position for releasing the holding. A spring (not shown) is disposed between the fixed plate 41 and the movable plate 43, and the movable plate 43 is urged toward the holding position by this spring.
 クランパ開閉機構24は、可動板43を回動させるカム軸45と、カム軸45を回動させるクランプ解除モータ46とから構成されている。カム軸45は、クランプ位置にあるクランパ23の近傍に配置されている。クランプ解除モータ46でカム軸45を回動させて、カム軸45に取り付けられたカム45aにより可動板43を狭持位置と狭持解除位置とに変位させることで、クランパ23の開状態と閉状態とを切り替える。 The clamper opening / closing mechanism 24 includes a cam shaft 45 that rotates the movable plate 43 and a clamp release motor 46 that rotates the cam shaft 45. The cam shaft 45 is disposed in the vicinity of the clamper 23 at the clamp position. By rotating the cam shaft 45 by the clamp release motor 46 and displacing the movable plate 43 between the holding position and the holding release position by the cam 45a attached to the cam shaft 45, the clamper 23 is opened and closed. Switch between states.
 クランパ駆動機構25は、左モータ49及び右モータ50と、回転軸に取り付けられている左プーリ51及び右プーリ52と、左モータ49と左プーリ51とに掛けられた左ベルト53と、右モータ50と右プーリ52とに掛けられた右ベルト54とを備える。 The clamper driving mechanism 25 includes a left motor 49 and a right motor 50, a left pulley 51 and a right pulley 52 attached to a rotating shaft, a left belt 53 hung on the left motor 49 and the left pulley 51, and a right motor. 50 and a right belt 54 hung on the right pulley 52.
 左右ベルト53、54には、クランパ23の両端がそれぞれ搬送面に垂直な軸周りに回動自在に取り付けられている。左モータ49と右モータ50とが同方向に回転した場合には、左右ベルト53、54によりクランパ23が副走査方向に移動する。また、左モータ49と右モータ50とが逆方向に回転した場合、あるいは両者の一方だけが回転した場合には、左右ベルト53、54によりクランパ23が搬送面に垂直な軸周りに回動する。 Both ends of the clamper 23 are attached to the left and right belts 53 and 54 so as to be rotatable around an axis perpendicular to the conveying surface. When the left motor 49 and the right motor 50 rotate in the same direction, the left and right belts 53 and 54 move the clamper 23 in the sub-scanning direction. Further, when the left motor 49 and the right motor 50 rotate in opposite directions, or when only one of them rotates, the left and right belts 53 and 54 rotate the clamper 23 around an axis perpendicular to the conveyance surface. .
 また、クランパ駆動機構25は、クランパ23を副走査方向にガイドする左ガイドレール55及び右ガイドレール56を備える。左右ガイドレール55、56の内側には、左斜行規制ガイド57、右斜行規制ガイド58が配置されている。左右斜行規制ガイド57、58は、給送ローラ対15からクランプユニット19へ給送されるレンチキュラシート3の斜行角度が所定角度以下になるように規制する。 Further, the clamper drive mechanism 25 includes a left guide rail 55 and a right guide rail 56 that guide the clamper 23 in the sub-scanning direction. A left skew regulation guide 57 and a right skew regulation guide 58 are disposed inside the left and right guide rails 55 and 56. The left and right skew regulation guides 57 and 58 regulate the skew angle of the lenticular sheet 3 fed from the feed roller pair 15 to the clamp unit 19 to be a predetermined angle or less.
 本例では、給送ローラ対15、クランプユニット19、左右ベルト53、54等により、レンチキュラシート3を副走査方向に搬送する搬送手段が構成されている。 In this example, a conveying means for conveying the lenticular sheet 3 in the sub-scanning direction is constituted by the feeding roller pair 15, the clamp unit 19, the left and right belts 53 and 54, and the like.
 <第1実施形態>
 図6は、第1実施形態におけるプリンタ2の制御系の構成を示すブロック図である。なお、図1~5に示した要素には同じ符号を付してある。
<First Embodiment>
FIG. 6 is a block diagram showing the configuration of the control system of the printer 2 in the first embodiment. The elements shown in FIGS. 1 to 5 are given the same reference numerals.
 図6において、CPU60は、プリンタ2の各部を統括的に制御する。メモリ61は、プリンタ2を制御するためのプログラム及びデータを記憶する。モータドライバ62は、CPU60の制御に従って、モータ21により給送ローラ対15を回転及び停止させる。また、モータドライバ62は、CPU60の制御に従って、左右ベルト53、54を回動させる。ヘッド退避機構64は、CPU60の制御に従って、ヘッド16を圧接位置または退避位置に移動させる。 In FIG. 6, the CPU 60 controls each part of the printer 2 in an integrated manner. The memory 61 stores a program and data for controlling the printer 2. The motor driver 62 rotates and stops the feed roller pair 15 by the motor 21 according to the control of the CPU 60. Further, the motor driver 62 rotates the left and right belts 53 and 54 according to the control of the CPU 60. The head retracting mechanism 64 moves the head 16 to the press contact position or the retracted position under the control of the CPU 60.
 先端検出センサ65(図5を参照)は、クランプ位置の上流に配置されており、レンチキュラシート3の先端の通過を検知したとき、CPU60に対し、先端検出信号を出力する。 The tip detection sensor 65 (see FIG. 5) is disposed upstream of the clamp position, and outputs a tip detection signal to the CPU 60 when it detects passage of the tip of the lenticular sheet 3.
 ヘッド駆動制御部68は、ヘッド駆動部32によりヘッド16の駆動を制御する。 The head drive control unit 68 controls the drive of the head 16 by the head drive unit 32.
 クランパ駆動制御部69は、クランパ開閉機構24により、クランパ23の閉状態及び開状態を切り替える。また、クランパ駆動制御部69は、クランパ駆動機構25により、クランパ23の副走査方向の移動及びクランパ23の回動を制御する。本例のクランパ駆動制御部69は、クランパ開閉機構24により、レンチキュラシート3等のシートの保持および保持解消を制御する。また、本例のクランパ駆動制御部69は、クランパ駆動機構25により、レンチキュラシート3のレンズ4の傾き角度を調整する。 The clamper drive control unit 69 switches between a closed state and an open state of the clamper 23 by the clamper opening / closing mechanism 24. Further, the clamper drive control unit 69 controls the movement of the clamper 23 in the sub-scanning direction and the rotation of the clamper 23 by the clamper drive mechanism 25. The clamper drive control unit 69 of this example controls holding and releasing of the sheet such as the lenticular sheet 3 by the clamper opening / closing mechanism 24. Further, the clamper drive control unit 69 of this example adjusts the tilt angle of the lens 4 of the lenticular sheet 3 by the clamper drive mechanism 25.
 傾き補正制御部70は、クランパ駆動制御部69によりクランパ23を回動させることにより傾き補正制御を行う。傾き補正制御の詳細は後述する。 The tilt correction control unit 70 performs tilt correction control by rotating the clamper 23 by the clamper drive control unit 69. Details of the tilt correction control will be described later.
 検出パターン印画制御部72は、図8に示すように透明シート82を給送ローラ対15等により搬送してクランパ23の突き当て面23aに突き当て、クランパ23により透明シート82をクランプした状態で、ヘッド16の傾き角度を検出するための検出パターン83をヘッド16により透明シート82に印画する。 As shown in FIG. 8, the detection pattern printing control unit 72 conveys the transparent sheet 82 by the feeding roller pair 15 and the like, abuts against the abutting surface 23 a of the clamper 23, and clamps the transparent sheet 82 by the clamper 23. The detection pattern 83 for detecting the tilt angle of the head 16 is printed on the transparent sheet 82 by the head 16.
 ヘッド傾き測定部73は、図9に示すように第1検出センサS1及び第2検出センサS2により透明シート82の検出パターン83を検出して、第1検出センサS1及び第2検出センサS2の検出信号に基づいて、第1検出センサS1と第2検出センサS2とを結ぶ基準線Lb(主走査方向x)に対する検出パターン83の傾き角度θpを算出し、その傾き角度θpをヘッド16の傾き角度θhとしてメモリ61に記憶させる。 The head inclination measuring unit 73 detects the detection pattern 83 of the transparent sheet 82 by the first detection sensor S1 and the second detection sensor S2, as shown in FIG. 9, and detects the first detection sensor S1 and the second detection sensor S2. Based on the signal, the inclination angle θp of the detection pattern 83 with respect to the reference line Lb (main scanning direction x) connecting the first detection sensor S1 and the second detection sensor S2 is calculated, and the inclination angle θp is calculated as the inclination angle of the head 16. It is stored in the memory 61 as θh.
 レンズ傾き測定部74は、レンチキュラシート3の検出ライン(図11AのLL)を図12に示すように第1検出センサS1及び第2検出センサS2により検出し、第1検出センサS1及び第2検出センサS2の検出信号に基づいて、第1検出センサS1と第2検出センサS2とを結ぶ基準線(図8のLb)に対するレンチキュラレンズ4の長手方向の傾き角度を算出する。 The lens inclination measuring unit 74 detects the detection line (LL in FIG. 11A) of the lenticular sheet 3 by the first detection sensor S1 and the second detection sensor S2 as shown in FIG. 12, and the first detection sensor S1 and the second detection sensor 2 are detected. Based on the detection signal of the sensor S2, an inclination angle in the longitudinal direction of the lenticular lens 4 with respect to a reference line (Lb in FIG. 8) connecting the first detection sensor S1 and the second detection sensor S2 is calculated.
 レンズ位置検出部75は、図18に示すように複数のレンチキュラレンズ4のうちで検出ラインLLに隣接したレンチキュラレンズ4の山4bを検出センサS1、S2の検出信号に基づいて検出することで、レンチキュラレンズ4の副走査方向における基準位置を検出する。 The lens position detection unit 75 detects a peak 4b of the lenticular lens 4 adjacent to the detection line LL among the plurality of lenticular lenses 4 based on the detection signals of the detection sensors S1 and S2, as shown in FIG. The reference position of the lenticular lens 4 in the sub-scanning direction is detected.
 前述の傾き補正制御部70は、ヘッド傾き測定部73、および、レンズ傾き測定部74の測定結果に基づいて、各種の傾き補正を実行する。 The aforementioned tilt correction control unit 70 executes various tilt corrections based on the measurement results of the head tilt measuring unit 73 and the lens tilt measuring unit 74.
 本例の傾き補正制御部70は、レンズ傾き測定部74により算出されたレンチキュラレンズ4の傾き角度と、ヘッド傾き測定部73により算出されてメモリ61に記憶されたヘッドの傾き角度とに基づいて、基準線Lb(主走査方向)に対するレンチキュラレンズ4の傾き角度とヘッド16の傾き角度とを一致させる傾き補正制御を行う。 The tilt correction control unit 70 of this example is based on the tilt angle of the lenticular lens 4 calculated by the lens tilt measuring unit 74 and the head tilt angle calculated by the head tilt measuring unit 73 and stored in the memory 61. Then, tilt correction control is performed to match the tilt angle of the lenticular lens 4 with respect to the reference line Lb (main scanning direction) and the tilt angle of the head 16.
 検出パターン印画制御部72は、図8に示すように、透明シート82(ヘッド傾き検出用シート)を搬送してクランパ23の突き当て面23aに突き当て、クランパ23により透明シート82をクランプした状態で、基準線Lbに対するヘッド16の傾き角度θhを検出するための検出パターン83をヘッド16により透明シート82に印画する制御を行う。 As shown in FIG. 8, the detection pattern printing control unit 72 conveys the transparent sheet 82 (head inclination detection sheet), abuts against the abutting surface 23 a of the clamper 23, and the transparent sheet 82 is clamped by the clamper 23. Thus, control is performed such that the detection pattern 83 for detecting the tilt angle θh of the head 16 with respect to the reference line Lb is printed on the transparent sheet 82 by the head 16.
 データ変換部76は、メモリ61から2視点の視差画像を読み出して多視点(例えば6視点)の視差画像に変換する。 The data converter 76 reads out the two viewpoint parallax images from the memory 61 and converts them into multi-viewpoint (for example, six viewpoints) parallax images.
 立体画像記録制御部77は、データ変換部76により生成された多視点の視差画像を、ヘッド駆動制御部68及びヘッド駆動部32を介してヘッド16を駆動し、レンチキュラシート3の背面にヘッド16により立体画像(多視点の視差画像)を記録する。 The stereoscopic image recording control unit 77 drives the head 16 with the multi-viewpoint parallax image generated by the data conversion unit 76 via the head drive control unit 68 and the head drive unit 32, and the head 16 is placed behind the lenticular sheet 3. Thus, a stereoscopic image (a multi-view parallax image) is recorded.
 図7は、第1実施形態における初期測定処理の一例の流れを示すフローチャートである。本処理は、CPU60によりプログラムに従って実行される。 FIG. 7 is a flowchart showing an exemplary flow of the initial measurement process in the first embodiment. This process is executed by the CPU 60 according to a program.
 なお、図8に示すように、第1検出センサS1と第2検出センサS2とを結ぶ仮想ラインLbを、主走査方向xに沿った基準線とする。クランパ23の原点情報がメモリ61に保持されており、その原点情報に基づいて、クランパ23の突き当て面23aを基準線Lbに対して平行に設定することが可能である。ヘッド16の長手方向は、基準線Lbに対して平行ではないものとする。よって、ヘッド16の長手方向の傾き角度を補正する必要がある。 As shown in FIG. 8, a virtual line Lb connecting the first detection sensor S1 and the second detection sensor S2 is a reference line along the main scanning direction x. The origin information of the clamper 23 is held in the memory 61. Based on the origin information, the abutting surface 23a of the clamper 23 can be set parallel to the reference line Lb. It is assumed that the longitudinal direction of the head 16 is not parallel to the reference line Lb. Therefore, it is necessary to correct the inclination angle of the head 16 in the longitudinal direction.
 まず、検出パターン印画制御部72は、図8に示すように、給送ローラ対15により未印画の透明シート82を搬送してクランパ23の突き当て面23aに突き当て、クランパ23により透明シート82をクランプし(ステップS11)、ベルト53、54の駆動により透明シート82を副走査方向yにて移動させながら、ヘッド16の傾き角度を検出するための検出パターン83をヘッド16により透明シート82に印画する(ステップS12)。 First, as shown in FIG. 8, the detection pattern printing control unit 72 conveys an unprinted transparent sheet 82 by the feeding roller pair 15 to abut against the abutting surface 23 a of the clamper 23, and the transparent sheet 82 by the clamper 23. Is detected (step S11), and the detection pattern 83 for detecting the tilt angle of the head 16 is moved to the transparent sheet 82 by the head 16 while the transparent sheet 82 is moved in the sub-scanning direction y by driving the belts 53 and 54. Printing is performed (step S12).
 次に、ヘッド傾き測定部73は、図9に示すように、検出パターン83が印画された透明シート82をクランパ23でクランプした状態で、ベルト53、54の駆動により透明シート82を副走査方向yにて移動させながら、第1検出センサS1及び第2検出センサS2により、透明シート82の検出パターン83を検出する(ステップS13)。 Next, as shown in FIG. 9, the head inclination measuring unit 73 drives the belts 53 and 54 to move the transparent sheet 82 in the sub-scanning direction in a state where the transparent sheet 82 printed with the detection pattern 83 is clamped by the clamper 23. While moving at y, the detection pattern 83 of the transparent sheet 82 is detected by the first detection sensor S1 and the second detection sensor S2 (step S13).
 次に、ヘッド傾き測定部73は、第1検出センサS1及び第2検出センサS2の検出信号に基づいて、第1検出センサS1と第2検出センサS2とを結ぶ基準線Lb(主走査方向x)に対する検出パターン83の傾き角度θpを算出し、算出された傾き角度θpを基準線Lbに対するヘッド16の傾き角度θhとしてメモリ61に記憶させる(ステップS14)。図9にて、第1検出センサS1と第2検出センサS2との距離をL12、第1検出センサS1と第2検出センサS2との検出パターン83の画端に対する検出位置ずれ量をDHとしたとき、傾き角度θhはL12およびDHにより算出できる。即ち、θh=tan-1(DH/L12)である。 Next, the head inclination measuring unit 73 is configured to use a reference line Lb (main scanning direction x) connecting the first detection sensor S1 and the second detection sensor S2 based on the detection signals of the first detection sensor S1 and the second detection sensor S2. ) And the calculated tilt angle θp is stored in the memory 61 as the tilt angle θh of the head 16 with respect to the reference line Lb (step S14). In FIG. 9, the distance between the first detection sensor S1 and the second detection sensor S2 is L12, and the detection position deviation amount of the detection pattern 83 between the first detection sensor S1 and the second detection sensor S2 is DH. The tilt angle θh can be calculated from L12 and DH. That is, θh = tan −1 (DH / L12).
 次に、透明シートを排出する(ステップS15)。 Next, the transparent sheet is discharged (step S15).
 図10は、第1実施形態における立体画像形成処理の一例の流れを示すフローチャートである。本処理は、CPU60によりプログラムに従って実行される。 FIG. 10 is a flowchart showing a flow of an example of the stereoscopic image forming process in the first embodiment. This process is executed by the CPU 60 according to a program.
 まず、ヘッド16の傾き角度θhをメモリ61から取得する(ステップS21)。 First, the tilt angle θh of the head 16 is acquired from the memory 61 (step S21).
 次に、図11Aの斜視図及び図11Bの側面図に示すレンチキュラシート3を給送ローラ対15により搬送してクランパ23の突き当て面23aに突き当てて、クランパ23によりレンチキュラシート3をクランプする(ステップS22)。 Next, the lenticular sheet 3 shown in the perspective view of FIG. 11A and the side view of FIG. 11B is conveyed by the pair of feeding rollers 15 to abut against the abutting surface 23a of the clamper 23, and the lenticular sheet 3 is clamped by the clamper 23. (Step S22).
 次に、レンズ傾き測定部74は、図9に示すように、検出パターン83が印画された透明シート82をクランパ23でクランプした状態で、ベルト53、54の駆動により透明シート82を副走査方向yにて移動させながら、第1検出センサS1および第2検出センサS2によりレンチキュラシート3の検出ラインLLを検出する(ステップS23)。図13Aは、傾き補正前のレンチキュラシート3を示す。 Next, as shown in FIG. 9, the lens inclination measuring unit 74 drives the belts 53 and 54 in the sub-scanning direction with the clamper 23 clamping the transparent sheet 82 on which the detection pattern 83 is printed. While moving at y, the detection line LL of the lenticular sheet 3 is detected by the first detection sensor S1 and the second detection sensor S2 (step S23). FIG. 13A shows the lenticular sheet 3 before tilt correction.
 次に、レンズ傾き測定部74は、第1検出センサS1及び第2検出センサS2の検出信号に基づいて、第1検出センサS1と第2検出センサS2とを結ぶ基準線Lb(主走査方向x)に対する検出ラインLLの傾き角度θLを算出し、算出された傾き角度θLをメモリ61に記憶させる(ステップS24)。 Next, the lens tilt measurement unit 74 is configured to use a reference line Lb (main scanning direction x) connecting the first detection sensor S1 and the second detection sensor S2 based on the detection signals of the first detection sensor S1 and the second detection sensor S2. The inclination angle θL of the detection line LL with respect to () is calculated, and the calculated inclination angle θL is stored in the memory 61 (step S24).
 次に、傾き補正制御部70は、図13Bに示すように、クランパ駆動機構25により、検出ラインLLが基準線Lbに一致するように傾き角度θLだけクランパ23を回動する(ステップS25)。 Next, as shown in FIG. 13B, the tilt correction control unit 70 rotates the clamper 23 by the tilt angle θL so that the detection line LL coincides with the reference line Lb by the clamper driving mechanism 25 (step S25).
 次に、傾き補正制御部70は、図14に示すように、クランパ駆動機構25により、傾き角度θhだけクランパ23を回動する(ステップS26)。 Next, as shown in FIG. 14, the tilt correction control unit 70 rotates the clamper 23 by the tilt angle θh by the clamper driving mechanism 25 (step S26).
 次に、第1、第2検出センサS1、S2によりレンチキュラレンズの頂点および境界を検出しながら、ヘッド16によりレンチキュラシート3の背面に対しレンチキュラレンズ4ごとに6つずつ線状画像を印画することで、レンチキュラシート3に立体画像(複数の視点画像)を形成する(ステップS27)。 Next, six linear images are printed for each lenticular lens 4 on the back of the lenticular sheet 3 by the head 16 while detecting the vertex and boundary of the lenticular lens by the first and second detection sensors S1 and S2. Thus, a stereoscopic image (a plurality of viewpoint images) is formed on the lenticular sheet 3 (step S27).
 立体画像として複数の視点画像が記録されたレンチキュラシート3を排出する(ステップS28)。 The lenticular sheet 3 on which a plurality of viewpoint images are recorded as a stereoscopic image is discharged (step S28).
 なお、発明の理解を容易にするため、ステップS25にてθLだけ回動した後にステップS26にてθhだけ回動する場合を例に説明したが、一度にθL+θhだけ回動してもよい。即ち、傾き補正制御部70は、レンズ傾き測定部74により算出されたレンチキュラレンズ4の基準線Lbに対する傾き角度θLとメモリ61に記憶されたヘッド16の長手方向Lhの基準線Lbに対する傾き角度θhとに基づいて、レンチキュラレンズ4の基準線Lbに対する傾き角度を、ヘッド16の長手方向Lhの基準線Lbに対する傾き角度θhに一致させる傾き補正を行う。 Note that, in order to facilitate understanding of the invention, the case of rotating by θh in step S25 after rotating by θL has been described as an example, but it may be rotated by θL + θh at a time. That is, the tilt correction control unit 70 calculates the tilt angle θL with respect to the reference line Lb of the lenticular lens 4 calculated by the lens tilt measuring unit 74 and the tilt angle θh with respect to the reference line Lb in the longitudinal direction Lh of the head 16 stored in the memory 61. Based on the above, tilt correction is performed so that the tilt angle of the lenticular lens 4 with respect to the reference line Lb coincides with the tilt angle θh with respect to the reference line Lb in the longitudinal direction Lh of the head 16.
 次に、検出ラインLLの各種の例について説明する。 Next, various examples of the detection line LL will be described.
 図15Aの斜視図および図15Bの側面図に示したレンチキュラシート3における検出ラインLLは、レンチキュラレンズ4間の溝4aをレンチキュラレンズ4の長手方向に着色して形成されている。レンズ傾き測定部74は、検出センサS1、S2の検出信号に基づいて、基準線Lbに対する溝4aの長手方向の傾き角度を算出する。 The detection line LL in the lenticular sheet 3 shown in the perspective view of FIG. 15A and the side view of FIG. 15B is formed by coloring the groove 4 a between the lenticular lenses 4 in the longitudinal direction of the lenticular lens 4. The lens inclination measurement unit 74 calculates the inclination angle in the longitudinal direction of the groove 4a with respect to the reference line Lb based on the detection signals of the detection sensors S1 and S2.
 検出ラインLLは、レンチキュラシート3上に複数本のレンチキュラレンズ4を挟んで合計で複数本(本例では2本)形成されている。 The detection lines LL are formed in total (two in this example) on the lenticular sheet 3 with a plurality of lenticular lenses 4 interposed therebetween.
 本例の検出ラインLLは、副走査方向にてレンチキュラシート3の中央よりも前端寄りおよび後端寄りの両方にそれぞれ一本以上形成されている。また、本例の検出ラインLLは、レンチキュラシート3のクランパ23によりクランプされない非クランプ領域(非保持領域)に形成されている。図15に、レンチキュラシート3の一方側のクランプ領域CL1と、他方側のクランプ領域CL2を示した。検出ラインLLは、CL1とCL2との間の非クランプ領域に形成されている。 In this example, one or more detection lines LL are formed near both the front end and the rear end of the lenticular sheet 3 in the sub-scanning direction. Further, the detection line LL of this example is formed in a non-clamping region (non-holding region) that is not clamped by the clamper 23 of the lenticular sheet 3. FIG. 15 shows a clamp region CL1 on one side of the lenticular sheet 3 and a clamp region CL2 on the other side. The detection line LL is formed in an unclamped region between CL1 and CL2.
 図16は、他の例の検出ラインLL2が形成されたレンチキュラシート3を示す。本例の検出ラインLL2は、レンチキュラレンズ4の山4bを欠いた形状で形成されている。即ち、レンチキュラレンズ4のうち一又は複数の山の少なくとも一部をスキップ(欠き形状にして)して成形することで、検出ラインLL2が形成されている。このようなレンチキュラシート3は、例えば金型を用いて成形することができる。 FIG. 16 shows a lenticular sheet 3 on which another example detection line LL2 is formed. The detection line LL2 of this example is formed in a shape lacking the mountain 4b of the lenticular lens 4. That is, the detection line LL2 is formed by skipping (making a notch shape) at least a part of one or a plurality of peaks of the lenticular lens 4. Such a lenticular sheet 3 can be formed using, for example, a mold.
 図17は、他の例の検出ラインLL3が形成されたレンチキュラシート3を示す。本例の検出ラインLL3は、レンチキュラレンズ4の山4bをレンチキュラレンズ4の長手方向に着色して形成されている。 FIG. 17 shows a lenticular sheet 3 on which another example detection line LL3 is formed. The detection line LL3 in this example is formed by coloring the peak 4b of the lenticular lens 4 in the longitudinal direction of the lenticular lens 4.
 図16の検出ラインLL2及び図17の検出ラインLL3は、図15の検出ラインLLと同様、複数本のレンチキュラレンズ4を挟んで合計2本、副走査方向にて前端寄りおよび後端寄りの両方にそれぞれ一本、非クランプ領域に形成されている。図15に、レンチキュラシート3の一方側のクランプ領域CL1と、他方側のクランプ領域CL2を示した。検出ラインLLは、CL1とCL2との間の非クランプ領域に形成されている。 16, the detection line LL2 in FIG. 16 and the detection line LL3 in FIG. 17 are two in total, both near the front end and the rear end in the sub-scanning direction, with the plurality of lenticular lenses 4 sandwiched therebetween. Each is formed in a non-clamping region. FIG. 15 shows a clamp region CL1 on one side of the lenticular sheet 3 and a clamp region CL2 on the other side. The detection line LL is formed in an unclamped region between CL1 and CL2.
 図18は、検出ラインLLに隣接したレンチキュラレンズ4の山4bを検出センサの検出信号に基づいて検出することで、レンチキュラレンズ4の副走査方向における基準位置を検出している様子を示す。 FIG. 18 shows a state in which the reference position of the lenticular lens 4 in the sub-scanning direction is detected by detecting the crest 4b of the lenticular lens 4 adjacent to the detection line LL based on the detection signal of the detection sensor.
 <第2実施形態>
 次に第2実施形態について説明する。
Second Embodiment
Next, a second embodiment will be described.
 図19に示すように、本実施形態の傾き角度検出部18は、第1検出センサ34(S1)と第2検出センサ36(S2)との間に第3検出センサ35(S3)が配置されて構成されている。第3検出センサ35(S3)は、第1検出センサ34(S1)と第2検出センサ36(S2)との中央よりも第1検出センサ34(S1)寄りに配置されている。即ち、主走査方向における複数の検出センサ34、35,36の各々の間隔のうち少なくともひとつの間隔が他のいずれかの間隔と異なり配列されている。本例では、第1検出センサ34と第3検出センサ35との間隔L13よりも、第2検出センサ36(S2)と第3検出センサ35(S3)との間隔L23の方が大きい。 As shown in FIG. 19, in the tilt angle detection unit 18 of the present embodiment, a third detection sensor 35 (S3) is arranged between the first detection sensor 34 (S1) and the second detection sensor 36 (S2). Configured. The third detection sensor 35 (S3) is disposed closer to the first detection sensor 34 (S1) than the center of the first detection sensor 34 (S1) and the second detection sensor 36 (S2). That is, at least one interval among the intervals of the plurality of detection sensors 34, 35, and 36 in the main scanning direction is arranged differently from any other interval. In this example, the interval L23 between the second detection sensor 36 (S2) and the third detection sensor 35 (S3) is larger than the interval L13 between the first detection sensor 34 and the third detection sensor 35.
 なお、図19に示したように、全ての検出センサS1、S2、S3が主走査方向の一直線上に配列されていることが好ましいが、実際には、直線から外れた位置にずれて配設されている場合がある。 As shown in FIG. 19, it is preferable that all the detection sensors S1, S2, and S3 are arranged on a straight line in the main scanning direction. May have been.
 本例では、レンチキュラシート3の搬送路に設けられた3個の検出センサ34、35、36を、各々の間隔のうち少なくとも1つの間隔が他のいずれかの間隔と異なるように、主走査方向に沿って一列に配列したので、後述のように、各検出センサ34、35、36から出力される検出信号に基づきヘッド16の湾曲量を求めることができる。 In this example, the three detection sensors 34, 35, and 36 provided in the conveyance path of the lenticular sheet 3 are arranged in the main scanning direction so that at least one of the intervals is different from any of the other intervals. As described later, the bending amount of the head 16 can be obtained based on detection signals output from the detection sensors 34, 35, and 36, as will be described later.
 図20は、第2実施形態におけるプリンタ2の制御系の構成を示すブロック図である。なお、図1~6に示した要素には同じ符号を付してあり、第1実施形態にて既に記載した事項については以下では説明を省略する。 FIG. 20 is a block diagram showing the configuration of the control system of the printer 2 in the second embodiment. The elements shown in FIGS. 1 to 6 are denoted by the same reference numerals, and description of matters already described in the first embodiment will be omitted below.
 ヘッド湾曲量測定部78は、透明シート82の検出パターン83を検出した複数の検出センサS1、S2、S3の検出信号に基づいて、ヘッド16の長手方向に対する湾曲量を算出し、メモリ61に記憶させる。 The head bending amount measuring unit 78 calculates the bending amount with respect to the longitudinal direction of the head 16 based on the detection signals of the plurality of detection sensors S 1, S 2, S 3 that have detected the detection pattern 83 of the transparent sheet 82 and stores it in the memory 61. Let
 画像補正部79は、ヘッド16の湾曲に因りレンチキュラシート3に形成される視点画像の湾曲歪みをキャンセルするように、メモリ61から取得したヘッド16の湾曲量に応じて視点画像を湾曲補正する。 The image correction unit 79 corrects the viewpoint image according to the amount of curvature of the head 16 acquired from the memory 61 so as to cancel the distortion of the viewpoint image formed on the lenticular sheet 3 due to the curvature of the head 16.
 図21は、第2実施形態における測定処理の一例の流れを示すフローチャートである。本処理は、CPU60によりプログラムに従って実行される。なお、ステップS41~S44は、図7に示した第1実施形態におけるステップS11~S14とそれぞれ同様であり、説明を省略する。 FIG. 21 is a flowchart showing an exemplary flow of measurement processing in the second embodiment. This process is executed by the CPU 60 according to a program. Steps S41 to S44 are the same as steps S11 to S14 in the first embodiment shown in FIG.
 図22Aは、ステップS42にて、湾曲したヘッド16で透明シート82に検出パターン83を印画した状態を示す。ヘッド16は湾曲しているので、そのヘッド16で透明シート82上に印画した検出パターン83も湾曲している。なお、図22Aでは発明の理解を容易にするためヘッド16の湾曲を誇張して描いてある。実際には、ヘッド16の湾曲は微小であるが、図2に示した例では一つのレンチキュラレンズ4に対して6つの微小領域5a~5fに分割して線状画像を印画しており、微小領域5a~5fの幅に対してヘッド16の湾曲量が大きければ、立体視困難な画像を形成してしまうことになる。また、図22Bは、ステップS43にて第1検出センサS1及び第2検出センサS2により、透明シート82上の検出パターン83を検出している様子を示す。 FIG. 22A shows a state in which the detection pattern 83 is printed on the transparent sheet 82 with the curved head 16 in step S42. Since the head 16 is curved, the detection pattern 83 printed on the transparent sheet 82 by the head 16 is also curved. In FIG. 22A, the curvature of the head 16 is exaggerated for easy understanding of the invention. Actually, the curvature of the head 16 is minute, but in the example shown in FIG. 2, a linear image is printed by dividing the lenticular lens 4 into six minute areas 5a to 5f. If the amount of curvature of the head 16 is large with respect to the width of the regions 5a to 5f, an image that is difficult to view stereoscopically is formed. FIG. 22B shows a state in which the detection pattern 83 on the transparent sheet 82 is detected by the first detection sensor S1 and the second detection sensor S2 in step S43.
 ステップS45にて、ヘッド湾曲量測定部78は、図23に示すように、クランパ駆動機構25により、傾き角度θhだけヘッド16の傾き方向とは逆方向にクランパ23を回動することで、検出センサS1及び検出センサS2の検出信号のピークを合わせる。これにより、湾曲量を正確に算出することが可能になる。 In step S45, the head bending amount measuring unit 78 detects the rotation of the clamper 23 in the direction opposite to the tilt direction of the head 16 by the tilt angle θh by the clamper driving mechanism 25 as shown in FIG. The detection signal peaks of the sensor S1 and the detection sensor S2 are matched. As a result, the amount of bending can be accurately calculated.
 ステップS46にて、ヘッド湾曲量測定部78は、検出センサS1、S2、S3の検出信号に基づいてヘッド16の湾曲量Dcを算出して、メモリ61に記憶する。湾曲量Dcは、数式Dc=DH3-D3により算出できる。ここで、DH3は、第3検出センサS3から検出パターン83の端までの距離であり、第3検出センサS3の検出信号に基づいて算出される。D3は基準線Lbからの第3検出センサS3の位置ズレ量(図9を参照)である。D3は、予めメモリ61に記憶されている。 In step S46, the head bending amount measuring unit 78 calculates the bending amount Dc of the head 16 based on the detection signals of the detection sensors S1, S2, and S3, and stores it in the memory 61. The bending amount Dc can be calculated by the equation Dc = DH3-D3. Here, DH3 is the distance from the third detection sensor S3 to the end of the detection pattern 83, and is calculated based on the detection signal of the third detection sensor S3. D3 is the amount of positional deviation of the third detection sensor S3 from the reference line Lb (see FIG. 9). D3 is stored in the memory 61 in advance.
 ステップS53にて、透明シート82を排出する。 In step S53, the transparent sheet 82 is discharged.
 図24は、立体画像形成処理の一例の流れを示すフローチャートである。なお、ステップS61~S66は、図10に示した第1実施形態における立体画像形成処理のステップS21~26とそれぞれ同じであり、説明を省略する。 FIG. 24 is a flowchart showing a flow of an example of the stereoscopic image forming process. Steps S61 to S66 are the same as steps S21 to S26 of the stereoscopic image forming process in the first embodiment shown in FIG.
 ステップS67にて、画像補正部79は、ヘッド16の湾曲量Dcをメモリ61から取得する。 In step S67, the image correction unit 79 acquires the bending amount Dc of the head 16 from the memory 61.
 ステップS68にて、画像補正部79は、ヘッド16の湾曲に因りレンチキュラシート3に形成される画像の湾曲歪みをキャンセルするように、メモリ61から取得した湾曲量Dcに応じて複数の視点画像を湾曲補正する。即ち、図25に示すように、ヘッド湾曲量測定部78により算出された湾曲量Dc(=DH3-D3)に基づいて、複数の視点画像の補正量(Dc相当)を算出し、ヘッド16の湾曲とは逆方向に湾曲した視点画像を作成する。 In step S <b> 68, the image correction unit 79 obtains a plurality of viewpoint images according to the curvature amount Dc acquired from the memory 61 so as to cancel the curvature distortion of the image formed on the lenticular sheet 3 due to the curvature of the head 16. Correct the curvature. That is, as shown in FIG. 25, the correction amounts (corresponding to Dc) of a plurality of viewpoint images are calculated based on the bending amount Dc (= DH3-D3) calculated by the head bending amount measuring unit 78, and A viewpoint image curved in the opposite direction to the curvature is created.
 ステップS69にて、補正された視点画像に基づいて、ヘッド16により、レンチキュラシート3の背面に対しレンチキュラレンズ4ごとに複数の線状画像を印画することで、レンチキュラシート3に立体画像(複数の視点画像)を形成する。 In step S69, based on the corrected viewpoint image, the head 16 prints a plurality of linear images for each lenticular lens 4 on the back surface of the lenticular sheet 3, so that a three-dimensional image (a plurality of images is displayed on the lenticular sheet 3). Viewpoint image).
 ステップS70にて、立体画像が記録されたレンチキュラシート3を排出する。 In step S70, the lenticular sheet 3 on which the stereoscopic image is recorded is discharged.
 なお、搬送路に3つの検出センサS1、S2、S3を設けた場合を例に説明したが、湾曲量をより高精度に検出してヘッド16の歪みをより高精度に補正するためには、検出センサの個数を増やし、搬送路に4個以上の検出センサを配置してもよい。 In addition, although the case where the three detection sensors S1, S2, and S3 are provided in the conveyance path has been described as an example, in order to detect the bending amount with higher accuracy and correct the distortion of the head 16 with higher accuracy, The number of detection sensors may be increased, and four or more detection sensors may be arranged on the conveyance path.
 特に、少ないセンサ数でヘッド16の湾曲量をなるべく正確に検出するためには、主走査方向において第1検出センサS1と第2検出センサS2との中央に、湾曲量Dcを検出するための検出センサを配置することが、好ましい。 In particular, in order to detect the bending amount of the head 16 as accurately as possible with a small number of sensors, detection for detecting the bending amount Dc at the center between the first detection sensor S1 and the second detection sensor S2 in the main scanning direction. It is preferable to arrange a sensor.
 また、第1および第2実施形態にて、クランパ23により傾き角度を調整する場合を例に説明したが、このような場合に本発明は限定されない。 In the first and second embodiments, the case where the tilt angle is adjusted by the clamper 23 has been described as an example. However, the present invention is not limited to such a case.
 ヘッド16をレンチキュラシート3の搬送面に垂直な軸周りに回動させるヘッド回動手段を設けてもよい。この場合、傾き補正制御部70は、ヘッド回動手段によりヘッド16を回動させる。 A head rotating means for rotating the head 16 around an axis perpendicular to the conveying surface of the lenticular sheet 3 may be provided. In this case, the inclination correction control unit 70 rotates the head 16 by the head rotating means.
 また、第1および第2実施形態にて、レンチキュラシート3をクランパ23の突き当て面23aに突き当てる場合を例に説明したが、本発明はこのような場合には限定されない。例えば、レンチキュラシート3の左右両端の移動速度を一致させ、レンチキュラシート3が回動しないようにレンチキュラシート3を副走査方向に搬送するようにしてもよい。 In the first and second embodiments, the case where the lenticular sheet 3 is abutted against the abutting surface 23a of the clamper 23 has been described as an example, but the present invention is not limited to such a case. For example, the moving speeds of the left and right ends of the lenticular sheet 3 may be matched to convey the lenticular sheet 3 in the sub-scanning direction so that the lenticular sheet 3 does not rotate.
 また、第1および第2実施形態にて、クランパ23によりレンチキュラシート3を保持する場合を例に説明したが、レンチキュラシート3を保持する保持手段は、クランパ23には特に限定されない。 In the first and second embodiments, the case where the lenticular sheet 3 is held by the clamper 23 has been described as an example. However, the holding means for holding the lenticular sheet 3 is not particularly limited to the clamper 23.
 本発明は、本明細書において説明した例や図面に図示された例には限定されず、本発明の要旨を逸脱しない範囲において、各種の設計変更や改良を行ってよいのはもちろんである。 The present invention is not limited to the examples described in the present specification and the examples illustrated in the drawings, and various design changes and improvements may be made without departing from the scope of the present invention.
 2…プリンタ、3…レンチキュラシート、4…レンチキュラレンズ、15…給送ローラ対、16…ヘッド、19…クランプユニット、23…クランパ、24…クランパ開閉機構、25…クランパ駆動機構、34…第1検出センサ(S1)、35…第2検出センサ(S2)、36…第3検出センサ(S3)、60…CPU、61…メモリ、70…傾き補正制御部、72…検出パターン印画制御部、73…ヘッド傾き測定部、74…レンズ傾き測定部、75…レンズ位置検出部、78…ヘッド湾曲量測定部、79…画像補正部、82…透明シート(検出用シート) DESCRIPTION OF SYMBOLS 2 ... Printer, 3 ... Lenticular sheet, 4 ... Lenticular lens, 15 ... Feed roller pair, 16 ... Head, 19 ... Clamp unit, 23 ... Clamper, 24 ... Clamper opening / closing mechanism, 25 ... Clamper drive mechanism, 34 ... 1st Detection sensor (S1), 35 ... second detection sensor (S2), 36 ... third detection sensor (S3), 60 ... CPU, 61 ... memory, 70 ... tilt correction control unit, 72 ... detection pattern printing control unit, 73 DESCRIPTION OF SYMBOLS ... Head inclination measurement part, 74 ... Lens inclination measurement part, 75 ... Lens position detection part, 78 ... Head bending amount measurement part, 79 ... Image correction part, 82 ... Transparent sheet (sheet for detection)

Claims (21)

  1.  副走査方向に沿って並んだ複数のレンチキュラレンズと前記レンチキュラレンズの長手方向に沿った検出ラインとが形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、
     前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1及び第2検出センサを含む複数の検出センサと、
     前記レンチキュラシートの前記検出ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するレンズ傾き測定部と、
     前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの前記レンチキュラレンズが形成されている面とは反対側の面に、前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、
     前記基準線に対する前記ヘッドの長手方向の傾き角度を記憶する記憶部と、
     前記レンズ傾き算出部により算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させる傾き補正制御部と、
     を備えた画像形成装置。
    A transport unit configured to transport a lenticular sheet formed with a plurality of lenticular lenses arranged along the sub-scanning direction and a detection line along the longitudinal direction of the lenticular lens in the sub-scanning direction;
    A plurality of detection sensors including first and second detection sensors provided on a reference line in a main scanning direction orthogonal to the sub-scanning direction, provided in a conveyance path of the lenticular sheet;
    A lens inclination measuring unit that detects the detection lines of the lenticular sheet by the plurality of detection sensors, and calculates an inclination angle of the lenticular lens with respect to the reference line based on detection signals of the plurality of detection sensors;
    The lenticular sheet is disposed along the longitudinal direction intersecting with the sub-scanning direction in the conveyance path of the lenticular sheet, and the surface of the lenticular sheet opposite to the surface on which the lenticular lens is formed is provided on each of the plurality of lenticular lenses. A head for recording a plurality of viewpoint images on the lenticular sheet by recording a plurality of linear images correspondingly,
    A storage unit for storing a tilt angle of the head in the longitudinal direction with respect to the reference line;
    Based on the tilt angle of the lenticular lens calculated by the lens tilt calculating unit and the tilt angle of the head stored in the storage unit, the tilt angle that matches the tilt angle of the lenticular lens and the tilt angle of the head A correction control unit;
    An image forming apparatus.
  2.  前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズ間の溝を前記レンチキュラレンズの長手方向に着色して形成されており、
     前記レンズ傾き測定部は、前記複数の検出センサの検出信号に基づいて、前記着色された溝の前記基準線に対する傾き角度を算出する請求項1に記載の画像形成装置。
    The detection line of the lenticular lens is formed by coloring a groove between the lenticular lenses in a longitudinal direction of the lenticular lens,
    The image forming apparatus according to claim 1, wherein the lens inclination measurement unit calculates an inclination angle of the colored groove with respect to the reference line based on detection signals of the plurality of detection sensors.
  3.  前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズの山を前記レンチキュラレンズの長手方向に着色して形成されており、
     前記レンズ傾き測定部は、前記複数の検出センサの検出信号に基づいて、前記着色された山の前記基準線に対する傾き角度を算出する請求項1に記載の画像形成装置。
    The detection line of the lenticular lens is formed by coloring a mountain of the lenticular lens in a longitudinal direction of the lenticular lens,
    The image forming apparatus according to claim 1, wherein the lens inclination measurement unit calculates an inclination angle of the colored mountain with respect to the reference line based on detection signals of the plurality of detection sensors.
  4.  前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズの山を欠いた形状で形成されており、
     前記レンズ傾き測定部は、前記複数の検出センサの検出信号に基づいて、前記山を欠いた形状で形成された前記検出ラインの前記基準線に対する傾き角度を算出する請求項1に記載の画像形成装置。
    The detection line of the lenticular lens is formed in a shape lacking a mountain of the lenticular lens,
    2. The image formation according to claim 1, wherein the lens inclination measurement unit calculates an inclination angle of the detection line formed in a shape lacking the mountain with respect to the reference line based on detection signals of the plurality of detection sensors. apparatus.
  5.  前記複数のレンチキュラレンズのうちで前記検出ラインに隣接した前記レンチキュラレンズを前記検出センサの検出信号に基づいて検出することで、前記レンチキュラレンズの前記副走査方向における基準位置を検出するレンズ位置検出部を備えた請求項2ないし4のうちいずれか1項に記載の画像形成装置。 A lens position detection unit that detects a reference position of the lenticular lens in the sub-scanning direction by detecting the lenticular lens adjacent to the detection line among the plurality of lenticular lenses based on a detection signal of the detection sensor. The image forming apparatus according to claim 2, further comprising:
  6.  前記レンチキュラレンズの前記検出ラインは、前記レンチキュラシート上に一本以上の前記レンチキュラレンズを挟んで合計で複数本形成されており、
     前記レンズ傾き測定部は、前記複数本の検出ラインを検出した前記検出センサの検出信号に基づいて前記レンチキュラレンズの傾きを算出する請求項1ないし5のうちいずれか1項に記載の画像形成装置。
    A plurality of the detection lines of the lenticular lens are formed in total on the lenticular sheet with one or more lenticular lenses interposed therebetween,
    The image forming apparatus according to claim 1, wherein the lens tilt measurement unit calculates the tilt of the lenticular lens based on a detection signal of the detection sensor that detects the plurality of detection lines. .
  7.  前記レンチキュラレンズの前記検出ラインは、前記副走査方向にて前記レンチキュラシートの中央よりも前端寄りおよび後端寄りの両方にそれぞれ一本以上形成されている請求項1ないし5のうちいずれか1項に記載の画像形成装置。 6. The detection line of the lenticular lens is formed in one or more at both the front end and the rear end from the center of the lenticular sheet in the sub-scanning direction, respectively. The image forming apparatus described in 1.
  8.  前記搬送部により前記搬送路上を搬送された前記レンチキュラシートを保持する保持部を備え、
     前記傾き補正制御部は、前記保持部を前記レンチキュラシートの搬送面に垂直な軸周りに回動させることで、前記レンチキュラレンズの傾き角度を変化させる請求項1ないし7のうちいずれか1項に記載の画像形成装置。
    A holding unit that holds the lenticular sheet conveyed on the conveyance path by the conveyance unit;
    The tilt correction control unit changes the tilt angle of the lenticular lens by rotating the holding unit around an axis perpendicular to a conveyance surface of the lenticular sheet. The image forming apparatus described.
  9.  前記レンチキュラレンズの前記検出ラインは、前記レンチキュラシートの前記保持部により保持されない非保持領域に形成されており、前記複数の検出センサは、前記非保持領域から前記検出ラインを検出する請求項8に記載の画像形成装置。 The detection line of the lenticular lens is formed in a non-holding region that is not held by the holding unit of the lenticular sheet, and the plurality of detection sensors detect the detection line from the non-holding region. The image forming apparatus described.
  10.  前記搬送部によりヘッド傾き検出用シートを搬送して、前記保持部により前記ヘッド傾き検出用シートを保持した状態で、前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、
     前記複数の検出センサにより前記検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、
     を備えた請求項8または9に記載の画像形成装置。
    A detection pattern for detecting an inclination angle of the head with respect to the reference line is detected by the head while the head inclination detection sheet is conveyed by the conveyance unit and the head inclination detection sheet is held by the holding unit. A detection pattern printing control section for printing on the detection sheet;
    The detection patterns are detected by the plurality of detection sensors, an inclination angle of the detection pattern with respect to the reference line is calculated based on detection signals of the plurality of detection sensors, and the inclination angle is used as the inclination angle of the head. A head tilt angle measurement unit to be stored in the storage unit;
    An image forming apparatus according to claim 8 or 9, further comprising:
  11.  前記ヘッドの長手方向における湾曲量を記憶する湾曲量記憶部と、
     前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部に記憶された前記湾曲量に応じて前記視点画像を湾曲補正する画像補正部と、
     を備えた請求項1ないし10のうちいずれか1項に記載の画像形成装置。
    A bend amount storage unit for storing a bend amount in the longitudinal direction of the head;
    An image correction unit that corrects the viewpoint image according to the amount of bending stored in the storage unit so as to cancel the distortion of the viewpoint image formed on the lenticular sheet due to the curvature of the head;
    The image forming apparatus according to claim 1, further comprising:
  12.  前記搬送部により検出用シートを搬送して、前記保持部により前記検出用シートを保持した状態で、前記基準線に対する前記ヘッドの傾き角度を検出するための検出パターンを前記ヘッドにより前記検出用シートに印画する検出パターン印画制御部と、
     前記複数の検出センサにより前記傾き検出パターンを検出して、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記検出パターンの傾き角度を算出し、該傾き角度を前記ヘッドの傾き角度として前記記憶部に記憶させるヘッド傾き角度測定部と、
     前記検出用シートの前記検出パターンを検出した前記複数の検出センサの検出信号に基づいて、前記ヘッドの長手方向に対する前記湾曲量を算出し、前記記憶部に記憶させる湾曲量測定部と、
     前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部に記憶された前記湾曲量に応じて前記視点画像を湾曲補正する画像補正部と、
    を備えた請求項8または9に記載の画像形成装置。
    In the state where the detection sheet is conveyed by the conveyance unit and the detection sheet is held by the holding unit, a detection pattern for detecting an inclination angle of the head with respect to the reference line is detected by the head. A detection pattern printing control section for printing on
    The inclination detection patterns are detected by the plurality of detection sensors, the inclination angle of the detection pattern with respect to the reference line is calculated based on detection signals of the plurality of detection sensors, and the inclination angle is used as the inclination angle of the head. A head tilt angle measurement unit to be stored in the storage unit;
    Based on detection signals of the plurality of detection sensors that have detected the detection pattern of the detection sheet, the bending amount measurement unit with respect to the longitudinal direction of the head is calculated and stored in the storage unit;
    An image correction unit that corrects the viewpoint image according to the amount of bending stored in the storage unit so as to cancel the distortion of the viewpoint image formed on the lenticular sheet due to the curvature of the head;
    An image forming apparatus according to claim 8 or 9, further comprising:
  13.  前記第1検出センサと前記第2検出センサとの中央に前記湾曲量を検出するための検出センサを配置した請求項12に記載の画像形成装置。 13. The image forming apparatus according to claim 12, wherein a detection sensor for detecting the amount of bending is arranged at a center between the first detection sensor and the second detection sensor.
  14.  前記複数の検出センサとして4個以上の検出センサを配置した請求項11ないし13のうちいずれか1項に記載の画像形成装置。 14. The image forming apparatus according to claim 11, wherein four or more detection sensors are arranged as the plurality of detection sensors.
  15.  前記複数の検出センサは、前記主走査方向における前記複数の検出センサの各々の間隔のうち少なくともひとつの間隔が他のいずれかの間隔と異なり配列されている請求項1ないし14のうちいずれか1項に記載の画像形成装置。 The plurality of detection sensors are arranged such that at least one interval among the intervals of the plurality of detection sensors in the main scanning direction is different from any other interval. The image forming apparatus described in the item.
  16.  副走査方向に沿って並んだ複数のレンチキュラレンズと前記レンチキュラレンズの長手方向に沿った検出ラインとが形成されたレンチキュラシートを前記副走査方向に搬送する搬送部と、前記レンチキュラシートの搬送路に設けられ、前記副走査方向と直交する主走査方向の基準線上に配置された第1及び第2検出センサを含む複数の検出センサと、前記レンチキュラシートの搬送路に前記副走査方向と交わる長手方向に沿って配置され、前記レンチキュラシートの前記レンチキュラレンズが形成されている面とは反対側の面に、前記複数のレンチキュラレンズの各々に対応して複数の線状画像を記録することで前記レンチキュラシートに複数の視点画像を記録するヘッドと、記憶部と、を備えた画像形成装置が、
     前記基準線に対する前記ヘッドの長手方向の傾き角度を前記記憶部に記憶させておくステップと、
     前記レンチキュラシートの前記検出ラインを前記複数の検出センサにより検出し、前記複数の検出センサの検出信号に基づいて前記基準線に対する前記レンチキュラレンズの傾き角度を算出するステップと、
     算出された前記レンチキュラレンズの傾き角度と前記記憶部に記憶された前記ヘッドの傾き角度とに基づいて、前記レンチキュラレンズの傾き角度と前記ヘッドの傾き角度とを一致させるステップと、
     前記レンチキュラシートの背面に、前記ヘッドにより前記複数の視点画像を記録するステップと、
     を実行する画像形成方法。
    A transport unit configured to transport a lenticular sheet formed with a plurality of lenticular lenses arranged along the sub-scanning direction and a detection line along the longitudinal direction of the lenticular lens in the sub-scanning direction; and a transport path of the lenticular sheet A plurality of detection sensors including first and second detection sensors disposed on a reference line in the main scanning direction orthogonal to the sub-scanning direction, and a longitudinal direction intersecting the sub-scanning direction in the conveyance path of the lenticular sheet And recording a plurality of linear images corresponding to each of the plurality of lenticular lenses on a surface of the lenticular sheet opposite to the surface on which the lenticular lens is formed. An image forming apparatus including a head that records a plurality of viewpoint images on a sheet, and a storage unit,
    Storing an inclination angle of the head in the longitudinal direction with respect to the reference line in the storage unit;
    Detecting the detection lines of the lenticular sheet by the plurality of detection sensors, and calculating an inclination angle of the lenticular lens with respect to the reference line based on detection signals of the plurality of detection sensors;
    Matching the tilt angle of the lenticular lens and the tilt angle of the head based on the calculated tilt angle of the lenticular lens and the tilt angle of the head stored in the storage unit;
    Recording the plurality of viewpoint images by the head on the back of the lenticular sheet;
    An image forming method for executing.
  17.  前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズ間の溝を前記レンチキュラレンズの長手方向に着色して形成されており、前記画像形成装置は、前記複数の検出センサの検出信号に基づいて、前記着色された溝の前記基準線に対する傾き角度を算出するステップを実行する請求項16に記載の画像形成方法。 The detection line of the lenticular lens is formed by coloring a groove between the lenticular lenses in a longitudinal direction of the lenticular lens, and the image forming apparatus performs the detection based on detection signals of the plurality of detection sensors. The image forming method according to claim 16, wherein a step of calculating an inclination angle of the colored groove with respect to the reference line is executed.
  18.  前記レンチキュラレンズの長手方向を示す前記検出ラインは、前記レンチキュラレンズの山を前記レンチキュラレンズの長手方向に着色して形成されており、前記画像形成装置は、前記複数の検出センサの検出信号に基づいて、前記着色された山の前記基準線に対する傾き角度を算出するステップを実行する請求項16に記載の画像形成方法。 The detection line indicating the longitudinal direction of the lenticular lens is formed by coloring a peak of the lenticular lens in the longitudinal direction of the lenticular lens, and the image forming apparatus is based on detection signals of the plurality of detection sensors. The image forming method according to claim 16, further comprising: calculating an inclination angle of the colored mountain with respect to the reference line.
  19.  前記レンチキュラレンズの前記検出ラインは、前記レンチキュラレンズ間の山を欠いた形状で形成されており、前記画像形成装置は、前記複数の検出センサの検出信号に基づいて、前記山を欠いた形状で形成された前記検出ラインの前記基準線に対する傾き角度を算出するステップを実行する請求項16に記載の画像形成方法。 The detection line of the lenticular lens is formed in a shape lacking a mountain between the lenticular lenses, and the image forming apparatus has a shape lacking the mountain based on detection signals of the plurality of detection sensors. The image forming method according to claim 16, wherein a step of calculating an inclination angle of the formed detection line with respect to the reference line is executed.
  20.  前記複数のレンチキュラレンズのうちで前記検出ラインに隣接した前記レンチキュラレンズを前記検出センサの検出信号に基づいて検出することで、前記レンチキュラレンズの前記副走査方向における基準位置を検出するステップを実行する請求項17ないし19のうちいずれか1項に記載の画像形成方法。 A step of detecting a reference position of the lenticular lens in the sub-scanning direction is detected by detecting the lenticular lens adjacent to the detection line among the plurality of lenticular lenses based on a detection signal of the detection sensor. The image forming method according to claim 17.
  21.  前記ヘッドの長手方向に対する湾曲量を前記記憶部に記憶させておくステップと、
     前記ヘッドの湾曲に因り前記レンチキュラシートに形成される前記視点画像の湾曲歪みをキャンセルするように、前記記憶部から取得した前記湾曲量に応じて前記視点画像を湾曲補正するステップと、
     を実行する請求項16ないし20のうちいずれか1項に記載の画像形成方法。
    Storing the amount of bending with respect to the longitudinal direction of the head in the storage unit;
    Correcting the curvature of the viewpoint image according to the amount of curvature acquired from the storage unit so as to cancel the curvature distortion of the viewpoint image formed on the lenticular sheet due to the curvature of the head;
    21. The image forming method according to claim 16, wherein the image forming method is executed.
PCT/JP2011/066043 2010-09-30 2011-07-14 Image-forming device and image-forming method WO2012043016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010222562 2010-09-30
JP2010-222562 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043016A1 true WO2012043016A1 (en) 2012-04-05

Family

ID=45892494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066043 WO2012043016A1 (en) 2010-09-30 2011-07-14 Image-forming device and image-forming method

Country Status (1)

Country Link
WO (1) WO2012043016A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112623835A (en) * 2021-01-08 2021-04-09 杭州爱科科技股份有限公司 Deviation rectification detection method for double-vertical-line marking material with broken points

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891633A (en) * 1994-07-26 1996-04-09 Mitsubishi Electric Corp Sheet carrying device
JP2007127521A (en) * 2005-11-04 2007-05-24 Seiko Epson Corp Lens sheet measuring device, printer equipped therewith, and lens sheet measuring technique
JP2009096122A (en) * 2007-10-18 2009-05-07 Seiko Epson Corp Moving section determination method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891633A (en) * 1994-07-26 1996-04-09 Mitsubishi Electric Corp Sheet carrying device
JP2007127521A (en) * 2005-11-04 2007-05-24 Seiko Epson Corp Lens sheet measuring device, printer equipped therewith, and lens sheet measuring technique
JP2009096122A (en) * 2007-10-18 2009-05-07 Seiko Epson Corp Moving section determination method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112623835A (en) * 2021-01-08 2021-04-09 杭州爱科科技股份有限公司 Deviation rectification detection method for double-vertical-line marking material with broken points

Similar Documents

Publication Publication Date Title
US8400487B2 (en) Printer and printing method
JP5213893B2 (en) Print control method and printing apparatus
US6712536B2 (en) Printer
EP2199092B1 (en) Printing apparatus
WO2012043015A1 (en) Image-forming device and image-forming method
WO2012127731A1 (en) Clamping device and printer
US8517496B2 (en) Apparatus and method of printing images on a continuous sheet
US8405698B2 (en) Printer and printing method
JP5441618B2 (en) Movement detection apparatus, movement detection method, and recording apparatus
JP4774474B1 (en) Printer
JP2005200183A (en) Carrying device and image recorder
JP2011158627A (en) Method for manufacturing sheet for printing, the sheet for printing, and printing device
JP7004238B2 (en) Conveyor device and image forming device
US20110181853A1 (en) Image recordng device and image processing device
WO2012043016A1 (en) Image-forming device and image-forming method
JP5868130B2 (en) Printing device
JP5474173B2 (en) Print control method and printing apparatus
US20110188914A1 (en) Printing apparatus
JP7078485B2 (en) Lighting equipment, line sensor equipment, reading equipment, and recording equipment
US8376500B2 (en) Image recording apparatus, method of calculating record position shifts, and method of recording measured patterns
JP5404318B2 (en) Movement detection apparatus and recording apparatus
CN109076135B (en) Biasing member
JP2010247961A (en) Recording device and transfer method
JP2011153018A (en) Printer
JP2021100797A (en) Image forming device and control method of image forming device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP