WO2012042825A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2012042825A1
WO2012042825A1 PCT/JP2011/005395 JP2011005395W WO2012042825A1 WO 2012042825 A1 WO2012042825 A1 WO 2012042825A1 JP 2011005395 W JP2011005395 W JP 2011005395W WO 2012042825 A1 WO2012042825 A1 WO 2012042825A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
refrigerant
oil
rotary compressor
orbiting scroll
Prior art date
Application number
PCT/JP2011/005395
Other languages
French (fr)
Japanese (ja)
Inventor
啓晶 中井
信吾 大八木
裕文 吉田
健 苅野
大輔 船越
竜一 大野
飯田 登
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/824,694 priority Critical patent/US20130189080A1/en
Priority to JP2012516405A priority patent/JPWO2012042825A1/en
Priority to CN2011800466082A priority patent/CN103154521A/en
Publication of WO2012042825A1 publication Critical patent/WO2012042825A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0292Ports or channels located in the wrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF

Definitions

  • the present invention uses a refrigerant that does not contain chlorine atoms, has a low global warming potential, and contains at least a hydrofluoroolefin having a carbon double bond, such as a room air conditioner, a car air conditioner, a refrigerator, and other air conditioners.
  • the present invention relates to a rotary compressor incorporated in a refrigeration cycle apparatus.
  • HFC-based refrigerant hydrofluorocarbon
  • This HFC-based refrigerant has a very high global warming potential. Therefore, development of a compressor using a refrigerant having a low ozone depletion coefficient and a global warming coefficient has been performed.
  • a refrigerant with a low global warming potential is generally low in stability. For this reason, when used in a refrigeration cycle apparatus such as a room air conditioner, car air conditioner, refrigerator, or other air conditioner for a long period of time, it is necessary to ensure the stability and reliability of the refrigerant.
  • the refrigerant evaporated in the evaporator is sucked into the compressor and compressed to a specified pressure by the compressor. At that time, the state of the refrigerant largely changes from low pressure to high pressure and from low temperature to high temperature. Therefore, it is necessary to configure the compressor so as to ensure the stability and reliability of the refrigerant.
  • Patent Document 1 discloses a compressor that uses a refrigerant having a low global warming potential, and supplies the refrigerant directly to the suction port in order to start compression of the refrigerant sucked into the compressor from as low a temperature as possible.
  • a compressor having a direct suction path for the same is disclosed.
  • the temperature of the refrigerant after being compressed to a specified pressure by the compressor is lower than the case where the refrigerant is not directly supplied to the suction port because the temperature rise is suppressed before the compression is started.
  • the decomposition of the refrigerant is suppressed, and the failure of the compressor or the decrease in the service life due to the decomposition product (for example, sludge) of the refrigerant is suppressed. That is, the reliability and durability of the compressor are improved.
  • Re-expansion heating means that high-pressure refrigerant in the middle of compression leaks into a low-pressure space and re-expands in the low-pressure space to a high temperature, and as a result, heats the low-pressure refrigerant existing in the low-pressure space. To tell. By such re-expansion heating, the temperature of the refrigerant after being compressed to a specified pressure becomes higher than necessary. In addition, when re-expansion heating occurs, a part of the compression power (energy) spent to obtain the high-temperature / high-pressure refrigerant is used for heating the low-temperature / low-pressure refrigerant. descend.
  • the present invention is a rotary compressor that uses a refrigerant having a low global warming potential, and uses refrigerating machine oil to improve the sealing performance of the compression chamber to re-expand.
  • An object of the present invention is to provide a highly efficient rotary compressor excellent in reliability and durability, capable of suppressing heating and suppressing the heating of the refrigerant by the refrigerating machine oil.
  • the present invention is configured as follows.
  • a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used, and the refrigerant is compressed.
  • a rotary compressor having a compression chamber and a first compression chamber oil supply passage for supplying refrigeration oil to the compression chamber after the refrigerant is confined.
  • the sealing performance of the compression chamber is improved, and re-expansion heating caused by leakage of the refrigerant in the middle of compression is suppressed. Heating is suppressed as compared with the case of supplying refrigeration oil in the suction process. As a result, the temperature of the refrigerant after being compressed to a specified pressure is reduced as compared with the case where the refrigerating machine oil is supplied in the suction process, thereby suppressing the decomposition of the refrigerant.
  • the refrigerant that is being sucked into the compression chamber has the lowest temperature.
  • high-temperature refrigeration oil is supplied to such a refrigerant, the refrigerant is strongly heated because the temperature difference between the refrigerant and the refrigeration oil is large (as a result, the decomposition of the refrigerant greatly proceeds).
  • the refrigerant in the middle of compression has a small temperature difference from the supplied refrigerating machine oil because the temperature of the refrigerant itself increases with compression. Further, in the case of the refrigerant compressed to near the discharge pressure, the temperature of the refrigerant is higher than the temperature of the supplied refrigeration oil.
  • heating the refrigerant by the refrigerating machine oil can be suppressed by supplying the refrigerating machine oil to the compression chamber after confining the refrigerant (compression process).
  • the refrigerating machine oil improves the sealing performance of the compression chamber after confining the refrigerant while suppressing the heating of the refrigerant.
  • the rotary compressor in the rotary compressor, it is possible to suppress an increase in the temperature of the refrigerant that causes the decomposition of the refrigerant while using the refrigerant having a low ozone layer depletion coefficient and a global warming coefficient. As a result, it is possible to provide a highly efficient rotary compressor that is excellent in reliability and durability while taking the global environment into consideration.
  • a rotary compressor according to the present invention uses a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin, a compression chamber for compressing the refrigerant, and confining the refrigerant And a first compression chamber oil supply passage for supplying refrigeration oil to the compression chamber after the first compression chamber.
  • the temperature of the refrigerant after being compressed to the specified pressure is lower than that in the case where the refrigerating machine oil is supplied in the suction process, and the decomposition of the refrigerant is suppressed.
  • the compressor may be configured to intermittently block the first compression chamber oil supply path.
  • Refrigerating machine oil can be supplied to the compression chamber at an optimal timing and with an optimal amount capable of effectively realizing improvement in the sealing performance of the compression chamber and suppression of the temperature rise of the refrigerant caused by supply of the refrigerator oil.
  • coolant can be suppressed more reliably.
  • the compression chamber When the compression chamber is formed between the fixed scroll and the orbiting scroll by meshing the fixed scroll and the orbiting scroll each having an end plate and a wrap which is a spiral wall formed on the end plate And providing at least one second compression chamber oil supply passage for supplying the refrigerator oil to the compression chamber from an oil storage section for storing the refrigerator oil, wherein at least one of the second compression chamber oil supply passages is the first compression chamber oil supply. It may be a route.
  • a rotary compressor that includes a plurality of compression chambers and compresses refrigerants in a plurality of compression chambers at the same time
  • refrigerant in the middle of compression that has been compressed to a certain high pressure leaks into the compression chamber on the low-pressure side
  • the refrigerant is refrigerant. It is easy to leak into the compression chamber in the middle of the compression after one step rather than the compression chamber in the middle of sucking (so-called internal leakage occurs). In that case, the re-expansion of the leaked refrigerant not only heats the refrigerant in the leaked compression chamber, but also increases the pressure in the leaked compression chamber. Due to such internal leakage, the temperature of the refrigerant rises.
  • the compression chamber includes a first compression chamber formed outside the orbiting scroll wrap and a second compression chamber formed inside the orbiting scroll wrap
  • the first compression chamber Of the second compression chamber the supply amount of the refrigerating machine oil to the compression chamber having the longer leak length may be made larger than the supply amount to the other compression chamber.
  • the amount of refrigeration oil supplied to improve the sealing performance corresponding to the length of the leak point in the compression chamber can be optimized, so extra refrigeration oil that occurs when an excessive amount of refrigeration oil is supplied. Heating of the refrigerant due to can also be suppressed.
  • the compression chamber has a first compression chamber formed outside the wrap of the orbiting scroll and a second compression chamber formed inside the wrap of the orbiting scroll, the first compression chamber Of the second compression chambers, the amount of the refrigerating machine oil supplied to the compression chamber having the higher volume change rate may be increased compared to the amount of oil supplied to the other compression chamber.
  • the optimum amount of refrigerating machine oil can improve the sealing performance of the compression chamber where refrigerant leakage is likely to occur because the pressure difference from the compression chamber on the low pressure side is large.
  • the heating of the refrigerant by the extra refrigeration oil that occurs when an excessive amount of refrigeration oil is supplied can also be suppressed.
  • the first compression chamber oil supply path is provided on the back surface of the orbiting scroll and is introduced into the wrap of the orbiting scroll and communicated with the introduction path portion provided in the wrap of the orbiting scroll.
  • the refrigerant includes at least one of tetrafluoropropene or trifluoropropene, which is a kind of hydrofluoroolefin, and may have a global warming potential of 5 or more and 750 or less, preferably 5 or more and 350 or less. . According to such a refrigerant, it is possible to effectively provide a rotary compressor having a low environmental load and high reliability and high efficiency.
  • the refrigerant is mainly composed of tetrafluoropropene or trifluoropropene, which is a kind of hydrofluoroolefin, and difluoromethane and pentafluoroethane preferably have a global warming potential of 5 or more and 750 or less, preferably 5 or more and 350 or less. What was mixed so that it may become may be sufficient. According to such a refrigerant, the environmental load is small, and the temperature can be lowered by suppressing the flow rate, so that a highly reliable and highly efficient rotary compressor can be effectively provided.
  • refrigerating machine oils (1) polyoxyalkylene glycols, (2) polyvinyl ethers, (3) poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, (4) polyol esters and polycarbonates
  • a synthetic oil containing the oxygen-containing compound of (5), a synthetic oil mainly composed of alkylbenzenes, or (6) a synthetic oil mainly composed of ⁇ -olefins may be used.
  • Such a refrigerating machine oil can effectively provide a highly reliable and highly efficient rotary compressor.
  • a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention
  • FIG. 2 is a partially enlarged sectional view of the compression mechanism shown in FIG. 1
  • FIG. 3 shows a plurality of states of the orbiting scroll of the compression mechanism.
  • action are demonstrated about a scroll compressor.
  • the scroll compressor according to the first embodiment has a sealed container 1.
  • the scroll compressor also has a compression mechanism 2, a motor unit 3, and an oil storage unit 20 inside the sealed container 1.
  • the compression mechanism 2 includes a main bearing member 11 fixed to the sealed container 1 by welding or shrink fitting, a shaft 4 supported by the main bearing member 11, and a fixing fixed on the main bearing member 11 by bolts or the like.
  • the scroll 12 is configured between a main scroll member 11 and a fixed scroll 12, and a revolving scroll 13 that meshes with the fixed scroll 12.
  • the fixed scroll 12 includes an end plate 12a and a wrap 12b that is a spiral wall formed on the end plate 12a.
  • the orbiting scroll 13 includes an end plate 13a and a wrap 13b that is a spiral wall formed on the end plate 13a. Is provided. Between the orbiting scroll 13 and the main bearing member 11, there is provided an Oldham ring or the like that prevents the orbiting scroll 13 from rotating and guides the orbiting scroll 13 driven by the shaft 4 to move in a circular orbit.
  • a restraining mechanism 14 is provided.
  • the eccentric shaft portion 4 a located at the upper end of the shaft 4 rotates the orbiting scroll 13 eccentrically, whereby the orbiting motion of the orbiting scroll 13 is realized.
  • the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves while reducing the volume from the outer peripheral side toward the center.
  • Refrigerant gas
  • the suction pipe 16 communicating with the outside of the hermetic container 1 and the suction port 17 in the outer peripheral portion of the fixed scroll 12 (suction process).
  • the refrigerant is compressed (compression step).
  • the refrigerant that has reached a specified pressure by compression pushes open the reed valve 19 provided in the discharge hole 18 in the center of the fixed scroll 12 and moves from the compression chamber 15 into the sealed container 1 through the discharge hole 18.
  • a pump 25 is provided at the other end of the shaft 4.
  • the pump 25 is arranged so that the suction port exists in the oil storage part 20 provided at the bottom of the sealed container 1. Since the pump 25 is driven in synchronization with the compression mechanism 2, the pump 25 can reliably suck up the refrigeration oil (oil) 6 stored in the oil storage unit 20 regardless of the pressure condition or the operation speed. And it can supply to the compression mechanism 2 stably.
  • the oil 6 sucked up by the pump 25 is supplied to the compression mechanism 2 through an oil supply hole 26 penetrating the shaft 4. Note that foreign matter in the oil 6 is removed by an oil filter or the like before or after being sucked up by the pump 25, so that foreign matter can be prevented from entering the compression mechanism 2. As a result, the reliability of the compressor is further improved. Improvements can be made.
  • the pressure of the oil 6 introduced into the compression mechanism 2 is substantially the same as the discharge pressure of the scroll compressor, it becomes a back pressure source for the orbiting scroll 13. That is, the oil 6 functions to press the back surface of the orbiting scroll 13 (the surface facing the main bearing member 11) and press the orbiting scroll 13 against the fixed scroll 12. Thereby, the orbiting scroll 13 is maintained in a state in which it is in contact with the fixed scroll 12 without leaving the fixed scroll 12 and without being in partial contact with the fixed scroll 12. As a result, the compression mechanism 2 can stably exhibit a predetermined compression capacity.
  • the seal member 78 between the back surface of the orbiting scroll 13 and the main bearing member 11, the high pressure region 30 is defined inside the seal member 78, and the back pressure chamber 29 is disposed outside the seal member 78. Defined. Since the pressure in the high pressure region 30 and the pressure in the back pressure chamber 29 can be completely separated, the pressure on the back surface of the orbiting scroll 13 can be stably controlled.
  • a recess 12d is formed in a portion 12c of the end plate 12a between the wraps 12b of the fixed scroll 12.
  • the orbiting scroll 13 is formed with an in-lap oil supply passage 55.
  • the in-lap oil supply passage 55 communicates with the back pressure chamber 29 through one opening 55a.
  • the back pressure chamber 29 communicates with the oil storage section 20 via an introduction path 54 provided on the back side of the orbiting scroll 13 and an oil supply hole 26 provided in the shaft 4.
  • the other opening 55 b of the in-wrap oil supply passage 55 is formed on the top surface of the wrap 13 a that is in sliding contact with the end plate 12 a of the fixed scroll 12. As shown by a broken line in FIG. 3, the opening 55 b of the in-lap oil supply passage 55 moves relative to the fixed scroll 12 so as to draw a circular turning locus by a turning motion of the turning scroll 13.
  • FIG. 3 shows a plurality of states of the orbiting scroll 13 meshed with the fixed scroll 12, and specifically shows the states of the orbiting scroll 13 whose phases are different by 90 degrees.
  • a first compression chamber 15a formed outside the wrap 13a of the orbiting scroll 13 and formed inside the wrap 13a.
  • a second compression chamber 15b Each of the first compression chamber 15a and the second compression chamber 15b moves toward the center while reducing the volume by the orbiting motion of the orbiting scroll 13.
  • the refrigerant in the compression chamber 15 reaches the discharge pressure and the compression chamber 15 and the discharge hole 18 communicate with each other, the refrigerant in the compression chamber 15 moves into the discharge chamber 31 by opening the reed valve 19.
  • the opening 55 b of the in-lap oil supply passage 55 and the recess 12 d formed in the portion 12 c of the end plate 12 a of the fixed scroll 12 communicate intermittently.
  • the in-lap oil supply passage 55 and the second compression chamber 15b are intermittently communicated with each other through the recess 12d.
  • the second compression chamber 15b As shown in FIG. 3A, the second compression chamber 15b formed on the outermost side of the orbiting scroll 13 and the suction port 17 communicate with each other, and introduction of the refrigerant into the second compression chamber 15b is started. (Start of inhalation process). And as shown in FIG.3 (c), the 2nd compression chamber 15b is closed by the turning motion of the turning scroll 13, and a refrigerant
  • the opening 55b of the in-lap oil supply passage 55 communicates with the second compression chamber 15b through the recess 12d by the orbiting motion of the orbiting scroll 13, and the in-lap oil supply passage 55
  • the oil 6 is supplied to the second compression chamber 15b after confining the refrigerant from the back pressure chamber 29 via
  • FIGS. 3A to 3C when the opening 55b and the recess 12d are not in communication, almost no oil is supplied from the back pressure chamber 29 to the second compression chamber 15b.
  • the second compression chamber 15b is connected to the second compression chamber 15b through the in-lap oil supply passage 55 by intermittently communicating the opening 55b of the in-lap oil supply passage 55 and the second compression chamber 15b through the recess 12d of the fixed scroll 12. Oil 6 is intermittently supplied to the chamber 15b. The reason for supplying the oil 6 to the second compression chamber 15b will be described later.
  • Embodiment 1 by using a single hydrofluoroolefin refrigerant or a mixed refrigerant containing the hydrofluoroolefin having a low ozone depletion coefficient and a low global warming coefficient, The influence on can be suppressed. Further, by supplying the oil 6 to the second compression chamber 15b after the refrigerant is confined (compression process), the temperature of the refrigerant after being compressed to a predetermined pressure is communicated with the suction process (that is, the suction port 17). Compared to the case of supplying the oil 6 in the state).
  • the temperature of the refrigerant after being compressed to the specified pressure is higher when the oil 6 is supplied to the second compression chamber 15b in the suction process.
  • the reason why is low is as follows.
  • the temperature of the refrigerant that is being sucked into the second compression chamber 15b has the lowest temperature.
  • the refrigerant is strongly heated because the temperature difference between the refrigerant and the oil 6 is large (as a result, the refrigerant is greatly decomposed).
  • the refrigerant in the middle of compression has a small temperature difference from the supplied oil 6 because the temperature of the refrigerant itself increases with compression.
  • the temperature of the refrigerant is higher than the temperature of the supplied oil 6.
  • heating the refrigerant by the oil 6 can be suppressed by supplying the oil 6 to the second compression chamber 15b after the refrigerant is confined (compression process).
  • the sealing performance of the second compression chamber 15b after confining the refrigerant is suppressed while suppressing the heating of the refrigerant. It can be improved by the oil 6.
  • the oil 6 is desirably supplied at a timing at which the temperature difference from the refrigerant is as small as possible.
  • the oil 6 improves the sealing performance of the second compression chamber 15b (between the end plate 12a of the fixed scroll 12 and the wrap 13b of the orbiting scroll 13 and between the wrap 12b and the end plate 13a). That is, the leakage of the refrigerant from the second compression chamber 15b can be suppressed.
  • the oil 6 on the rear surface of the orbiting scroll 13 is secondly passed through the oil supply passage 55 in the lap and the recess 12d.
  • the shape of the wrap provided in the fixed scroll 12 and the turning scroll 13 will be described.
  • the spiral shape of the fixed scroll and the orbiting scroll wrap is defined by an involute curve.
  • the involute curve is expressed by the following function in the Cartesian coordinate system, where ⁇ is the expansion angle and a is the base circle radius.
  • Equation 1 The curve represented by Equation 1 is used as the reference curve.
  • the outer envelope is expressed by the following function.
  • the inner envelope is expressed by the following function.
  • the fixed scroll By defining the outer surface of one of the fixed scroll 12 and the orbiting scroll 13 as a function of the above-mentioned reference curve and defining it as a function of the above-mentioned outer envelope of the inner surface of the other lap combined therewith, the fixed scroll The plurality of minimum radial gaps on the inner surface side of the wrap 13b of the orbiting scroll 13 or the plurality of minimum radial gaps on the outer surface side of the wrap 13b of the orbiting scroll 13 formed simultaneously by meshing the laps of the lap and the orbiting scroll lap. Will be equal.
  • the volume of the compression chamber 15 is increased by forming the asymmetric compression chamber 15 by forming the wrap 12b of the fixed scroll 12 and the wrap 13b of the orbiting scroll 13 so that the number of turns is different. I am trying.
  • the volume change rate of the second compression chamber 15b formed on the inner surface side of the wrap 13b of the orbiting scroll 13 is the first compression chamber formed on the outer surface side of the wrap 13b. Larger than the volume change rate of 15a.
  • the pressure of the refrigerant rapidly increases as compared with the first compression chamber 15a, so that the pressure difference with the compression chamber 15 on the low pressure side becomes large. Therefore, the refrigerant is liable to leak from the second compression chamber 15b to the low-pressure side compression chamber 15 between the wrap and the end plate, and it is necessary to improve the sealing performance.
  • the in-lap oil supply passage 55 and the recess 12d are appropriately provided so that more oil 6 is supplied to the second compression chamber 15b having a large volume change rate.
  • leakage of the refrigerant from the second compression chamber 15b to the low-pressure side compression chamber 15 is suppressed, re-expansion heating to the refrigerant in the low-pressure side compression chamber 15 is suppressed, and internal leakage is caused.
  • An increase in pressure can be suppressed.
  • the temperature rise of the refrigerant used in the scroll compressor according to the first embodiment which is easily decomposed at a high temperature, is suppressed.
  • another compression chamber oil supply path (second compression chamber oil supply path excluding the first compression chamber oil supply path) for supplying the oil 6 to the first compression chamber 15a is provided, and the second compression chamber 15b is provided.
  • a small amount of oil 6 compared to the amount of oil 6 supplied intermittently may be supplied to the first compression chamber 15a via another compression chamber oil supply path.
  • another compression chamber oil supply path for example, a compression chamber oil supply path 57 shown in FIG. 2 is provided.
  • the compression chamber oil supply path 57 is formed in the orbiting scroll 13. Further, one opening of the compression chamber oil supply passage 57 is formed on the top surface of the wrap 13b.
  • the other opening communicates with the oil storage section 20 through an introduction path 54 provided on the back surface of the orbiting scroll 13, an oil supply hole 26 provided in the shaft 4, and the like.
  • a small amount of oil 6 can be supplied from the gap between the end plate 12 a of the fixed scroll 12 and the top surface of the wrap 13 b of the orbiting scroll 13.
  • a small amount of oil compared to the amount of oil supplied after confining the refrigerant (after the second compression chamber 15b is closed) It may be supplied before the refrigerant is confined (before the second compression chamber 15b starts to close) or during the confinement of the refrigerant (from the time when the second compression chamber 15b starts to close until it completely closes). That is, if most of the necessary amount of oil 6 is supplied after confining the refrigerant, the temperature rise of the refrigerant, that is, the decomposition of the refrigerant can be suppressed.
  • FIG. 4 is a partially enlarged cross-sectional view of the compression mechanism of the scroll compressor according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing a plurality of states of the orbiting scroll.
  • Components other than the compression chamber oil supply path 56 are the same as those in the first embodiment. 4 and 5, the same reference numerals are used for the same components as those in FIGS. 2 and 3. Moreover, only the description regarding the compression chamber oil supply path
  • the compression chamber oil supply path 56 is formed in the end plate 13 a of the orbiting scroll 13. Further, the compression chamber oil supply path 56 communicates the back pressure chamber 29 and the first compression chamber 15 a formed on the outer surface side of the wrap 13 b of the orbiting scroll 13. However, the compression chamber oil supply passage 56 communicates with the first compression chamber 15a and supplies the oil 6 to the first compression chamber 15a when the orbiting scroll 13 is in the state shown in FIG. In the states shown in (a), 5 (c), and 5 (d), the oil 6 is not supplied to the first compression chamber 15a because it is blocked by the end plate 12a of the fixed scroll 12.
  • the compression chamber on the outer side has a larger volume than the compression chamber located on the center side. Therefore, the leakage length (in other words, the required seal length), which is the length of the location where the refrigerant leaks from the high-pressure side compression chamber with a small volume to the low-pressure side compression chamber with a large volume, is the wrap 13b of the orbiting scroll 13.
  • the first compression chamber 15a formed outside is longer than the second compression chamber 15b formed inside. Therefore, a larger amount of oil 6 than the amount of oil 6 supplied to the second compression chamber 15b is supplied to the first compression chamber 15a having a long leakage length via the compression chamber oil supply passage 56.
  • the first compression chamber 15a having a long leakage length is sufficiently sealed. Thereby, the temperature rise of the refrigerant
  • the pressure increase due to re-expansion heating of the refrigerant and internal leakage can be suppressed, and the amount of oil 6 supplied to the first compression chamber 15a having a long leak length is reduced to the second compression chamber 15b. Since the amount of oil 6 for improving the sealing performance can be optimized in accordance with the length of the leaking portion of the compression chamber, an excessive amount of refrigerating machine oil is supplied. The heating of the refrigerant by the extra refrigeration oil which occurs by this can also be suppressed.
  • FIG. 6 is a longitudinal sectional view of a rotary compressor according to Embodiment 3 of the present invention.
  • FIG. 7 is an enlarged cross-sectional view of a compression mechanism of the rotary compressor.
  • FIG. 8 is an assembly configuration diagram of the compression mechanism of the rotary compressor.
  • FIG. 9 is a figure which shows the several state of the compression mechanism of a rotary compressor.
  • the electric motor 102 and the compression mechanism 103 are housed in the hermetic container 101 in a state of being connected via a crankshaft 131.
  • the compression mechanism 103 includes a cylinder 130, a suction chamber 149 and a compression chamber 139 formed by the end plate 134 of the upper bearing 134a and the end plate 135 of the lower bearing 135a that block both end faces of the cylinder 130, And a vane 133 that contacts the outer peripheral surface of the piston 132 and divides the cylinder 130 into a suction chamber 149 and a compression chamber 139.
  • the piston 132 is fitted into the eccentric portion 131a of the crankshaft 131 supported by the side bearing 134a and the lower bearing 135a, and is eccentrically rotated by the crankshaft 131.
  • the vane 133 is configured to reciprocate toward the piston 132 in response to the eccentric rotation of the piston 132 in order to maintain contact with the outer peripheral surface of the piston 132 that rotates eccentrically.
  • the crankshaft 131 is formed with an oil hole 141 along the central axis that draws oil from the oil storage section 20.
  • Oil supply holes 142 and 143 communicating with the oil hole 141 are provided in the portion of the crankshaft 131 that faces the upper bearing 134a and the lower bearing 135a.
  • An oil supply hole 144 that communicates with the oil hole 141 and an oil groove 145 that communicates with the oil supply hole 14 are formed in the portion of the eccentric portion 131 a of the crankshaft 131 that faces the piston 132.
  • the cylinder 130 is formed with a suction port 140 for sucking gas refrigerant into the suction chamber 149.
  • the suction chamber 149 gradually expands, whereby the refrigerant flows from the suction port 140 to the suction chamber. 149 is inhaled.
  • a discharge port 138 for discharging the refrigerant from the compression chamber 139 is opened in the upper bearing 134a.
  • the discharge port 138 is formed as a hole having a circular cross section passing through the upper bearing 134a.
  • On the upper surface of the discharge port 138 there are provided a discharge valve 136 that opens when a pressure equal to or higher than a predetermined pressure is received, and a cup muffler 137 that covers the discharge valve 136.
  • the compression chamber 139 is gradually reduced.
  • the discharge valve 136 is opened.
  • the refrigerant flows out from the discharge port 138 and is discharged into the sealed container 101 by the cup muffler-137.
  • the eccentric portion 131a of the crankshaft 131, the end plate 134 of the upper bearing 134a, the space 146 surrounded by the inner peripheral surface of the piston 132, the eccentric portion 131a of the crankshaft 131, the end plate 135 of the lower bearing 135a, and A space 147 surrounded by the inner peripheral surface of the piston 132 is formed. Oil leaks into the spaces 146 and 147 from the oil holes 141 through the oil supply holes 142 and 143. The pressures in the spaces 146 and 147 are almost always higher than the pressure in the compression chamber 139 and are almost the same as the discharge pressure.
  • the height of the cylinder 130 is set to be slightly larger than the height of the piston 132 so that the piston 132 can slide inside the cylinder 130. Therefore, there is a gap between the end surface of the piston 132 and the end plate 134 of the upper bearing 134a and the end plate 135 of the lower bearing 135a. Oil in the spaces 146 and 147 leaks into the compression chamber 139 through this gap.
  • FIG. 9 shows the positional relationship between the piston 132 and the oil supply passage 155 when viewed from the central axis direction of the crankshaft 131.
  • the crankshaft 131 crankshaft in which the inlet 155a of the compression chamber oil supply passage 155 and the inside of the piston 132 communicate with each other and the outlet 155b of the compression chamber oil supply passage 155 and the compression chamber 139 communicate with each other.
  • the compression chamber 139 is refueled in the angular section.
  • the compression chamber oil supply passage 155 By providing the compression chamber oil supply passage 155 so that the angle positions of the inlet 155a and the outlet 155b with respect to the crankshaft center are different, it is possible to determine a crank angle section in which oil flows into the inlet 155a. Thereby, the freedom degree of the position of the exit 155b increases. As a result, the outlet 155b of the compression chamber oil supply path 155 can be provided in the vicinity of the location where the refrigerant leaks.
  • the influence on the global environment can be suppressed by using a refrigerant having a low ozone layer depletion coefficient and a global warming coefficient.
  • a refrigerant having a low ozone layer depletion coefficient and a global warming coefficient by supplying oil to the compression chamber 139 after confining the refrigerant, re-expansion heating of the refrigerant is suppressed, and the refrigerant is heated by the refrigerating machine oil in the suction process (before the refrigerant is confined in the compression chamber). Is suppressed as compared with the case of supplying refrigeration oil. As a result, the decomposition of the refrigerant is suppressed.
  • the rotary compressor according to the first to third embodiments has been described above.
  • a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used.
  • a mixed refrigerant a refrigerant obtained by mixing hydrofluoroolefin and hydrofluorocarbon having no carbon double bond may be used.
  • HFO1234yf or HFO1234ze tetrafluoropropene
  • HFO1243zf trifluoropropene
  • HFC32 difluoromethane
  • HFO1234yf or HFO1234ze tetrafluoropropene
  • HFO1243zf trifluoropropene
  • HFC125 pentafluoroethane
  • HFO1234yf or HFO1234ze tetrafluoropropene
  • HFO1243zf trifluoropropene
  • HFC125 pentafluoroethane
  • HFC32 difluoromethane
  • the above mixed refrigerant is preferably a mixture of two or three components mixed so that the global warming potential is 5 or more and 750 or less, preferably 5 or more and 350 or less.
  • the refrigerating machine oil used in the rotary compressor according to the present invention includes (1) polyoxyalkylene glycols, (2) polyvinyl ethers, (3) poly (oxy) alkylene glycols or monoethers thereof and polyvinyl ethers. (4) Synthetic oils containing oxygenated compounds of polyol esters and polycarbonates, (5) Synthetic oils based on alkylbenzenes, or (6) Synthetic oils based on ⁇ -olefins Is preferred.
  • the rotary compressor has high reliability, High durability and high efficiency can be realized. Therefore, this invention is applicable also to uses, such as an air conditioner, a heat pump type water heater, a refrigerator-freezer, a dehumidifier, provided with a rotary compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

As a result of using a refrigerant comprising at least a hydrofluoroolefin having carbon double bonds, a low ozone layer depletion factor and a low global warming potential, and providing a first compression chamber feed oil path which feeds refrigerating oil to a compression chamber (15) in which the refrigerant has been sealed, it is possible to limit the effect on the global environment and also to limit increases in the temperature of the refrigerant, which is the source of re-expansion and heating and also feeding of refrigerating oil at a high temperature, in other words it is possible to limit decomposition of the refrigerant.

Description

回転式圧縮機Rotary compressor
 本発明は、塩素原子を含まず、地球温暖化係数が低い、炭素の二重結合を有するハイドロフルオロオレフィンを少なくとも含む冷媒を使用し、ルームエアコン、カーエアコン、冷蔵庫、その他の空気調和装置等の冷凍サイクル装置に組み込まれる回転式圧縮機に関する。 The present invention uses a refrigerant that does not contain chlorine atoms, has a low global warming potential, and contains at least a hydrofluoroolefin having a carbon double bond, such as a room air conditioner, a car air conditioner, a refrigerator, and other air conditioners. The present invention relates to a rotary compressor incorporated in a refrigeration cycle apparatus.
 冷凍サイクル装置に使用される冷媒は、オゾン層破壊係数ゼロのHFC(ハイドロフルオロカーボン)系(以下、「HFC系冷媒」と称する)に移行している。しかしながら、このHFC系冷媒は、地球温暖化係数が非常に高い。そこで、オゾン層破壊係数および地球温暖化係数が低い冷媒を用いる圧縮機の開発が行われている。ところが、地球温暖化係数が低い冷媒は、一般的に安定性が低い。そのため、ルームエアコン、カーエアコン、冷蔵庫、その他の空気調和装置等の冷凍サイクル装置で長期的に使用される場合、冷媒の安定性および信頼性の確保が必要である。 The refrigerant used in the refrigeration cycle apparatus has shifted to an HFC (hydrofluorocarbon) system (hereinafter referred to as “HFC-based refrigerant”) having a zero ozone depletion coefficient. However, this HFC-based refrigerant has a very high global warming potential. Therefore, development of a compressor using a refrigerant having a low ozone depletion coefficient and a global warming coefficient has been performed. However, a refrigerant with a low global warming potential is generally low in stability. For this reason, when used in a refrigeration cycle apparatus such as a room air conditioner, car air conditioner, refrigerator, or other air conditioner for a long period of time, it is necessary to ensure the stability and reliability of the refrigerant.
 塩素原子を含まず、地球温暖化係数が低い、且つ炭素の二重結合を有するハイドロフルオロオレフィンを主体とした冷媒を使用する場合、次のような問題がある。このような冷媒は、高温で分解しやすい特性を有するため、過圧縮または再膨張によって高温になると、それにより分解する。そのため、このような冷媒は、安定性が低い。特に、ルームエアコン、カーエアコン、冷蔵庫、その他の空気調和装置等で長期的に使用される場合、高温による冷媒の分解が長期に亘って起るため、冷媒の温度上昇に対する対策が必要となる。 When using refrigerants mainly composed of hydrofluoroolefins that do not contain chlorine atoms, have a low global warming potential, and have carbon double bonds, there are the following problems. Since such a refrigerant has a characteristic of being easily decomposed at a high temperature, when it becomes a high temperature due to overcompression or re-expansion, it decomposes accordingly. Therefore, such a refrigerant has low stability. In particular, when used for a long time in room air conditioners, car air conditioners, refrigerators, other air conditioners, etc., decomposition of the refrigerant due to high temperatures takes place over a long period of time, so a measure against an increase in the temperature of the refrigerant is required.
 冷凍サイクルにおいて、蒸発器で蒸発した冷媒は圧縮機に吸入され、圧縮機によって規定の圧力まで圧縮される。その際、冷媒は、低圧から高圧に且つ低温から高温に大きく状態変化する。そのため、冷媒の安定性と信頼性とを確保できるように圧縮機を構成する必要がある。 In the refrigeration cycle, the refrigerant evaporated in the evaporator is sucked into the compressor and compressed to a specified pressure by the compressor. At that time, the state of the refrigerant largely changes from low pressure to high pressure and from low temperature to high temperature. Therefore, it is necessary to configure the compressor so as to ensure the stability and reliability of the refrigerant.
 例えば特許文献1には、地球温暖化係数が低い冷媒を使用する圧縮機であって、圧縮機内部に吸入した冷媒を可能な限り低温から圧縮開始するために、冷媒を直接吸入ポートに供給するためのダイレクト吸入路を有する圧縮機が開示されている。このような構成により、冷媒をクランク室等の貯留空間に一時的に貯留した後に圧縮室に供給する場合に比べて、圧縮開始前の冷媒の温度上昇が抑制される。圧縮機によって規定の圧力まで圧縮された後の冷媒の温度は、吸入ポートに冷媒を直接供給しない場合に比べて、圧縮開始前に温度上昇が抑制されたことによって低い。その結果、冷媒の分解が抑制され、冷媒の分解物(例えばスラッジ)を原因とする圧縮機の故障または寿命低下が抑制される。すなわち、圧縮機の信頼性および耐久性が向上する。 For example, Patent Document 1 discloses a compressor that uses a refrigerant having a low global warming potential, and supplies the refrigerant directly to the suction port in order to start compression of the refrigerant sucked into the compressor from as low a temperature as possible. A compressor having a direct suction path for the same is disclosed. With such a configuration, an increase in the temperature of the refrigerant before starting compression is suppressed as compared with a case where the refrigerant is temporarily stored in a storage space such as a crank chamber and then supplied to the compression chamber. The temperature of the refrigerant after being compressed to a specified pressure by the compressor is lower than the case where the refrigerant is not directly supplied to the suction port because the temperature rise is suppressed before the compression is started. As a result, the decomposition of the refrigerant is suppressed, and the failure of the compressor or the decrease in the service life due to the decomposition product (for example, sludge) of the refrigerant is suppressed. That is, the reliability and durability of the compressor are improved.
特開2009-228473号公報JP 2009-228473 A
 しかしながら、圧縮開始前の冷媒の温度上昇を抑制しても、圧縮機によって規定の圧力まで圧縮された後の冷媒の温度が必要以上に高温になり、その結果として冷媒が分解することがある。その原因の一つとして、「再膨張加熱」がある。「再膨張加熱」は、圧縮途中の高圧の冷媒が、低圧の空間に漏れ、低圧の空間内で再膨張して高温となり、その結果として低圧空間内に存在する低圧の冷媒を加熱することを言う。このような再膨張加熱により、規定の圧力まで圧縮された後の冷媒の温度が必要以上に高温になる。また、再膨張加熱が起こると、高温・高圧の冷媒を得るために費やした圧縮動力(エネルギ)の一部が低温・低圧の冷媒の加熱に使用されることになるため、圧縮機の効率が低下する。 However, even if the temperature rise of the refrigerant before the start of compression is suppressed, the temperature of the refrigerant after being compressed to a specified pressure by the compressor becomes higher than necessary, and as a result, the refrigerant may be decomposed. One of the causes is “re-expansion heating”. “Re-expansion heating” means that high-pressure refrigerant in the middle of compression leaks into a low-pressure space and re-expands in the low-pressure space to a high temperature, and as a result, heats the low-pressure refrigerant existing in the low-pressure space. To tell. By such re-expansion heating, the temperature of the refrigerant after being compressed to a specified pressure becomes higher than necessary. In addition, when re-expansion heating occurs, a part of the compression power (energy) spent to obtain the high-temperature / high-pressure refrigerant is used for heating the low-temperature / low-pressure refrigerant. descend.
 このような圧縮途中の冷媒の漏れを原因とする再膨張加熱を抑制する方法として、圧縮開始前(吸入工程)の冷媒に冷凍機油(オイル)を供給することにより、冷媒を閉じ込めた後の圧縮室のシール性を向上させることが考えられる。しかし、冷媒に比べて高温のオイルによって圧縮開始前(吸入工程)の冷媒が加熱されるという問題がある。 As a method of suppressing such re-expansion heating caused by refrigerant leakage during compression, compression after confining the refrigerant by supplying refrigerating machine oil (oil) to the refrigerant before the start of compression (suction process) It is conceivable to improve the sealing performance of the chamber. However, there is a problem that the refrigerant before the start of compression (suction process) is heated by oil having a temperature higher than that of the refrigerant.
 そこで、本発明は、前記課題を解決するために、地球温暖化係数の低い冷媒を使用する回転式圧縮機であって、冷凍機油を使用して圧縮室のシール性を向上させることによって再膨張加熱を抑制することができるとともに、その冷凍機油による冷媒の加熱を抑制することができる、信頼性、耐久性に優れた高効率な回転式圧縮機を提供することを目的とする。 Therefore, in order to solve the above-mentioned problem, the present invention is a rotary compressor that uses a refrigerant having a low global warming potential, and uses refrigerating machine oil to improve the sealing performance of the compression chamber to re-expand. An object of the present invention is to provide a highly efficient rotary compressor excellent in reliability and durability, capable of suppressing heating and suppressing the heating of the refrigerant by the refrigerating machine oil.
 上記目的を達成するために、本発明は以下のように構成する。 In order to achieve the above object, the present invention is configured as follows.
 前記従来の課題を解決するために、本発明の一態様によれば、炭素の二重結合を有するハイドロフルオロオレフィンの単一冷媒または前記ハイドロフルオロオレフィンを含む混合冷媒が使用され、前記冷媒を圧縮する圧縮室と、前記冷媒を閉じ込めた後の前記圧縮室に冷凍機油を供給する第1の圧縮室給油経路とを有する、回転式圧縮機が提供される。 In order to solve the conventional problem, according to one aspect of the present invention, a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used, and the refrigerant is compressed. There is provided a rotary compressor having a compression chamber and a first compression chamber oil supply passage for supplying refrigeration oil to the compression chamber after the refrigerant is confined.
 冷媒を閉じ込めた後の圧縮室に冷凍機油を供給することにより、圧縮室のシール性が向上して圧縮途中の冷媒の漏れを原因とする再膨張加熱が抑制されるとともに、冷凍機油による冷媒の加熱が、吸入工程で冷凍機油を供給する場合に比べて抑制される。その結果、規定の圧力まで圧縮された後の冷媒の温度が、吸入工程で冷凍機油を供給する場合に比べて低下し、それにより冷媒の分解が抑制される。 By supplying refrigeration oil to the compression chamber after confining the refrigerant, the sealing performance of the compression chamber is improved, and re-expansion heating caused by leakage of the refrigerant in the middle of compression is suppressed. Heating is suppressed as compared with the case of supplying refrigeration oil in the suction process. As a result, the temperature of the refrigerant after being compressed to a specified pressure is reduced as compared with the case where the refrigerating machine oil is supplied in the suction process, thereby suppressing the decomposition of the refrigerant.
 冷媒を閉じ込めた後の圧縮室に冷凍機油を供給する方が、吸入工程で冷凍機油を供給する場合に比べて、規定の圧力まで圧縮された後の冷媒の温度が低い理由は、以下の通りである。 The reason why the temperature of the refrigerant after being compressed to the specified pressure is lower when the refrigerating machine oil is supplied to the compression chamber after confining the refrigerant than when the refrigerating machine oil is supplied in the suction process is as follows. It is.
 圧縮室に吸入されている途中(吸入行程中)の冷媒は、その温度が最も低い。そのような冷媒に対して高温の冷凍機油を供給すると、冷媒と冷凍機油との温度差が大きいために、冷媒が強く加熱される(その結果、冷媒の分解が大きく進む)。それに対して、圧縮途中の冷媒は、圧縮にともなって冷媒自体の温度が上昇しているため、供給される冷凍機油との温度差が小さい。さらに吐出圧近くまで圧縮された冷媒の場合、冷媒の温度は、供給される冷凍機油の温度に比べて高くなっている。したがって、冷媒を閉じ込めた後(圧縮工程)の圧縮室に冷凍機油を供給する方が、冷凍機油による冷媒の加熱を抑制することができる。このように、吸入行程での冷凍機油の供給を避けて圧縮工程で冷凍機油を供給することにより、冷媒の加熱を抑制しつつ、冷媒を閉じ込めた後の圧縮室のシール性を冷凍機油によって向上させることができる。なお、冷凍機油は、冷媒との温度差が可能な限り小さいタイミングで供給することが望ましい。 The refrigerant that is being sucked into the compression chamber (during the intake stroke) has the lowest temperature. When high-temperature refrigeration oil is supplied to such a refrigerant, the refrigerant is strongly heated because the temperature difference between the refrigerant and the refrigeration oil is large (as a result, the decomposition of the refrigerant greatly proceeds). On the other hand, the refrigerant in the middle of compression has a small temperature difference from the supplied refrigerating machine oil because the temperature of the refrigerant itself increases with compression. Further, in the case of the refrigerant compressed to near the discharge pressure, the temperature of the refrigerant is higher than the temperature of the supplied refrigeration oil. Therefore, heating the refrigerant by the refrigerating machine oil can be suppressed by supplying the refrigerating machine oil to the compression chamber after confining the refrigerant (compression process). Thus, by supplying the refrigerating machine oil in the compression process while avoiding the refrigerating machine oil supply in the intake stroke, the refrigerating machine oil improves the sealing performance of the compression chamber after confining the refrigerant while suppressing the heating of the refrigerant. Can be made. It is desirable that the refrigerating machine oil is supplied at a timing where the temperature difference from the refrigerant is as small as possible.
 本発明によれば、回転式圧縮機において、オゾン層破壊係数ならびに地球温暖化係数が低い冷媒を使用しつつ、冷媒の分解の原因である冷媒の温度上昇を抑制することができる。その結果、地球環境に配慮しつつ、信頼性、耐久性に優れた高効率な回転式圧縮機を提供することができる。 According to the present invention, in the rotary compressor, it is possible to suppress an increase in the temperature of the refrigerant that causes the decomposition of the refrigerant while using the refrigerant having a low ozone layer depletion coefficient and a global warming coefficient. As a result, it is possible to provide a highly efficient rotary compressor that is excellent in reliability and durability while taking the global environment into consideration.
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施の形態に関連した次の記述から明らかになる。この図面においては、
本発明の実施の形態1に係るスクロール圧縮機の断面図 実施の形態1のスクロール圧縮機の圧縮機構の部分拡大断面図 実施の形態1のスクロール圧縮機の旋回スクロールの複数の状態を示す図 本発明の実施の形態2に係るスクロール圧縮機の圧縮機構の部分拡大断面図 実施の形態2に係るスクロール圧縮機の旋回スクロールの複数の状態を示す図 本発明の実施の形態3に係るロータリ圧縮機の断面図 実施の形態3のロータリ圧縮機の圧縮機構の拡大断面図 実施の形態3のロータリ圧縮機の圧縮機構の組立構成図 実施の形態3のロータリ圧縮機の圧縮機構の複数の状態を示す図
These aspects and features of the present invention will become apparent from the following description taken in conjunction with the preferred embodiments with reference to the accompanying drawings. In this drawing,
Sectional drawing of the scroll compressor which concerns on Embodiment 1 of this invention Partial expanded sectional view of the compression mechanism of the scroll compressor of Embodiment 1 The figure which shows the several state of the turning scroll of the scroll compressor of Embodiment 1 Partial expanded sectional view of the compression mechanism of the scroll compressor which concerns on Embodiment 2 of this invention. The figure which shows the several state of the turning scroll of the scroll compressor which concerns on Embodiment 2. FIG. Sectional drawing of the rotary compressor which concerns on Embodiment 3 of this invention. Enlarged sectional view of the compression mechanism of the rotary compressor of the third embodiment Assembly configuration diagram of compression mechanism of rotary compressor of embodiment 3 The figure which shows the several state of the compression mechanism of the rotary compressor of Embodiment 3.
 本発明に係る回転式圧縮機は、炭素の二重結合を有するハイドロフルオロオレフィンの単一冷媒または前記ハイドロフルオロオレフィンを含む混合冷媒を使用し、前記冷媒を圧縮する圧縮室と、前記冷媒を閉じ込めた後の前記圧縮室に冷凍機油を供給する第1の圧縮室給油経路とを有する。オゾン層破壊係数ならびに地球温暖化係数が低い冷媒を使用することにより、地球環境への影響を抑制することができる。また、この炭素の二重結合を有するハイドロフルオロオレフィンの単一冷媒(または混合冷媒)が高温時に分解し易いという問題を解消するために、冷媒を閉じ込めた後の圧縮室に冷凍機油が供給される。これにより、圧縮室のシール性が向上することによって圧縮途中の冷媒の漏れを原因とする再膨張加熱が抑制されるとともに、冷凍機油の供給を原因とする冷媒の温度上昇が、吸入工程(冷媒が圧縮室に閉じ込められる前に)で冷凍機油を供給する場合に比べて抑制される。その結果、規定の圧力まで圧縮された後の冷媒の温度が、吸入工程で冷凍機油が供給される場合に比べて低下し、冷媒の分解が抑制される。そして、地球環境に配慮しつつ、信頼性、耐久性に優れた高効率な回転式圧縮機を提供することができる。 A rotary compressor according to the present invention uses a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin, a compression chamber for compressing the refrigerant, and confining the refrigerant And a first compression chamber oil supply passage for supplying refrigeration oil to the compression chamber after the first compression chamber. By using a refrigerant with a low ozone layer depletion coefficient and a global warming coefficient, the influence on the global environment can be suppressed. In addition, in order to solve the problem that the single refrigerant (or mixed refrigerant) of hydrofluoroolefin having a carbon double bond is easily decomposed at a high temperature, refrigerating machine oil is supplied to the compression chamber after the refrigerant is confined. The As a result, the re-expansion heating caused by the leakage of the refrigerant in the middle of compression is suppressed by improving the sealing performance of the compression chamber, and the temperature rise of the refrigerant caused by the supply of the refrigerating machine oil is caused by the suction process (refrigerant Before the refrigerating machine oil is supplied). As a result, the temperature of the refrigerant after being compressed to the specified pressure is lower than that in the case where the refrigerating machine oil is supplied in the suction process, and the decomposition of the refrigerant is suppressed. In addition, it is possible to provide a highly efficient rotary compressor that is excellent in reliability and durability while considering the global environment.
 第1の圧縮室給油経路を間欠的に閉塞するように、圧縮機は構成されてもよい。圧縮室のシール性の向上と、冷凍機油の供給を原因とする冷媒の温度上昇の抑制とを効果的に実現できる最適なタイミング且つ最適な量で冷凍機油を圧縮室に供給することができる。これにより、冷凍機油の供給による冷媒の温度上昇と冷媒の漏れによる再膨張加熱とをさらに確実に抑制することができる。 The compressor may be configured to intermittently block the first compression chamber oil supply path. Refrigerating machine oil can be supplied to the compression chamber at an optimal timing and with an optimal amount capable of effectively realizing improvement in the sealing performance of the compression chamber and suppression of the temperature rise of the refrigerant caused by supply of the refrigerator oil. Thereby, the temperature rise of the refrigerant | coolant by supply of refrigerating machine oil and the re-expansion heating by the leak of a refrigerant | coolant can be suppressed more reliably.
 前記圧縮室が、鏡板と前記鏡板に形成された渦巻き状の壁であるラップとをそれぞれ備える固定スクロール及び旋回スクロールを噛み合わせることにより、前記固定スクロールと前記旋回スクロールとの間に形成される場合、冷凍機油を貯める貯油部から前記圧縮室に冷凍機油を供給する少なくとも1つの第2の圧縮室給油経路を設け、その前記第2の圧縮室給油経路の少なくとも1つが前記第1の圧縮室給油経路であってもよい。 When the compression chamber is formed between the fixed scroll and the orbiting scroll by meshing the fixed scroll and the orbiting scroll each having an end plate and a wrap which is a spiral wall formed on the end plate And providing at least one second compression chamber oil supply passage for supplying the refrigerator oil to the compression chamber from an oil storage section for storing the refrigerator oil, wherein at least one of the second compression chamber oil supply passages is the first compression chamber oil supply. It may be a route.
 一般に、複数の圧縮室を備え、複数の圧縮室内の冷媒を同時に圧縮する回転式圧縮機において、ある程度高圧にまで圧縮された圧縮途中の冷媒が低圧側の圧縮室に漏れる場合、冷媒は、冷媒を吸入している最中の圧縮室ではなく、一工程後の圧縮途中の圧縮室に漏れやすい(いわゆる、内部漏れが発生する)。その場合、漏れた冷媒の再膨張は、漏れた先の圧縮室内の冷媒の加熱のみならず、漏れた先の圧縮室内の圧力の上昇も引き起こす。このような内部漏れにより、冷媒の温度が上昇する。この対策として、圧縮室に冷凍機油を供給する少なくとも1つの第2の圧縮室給油経路を設けることにより、最適な量の冷凍機油を使用して、冷媒の温度上昇に特に寄与する内部漏れが発生する圧縮室のシール性を向上させることが可能になる。また、最適な量の冷凍機油を使用することにより、過剰量の冷凍機油が供給されることによって起こる、余計な冷凍機油による冷媒の加熱も抑制することができる。 In general, in a rotary compressor that includes a plurality of compression chambers and compresses refrigerants in a plurality of compression chambers at the same time, when refrigerant in the middle of compression that has been compressed to a certain high pressure leaks into the compression chamber on the low-pressure side, the refrigerant is refrigerant. It is easy to leak into the compression chamber in the middle of the compression after one step rather than the compression chamber in the middle of sucking (so-called internal leakage occurs). In that case, the re-expansion of the leaked refrigerant not only heats the refrigerant in the leaked compression chamber, but also increases the pressure in the leaked compression chamber. Due to such internal leakage, the temperature of the refrigerant rises. As a countermeasure against this, by providing at least one second compression chamber oil supply path for supplying the refrigeration oil to the compression chamber, an internal leak that particularly contributes to an increase in the temperature of the refrigerant occurs using an optimal amount of the refrigeration oil. It becomes possible to improve the sealing performance of the compression chamber. Further, by using an optimal amount of refrigerating machine oil, it is possible to suppress heating of the refrigerant by an extra refrigerating machine oil that occurs when an excessive amount of refrigerating machine oil is supplied.
 前記圧縮室として、前記旋回スクロールのラップの外側に形成される第1の圧縮室と、前記旋回スクロールのラップの内側に形成される第2の圧縮室とを有する場合、第1の圧縮室と第2の圧縮室のうち、漏れ長さが長い方の圧縮室への冷凍機油の供給量を他方の圧縮室への供給量に比べて多くしてもよい。圧縮室の漏れ箇所の長さに対応してシール性を向上させるための冷凍機油の供給量を最適化することができるため、過剰量の冷凍機油が供給されることによって起こる、余計な冷凍機油による冷媒の加熱も抑制することができる。 When the compression chamber includes a first compression chamber formed outside the orbiting scroll wrap and a second compression chamber formed inside the orbiting scroll wrap, the first compression chamber Of the second compression chamber, the supply amount of the refrigerating machine oil to the compression chamber having the longer leak length may be made larger than the supply amount to the other compression chamber. The amount of refrigeration oil supplied to improve the sealing performance corresponding to the length of the leak point in the compression chamber can be optimized, so extra refrigeration oil that occurs when an excessive amount of refrigeration oil is supplied. Heating of the refrigerant due to can also be suppressed.
 前記圧縮室として、前記旋回スクロールのラップの外側に形成される第1の圧縮室と、前記旋回スクロールのラップの内側に形成される第2の圧縮室とを有する場合、前記第1の圧縮室と前記第2の圧縮室のうち、容積変化率の高い方の圧縮室への冷凍機油の供給量を他方の圧縮室への給油量に比べて多くしてもよい。最適な量の冷凍機油により、低圧側の圧縮室との圧力差が大きいために冷媒の漏れが発生し易い圧縮室のシール性を向上させることができる。過剰量の冷凍機油が供給されることによって起こる、余計な冷凍機油による冷媒の加熱も抑制することができる。 When the compression chamber has a first compression chamber formed outside the wrap of the orbiting scroll and a second compression chamber formed inside the wrap of the orbiting scroll, the first compression chamber Of the second compression chambers, the amount of the refrigerating machine oil supplied to the compression chamber having the higher volume change rate may be increased compared to the amount of oil supplied to the other compression chamber. The optimum amount of refrigerating machine oil can improve the sealing performance of the compression chamber where refrigerant leakage is likely to occur because the pressure difference from the compression chamber on the low pressure side is large. The heating of the refrigerant by the extra refrigeration oil that occurs when an excessive amount of refrigeration oil is supplied can also be suppressed.
 前記第1の圧縮室給油経路を、前記旋回スクロールの背面に設けられ前記貯油部から冷凍機油が導入される導入路部と、前記旋回スクロールのラップ内部に設けられ前記導入路部と連通するとともにラップ頂面に開口を備えるラップ内給油路部と、前記固定スクロールの鏡板に設けられ前記ラップ内給油路部の開口と間欠的に連通する凹部とから構成してもよい。これにより、冷媒を閉じ込めた後の圧縮室に対して、特定の期間に冷凍機油を供給することが可能になるとともに、冷凍機油の供給量の調整が行い易くなる。また、圧縮された冷媒が第1の圧縮室給油経路に逆流することも防止でき、信頼性の高いスクロール圧縮機を実現することができる。 The first compression chamber oil supply path is provided on the back surface of the orbiting scroll and is introduced into the wrap of the orbiting scroll and communicated with the introduction path portion provided in the wrap of the orbiting scroll. You may comprise from the lap | oil top oil supply path part provided with an opening in a lap | lap top surface, and the recessed part provided in the end plate of the said fixed scroll, and communicating with the opening of the said lap oil supply path part intermittently. Thereby, it becomes possible to supply the refrigerating machine oil to the compression chamber after confining the refrigerant in a specific period, and to easily adjust the supply amount of the refrigerating machine oil. Further, it is possible to prevent the compressed refrigerant from flowing back into the first compression chamber oil supply path, and it is possible to realize a highly reliable scroll compressor.
 冷媒は、ハイドロフルオロオレフィンの一種であるテトラフルオロプロペンまたはトリフルオロプロペンの少なくとも1つを含み地球温暖化係数が5以上750以下となるように、望ましくは5以上350以下のものであってもよい。このような冷媒によれば、環境負荷が小さく、高信頼性で高効率な回転式圧縮機を効果的に提供することができる。 The refrigerant includes at least one of tetrafluoropropene or trifluoropropene, which is a kind of hydrofluoroolefin, and may have a global warming potential of 5 or more and 750 or less, preferably 5 or more and 350 or less. . According to such a refrigerant, it is possible to effectively provide a rotary compressor having a low environmental load and high reliability and high efficiency.
 冷媒は、ハイドロフルオロオレフィンの一種であるテトラフルオロプロペンまたはトリフルオロプロペンを主成分とし、ジフルオロメタンおよびペンタフルオロエタンが、地球温暖化係数が5以上750以下となるように、望ましくは5以上350以下となるように混合されたものであってもよい。このような冷媒によれば、環境負荷が小さく、また流速を抑制して温度を下げることができるので、高信頼性で高効率な回転式圧縮機を効果的に提供することができる。 The refrigerant is mainly composed of tetrafluoropropene or trifluoropropene, which is a kind of hydrofluoroolefin, and difluoromethane and pentafluoroethane preferably have a global warming potential of 5 or more and 750 or less, preferably 5 or more and 350 or less. What was mixed so that it may become may be sufficient. According to such a refrigerant, the environmental load is small, and the temperature can be lowered by suppressing the flow rate, so that a highly reliable and highly efficient rotary compressor can be effectively provided.
 冷凍機油として、(1)ポリオキシアルキレングリコール類、(2)ポリビニルエーテル類、(3)ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、(4)ポリオールエステル類およびポリカーボネート類の含酸素化合物を含む合成油、(5)アルキルベンゼン類を主成分とする合成油、または(6)αオレフィン類を主成分とする合成油が使用されてもよい。このような冷凍機油により、高信頼性で高効率な回転式圧縮機を効果的に提供することができる。 As refrigerating machine oils, (1) polyoxyalkylene glycols, (2) polyvinyl ethers, (3) poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, (4) polyol esters and polycarbonates A synthetic oil containing the oxygen-containing compound of (5), a synthetic oil mainly composed of alkylbenzenes, or (6) a synthetic oil mainly composed of α-olefins may be used. Such a refrigerating machine oil can effectively provide a highly reliable and highly efficient rotary compressor.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 以下に挙げる3つの本発明の実施の形態に係る圧縮機では、炭素の二重結合を有するハイドロフルオロオレフィンの単一冷媒または前記ハイドロフルオロオレフィンを含む混合冷媒が使用される。 In the compressors according to the three embodiments of the present invention described below, a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used.
(実施の形態1)
 図1は、本発明の実施の形態1に係るスクロール圧縮機の縦断面図、図2は図1に示す圧縮機構の部分拡大断面図、図3は圧縮機構の旋回スクロールの複数の状態を示す図である。以下、スクロール圧縮機について、その動作、作用を説明する。
(Embodiment 1)
1 is a longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention, FIG. 2 is a partially enlarged sectional view of the compression mechanism shown in FIG. 1, and FIG. 3 shows a plurality of states of the orbiting scroll of the compression mechanism. FIG. Hereinafter, operation | movement and an effect | action are demonstrated about a scroll compressor.
 図1に示すように本実施の形態1のスクロール圧縮機は、密閉容器1を有する。スクロール圧縮機はまた、密閉容器1の内部に、圧縮機構2、モータ部3、および貯油部20を有する。圧縮機構2は、溶接または焼き嵌めなどによって密閉容器1に固定された主軸受部材11と、この主軸受部材11に支持されたシャフト4と、ボルトなどによって主軸受部材11上に固定された固定スクロール12と、主軸受部材11と固定スクロール12との間に配置され、固定スクロール12と噛み合う旋回スクロール13とから構成されている。 As shown in FIG. 1, the scroll compressor according to the first embodiment has a sealed container 1. The scroll compressor also has a compression mechanism 2, a motor unit 3, and an oil storage unit 20 inside the sealed container 1. The compression mechanism 2 includes a main bearing member 11 fixed to the sealed container 1 by welding or shrink fitting, a shaft 4 supported by the main bearing member 11, and a fixing fixed on the main bearing member 11 by bolts or the like. The scroll 12 is configured between a main scroll member 11 and a fixed scroll 12, and a revolving scroll 13 that meshes with the fixed scroll 12.
 固定スクロール12は、鏡板12aと、鏡板12aに形成された渦巻き状の壁であるラップ12bとを備え、旋回スクロール13は鏡板13aと、鏡板13aに形成された渦巻き状の壁であるラップ13bとを備える。旋回スクロール13と主軸受部材11との間には、旋回スクロール13の自転を防止するとともに、シャフト4に駆動されている旋回スクロール13が円軌道で運動するように案内するオルダムリングなどを含む自転拘束機構14が設けられている。シャフト4の上端に位置する偏心軸部4aが旋回スクロール13を偏心回転させることにより、旋回スクロール13の円軌道の旋回運動が実現される。 The fixed scroll 12 includes an end plate 12a and a wrap 12b that is a spiral wall formed on the end plate 12a. The orbiting scroll 13 includes an end plate 13a and a wrap 13b that is a spiral wall formed on the end plate 13a. Is provided. Between the orbiting scroll 13 and the main bearing member 11, there is provided an Oldham ring or the like that prevents the orbiting scroll 13 from rotating and guides the orbiting scroll 13 driven by the shaft 4 to move in a circular orbit. A restraining mechanism 14 is provided. The eccentric shaft portion 4 a located at the upper end of the shaft 4 rotates the orbiting scroll 13 eccentrically, whereby the orbiting motion of the orbiting scroll 13 is realized.
 このような構成より、固定スクロール12と旋回スクロール13との間に形成されている圧縮室15が、外周側から中央に向かって容積を縮小しながら移動する。密閉容器1の外部に連通した吸入パイプ16及び固定スクロール12の外周部の吸入口17を介して、冷媒(ガス)が圧縮室15内に吸入される(吸入工程)。旋回スクロール13の旋回運動によって圧縮室15を閉じた後(冷媒を圧縮室15に閉じ込めた後)、冷媒の圧縮が行われる(圧縮工程)。圧縮によって規定の圧力に到達した冷媒は、固定スクロール12の中央部の吐出孔18に設けられたリード弁19を押し開き、吐出孔18を介して圧縮室15から密閉容器1内に移動する。 With such a configuration, the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves while reducing the volume from the outer peripheral side toward the center. Refrigerant (gas) is sucked into the compression chamber 15 through the suction pipe 16 communicating with the outside of the hermetic container 1 and the suction port 17 in the outer peripheral portion of the fixed scroll 12 (suction process). After the compression chamber 15 is closed by the revolving motion of the orbiting scroll 13 (after the refrigerant is confined in the compression chamber 15), the refrigerant is compressed (compression step). The refrigerant that has reached a specified pressure by compression pushes open the reed valve 19 provided in the discharge hole 18 in the center of the fixed scroll 12 and moves from the compression chamber 15 into the sealed container 1 through the discharge hole 18.
 また、シャフト4の他端にはポンプ25が設けられている。ポンプ25は、吸い込み口が密閉容器1の底部に設けられた貯油部20内に存在するように配置されている。ポンプ25は圧縮機構2と同期して駆動されるため、ポンプ25は、貯油部20に貯えられた冷凍機油(オイル)6を、圧力条件または運転速度に関係なく、確実に吸い上げることができ、そして圧縮機構2に安定して供給することができる。このポンプ25が吸い上げたオイル6は、シャフト4内を貫通しているオイル供給穴26を通過して圧縮機構2に供給される。なお、ポンプ25で吸い上げられる前または吸い上げられた後にオイル6内の異物をオイルフィルタ等で除去することにより、圧縮機構2への異物混入が防止でき、その結果、圧縮機の信頼性の更なる向上を図ることができる。 Also, a pump 25 is provided at the other end of the shaft 4. The pump 25 is arranged so that the suction port exists in the oil storage part 20 provided at the bottom of the sealed container 1. Since the pump 25 is driven in synchronization with the compression mechanism 2, the pump 25 can reliably suck up the refrigeration oil (oil) 6 stored in the oil storage unit 20 regardless of the pressure condition or the operation speed. And it can supply to the compression mechanism 2 stably. The oil 6 sucked up by the pump 25 is supplied to the compression mechanism 2 through an oil supply hole 26 penetrating the shaft 4. Note that foreign matter in the oil 6 is removed by an oil filter or the like before or after being sucked up by the pump 25, so that foreign matter can be prevented from entering the compression mechanism 2. As a result, the reliability of the compressor is further improved. Improvements can be made.
 圧縮機構2に導入されたオイル6の圧力は、スクロール圧縮機の吐出圧力とほぼ同一であるため、旋回スクロール13に対する背圧源となる。すなわち、オイル6は、旋回スクロール13の背面(主軸受部材11と対向する面)を押圧し、旋回スクロール13を固定スクロール12に押し付ける役割を果たす。これにより、旋回スクロール13は、固定スクロール12から離れることなく、また固定スクロール12に部分的に接触することなく、固定スクロール12に接触した状態で維持される。その結果、圧縮機構2は、所定の圧縮能力を安定して発揮することができる。さらにオイル6の一部は、供給圧または自重によって偏心軸部4aと旋回スクロール13との嵌合部、およびシャフト4と主軸受部材11との間に設けられた軸受部66に進入し、そして潤滑する。潤滑した後のオイル6は、図2に矢印で示すように、落下して貯油部20へ戻る。 Since the pressure of the oil 6 introduced into the compression mechanism 2 is substantially the same as the discharge pressure of the scroll compressor, it becomes a back pressure source for the orbiting scroll 13. That is, the oil 6 functions to press the back surface of the orbiting scroll 13 (the surface facing the main bearing member 11) and press the orbiting scroll 13 against the fixed scroll 12. Thereby, the orbiting scroll 13 is maintained in a state in which it is in contact with the fixed scroll 12 without leaving the fixed scroll 12 and without being in partial contact with the fixed scroll 12. As a result, the compression mechanism 2 can stably exhibit a predetermined compression capacity. Further, a part of the oil 6 enters a fitting portion between the eccentric shaft portion 4a and the orbiting scroll 13 and a bearing portion 66 provided between the shaft 4 and the main bearing member 11 by supply pressure or its own weight, and Lubricate. The oil 6 after being lubricated falls and returns to the oil storage section 20 as indicated by arrows in FIG.
 また、旋回スクロール13の背面と主軸受部材11との間にシール部材78を配置することにより、シール部材78の内側に高圧領域30を画定するとともに、シール部材78の外側に背圧室29を画定している。高圧領域30の圧力と背圧室29の圧力とを完全に分離できるため、旋回スクロール13の背面への圧力を安定的に制御することが可能となる。 Further, by disposing the seal member 78 between the back surface of the orbiting scroll 13 and the main bearing member 11, the high pressure region 30 is defined inside the seal member 78, and the back pressure chamber 29 is disposed outside the seal member 78. Defined. Since the pressure in the high pressure region 30 and the pressure in the back pressure chamber 29 can be completely separated, the pressure on the back surface of the orbiting scroll 13 can be stably controlled.
 固定スクロール12のラップ12b間の鏡板12aの部分12cには、凹部12dが形成されている。また、旋回スクロール13には、ラップ内給油路55が形成されている。ラップ内給油路55は、一方の開口55aを介して、背圧室29に連通されている。そして、背圧室29は、旋回スクロール13の背面側に設けられた導入路54と、シャフト4内に設けられたオイル供給穴26とを介して、貯油部20に連通されている。一方、ラップ内給油路55の他方の開口55bは、固定スクロール12の鏡板12aと摺接するラップ13aの頂面に形成されている。このラップ内給油路55の開口55bは、図3に破線で示すように、旋回スクロール13の旋回運動により、円の旋回軌跡を描くように固定スクロール12に対して相対的に移動する。 A recess 12d is formed in a portion 12c of the end plate 12a between the wraps 12b of the fixed scroll 12. In addition, the orbiting scroll 13 is formed with an in-lap oil supply passage 55. The in-lap oil supply passage 55 communicates with the back pressure chamber 29 through one opening 55a. The back pressure chamber 29 communicates with the oil storage section 20 via an introduction path 54 provided on the back side of the orbiting scroll 13 and an oil supply hole 26 provided in the shaft 4. On the other hand, the other opening 55 b of the in-wrap oil supply passage 55 is formed on the top surface of the wrap 13 a that is in sliding contact with the end plate 12 a of the fixed scroll 12. As shown by a broken line in FIG. 3, the opening 55 b of the in-lap oil supply passage 55 moves relative to the fixed scroll 12 so as to draw a circular turning locus by a turning motion of the turning scroll 13.
 図3は、固定スクロール12に噛み合わせられた旋回スクロール13の複数の状態を示しており、具体的には位相が90度ずつ異なる旋回スクロール13の状態を示している。図3に示すように、固定スクロール12と旋回スクロール13とにより形成される圧縮室15として、旋回スクロール13のラップ13aの外側に形成される第1の圧縮室15aと、ラップ13aの内側に形成される第2の圧縮室15bとがある。第1の圧縮室15a、第2の圧縮室15bはそれぞれ、旋回スクロール13の旋回運動により、容積を縮小しながら中央に向かって移動する。圧縮室15内の冷媒が吐出圧力に到達し、且つ圧縮室15と吐出孔18とが連通した時、圧縮室15内の冷媒はリード弁19を押し開いて吐出室31内に移動する。 FIG. 3 shows a plurality of states of the orbiting scroll 13 meshed with the fixed scroll 12, and specifically shows the states of the orbiting scroll 13 whose phases are different by 90 degrees. As shown in FIG. 3, as the compression chamber 15 formed by the fixed scroll 12 and the orbiting scroll 13, a first compression chamber 15a formed outside the wrap 13a of the orbiting scroll 13 and formed inside the wrap 13a. And a second compression chamber 15b. Each of the first compression chamber 15a and the second compression chamber 15b moves toward the center while reducing the volume by the orbiting motion of the orbiting scroll 13. When the refrigerant in the compression chamber 15 reaches the discharge pressure and the compression chamber 15 and the discharge hole 18 communicate with each other, the refrigerant in the compression chamber 15 moves into the discharge chamber 31 by opening the reed valve 19.
 図3に示すように、ラップ内給油路55の開口55bと、固定スクロール12の鏡板12aの部分12cに形成された凹部12dとが間欠的に連通する。これにより、ラップ内給油路55と第2の圧縮室15bとが、凹部12dを介して間欠的に連通される。 As shown in FIG. 3, the opening 55 b of the in-lap oil supply passage 55 and the recess 12 d formed in the portion 12 c of the end plate 12 a of the fixed scroll 12 communicate intermittently. Thereby, the in-lap oil supply passage 55 and the second compression chamber 15b are intermittently communicated with each other through the recess 12d.
 以下、第2の圧縮室15bに注目して説明する。図3(a)に示すように、旋回スクロール13の最も外側に形成された第2の圧縮室15bと吸入口17とが連通し、冷媒の第2の圧縮室15bへの導入が開始される(吸入工程の開始)。そして、図3(c)に示すように、旋回スクロール13の旋回運動によって第2の圧縮室15bが閉じ、冷媒が第2の圧縮室15b内に閉じ込められる(圧縮工程の開始)。その後、図3(d)に示すように、旋回スクロール13の旋回運動によってラップ内給油路55の開口55bが凹部12dを介して第2の圧縮室15bに連通し、そして、ラップ内給油路55を介して背圧室29から冷媒を閉じ込めた後の第2の圧縮室15bにオイル6が供給される。これに対して、図3(a)~(c)に示すように、開口55bと凹部12dとが連通していない場合、背圧室29から第2の圧縮室15bにオイルがほとんど供給されない。このように、ラップ内給油路55の開口55bと第2の圧縮室15bとを固定スクロール12の凹部12dを介して間欠的に連通させることにより、ラップ内給油路55を介して第2の圧縮室15bに、オイル6が間欠的に供給される。なお、第2の圧縮室15bにオイル6を供給する理由については後述する。 Hereinafter, description will be made with attention paid to the second compression chamber 15b. As shown in FIG. 3A, the second compression chamber 15b formed on the outermost side of the orbiting scroll 13 and the suction port 17 communicate with each other, and introduction of the refrigerant into the second compression chamber 15b is started. (Start of inhalation process). And as shown in FIG.3 (c), the 2nd compression chamber 15b is closed by the turning motion of the turning scroll 13, and a refrigerant | coolant is confined in the 2nd compression chamber 15b (start of a compression process). Thereafter, as shown in FIG. 3 (d), the opening 55b of the in-lap oil supply passage 55 communicates with the second compression chamber 15b through the recess 12d by the orbiting motion of the orbiting scroll 13, and the in-lap oil supply passage 55 The oil 6 is supplied to the second compression chamber 15b after confining the refrigerant from the back pressure chamber 29 via On the other hand, as shown in FIGS. 3A to 3C, when the opening 55b and the recess 12d are not in communication, almost no oil is supplied from the back pressure chamber 29 to the second compression chamber 15b. In this way, the second compression chamber 15b is connected to the second compression chamber 15b through the in-lap oil supply passage 55 by intermittently communicating the opening 55b of the in-lap oil supply passage 55 and the second compression chamber 15b through the recess 12d of the fixed scroll 12. Oil 6 is intermittently supplied to the chamber 15b. The reason for supplying the oil 6 to the second compression chamber 15b will be described later.
 以上のように、本実施の形態1によれば、オゾン層破壊係数ならびに地球温暖化係数が低い、ハイドロフルオロオレフィンの単一冷媒または前記ハイドロフルオロオレフィンを含む混合冷媒を使用することにより、地球環境への影響を抑制することができる。また、冷媒を閉じ込めた後(圧縮工程)の第2の圧縮室15bにオイル6を供給することにより、規定の圧力まで圧縮された後の冷媒の温度が、吸入工程(すなわち吸入口17と連通した状態)でオイル6を供給する場合に比べて低下する。 As described above, according to Embodiment 1, by using a single hydrofluoroolefin refrigerant or a mixed refrigerant containing the hydrofluoroolefin having a low ozone depletion coefficient and a low global warming coefficient, The influence on can be suppressed. Further, by supplying the oil 6 to the second compression chamber 15b after the refrigerant is confined (compression process), the temperature of the refrigerant after being compressed to a predetermined pressure is communicated with the suction process (that is, the suction port 17). Compared to the case of supplying the oil 6 in the state).
 圧縮工程の第2の圧縮室15bにオイル6を供給する方が、吸入工程の第2の圧縮室15bにオイル6を供給する場合に比べて、規定の圧力まで圧縮された後の冷媒の温度が低い理由は、以下の通りである。 Compared with the case where the oil 6 is supplied to the second compression chamber 15b in the suction process, the temperature of the refrigerant after being compressed to the specified pressure is higher when the oil 6 is supplied to the second compression chamber 15b in the suction process. The reason why is low is as follows.
 第2の圧縮室15bに吸入されている途中(吸入行程中)の冷媒は、その温度が最も低い。そのような冷媒に対して高温のオイル6を供給すると、冷媒とオイル6との温度差が大きいために、冷媒が強く加熱される(その結果、冷媒の分解が大きく進む)。それに対して、圧縮途中の冷媒は、圧縮にともなって冷媒自体の温度が上昇しているため、供給されるオイル6との温度差が小さい。さらに吐出圧近くまで圧縮された冷媒の場合、冷媒の温度は、供給されるオイル6の温度に比べて高くなっている。したがって、冷媒を閉じ込めた後(圧縮工程)の第2の圧縮室15bにオイル6を供給する方が、オイル6による冷媒の加熱を抑制することができる。このように、吸入行程でのオイル6の供給を避けて圧縮工程でオイル6を供給することにより、冷媒の加熱を抑制しつつ、冷媒を閉じ込めた後の第2の圧縮室15bのシール性をオイル6によって向上させることができる。なお、オイル6は、冷媒との温度差が可能な限り小さいタイミングで供給することが望ましい。 The temperature of the refrigerant that is being sucked into the second compression chamber 15b (during the suction stroke) has the lowest temperature. When the high-temperature oil 6 is supplied to such a refrigerant, the refrigerant is strongly heated because the temperature difference between the refrigerant and the oil 6 is large (as a result, the refrigerant is greatly decomposed). On the other hand, the refrigerant in the middle of compression has a small temperature difference from the supplied oil 6 because the temperature of the refrigerant itself increases with compression. Furthermore, in the case of the refrigerant compressed to near the discharge pressure, the temperature of the refrigerant is higher than the temperature of the supplied oil 6. Therefore, heating the refrigerant by the oil 6 can be suppressed by supplying the oil 6 to the second compression chamber 15b after the refrigerant is confined (compression process). Thus, by supplying the oil 6 in the compression process while avoiding the supply of the oil 6 in the suction stroke, the sealing performance of the second compression chamber 15b after confining the refrigerant is suppressed while suppressing the heating of the refrigerant. It can be improved by the oil 6. The oil 6 is desirably supplied at a timing at which the temperature difference from the refrigerant is as small as possible.
 さらに、オイル6によって第2の圧縮室15b(固定スクロール12の鏡板12aと旋回スクロール13のラップ13bとの間およびラップ12bと鏡板13aとの間)のシール性が向上されるため、再膨張加熱、すなわち第2の圧縮室15bからの冷媒の漏れを抑制することができる。 Further, the oil 6 improves the sealing performance of the second compression chamber 15b (between the end plate 12a of the fixed scroll 12 and the wrap 13b of the orbiting scroll 13 and between the wrap 12b and the end plate 13a). That is, the leakage of the refrigerant from the second compression chamber 15b can be suppressed.
 その結果、冷媒の温度上昇が抑制され、冷媒の分解が抑制される。そして、地球環境に配慮しつつ、信頼性、耐久性に優れた高効率な回転式圧縮機を提供することができる。 As a result, the temperature rise of the refrigerant is suppressed and the decomposition of the refrigerant is suppressed. In addition, it is possible to provide a highly efficient rotary compressor that is excellent in reliability and durability while considering the global environment.
 さらに、旋回スクロール13の背面のオイル6を、旋回スクロール13が特定の位相のときに(すなわちシャフト4が特定の回転角度のときに)、ラップ内給油路55と凹部12dとを介して第2の圧縮室15bに供給することができる。すなわち、第2の圧縮室15bのシール性の向上と、オイル6の供給による冷媒の温度上昇の抑制とを効果的に実現できる最適なタイミング且つ最適な量でオイル6を第2の圧縮室15bに供給することができる。これにより、オイル6の供給を原因とする冷媒の温度上昇と冷媒の漏れを原因とする再膨張加熱とをさらに確実に抑制することができる。 Further, when the orbiting scroll 13 is in a specific phase (that is, when the shaft 4 is at a specific rotation angle), the oil 6 on the rear surface of the orbiting scroll 13 is secondly passed through the oil supply passage 55 in the lap and the recess 12d. Can be supplied to the compression chamber 15b. That is, the oil 6 is supplied to the second compression chamber 15b at an optimal timing and in an optimal amount capable of effectively realizing the improvement in the sealing performance of the second compression chamber 15b and the suppression of the temperature rise of the refrigerant due to the supply of the oil 6. Can be supplied to. Thereby, the temperature rise of the refrigerant caused by the supply of the oil 6 and the re-expansion heating caused by the leakage of the refrigerant can be more reliably suppressed.
 ここからは、ラップ内給油路55を介して第2の圧縮室15bにオイル6を供給する理由について説明する。まず、固定スクロール12と旋回スクロール13とが備えるラップの形状について説明する。本実施の形態において、固定スクロールおよび旋回スクロールのラップの渦巻き形状は、インボリュート曲線によって定義されている。インボリュート曲線は、伸開角をθ、基礎円半径をaとすると、デカルト座標系で以下の関数で表される。 From here, the reason why the oil 6 is supplied to the second compression chamber 15b via the in-lap oil supply passage 55 will be described. First, the shape of the wrap provided in the fixed scroll 12 and the turning scroll 13 will be described. In the present embodiment, the spiral shape of the fixed scroll and the orbiting scroll wrap is defined by an involute curve. The involute curve is expressed by the following function in the Cartesian coordinate system, where θ is the expansion angle and a is the base circle radius.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数1で表される曲線を基準曲線とする。旋回半径εで旋回したときの基準曲線が描く二つの包絡線のうち、外側の包絡線は以下の関数で表される。 The curve represented by Equation 1 is used as the reference curve. Of the two envelopes drawn by the reference curve when turning at the turning radius ε, the outer envelope is expressed by the following function.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同様に、内側包絡線は以下の関数で表される。 Similarly, the inner envelope is expressed by the following function.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 固定スクロール12または旋回スクロール13のいずれか一方のラップの外面を上述の基準曲線の関数で定義し、それに組み合わされる他方のラップの内面の上述の外側包絡線の関数で定義することにより、固定スクロールのラップと旋回スクロールのラップとを噛み合わせることによって同時に形成される、旋回スクロール13のラップ13bの内面側の複数の最小ラジアル隙間または旋回スクロール13のラップ13bの外面側の複数の最小ラジアル隙間が等しくなる。本実施の形態においては、巻き数が異なるように固定スクロール12のラップ12bと旋回スクロール13のラップ13bを形成することによって非対称の圧縮室15を実現することにより、圧縮室15の容積の拡大を図っている。 By defining the outer surface of one of the fixed scroll 12 and the orbiting scroll 13 as a function of the above-mentioned reference curve and defining it as a function of the above-mentioned outer envelope of the inner surface of the other lap combined therewith, the fixed scroll The plurality of minimum radial gaps on the inner surface side of the wrap 13b of the orbiting scroll 13 or the plurality of minimum radial gaps on the outer surface side of the wrap 13b of the orbiting scroll 13 formed simultaneously by meshing the laps of the lap and the orbiting scroll lap. Will be equal. In the present embodiment, the volume of the compression chamber 15 is increased by forming the asymmetric compression chamber 15 by forming the wrap 12b of the fixed scroll 12 and the wrap 13b of the orbiting scroll 13 so that the number of turns is different. I am trying.
 非対称の圧縮室が形成されているために、旋回スクロール13のラップ13b内面側に形成される第2の圧縮室15bの容積変化率は、ラップ13bの外面側に形成される第1の圧縮室15aの容積変化率に比べて大きい。容積変化率が大きい第2の圧縮室15bにおいては、冷媒の圧力が第1の圧縮室15aに比べて急激に上昇するため、低圧側の圧縮室15との圧力差が大きくなる。そのため、第2の圧縮室15bからラップと鏡板との間を介する低圧側の圧縮室15への冷媒の漏れが発生し易く、シール性を向上させる必要がある。 Since the asymmetric compression chamber is formed, the volume change rate of the second compression chamber 15b formed on the inner surface side of the wrap 13b of the orbiting scroll 13 is the first compression chamber formed on the outer surface side of the wrap 13b. Larger than the volume change rate of 15a. In the second compression chamber 15b having a large volume change rate, the pressure of the refrigerant rapidly increases as compared with the first compression chamber 15a, so that the pressure difference with the compression chamber 15 on the low pressure side becomes large. Therefore, the refrigerant is liable to leak from the second compression chamber 15b to the low-pressure side compression chamber 15 between the wrap and the end plate, and it is necessary to improve the sealing performance.
 そこで、本実施の形態1では、容積変化率の大きい第2の圧縮室15bに対し、より多くのオイル6が供給されるようにラップ内給油路55と凹部12dとを適当に設けている。これにより、第2の圧縮室15bから低圧側の圧縮室15への冷媒の漏れが抑制され、低圧側の圧縮室15内の冷媒に対する再膨張加熱が抑制されるともに、内部漏れを原因とする圧力上昇を抑制することができる。その結果、高温で分解しやすい、本実施の形態1のスクロール圧縮機に使用される冷媒の温度上昇が抑制される。 Therefore, in the first embodiment, the in-lap oil supply passage 55 and the recess 12d are appropriately provided so that more oil 6 is supplied to the second compression chamber 15b having a large volume change rate. As a result, leakage of the refrigerant from the second compression chamber 15b to the low-pressure side compression chamber 15 is suppressed, re-expansion heating to the refrigerant in the low-pressure side compression chamber 15 is suppressed, and internal leakage is caused. An increase in pressure can be suppressed. As a result, the temperature rise of the refrigerant used in the scroll compressor according to the first embodiment, which is easily decomposed at a high temperature, is suppressed.
 なお、第1の圧縮室15aにオイル6を供給するための別の圧縮室給油経路(第1の圧縮室給油経路を除いた第2の圧縮室給油経路)を設け、第2の圧縮室15bに間欠的に供給されるオイル6の量に比べて少ない量のオイル6を、別の圧縮室給油経路を介して第1の圧縮室15aに供給するようにしてもよい。このような別の圧縮室給油経路として、例えば、図2に示す圧縮室給油経路57が設けられる。圧縮室給油経路57は、旋回スクロール13に形成されている。また、圧縮室給油経路57の一方の開口が、ラップ13bの頂面に形成されている。他方の開口は、旋回スクロール13の背面に設けられた導入路54、シャフト4に設けられたオイル供給穴26などを介して貯油部20に連通している。これより、固定スクロール12の鏡板12aと旋回スクロール13のラップ13bの頂面との隙間から若干量のオイル6を供給することができる。 In addition, another compression chamber oil supply path (second compression chamber oil supply path excluding the first compression chamber oil supply path) for supplying the oil 6 to the first compression chamber 15a is provided, and the second compression chamber 15b is provided. A small amount of oil 6 compared to the amount of oil 6 supplied intermittently may be supplied to the first compression chamber 15a via another compression chamber oil supply path. As such another compression chamber oil supply path, for example, a compression chamber oil supply path 57 shown in FIG. 2 is provided. The compression chamber oil supply path 57 is formed in the orbiting scroll 13. Further, one opening of the compression chamber oil supply passage 57 is formed on the top surface of the wrap 13b. The other opening communicates with the oil storage section 20 through an introduction path 54 provided on the back surface of the orbiting scroll 13, an oil supply hole 26 provided in the shaft 4, and the like. Thus, a small amount of oil 6 can be supplied from the gap between the end plate 12 a of the fixed scroll 12 and the top surface of the wrap 13 b of the orbiting scroll 13.
 この場合も、冷媒に対する再膨張加熱が抑制されるともに内部漏れを原因とする圧力上昇を抑制することができる。また、容積変化率の高い第2の圧縮室15bへのオイル6の供給量が第1の圧縮室15aへの供給量に比べて多いため、低圧側の圧縮室15との圧力差が大きいために冷媒の漏れが発生し易い圧縮室のシール性を、最適な量のオイルで向上させることができる。これにより、過剰量の冷凍機油が供給されることによって起こる、余計な冷凍機油による冷媒の加熱も抑制することができる。 Also in this case, re-expansion heating with respect to the refrigerant is suppressed and an increase in pressure due to internal leakage can be suppressed. Further, since the supply amount of the oil 6 to the second compression chamber 15b having a high volume change rate is larger than the supply amount to the first compression chamber 15a, the pressure difference with the compression chamber 15 on the low pressure side is large. In addition, it is possible to improve the sealing performance of the compression chamber, in which refrigerant leakage is likely to occur, with an optimal amount of oil. Thereby, the heating of the refrigerant | coolant by the extra refrigerating machine oil which arises by supplying an excessive amount of refrigerating machine oil can also be suppressed.
 また、第2の圧縮室15bに供給するオイル6の量に関して、冷媒を閉じ込めた後(第2の圧縮室15bが閉じた後)に供給されるオイルの量に比べて少ない量のオイルが、冷媒が閉じ込める前(第2の圧縮室15bの閉じ始める前)または冷媒を閉じ込める最中(第2の圧縮室15bが閉じ始めてから完全に閉じるまでの間)に供給されてもよい。すなわち、必要なオイル6の量の大部分が冷媒を閉じ込めた後に供給されていれば、冷媒の温度上昇、すなわち冷媒の分解を抑制することができる。 Further, with respect to the amount of oil 6 supplied to the second compression chamber 15b, a small amount of oil compared to the amount of oil supplied after confining the refrigerant (after the second compression chamber 15b is closed), It may be supplied before the refrigerant is confined (before the second compression chamber 15b starts to close) or during the confinement of the refrigerant (from the time when the second compression chamber 15b starts to close until it completely closes). That is, if most of the necessary amount of oil 6 is supplied after confining the refrigerant, the temperature rise of the refrigerant, that is, the decomposition of the refrigerant can be suppressed.
(実施の形態2)
 図4は本発明の実施の形態2に係るスクロール圧縮機の圧縮機構の部分拡大断面図である。図5は旋回スクロールの複数の状態を示す図である。圧縮室給油経路56以外の構成要素は前記実施の形態1のものと同一である。図4、図5において、図2、図3と同じ構成要素については同じ符号を用いている。また、圧縮室給油経路56に関する説明のみを行い、他の構成要素の説明は省略する。
(Embodiment 2)
FIG. 4 is a partially enlarged cross-sectional view of the compression mechanism of the scroll compressor according to Embodiment 2 of the present invention. FIG. 5 is a diagram showing a plurality of states of the orbiting scroll. Components other than the compression chamber oil supply path 56 are the same as those in the first embodiment. 4 and 5, the same reference numerals are used for the same components as those in FIGS. 2 and 3. Moreover, only the description regarding the compression chamber oil supply path | route 56 is performed, and description of another component is abbreviate | omitted.
 図4に示すように、本実施の形態2のスクロール圧縮機において、圧縮室給油経路56は、旋回スクロール13の鏡板13aに形成されている。また、圧縮室給油経路56は、背圧室29と旋回スクロール13のラップ13bの外面側に形成される第1の圧縮室15aとを連通している。ただし、圧縮室給油経路56は、旋回スクロール13が図5(b)に示す状態のときは第1の圧縮室15aと連通して第1の圧縮室15aにオイル6を供給するが、図5(a)、5(c)、5(d)に示す状態のときは、固定スクロール12の鏡板12aによって閉塞され、第1の圧縮室15aへのオイル6の供給を行わない。外周から中央に向かって移動するにしたがって圧縮室の容積が縮小するスクロール圧縮機は、中央側に位置する圧縮室に比べて外側にある圧縮室の方が容積は大きい。そのため、容積が小さい高圧側の圧縮室から容積が大きい低圧側の圧縮室へと冷媒が漏れる箇所の長さである漏れ長さ(言い換えると必要なシール長さ)は、旋回スクロール13のラップ13bの外側に形成される第1の圧縮室15aの方が内側に形成される第2の圧縮室15bに比べて長い。したがって、漏れ長さが長い第1の圧縮室15aに対して、第2の圧縮室15bに供給するオイル6の量に比べて多い量のオイル6を圧縮室給油経路56を介して供給することにより、漏れ長さが長い第1の圧縮室15aが十分にシールされる。これにより、高温で分解しやすい冷媒の温度上昇が抑制される。 As shown in FIG. 4, in the scroll compressor of the second embodiment, the compression chamber oil supply path 56 is formed in the end plate 13 a of the orbiting scroll 13. Further, the compression chamber oil supply path 56 communicates the back pressure chamber 29 and the first compression chamber 15 a formed on the outer surface side of the wrap 13 b of the orbiting scroll 13. However, the compression chamber oil supply passage 56 communicates with the first compression chamber 15a and supplies the oil 6 to the first compression chamber 15a when the orbiting scroll 13 is in the state shown in FIG. In the states shown in (a), 5 (c), and 5 (d), the oil 6 is not supplied to the first compression chamber 15a because it is blocked by the end plate 12a of the fixed scroll 12. As for the scroll compressor in which the volume of the compression chamber is reduced as it moves from the outer periphery toward the center, the compression chamber on the outer side has a larger volume than the compression chamber located on the center side. Therefore, the leakage length (in other words, the required seal length), which is the length of the location where the refrigerant leaks from the high-pressure side compression chamber with a small volume to the low-pressure side compression chamber with a large volume, is the wrap 13b of the orbiting scroll 13. The first compression chamber 15a formed outside is longer than the second compression chamber 15b formed inside. Therefore, a larger amount of oil 6 than the amount of oil 6 supplied to the second compression chamber 15b is supplied to the first compression chamber 15a having a long leakage length via the compression chamber oil supply passage 56. Thus, the first compression chamber 15a having a long leakage length is sufficiently sealed. Thereby, the temperature rise of the refrigerant | coolant which is easy to decompose | disassemble at high temperature is suppressed.
 本実施の形態2によれば、冷媒の再膨張加熱および内部漏れによる圧力上昇を抑制できるとともに、漏れ長さが長い第1の圧縮室15aへのオイル6の供給量を第2の圧縮室15bへの供給量に比べて多くすることにより、圧縮室の漏れ箇所の長さに対応してシール性を向上させるためのオイル6の給油量を最適化できるため、過剰量の冷凍機油が供給されることによって起こる、余計な冷凍機油による冷媒の加熱も抑制することができる。 According to the second embodiment, the pressure increase due to re-expansion heating of the refrigerant and internal leakage can be suppressed, and the amount of oil 6 supplied to the first compression chamber 15a having a long leak length is reduced to the second compression chamber 15b. Since the amount of oil 6 for improving the sealing performance can be optimized in accordance with the length of the leaking portion of the compression chamber, an excessive amount of refrigerating machine oil is supplied. The heating of the refrigerant by the extra refrigeration oil which occurs by this can also be suppressed.
(実施の形態3)
 図6は本発明の実施の形態3に係るロータリ圧縮機の縦断面図である。図7はロータリ圧縮機の圧縮機構の拡大断面図である。図8は、ロータリ圧縮機の圧縮機構の組立構成図である。そして、図9は、ロータリ圧縮機の圧縮機構の複数の状態を示す図である。図6および図7に示すように、ロータリ圧縮機において、電動機102と圧縮機構103とが、クランクシャフト131を介して連結した状態で密閉容器101内に収納されている。圧縮機構103は、シリンダ130と、このシリンダ130の両端面を閉塞する上側軸受134aの端板134と下側軸受135aの端板135とによって形成された吸入室149および圧縮室139と、シリンダ内130に内に配置されたピストン132と、ピストン132の外周面と接触してシリンダ130を吸入室149と圧縮室139とに区画するベーン133とを有する。ピストン132は、側軸受134aおよび下側軸受135aによって支持されたクランクシャフト131の偏心部131aに嵌合し、クランクシャフト131によって偏心回転する。ベーン133は、偏心回転するピストン132の外周面との接触を維持するために、ピストン132の偏心回転に対応して、ピストン132に向かって往復運動するように構成されている。
(Embodiment 3)
FIG. 6 is a longitudinal sectional view of a rotary compressor according to Embodiment 3 of the present invention. FIG. 7 is an enlarged cross-sectional view of a compression mechanism of the rotary compressor. FIG. 8 is an assembly configuration diagram of the compression mechanism of the rotary compressor. And FIG. 9 is a figure which shows the several state of the compression mechanism of a rotary compressor. As shown in FIGS. 6 and 7, in the rotary compressor, the electric motor 102 and the compression mechanism 103 are housed in the hermetic container 101 in a state of being connected via a crankshaft 131. The compression mechanism 103 includes a cylinder 130, a suction chamber 149 and a compression chamber 139 formed by the end plate 134 of the upper bearing 134a and the end plate 135 of the lower bearing 135a that block both end faces of the cylinder 130, And a vane 133 that contacts the outer peripheral surface of the piston 132 and divides the cylinder 130 into a suction chamber 149 and a compression chamber 139. The piston 132 is fitted into the eccentric portion 131a of the crankshaft 131 supported by the side bearing 134a and the lower bearing 135a, and is eccentrically rotated by the crankshaft 131. The vane 133 is configured to reciprocate toward the piston 132 in response to the eccentric rotation of the piston 132 in order to maintain contact with the outer peripheral surface of the piston 132 that rotates eccentrically.
 クランクシャフト131には、貯油部20からオイルを汲み取る、中心軸に沿って油穴141が形成されている。上側軸受134a、下側軸受135aに対向するクランクシャフト131の部分には、それぞれ油穴141に連通した給油穴142、143が設けられている。また、クランク軸131の偏心部131aのピストン132に対向する部分には、油穴141に連通した給油穴144と、給油穴14と連通した油溝145とが形成されている。 The crankshaft 131 is formed with an oil hole 141 along the central axis that draws oil from the oil storage section 20. Oil supply holes 142 and 143 communicating with the oil hole 141 are provided in the portion of the crankshaft 131 that faces the upper bearing 134a and the lower bearing 135a. An oil supply hole 144 that communicates with the oil hole 141 and an oil groove 145 that communicates with the oil supply hole 14 are formed in the portion of the eccentric portion 131 a of the crankshaft 131 that faces the piston 132.
 一方、シリンダ130には、吸入室149にガス状態の冷媒を吸入するための吸入ポート140が形成されている。シリンダ130の内周面と摺接するピストン132の摺接部が吸入ポート140を通過して吸入ポート140から離れると、吸入室149が徐々に拡大し、それにより、冷媒が吸入ポート140から吸入室149内に吸入される。上側軸受134aには、圧縮室139から冷媒を吐出するための吐出ポート138が開通されている。吐出ポート138は上側軸受134aを貫通する円形断面を備える孔として形成されている。吐出ポート138の上面には、所定の圧力以上の圧力を受けた場合に開く吐出弁136と、この吐出弁136を覆うカップマフラ-137とが設けられている。 On the other hand, the cylinder 130 is formed with a suction port 140 for sucking gas refrigerant into the suction chamber 149. When the sliding contact portion of the piston 132 that is in sliding contact with the inner peripheral surface of the cylinder 130 passes through the suction port 140 and is separated from the suction port 140, the suction chamber 149 gradually expands, whereby the refrigerant flows from the suction port 140 to the suction chamber. 149 is inhaled. A discharge port 138 for discharging the refrigerant from the compression chamber 139 is opened in the upper bearing 134a. The discharge port 138 is formed as a hole having a circular cross section passing through the upper bearing 134a. On the upper surface of the discharge port 138, there are provided a discharge valve 136 that opens when a pressure equal to or higher than a predetermined pressure is received, and a cup muffler 137 that covers the discharge valve 136.
 シリンダ130の内周面と摺接するピストン132の摺動部が吐出ポート138に近づくにしたがい、圧縮室139が徐々に縮小される。圧縮室139内の冷媒が所定の圧力以上に圧縮されると、吐出弁136が開く。吐出弁136が開くと、冷媒は、吐出ポート138から流出し、カップマフラ-137によって密閉容器101内に吐出される。 As the sliding portion of the piston 132 slidably contacting the inner peripheral surface of the cylinder 130 approaches the discharge port 138, the compression chamber 139 is gradually reduced. When the refrigerant in the compression chamber 139 is compressed to a predetermined pressure or higher, the discharge valve 136 is opened. When the discharge valve 136 is opened, the refrigerant flows out from the discharge port 138 and is discharged into the sealed container 101 by the cup muffler-137.
 一方、クランク軸131の偏心部131a、上側軸受134aの端板134、およびピストン132の内周面で囲まれる空間146と、クランク軸131の偏心部131a、下側軸受135aの端板135、およびピストン132の内周面で囲まれる空間147とが構成されている。その空間146、147には油穴141から給油穴142、143を介してオイルが漏れ込んでくる。この空間146、147の圧力は、ほぼ常に圧縮室139内の圧力に比べて高く、概ね吐出圧力と同じである。 On the other hand, the eccentric portion 131a of the crankshaft 131, the end plate 134 of the upper bearing 134a, the space 146 surrounded by the inner peripheral surface of the piston 132, the eccentric portion 131a of the crankshaft 131, the end plate 135 of the lower bearing 135a, and A space 147 surrounded by the inner peripheral surface of the piston 132 is formed. Oil leaks into the spaces 146 and 147 from the oil holes 141 through the oil supply holes 142 and 143. The pressures in the spaces 146 and 147 are almost always higher than the pressure in the compression chamber 139 and are almost the same as the discharge pressure.
 また、シリンダ130の高さは、ピストン132がシリンダ130の内部で摺動できるように、ピストン132の高さに比べてわずかに大きく設定されている。そのため、このピストン132の端面と上側軸受134aの端板134、下側軸受135aの端板135との間には隙間がある。この隙間を介して空間146,147内のオイルが圧縮室139内に漏れる。 Also, the height of the cylinder 130 is set to be slightly larger than the height of the piston 132 so that the piston 132 can slide inside the cylinder 130. Therefore, there is a gap between the end surface of the piston 132 and the end plate 134 of the upper bearing 134a and the end plate 135 of the lower bearing 135a. Oil in the spaces 146 and 147 leaks into the compression chamber 139 through this gap.
 以上のように構成されたロータリ圧縮機において、図8に示すように、下側時軸受135aの端板135に凹部状の圧縮室給油経路155が設けられている。図9は、クランクシャフト131の中心軸方向から見た、ピストン132と給油路155の位置関係を示している。図9の左下に示すように、圧縮室給油経路155の入口155aとピストン132の内側とが連通する同時に、圧縮室給油経路155の出口155bと圧縮室139とが連通する、クランクシャフト131のクランク角度の区間で圧縮室139に給油が行われる。入口155aと出口155bのクランク軸中心に対する角度位置が異なるように圧縮室給油経路155を設けることにより、入口155aにオイルが流入するようなクランク角度の区間を決定することができる。それにより、出口155bの位置の自由度が増加する。その結果、冷媒が漏れる箇所近傍に圧縮室給油経路155の出口155bを設けることが可能となる。 In the rotary compressor configured as described above, as shown in FIG. 8, the end plate 135 of the lower hour bearing 135a is provided with a concave compression chamber oil supply passage 155. FIG. 9 shows the positional relationship between the piston 132 and the oil supply passage 155 when viewed from the central axis direction of the crankshaft 131. As shown in the lower left of FIG. 9, the crankshaft 131 crankshaft in which the inlet 155a of the compression chamber oil supply passage 155 and the inside of the piston 132 communicate with each other and the outlet 155b of the compression chamber oil supply passage 155 and the compression chamber 139 communicate with each other. The compression chamber 139 is refueled in the angular section. By providing the compression chamber oil supply passage 155 so that the angle positions of the inlet 155a and the outlet 155b with respect to the crankshaft center are different, it is possible to determine a crank angle section in which oil flows into the inlet 155a. Thereby, the freedom degree of the position of the exit 155b increases. As a result, the outlet 155b of the compression chamber oil supply path 155 can be provided in the vicinity of the location where the refrigerant leaks.
 また、図9左下に示すように、圧縮室155の出口155bを圧縮室139内のピストン132とシリンダ130の接点近傍位置に設けることにより、必要最小量のオイルでピストン132とシリンダ130の間を介する冷媒の漏れを抑制することができる。これにより、高温で分解しやすい冷媒の温度上昇が抑制される。 Further, as shown in the lower left of FIG. 9, by providing an outlet 155b of the compression chamber 155 near the contact point between the piston 132 and the cylinder 130 in the compression chamber 139, a minimum amount of oil can be used between the piston 132 and the cylinder 130. It is possible to suppress leakage of the refrigerant. Thereby, the temperature rise of the refrigerant | coolant which is easy to decompose | disassemble at high temperature is suppressed.
 本実施の形態3によれば、オゾン層破壊係数ならびに地球温暖化係数が低い冷媒を使用することにより、地球環境への影響を抑制することができる。また冷媒を閉じ込めた後の圧縮室139にオイルを供給することにより、冷媒の再膨張加熱が抑制されるとともに、冷凍機油による冷媒の加熱が、吸入工程(冷媒が圧縮室に閉じ込められる前に)で冷凍機油を供給する場合に比べて抑制される。その結果、冷媒の分解が抑制される。 According to the third embodiment, the influence on the global environment can be suppressed by using a refrigerant having a low ozone layer depletion coefficient and a global warming coefficient. In addition, by supplying oil to the compression chamber 139 after confining the refrigerant, re-expansion heating of the refrigerant is suppressed, and the refrigerant is heated by the refrigerating machine oil in the suction process (before the refrigerant is confined in the compression chamber). Is suppressed as compared with the case of supplying refrigeration oil. As a result, the decomposition of the refrigerant is suppressed.
 以上、実施の形態1~3の回転式圧縮機を説明した。実施の形態1~3の回転式圧縮機では、炭素の二重結合を有するハイドロフルオロオレフィンの単一冷媒または前記ハイドロフルオロオレフィンを含む混合冷媒を使用している。この混合冷媒として、ハイドロフルオロオレフィンと、炭素の二重結合を有しないハイドロフルオロカーボンとを混合した冷媒を使用してもよい。 The rotary compressor according to the first to third embodiments has been described above. In the rotary compressors of Embodiments 1 to 3, a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used. As this mixed refrigerant, a refrigerant obtained by mixing hydrofluoroolefin and hydrofluorocarbon having no carbon double bond may be used.
 また、ハイドロフルオロオレフィンの一種であるテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)と、ハイドロフルオロカーボンの一種であるジフルオロメタン(HFC32)との混合冷媒を使用してもよい。 Further, a mixed refrigerant of tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf), which is a kind of hydrofluoroolefin, and difluoromethane (HFC32), which is a kind of hydrofluorocarbon, may be used.
 さらに、ハイドロフルオロオレフィンの一種であるテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)と、ハイドロフルオロカーボンの一種であるペンタフルオロエタン(HFC125)との混合冷媒を使用してもよい。 Furthermore, a mixed refrigerant of tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf), which is a kind of hydrofluoroolefin, and pentafluoroethane (HFC125), which is a kind of hydrofluorocarbon, may be used.
 さらにまた、ハイドロフルオロオレフィンの一種であるテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)と、ハイドロフルオロカーボンの一種であるペンタフルオロエタン(HFC125)およびジフルオロメタン(HFC32)とが混合された、3成分からなる混合冷媒を使用してもよい。 Furthermore, tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf), which is a kind of hydrofluoroolefin, and pentafluoroethane (HFC125) and difluoromethane (HFC32), which are kinds of hydrofluorocarbon, were mixed. A mixed refrigerant composed of three components may be used.
 そして、上記の混合冷媒は、地球温暖化係数が5以上750以下となるように、望ましくは5以上350以下となるように、混合それぞれ2成分混合もしくは3成分混合したものが好ましい。 The above mixed refrigerant is preferably a mixture of two or three components mixed so that the global warming potential is 5 or more and 750 or less, preferably 5 or more and 350 or less.
 また、本発明に係る回転式圧縮機に使用する冷凍機油としては、(1)ポリオキシアルキレングリコール類、(2)ポリビニルエーテル類、(3)ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、(4)ポリオールエステル類およびポリカーボネート類の含酸素化合物を含む合成油、(5)アルキルベンゼン類を主成分とする合成油、または(6)αオレフィン類を主成分とする合成油が好ましい。 The refrigerating machine oil used in the rotary compressor according to the present invention includes (1) polyoxyalkylene glycols, (2) polyvinyl ethers, (3) poly (oxy) alkylene glycols or monoethers thereof and polyvinyl ethers. (4) Synthetic oils containing oxygenated compounds of polyol esters and polycarbonates, (5) Synthetic oils based on alkylbenzenes, or (6) Synthetic oils based on α-olefins Is preferred.
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
 2010年9月27日に出願された日本特許出願第2010-214877号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。 The disclosures of the specification, drawings, and claims of Japanese Patent Application No. 2010-214877 filed on Sep. 27, 2010 are incorporated herein by reference in their entirety. .
 以上のように、本発明によれば、炭素の二重結合を有するハイドロフルオロオレフィンの単一冷媒または前記ハイドロフルオロオレフィンを含む混合冷媒を使用する場合でも、回転式圧縮機は、高い信頼性、高い耐久性、および高効率を実現することができる。そのため、本発明は、回転式圧縮機を備える、エアーコンディショナー、ヒートポンプ式給湯機、冷凍冷蔵庫、除湿機などの用途にも適用できる。 As described above, according to the present invention, even when a single refrigerant of hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used, the rotary compressor has high reliability, High durability and high efficiency can be realized. Therefore, this invention is applicable also to uses, such as an air conditioner, a heat pump type water heater, a refrigerator-freezer, a dehumidifier, provided with a rotary compressor.
 12 固定スクロール
 12a 鏡板
 12b ラップ
 12d 凹部
 13 旋回スクロール
 13a 鏡板
 13b ラップ
 14 自転拘束機構
 15 圧縮室
 15a 第1の圧縮室
 15b 第2の圧縮室
 17 吸入口
 18 吐出孔
 19 リード弁
 20 貯油部
 29 背圧室
 30 高圧領域
 55 ラップ内給油路
 56 圧縮室給油経路
 130 シリンダ
 131 クランク軸
 133 ベーン
 134a 上軸受
 135a 下軸受
 139 圧縮室
 141 油穴
 155 圧縮室給油経路
DESCRIPTION OF SYMBOLS 12 Fixed scroll 12a End plate 12b Wrap 12d Recess 13 Orbiting scroll 13a End plate 13b Wrap 14 Rotation restraint mechanism 15 Compression chamber 15a First compression chamber 15b Second compression chamber 17 Suction port 18 Discharge hole 19 Reed valve 20 Oil storage unit 29 Back pressure Chamber 30 High-pressure region 55 Oil supply path in lap 56 Compression chamber oil supply path 130 Cylinder 131 Crankshaft 133 Vane 134a Upper bearing 135a Lower bearing 139 Compression chamber 141 Oil hole 155 Compression chamber oil supply path

Claims (9)

  1.  炭素の二重結合を有するハイドロフルオロオレフィンの単一冷媒または前記ハイドロフルオロオレフィンを含む混合冷媒が使用され、
     前記冷媒を圧縮する圧縮室と、
     前記冷媒を閉じ込めた後の前記圧縮室に冷凍機油を供給する第1の圧縮室給油経路とを有する、回転式圧縮機。
    A single refrigerant of a hydrofluoroolefin having a carbon double bond or a mixed refrigerant containing the hydrofluoroolefin is used,
    A compression chamber for compressing the refrigerant;
    A rotary compressor having a first compression chamber oil supply path for supplying refrigeration oil to the compression chamber after confining the refrigerant.
  2.  前記第1の圧縮室給油経路を間欠的に閉塞するように構成されている、請求項1に記載の回転式圧縮機。 The rotary compressor according to claim 1, wherein the rotary compressor is configured to intermittently block the first compression chamber oil supply path.
  3.  前記圧縮室が、鏡板と前記鏡板に形成された渦巻き状の壁であるラップとをそれぞれ備える固定スクロール及び旋回スクロールを噛み合わせることにより、前記固定スクロールと前記旋回スクロールとの間に形成され、
     冷凍機油を貯める貯油部と、
     前記貯油部から前記圧縮室に冷凍機油を供給する少なくとも1つの第2の圧縮室給油経路を有し、
     前記第2の圧縮室給油経路の少なくとも1つが前記第1の圧縮室給油経路である、請求項1または2に記載の回転式圧縮機。
    The compression chamber is formed between the fixed scroll and the orbiting scroll by meshing the fixed scroll and the orbiting scroll each having a mirror plate and a wrap that is a spiral wall formed on the mirror plate,
    An oil storage section for storing refrigerating machine oil;
    Having at least one second compression chamber oil supply path for supplying refrigeration oil from the oil storage section to the compression chamber;
    The rotary compressor according to claim 1 or 2, wherein at least one of the second compression chamber oil supply paths is the first compression chamber oil supply path.
  4.  前記圧縮室として、前記旋回スクロールのラップの外側に形成される第1の圧縮室と、前記旋回スクロールのラップの内側に形成される第2の圧縮室とを有し、
     前記第1の圧縮室と前記第2の圧縮室のうち、漏れ長さが長い方の圧縮室への冷凍機油の供給量が他方の圧縮室への供給量に比べて多い、請求項3に記載の回転式圧縮機。
    As the compression chamber, it has a first compression chamber formed outside the wrap of the orbiting scroll, and a second compression chamber formed inside the wrap of the orbiting scroll,
    The supply amount of the refrigerating machine oil to the compression chamber having the longer leakage length of the first compression chamber and the second compression chamber is larger than the supply amount to the other compression chamber. The rotary compressor as described.
  5.  前記圧縮室として、前記旋回スクロールのラップの外側に形成される第1の圧縮室と、前記旋回スクロールのラップの内側に形成される第2の圧縮室とを有し、
     前記第1の圧縮室と前記第2の圧縮室のうち、容積変化率の高い方の圧縮室への冷凍機油の供給量が他方の圧縮室への供給量に比べて多い、請求項3または4に記載の回転式圧縮機。
    As the compression chamber, it has a first compression chamber formed outside the wrap of the orbiting scroll, and a second compression chamber formed inside the wrap of the orbiting scroll,
    The supply amount of the refrigerating machine oil to the compression chamber having the higher volume change rate among the first compression chamber and the second compression chamber is larger than the supply amount to the other compression chamber. 4. The rotary compressor according to 4.
  6.  前記第1の圧縮室給油経路は、前記旋回スクロールの背面に設けられ前記貯油部から冷凍機油が導入される導入路部と、前記旋回スクロールのラップ内部に設けられ前記導入路部と連通するとともにラップ頂面に開口を備えるラップ内給油路部と、前記固定スクロールの鏡板に設けられ前記ラップ内給油路部の開口と間欠的に連通する凹部とから構成されている、請求項3~5のいずれか1項に記載の回転式圧縮機。 The first compression chamber oil supply path is provided on the back surface of the orbiting scroll and is provided with an introduction path portion through which refrigerating machine oil is introduced from the oil storage section, and is provided inside the wrap of the orbiting scroll and communicates with the introduction path section. The oil supply passage portion in the lap having an opening on the top surface of the lap, and a concave portion provided in the end plate of the fixed scroll and intermittently communicating with the opening of the oil supply passage portion in the lap. The rotary compressor according to any one of the above.
  7.  前記冷媒が、ハイドロフルオロオレフィンの一種であるテトラフルオロプロペンまたはトリフルオロプロペンの少なくとも1つを含み、地球温暖化係数が5以上750以下、望ましくは5以上350以下である、請求項1~6のいずれか1項に記載の回転式圧縮機。 The refrigerant according to claim 1, wherein the refrigerant contains at least one of tetrafluoropropene or trifluoropropene which is a kind of hydrofluoroolefin, and has a global warming potential of 5 or more and 750 or less, preferably 5 or more and 350 or less. The rotary compressor according to any one of the above.
  8.  前記冷媒が、ハイドロフルオロオレフィンの一種であるテトラフルオロプロペンまたはトリフルオロプロペンを主成分とし、
     ジフルオロメタンおよびペンタフルオロエタンが、地球温暖化係数が5以上750以下となるように、望ましくは5以上350以下となるように前記冷媒に混合されている、請求項1~6のいずれか1項に記載の回転式圧縮機。
    The refrigerant is mainly composed of tetrafluoropropene or trifluoropropene, which is a kind of hydrofluoroolefin,
    The difluoromethane and pentafluoroethane are mixed with the refrigerant so that the global warming potential is 5 or more and 750 or less, preferably 5 or more and 350 or less. The rotary compressor described in 1.
  9.  前記冷凍機油が、(1)ポリオキシアルキレングリコール類、(2)ポリビニルエーテル類、(3)ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、(4)ポリオールエステル類およびポリカーボネート類の含酸素化合物を含む合成油、(5)アルキルベンゼン類を主成分とする合成油、または(6)αオレフィン類を主成分とする合成油である、請求項1~8のいずれか1項に記載の回転式圧縮機。 The refrigerating machine oil comprises (1) polyoxyalkylene glycols, (2) polyvinyl ethers, (3) poly (oxy) alkylene glycol or a copolymer of its monoether and polyvinyl ether, (4) polyol esters and polycarbonate. A synthetic oil containing an oxygen-containing compound, (5) a synthetic oil mainly composed of alkylbenzenes, or (6) a synthetic oil mainly composed of α-olefins. The rotary compressor described in 1.
PCT/JP2011/005395 2010-09-27 2011-09-26 Rotary compressor WO2012042825A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/824,694 US20130189080A1 (en) 2010-09-27 2011-09-26 Rotary compressor
JP2012516405A JPWO2012042825A1 (en) 2010-09-27 2011-09-26 Rotary compressor
CN2011800466082A CN103154521A (en) 2010-09-27 2011-09-26 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-214877 2010-09-27
JP2010214877 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012042825A1 true WO2012042825A1 (en) 2012-04-05

Family

ID=45892317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005395 WO2012042825A1 (en) 2010-09-27 2011-09-26 Rotary compressor

Country Status (4)

Country Link
US (1) US20130189080A1 (en)
JP (1) JPWO2012042825A1 (en)
CN (1) CN103154521A (en)
WO (1) WO2012042825A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047849A (en) * 2014-07-03 2014-09-17 湖南联力精密机械有限公司 Vortex air compressor with built-in lubricating oil path
WO2017168672A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Scroll compressor and refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206334A1 (en) 2013-06-27 2014-12-31 Emerson Climate Technologies, Inc. Scroll compressor with oil management system
KR101971819B1 (en) 2015-04-30 2019-04-23 에머슨 클라이미트 테크놀로지스 (쑤저우) 코., 엘티디. Scroll compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185892A (en) * 1983-04-05 1984-10-22 Toyoda Autom Loom Works Ltd Scroll type compressor
JPH06167287A (en) * 1992-12-01 1994-06-14 Hitachi Ltd Rotary compressor
JPH06346878A (en) * 1993-06-04 1994-12-20 Hitachi Ltd Rotary compressor
JPH1037868A (en) * 1996-07-19 1998-02-13 Matsushita Electric Ind Co Ltd Scroll compressor
JPH1182331A (en) * 1997-09-04 1999-03-26 Matsushita Electric Ind Co Ltd Scroll compressor
JP2003172276A (en) * 2001-12-03 2003-06-20 Hitachi Ltd Scroll fluid machine
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
JP2010180703A (en) * 2009-02-03 2010-08-19 Panasonic Corp Scroll compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903499B1 (en) * 1997-09-17 2004-08-11 SANYO ELECTRIC Co., Ltd. Scroll compressor
JP5592597B2 (en) * 2008-03-17 2014-09-17 Jx日鉱日石エネルギー株式会社 Refrigerator oil and working fluid composition for refrigerator
WO2009130878A1 (en) * 2008-04-22 2009-10-29 パナソニック株式会社 Scroll compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185892A (en) * 1983-04-05 1984-10-22 Toyoda Autom Loom Works Ltd Scroll type compressor
JPH06167287A (en) * 1992-12-01 1994-06-14 Hitachi Ltd Rotary compressor
JPH06346878A (en) * 1993-06-04 1994-12-20 Hitachi Ltd Rotary compressor
JPH1037868A (en) * 1996-07-19 1998-02-13 Matsushita Electric Ind Co Ltd Scroll compressor
JPH1182331A (en) * 1997-09-04 1999-03-26 Matsushita Electric Ind Co Ltd Scroll compressor
JP2003172276A (en) * 2001-12-03 2003-06-20 Hitachi Ltd Scroll fluid machine
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
JP2010180703A (en) * 2009-02-03 2010-08-19 Panasonic Corp Scroll compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047849A (en) * 2014-07-03 2014-09-17 湖南联力精密机械有限公司 Vortex air compressor with built-in lubricating oil path
CN104047849B (en) * 2014-07-03 2017-01-18 湖南联力精密机械有限公司 Vortex air compressor with built-in lubricating oil path
WO2017168672A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Scroll compressor and refrigeration cycle device
JPWO2017168672A1 (en) * 2016-03-31 2018-11-01 三菱電機株式会社 Scroll compressor and refrigeration cycle apparatus
US10890187B2 (en) 2016-03-31 2021-01-12 Mitsubishi Electric Corporation Scroll compressor witha lubricant supply system and refrigeration cycle apparatus having the scroll compressor

Also Published As

Publication number Publication date
US20130189080A1 (en) 2013-07-25
CN103154521A (en) 2013-06-12
JPWO2012042825A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
US8985978B2 (en) Scroll compressor with bypass holes
US9267501B2 (en) Compressor including biasing passage located relative to bypass porting
CN108980036B (en) Scroll compressor and refrigeration cycle device using same
EP2224093A1 (en) Compressor integral with expander
US9512840B2 (en) Scroll-type compressor and CO2 vehicle air conditioning system having a scroll-type compressor
JP2011027076A (en) Scroll compressor
US10890182B2 (en) Scroll compressor having check valve and passage that communicates a discharge port with a discharge space when the check valve is closed
WO2018096824A1 (en) Scroll compressor
WO2012042825A1 (en) Rotary compressor
US8323010B2 (en) Expander-compressor unit
JP2010090859A (en) Scroll type fluid machine
JP2010265756A (en) Scroll compressor
JP2003148366A (en) Multiple stage gas compressor
EP3779195B1 (en) Scroll compressor
JP5277283B2 (en) Scroll compressor and refrigeration cycle equipped with the same
CN109072923B (en) Compressor and refrigeration cycle device
JP2008144669A (en) Scroll compressor and refrigeration cycle equipped with the same
JP2017172346A (en) Scroll compressor and air conditioner
JP2007032291A (en) Scroll expansion machine
JP2011163256A (en) Scroll compressor
JP2006037896A (en) Scroll compressor
JP2006214335A (en) Scroll compressor
JP2023136791A (en) Hermetic rotary compressor and refrigerator with the same
JP2014101804A (en) Scroll type compressor
JP2012255430A (en) Compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046608.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012516405

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828391

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824694

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828391

Country of ref document: EP

Kind code of ref document: A1