WO2012042808A1 - Ultrasound diagnostic equipment - Google Patents

Ultrasound diagnostic equipment Download PDF

Info

Publication number
WO2012042808A1
WO2012042808A1 PCT/JP2011/005365 JP2011005365W WO2012042808A1 WO 2012042808 A1 WO2012042808 A1 WO 2012042808A1 JP 2011005365 W JP2011005365 W JP 2011005365W WO 2012042808 A1 WO2012042808 A1 WO 2012042808A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
dimensional
unit
reference image
measurement
Prior art date
Application number
PCT/JP2011/005365
Other languages
French (fr)
Japanese (ja)
Inventor
文平 田路
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012506825A priority Critical patent/JP5794226B2/en
Priority to CN201180004680.9A priority patent/CN102639063B/en
Priority to EP11828374.6A priority patent/EP2623033B1/en
Publication of WO2012042808A1 publication Critical patent/WO2012042808A1/en
Priority to US13/479,905 priority patent/US20120232394A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4343Pregnancy and labour monitoring, e.g. for labour onset detection
    • A61B5/4362Assessing foetal parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0866Detecting organic movements or changes, e.g. tumours, cysts, swellings involving foetal diagnosis; pre-natal or peri-natal diagnosis of the baby
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone

Definitions

  • the present invention relates to an ultrasound diagnostic apparatus, and more particularly to an ultrasound diagnostic apparatus used for fetal growth diagnosis.
  • ultrasound image diagnosis is often used for pregnant woman screening, and the fetal growth status is confirmed while referring to the ultrasound image during pregnancy screening.
  • the estimated weight of the fetus is calculated by measuring the length of a specific part of the fetus in the maternal body (head, abdomen, thigh) and applying it to the estimation formula.
  • the examiner operates the probe so that a specific part of the fetus is depicted. At that time, the probe is adjusted so that a tomographic image suitable for measurement is obtained, and a measurement image of a specific part is displayed. Next, on the measurement image, BPD (Biparial Diameter) is used for the fetal head, AC (Abdominal Circumference) is used for the fetal abdomen, and fetal thigh is used for the fetal thigh. Each FL (Femoral Length) is measured. And the estimated weight of a fetus can be obtained by inputting each measurement result into the estimated weight calculation formula of the fetus shown in (Formula 1).
  • BPD Breast Diameter
  • AC Abdominal Circumference
  • fetal thigh is used for the fetal thigh.
  • Each FL Femoral Length
  • the estimated weight of a fetus can be obtained by inputting each measurement result into the estimated weight calculation formula of the fe
  • FIG. 16 is a diagram illustrating a specific part of the fetus used in the estimated fetal weight calculation formula.
  • the estimated fetal weight can be obtained by measuring the lengths of BPD, AC, and FL. . Then, by comparing the obtained estimated weight of the fetus with statistical data, the growth status of the fetus can be confirmed.
  • the correct length can be measured. Can not. For example, when displaying the femur in the thigh, if the angle between the probe and the femur is not appropriate, the femur is displayed shorter than the original length in the measurement reference image. Similarly, in the head and abdomen, depending on the angle with the probe, the large horizontal diameter and the perimeter are displayed longer than actual.
  • the examiner in order to correctly obtain the estimated weight of the fetus, the examiner must carefully operate the probe so as to obtain an appropriate measurement reference image and determine an appropriate measurement reference image. In other words, whether or not the estimated weight of the fetus can be obtained correctly (whether the measurement reference image determined by the examiner can accurately measure the lengths of BPD, AC, and FL) depends on the procedure and knowledge of the examiner. Depends on and. This is because the position and position of the fetus in the mother's body is not fixed.
  • a technique that can obtain a tomographic image at an arbitrary angle by acquiring voxel data constituting a three-dimensional region by transmitting and receiving ultrasonic waves and setting a cutting plane for the voxel data.
  • Patent Document 1 When the technique proposed in Patent Document 1 is used for the above-described measurement reference image acquisition, the examiner can set an appropriate cut surface after obtaining fetal voxel data by operating the probe. That is, an appropriate measurement reference image can be set regardless of the procedure of the examiner.
  • An object of the present invention is to solve the conventional problems described above, and to provide an ultrasonic diagnostic apparatus capable of calculating an estimated weight of a fetus with a high degree of accuracy with a simple operation, with less dependence on an examiner. To do.
  • an ultrasonic diagnostic apparatus provides an ultrasonic wave transmitted to a region of the subject based on a reflected wave from the subject transmitted to the subject. Based on the intensity of the reflected wave, a three-dimensional data generation unit that generates corresponding three-dimensional data, and one of the two-dimensional cross sections constituting the three-dimensional data, Using the measurement image selection unit that is selected as a measurement reference image to be used for measuring the length of the part and the selected measurement reference image, the length of the part of the subject is measured and the measured length A measurement calculation unit that calculates the estimated body weight of the subject, and an output unit that outputs the calculated estimated body weight.
  • the measurement image selection unit is configured to extract, from the three-dimensional data, a high echo region extraction unit that extracts a high echo region that is a region corresponding to the reflected wave having a reflection intensity greater than a threshold, and the extracted high height
  • a cutting plane acquisition unit that acquires a plurality of two-dimensional sections constituting the three-dimensional data by cutting the three-dimensional data based on a three-dimensional feature of an echo area, and among the plurality of two-dimensional sections
  • a reference image selection unit that selects one two-dimensional cross section as a measurement reference image used for measuring the length of the region of the subject may be provided.
  • This configuration makes it possible to select a cross-section suitable for measurement with high accuracy by obtaining a cut surface by limiting the three-dimensional features of the high echo area.
  • the present invention is not only realized as a device, but also realized as a method that uses processing means constituting the device as steps, or realized as a program that causes a computer to execute these steps, or information indicating the program, It can also be realized as data or signals.
  • These programs, information, data, and signals may be distributed via a recording medium such as a CD-ROM or a communication medium such as the Internet.
  • an ultrasonic diagnostic apparatus that can reduce the dependence on an examiner and calculate the estimated weight of a fetus with high accuracy with a simple operation.
  • FIG. 1 is a block diagram showing an outline of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of template data showing the three-dimensional characteristics of the fetal head prepared in advance in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of template data showing the three-dimensional features of the fetal abdomen prepared in advance according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of template data showing the three-dimensional characteristics of the fetal thigh prepared in advance according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal BPD.
  • FIG. 1 is a block diagram showing an outline of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of template data showing the three-dimensional characteristics of the fetal head prepared in advance in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram for explaining characteristics of a measurement cross section to be used for AC measurement of the fetal abdomen.
  • FIG. 7A is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal FL.
  • FIG. 7B is a diagram schematically illustrating a measurement cross section in which an incorrect length is measured when used for measurement of fetal FL.
  • FIG. 8 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a flowchart for explaining processing until the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention calculates the estimated weight of the subject.
  • FIG. 8 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a flowchart for explaining processing until the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention calculates the estimated weight of the subject
  • FIG. 10 is a flowchart showing measurement reference image selection processing of the ultrasonic diagnostic apparatus for the fetal head according to Embodiment 1 of the present invention.
  • FIG. 11 is a flowchart showing a measurement reference image selection process of the ultrasonic diagnostic apparatus for the abdomen of the fetus in the first embodiment of the present invention.
  • FIG. 12 is a flowchart showing the measurement reference image selection processing of the ultrasonic diagnostic apparatus for the femoral thigh in Embodiment 1 of the present invention.
  • FIG. 13 is a block diagram showing an outline of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention.
  • FIG. 14 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention.
  • FIG. 15 is a diagram showing a minimum configuration of an ultrasonic diagnostic apparatus according to the present invention.
  • FIG. 16 is a diagram illustrating a specific part of the fetus used in the estimated
  • FIG. 1 is a block diagram showing an outline of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus main body 100 includes an ultrasonic diagnostic apparatus main body 100, a probe 101, an operation input unit 110, and a display unit 111.
  • the ultrasonic diagnostic apparatus main body 100 includes a control unit 102, a transmission / reception unit 103, a B-mode image generation unit 104, a 3D data generation unit 105, a high echo area extraction unit 106, a cut surface acquisition unit 107, and a measurement reference image selection.
  • a measurement image selection unit 106 a configured by the unit 108, a data storage unit 109, a measurement calculation unit 112, and an output unit 113.
  • the probe 101 is connected to the ultrasonic diagnostic apparatus main body 100, and ultrasonic transducers that transmit and receive ultrasonic waves are arranged.
  • the probe 101 transmits an ultrasonic wave according to an instruction from the transmission / reception unit 103, and receives a reflected wave (ultrasonic reflection signal) from the subject as an echo signal.
  • the probe 101 further includes a motor that swings the ultrasonic transducer in a direction perpendicular to the scanning direction. Therefore, when the subject is scanned using the probe 101, the ultrasonic transducer scans the subject while being swung, so that tomographic data in the scanning vertical direction can be obtained from the echo signal.
  • the probe 101 is not limited to one using a swing mechanism.
  • the control unit 102 controls each unit.
  • the control unit 102 controls the operation of each unit, and executes the operation of each unit while controlling the operation timing and the like.
  • the transmission / reception unit 103 transmits an instruction signal for driving the ultrasonic transducer of the probe 101 to generate ultrasonic waves, and receives an ultrasonic reflection signal from the probe 101.
  • the B-mode image generation unit 104 generates B-mode image data based on the ultrasonic reflection signal received by the transmission / reception unit 103.
  • filter processing is performed on the ultrasonic reflected signal
  • envelope detection is further performed
  • the detected signal is logarithmically converted and gain-adjusted and output.
  • the B mode is a method of displaying by changing the luminance in accordance with the intensity of the ultrasonic reflection signal.
  • a B-mode image is obtained by changing the intensity of an ultrasonic reflected signal to luminance by changing the ultrasonic transmission / reception direction, for example, continuously in accordance with the scanning direction of the probe as well as in one scanning direction. It is a tomographic image drawn.
  • the 3D data generation unit 105 generates 3D data indicating an object corresponding to the part of the subject based on the ultrasonic reflection signal from the ultrasonic subject transmitted to the subject. Specifically, the 3D data generation unit 105 generates 3D data based on the plurality of B mode image data generated by the B mode image generation unit 104. More specifically, although the details differ depending on the method of changing the ultrasonic transmission / reception direction, the 3D data generation unit 105 resamples the pixel values of a plurality of B-mode images at the three-dimensional coordinate positions, and calculates the three-dimensional volume. 3D data is generated by reconstructing the data indicating the target object.
  • the measurement image selection unit 106a uses one of the two-dimensional cross sections constituting the 3D data based on the intensity of the reflected wave to measure the length of the part of the subject. Select as an image. As described above, the measurement image selection unit 106a includes the high echo area extraction unit 106, the cut surface acquisition unit 107, and the measurement reference image selection unit 108. This will be specifically described below.
  • the high echo area extraction unit 106 extracts a high echo area, which is an area corresponding to an ultrasonic reflection signal having a reflection intensity larger than a threshold, from the 3D data. Specifically, the high echo area extraction unit 106 extracts only the data of the high echo area from the 3D data generated by the 3D data generation unit 105.
  • the high echo region is a region where reflection is stronger than the surroundings
  • the low echo region is a region where reflection is weaker than the surroundings. Therefore, if an appropriate threshold value is set, the high echo area extraction unit 106 can extract only data in the high echo area by comparing the 3D data value with the threshold value.
  • the bone region is mainly extracted as a high echo region.
  • the high echo area extraction unit 106 extracts the data of the high echo area from the 3D data, and as a result, extracts the three-dimensional features of the high echo area (mainly the bone area).
  • the cut plane acquisition unit 107 acquires a plurality of two-dimensional images constituting the 3D data by cutting the object indicated by the 3D data based on the extracted three-dimensional features of the high echo area. Specifically, the cut plane acquisition unit 107 cuts the target object indicated by the 3D data generated by the 3D data generation unit 105 with a plane based on the three-dimensional features of the high echo region extracted by the high echo region extraction unit 106. By doing so, a plurality of two-dimensional images (cut planes) are acquired.
  • the cutting plane acquisition unit 107 is a plane that cuts the target indicated by the 3D data based on the three-dimensional feature of the high echo area extracted by the high echo area extraction unit 106.
  • the direction and the cutting region that is the region for cutting the object indicated by the 3D data are determined. That is, the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data indicating the three-dimensional features of the specific part prepared in advance, and if they match, the template data 3D data area (object indicated by 3D data) corresponding to is determined as a cutting area, and the direction of the cut surface (direction of the surface normal of the cut surface) is determined from the template data.
  • the cutting plane acquisition unit 107 acquires a cutting plane (two-dimensional image) having the determined direction, that is, having the determined plane normal in the determined cutting area.
  • FIG. 2 is a schematic diagram of template data showing the three-dimensional features of the fetal head prepared in advance.
  • the template data corresponding to the fetal head is created based on the skull, dura mater and transparent septum, and shows the arrangement and three-dimensional shape of the skull, dura mater and transparent septum. It is data.
  • the data indicating the three-dimensional shape indicates that the head has a substantially spherical shape and is composed of a skull, and the skull has a structure in which a plurality of planes having arcs are combined.
  • the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data and has a high degree of matching with the template data corresponding to the fetal head. In that case, the cut surface acquisition unit 107 determines the cut region as a range that vertically cuts the transparent septum, and determines the direction of the cut surface as a plane perpendicular to the data corresponding to the transparent septum. Moreover, a cutting
  • the cut plane acquisition unit 107 first extracts the median plane of the skull (dura) from the three-dimensional features of the high echo area. Then, a transparent septum (low echo area) longitudinally cut on the extracted median plane is extracted. Then, the cutting plane acquisition unit 107 determines a plane perpendicular to the median plane of the skull (dura) as the direction of the cutting plane, and the cutting area is determined as a range in which the transparent septum (low echo area) is longitudinally cut. As described above, the cut surface acquisition unit 107 acquires a cut surface of the fetal head based on the bone and dura mater that are high echoes.
  • FIG. 3 is a schematic diagram of template data showing the three-dimensional features of the fetal abdomen prepared in advance in Embodiment 1 of the present invention.
  • the template data corresponding to the abdomen of the fetus is created based on the spine and ribs, and is data indicating the arrangement and three-dimensional shape of the spine and ribs.
  • the abdomen is data indicating that the abdomen is composed of a vertebra having a columnar shape made up of bones and a rib having a plurality of rod shapes and a symmetrical shape.
  • the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data and has a high degree of matching with the template data corresponding to the abdomen of the fetus.
  • the cutting plane acquisition unit 107 determines the direction of the cutting plane as a plane perpendicular to the data corresponding to the spine, and determines the cutting area as a range that cuts only the spine.
  • the cut surface acquisition unit 107 first has a columnar region (high echo region) corresponding to the spine from the three-dimensional feature of the high echo region. To extract.
  • the cut surface acquisition unit 107 determines a plane perpendicular to the extracted columnar region (high echo region) as the direction of the cut surface, and the cut region is determined as a range in which only the spine is vertically cut. As described above, the cut surface acquisition unit 107 acquires a cut surface of the fetal head based on the bone and dura mater that are high echoes.
  • FIG. 4 is a schematic diagram of template data showing the three-dimensional features of the fetal thigh prepared in advance in Embodiment 1 of the present invention.
  • the template data corresponding to the femur of the fetus is created based on the femur and pelvis, and is data indicating the arrangement and three-dimensional shape of the femur and pelvis.
  • the thigh has a rod shape and is data indicating a structure connected to the hip joint.
  • the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data and has a high degree of coincidence with the template data corresponding to the femoral thigh.
  • the cutting plane acquisition unit 107 determines the direction of the cutting plane as a plane that crosses the data corresponding to the femur, and the cutting range is determined as a range of 180 degrees centering on the data corresponding to the femur. .
  • the cut surface acquisition unit 107 firstly forms a rod-like region (high echo region) corresponding to the femur from the three-dimensional features of the high echo region. To extract.
  • the cutting plane acquisition unit 107 determines the plane crossing the extracted bar-shaped area (high echo area) as the direction of the cutting plane, and the cutting area is a plane crossing the bar-shaped area (high echo area), A region having a surface and a surface in a range of 180 degrees is determined. In this manner, the cut surface acquisition unit 107 acquires a cut surface of the fetal head based on the bone that becomes a high echo.
  • the cut surface acquisition unit 107 determines the cut region and the direction, and acquires a plurality of cut surfaces (two-dimensional images) in the determined direction in the determined cut region.
  • the cutting plane acquisition unit 107 determines the direction of the two-dimensional image for cutting the object indicated by the 3D data based on the extracted three-dimensional shape and arrangement of the high echo area, and the plurality of determined directions. To obtain a two-dimensional image.
  • the measurement reference image selection unit 108 selects one of the two-dimensional images as a measurement reference image to be used for measuring the length of the part of the subject. Specifically, the measurement reference image selection unit 108 evaluates the degree of similarity between each of the plurality of two-dimensional images and the feature of the spatial distribution of the luminance information indicated by the measurement reference image, so that among the plurality of two-dimensional images. Is selected as a measurement reference image. That is, the measurement reference image selection unit 108 evaluates a plurality of cut surface images acquired by the cut surface acquisition unit 107, and selects an image most suitable for measurement as a measurement reference image. For this evaluation, it is preferable to use a spatial distribution of luminance.
  • the measurement reference image selection unit 108 learns in advance the luminance space distribution characteristics that statistically characterize the measurement reference image, and the plurality of cut surface images acquired by the cut surface acquisition unit 107 are obtained.
  • the cut surface image having the closest luminance space distribution feature is selected as the measurement reference image.
  • the result of learning in advance based on the Haar-like feature is compared with the result of the feature amount calculation performed on the cut surface acquired by the cut surface acquisition unit 107, thereby obtaining a measurement standard. Measure the similarity to the image.
  • FIG. 5 is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal BPD.
  • the cross-section of the skull having the arrangement of the dura mater and the transparent septum as shown in FIG. That is, the cross-section is perpendicular to the median plane of the skull (dura), the midline is drawn, and the cross-section showing the arrangement where the drawn midline crosses the transparent septum can be measured. preferable.
  • the measurement reference image selection unit 108 evaluates the plurality of cut surface images acquired by the cut surface acquisition unit 107, and among these, the measurement cross section having the luminance space distribution feature corresponding to the feature shown in FIG. Select as an image.
  • the measurement reference image selection unit 108 is a cut surface perpendicular to the median plane extracted by the cut surface acquisition unit 107, traverses the extracted low echo area (equivalent to a transparent septum), and passes the median line ( A cut surface on which a high echo area) is drawn is selected as a measurement reference image.
  • the measurement reference image selection unit 108 selects the measurement reference image based on the bone, dura mater, and the like that become high echoes.
  • the measurement reference image may be a cut section screen showing an arrangement in which the drawn median line further crosses the four-hill body tank.
  • FIG. 6 is a schematic diagram for explaining characteristics of a measurement cross section to be used for fetal AC measurement.
  • the AC in the cross section of the abdomen having the arrangement of the spine, umbilical vein and gastric vesicle as shown in FIG. That is, it is a cross section substantially perpendicular to the spine (instead of the abdominal aorta), and the umbilical vein (biliary umbilical vein) is drawn in a direction substantially perpendicular to the spine. It is preferable to measure with a cross section showing the arrangement of the gastric vesicle.
  • the measurement reference image selection unit 108 evaluates the plurality of cut surface images acquired by the cut surface acquisition unit 107, and among these, the measurement cross section having the luminance spatial distribution feature corresponding to the feature shown in FIG. Select as an image.
  • the measurement reference image selection unit 108 is a cut surface perpendicular to the high echo region (columnar region) extracted by the cut surface acquisition unit 107, and is substantially perpendicular to the high echo region (columnar region).
  • a cut surface in which a low echo area (umbilical vein) is arranged and a massive low echo area (gastric follicle) is arranged in the vicinity of the low echo area (umbilical vein) is selected as a measurement reference image.
  • the measurement reference image selection unit 108 selects the measurement reference image based on the bone that becomes high echo, the blood vessel that becomes low echo, the stomach, and the like.
  • the cut surface is preferably selected depending on the spine that can be extracted as the high echo region, but the cut surface may be selected based on the abdominal aortic section extracted as the low echo region.
  • FIG. 7A is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal FL.
  • FIG. 7B is a diagram schematically illustrating a measurement cross section in which an incorrect length is measured when used for measurement of fetal FL.
  • fetal FL fetal FL
  • FL femur length
  • the measurement reference image selection unit 108 evaluates the plurality of cut surface images acquired by the cut surface acquisition unit 107, and among these, the measurement cross section having the luminance space distribution feature corresponding to the feature shown in FIG. Select as an image. Specifically, the measurement reference image selection unit 108 selects, as a measurement reference image, a cut surface that traverses the high echo region (bar-shaped region) extracted by the cut surface acquisition unit 107, that is, a cut surface in the length direction of the bar.
  • the measurement reference image selection unit 108 selects a measurement reference image based on the bone that becomes a high echo.
  • the measurement reference image is determined by evaluating the cut surface from the 3D data instead of the two-dimensional image (B-mode image), it is not a cross section in which an incorrect length can be measured as shown in FIG. As shown in FIG. 7A, a cross section capable of measuring the correct length can be selected as a measurement reference image.
  • the data storage unit 109 includes a plurality of B-mode images generated by the B-mode image generation unit 104, 3D data generated by the 3D data generation unit 105, high-echo region data extracted by the high-echo region extraction unit 106, and measurement reference image selection The measurement reference image selected by the unit 108 is stored.
  • the operation input unit 110 receives an operator instruction.
  • the operation input unit 110 includes buttons, a keyboard, a mouse, and the like, and inputs an inspector's instruction through them.
  • the display unit 111 includes a display device such as an LCD, and displays a B-mode image, an object indicated by 3D data, a cut surface, and the like.
  • the measurement calculation unit 112 measures the length of the site of the subject using the selected measurement reference image, and calculates the estimated weight of the subject using the measured length. Specifically, the measurement calculation unit 112 measures the length of the region of the subject using the measurement reference image selected by the measurement reference image selection unit 108. The measurement calculation unit 112 calculates the estimated body weight of the subject from the measured length of the site of the subject.
  • the output unit 113 outputs the calculated estimated weight. Specifically, the output unit 113 outputs the estimated weight calculated by the measurement calculation unit 112 to cause the display unit 111 to calculate the estimated weight.
  • the ultrasonic diagnostic apparatus 1 in the first embodiment is configured.
  • FIG. 8 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • the B mode image generation unit 104 generates a plurality of B mode image data (step S10).
  • the transmission / reception unit 103 transmits an ultrasonic wave to the subject through the probe 101 and receives the reflected wave through the probe 101.
  • the B-mode image generation unit 104 generates one B-mode image by performing data processing on the ultrasonic reflection signal received by the transmission / reception unit 103 and stores the generated B-mode image in the data storage unit 109.
  • a plurality of B-mode images are generated, and the generated plurality of B-mode images are stored in the data storage unit 109.
  • the ultrasonic transmission / reception direction can be changed by using the swing mechanism of the probe 101, by driving the ultrasonic transducer of the two-dimensional array probe, or by moving the probe 101 in parallel at a constant speed. There are things, etc.
  • the 3D data generation unit 105 generates 3D data based on a plurality of B-mode images (step S20). Specifically, although the details differ depending on the method of changing the ultrasonic transmission / reception direction, the 3D data generation unit 105 resamples the pixel values of the plurality of B mode images generated by the B mode image generation unit 104 to the three-dimensional coordinate positions. And 3D data is generated by reconstructing the data indicating an object having a three-dimensional volume.
  • the high echo area extraction unit 106 extracts a high echo area from the 3D data generated by the 3D data generation unit 105. As a result, the high echo area extraction unit 106 extracts a three-dimensional feature of the high echo area from the 3D data (step S30).
  • the cut surface acquisition unit 107 acquires a plurality of cut surfaces based on the three-dimensional feature of the high echo area (step S40). Specifically, the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data indicating the three-dimensional features of the specific part prepared in advance, and they match (similarity). The 3D data area corresponding to the template data (the object indicated by the 3D data) is determined as the cutting area, and the direction of the cutting plane (the normal direction of the cutting plane) is determined from the template data. To do. Then, the cut surface acquisition unit 107 acquires a plurality of cut surfaces (two-dimensional images) in the determined direction in the determined cutting region.
  • the measurement reference image selection unit 108 evaluates a plurality of cut surfaces acquired by the cut surface acquisition unit 107 (step S50). When the measurement reference image selection unit 108 finishes evaluating all the cut surfaces acquired by the cut surface acquisition unit 107 (step S60), the measurement reference image is selected as the measurement reference image (step S70). .
  • the measurement reference image selection unit 108 compares the luminance space distribution feature that has been learned in advance and statistically characterizes the measurement reference image with the feature of the cut surface acquired by the cut surface acquisition unit 107. Measure the similarity with the reference image. Then, the measurement reference image selection unit 108 selects, as a measurement reference image, a cut surface image having the closest brightness space distribution feature among the plurality of cut surface images acquired by the cut surface acquisition unit 107.
  • the measurement reference image selection unit 108 returns to step S40 when the similarity between the feature of the cut surface acquired by the cut surface acquisition unit 107 and the measurement reference image is low. Then, the cutting plane acquisition unit 107 acquires a plurality of cutting planes again, and proceeds to step S50.
  • the measurement reference image selection unit 108 stores the selected measurement reference image in the data storage unit 109 (step S80).
  • the ultrasonic diagnostic apparatus 1 performs the measurement reference image selection process. Specifically, the ultrasonic diagnostic apparatus 1 obtains a cross-section suitable for measurement with high accuracy by acquiring the cut surface by limiting the three-dimensional features of the bone region that becomes a high echo region.
  • the examiner may determine the region of the subject based on the three-dimensional features (three-dimensional shape and arrangement information of the high echo region) of the high echo region extracted by the high echo region extraction unit 106. Good. In that case, the inspector should send data to a specific part such as 3D data generated by the 3D data generation unit 105 to the cut surface acquisition unit 107 via the operation input unit 110, for example, the thigh.
  • the 3D data of the specific part may be narrowed down in advance to be notified and compared (matched) with the 3D data generated by the 3D data generation unit 105.
  • step S40 the efficiency of the process performed by the cut surface acquisition unit 107 can be increased.
  • the efficiency of evaluation performed by the measurement reference image selection unit 108 can be increased, and the possibility of erroneous evaluation can be reduced.
  • the ultrasonic diagnostic apparatus 1 performs the measurement reference image selection process. Thereby, even a person who is not familiar with the ultrasonic diagnostic apparatus can surely obtain an accurate measurement reference screen, and can accurately measure the length of a specific part from the measurement reference screen.
  • the entire process of the ultrasonic diagnostic apparatus 1, that is, the process including the measurement reference selection process until the ultrasonic diagnostic apparatus 1 calculates the estimated body weight of the subject will be described.
  • FIG. 9 is a flowchart for explaining processing until the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention calculates the estimated weight of the subject.
  • the ultrasound diagnostic apparatus 1 generates three-dimensional data corresponding to the part of the subject based on the reflected wave from the subject of the ultrasonic wave transmitted to the subject (S110). Specifically, the ultrasound diagnostic apparatus 1 performs the processes of S10 and S20 described with reference to FIG. 8, but since the processes of S10 and S20 have been described above, the description thereof is omitted here.
  • the ultrasonic diagnostic apparatus 1 determines one of the two-dimensional cross sections of the plurality of two-dimensional cross sections constituting the 3D data based on the intensity of the reflected wave from the subject, and sets the length of the site of the subject.
  • a measurement reference image used for measurement is selected (S130). Specifically, the ultrasound diagnostic apparatus 1 performs the processing of S30 to S80 described with reference to FIG. 8, but since the processing of S30 to S80 has been described above, description thereof is omitted here.
  • FIG. 10 is a flowchart showing the measurement reference image selection processing of the ultrasonic diagnostic apparatus for the fetal head in Embodiment 1 of the present invention.
  • FIG. 11 is a flowchart showing a measurement reference image selection process of the ultrasonic diagnostic apparatus for the abdomen of the fetus in the first embodiment of the present invention.
  • FIG. 12 is a flowchart showing the measurement reference image selection processing of the ultrasonic diagnostic apparatus for the femoral thigh in Embodiment 1 of the present invention. Elements similar to those in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the 3D data generated in S110 corresponds to the fetal head
  • the three-dimensional features of the high echo area corresponding to the head are extracted in S31.
  • a measurement reference image used for measuring the length of the fetal head is selected in S71, and the measurement reference image is registered in S81.
  • S31 to S81 correspond to S30 to S80 in FIG.
  • the 3D data generated in S110 corresponds to the abdomen of the fetus
  • the three-dimensional features of the high echo area corresponding to the abdomen are extracted in S32.
  • a measurement reference image used for measuring the length of the abdomen of the fetus is selected in S72, and the measurement reference image is registered in S82.
  • S32 to S82 correspond to S30 to S80 in FIG.
  • a three-dimensional feature of the high echo area corresponding to the thigh is extracted in S33.
  • a measurement reference image used for measuring the femoral length of the fetus is selected in S73, and the measurement reference image is registered in S83.
  • S33 to S83 correspond to S30 to S80 in FIG.
  • the ultrasound diagnostic apparatus 1 measures the length of the region of the subject using the measurement reference image selected in S130, and calculates the estimated weight of the subject based on the measured length (S150). ).
  • the measurement calculation unit 112 measures the length of the site of the subject using the selected measurement reference image, and calculates the estimated body weight of the subject using the measured length.
  • the ultrasonic diagnostic apparatus 1 outputs the calculated estimated weight (S170).
  • the ultrasonic diagnostic apparatus 1 calculates the estimated weight of the subject.
  • an ultrasonic diagnostic apparatus that can reduce the examiner dependency and can calculate the estimated weight of the fetus with high accuracy with a simple operation.
  • FIG. 13 is a block diagram showing an outline of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention.
  • the same components as those in FIG. 13 are identical to FIG. 13 and the same components as those in FIG. 13;
  • the ultrasonic diagnostic apparatus 2 shown in FIG. 13 includes an ultrasonic diagnostic apparatus main body 200, a probe 101, an operation input unit 110, and a display unit 111.
  • the ultrasonic diagnostic apparatus main body 200 shown in FIG. 13 differs from the ultrasonic diagnostic apparatus main body 100 shown in FIG. That is, the ultrasonic diagnostic apparatus main body 200 includes a subject region specifying unit 212 in addition to the configuration of FIG.
  • the subject part specifying unit 212 specifies the part of the subject corresponding to the object indicated by the 3D data. Specifically, the subject region specifying unit 212 uses the 3D data generation unit 105 based on the three-dimensional features (three-dimensional shape and arrangement information of the high echo region) of the high echo region extracted by the high echo region extraction unit 106. It is determined that the object indicated by the generated 3D data is, for example, a part such as the head, abdomen, or thigh, and the part of the subject (3D data) being observed is specified.
  • the subject region specifying unit 212 compares the 3D data generated by the 3D data generation unit 105 with the template data (for example, FIG. 2) corresponding to a fetal head having characteristics equivalent to a predetermined skull. Is similar (similar), the object indicated by the 3D data is determined to be the head. Further, the subject region specifying unit 212 compares the 3D data generated by the 3D data generation unit 105 with the template data (for example, FIG. 3) corresponding to the abdomen of a fetus having a characteristic equivalent to a predetermined spine. When it has a similar feature (similar), it is determined that the object indicated by the 3D data is the abdomen.
  • the subject region specifying unit 212 compares the 3D data generated by the 3D data generation unit 105 with the template data (for example, FIG. 4) corresponding to the femur of the fetus having characteristics equivalent to the predetermined femur. When the two have similar features (similar), it is determined that the object indicated by the 3D data is determined to be the thigh.
  • the ultrasonic diagnostic apparatus 2 in the second embodiment is configured.
  • FIG. 14 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention.
  • the same elements as those in FIG. 8 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 14 is different from FIG. 8 in that step S35 is added.
  • step S35 the subject region specifying unit 212 generates the 3D data generation unit 105 based on the three-dimensional features (three-dimensional shape and arrangement information of the high echo region) of the high echo region extracted by the high echo region extraction unit 106.
  • the target indicated by the 3D data is determined to be a part such as the head, abdomen, or thigh, for example, and the part of the subject under observation (3D data) is specified.
  • step S40 the cutting plane acquisition unit 107 includes information indicating the three-dimensional shape and arrangement according to the part specified by the subject part specifying unit 212, the three-dimensional shape of the extracted high echo area, and A plurality of two-dimensional images are acquired based on the arrangement.
  • the cut surface acquisition unit 107 determines the 3 of the extracted high echo region. An area corresponding to the transparent septum is extracted from the dimensional features, and based on the extracted area, the direction of the two-dimensional image that cuts the object indicated by the 3D data is determined, and a plurality of two-dimensional images are acquired in the determined direction. To do.
  • the cut surface acquisition unit 107 identifies the extracted high echo region.
  • a region corresponding to the spine is extracted from the three-dimensional feature, and based on the extracted region, the direction of the two-dimensional image that cuts the object indicated by the 3D data is determined, and a plurality of two-dimensional images are acquired in the determined direction. .
  • the cut surface acquisition unit 107 extracts the high echo when the subject region specifying unit 212 specifies that the region of the subject corresponding to the object indicated by the 3D data is the thigh.
  • a region corresponding to the femur is extracted from the three-dimensional features of the region, and based on the extracted region, the direction of the two-dimensional image for cutting the object indicated by the 3D data is determined, and a plurality of two-dimensional images are determined in the determined direction. To win.
  • the ultrasonic diagnostic apparatus 2 performs the measurement reference image selection process.
  • the measurement reference image selection unit 108 can efficiently evaluate the evaluation and reduce the possibility of erroneous evaluation. Thereby, the ultrasonic diagnostic apparatus 2 can further select a cross section (measurement reference image) suitable for measurement with high accuracy.
  • the subject region specifying unit 212 is determined based on the characteristics of the high echo region, but may be configured to be instructed by the examiner from the operation input unit 110. That is, the subject part specifying unit 212 may specify the part of the subject corresponding to the target indicated by the 3D data in accordance with the instruction of the examiner (operator) input to the operation input unit 110. In such a case, although one time and effort of the examiner's instruction is increased, a measurement reference image suitable for measurement can be obtained more stably by correctly determining the region of the subject.
  • the probe 101 and the ultrasonic diagnostic apparatus main body 100 are described as being configured independently. However, the present invention is not limited thereto.
  • the probe 101 may include a part or all of the configuration of the ultrasonic diagnostic apparatus main body 100.
  • the ultrasonic diagnostic apparatus main body 100 includes the control unit 102, the transmission / reception unit 103, the B-mode image generation unit 104, the 3D data generation unit 105, the high echo area extraction unit 106, and the measurement image selection unit 106a.
  • the data storage unit 109, the measurement calculation unit 112, and the output unit 113 are provided, but the invention is not limited thereto.
  • the minimum configuration unit 100 a may be provided as the minimum configuration of the ultrasonic diagnostic apparatus main body 100. That is, it is only necessary to include the 3D data generation unit 105, the measurement image selection unit 106a, the measurement calculation unit 112, the output unit 113, and the control unit 102.
  • FIG. 15 is a diagram showing a minimum configuration of the ultrasonic diagnostic apparatus according to the present invention.
  • the ultrasonic diagnostic apparatus 1 includes at least the minimum configuration unit 100a, thereby realizing an ultrasonic diagnostic apparatus that can reduce the examiner dependency and can calculate the estimated weight of the fetus with high accuracy with a simple operation. be able to. *
  • the measurement calculation unit 112 performs measurement using the measurement reference image determined by the measurement reference image selection unit 108, and calculates the estimated weight of the fetus that is the subject from the measured length of the portion of the subject.
  • the calculation is not limited to this.
  • the ultrasonic diagnostic apparatus main body 100 does not include the measurement calculation unit 112 and the output unit 113, and is separately obtained from the length of the region of the subject measured by the examiner using the measurement reference image determined by the measurement reference image selection unit 108. It may be calculated.
  • the ultrasonic diagnostic apparatus of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
  • the present invention also provides a computer-readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc). ), Recorded in a semiconductor memory or the like.
  • the digital signal may be recorded on these recording media.
  • the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention may also be a computer system including a microprocessor and a memory.
  • the memory may store the computer program, and the microprocessor may operate according to the computer program.
  • program or the digital signal is recorded on the recording medium and transferred, or the program or the digital signal is transferred via the network or the like and executed by another independent computer system. You may do that.
  • the present invention can be used for an ultrasonic diagnostic apparatus, and in particular, for an ultrasonic diagnostic apparatus that can easily and correctly acquire a measurement reference image for detailed fetal growth diagnosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pregnancy & Childbirth (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pediatric Medicine (AREA)
  • Reproductive Health (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

This ultrasound diagnostic equipment is provided with a 3D data-generating unit (105) for generating 3-dimensional data corresponding to regions of a subject on the basis of waves reflected from the subject as a result of ultrasonic waves being transmitted towards the subject; a measurement image-selecting unit (106a) for selecting one 2-dimensional cross section, from among multiple 2-dimensional cross-sections configuring the 3-dimensional data, as the measurement standard image to be used for measuring the length of a region of the subject; a measurement-calculating unit (112) for measuring the lengths of the regions of the subject using the selected measurement standard images and calculating the estimated weight of the subject using the measured lengths; and a display unit (111) for outputting the calculated estimated body weight.

Description

超音波診断装置Ultrasonic diagnostic equipment
 本発明は、超音波診断装置に関し、特に、胎児の成長診断に用いられる超音波診断装置に関する。 The present invention relates to an ultrasound diagnostic apparatus, and more particularly to an ultrasound diagnostic apparatus used for fetal growth diagnosis.
 超音波による画像診断は、音波を利用するという性質上生体に与える影響が少ない。そのため、超音波による画像診断は、妊婦検診によく用いられ、妊婦検診時に超音波画像を参照しながら胎児の発育状況を確認することが行われている。 Diagnostic imaging using ultrasound has little effect on the living body due to the property of using sound waves. For this reason, ultrasound image diagnosis is often used for pregnant woman screening, and the fetal growth status is confirmed while referring to the ultrasound image during pregnancy screening.
 胎児の発育状況の確認には、超音波画像から胎児の推定体重を算出する方法がよく知られている。具体的には、胎児の推定体重は、母体中の胎児の特定部位(頭部、腹部、大腿部)の長さを計測し、推定式に当てはめることで算出される。 For confirmation of the fetal growth status, a method of calculating the estimated fetal weight from an ultrasound image is well known. Specifically, the estimated weight of the fetus is calculated by measuring the length of a specific part of the fetus in the maternal body (head, abdomen, thigh) and applying it to the estimation formula.
 超音波による画像診断における一般的な操作としては、まず、検査者は胎児の特定部位が描出されるようにプローブを操作する。その際、計測に適した断層像が得られるようにプローブを調整し、特定部位の計測画像を表示させる。次に、計測画像上で、胎児の頭部においてはBPD(Biparietal Diameter:児頭大横径)を、胎児の腹部においてはAC(Abdominal Circumference:腹部周囲長)を、胎児の大腿部においてはFL(Femoral Length:大腿骨長)をそれぞれ測定する。そして、各測定結果を、(式1)に示す胎児の推定体重算出式に入力することで、胎児の推定体重を得ることができる。 As a general operation in image diagnosis using ultrasound, first, the examiner operates the probe so that a specific part of the fetus is depicted. At that time, the probe is adjusted so that a tomographic image suitable for measurement is obtained, and a measurement image of a specific part is displayed. Next, on the measurement image, BPD (Biparial Diameter) is used for the fetal head, AC (Abdominal Circumference) is used for the fetal abdomen, and fetal thigh is used for the fetal thigh. Each FL (Femoral Length) is measured. And the estimated weight of a fetus can be obtained by inputting each measurement result into the estimated weight calculation formula of the fetus shown in (Formula 1).
 推定体重(g)=1.07BPD+3.00×10-1AC×FL・・・(式1) Estimated weight (g) = 1.07 BPD 3 + 3.00 × 10 −1 AC 2 × FL (Formula 1)
 ここで、BPD:児頭大横径(cm)、AC:腹部周囲長(cm)FL:大腿骨長(cm)であり、図16に示す部位の長さに相当する。なお、図16は、胎児の推定体重算出式に用いられる胎児の特定部位を示す図である。 Here, BPD: large head lateral diameter (cm), AC: abdominal circumference (cm) FL: femur length (cm), which corresponds to the length of the site shown in FIG. FIG. 16 is a diagram illustrating a specific part of the fetus used in the estimated fetal weight calculation formula.
 この従来方法によれば、適切な計測画像(以下、計測基準画像と記載)を表示させた上で、BPDとACとFLとの長さを計測することで胎児の推定体重を得ることができる。そして、得られた胎児の推定体重を統計的データと比較することで、胎児の発育状況を確認することができる。 According to this conventional method, after displaying an appropriate measurement image (hereinafter referred to as a measurement reference image), the estimated fetal weight can be obtained by measuring the lengths of BPD, AC, and FL. . Then, by comparing the obtained estimated weight of the fetus with statistical data, the growth status of the fetus can be confirmed.
 しかしながら、従来方法では、計測基準画像が適切でない場合、すなわち計測画像がBPDとACとFLとの長さを計測するために適切に表示できていない場合には、正しい長さを計測することができない。例えば、大腿部において大腿骨を表示させる場合、プローブと大腿骨との角度が適切でないならば、計測基準画像では大腿骨は本来の長さよりも短く表示されてしまう。頭部、腹部においても同様に、プローブとの角度によっては、大横径、周囲長が実際よりも長く表示されてしまう。 However, in the conventional method, when the measurement reference image is not appropriate, that is, when the measurement image cannot be properly displayed to measure the lengths of BPD, AC, and FL, the correct length can be measured. Can not. For example, when displaying the femur in the thigh, if the angle between the probe and the femur is not appropriate, the femur is displayed shorter than the original length in the measurement reference image. Similarly, in the head and abdomen, depending on the angle with the probe, the large horizontal diameter and the perimeter are displayed longer than actual.
 そのため、検査者は、胎児の推定体重を正しく得るために、適切な計測基準画像が得られるよう注意深くプローブを操作し、適切な計測基準画像を決定しなければならない。つまり、胎児の推定体重を正しく得られるかどうかは(検査者が決定した計測基準画像がBPDとACとFLとの長さを正確に計測できるものであるかは)、検査者の手技と知見とに依存する。なぜなら、母体中の胎児の位置や体位は固定的ではないためである。 Therefore, in order to correctly obtain the estimated weight of the fetus, the examiner must carefully operate the probe so as to obtain an appropriate measurement reference image and determine an appropriate measurement reference image. In other words, whether or not the estimated weight of the fetus can be obtained correctly (whether the measurement reference image determined by the examiner can accurately measure the lengths of BPD, AC, and FL) depends on the procedure and knowledge of the examiner. Depends on and. This is because the position and position of the fetus in the mother's body is not fixed.
 それに対して、超音波の送受波により3次元領域を構成するボクセルデータを獲得し、ボクセルデータに対して切断面を設定することで、任意の角度の断層像を得ることができる技術が開示されている(例えば、特許文献1)。この特許文献1に提案されている手法を、上述した計測基準画像獲得に用いると、検査者はプローブを操作して胎児のボクセルデータを得てから、適切な切断面を設定することができる。つまり、検査者の手技によらず、適切な計測基準画像を設定することができる。 On the other hand, a technique is disclosed that can obtain a tomographic image at an arbitrary angle by acquiring voxel data constituting a three-dimensional region by transmitting and receiving ultrasonic waves and setting a cutting plane for the voxel data. (For example, Patent Document 1). When the technique proposed in Patent Document 1 is used for the above-described measurement reference image acquisition, the examiner can set an appropriate cut surface after obtaining fetal voxel data by operating the probe. That is, an appropriate measurement reference image can be set regardless of the procedure of the examiner.
特開平9-308630号公報JP-A-9-308630
 しかしながら、上記特許文献1を用いた従来の構成では、検査者の手技による影響は少なくなるものの、検査者が切断面を設定する必要があり、適切な計測基準画像が得られるかどうかは検査者の判断に依存する。つまり、依然として検査者が計測基準画像を判断し指示しなければならないという課題を有する。 However, in the conventional configuration using the above-mentioned Patent Document 1, although the influence of the procedure of the inspector is reduced, it is necessary for the inspector to set a cutting plane, and whether the appropriate measurement reference image can be obtained is determined by the inspector. Depends on judgment. That is, there still remains a problem that the inspector must judge and instruct the measurement reference image.
 本発明は、前記従来の課題を解決するもので、検査者依存性を少なくし、簡易な操作で高精度に胎児の推定体重算出を行うことができる超音波診断装置を提供することを目的とする。 An object of the present invention is to solve the conventional problems described above, and to provide an ultrasonic diagnostic apparatus capable of calculating an estimated weight of a fetus with a high degree of accuracy with a simple operation, with less dependence on an examiner. To do.
 前記従来の課題を解決するために、本発明の一形態に係る超音波診断装置は、被検体に向けて送信した超音波の前記被検体からの反射波に基づいて、前記被検体の部位に対応する3次元データを生成する3次元データ生成部と、前記反射波の強度に基づいて、前記3次元データを構成する複数の2次元断面のうちの一の2次元断面を、前記被検体の部位の長さを測定するために用いる測定基準画像として選択する測定画像選択部と、選択された前記測定基準画像を用いて、前記被検体の部位の長さを測定し、測定した前記長さを用いて前記被検体の推定体重を算出する測定算出部と、算出された前記推定体重を出力する出力部と、を備える。 In order to solve the conventional problem, an ultrasonic diagnostic apparatus according to an aspect of the present invention provides an ultrasonic wave transmitted to a region of the subject based on a reflected wave from the subject transmitted to the subject. Based on the intensity of the reflected wave, a three-dimensional data generation unit that generates corresponding three-dimensional data, and one of the two-dimensional cross sections constituting the three-dimensional data, Using the measurement image selection unit that is selected as a measurement reference image to be used for measuring the length of the part and the selected measurement reference image, the length of the part of the subject is measured and the measured length A measurement calculation unit that calculates the estimated body weight of the subject, and an output unit that outputs the calculated estimated body weight.
 この構成により、検査者依存性を少なくし、簡易な操作で高精度に胎児の推定体重算出を行うことができる超音波診断装置を実現することができる。 With this configuration, it is possible to realize an ultrasonic diagnostic apparatus that can reduce the examiner dependency and can calculate the estimated weight of the fetus with high accuracy with a simple operation.
 ここで、前記測定画像選択部は、前記3次元データから、閾値よりも大きい反射強度を有する前記反射波に対応する領域である高エコー領域を抽出する高エコー領域抽出部と、抽出した前記高エコー領域の3次元特徴に基づいて、前記3次元データを切断することで、前記3次元データを構成する複数の2次元断面を獲得する切断面獲得部と、前記複数の2次元断面のうちの一の2次元断面を、前記被検体の部位の長さを測定するために用いる測定基準画像として選択する基準画像選択部とを備えるとしてもよい。 Here, the measurement image selection unit is configured to extract, from the three-dimensional data, a high echo region extraction unit that extracts a high echo region that is a region corresponding to the reflected wave having a reflection intensity greater than a threshold, and the extracted high height A cutting plane acquisition unit that acquires a plurality of two-dimensional sections constituting the three-dimensional data by cutting the three-dimensional data based on a three-dimensional feature of an echo area, and among the plurality of two-dimensional sections A reference image selection unit that selects one two-dimensional cross section as a measurement reference image used for measuring the length of the region of the subject may be provided.
 この構成によって、高エコー領域の3次元特徴により切断面を限定して獲得することで、計測に適した断面を高精度に選ぶことができる。 This configuration makes it possible to select a cross-section suitable for measurement with high accuracy by obtaining a cut surface by limiting the three-dimensional features of the high echo area.
 なお、本発明は、装置として実現するだけでなく、その装置を構成する処理手段をステップとする方法として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを示す情報、データまたは信号として実現したりすることもできる。そして、それらプログラム、情報、データおよび信号は、CD-ROM等の記録媒体やインターネット等の通信媒体を介して配信してもよい。 Note that the present invention is not only realized as a device, but also realized as a method that uses processing means constituting the device as steps, or realized as a program that causes a computer to execute these steps, or information indicating the program, It can also be realized as data or signals. These programs, information, data, and signals may be distributed via a recording medium such as a CD-ROM or a communication medium such as the Internet.
 本発明によれば、検査者依存性を少なくし、簡易な操作で高精度に胎児の推定体重算出を行うことができる超音波診断装置を実現することができる。 According to the present invention, it is possible to realize an ultrasonic diagnostic apparatus that can reduce the dependence on an examiner and calculate the estimated weight of a fetus with high accuracy with a simple operation.
図1は、本発明の実施の形態1における超音波診断装置の概略を示すブロック図である。FIG. 1 is a block diagram showing an outline of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1における予め用意した胎児の頭部の3次元の特徴を示すテンプレートデータの模式図である。FIG. 2 is a schematic diagram of template data showing the three-dimensional characteristics of the fetal head prepared in advance in Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における予め用意した胎児の腹部の3次元の特徴を示すテンプレートデータの模式図である。FIG. 3 is a schematic diagram of template data showing the three-dimensional features of the fetal abdomen prepared in advance according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1における予め用意した胎児の大腿部の3次元の特徴を示すテンプレートデータの模式図である。FIG. 4 is a schematic diagram of template data showing the three-dimensional characteristics of the fetal thigh prepared in advance according to Embodiment 1 of the present invention. 図5は、胎児のBPDの計測に用いるべき計測断面の特徴を説明するための模式図である。FIG. 5 is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal BPD. 図6は、胎児の腹部のACの計測に用いるべき計測断面の特徴を説明するための模式図である。FIG. 6 is a schematic diagram for explaining characteristics of a measurement cross section to be used for AC measurement of the fetal abdomen. 図7Aは、胎児のFLの計測に用いるべき計測断面の特徴を説明するための模式図である。FIG. 7A is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal FL. 図7Bは、胎児のFLの計測に用いると誤った長さを計測してしまう計測断面を模式的に示す図である。FIG. 7B is a diagram schematically illustrating a measurement cross section in which an incorrect length is measured when used for measurement of fetal FL. 図8は、本発明の実施の形態1における超音波診断装置の測定基準画像選択処理について説明するためのフローチャートである。FIG. 8 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 図9は、本発明の実施の形態1における超音波診断装置が被検体の推定体重の算出を行うまでの処理について説明するためのフローチャートである。FIG. 9 is a flowchart for explaining processing until the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention calculates the estimated weight of the subject. 図10は、本発明の実施の形態1における胎児の頭部に対する超音波診断装置の測定基準画像選択処理を示すフローチャートである。FIG. 10 is a flowchart showing measurement reference image selection processing of the ultrasonic diagnostic apparatus for the fetal head according to Embodiment 1 of the present invention. 図11は、本発明の実施の形態1における胎児の腹部に対する超音波診断装置の測定基準画像選択処理を示すフローチャートである。FIG. 11 is a flowchart showing a measurement reference image selection process of the ultrasonic diagnostic apparatus for the abdomen of the fetus in the first embodiment of the present invention. 図12は、本発明の実施の形態1における胎児の大腿部に対する超音波診断装置の測定基準画像選択処理を示すフローチャートである。FIG. 12 is a flowchart showing the measurement reference image selection processing of the ultrasonic diagnostic apparatus for the femoral thigh in Embodiment 1 of the present invention. 図13は、本発明の実施の形態2における超音波診断装置の概略を示すブロック図である。FIG. 13 is a block diagram showing an outline of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention. 図14は、本発明の実施の形態2における超音波診断装置の測定基準画像選択処理について説明するためのフローチャートである。FIG. 14 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention. 図15は、本発明における超音波診断装置の最小構成を示す図である。FIG. 15 is a diagram showing a minimum configuration of an ultrasonic diagnostic apparatus according to the present invention. 図16は、胎児の推定体重算出式に用いられる胎児の特定部位を示す図である。FIG. 16 is a diagram illustrating a specific part of the fetus used in the estimated fetal weight calculation formula.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1における超音波診断装置の概略を示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram showing an outline of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
 図1に示す超音波診断装置1は、超音波診断装置本体100と、プローブ101と、操作入力部110と、表示部111とで構成されている。 1 includes an ultrasonic diagnostic apparatus main body 100, a probe 101, an operation input unit 110, and a display unit 111.
 超音波診断装置本体100は、制御部102と、送受信部103と、Bモード画像生成部104と、3Dデータ生成部105と、高エコー領域抽出部106、切断面獲得部107および測定基準画像選択部108で構成される測定画像選択部106aと、データ格納部109と、測定算出部112と、出力部113とを備える。 The ultrasonic diagnostic apparatus main body 100 includes a control unit 102, a transmission / reception unit 103, a B-mode image generation unit 104, a 3D data generation unit 105, a high echo area extraction unit 106, a cut surface acquisition unit 107, and a measurement reference image selection. A measurement image selection unit 106 a configured by the unit 108, a data storage unit 109, a measurement calculation unit 112, and an output unit 113.
 プローブ101は、超音波診断装置本体100に接続されており、超音波を送受信する超音波振動子が配列されている。プローブ101は、送受信部103の指示により超音波を送信し、被検体からの反射波(超音波反射信号)をエコー信号として受信する。プローブ101は、さらに、超音波振動子を走査方向の垂直方向に揺動させるモータを備えている。そのため、プローブ101を用いて被検体を走査すると、超音波振動子は揺動させながら被検体を走査するので、エコー信号から走査垂直方向における断層データを得ることができる。なお、プローブ101は、揺動機構を用いるものに限らない。例えば、超音波振動子がマトリックス上に配置された2次元アレイプローブの超音波振動子の駆動を用いてもよく、プローブ101を一定速度で平行移動させるものを用いてもよい。超音波を3次元的に送受信する手段があればよい。 The probe 101 is connected to the ultrasonic diagnostic apparatus main body 100, and ultrasonic transducers that transmit and receive ultrasonic waves are arranged. The probe 101 transmits an ultrasonic wave according to an instruction from the transmission / reception unit 103, and receives a reflected wave (ultrasonic reflection signal) from the subject as an echo signal. The probe 101 further includes a motor that swings the ultrasonic transducer in a direction perpendicular to the scanning direction. Therefore, when the subject is scanned using the probe 101, the ultrasonic transducer scans the subject while being swung, so that tomographic data in the scanning vertical direction can be obtained from the echo signal. The probe 101 is not limited to one using a swing mechanism. For example, driving of an ultrasonic transducer of a two-dimensional array probe in which an ultrasonic transducer is arranged on a matrix may be used, or a probe 101 that translates at a constant speed may be used. Any means for transmitting and receiving ultrasonic waves three-dimensionally is sufficient.
 制御部102は、各部の制御を行う。なお、以降、特に明記しないが、制御部102は、各部の動作を司り、動作タイミングなどを制御しながら各部の動作を実行する。 The control unit 102 controls each unit. Hereinafter, although not particularly specified, the control unit 102 controls the operation of each unit, and executes the operation of each unit while controlling the operation timing and the like.
 送受信部103は、プローブ101の超音波振動子を駆動させて超音波を発生させる指示信号をプローブ101に送信し、また、プローブ101から超音波反射信号を受信する。 The transmission / reception unit 103 transmits an instruction signal for driving the ultrasonic transducer of the probe 101 to generate ultrasonic waves, and receives an ultrasonic reflection signal from the probe 101.
 Bモード画像生成部104は、送受信部103が受信した超音波反射信号を基に、Bモード画像データを生成する。ここでは、超音波反射信号に対しフィルタ処理を行い、さらに包絡線検波を行って、検波された信号を対数変換、ゲイン調整を行って出力する。なお、Bモードとは、超音波反射信号の強さにしたがって、輝度を変化させて表示する方法である。Bモード画像とは、例えば1つの走査方向だけなく、プローブの走査方向にそって連続的に行うなど超音波送受信方向を換えて行うことで、超音波反射信号の強さを輝度に変化させて描かれた断層画像である。 The B-mode image generation unit 104 generates B-mode image data based on the ultrasonic reflection signal received by the transmission / reception unit 103. Here, filter processing is performed on the ultrasonic reflected signal, envelope detection is further performed, and the detected signal is logarithmically converted and gain-adjusted and output. Note that the B mode is a method of displaying by changing the luminance in accordance with the intensity of the ultrasonic reflection signal. A B-mode image is obtained by changing the intensity of an ultrasonic reflected signal to luminance by changing the ultrasonic transmission / reception direction, for example, continuously in accordance with the scanning direction of the probe as well as in one scanning direction. It is a tomographic image drawn.
 3Dデータ生成部105は、被検体に向けて送信した超音波の被検体からの超音波反射信号に基づいて、被検体の部位に対応する対象物を示す3Dデータを生成する。具体的には、3Dデータ生成部105は、Bモード画像生成部104が生成した複数のBモード画像データを元に3Dデータを生成する。さらに具体的には、超音波送受信方向を変える手法によって詳細は異なるが、3Dデータ生成部105は、複数のBモード画像の画素値を3次元座標位置に再サンプルを行い、3次元の体積を有する対象物を示すデータに再構成することで、3Dデータを生成する。 The 3D data generation unit 105 generates 3D data indicating an object corresponding to the part of the subject based on the ultrasonic reflection signal from the ultrasonic subject transmitted to the subject. Specifically, the 3D data generation unit 105 generates 3D data based on the plurality of B mode image data generated by the B mode image generation unit 104. More specifically, although the details differ depending on the method of changing the ultrasonic transmission / reception direction, the 3D data generation unit 105 resamples the pixel values of a plurality of B-mode images at the three-dimensional coordinate positions, and calculates the three-dimensional volume. 3D data is generated by reconstructing the data indicating the target object.
 測定画像選択部106aは、反射波の強度に基づいて、3Dデータを構成する複数の2次元断面のうちの一の2次元断面を、被検体の部位の長さを測定するために用いる測定基準画像として選択する。測定画像選択部106aは、上述したように、高エコー領域抽出部106、切断面獲得部107および測定基準画像選択部108で構成される。以下、具体的に説明する。 The measurement image selection unit 106a uses one of the two-dimensional cross sections constituting the 3D data based on the intensity of the reflected wave to measure the length of the part of the subject. Select as an image. As described above, the measurement image selection unit 106a includes the high echo area extraction unit 106, the cut surface acquisition unit 107, and the measurement reference image selection unit 108. This will be specifically described below.
 高エコー領域抽出部106は、3Dデータから、閾値よりも大きい反射強度を有する超音波反射信号に対応する領域である高エコー領域を抽出する。具体的には、高エコー領域抽出部106は、3Dデータ生成部105が生成した3Dデータから高エコー領域のデータのみを抽出する。ここで、高エコー領域とは、周囲よりも反射が強い領域であり、低エコー領域とは、周囲よりも反射が弱い領域をいう。そのため、適当なしきい値を設定すれば、高エコー領域抽出部106は、3Dデータ値としきい値とを比較することで、高エコー領域のデータのみを抽出することができる。ここでは、被検体が胎児であることにより、主に骨領域が高エコー領域として抽出される。 The high echo area extraction unit 106 extracts a high echo area, which is an area corresponding to an ultrasonic reflection signal having a reflection intensity larger than a threshold, from the 3D data. Specifically, the high echo area extraction unit 106 extracts only the data of the high echo area from the 3D data generated by the 3D data generation unit 105. Here, the high echo region is a region where reflection is stronger than the surroundings, and the low echo region is a region where reflection is weaker than the surroundings. Therefore, if an appropriate threshold value is set, the high echo area extraction unit 106 can extract only data in the high echo area by comparing the 3D data value with the threshold value. Here, since the subject is a fetus, the bone region is mainly extracted as a high echo region.
 なお、抽出結果が例えばゲインの変動などデータ状況に左右されるのを抑制するために、判別分析法を用いてしきい値を導出して2値化を行ってから比較することが望ましい。 It should be noted that in order to prevent the extraction result from being influenced by data conditions such as gain fluctuations, it is desirable to derive a threshold value using a discriminant analysis method and perform binarization for comparison.
 このようにして、高エコー領域抽出部106は、3Dデータから高エコー領域のデータを抽出することにより、結果として、高エコー領域(主に骨領域)の3次元特徴を抽出する。 In this way, the high echo area extraction unit 106 extracts the data of the high echo area from the 3D data, and as a result, extracts the three-dimensional features of the high echo area (mainly the bone area).
 切断面獲得部107は、抽出した高エコー領域の3次元特徴に基づいて、3Dデータの示す対象物を切断することで、3Dデータを構成する複数の2次元画像を獲得する。具体的には、切断面獲得部107は、高エコー領域抽出部106により抽出された高エコー領域の3次元特徴に基づき、3Dデータ生成部105が生成した3Dデータの示す対象物を平面で切断することにより、複数の2次元画像(切断面)を獲得する。 The cut plane acquisition unit 107 acquires a plurality of two-dimensional images constituting the 3D data by cutting the object indicated by the 3D data based on the extracted three-dimensional features of the high echo area. Specifically, the cut plane acquisition unit 107 cuts the target object indicated by the 3D data generated by the 3D data generation unit 105 with a plane based on the three-dimensional features of the high echo region extracted by the high echo region extraction unit 106. By doing so, a plurality of two-dimensional images (cut planes) are acquired.
 さらに具体的には、まず、切断面獲得部107は、高エコー領域抽出部106が抽出した高エコー領域の3次元特徴に基づいて、3Dデータの示す対象物を切断する平面である切断面の向き、および、3Dデータの示す対象物を切断する領域である切断領域を決定する。すなわち、切断面獲得部107は、3Dデータ生成部105が生成した3Dデータと予め用意した特定部位の3次元の特徴を示すテンプレートデータと比較(マッチング)し、それらが一致する場合に、テンプレートデータに対応する3Dデータの領域(3Dデータの示す対象物)を切断領域と決定し、テンプレートデータから切断面の向き(切断面の面法線の方向)を決定する。次に、切断面獲得部107は、決定した切断領域において、決定した向きで、つまり決定した面法線を有する切断面(2次元画像)を獲得する。 More specifically, first, the cutting plane acquisition unit 107 is a plane that cuts the target indicated by the 3D data based on the three-dimensional feature of the high echo area extracted by the high echo area extraction unit 106. The direction and the cutting region that is the region for cutting the object indicated by the 3D data are determined. That is, the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data indicating the three-dimensional features of the specific part prepared in advance, and if they match, the template data 3D data area (object indicated by 3D data) corresponding to is determined as a cutting area, and the direction of the cut surface (direction of the surface normal of the cut surface) is determined from the template data. Next, the cutting plane acquisition unit 107 acquires a cutting plane (two-dimensional image) having the determined direction, that is, having the determined plane normal in the determined cutting area.
 例えば、図2は、予め用意した胎児の頭部の3次元の特徴を示すテンプレートデータの模式図である。図2に示すように、胎児の頭部に対応するテンプレートデータは、頭蓋骨、硬膜および透明中隔を元に作成されており、頭蓋骨、硬膜および透明中隔の配置と3次元形状を示すデータとなっている。3次元形状を示すデータでは、頭部は、概球形状であり、頭蓋骨から構成されていることと、頭蓋骨は、弧を持つ平面が複数組み合わされた構造であることが示されている。 For example, FIG. 2 is a schematic diagram of template data showing the three-dimensional features of the fetal head prepared in advance. As shown in FIG. 2, the template data corresponding to the fetal head is created based on the skull, dura mater and transparent septum, and shows the arrangement and three-dimensional shape of the skull, dura mater and transparent septum. It is data. The data indicating the three-dimensional shape indicates that the head has a substantially spherical shape and is composed of a skull, and the skull has a structure in which a plurality of planes having arcs are combined.
 ここで、切断面獲得部107は、3Dデータ生成部105が生成した3Dデータと、テンプレートデータとを比較(マッチング)し、胎児の頭部に対応するテンプレートデータと一致度が高いとする。その場合には、切断面獲得部107は、切断領域は、透明中隔を縦断する範囲に決定し、切断面の向きを透明中隔に相当するデータに垂直な面と決定する。また、切断領域は、透明中隔を縦断する範囲に決定する。具体的には、切断面獲得部107は、胎児の頭部に対応するテンプレートデータと一致度が高い場合には、まず、高エコー領域の3次元特徴から頭蓋骨(硬膜)の正中面を抽出し、抽出した正中面に縦断された透明中隔(低エコー領域)を抽出する。そして、切断面獲得部107は、頭蓋骨(硬膜)の正中面に垂直な面を切断面の向きと決定し、切断領域は、透明中隔(低エコー領域)を縦断する範囲と決定する。このように、切断面獲得部107は、高エコーとなる骨および硬膜に基づいて、胎児の頭部の切断面を獲得する。 Here, it is assumed that the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data and has a high degree of matching with the template data corresponding to the fetal head. In that case, the cut surface acquisition unit 107 determines the cut region as a range that vertically cuts the transparent septum, and determines the direction of the cut surface as a plane perpendicular to the data corresponding to the transparent septum. Moreover, a cutting | disconnection area | region is determined to the range which cuts through a transparent septum. Specifically, when the degree of coincidence with the template data corresponding to the fetal head is high, the cut plane acquisition unit 107 first extracts the median plane of the skull (dura) from the three-dimensional features of the high echo area. Then, a transparent septum (low echo area) longitudinally cut on the extracted median plane is extracted. Then, the cutting plane acquisition unit 107 determines a plane perpendicular to the median plane of the skull (dura) as the direction of the cutting plane, and the cutting area is determined as a range in which the transparent septum (low echo area) is longitudinally cut. As described above, the cut surface acquisition unit 107 acquires a cut surface of the fetal head based on the bone and dura mater that are high echoes.
 また、例えば、図3は、本発明の実施の形態1における予め用意した胎児の腹部の3次元の特徴を示すテンプレートデータの模式図である。図3に示すように、胎児の腹部に対応するテンプレートデータは、脊椎および肋骨を元に作成されており、脊椎および肋骨の配置と3次元形状を示すデータとなっている。具体的には、腹部は、骨の集まりで柱状からなる脊椎と、複数の棒状からなり対称形状である肋骨から構成されていることを示すデータとなっている。 Also, for example, FIG. 3 is a schematic diagram of template data showing the three-dimensional features of the fetal abdomen prepared in advance in Embodiment 1 of the present invention. As shown in FIG. 3, the template data corresponding to the abdomen of the fetus is created based on the spine and ribs, and is data indicating the arrangement and three-dimensional shape of the spine and ribs. Specifically, the abdomen is data indicating that the abdomen is composed of a vertebra having a columnar shape made up of bones and a rib having a plurality of rod shapes and a symmetrical shape.
 ここで、切断面獲得部107は、3Dデータ生成部105が生成した3Dデータと、テンプレートデータとを比較(マッチング)し、胎児の腹部に対応するテンプレートデータと一致度が高いとする。その場合には、切断面獲得部107は、切断面の向きは脊椎に相当するデータに垂直な面と決定し、切断領域は脊椎のみを縦断する範囲に決定する。具体的には、切断面獲得部107は、胎児の腹部に対応するテンプレートデータと一致度が高い場合には、まず、高エコー領域の3次元特徴から脊椎に相当する柱状領域(高エコー領域)を抽出する。切断面獲得部107は、抽出した柱状領域(高エコー領域)に垂直な面を切断面の向きと決定し、切断領域は脊椎のみを縦断する範囲に決定する。このように、切断面獲得部107は、高エコーとなる骨および硬膜に基づいて、胎児の頭部の切断面を獲得する。 Here, it is assumed that the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data and has a high degree of matching with the template data corresponding to the abdomen of the fetus. In that case, the cutting plane acquisition unit 107 determines the direction of the cutting plane as a plane perpendicular to the data corresponding to the spine, and determines the cutting area as a range that cuts only the spine. Specifically, when the degree of coincidence with the template data corresponding to the abdomen of the fetus is high, the cut surface acquisition unit 107 first has a columnar region (high echo region) corresponding to the spine from the three-dimensional feature of the high echo region. To extract. The cut surface acquisition unit 107 determines a plane perpendicular to the extracted columnar region (high echo region) as the direction of the cut surface, and the cut region is determined as a range in which only the spine is vertically cut. As described above, the cut surface acquisition unit 107 acquires a cut surface of the fetal head based on the bone and dura mater that are high echoes.
 また、例えば、図4は、本発明の実施の形態1における予め用意した胎児の大腿部の3次元の特徴を示すテンプレートデータの模式図である。図4に示すように、胎児の大腿部に対応するテンプレートデータは、大腿骨および骨盤を元に作成されており、大腿骨および骨盤の配置と3次元形状を示すデータとなっている。具体的には、大腿部は、棒状であり、股関節と連結している構造であることを示すデータとなっている。 Also, for example, FIG. 4 is a schematic diagram of template data showing the three-dimensional features of the fetal thigh prepared in advance in Embodiment 1 of the present invention. As shown in FIG. 4, the template data corresponding to the femur of the fetus is created based on the femur and pelvis, and is data indicating the arrangement and three-dimensional shape of the femur and pelvis. Specifically, the thigh has a rod shape and is data indicating a structure connected to the hip joint.
 ここで、切断面獲得部107は、3Dデータ生成部105が生成した3Dデータと、テンプレートデータとを比較(マッチング)し、胎児の大腿部に対応するテンプレートデータと一致度が高いとする。その場合には、切断面獲得部107は、切断面の向きは大腿骨に相当するデータを横断する面と決定し、切断範囲は大腿骨に相当するデータを中心として180度の範囲に決定する。すなわち、切断面獲得部107は、胎児の大腿部に対応するテンプレートデータと一致度が高い場合には、まず、高エコー領域の3次元特徴から大腿骨に相当する棒状領域(高エコー領域)を抽出する。切断面獲得部107は、抽出した棒状領域(高エコー領域)を横断する面を切断面の向きと決定し、切断領域は、棒状領域(高エコー領域)を横断する面であって、上記切断面と180度の範囲の面を有する領域と決定する。このように、切断面獲得部107は、高エコーとなる骨に基づいて、胎児の頭部の切断面を獲得する。 Here, it is assumed that the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data and has a high degree of coincidence with the template data corresponding to the femoral thigh. In that case, the cutting plane acquisition unit 107 determines the direction of the cutting plane as a plane that crosses the data corresponding to the femur, and the cutting range is determined as a range of 180 degrees centering on the data corresponding to the femur. . In other words, when the degree of coincidence with the template data corresponding to the femur of the fetus is high, the cut surface acquisition unit 107 firstly forms a rod-like region (high echo region) corresponding to the femur from the three-dimensional features of the high echo region. To extract. The cutting plane acquisition unit 107 determines the plane crossing the extracted bar-shaped area (high echo area) as the direction of the cutting plane, and the cutting area is a plane crossing the bar-shaped area (high echo area), A region having a surface and a surface in a range of 180 degrees is determined. In this manner, the cut surface acquisition unit 107 acquires a cut surface of the fetal head based on the bone that becomes a high echo.
 以上のように、切断面獲得部107は、切断領域と向きとを決定し、決定した切断領域において、決定した向きで複数の切断面(2次元画像)を獲得する。言い換えると、切断面獲得部107は、抽出された高エコー領域の3次元形状と配置とに基づいて、3Dデータの示す対象物を切断する2次元画像の向きを決定し、決定した向きで複数の2次元画像を獲得する。 As described above, the cut surface acquisition unit 107 determines the cut region and the direction, and acquires a plurality of cut surfaces (two-dimensional images) in the determined direction in the determined cut region. In other words, the cutting plane acquisition unit 107 determines the direction of the two-dimensional image for cutting the object indicated by the 3D data based on the extracted three-dimensional shape and arrangement of the high echo area, and the plurality of determined directions. To obtain a two-dimensional image.
 測定基準画像選択部108は、複数の2次元画像のうちの一の2次元画像を、被検体の部位の長さを測定するため用いる測定基準画像として選択する。具体的には、測定基準画像選択部108は、複数の2次元画像それぞれと、測定基準画像が示す輝度情報の空間分布の特徴との類似度を評価することにより、複数の2次元画像のうちの一の2次元画像を、測定基準画像として選択する。つまり、測定基準画像選択部108は、切断面獲得部107が獲得した複数の切断面画像を評価し、このうちで最も測定に適した画像を測定基準画像として選択する。この評価には、輝度の空間分布を利用するのが好ましい。 The measurement reference image selection unit 108 selects one of the two-dimensional images as a measurement reference image to be used for measuring the length of the part of the subject. Specifically, the measurement reference image selection unit 108 evaluates the degree of similarity between each of the plurality of two-dimensional images and the feature of the spatial distribution of the luminance information indicated by the measurement reference image, so that among the plurality of two-dimensional images. Is selected as a measurement reference image. That is, the measurement reference image selection unit 108 evaluates a plurality of cut surface images acquired by the cut surface acquisition unit 107, and selects an image most suitable for measurement as a measurement reference image. For this evaluation, it is preferable to use a spatial distribution of luminance.
 さらに具体的には、まず、測定基準画像選択部108は、予め、統計的に測定基準画像を特徴付ける輝度空間分布特徴を学習しておき、切断面獲得部107が獲得した複数の切断面画像のうちで最も近しい輝度空間分布特徴を持つ切断面画像を、測定基準画像として選択する。本実施の形態では、Haar-like特徴を基に予め学習を行った結果と、切断面獲得部107が獲得した切断面に対して特徴量算出を行った結果とを比較することで、測定基準画像との類似度を測る。 More specifically, first, the measurement reference image selection unit 108 learns in advance the luminance space distribution characteristics that statistically characterize the measurement reference image, and the plurality of cut surface images acquired by the cut surface acquisition unit 107 are obtained. The cut surface image having the closest luminance space distribution feature is selected as the measurement reference image. In the present embodiment, the result of learning in advance based on the Haar-like feature is compared with the result of the feature amount calculation performed on the cut surface acquired by the cut surface acquisition unit 107, thereby obtaining a measurement standard. Measure the similarity to the image.
 ここで、胎児の推定体重算出式に用いられる胎児の特定部位すなわち頭部、腹部、および大腿部の測定基準画像の決定方法について説明する。 Here, a method for determining a measurement reference image of a specific part of the fetus, that is, the head, abdomen, and thighs used in the estimated fetal weight calculation formula will be described.
 図5は、胎児のBPDの計測に用いるべき計測断面の特徴を説明するための模式図である。 FIG. 5 is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal BPD.
 胎児のBPD(児頭大横径)を正確に計測するために、図5に示すような硬膜および透明中隔の配置を有する頭蓋骨の断面でBPDを計測することが好ましい。すなわち、頭蓋骨(硬膜)の正中面に垂直な断面であって、正中線が描かれており、描かれた正中線が透明中隔を横断している配置を示す断面で計測されることが好ましい。 In order to accurately measure the fetal BPD (child head large lateral diameter), it is preferable to measure the BPD in the cross section of the skull having the arrangement of the dura mater and the transparent septum as shown in FIG. That is, the cross-section is perpendicular to the median plane of the skull (dura), the midline is drawn, and the cross-section showing the arrangement where the drawn midline crosses the transparent septum can be measured. preferable.
 したがって、測定基準画像選択部108は、切断面獲得部107が獲得した複数の切断面画像を評価し、このうちで最も図5に示す特徴に対応した輝度空間分布特徴を有する計測断面を測定基準画像として選択する。具体的には、測定基準画像選択部108は、切断面獲得部107が抽出した正中面に垂直な切断面であって、抽出した低エコー領域(透明中隔相当)を横断し、正中線(高エコー領域)が描出されている切断面を測定基準画像として選択する。 Therefore, the measurement reference image selection unit 108 evaluates the plurality of cut surface images acquired by the cut surface acquisition unit 107, and among these, the measurement cross section having the luminance space distribution feature corresponding to the feature shown in FIG. Select as an image. Specifically, the measurement reference image selection unit 108 is a cut surface perpendicular to the median plane extracted by the cut surface acquisition unit 107, traverses the extracted low echo area (equivalent to a transparent septum), and passes the median line ( A cut surface on which a high echo area) is drawn is selected as a measurement reference image.
 このようにして、測定基準画像選択部108は、高エコーとなる骨および硬膜等に基づいて、測定基準画像を選択する。 In this way, the measurement reference image selection unit 108 selects the measurement reference image based on the bone, dura mater, and the like that become high echoes.
 なお、測定基準画像は、図5に示すように、描かれた正中線がさらに四丘体槽を横断している配置を示す切断断面画面であるとしてもよい。 Note that, as shown in FIG. 5, the measurement reference image may be a cut section screen showing an arrangement in which the drawn median line further crosses the four-hill body tank.
 図6は、胎児のACの計測に用いるべき計測断面の特徴を説明するための模式図である。 FIG. 6 is a schematic diagram for explaining characteristics of a measurement cross section to be used for fetal AC measurement.
 胎児のAC(腹部周囲長)を正確に計測するために、図6に示すような脊椎、臍静脈および胃胞の配置を有する腹部の断面でACを計測することが好ましい。すなわち、脊椎(腹部大動脈の代わり)に略垂直な断面であって、脊椎の略垂直の方向に臍静脈(胆内臍静脈)が描かれており、描かれた臍静脈の近傍に、塊状の胃胞がある配置を示す断面で計測されることが好ましい。 In order to accurately measure the AC (abdominal circumference) of the fetus, it is preferable to measure the AC in the cross section of the abdomen having the arrangement of the spine, umbilical vein and gastric vesicle as shown in FIG. That is, it is a cross section substantially perpendicular to the spine (instead of the abdominal aorta), and the umbilical vein (biliary umbilical vein) is drawn in a direction substantially perpendicular to the spine. It is preferable to measure with a cross section showing the arrangement of the gastric vesicle.
 したがって、測定基準画像選択部108は、切断面獲得部107が獲得した複数の切断面画像を評価し、このうちで最も図6に示す特徴に対応した輝度空間分布特徴を有する計測断面を測定基準画像として選択する。具体的には、測定基準画像選択部108は、切断面獲得部107が抽出した高エコー領域(柱状領域)に垂直な切断面であって、高エコー領域(柱状領域)の略垂直の方向に低エコー領域(臍静脈)が配置され、その低エコー領域(臍静脈)の近傍に、塊状の低エコー領域(胃胞)が配置されている切断面を測定基準画像として選択する。 Therefore, the measurement reference image selection unit 108 evaluates the plurality of cut surface images acquired by the cut surface acquisition unit 107, and among these, the measurement cross section having the luminance spatial distribution feature corresponding to the feature shown in FIG. Select as an image. Specifically, the measurement reference image selection unit 108 is a cut surface perpendicular to the high echo region (columnar region) extracted by the cut surface acquisition unit 107, and is substantially perpendicular to the high echo region (columnar region). A cut surface in which a low echo area (umbilical vein) is arranged and a massive low echo area (gastric follicle) is arranged in the vicinity of the low echo area (umbilical vein) is selected as a measurement reference image.
 このようにして、測定基準画像選択部108は、高エコーとなる骨、低エコーとなる血管、胃等とに基づいて、測定基準画像を選択する。 In this way, the measurement reference image selection unit 108 selects the measurement reference image based on the bone that becomes high echo, the blood vessel that becomes low echo, the stomach, and the like.
 なお、高エコー領域として抽出できる脊椎により、切断面を選択するのが好ましいが、低エコー領域として抽出される腹部大動脈断により切断面を選択してもよい。 It should be noted that the cut surface is preferably selected depending on the spine that can be extracted as the high echo region, but the cut surface may be selected based on the abdominal aortic section extracted as the low echo region.
 図7Aは、胎児のFLの計測に用いるべき計測断面の特徴を説明するための模式図である。図7Bは、胎児のFLの計測に用いると誤った長さを計測してしまう計測断面を模式的に示す図である。 FIG. 7A is a schematic diagram for explaining characteristics of a measurement cross section to be used for measurement of fetal FL. FIG. 7B is a diagram schematically illustrating a measurement cross section in which an incorrect length is measured when used for measurement of fetal FL.
 胎児のFL(大腿骨長)を正確に計測するために、図7Aに示す大腿骨の長さ(FL)を計測することが好ましい。すなわち、大腿骨を横断する断面で計測されることが好ましい。 In order to accurately measure the fetal FL (femur length), it is preferable to measure the femur length (FL) shown in FIG. 7A. That is, it is preferable to measure the cross section across the femur.
 したがって、測定基準画像選択部108は、切断面獲得部107が獲得した複数の切断面画像を評価し、このうちで最も図7Aに示す特徴に対応した輝度空間分布特徴を有する計測断面を測定基準画像として選択する。具体的には、測定基準画像選択部108は、切断面獲得部107が抽出した高エコー領域(棒状領域)を横断する切断面すなわち棒の長さ方向における切断面を測定基準画像として選択する。 Therefore, the measurement reference image selection unit 108 evaluates the plurality of cut surface images acquired by the cut surface acquisition unit 107, and among these, the measurement cross section having the luminance space distribution feature corresponding to the feature shown in FIG. Select as an image. Specifically, the measurement reference image selection unit 108 selects, as a measurement reference image, a cut surface that traverses the high echo region (bar-shaped region) extracted by the cut surface acquisition unit 107, that is, a cut surface in the length direction of the bar.
 このように、測定基準画像選択部108は、高エコーとなる骨に基づいて、測定基準画像を選択する。ここでも、2次元画像(Bモード画像)でなく、3Dデータから切断面を評価して測定基準画像を決定しているので、図7Bに示すように誤った長さが計測できる断面でなく、図7Aに示すように正しい長さが計測できる断面を測定基準画像として選択することができる。 As described above, the measurement reference image selection unit 108 selects a measurement reference image based on the bone that becomes a high echo. Here, since the measurement reference image is determined by evaluating the cut surface from the 3D data instead of the two-dimensional image (B-mode image), it is not a cross section in which an incorrect length can be measured as shown in FIG. As shown in FIG. 7A, a cross section capable of measuring the correct length can be selected as a measurement reference image.
 データ格納部109は、Bモード画像生成部104が生成する複数のBモード画像、3Dデータ生成部105が生成する3Dデータ、高エコー領域抽出部106が抽出する高エコー領域データ、測定基準画像選択部108により選択された測定基準画像が格納される。 The data storage unit 109 includes a plurality of B-mode images generated by the B-mode image generation unit 104, 3D data generated by the 3D data generation unit 105, high-echo region data extracted by the high-echo region extraction unit 106, and measurement reference image selection The measurement reference image selected by the unit 108 is stored.
 操作入力部110は、操作者の指示が入力される。具体的には、操作入力部110は、ボタン、キーボード、マウスなどからなり、これらを通して検査者の指示を入力する。 The operation input unit 110 receives an operator instruction. Specifically, the operation input unit 110 includes buttons, a keyboard, a mouse, and the like, and inputs an inspector's instruction through them.
 表示部111は、LCDなどの表示装置からなり、Bモード画像、3Dデータの示す対象物、切断面などを表示する。 The display unit 111 includes a display device such as an LCD, and displays a B-mode image, an object indicated by 3D data, a cut surface, and the like.
 測定算出部112は、選択された測定基準画像を用いて、被検体の部位の長さを測定し、測定した前記長さを用いて被検体の推定体重を算出する。具体的には、測定算出部112は、測定基準画像選択部108により選択された測定基準画像を用いて、被検体の部位の長さを測定する。測定算出部112は、測定した被検体の部位の長さから、被検体の推定体重を算出する。 The measurement calculation unit 112 measures the length of the site of the subject using the selected measurement reference image, and calculates the estimated weight of the subject using the measured length. Specifically, the measurement calculation unit 112 measures the length of the region of the subject using the measurement reference image selected by the measurement reference image selection unit 108. The measurement calculation unit 112 calculates the estimated body weight of the subject from the measured length of the site of the subject.
 出力部113は、算出された推定体重を出力する。具体的には、出力部113は、測定算出部112で算出された推定体重を出力することで、表示部111に算出された推定体重をさせる。 The output unit 113 outputs the calculated estimated weight. Specifically, the output unit 113 outputs the estimated weight calculated by the measurement calculation unit 112 to cause the display unit 111 to calculate the estimated weight.
 以上のように実施の形態1における超音波診断装置1は構成される。 As described above, the ultrasonic diagnostic apparatus 1 in the first embodiment is configured.
 次に、図8を用いて、超音波診断装置1における測定基準画像選択処理について説明する。 Next, the measurement reference image selection process in the ultrasonic diagnostic apparatus 1 will be described with reference to FIG.
 図8は、本発明の実施の形態1における超音波診断装置の測定基準画像選択処理について説明するためのフローチャートである。 FIG. 8 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
 まず、Bモード画像生成部104は、複数のBモード画像データを生成する(ステップS10)。 First, the B mode image generation unit 104 generates a plurality of B mode image data (step S10).
 具体的には、送受信部103がプローブ101を通じて被検体に超音波を発信し、プローブ101を通じてその反射波を受信する。そして、Bモード画像生成部104は、送受信部103が受信した超音波反射信号をデータ処理することで、1枚のBモード画像を生成し、生成したBモード画像をデータ格納部109に保存する。このような処理を、超音波送受信方向を変えて行うことで、複数のBモード画像を生成し、生成した複数のBモード画像をデータ格納部109に保存する。なお、超音波送受信方向を変える手法としては、上述したように、プローブ101の揺動機構を用いるもの、2次元アレイプローブの超音波振動子の駆動によるもの、プローブ101を一定速度で平行移動させるもの、などがある。 Specifically, the transmission / reception unit 103 transmits an ultrasonic wave to the subject through the probe 101 and receives the reflected wave through the probe 101. Then, the B-mode image generation unit 104 generates one B-mode image by performing data processing on the ultrasonic reflection signal received by the transmission / reception unit 103 and stores the generated B-mode image in the data storage unit 109. . By performing such processing by changing the ultrasonic transmission / reception direction, a plurality of B-mode images are generated, and the generated plurality of B-mode images are stored in the data storage unit 109. As described above, the ultrasonic transmission / reception direction can be changed by using the swing mechanism of the probe 101, by driving the ultrasonic transducer of the two-dimensional array probe, or by moving the probe 101 in parallel at a constant speed. There are things, etc.
 次に、3Dデータ生成部105は、複数のBモード画像を元に3Dデータを生成する(ステップS20)。具体的には、超音波送受信方向を変える手法によって詳細は異なるが、3Dデータ生成部105は、Bモード画像生成部104が生成した複数のBモード画像の画素値を3次元座標位置に再サンプリングを行い、3次元の体積を有する対象物を示すデータに再構成することで、3Dデータを生成する。 Next, the 3D data generation unit 105 generates 3D data based on a plurality of B-mode images (step S20). Specifically, although the details differ depending on the method of changing the ultrasonic transmission / reception direction, the 3D data generation unit 105 resamples the pixel values of the plurality of B mode images generated by the B mode image generation unit 104 to the three-dimensional coordinate positions. And 3D data is generated by reconstructing the data indicating an object having a three-dimensional volume.
 次に、高エコー領域抽出部106は、3Dデータ生成部105が生成した3Dデータから高エコー領域を抽出する。結果として、高エコー領域抽出部106は、3Dデータから高エコー領域の3次元特徴を抽出する(ステップS30)。 Next, the high echo area extraction unit 106 extracts a high echo area from the 3D data generated by the 3D data generation unit 105. As a result, the high echo area extraction unit 106 extracts a three-dimensional feature of the high echo area from the 3D data (step S30).
 次に、切断面獲得部107は、高エコー領域の3次元特徴に基づき、複数の切断面を獲得する(ステップS40)。具体的には、切断面獲得部107は、3Dデータ生成部105が生成した3Dデータと予め用意した特定部位の3次元の特徴を示すテンプレートデータと比較(マッチング)し、それらが一致する(類似度が高い)場合に、テンプレートデータに対応する3Dデータの領域(3Dデータの示す対象物)を切断領域と決定し、また、テンプレートデータから切断面の向き(切断面の法線方向)を決定する。そして、切断面獲得部107は、決定した切断領域において、決定した向きで複数の切断面(2次元画像)を獲得する。 Next, the cut surface acquisition unit 107 acquires a plurality of cut surfaces based on the three-dimensional feature of the high echo area (step S40). Specifically, the cut surface acquisition unit 107 compares (matches) the 3D data generated by the 3D data generation unit 105 with the template data indicating the three-dimensional features of the specific part prepared in advance, and they match (similarity). The 3D data area corresponding to the template data (the object indicated by the 3D data) is determined as the cutting area, and the direction of the cutting plane (the normal direction of the cutting plane) is determined from the template data. To do. Then, the cut surface acquisition unit 107 acquires a plurality of cut surfaces (two-dimensional images) in the determined direction in the determined cutting region.
 次に、測定基準画像選択部108は、切断面獲得部107が獲得した複数の切断面を評価する(ステップS50)。そして、測定基準画像選択部108は、切断面獲得部107が獲得した全ての切断面の評価を終えたら(ステップS60)、最高の評価を得た断面を測定基準画像として選択する(ステップS70)。 Next, the measurement reference image selection unit 108 evaluates a plurality of cut surfaces acquired by the cut surface acquisition unit 107 (step S50). When the measurement reference image selection unit 108 finishes evaluating all the cut surfaces acquired by the cut surface acquisition unit 107 (step S60), the measurement reference image is selected as the measurement reference image (step S70). .
 具体的には、測定基準画像選択部108は、予め学習した、統計的に測定基準画像を特徴付ける輝度空間分布特徴と、切断面獲得部107が獲得した切断面の特徴とを比較することで、測定基準画像との類似度を測る。そして、測定基準画像選択部108は、切断面獲得部107が獲得した複数の切断面画像のうちで最も近しい輝度空間分布特徴を持つ切断面画像を、測定基準画像として選択する。 Specifically, the measurement reference image selection unit 108 compares the luminance space distribution feature that has been learned in advance and statistically characterizes the measurement reference image with the feature of the cut surface acquired by the cut surface acquisition unit 107. Measure the similarity with the reference image. Then, the measurement reference image selection unit 108 selects, as a measurement reference image, a cut surface image having the closest brightness space distribution feature among the plurality of cut surface images acquired by the cut surface acquisition unit 107.
 なお、測定基準画像選択部108は、切断面獲得部107が獲得した切断面の特徴と測定基準画像との類似度が低い場合には、ステップS40に戻る。そして、切断面獲得部107は、再度、複数の切断面を獲得して、ステップS50へと進む。 The measurement reference image selection unit 108 returns to step S40 when the similarity between the feature of the cut surface acquired by the cut surface acquisition unit 107 and the measurement reference image is low. Then, the cutting plane acquisition unit 107 acquires a plurality of cutting planes again, and proceeds to step S50.
 最後に、測定基準画像選択部108は、選択した測定基準画像をデータ格納部109へ格納する(ステップS80)。 Finally, the measurement reference image selection unit 108 stores the selected measurement reference image in the data storage unit 109 (step S80).
 以上のように、超音波診断装置1は、測定基準画像選択処理を行う。具体的には、超音波診断装置1は、高エコー領域となる骨領域の3次元特徴により切断面を限定しながら獲得することで、計測に適した断面を高精度に決定する。 As described above, the ultrasonic diagnostic apparatus 1 performs the measurement reference image selection process. Specifically, the ultrasonic diagnostic apparatus 1 obtains a cross-section suitable for measurement with high accuracy by acquiring the cut surface by limiting the three-dimensional features of the bone region that becomes a high echo region.
 なお、ステップS30において、検査者は、高エコー領域抽出部106が抽出した高エコー領域の3次元特徴(高エコー領域の3次元形状および配置情報)に基づき、被検体の部位を判断するとしてもよい。その場合、検査者は、操作入力部110を介して、切断面獲得部107に、例えば、3Dデータ生成部105が生成した3Dデータが例えば大腿部である等の特定部位のデータであること通知し、3Dデータ生成部105が生成した3Dデータと比較(マッチング)する予め特定部位の3Dデータを絞ればよい。このようにすれば、ステップS40においては、切断面獲得部107が行う処理の効率を高めることができる。また、ステップ50においては、測定基準画像選択部108が行う評価の効率を高めることができ、誤評価の可能性を減らすことができる。 In step S30, the examiner may determine the region of the subject based on the three-dimensional features (three-dimensional shape and arrangement information of the high echo region) of the high echo region extracted by the high echo region extraction unit 106. Good. In that case, the inspector should send data to a specific part such as 3D data generated by the 3D data generation unit 105 to the cut surface acquisition unit 107 via the operation input unit 110, for example, the thigh. The 3D data of the specific part may be narrowed down in advance to be notified and compared (matched) with the 3D data generated by the 3D data generation unit 105. In this way, in step S40, the efficiency of the process performed by the cut surface acquisition unit 107 can be increased. In step 50, the efficiency of evaluation performed by the measurement reference image selection unit 108 can be increased, and the possibility of erroneous evaluation can be reduced.
 以上のようにして、超音波診断装置1は、測定基準画像選択処理を行う。それにより、超音波診断装置に習熟していない人でも、確実に正確な測定基準画面を得ることができ、その測定基準画面から特定部位の長さを正確に測定することができる。 As described above, the ultrasonic diagnostic apparatus 1 performs the measurement reference image selection process. Thereby, even a person who is not familiar with the ultrasonic diagnostic apparatus can surely obtain an accurate measurement reference screen, and can accurately measure the length of a specific part from the measurement reference screen.
 続いて、超音波診断装置1の全処理すなわち、測定基準選択処理を含み超音波診断装置1が被検体の推定体重の算出を行うまでの処理について説明する。 Subsequently, the entire process of the ultrasonic diagnostic apparatus 1, that is, the process including the measurement reference selection process until the ultrasonic diagnostic apparatus 1 calculates the estimated body weight of the subject will be described.
 図9は、本発明の実施の形態1における超音波診断装置が被検体の推定体重の算出を行うまでの処理について説明するためのフローチャートである。 FIG. 9 is a flowchart for explaining processing until the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention calculates the estimated weight of the subject.
 まず、超音波診断装置1は、被検体に向けて送信した超音波の被検体からの反射波に基づいて、被検体の部位に対応する3次元データを生成する(S110)。具体的には、超音波診断装置1は、図8で説明したS10およびS20の処理を行うが、S10およびS20の処理については、上述したのでここでの説明を省略する。 First, the ultrasound diagnostic apparatus 1 generates three-dimensional data corresponding to the part of the subject based on the reflected wave from the subject of the ultrasonic wave transmitted to the subject (S110). Specifically, the ultrasound diagnostic apparatus 1 performs the processes of S10 and S20 described with reference to FIG. 8, but since the processes of S10 and S20 have been described above, the description thereof is omitted here.
 次に、超音波診断装置1は、被検体からの反射波の強度に基づいて、3Dデータを構成する複数の2次元断面のうちの一の2次元断面を、被検体の部位の長さを測定するために用いる測定基準画像として選択する(S130)。具体的には、超音波診断装置1は、図8で説明したS30~S80の処理を行うがS30~S80の処理については、上述したのでここでの説明を省略する。 Next, the ultrasonic diagnostic apparatus 1 determines one of the two-dimensional cross sections of the plurality of two-dimensional cross sections constituting the 3D data based on the intensity of the reflected wave from the subject, and sets the length of the site of the subject. A measurement reference image used for measurement is selected (S130). Specifically, the ultrasound diagnostic apparatus 1 performs the processing of S30 to S80 described with reference to FIG. 8, but since the processing of S30 to S80 has been described above, description thereof is omitted here.
 なお、S110およびS130において、より詳細には、被検体の部位として胎児の頭部、腹部および大腿部に対応する3次元データを生成する。 In S110 and S130, more specifically, three-dimensional data corresponding to the head, abdomen, and thighs of the fetus is generated as the site of the subject.
 ここで、図10は、本発明の実施の形態1における胎児の頭部に対する超音波診断装置の測定基準画像選択処理を示すフローチャートである。図11は、本発明の実施の形態1における胎児の腹部に対する超音波診断装置の測定基準画像選択処理を示すフローチャートである。図12は、本発明の実施の形態1における胎児の大腿部に対する超音波診断装置の測定基準画像選択処理を示すフローチャートである。図8と同様の要素には同一の符号を付しており、詳細な説明は省略する。 Here, FIG. 10 is a flowchart showing the measurement reference image selection processing of the ultrasonic diagnostic apparatus for the fetal head in Embodiment 1 of the present invention. FIG. 11 is a flowchart showing a measurement reference image selection process of the ultrasonic diagnostic apparatus for the abdomen of the fetus in the first embodiment of the present invention. FIG. 12 is a flowchart showing the measurement reference image selection processing of the ultrasonic diagnostic apparatus for the femoral thigh in Embodiment 1 of the present invention. Elements similar to those in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図10に示すように、S110で生成した3Dデータが胎児の頭部に対応する場合に、S31で頭部に対応する高エコー領域の3次元特徴を抽出する。その後、S71で胎児の頭部の長さを測定するために用いる測定基準画像を選択して、S81で、その測定基準画像を登録する。なお、S31~S81は、図8のS30~S80に対応するため詳細な説明は省略する。また、図11に示すように、S110で生成した3Dデータが胎児の腹部に対応する場合に、S32で腹部に対応する高エコー領域の3次元特徴を抽出する。その後、S72で胎児の腹部の長さを測定するために用いる測定基準画像を選択して、S82で、その測定基準画像を登録する。なお、S32~S82は、図8のS30~S80に対応するため詳細な説明は省略する。また、図12に示すように、S110で生成した3Dデータが胎児の大腿部に対応する場合に、S33で大腿部に対応する高エコー領域の3次元特徴を抽出する。その後、S73で胎児の大腿部の長さを測定するために用いる測定基準画像を選択して、S83で、その測定基準画像を登録する。なお、S33~S83は、図8のS30~S80に対応するため詳細な説明は省略する。 As shown in FIG. 10, when the 3D data generated in S110 corresponds to the fetal head, the three-dimensional features of the high echo area corresponding to the head are extracted in S31. Thereafter, a measurement reference image used for measuring the length of the fetal head is selected in S71, and the measurement reference image is registered in S81. S31 to S81 correspond to S30 to S80 in FIG. As shown in FIG. 11, when the 3D data generated in S110 corresponds to the abdomen of the fetus, the three-dimensional features of the high echo area corresponding to the abdomen are extracted in S32. Thereafter, a measurement reference image used for measuring the length of the abdomen of the fetus is selected in S72, and the measurement reference image is registered in S82. S32 to S82 correspond to S30 to S80 in FIG. As shown in FIG. 12, when the 3D data generated in S110 corresponds to the femoral thigh, a three-dimensional feature of the high echo area corresponding to the thigh is extracted in S33. Thereafter, a measurement reference image used for measuring the femoral length of the fetus is selected in S73, and the measurement reference image is registered in S83. S33 to S83 correspond to S30 to S80 in FIG.
 次に、超音波診断装置1は、S130において選択された測定基準画像を用いて、被検体の部位の長さを測定し、測定した長さに基づいて被検体の推定体重を算出する(S150)。 Next, the ultrasound diagnostic apparatus 1 measures the length of the region of the subject using the measurement reference image selected in S130, and calculates the estimated weight of the subject based on the measured length (S150). ).
 具体的には、測定算出部112は、選択された測定基準画像を用いて、被検体の部位の長さを測定し、測定した長さを用いて被検体の推定体重を算出する。 Specifically, the measurement calculation unit 112 measures the length of the site of the subject using the selected measurement reference image, and calculates the estimated body weight of the subject using the measured length.
 次に、超音波診断装置1は、算出された推定体重を出力する(S170)。 Next, the ultrasonic diagnostic apparatus 1 outputs the calculated estimated weight (S170).
 以上のようにして、超音波診断装置1は被検体の推定体重の算出を行う。 As described above, the ultrasonic diagnostic apparatus 1 calculates the estimated weight of the subject.
 以上、本実施の形態によれば、検査者依存性を少なくし、簡易な操作で高精度に胎児の推定体重算出を行うことができる超音波診断装置を実現できる。 As described above, according to the present embodiment, it is possible to realize an ultrasonic diagnostic apparatus that can reduce the examiner dependency and can calculate the estimated weight of the fetus with high accuracy with a simple operation.
 (実施の形態2)
 図13は、本発明の実施の形態2における超音波診断装置の概略を示すブロック図である。図13において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 13 is a block diagram showing an outline of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention. In FIG. 13, the same components as those in FIG.
 図13に示す超音波診断装置2は、超音波診断装置本体200と、プローブ101と、操作入力部110と、表示部111とで構成されている。図13に示す超音波診断装置本体200は、図1に示す超音波診断装置本体100に対して、被検体部位特定部212の構成が異なる。つまり、超音波診断装置本体200は、図1の構成に加え、被検体部位特定部212を有する。 The ultrasonic diagnostic apparatus 2 shown in FIG. 13 includes an ultrasonic diagnostic apparatus main body 200, a probe 101, an operation input unit 110, and a display unit 111. The ultrasonic diagnostic apparatus main body 200 shown in FIG. 13 differs from the ultrasonic diagnostic apparatus main body 100 shown in FIG. That is, the ultrasonic diagnostic apparatus main body 200 includes a subject region specifying unit 212 in addition to the configuration of FIG.
 被検体部位特定部212は、3Dデータの示す対象物に対応する被検体の部位を特定する。具体的には、被検体部位特定部212は、高エコー領域抽出部106が抽出した高エコー領域の3次元特徴(高エコー領域の3次元形状および配置情報)に基づき、3Dデータ生成部105が生成した3Dデータの示す対象物が例えば頭部、腹部または大腿部などの部位であることを判定し、観察中の被検体(3Dデータ)の部位を特定する。 The subject part specifying unit 212 specifies the part of the subject corresponding to the object indicated by the 3D data. Specifically, the subject region specifying unit 212 uses the 3D data generation unit 105 based on the three-dimensional features (three-dimensional shape and arrangement information of the high echo region) of the high echo region extracted by the high echo region extraction unit 106. It is determined that the object indicated by the generated 3D data is, for example, a part such as the head, abdomen, or thigh, and the part of the subject (3D data) being observed is specified.
 例えば、被検体部位特定部212は、3Dデータ生成部105が生成した3Dデータと、予め定めた頭蓋骨相当の特徴を有する胎児の頭部に対応するテンプレートデータ(例えば図2)と比較し、両者が近い特徴をもつ(類似する)場合に、その3Dデータの示す対象物は頭部であると判定する。また、被検体部位特定部212は、3Dデータ生成部105が生成した3Dデータと、予め定めた脊椎相当の特徴を有する胎児の腹部に対応するテンプレートデータ(例えば図3)と比較し、両者が近い特徴をもつ(類似する)場合に、その3Dデータの示す対象物は腹部であると判定する。同様に、被検体部位特定部212は、3Dデータ生成部105が生成した3Dデータと、予め定めた大腿骨相当の特徴を有する胎児の大腿部に対応するテンプレートデータ(例えば図4)と比較し、両者が近い特徴をもつ(類似する)場合に、その3Dデータの示す対象物は大腿部であると判定すると判定する。 For example, the subject region specifying unit 212 compares the 3D data generated by the 3D data generation unit 105 with the template data (for example, FIG. 2) corresponding to a fetal head having characteristics equivalent to a predetermined skull. Is similar (similar), the object indicated by the 3D data is determined to be the head. Further, the subject region specifying unit 212 compares the 3D data generated by the 3D data generation unit 105 with the template data (for example, FIG. 3) corresponding to the abdomen of a fetus having a characteristic equivalent to a predetermined spine. When it has a similar feature (similar), it is determined that the object indicated by the 3D data is the abdomen. Similarly, the subject region specifying unit 212 compares the 3D data generated by the 3D data generation unit 105 with the template data (for example, FIG. 4) corresponding to the femur of the fetus having characteristics equivalent to the predetermined femur. When the two have similar features (similar), it is determined that the object indicated by the 3D data is determined to be the thigh.
 以上のように実施の形態2における超音波診断装置2は構成される。 As described above, the ultrasonic diagnostic apparatus 2 in the second embodiment is configured.
 図14は、本発明の実施の形態2における超音波診断装置の測定基準画像選択処理について説明するためのフローチャートである。図8と同じ要素については同じ符号を用い、説明を省略する。 FIG. 14 is a flowchart for explaining the measurement reference image selection processing of the ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention. The same elements as those in FIG. 8 are denoted by the same reference numerals and description thereof is omitted.
 図14において、図8との違いは、ステップS35が加わった点である。 FIG. 14 is different from FIG. 8 in that step S35 is added.
 ステップS35において、被検体部位特定部212は、高エコー領域抽出部106が抽出した高エコー領域の3次元特徴(高エコー領域の3次元形状および配置情報)に基づき、3Dデータ生成部105が生成した3Dデータの示す対象物が例えば頭部、腹部または大腿部などの部位であることを判定し、観察中の被検体(3Dデータ)の部位を特定する。 In step S35, the subject region specifying unit 212 generates the 3D data generation unit 105 based on the three-dimensional features (three-dimensional shape and arrangement information of the high echo region) of the high echo region extracted by the high echo region extraction unit 106. The target indicated by the 3D data is determined to be a part such as the head, abdomen, or thigh, for example, and the part of the subject under observation (3D data) is specified.
 次いで、ステップS40へと進み、切断面獲得部107は、被検体部位特定部212により特定された部位に応じた3次元形状および配置を示す情報と、抽出された高エコー領域の3次元形状および配置とに基づいて、複数の2次元画像を獲得する。 Next, the process proceeds to step S40, where the cutting plane acquisition unit 107 includes information indicating the three-dimensional shape and arrangement according to the part specified by the subject part specifying unit 212, the three-dimensional shape of the extracted high echo area, and A plurality of two-dimensional images are acquired based on the arrangement.
 例えば、切断面獲得部107は、被検体部位特定部212により、3Dデータの示す対象物に対応する被検体の部位が頭部であると特定された場合に、抽出された高エコー領域の3次元特徴から透明中隔に相当する領域を抽出し、抽出した当該領域に基づき、3Dデータの示す対象物を切断する2次元画像の向きを決定し、決定した向きで複数の2次元画像を獲得する。 For example, when the subject region specifying unit 212 specifies that the portion of the subject corresponding to the object indicated by the 3D data is the head, the cut surface acquisition unit 107 determines the 3 of the extracted high echo region. An area corresponding to the transparent septum is extracted from the dimensional features, and based on the extracted area, the direction of the two-dimensional image that cuts the object indicated by the 3D data is determined, and a plurality of two-dimensional images are acquired in the determined direction. To do.
 また、例えば、切断面獲得部107は、被検体部位特定部212により、3Dデータの示す対象物に対応する被検体の部位が腹部であると特定された場合に、抽出された高エコー領域の3次元特徴から脊椎に相当する領域を抽出し、抽出した当該領域に基づき、3Dデータの示す対象物を切断する2次元画像の向きを決定し、決定した向きで複数の2次元画像を獲得する。 In addition, for example, when the subject region specifying unit 212 specifies that the portion of the subject corresponding to the target indicated by the 3D data is the abdomen, the cut surface acquisition unit 107 identifies the extracted high echo region. A region corresponding to the spine is extracted from the three-dimensional feature, and based on the extracted region, the direction of the two-dimensional image that cuts the object indicated by the 3D data is determined, and a plurality of two-dimensional images are acquired in the determined direction. .
 また、例えば、切断面獲得部107は、被検体部位特定部212により、3Dデータの示す対象物に対応する被検体の部位が大腿部であると特定された場合に、抽出された高エコー領域の3次元特徴から大腿骨に相当する領域を抽出し、抽出した当該領域に基づき、3Dデータの示す対象物を切断する2次元画像の向きを決定し、決定した向きで複数の2次元画像を獲得する。 In addition, for example, the cut surface acquisition unit 107 extracts the high echo when the subject region specifying unit 212 specifies that the region of the subject corresponding to the object indicated by the 3D data is the thigh. A region corresponding to the femur is extracted from the three-dimensional features of the region, and based on the extracted region, the direction of the two-dimensional image for cutting the object indicated by the 3D data is determined, and a plurality of two-dimensional images are determined in the determined direction. To win.
 以上のように、超音波診断装置2は、測定基準画像選択処理を行う。 As described above, the ultrasonic diagnostic apparatus 2 performs the measurement reference image selection process.
 以上、本実施の形態の超音波診断装置2によれば、測定基準画像選択部108は、評価を効率よく評価でき、誤評価の可能性を減らすことができる。それにより、超音波診断装置2は、さらに、高精度に計測に適した断面(測定基準画像)を選ぶことができる。 As described above, according to the ultrasonic diagnostic apparatus 2 of the present embodiment, the measurement reference image selection unit 108 can efficiently evaluate the evaluation and reduce the possibility of erroneous evaluation. Thereby, the ultrasonic diagnostic apparatus 2 can further select a cross section (measurement reference image) suitable for measurement with high accuracy.
 なお、本実施の形態において、被検体部位特定部212は高エコー領域の特徴から判定する構成としたが、操作入力部110から検査者が指示する構成としてもよい。つまり、被検体部位特定部212は、操作入力部110に入力された検査者(操作者)の指示に従って、3Dデータの示す対象物に対応する被検体の部位を特定するとしてもよい。その場合には、検査者の指示という1手間が増えるものの、被検体の部位を正しく決定できることで、より安定的に計測に適した測定基準画像を得ることができる。 In the present embodiment, the subject region specifying unit 212 is determined based on the characteristics of the high echo region, but may be configured to be instructed by the examiner from the operation input unit 110. That is, the subject part specifying unit 212 may specify the part of the subject corresponding to the target indicated by the 3D data in accordance with the instruction of the examiner (operator) input to the operation input unit 110. In such a case, although one time and effort of the examiner's instruction is increased, a measurement reference image suitable for measurement can be obtained more stably by correctly determining the region of the subject.
 以上、本発明によれば、検査者依存性を少なくし、簡易な操作で高精度に胎児の推定体重算出を行うことができる超音波診断装置を実現することができる。 As described above, according to the present invention, it is possible to realize an ultrasonic diagnostic apparatus that can reduce the dependence on an examiner and calculate the estimated weight of a fetus with high accuracy with a simple operation.
 なお、上記では、プローブ101と、超音波診断装置本体100とは独立して構成されているとして説明したが、それに限らない。プローブ101が、超音波診断装置本体100の一部または全部の構成を備えるとしてもよい。 In the above description, the probe 101 and the ultrasonic diagnostic apparatus main body 100 are described as being configured independently. However, the present invention is not limited thereto. The probe 101 may include a part or all of the configuration of the ultrasonic diagnostic apparatus main body 100.
 また、上記では、超音波診断装置本体100は、制御部102と、送受信部103と、Bモード画像生成部104と、3Dデータ生成部105と、高エコー領域抽出部106、測定画像選択部106aと、データ格納部109と、測定算出部112と、出力部113とを備えるとしたが、それに限られない。図15に示すように、超音波診断装置本体100の最小構成として、最小構成部100aを備えていればよい。すなわち、3Dデータ生成部105、測定画像選択部106a、測定算出部112と、出力部113と、制御部102とを備えていればよい。ここで、図15は、本発明における超音波診断装置の最小構成を示す図である。 In the above, the ultrasonic diagnostic apparatus main body 100 includes the control unit 102, the transmission / reception unit 103, the B-mode image generation unit 104, the 3D data generation unit 105, the high echo area extraction unit 106, and the measurement image selection unit 106a. The data storage unit 109, the measurement calculation unit 112, and the output unit 113 are provided, but the invention is not limited thereto. As shown in FIG. 15, the minimum configuration unit 100 a may be provided as the minimum configuration of the ultrasonic diagnostic apparatus main body 100. That is, it is only necessary to include the 3D data generation unit 105, the measurement image selection unit 106a, the measurement calculation unit 112, the output unit 113, and the control unit 102. Here, FIG. 15 is a diagram showing a minimum configuration of the ultrasonic diagnostic apparatus according to the present invention.
 超音波診断装置1は、この最小構成部100aを少なくとも備えることにより、検査者依存性を少なくし、簡易な操作で高精度に胎児の推定体重算出を行うことができる超音波診断装置を実現することができる。  The ultrasonic diagnostic apparatus 1 includes at least the minimum configuration unit 100a, thereby realizing an ultrasonic diagnostic apparatus that can reduce the examiner dependency and can calculate the estimated weight of the fetus with high accuracy with a simple operation. be able to. *
 また、上記では、測定算出部112は、測定基準画像選択部108により決定された測定基準画像を用いて測定し、測定した被検体の部位の長さから、被検体である胎児の推定体重を算出するとしたが、それに限らない。超音波診断装置本体100が測定算出部112と出力部113とを備えず、検査者が測定基準画像選択部108により決定された測定基準画像を用いて測定した被検体の部位の長さから別途算出するとしてもよい。 Further, in the above, the measurement calculation unit 112 performs measurement using the measurement reference image determined by the measurement reference image selection unit 108, and calculates the estimated weight of the fetus that is the subject from the measured length of the portion of the subject. The calculation is not limited to this. The ultrasonic diagnostic apparatus main body 100 does not include the measurement calculation unit 112 and the output unit 113, and is separately obtained from the length of the region of the subject measured by the examiner using the measurement reference image determined by the measurement reference image selection unit 108. It may be calculated.
 以上、本発明の超音波診断装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 As mentioned above, although the ultrasonic diagnostic apparatus of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art can think to this embodiment, and the structure constructed | assembled combining the component in different embodiment is also contained in the scope of the present invention. .
 例えば、本発明は、上記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログラムからなるデジタル信号であるとしてもよい。 For example, the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
 また、本発明は、上記コンピュータプログラムまたは上記デジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録したものとしてもよい。また、これらの記録媒体に記録されている前記デジタル信号であるとしてもよい。 The present invention also provides a computer-readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc). ), Recorded in a semiconductor memory or the like. The digital signal may be recorded on these recording media.
 また、本発明は、上記コンピュータプログラムまたは上記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。 In the present invention, the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、前記メモリは、上記コンピュータプログラムを記憶しており、上記マイクロプロセッサは、前記コンピュータプログラムにしたがって動作するとしてもよい。 The present invention may also be a computer system including a microprocessor and a memory. The memory may store the computer program, and the microprocessor may operate according to the computer program.
 また、上記プログラムまたは上記デジタル信号を上記記録媒体に記録して移送することにより、または上記プログラムまたは上記デジタル信号を、上記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。 In addition, the program or the digital signal is recorded on the recording medium and transferred, or the program or the digital signal is transferred via the network or the like and executed by another independent computer system. You may do that.
 本発明は、超音波診断装置に利用でき、特に、胎児の詳細な成長診断のために、簡易に正しく測定基準画像を獲得できる超音波診断装置に利用できる。 The present invention can be used for an ultrasonic diagnostic apparatus, and in particular, for an ultrasonic diagnostic apparatus that can easily and correctly acquire a measurement reference image for detailed fetal growth diagnosis.
 1、2  超音波診断装置
 100、200  超音波診断装置本体
 101  プローブ
 102  制御部
 103  送受信部
 104  Bモード画像生成部
 105  3Dデータ生成部
 106  高エコー領域抽出部
 106a  測定画像選択部
 107  切断面獲得部
 108  測定基準画像選択部
 109  データ格納部
 110  操作入力部
 111  表示部
 112  測定算出部
 113  出力部
 212  被検体部位特定部
DESCRIPTION OF SYMBOLS 1, 2 Ultrasonic diagnostic apparatus 100, 200 Ultrasonic diagnostic apparatus main body 101 Probe 102 Control part 103 Transmission / reception part 104 B-mode image generation part 105 3D data generation part 106 High echo area extraction part 106a Measurement image selection part 107 Cutting surface acquisition part 108 measurement reference image selection unit 109 data storage unit 110 operation input unit 111 display unit 112 measurement calculation unit 113 output unit 212 subject region specifying unit

Claims (12)

  1.  被検体に向けて送信した超音波の前記被検体からの反射波に基づいて、前記被検体の部位に対応する3次元データを生成する3次元データ生成部と、
     前記反射波の強度に基づいて、前記3次元データを構成する複数の2次元断面のうちの一の2次元断面を、前記被検体の部位の長さを測定するために用いる測定基準画像として選択する測定画像選択部と、
     選択された前記測定基準画像を用いて、前記被検体の部位の長さを測定し、測定した前記長さを用いて前記被検体の推定体重を算出する測定算出部と、
     算出された前記推定体重を出力する出力部と、を備える
     超音波診断装置。
    A three-dimensional data generation unit that generates three-dimensional data corresponding to a portion of the subject based on a reflected wave from the subject of the ultrasonic wave transmitted toward the subject;
    Based on the intensity of the reflected wave, one of the two-dimensional cross sections constituting the three-dimensional data is selected as a measurement reference image used for measuring the length of the part of the subject. A measurement image selection unit to perform,
    A measurement calculation unit that measures the length of the site of the subject using the selected measurement reference image, and calculates the estimated weight of the subject using the measured length;
    An ultrasonic diagnostic apparatus comprising: an output unit that outputs the calculated estimated weight.
  2.  前記測定画像選択部は、
     前記3次元データから、閾値よりも大きい反射強度を有する前記反射波に対応する領域である高エコー領域を抽出する高エコー領域抽出部と、
     抽出した前記高エコー領域の3次元特徴に基づいて、前記3次元データを切断することで、前記3次元データを構成する複数の2次元断面を獲得する切断面獲得部と、
     前記複数の2次元断面のうちの一の2次元断面を、前記被検体の部位の長さを測定するために用いる測定基準画像として選択する基準画像選択部と、を備える
     請求項1に記載の超音波診断装置。
    The measurement image selection unit
    A high-echo region extraction unit that extracts a high-echo region that is a region corresponding to the reflected wave having a reflection intensity greater than a threshold value from the three-dimensional data;
    Based on the extracted three-dimensional features of the high-echo area, by cutting the three-dimensional data, a cutting plane acquisition unit that acquires a plurality of two-dimensional sections constituting the three-dimensional data;
    The reference image selecting unit that selects one of the plurality of two-dimensional cross sections as a measurement reference image used for measuring the length of the region of the subject. Ultrasonic diagnostic equipment.
  3.  前記切断面獲得部は、前記抽出された高エコー領域の3次元形状と配置とに基づいて、前記3次元データを切断する2次元断面の向きを決定し、決定した前記向きで複数の2次元断面を獲得する
     請求項2に記載の超音波診断装置。
    The cutting plane acquisition unit determines a direction of a two-dimensional cross section for cutting the three-dimensional data based on the extracted three-dimensional shape and arrangement of the high echo area, and a plurality of two-dimensional data in the determined direction. The ultrasonic diagnostic apparatus according to claim 2, wherein a cross section is acquired.
  4.  さらに、前記3次元データに対応する前記被検体の部位を特定する被検体部位特定部を備え、
     前記切断面獲得部は、前記被検体部位特定部により特定された部位に応じた3次元形状および配置を示す情報と、前記抽出された高エコー領域の3次元形状および配置とに基づいて、複数の2次元断面を獲得する
     請求項2または3に記載の超音波診断装置。
    Furthermore, a subject part specifying unit for specifying the part of the subject corresponding to the three-dimensional data is provided,
    The cutting plane acquisition unit includes a plurality of information based on information indicating a three-dimensional shape and arrangement corresponding to the part specified by the subject part specifying part and the extracted three-dimensional shape and arrangement of the high echo area. The ultrasonic diagnostic apparatus according to claim 2, wherein a two-dimensional cross section is acquired.
  5.  前記被検体部位特定部は、前記3次元データに対応する前記被検体の部位を、頭部、腹部または大腿部と特定する
     請求項4に記載の超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 4, wherein the subject part specifying unit specifies the part of the subject corresponding to the three-dimensional data as a head, an abdomen, or a thigh.
  6.  さらに、操作者の指示が入力される操作入力部を備え、
     前記被検体部位特定部は、前記操作入力部に入力された操作者の指示に従って、前記3次元データに対応する前記被検体の部位を特定する
     請求項5に記載の超音波診断装置。
    Furthermore, an operation input unit for inputting an operator's instruction is provided,
    The ultrasonic diagnostic apparatus according to claim 5, wherein the subject part specifying unit specifies the part of the subject corresponding to the three-dimensional data in accordance with an operator instruction input to the operation input unit.
  7.  前記被検体部位特定部は、抽出された前記高エコー領域の3次元形状に基づいて、前記3次元データに対応する前記被検体の部位を特定する
     請求項5に記載の超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 5, wherein the subject part specifying unit specifies a part of the subject corresponding to the three-dimensional data based on the extracted three-dimensional shape of the high echo area.
  8.  前記切断面獲得部は、前記被検体部位特定部により、前記3次元データに対応する前記被検体の部位が頭部であると特定された場合に、前記高エコー領域の3次元特徴から透明中隔に相当する領域を抽出し、抽出した当該領域に基づき、前記3次元データを切断する2次元断面の向きを決定し、決定した前記向きで複数の2次元断面を獲得する
     請求項6または7に記載の超音波診断装置。
    The cut surface acquisition unit is transparent from the three-dimensional feature of the high echo area when the subject part specifying unit specifies that the part of the subject corresponding to the three-dimensional data is a head. 8. An area corresponding to the interval is extracted, and based on the extracted area, a direction of a two-dimensional cross section for cutting the three-dimensional data is determined, and a plurality of two-dimensional cross sections are acquired with the determined direction. An ultrasonic diagnostic apparatus according to 1.
  9.  前記切断面獲得部は、前記被検体部位特定部により、前記3次元データに対応する前記被検体の部位が腹部であると特定された場合に、前記高エコー領域の3次元特徴から脊椎に相当する領域を抽出し、抽出した当該領域に基づき、前記3次元データを切断する2次元断面の向きを決定し、決定した前記向きで複数の2次元断面を獲得する
     請求項6または7に記載の超音波診断装置。
    The cut surface acquisition unit corresponds to the spine from the three-dimensional feature of the high-echo region when the subject part specifying unit specifies that the part of the subject corresponding to the three-dimensional data is an abdomen. The region to be extracted is extracted, a direction of a two-dimensional cross section for cutting the three-dimensional data is determined based on the extracted region, and a plurality of two-dimensional cross sections are acquired in the determined direction. Ultrasonic diagnostic equipment.
  10.  前記切断面獲得部は、前記被検体部位特定部により、前記3次元データに対応する前記被検体の部位が大腿部であると特定された場合に、前記高エコー領域の3次元特徴から大腿骨に相当する領域を抽出し、抽出した当該領域に基づき、前記3次元データを切断する2次元断面の向きを決定し、決定した前記向きで複数の2次元断面を獲得する
     請求項6または7に記載の超音波診断装置。
    When the subject region specifying unit determines that the portion of the subject corresponding to the three-dimensional data is the thigh, the cut surface acquisition unit calculates the thigh from the three-dimensional feature of the high echo region. 8. An area corresponding to a bone is extracted, a direction of a two-dimensional section for cutting the three-dimensional data is determined based on the extracted area, and a plurality of two-dimensional sections are acquired with the determined direction. An ultrasonic diagnostic apparatus according to 1.
  11.  前記基準画像選択部は、
     前記複数の2次元断面それぞれと、前記測定基準画像が示す輝度情報の空間分布の特徴との類似度を評価することにより、前記複数の2次元断面のうちの一の2次元断面を、前記測定基準画像として選択する
     請求項2に記載の超音波診断装置。
    The reference image selection unit
    By measuring the similarity between each of the plurality of two-dimensional sections and the feature of the spatial distribution of luminance information indicated by the measurement reference image, one of the plurality of two-dimensional sections is measured with the measurement The ultrasonic diagnostic apparatus according to claim 2, which is selected as a reference image.
  12.  被検体に向けて送信した超音波の前記被検体からの反射波に基づいて、前記被検体の部位に対応する3次元データを生成する3次元データ生成ステップと、
     前記反射波の強度に基づいて、前記3次元データを構成する複数の2次元断面のうちの一の2次元断面を、前記被検体の部位の長さを測定するために用いる測定基準画像として選択する測定画像選択ステップと、
     前記測定画像選択ステップにおいて選択された前記測定基準画像を用いて、前記被検体の部位の長さを測定し、測定した前記長さに基づいて前記被検体の推定体重を算出する測定算出ステップと、
     算出された前記推定体重を出力する出力ステップと、を含む
     画像処理方法。
    A three-dimensional data generation step for generating three-dimensional data corresponding to a portion of the subject based on a reflected wave from the subject of the ultrasonic wave transmitted toward the subject;
    Based on the intensity of the reflected wave, one of the two-dimensional cross sections constituting the three-dimensional data is selected as a measurement reference image used for measuring the length of the part of the subject. A measurement image selection step to be performed;
    A measurement calculation step of measuring the length of the site of the subject using the measurement reference image selected in the measurement image selection step, and calculating an estimated weight of the subject based on the measured length; ,
    An output step of outputting the calculated estimated weight.
PCT/JP2011/005365 2010-09-30 2011-09-26 Ultrasound diagnostic equipment WO2012042808A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012506825A JP5794226B2 (en) 2010-09-30 2011-09-26 Ultrasonic diagnostic equipment
CN201180004680.9A CN102639063B (en) 2010-09-30 2011-09-26 Ultrasound diagnostic equipment
EP11828374.6A EP2623033B1 (en) 2010-09-30 2011-09-26 Ultrasound diagnostic apparatus
US13/479,905 US20120232394A1 (en) 2010-09-30 2012-05-24 Ultrasound diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-222568 2010-09-30
JP2010222568 2010-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/479,905 Continuation US20120232394A1 (en) 2010-09-30 2012-05-24 Ultrasound diagnostic apparatus

Publications (1)

Publication Number Publication Date
WO2012042808A1 true WO2012042808A1 (en) 2012-04-05

Family

ID=45892300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005365 WO2012042808A1 (en) 2010-09-30 2011-09-26 Ultrasound diagnostic equipment

Country Status (5)

Country Link
US (1) US20120232394A1 (en)
EP (1) EP2623033B1 (en)
JP (2) JP5794226B2 (en)
CN (1) CN102639063B (en)
WO (1) WO2012042808A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124269A (en) * 2012-12-25 2014-07-07 Toshiba Corp Ultrasonic diagnostic device
JP2016036594A (en) * 2014-08-08 2016-03-22 株式会社東芝 Medical apparatus and ultrasonic diagnostic apparatus
JP2016514564A (en) * 2013-04-03 2016-05-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 3D ultrasound imaging system
WO2016194161A1 (en) * 2015-06-03 2016-12-08 株式会社日立製作所 Ultrasonic diagnostic apparatus and image processing method
WO2017013990A1 (en) * 2015-07-23 2017-01-26 株式会社日立製作所 Ultrasonic diagnostic device and image processing method and device
JP2018079000A (en) * 2016-11-15 2018-05-24 株式会社日立製作所 Ultrasonic diagnosis device and image processing device
JP2019514512A (en) * 2016-04-26 2019-06-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 3D image synthesis for ultrasound fetal imaging
JP2019526357A (en) * 2016-09-01 2019-09-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic diagnostic equipment
JP2020501713A (en) * 2016-12-19 2020-01-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fetal ultrasound imaging
JP2020014723A (en) * 2018-07-26 2020-01-30 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic device and image processing program
JP2020068797A (en) * 2018-10-29 2020-05-07 株式会社日立製作所 Medical imaging device, image processing device, and image processing method
JP2020531086A (en) * 2017-08-17 2020-11-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. An ultrasound system that extracts an image plane from volume data using touch interaction with an image
JP2021525619A (en) * 2018-07-10 2021-09-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Methods and systems for performing fetal weight estimation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624211A1 (en) * 2012-02-06 2013-08-07 Samsung Medison Co., Ltd. Image processing apparatus and method
US20140270395A1 (en) * 2013-03-15 2014-09-18 Propel lP Methods and apparatus for determining information about objects from object images
KR102150959B1 (en) * 2013-05-31 2020-09-02 삼성메디슨 주식회사 Method and apparatus for ultrasound diagnosis using 3d volume data
KR102361612B1 (en) * 2014-12-16 2022-02-10 삼성메디슨 주식회사 Untrasound dianognosis apparatus and operating method thereof
CN105167742B (en) * 2015-05-22 2018-11-02 上海更多网络科技有限公司 A kind of fetal weight adaptive estimation method and system
US11432796B2 (en) * 2016-05-12 2022-09-06 Koninklijke Philips N.V. Positioning support and fetal heart rate registration support for CTG ultrasound transducers
US11013494B2 (en) 2017-01-18 2021-05-25 Samsung Medison Co., Ltd. Ultrasound imaging apparatus and ultrasound image display method
JP6767904B2 (en) * 2017-03-23 2020-10-14 株式会社日立製作所 Ultrasonic image processing equipment and method
CN107951512B (en) * 2017-12-13 2020-08-18 飞依诺科技(苏州)有限公司 Method and device for generating fetal weight for ultrasonic scanning equipment
EP3590436A1 (en) 2018-07-06 2020-01-08 Koninklijke Philips N.V. Identifying an optimal image from a number of ultrasound images

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308630A (en) 1996-05-21 1997-12-02 Aloka Co Ltd Ultrasonic diagnostic system
JP2001198122A (en) * 2000-01-18 2001-07-24 Toshiba Corp Two-dimensional array type ultrasonic probe and ultrasonograph
JP2008136860A (en) * 2006-11-10 2008-06-19 Toshiba Corp Ultrasonic diagnostic apparatus and image processing program for it

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3361692B2 (en) * 1996-05-10 2003-01-07 ジーイー横河メディカルシステム株式会社 Ultrasound diagnostic equipment
US6575907B1 (en) * 1999-07-12 2003-06-10 Biomedicom, Creative Biomedical Computing Ltd. Determination of fetal weight in utero
US6375616B1 (en) * 2000-11-10 2002-04-23 Biomedicom Ltd. Automatic fetal weight determination
US7783095B2 (en) * 2005-08-11 2010-08-24 Siemens Medical Solutions Usa, Inc. System and method for fetal biometric measurements from ultrasound data and fusion of same for estimation of fetal gestational age
JP5019562B2 (en) * 2006-06-01 2012-09-05 株式会社東芝 Ultrasonic diagnostic apparatus and diagnostic program for the apparatus
JP4875416B2 (en) * 2006-06-27 2012-02-15 オリンパスメディカルシステムズ株式会社 Medical guide system
JP2009011449A (en) * 2007-07-02 2009-01-22 Shimadzu Corp Ultrasonic diagnostic equipment
JP2009011468A (en) * 2007-07-03 2009-01-22 Aloka Co Ltd Ultrasound diagnosis apparatus
US8556814B2 (en) * 2007-10-04 2013-10-15 Siemens Medical Solutions Usa, Inc. Automated fetal measurement from three-dimensional ultrasound data
JP5198883B2 (en) * 2008-01-16 2013-05-15 富士フイルム株式会社 Tumor area size measuring method, apparatus and program
JP2010155031A (en) * 2009-01-05 2010-07-15 Shimadzu Corp Ultrasonic diagnostic apparatus
CN102348415A (en) * 2009-01-19 2012-02-08 超声医疗设备公司 System and method for acquiring and processing partial 3d ultrasound data
US20100217123A1 (en) * 2009-02-23 2010-08-26 Aharon Eran Methods and systems of managing ultrasonographic diagnosis
US20110125016A1 (en) * 2009-11-25 2011-05-26 Siemens Medical Solutions Usa, Inc. Fetal rendering in medical diagnostic ultrasound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308630A (en) 1996-05-21 1997-12-02 Aloka Co Ltd Ultrasonic diagnostic system
JP2001198122A (en) * 2000-01-18 2001-07-24 Toshiba Corp Two-dimensional array type ultrasonic probe and ultrasonograph
JP2008136860A (en) * 2006-11-10 2008-06-19 Toshiba Corp Ultrasonic diagnostic apparatus and image processing program for it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623033A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124269A (en) * 2012-12-25 2014-07-07 Toshiba Corp Ultrasonic diagnostic device
JP2016514564A (en) * 2013-04-03 2016-05-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 3D ultrasound imaging system
JP2016036594A (en) * 2014-08-08 2016-03-22 株式会社東芝 Medical apparatus and ultrasonic diagnostic apparatus
WO2016194161A1 (en) * 2015-06-03 2016-12-08 株式会社日立製作所 Ultrasonic diagnostic apparatus and image processing method
JPWO2016194161A1 (en) * 2015-06-03 2018-03-01 株式会社日立製作所 Ultrasonic diagnostic apparatus and image processing method
WO2017013990A1 (en) * 2015-07-23 2017-01-26 株式会社日立製作所 Ultrasonic diagnostic device and image processing method and device
JPWO2017013990A1 (en) * 2015-07-23 2018-04-19 株式会社日立製作所 Ultrasonic diagnostic apparatus, image processing method, and apparatus
JP2019514512A (en) * 2016-04-26 2019-06-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 3D image synthesis for ultrasound fetal imaging
JP2022111140A (en) * 2016-09-01 2022-07-29 コーニンクレッカ フィリップス エヌ ヴェ Ultrasound diagnosis apparatus
US11246564B2 (en) 2016-09-01 2022-02-15 Koninklijke Philips N.V. Ultrasound diagnosis apparatus
JP7333448B2 (en) 2016-09-01 2023-08-24 コーニンクレッカ フィリップス エヌ ヴェ ultrasound diagnostic equipment
JP2019526357A (en) * 2016-09-01 2019-09-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic diagnostic equipment
JP7107918B2 (en) 2016-09-01 2022-07-27 コーニンクレッカ フィリップス エヌ ヴェ ultrasound diagnostic equipment
JP2018079000A (en) * 2016-11-15 2018-05-24 株式会社日立製作所 Ultrasonic diagnosis device and image processing device
JP2020501713A (en) * 2016-12-19 2020-01-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fetal ultrasound imaging
JP7010948B2 (en) 2016-12-19 2022-01-26 コーニンクレッカ フィリップス エヌ ヴェ Fetal ultrasound imaging
JP2020531086A (en) * 2017-08-17 2020-11-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. An ultrasound system that extracts an image plane from volume data using touch interaction with an image
JP7203823B2 (en) 2017-08-17 2023-01-13 コーニンクレッカ フィリップス エヌ ヴェ An ultrasound system that extracts image planes from volume data using touch interaction with the image
JP2021525619A (en) * 2018-07-10 2021-09-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Methods and systems for performing fetal weight estimation
JP7292370B2 (en) 2018-07-10 2023-06-16 コーニンクレッカ フィリップス エヌ ヴェ Method and system for performing fetal weight estimation
JP7171291B2 (en) 2018-07-26 2022-11-15 キヤノンメディカルシステムズ株式会社 Ultrasound diagnostic equipment and image processing program
JP2020014723A (en) * 2018-07-26 2020-01-30 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic device and image processing program
JP2020068797A (en) * 2018-10-29 2020-05-07 株式会社日立製作所 Medical imaging device, image processing device, and image processing method
US11450003B2 (en) 2018-10-29 2022-09-20 Fujifilm Healthcare Corporation Medical imaging apparatus, image processing apparatus, and image processing method
JP7193979B2 (en) 2018-10-29 2022-12-21 富士フイルムヘルスケア株式会社 Medical imaging device, image processing device, and image processing method

Also Published As

Publication number Publication date
JPWO2012042808A1 (en) 2014-02-03
EP2623033B1 (en) 2017-01-11
EP2623033A1 (en) 2013-08-07
JP6131990B2 (en) 2017-05-24
US20120232394A1 (en) 2012-09-13
JP5794226B2 (en) 2015-10-14
CN102639063A (en) 2012-08-15
EP2623033A4 (en) 2014-07-30
CN102639063B (en) 2015-03-18
JP2015226836A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6131990B2 (en) Ultrasonic diagnostic equipment
JP6367425B2 (en) Ultrasonic diagnostic equipment
RU2667617C2 (en) System and method of elastographic measurements
US9342922B2 (en) Medical imaging apparatus and method of constructing medical images
CN110072466B (en) Prenatal ultrasound imaging
JP2005312770A5 (en)
EP3621524B1 (en) Fetal development monitoring
JP7010948B2 (en) Fetal ultrasound imaging
EP2302414A2 (en) Ultrasound system and method of performing measurement on three-dimensional ultrasound image
US10368841B2 (en) Ultrasound diagnostic apparatus
JP7490840B2 (en) Analysis device and analysis program
JP7456151B2 (en) Ultrasonic diagnostic device, method of controlling the ultrasonic diagnostic device, and control program for the ultrasonic diagnostic device
CN102415902A (en) Ultrasonic diagnostic apparatus and ultrasonic image processng apparatus
CN112839590A (en) Method and system for determining a supplemental ultrasound view
JP7292370B2 (en) Method and system for performing fetal weight estimation
KR101564027B1 (en) Ultrasonic apparatus for diagnosing bladder using multiple frequency
JP5890358B2 (en) Ultrasonic image pickup apparatus and ultrasonic image display method
CN115551416A (en) Measurement of hip
JP2016083192A (en) Ultrasonic diagnostic equipment
JP2017104248A (en) Ultrasonic diagnosis device
JP5959880B2 (en) Ultrasonic diagnostic equipment
EP3456265A1 (en) Fetal development monitoring
EP2807977B1 (en) Ultrasound diagnosis method and aparatus using three-dimensional volume data
KR101487688B1 (en) Ultrasound system and method of providing navigator for guiding position of plane
KR101126917B1 (en) Image processing system and method for forming oblique slice images using 3 dimension images

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004680.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012506825

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828374

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011828374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011828374

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE