WO2012042575A1 - Glasses for viewing 3d video - Google Patents

Glasses for viewing 3d video Download PDF

Info

Publication number
WO2012042575A1
WO2012042575A1 PCT/JP2010/005896 JP2010005896W WO2012042575A1 WO 2012042575 A1 WO2012042575 A1 WO 2012042575A1 JP 2010005896 W JP2010005896 W JP 2010005896W WO 2012042575 A1 WO2012042575 A1 WO 2012042575A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
command
period
reception interval
Prior art date
Application number
PCT/JP2010/005896
Other languages
French (fr)
Japanese (ja)
Inventor
三原 和博
誠司 中沢
三谷 浩
賀津雄 西郷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to DE212010000155U priority Critical patent/DE212010000155U1/en
Priority to CN2010900007010U priority patent/CN202514019U/en
Priority to PCT/JP2010/005896 priority patent/WO2012042575A1/en
Priority to FR1158455A priority patent/FR2965694B3/en
Publication of WO2012042575A1 publication Critical patent/WO2012042575A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/008Aspects relating to glasses for viewing stereoscopic images

Definitions

  • the present invention relates to stereoscopic video viewing glasses for receiving a synchronization signal transmitted from a stereoscopic video display device that displays a stereoscopic video and allowing a viewer to view the stereoscopic video and a control method thereof.
  • a display device that alternately displays images from the viewpoints of the left and right eyes constituting a stereoscopic image, and a viewer in synchronization with the display of the images from the left and right viewpoints of the display device.
  • a stereoscopic video system that allows a viewer to view a stereoscopic video by using video viewing glasses that open and close a shutter provided in front of the left and right eyes (for example, Patent Document 1).
  • the stereoscopic image viewing glasses When transmitting a synchronization signal from the stereoscopic image display device to the stereoscopic image viewing glasses, if transmission is performed by wireless communication using wireless or infrared rays, the stereoscopic image viewing glasses have noise other than the synchronization signal, for example, background noise ( It signals such as background noise) and other equipment emitted, also receives. The control of the stereoscopic video viewing glasses may be disturbed by these noises.
  • background noise It signals such as background noise
  • the invention of the present application aims to reduce the influence of these noises on the glasses for viewing stereoscopic images.
  • the stereoscopic video viewing glasses calculate a period of a signal received from the outside, determine a valid signal according to the calculated period, and the effective reception from the signal received from the outside
  • An effective command extraction unit that extracts only a simple signal, a filter control unit that controls a left eye filter unit and a right eye filter unit that adjust the amount of light incident on the left and right eyes of the viewer according to the extracted command, Is provided.
  • FIG. 1 is a configuration diagram of a stereoscopic video system including a stereoscopic video display device and stereoscopic video viewing glasses described in the present embodiment.
  • FIG. It is a hardware block diagram of the glasses for stereoscopic video viewing described in the present embodiment.
  • FIG. 3 is a functional configuration diagram of stereoscopic video viewing glasses described in the present embodiment. It is a figure which shows the receiving timing of each signal which the spectacles for stereoscopic video viewing and reception and each receiving interval. It is a figure which shows the minimum reception interval, the maximum reception interval, and an average period of the received signal demonstrated in this Embodiment. Is a diagram showing the grouping of the reception signal described in this embodiment.
  • FIG. 1 is a diagram showing a video display system including a video display device 100 that displays a stereoscopic video, and video viewing glasses 150 that a viewer wears when viewing the stereoscopic video displayed by the video display device 100. It is.
  • the display unit 110 is a part that displays a video that the video display device 100 displays to the viewer.
  • the left-eye image and the right-eye image are displayed alternately on the time axis or by switching at regular intervals.
  • the synchronization signal transmission unit 120 transmits a synchronization signal synchronized with the stereoscopic video displayed on the display unit 110 to the outside, particularly to the video viewing glasses 150.
  • a synchronization signal synchronized with the stereoscopic video displayed on the display unit 110 to the outside, particularly to the video viewing glasses 150.
  • the video viewing glasses 150 include a right eye optical filter unit 160, a left eye optical filter unit 170, and a synchronization signal receiving unit 180.
  • the right eye optical filter unit 160 controls the light incident on the right eye of the viewer wearing the video viewing glasses 150. More specifically, the amount of light incident on the right eye by the image displayed on the display unit 110 of the image display device 100 or the characteristics of the light is adjusted or changed.
  • the left eye optical filter unit 170 controls the light incident on the left eye in the same manner as the right eye optical filter unit 160.
  • the synchronization signal receiving unit 180 receives the synchronization signal transmitted from the synchronization signal transmitting unit 120 of the video display device 100.
  • the video display system links the above configuration to allow viewers to view stereoscopic video.
  • a stereoscopic video is displayed at a speed of 120 Hz, for example, a left-eye video and a right-eye video are alternately displayed or switched at regular intervals.
  • the synchronization signal transmission unit 120 transmits a synchronization signal synchronized with the switching between the left-eye video and the right-eye video displayed on the display unit 110.
  • the video viewing glasses 150 receive the synchronization signal output from the synchronization signal transmission unit 120 of the video display device 100 by the synchronization signal reception unit 180.
  • the video viewing glasses 150 control the left eye optical filter unit 170 and the right eye optical filter unit 160 based on the received synchronization signal, so that the left viewer of the viewer wearing the video viewing glasses 150 eye, the light quantity incident on the right eye, or to control the optical characteristics. For example, when a synchronization signal indicating that a left-eye image is displayed on the display unit 110 of the image display device is received, the left-eye optical filter unit 170 is controlled to increase the amount of light incident on the left eye.
  • the right-eye optical filter unit 160 reduces the amount of light incident on the right eye.
  • the viewer views the left-eye video displayed on the display unit 110 with the left eye and does not view with the right eye.
  • the left-eye optical filter unit 170 reduces the amount of light incident on the left eye, and the right-eye optics.
  • filter unit 160 increases the amount of light entering the right eye.
  • the video for the right eye displayed on the display unit 110 is viewed with the viewer's right eye and not viewed with the left eye.
  • the viewer displays the video displayed on the display unit 110. Perceived to have parallax. As a result, even if the display unit 110 is a display device having a substantially planar shape, the viewer can feel that the video displayed there is three-dimensional.
  • FIG. 2 is a diagram illustrating a hardware configuration of the video viewing glasses 150.
  • the eyeglasses for viewing video 150 have, as hardware configurations, an infrared light receiving sensor (IR sensor) 201, an amplifier 202, an LED 203, a CPU 204, a switch (SW) 205, a ROM 206, a RAM 207, and a clock (CLK) 208.
  • IR sensor infrared light receiving sensor
  • SW switch
  • ROM 206 read-only memory
  • RAM 207 a read-only memory
  • CLK clock
  • the IR sensor 201 is a sensor that receives a synchronization signal transmitted from the stereoscopic video display device 100.
  • the IR sensor 201 converts the received infrared light into an electrical signal.
  • the synchronization signal is described as being propagated by infrared rays, but the present invention is not limited to this. Other methods may be used as long as the synchronization signal is propagated by a wireless method such as radio.
  • the amplifier 202 appropriately amplifies the electric signal so that the electric signal output from the IR sensor 201 can be easily processed by a subsequent processing block.
  • the LED 203 is lit to clearly indicate the operation contents to the user when the stereoscopic video viewing glasses 150 are operating or when the switch 205 is input and the power is turned on.
  • the CPU 204 controls the whole of the stereoscopic video viewing glasses 150.
  • a CPU is described as an example, but a similar process may be performed by a DSP, FPGA, or the like.
  • the switch (SW) 205 is an interface for realizing input to the stereoscopic video viewing glasses 150 from the outside.
  • the ROM 206 holds programs for operating the CPU 204 and the like, operation parameters, initial values, and the like.
  • the ROM 206 may use a rewritable flash memory or the like.
  • the RAM 207 holds variable values and the like temporarily held by the CPU 204 program during operation.
  • the clock (CLK) 208 oscillates a reference clock for operating the CPU 204 and other hardware components.
  • the analog switches 209 and 211 perform a driving process for driving an opening / closing operation of shutters 210 and 212 described later.
  • the two analog switches 209 and 211 are provided because they are necessary to drive the left and right eye shutters 210 and 212, respectively.
  • the shutters 210 and 212 are provided in front of the left and right eyes of the viewer, and are opened and closed in synchronization with the video displayed by the stereoscopic video display device 100.
  • FIG. 3 is a diagram illustrating a functional configuration of the stereoscopic video viewing glasses 150.
  • the stereoscopic video viewing glasses 150 have a functional configuration such as a reception unit 301, an amplification unit 302, a display unit 303, a calculation unit 304, an input unit 305, a memory unit 306, a reference signal generation unit 307, and a drive.
  • the receiving unit 301 receives a synchronization signal transmitted from the stereoscopic video display device 100.
  • the receiving unit 301 corresponds to the IR sensor 201 in FIG.
  • the amplifying unit 302 amplifies the signal received by the receiving unit 301.
  • the amplification unit 302 corresponds to the amplifier 202 in FIG.
  • the display unit 303 displays various information to the user by the stereoscopic video viewing glasses 150.
  • the display unit 303 corresponds to the LED 203 in FIG. 2, but the display method is not limited to the LED. Any realization method may be used as long as information is displayed to the user by other methods.
  • the calculation unit 304 performs overall control of the stereoscopic video viewing glasses 150.
  • the calculation unit 304 corresponds to the CPU 204 in FIG.
  • the input unit 305 receives various instructions from the user.
  • the input unit 305 corresponds to the switch 205 in FIG.
  • the memory unit 306 holds various types of information permanently or temporarily.
  • the memory unit 306 corresponds to the ROM 206 and the RAM 207 in FIG.
  • the reference signal generation unit 307 generates a reference signal necessary for the operation of the arithmetic unit 304 or the like.
  • the reference signal generation unit 307 corresponds to the clock 208 in FIG.
  • the driving unit 308 generates and outputs a signal for operating a shutter of the left eye filter unit 309 and the right eye filter unit 310 described later.
  • the filter driving unit 308 corresponds to the analog switches 209 and 211 in FIG.
  • the left eye filter unit 309 and the right eye filter unit 310 control the amount of light incident on the left and right eyes of the viewer.
  • the left eye filter unit 309 and the right eye filter unit 310 correspond to the shutters 210 and 212 in FIG.
  • the calculation unit 304 further includes an input switching unit 311, a command reception interval calculation unit 312, a valid command extraction unit 313, and a filter control unit 314.
  • the input switching unit 311 controls whether the arithmetic unit 304 accepts the synchronization signal input from the receiving unit 301 and the amplifying unit 302.
  • the input switching unit 311 corresponds to, for example, validity / invalidity of the input port in the CPU 204 in FIG.
  • the command reception interval calculation unit 312 calculates reception periods of various signals received by the reception unit 301 and the like, and distinguishes between a valid command and other signals (noise) and the like by a reception command grouping process or the like. Will be described later distinguish how the effective command and other signals.
  • the valid command extraction unit 313 calculates reception periods of various signals by the command reception interval calculation unit 312 and extracts commands that are distinguished as valid from the actual received commands. Only the command extracted from the received signal by the valid command extraction unit 313 is output to the filter control unit described later.
  • the filter control unit 314 controls opening and closing of the left eye filter unit 309 and the right eye filter unit 310 via the drive unit 308 in accordance with the command extracted by the valid command extraction unit 313.
  • FIG. 4 is a diagram illustrating reception timings of received signals and respective periods.
  • FIG. 4A shows a signal received by the stereoscopic video viewing glasses 150 on the time axis.
  • FIG. 4B is a diagram in which the period of each type of command received by the stereoscopic video viewing glasses 150 is calculated.
  • the stereoscopic video viewing glasses 150 receive other signals (noise) and other signals in addition to commands for controlling the opening and closing of the left eye filter unit 309 and the right eye filter unit 310.
  • FIG. 4A and FIG. 4B there are six types of signals including these noises.
  • it is assumed that six types of commands from the first to the sixth in FIG. 4A are defined as commands for controlling the stereoscopic video viewing glasses 150, and are effective from those command strings. A method for extracting commands will be described.
  • the command reception interval calculation unit 312 calculates the period of each signal based on the reception timing of these signals. . For example, for the first signal, the command reception interval calculation unit 312 measures the time from when the first signal is first received until the next first signal is received. This measurement is based on the reference signal supplied from the reference signal generation unit 307. The command reception interval calculation unit 312 acquires the reception interval T11 by this measurement. The command reception interval calculation unit 312 obtains reception intervals T12 and T13 in the case of FIG. 4 by repeating the same measurement every time the first signal is received for the first command.
  • the command reception interval calculation unit 312 similarly measures the reception intervals of the respective signal receptions for the second to sixth signal receptions as well. For the second signal, receive intervals T21, T22, T23, for the third signal, receive intervals T31, T32, T33, for the fourth signal, receive intervals T41, T42, T43, The command reception interval calculation unit 312 acquires reception intervals T51, T52, and T53 for signals, and reception intervals T61 and T62 for the sixth signal.
  • the command reception interval calculation unit 312 calculates each period for each signal type from the acquired reception interval. For the first signal, the command reception interval calculation unit 312 determines the period T1 of the first signal from the acquired reception interval by the following calculation formula.
  • T1 (T11 + T12 + T13) / 3
  • the command reception interval calculation unit 312 also performs the second signal cycle T2, the third signal cycle T3, the fourth signal cycle T4, the fifth signal cycle T5, and the sixth signal cycle T6. Similarly, each period is calculated.
  • T2 (T21 + T22 + T23) / 3
  • T3 (T31 + T32 + T33) / 3
  • T4 (T41 + T42 + T43) / 3
  • T5 (T51 + T52 + T53) / 3
  • T6 (T61 + T62) / 2
  • FIG. 5 shows an example in which the period of the first to sixth signals is calculated.
  • FIG. 5 shows the time interval when the reception interval is minimum for each command, the time interval when the reception interval is maximum, and the period (average period) of each signal calculated by the above formula and the like. It shows.
  • the period of the first to sixth signals is a value obtained by averaging the reception intervals acquired for each signal, but the invention of the present application is not limited to this.
  • an intermediate value may be adopted from a plurality of acquired reception interval values, and another method is to use an average value obtained by removing the minimum value and the maximum value. There may be. In other words, any calculation method may be used as long as the representative reception interval is calculated based on the reception interval of the actually received signal.
  • the command reception interval calculation unit 312 does not necessarily need to fix the period for each signal to a period once determined.
  • the period may be updated every time a command is received. In this case, when the display cycle is changed for each scene on the stereoscopic video display device side, the stereoscopic video viewing glasses 150 can follow the change of the command cycle.
  • the command reception interval calculation unit 312 performs grouping processing based on the cycle calculated for each received signal. There are several grouping methods.
  • the command reception interval calculation unit 312 may have a period in which the left and right eye filters are opened and closed in advance coincide with one of several predetermined periods. In such a case, the command reception interval calculation unit 312 performs grouping of received signals from the predetermined period.
  • the signal that should be received by the command reception interval calculation unit 312 is a command for opening the left eye filter unit 309, a command for closing the left eye filter unit 309, a command for opening the right eye filter unit 310, a command for closing the right eye filter unit 310, In this case, the operation according to these commands is as shown in FIG. Based on these periods, the command reception interval calculation unit 312 can estimate that each signal (command) is received at a reception interval that is approximately twice the frame display time.
  • the command reception interval calculation unit 312 estimates a signal received at a reception interval in the vicinity of 16.6 (ms), which is twice 8.3 (ms), as an effective command.
  • the other signals an invalid signal (noise).
  • the command reception interval calculation unit 312 groups the first to fourth signals as valid commands, and determines the fifth and sixth signals as noise. That is, the command reception interval calculation unit 312 can determine whether or not the command is a valid command based on whether or not the period of the received signal is in the vicinity of an integral multiple of a predetermined period.
  • “near” is a case where there is an error range and signal period of several percent before and after the theoretical command period.
  • the command reception interval calculation unit 312 can group effective commands based only on the calculated period of each signal.
  • the command reception interval calculation unit 312 has other values within the range of 97% to 103% (that is, a range of 3% before and after the value) of the period of each signal from the period of each signal shown in FIG. performing grouping on whether include periodic signals.
  • the first to fourth signals are all within the range of 3% before and after this, but the fifth and sixth signals are not included. Absent.
  • the command reception interval calculation unit 312 can group only valid commands.
  • the width of 3% is used as an example, but the present invention is not limited to this value.
  • FIG. 7 illustrates a result of grouping by the command reception interval calculation unit 312.
  • FIG. 7 describes the signals received at each vertex of the polygon, and the signals determined to be effective groups by the command reception interval calculation unit 312 are mutually connected in practice. In this way, and only the valid signal can be clearly understood.
  • the valid command extraction unit 313 extracts only signals recognized as valid commands by the command reception interval calculation unit 312 from the signals input from the reception unit 301 and the amplification unit 302. The valid command extraction unit 313 ignores other input signals.
  • the valid command extraction unit 313 controls the opening / closing operation of the left eye filter unit 309 and the right eye filter unit 310 via the filter control unit 314 and the filter driving unit 308 according to the control content of the valid command (FIG. 4C). ).
  • the stereoscopic video viewing glasses 150 reduce control disturbance due to noise.
  • FIG. 8 shows another example of the embodiment of the present invention, and is a diagram showing reception timing of received signals and respective periods.
  • FIG. 8A shows a signal received by the stereoscopic video viewing glasses 150 on the time axis.
  • FIG. 8B is a diagram in which the period of each type of command received by the stereoscopic video viewing glasses 150 is calculated.
  • the first signal (the number “1” surrounded by a circle in FIG. 8A). And subscript numbers “1” to “5”) indicate that noise is mixed and the command is received irregularly.
  • FIG. 8A shows a signal received by the stereoscopic video viewing glasses 150 on the time axis.
  • FIG. 8B is a diagram in which the period of each type of command received by the stereoscopic video viewing glasses 150 is calculated.
  • the first signal (the number “1” surrounded by a circle in FIG. 8A).
  • FIG. 8A shows a
  • the command sequence of the first signal is described using the symbols “1 1 ” to “1 5 ” corresponding to the numbers surrounded by the circles representing the first signal. .
  • a method of extracting a valid command from the command sequence of the first signal (“1 1 ” to “1 5 ”) will be described.
  • the command reception interval calculation unit 312 determines the reception interval of each signal based on the reception timing of these signals. calculate. In the example of FIG. 8, the command reception interval calculation unit 312 acquires a total of 10 reception intervals from the reception interval T 1-12 to T 1-45 .
  • FIG. 9 shows the result, which means that the command intervals of T 1-12 , T 1-14 , and T 1-24 are received at an integer multiple of the presumed frame interval. From the five first signals examined, it can be estimated that the three signals “1 1 ”, “1 2 ”, and “1 4 ” are correct control signals.
  • the command reception interval calculation unit 312 estimates a signal received at a reception interval near 16.6 (ms), which is twice 8.3 (ms), as an effective command. Other signals are invalid signals (noise). From the result of FIG. 9, the command reception interval calculation unit 312 groups “1 1 ”, “1 2 ”, and “1 4 ” as valid commands, and sets “1 3 ” and “1 5 ” as invalid signals (noise). ). That is, the command reception interval calculation unit 312 can determine whether or not the signal is valid based on whether or not the period of the received signal is near an integer multiple of a predetermined period.
  • the stereoscopic video viewing glasses 150 reduce control disturbance due to noise.
  • calculation unit 304 (the input switching unit 311, the command reception interval calculation unit 312, the valid command extraction unit 313, and the filter control unit 314) described in this embodiment is realized as a software program of the CPU 204 shown in FIG. It can also be realized as a hardware configuration such as an FPGA.
  • the embodiment described above mainly includes the following configuration.
  • the glasses for stereoscopic video viewing calculate a period of a signal received from the outside, and determine a valid signal according to the calculated period, and a signal received from the outside
  • An effective command extraction unit that extracts only the effective signal
  • a filter control unit that controls a left eye filter unit and a right eye filter unit that adjust the amount of light incident on the left and right eyes of the viewer according to the extracted command And.
  • the stereoscopic video viewing glasses to accept commands during a period in which a command is received from the outside, so the probability of receiving noise is low and the possibility of disturbing the control of the stereoscopic video viewing glasses is reduced. be able to.
  • the command reception interval calculation unit calculates the period of the signal received from the outside for each signal type, and the difference between the integer multiple of the calculated period and a preset period is within a predetermined range. the composed signal, it is preferable to determine the valid signal.
  • the stereoscopic video viewing glasses can reduce the possibility that the control is disturbed by noise.
  • the command reception interval calculation unit calculates the period of a signal received from the outside for each type of signal, and determines an effective signal according to the magnitude of the period error between the signals. .
  • the stereoscopic video viewing glasses can reduce the possibility that the control is disturbed by noise.
  • the invention of the present application is used for stereoscopic video viewing glasses that perform opening / closing control of a shutter (filter) based on a signal from a stereoscopic video display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

These glasses for viewing 3D video are provided with: a command-reception interval computation unit that computes the cycle length of signals received from elsewhere and determines a valid signal on the basis of the computed cycle length; a valid-command extraction unit that extracts only said valid signal from the received signals; and a filter control unit that, on the basis of the extracted command, controls a left-eye filter unit and right-eye filter unit that regulate the amount of light entering a viewer's left and right eyes.

Description

立体映像視聴用眼鏡Stereoscopic viewing glasses
 本発明は、立体映像を表示する立体映像表示装置から送信される同期信号を受信し、視聴者へ立体映像を視聴させるための立体映像視聴用眼鏡及びその制御方法に関する。 The present invention relates to stereoscopic video viewing glasses for receiving a synchronization signal transmitted from a stereoscopic video display device that displays a stereoscopic video and allowing a viewer to view the stereoscopic video and a control method thereof.
 立体映像を視聴する方法としては様々な方式が提案されている。その一つとして、立体映像を構成する左右両眼それぞれの視点での映像を時間的に交互に表示する表示装置と、該表示装置の左右それぞれの視点での映像の表示と同期して視聴者の左右それぞれの眼の前に設けられたシャッターを開閉する映像視聴用眼鏡と、により視聴者が立体映像を視聴できる立体映像システムがある(例えば、特許文献1)。 It has been proposed various methods as a way to view stereoscopic images. As one of them, a display device that alternately displays images from the viewpoints of the left and right eyes constituting a stereoscopic image, and a viewer in synchronization with the display of the images from the left and right viewpoints of the display device. There is a stereoscopic video system that allows a viewer to view a stereoscopic video by using video viewing glasses that open and close a shutter provided in front of the left and right eyes (for example, Patent Document 1).
 立体映像表示装置から、立体映像視聴用眼鏡へ同期信号を伝達する際に、無線や赤外線を使ったワイヤレス通信で伝送を行うと、立体映像視聴用眼鏡は同期信号以外のノイズ、例えば背景雑音(バックグラウンドノイズ)や他の機器が発する信号等、も受信する。立体映像視聴用眼鏡は、これらのノイズによりその制御が乱される可能性がある。 When transmitting a synchronization signal from the stereoscopic image display device to the stereoscopic image viewing glasses, if transmission is performed by wireless communication using wireless or infrared rays, the stereoscopic image viewing glasses have noise other than the synchronization signal, for example, background noise ( It signals such as background noise) and other equipment emitted, also receives. The control of the stereoscopic video viewing glasses may be disturbed by these noises.
米国特許第5654749号明細書US Pat. No. 5,654,749
 そこで、本出願の発明ではこれらのノイズが立体映像視聴用眼鏡に及ぼす影響を低減することを目的とするものである。 Therefore, the invention of the present application aims to reduce the influence of these noises on the glasses for viewing stereoscopic images.
 本発明の一局面に係る立体映像視聴用眼鏡は、外部から受信した信号の周期を算出し、算出した周期に従って有効な信号を決定するコマンド受信間隔算出部と、外部から受信した信号から前記有効な信号のみを抽出する有効コマンド抽出部と、前記抽出されたコマンドに従って、視聴者の左右両眼に入射する光量を調整する左眼フィルタ部と右眼フィルタ部とを制御するフィルタ制御部と、を備える。 The stereoscopic video viewing glasses according to one aspect of the present invention calculate a period of a signal received from the outside, determine a valid signal according to the calculated period, and the effective reception from the signal received from the outside An effective command extraction unit that extracts only a simple signal, a filter control unit that controls a left eye filter unit and a right eye filter unit that adjust the amount of light incident on the left and right eyes of the viewer according to the extracted command, Is provided.
本実施の形態で説明する立体映像表示装置と立体映像視聴用眼鏡からなる立体映像システムの構成図である。1 is a configuration diagram of a stereoscopic video system including a stereoscopic video display device and stereoscopic video viewing glasses described in the present embodiment. FIG. 本実施の形態で説明する立体映像視聴用眼鏡のハードウェア構成図である。It is a hardware block diagram of the glasses for stereoscopic video viewing described in the present embodiment. 本実施の形態で説明する立体映像視聴用眼鏡の機能構成図である。FIG. 3 is a functional configuration diagram of stereoscopic video viewing glasses described in the present embodiment. 立体映像視聴用眼鏡が受信する信号の受信タイミングとそれぞれの受信間隔を示す図である。It is a figure which shows the receiving timing of each signal which the spectacles for stereoscopic video viewing and reception and each receiving interval. 本実施の形態で説明する受信信号の、最小受信間隔、最大受信間隔、平均周期を示す図である。It is a figure which shows the minimum reception interval, the maximum reception interval, and an average period of the received signal demonstrated in this Embodiment. 本実施の形態で説明する受信信号のグルーピングを示す図である。Is a diagram showing the grouping of the reception signal described in this embodiment. 本実施の形態で説明する受信信号のグルーピング結果を多角形表示した場合の図である。It is a figure at the time of displaying the grouping result of the received signal demonstrated in this Embodiment in a polygon. 立体映像視聴用眼鏡が受信する信号の受信タイミングとそれぞれの受信間隔を示す図である。It is a figure which shows the receiving timing of each signal which the spectacles for stereoscopic video viewing and reception and each receiving interval. 本実施の形態で説明する受信信号のグルーピングを示す図である。Is a diagram showing the grouping of the reception signal described in this embodiment.
 <立体映像表示システム構成>
 図1は、立体映像を表示する映像表示装置100と、映像表示装置100が表示する立体映像を視聴する際に視聴者が装着する映像視聴用眼鏡150と、を備える映像表示システムを示した図である。
<3D image display system configuration>
FIG. 1 is a diagram showing a video display system including a video display device 100 that displays a stereoscopic video, and video viewing glasses 150 that a viewer wears when viewing the stereoscopic video displayed by the video display device 100. It is.
 表示部110は、映像表示装置100が視聴者に表示する映像を表示する部分である。立体映像を表示する場合は、時間軸上で、左眼用の映像と右眼用の映像を交互、又は、一定間隔毎に切り替えて表示する。 The display unit 110 is a part that displays a video that the video display device 100 displays to the viewer. In the case of displaying a stereoscopic image, the left-eye image and the right-eye image are displayed alternately on the time axis or by switching at regular intervals.
 同期信号送信部120は、表示部110に表示する立体映像と同期した同期信号を外部、特に、映像視聴用眼鏡150へ送信する。なお、以下の説明では、同期信号の送受信に、赤外線を用いた場合を例として説明する。 The synchronization signal transmission unit 120 transmits a synchronization signal synchronized with the stereoscopic video displayed on the display unit 110 to the outside, particularly to the video viewing glasses 150. In the following description, an example in which infrared rays are used for transmission / reception of a synchronization signal will be described.
 映像視聴用眼鏡150は、右眼光学フィルタ部160と、左眼光学フィルタ部170と、同期信号受信部180と、を備える。 The video viewing glasses 150 include a right eye optical filter unit 160, a left eye optical filter unit 170, and a synchronization signal receiving unit 180.
 右眼光学フィルタ部160は、当該映像視聴用眼鏡150を着用した視聴者の右眼へ入射する光を制御する。より具体的には、映像表示装置100の表示部110に表示された映像による光が右眼へ入射する光量、又は、光の特性を、調整、又は、変更する。 The right eye optical filter unit 160 controls the light incident on the right eye of the viewer wearing the video viewing glasses 150. More specifically, the amount of light incident on the right eye by the image displayed on the display unit 110 of the image display device 100 or the characteristics of the light is adjusted or changed.
 左眼光学フィルタ部170は、右眼光学フィルタ部160と同様に左眼へ入射する光を制御する。 The left eye optical filter unit 170 controls the light incident on the left eye in the same manner as the right eye optical filter unit 160.
 同期信号受信部180は、映像表示装置100の同期信号送信部120から送信される同期信号を受信する。 The synchronization signal receiving unit 180 receives the synchronization signal transmitted from the synchronization signal transmitting unit 120 of the video display device 100.
 映像表示システムは、以上の構成を連携させて、視聴者へ立体映像を視聴させる。映像表示装置100の表示部110には、立体映像が、例えば120Hzの速度で、左眼用の映像と右眼用の映像を交互、又は、一定間隔毎に切り替えて表示する。同期信号送信部120は、表示部110に表示される左眼用の映像と右眼用の映像との切り替えと同期した同期信号を送信する。 The video display system links the above configuration to allow viewers to view stereoscopic video. On the display unit 110 of the video display device 100, a stereoscopic video is displayed at a speed of 120 Hz, for example, a left-eye video and a right-eye video are alternately displayed or switched at regular intervals. The synchronization signal transmission unit 120 transmits a synchronization signal synchronized with the switching between the left-eye video and the right-eye video displayed on the display unit 110.
 映像視聴用眼鏡150は、映像表示装置100の同期信号送信部120から出力された同期信号を同期信号受信部180で受信する。映像視聴用眼鏡150は、同期信号を受信すると、受信した同期信号に基づいて左眼光学フィルタ部170と右眼光学フィルタ部160を制御して、映像視聴用眼鏡150を着用した視聴者の左眼、右眼へ入射する光量、又は、光の特性を制御する。例えば、映像表示装置の表示部110に左眼用の映像が表示されていることを示す同期信号を受信すると、左眼光学フィルタ部170を制御して左眼へ入射する光量を増大させる。このとき、右眼光学フィルタ部160では、右眼へ入射する光量を減光させる。この結果、視聴者は表示部110に表示された左眼用の映像を、左眼で視聴し、右眼では視聴しないこととなる。反対に、表示部110に表示される映像が右眼用の映像であることを示す同期信号を受信すると、左眼光学フィルタ部170は、左眼へ入射する光量を減光し、右眼光学フィルタ部160は、右眼へ入射する光量を増大させる。この結果、表示部110に表示された右眼用の映像は、視聴者の右眼で視聴し、左眼では視聴しないこととなる。 The video viewing glasses 150 receive the synchronization signal output from the synchronization signal transmission unit 120 of the video display device 100 by the synchronization signal reception unit 180. When the video viewing glasses 150 receives the synchronization signal, the video viewing glasses 150 control the left eye optical filter unit 170 and the right eye optical filter unit 160 based on the received synchronization signal, so that the left viewer of the viewer wearing the video viewing glasses 150 eye, the light quantity incident on the right eye, or to control the optical characteristics. For example, when a synchronization signal indicating that a left-eye image is displayed on the display unit 110 of the image display device is received, the left-eye optical filter unit 170 is controlled to increase the amount of light incident on the left eye. At this time, the right-eye optical filter unit 160 reduces the amount of light incident on the right eye. As a result, the viewer views the left-eye video displayed on the display unit 110 with the left eye and does not view with the right eye. Conversely, when receiving a synchronization signal indicating that the image displayed on the display unit 110 is a right-eye image, the left-eye optical filter unit 170 reduces the amount of light incident on the left eye, and the right-eye optics. filter unit 160 increases the amount of light entering the right eye. As a result, the video for the right eye displayed on the display unit 110 is viewed with the viewer's right eye and not viewed with the left eye.
 この際、表示部110に表示される左眼用の映像と右眼用の映像が、視聴者の視差の分だけ異なる映像であった場合、視聴者は、表示部110に表示される映像に視差があると知覚する。その結果、表示部110が略平面状の形態を持つ表示デバイスであっても、そこに表示される映像が立体的であると視聴者は感じることができる。 At this time, if the left-eye video and the right-eye video displayed on the display unit 110 are different from each other by the amount of the parallax of the viewer, the viewer displays the video displayed on the display unit 110. Perceived to have parallax. As a result, even if the display unit 110 is a display device having a substantially planar shape, the viewer can feel that the video displayed there is three-dimensional.
 <立体映像視聴眼鏡のハードウェア構成>
 図2は、映像視聴用眼鏡150のハードウェア構成を示した図である。映像視聴用眼鏡150は、ハードウェア構成として、赤外線受光センサ(IRセンサ)201と、アンプ202と、LED203と、CPU204と、スイッチ(SW)205と、ROM206と、RAM207と、クロック(CLK)208と、アナログスイッチ209と、シャッター210と、アナログスイッチ211と、シャッター212とを有する。
<Hardware configuration of stereoscopic video viewing glasses>
FIG. 2 is a diagram illustrating a hardware configuration of the video viewing glasses 150. The eyeglasses for viewing video 150 have, as hardware configurations, an infrared light receiving sensor (IR sensor) 201, an amplifier 202, an LED 203, a CPU 204, a switch (SW) 205, a ROM 206, a RAM 207, and a clock (CLK) 208. An analog switch 209, a shutter 210, an analog switch 211, and a shutter 212.
 IRセンサ201は、立体映像表示装置100から送信される同期信号を受信するセンサである。IRセンサ201は、受光した赤外線を電気信号に変換する。本実施の形態では同期信号は赤外線により伝搬させるものとして説明するが、これに限定するものではない。無線のようにワイヤレス方式により同期信号が伝搬されるものであれば他の方式を用いても良い。 The IR sensor 201 is a sensor that receives a synchronization signal transmitted from the stereoscopic video display device 100. The IR sensor 201 converts the received infrared light into an electrical signal. In this embodiment, the synchronization signal is described as being propagated by infrared rays, but the present invention is not limited to this. Other methods may be used as long as the synchronization signal is propagated by a wireless method such as radio.
 アンプ202は、IRセンサ201が出力した電気信号を後段の処理ブロックで処理しやすいよう、適切に電気信号を増幅等する。 The amplifier 202 appropriately amplifies the electric signal so that the electric signal output from the IR sensor 201 can be easily processed by a subsequent processing block.
 LED203は、立体映像視聴用眼鏡150が動作中、又は、スイッチ205を入力して電源を入れた場合にユーザにその動作内容を明示するために、点灯等するものである。 The LED 203 is lit to clearly indicate the operation contents to the user when the stereoscopic video viewing glasses 150 are operating or when the switch 205 is input and the power is turned on.
 CPU204は、立体映像視聴用眼鏡150の全般を制御する。本実施の形態では、CPUを例として説明するが、これ以外にもDSPやFPGA等で同様の処理を行うものであってもよい。 The CPU 204 controls the whole of the stereoscopic video viewing glasses 150. In the present embodiment, a CPU is described as an example, but a similar process may be performed by a DSP, FPGA, or the like.
 スイッチ(SW)205は、外部から立体映像視聴用眼鏡150への入力を実現するインターフェースである。 The switch (SW) 205 is an interface for realizing input to the stereoscopic video viewing glasses 150 from the outside.
 ROM206は、CPU204等が動作するためのプログラムや、動作パラメータ、初期値等を保持する。ROM206は、書換え可能なフラッシュメモリ等を用いるものであっても良い。 The ROM 206 holds programs for operating the CPU 204 and the like, operation parameters, initial values, and the like. The ROM 206 may use a rewritable flash memory or the like.
 RAM207は、CPU204のプログラムが動作時に一時的に保持する変数値等を保持する。 The RAM 207 holds variable values and the like temporarily held by the CPU 204 program during operation.
 クロック(CLK)208は、CPU204やその他のハードウェア構成部を動作させるための基準クロックを発振する。 The clock (CLK) 208 oscillates a reference clock for operating the CPU 204 and other hardware components.
 アナログスイッチ209、211は、後述するシャッター210、212の開閉動作を駆動させるための駆動処理を行う。二つのアナログスイッチ209と211が設けられているのは、左右両眼のシャッター210、212をそれぞれに駆動させるために必要となるからである。 The analog switches 209 and 211 perform a driving process for driving an opening / closing operation of shutters 210 and 212 described later. The two analog switches 209 and 211 are provided because they are necessary to drive the left and right eye shutters 210 and 212, respectively.
 シャッター210、212は、視聴者の左右それぞれの眼の前に設けられ、立体映像表示装置100が表示する映像と同期して開閉される。 The shutters 210 and 212 are provided in front of the left and right eyes of the viewer, and are opened and closed in synchronization with the video displayed by the stereoscopic video display device 100.
 <立体映像視聴眼鏡の機能構成>
 図3は、立体映像視聴用眼鏡150の機能構成を示す図である。立体映像視聴用眼鏡150は、機能構成として、受信部301と、増幅部302と、表示部303と、演算部304と、入力部305と、メモリ部306と、基準信号生成部307と、駆動部308と、左眼フィルタ部309と、右眼フィルタ部310と、を有する。
<Functional configuration of stereoscopic video viewing glasses>
FIG. 3 is a diagram illustrating a functional configuration of the stereoscopic video viewing glasses 150. The stereoscopic video viewing glasses 150 have a functional configuration such as a reception unit 301, an amplification unit 302, a display unit 303, a calculation unit 304, an input unit 305, a memory unit 306, a reference signal generation unit 307, and a drive. A unit 308, a left eye filter unit 309, and a right eye filter unit 310.
 受信部301は、立体映像表示装置100から送信される同期信号を受信する。受信部301は、図2のIRセンサ201に相当する。 The receiving unit 301 receives a synchronization signal transmitted from the stereoscopic video display device 100. The receiving unit 301 corresponds to the IR sensor 201 in FIG.
 増幅部302は、受信部301が受信した信号を増幅する。増幅部302は、図2のアンプ202に相当する。 The amplifying unit 302 amplifies the signal received by the receiving unit 301. The amplification unit 302 corresponds to the amplifier 202 in FIG.
 表示部303は、立体映像視聴用眼鏡150がユーザに各種の情報を表示する。表示部303は、図2でいえばLED203に相当するが、表示方式はLEDに限定されるものではない。その他の方式でユーザに情報を表示するものであればいずれの実現方法であってもよい。 The display unit 303 displays various information to the user by the stereoscopic video viewing glasses 150. The display unit 303 corresponds to the LED 203 in FIG. 2, but the display method is not limited to the LED. Any realization method may be used as long as information is displayed to the user by other methods.
 演算部304は、立体映像視聴用眼鏡150の全体制御を行う。演算部304は、図2のCPU204に相当する。 The calculation unit 304 performs overall control of the stereoscopic video viewing glasses 150. The calculation unit 304 corresponds to the CPU 204 in FIG.
 入力部305は、ユーザーからの各種指示等を受け付ける。入力部305は、図2のスイッチ205に相当する。 The input unit 305 receives various instructions from the user. The input unit 305 corresponds to the switch 205 in FIG.
 メモリ部306は、各種の情報を恒久的に、又は一時的に保持する。メモリ部306は、図2のROM206、RAM207に相当する。 The memory unit 306 holds various types of information permanently or temporarily. The memory unit 306 corresponds to the ROM 206 and the RAM 207 in FIG.
 基準信号生成部307は、演算部304等が動作に必要とする基準信号を生成する。基準信号生成部307は、図2のクロック208に相当する。 The reference signal generation unit 307 generates a reference signal necessary for the operation of the arithmetic unit 304 or the like. The reference signal generation unit 307 corresponds to the clock 208 in FIG.
 駆動部308は、後述する左眼フィルタ部309や右眼フィルタ部310のシャッター等を動作させる信号を生成して出力する。フィルタ駆動部308は、図2のアナログスイッチ209、211に相当する。 The driving unit 308 generates and outputs a signal for operating a shutter of the left eye filter unit 309 and the right eye filter unit 310 described later. The filter driving unit 308 corresponds to the analog switches 209 and 211 in FIG.
 左眼フィルタ部309、右眼フィルタ部310は、視聴者の左右の眼へ入射する光量を制御する。左眼フィルタ部309、右眼フィルタ部310は、図2のシャッター210、212に相当する。 The left eye filter unit 309 and the right eye filter unit 310 control the amount of light incident on the left and right eyes of the viewer. The left eye filter unit 309 and the right eye filter unit 310 correspond to the shutters 210 and 212 in FIG.
 演算部304は、さらに入力切り替え部311と、コマンド受信間隔算出部312と、有効コマンド抽出部313と、フィルタ制御部314と、を有する。 The calculation unit 304 further includes an input switching unit 311, a command reception interval calculation unit 312, a valid command extraction unit 313, and a filter control unit 314.
 入力切り替え部311は、受信部301、増幅部302から入力される同期信号を演算部304が受け付けるか否かを制御する。入力切り替え部311は、例えば図2のCPU204における入力ポートの有効/無効等に相当する。 The input switching unit 311 controls whether the arithmetic unit 304 accepts the synchronization signal input from the receiving unit 301 and the amplifying unit 302. The input switching unit 311 corresponds to, for example, validity / invalidity of the input port in the CPU 204 in FIG.
 コマンド受信間隔算出部312は、受信部301等で受信する各種信号の受信周期を算出し、受信コマンドのグルーピング処理等により有効コマンドとそれ以外の信号(ノイズ)等との区別を行う。有効コマンドとそれ以外の信号との区別方法については後述する。 The command reception interval calculation unit 312 calculates reception periods of various signals received by the reception unit 301 and the like, and distinguishes between a valid command and other signals (noise) and the like by a reception command grouping process or the like. Will be described later distinguish how the effective command and other signals.
 有効コマンド抽出部313は、コマンド受信間隔算出部312により各種信号の受信周期を算出し、有効として区別されたコマンドを、実際の受信したコマンドから抽出する。有効コマンド抽出部313が受信信号から抽出したコマンドのみが、後述のフィルタ制御部に出力される。 The valid command extraction unit 313 calculates reception periods of various signals by the command reception interval calculation unit 312 and extracts commands that are distinguished as valid from the actual received commands. Only the command extracted from the received signal by the valid command extraction unit 313 is output to the filter control unit described later.
 フィルタ制御部314は、有効コマンド抽出部313により抽出されたコマンドに従って、駆動部308を介して左眼フィルタ部309と、右眼フィルタ部310との開閉を制御する。 The filter control unit 314 controls opening and closing of the left eye filter unit 309 and the right eye filter unit 310 via the drive unit 308 in accordance with the command extracted by the valid command extraction unit 313.
 なお、本実施の形態で説明する図3の機能構成と図2のハードウェア構成の対応は、一例であり、本出願の発明はこの対応関係に限定するものではない。 Note that the correspondence between the functional configuration of FIG. 3 and the hardware configuration of FIG. 2 described in this embodiment is an example, and the invention of the present application is not limited to this correspondence.
 <コマンド受信信号の周期の算出>
 図4は、受信信号の受信タイミングとそれぞれの周期を示す図である。図4(a)は、立体映像視聴用眼鏡150が受信する信号を時間軸上で示した図である。図4(b)は、立体映像視聴用眼鏡150が受信したそれぞれの種類のコマンドの周期を算出した図である。立体映像視聴用眼鏡150は、左眼フィルタ部309、右眼フィルタ部310の開閉を制御するコマンド以外の、その他の信号(ノイズ)等の信号も含めて受信している。図4(a)、図4(b)にはこれらノイズを含めた6種類の信号が存在している。図4に示す例では、立体映像視聴用眼鏡150を制御するコマンドとして、図4(a)の第1から第6までの6種類のコマンドが定義されているとして、それらのコマンド列から有効なコマンドを抽出する方法を説明する。
<Calculation of command received signal cycle>
FIG. 4 is a diagram illustrating reception timings of received signals and respective periods. FIG. 4A shows a signal received by the stereoscopic video viewing glasses 150 on the time axis. FIG. 4B is a diagram in which the period of each type of command received by the stereoscopic video viewing glasses 150 is calculated. The stereoscopic video viewing glasses 150 receive other signals (noise) and other signals in addition to commands for controlling the opening and closing of the left eye filter unit 309 and the right eye filter unit 310. In FIG. 4A and FIG. 4B, there are six types of signals including these noises. In the example shown in FIG. 4, it is assumed that six types of commands from the first to the sixth in FIG. 4A are defined as commands for controlling the stereoscopic video viewing glasses 150, and are effective from those command strings. A method for extracting commands will be described.
 コマンド受信間隔算出部312は、図4(a)に示す第1から第6の信号(6種類の異なる信号)を受信すると、これらの信号の受信タイミングに基づいてそれぞれの信号の周期を算出する。例えば、第1の信号について、最初に第1の信号を受信してから次の第1の信号を受信するまでの時刻を、コマンド受信間隔算出部312は計測する。この計測は、基準信号生成部307から供給される基準信号をベースに計測する。コマンド受信間隔算出部312は、この計測により受信間隔T11を取得する。コマンド受信間隔算出部312は、第1のコマンドについて、同様の計測を続く第1の信号を受信する度に繰り返すことで、図4の場合には、受信間隔T12とT13を取得する。 When receiving the first to sixth signals (six different types of signals) shown in FIG. 4A, the command reception interval calculation unit 312 calculates the period of each signal based on the reception timing of these signals. . For example, for the first signal, the command reception interval calculation unit 312 measures the time from when the first signal is first received until the next first signal is received. This measurement is based on the reference signal supplied from the reference signal generation unit 307. The command reception interval calculation unit 312 acquires the reception interval T11 by this measurement. The command reception interval calculation unit 312 obtains reception intervals T12 and T13 in the case of FIG. 4 by repeating the same measurement every time the first signal is received for the first command.
 コマンド受信間隔算出部312は、同様に第2から第6の信号受信についても、それぞれの信号受信の受信間隔を計測する。第2の信号については、受信間隔T21、T22、T23を、第3の信号については、受信間隔T31、T32、T33を、第4の信号については受信間隔T41、T42、T43を、第5の信号については、受信間隔T51、T52、T53を、第6の信号については、受信間隔T61、T62を、コマンド受信間隔算出部312は取得する。 The command reception interval calculation unit 312 similarly measures the reception intervals of the respective signal receptions for the second to sixth signal receptions as well. For the second signal, receive intervals T21, T22, T23, for the third signal, receive intervals T31, T32, T33, for the fourth signal, receive intervals T41, T42, T43, The command reception interval calculation unit 312 acquires reception intervals T51, T52, and T53 for signals, and reception intervals T61 and T62 for the sixth signal.
 コマンド受信間隔算出部312は、取得した受信間隔から、信号の種類毎にそれぞれの周期を算出する。第1の信号について、コマンド受信間隔算出部312は、取得した受信間隔から第1の信号の周期T1を以下の計算式で決定する。 The command reception interval calculation unit 312 calculates each period for each signal type from the acquired reception interval. For the first signal, the command reception interval calculation unit 312 determines the period T1 of the first signal from the acquired reception interval by the following calculation formula.
 T1 = (T11+T12+T13)/3 T1 = (T11 + T12 + T13) / 3
 コマンド受信間隔算出部312は、第2の信号の周期T2、第3の信号の周期T3、第4の信号の周期T4、第5の信号の周期T5、第6の信号の周期T6,についても同様にそれぞれの周期を算出する。 The command reception interval calculation unit 312 also performs the second signal cycle T2, the third signal cycle T3, the fourth signal cycle T4, the fifth signal cycle T5, and the sixth signal cycle T6. Similarly, each period is calculated.
 T2 = (T21+T22+T23)/3
 T3 = (T31+T32+T33)/3
 T4 = (T41+T42+T43)/3
 T5 = (T51+T52+T53)/3
 T6 = (T61+T62)/2
T2 = (T21 + T22 + T23) / 3
T3 = (T31 + T32 + T33) / 3
T4 = (T41 + T42 + T43) / 3
T5 = (T51 + T52 + T53) / 3
T6 = (T61 + T62) / 2
 図5に、第1から第6の信号の周期について算出した場合の例を示す。図5にはそれぞれのコマンドについて受信間隔が最小となった場合の時間間隔と、受信間隔が最大となった場合の時間間隔と、上記の式等により算出したそれぞれの信号の周期(平均周期)とを示す。 FIG. 5 shows an example in which the period of the first to sixth signals is calculated. FIG. 5 shows the time interval when the reception interval is minimum for each command, the time interval when the reception interval is maximum, and the period (average period) of each signal calculated by the above formula and the like. It shows.
 なお、本実施の形態では、第1から第6の信号の周期を、それぞれの信号について取得した受信間隔を平均した値としたが、本出願の発明はこれに限定されるものではない。その他の方法として、取得した複数の受信間隔の値から中間値を採用するものであってもよいし、また、別の方法として最小値、最大値を除いた分での平均値を用いるものであっても良い。つまり、実際に受信した信号の受信間隔に基づいて代表となる受信間隔を算出するものであればいずれの算出方法であってもよい。 In the present embodiment, the period of the first to sixth signals is a value obtained by averaging the reception intervals acquired for each signal, but the invention of the present application is not limited to this. As another method, an intermediate value may be adopted from a plurality of acquired reception interval values, and another method is to use an average value obtained by removing the minimum value and the maximum value. There may be. In other words, any calculation method may be used as long as the representative reception interval is calculated based on the reception interval of the actually received signal.
 なお、コマンド受信間隔算出部312は、上記の信号毎の周期を、一度決定した周期に必ずしも固定する必要はない。コマンドを受信するたびに、当該周期を更新するものであってもよい。この場合には、立体映像表示装置側で表示周期をシーン毎に変化させる場合等に、立体映像視聴用眼鏡150は、コマンド周期の変化を追随されることができる。 Note that the command reception interval calculation unit 312 does not necessarily need to fix the period for each signal to a period once determined. The period may be updated every time a command is received. In this case, when the display cycle is changed for each scene on the stereoscopic video display device side, the stereoscopic video viewing glasses 150 can follow the change of the command cycle.
 <コマンド受信信号のグルーピングと判定>
 コマンド受信間隔算出部312は、受信した信号毎に算出した周期に基づいてグルーピング処理を行う。グルーピングの方法には幾つかの方法がある。
<Command reception signal grouping and determination>
The command reception interval calculation unit 312 performs grouping processing based on the cycle calculated for each received signal. There are several grouping methods.
 例えば、コマンド受信間隔算出部312は、あらかじめ左右両目のフィルタを開閉動作させる周期が、幾つか決まった周期の中のひとつと一致するような場合がある。このような場合、コマンド受信間隔算出部312は、その予め決まった周期から、受信した信号のグルーピングを行う。立体映像が120Hzで左右の映像を表示している場合、単純に計算すると、それぞれのフレームの表示時間は、
 1000(ms) / 120(Hz) = 8.3(ms/frame)
となる。
For example, the command reception interval calculation unit 312 may have a period in which the left and right eye filters are opened and closed in advance coincide with one of several predetermined periods. In such a case, the command reception interval calculation unit 312 performs grouping of received signals from the predetermined period. When the left and right images are displayed at 120 Hz, the display time of each frame is simply calculated as follows.
1000 (ms) / 120 (Hz) = 8.3 (ms / frame)
It becomes.
 コマンド受信間隔算出部312が本来受信するべき信号が、左眼フィルタ部309を開けるコマンド、左眼フィルタ部309を閉めるコマンド、右眼フィルタ部310を開けるコマンド、右眼フィルタ部310を閉めるコマンド、とした場合に、これらのコマンドによる動作は図4(c)に示すようになる。コマンド受信間隔算出部312は、これらの周期に基づいてそれぞれの信号(コマンド)が上記フレーム表示時間の約2倍の受信間隔で受信されると推定することができる。 The signal that should be received by the command reception interval calculation unit 312 is a command for opening the left eye filter unit 309, a command for closing the left eye filter unit 309, a command for opening the right eye filter unit 310, a command for closing the right eye filter unit 310, In this case, the operation according to these commands is as shown in FIG. Based on these periods, the command reception interval calculation unit 312 can estimate that each signal (command) is received at a reception interval that is approximately twice the frame display time.
 これにより、コマンド受信間隔算出部312は、8.3(ms)の2倍となる16.6(ms)の近辺の受信間隔で受信される信号を有効コマンドとして推定する。それ以外の信号を無効な信号(ノイズ)とする。図5の平均周期により、コマンド受信間隔算出部312は、第1から第4の信号を有効コマンドとしてグルーピングし、第5、第6の信号をノイズとして判定する。つまり、コマンド受信間隔算出部312は、受信した信号の周期が、予め決まっている周期の整数倍近辺となるか否かにより有効コマンドか否かを判定することができる。なお、ここで「近辺」とは理論的なコマンド周期の前後数パーセント程度の誤差の範囲、信号周期が存在する場合である。 Thereby, the command reception interval calculation unit 312 estimates a signal received at a reception interval in the vicinity of 16.6 (ms), which is twice 8.3 (ms), as an effective command. The other signals an invalid signal (noise). Based on the average period of FIG. 5, the command reception interval calculation unit 312 groups the first to fourth signals as valid commands, and determines the fifth and sixth signals as noise. That is, the command reception interval calculation unit 312 can determine whether or not the command is a valid command based on whether or not the period of the received signal is in the vicinity of an integral multiple of a predetermined period. Here, “near” is a case where there is an error range and signal period of several percent before and after the theoretical command period.
 また別の方法としてコマンド受信間隔算出部312は、算出したそれぞれの信号の周期のみに基づいて有効コマンドのグルーピングを行うことも可能である。コマンド受信間隔算出部312は、図5で示される各信号の周期より、各信号の周期の値の97%から103%(つまり、その値の前後3%の幅の範囲)の範囲に他の信号の周期が含まれるか否かでグルーピングを行う。この場合、図6で示すように、第1から第4の信号についてはこの前後3%の幅の範囲に、すべての信号が収まっているが、第5、第6の信号については含まれていない。これにより、コマンド受信間隔算出部312は、有効コマンドのみをグルーピングすることも可能である。なお、本実施の形態では、例として前後3%の幅としたが、本発明はこの値に限定されない。 As another method, the command reception interval calculation unit 312 can group effective commands based only on the calculated period of each signal. The command reception interval calculation unit 312 has other values within the range of 97% to 103% (that is, a range of 3% before and after the value) of the period of each signal from the period of each signal shown in FIG. performing grouping on whether include periodic signals. In this case, as shown in FIG. 6, the first to fourth signals are all within the range of 3% before and after this, but the fifth and sixth signals are not included. Absent. As a result, the command reception interval calculation unit 312 can group only valid commands. In the present embodiment, the width of 3% is used as an example, but the present invention is not limited to this value.
図7は、コマンド受信間隔算出部312により、グルーピングした結果を図示したものである。図7は、多角形の各頂点に受信した信号をそれぞれ記載し、コマンド受信間隔算出部312により有効グループと判定された信号については、相互に実践で結んでいる。こうすることで、有効な信号のみが明確に理解できることとなる。 FIG. 7 illustrates a result of grouping by the command reception interval calculation unit 312. FIG. 7 describes the signals received at each vertex of the polygon, and the signals determined to be effective groups by the command reception interval calculation unit 312 are mutually connected in practice. In this way, and only the valid signal can be clearly understood.
 <有効コマンドによるフィルタ部制御>
 有効コマンド抽出部313は、受信部301、増幅部302から入力される信号から、コマンド受信間隔算出部312により有効コマンドと認められた信号のみを抽出する。有効コマンド抽出部313は、それ以外に入力される信号については無視する。有効コマンド抽出部313は、有効コマンドの制御内容にしたがって、フィルタ制御部314、フィルタ駆動部308を介して左眼フィルタ部309、右眼フィルタ部310の開閉動作を制御する(図4(c))。
<Filter section control by valid command>
The valid command extraction unit 313 extracts only signals recognized as valid commands by the command reception interval calculation unit 312 from the signals input from the reception unit 301 and the amplification unit 302. The valid command extraction unit 313 ignores other input signals. The valid command extraction unit 313 controls the opening / closing operation of the left eye filter unit 309 and the right eye filter unit 310 via the filter control unit 314 and the filter driving unit 308 according to the control content of the valid command (FIG. 4C). ).
 以上により、本実施の形態では、受信した信号から有効なコマンドのみを自動的に抽出し、ノイズ等を除去することで、ノイズによる影響を抑制することができる。その結果、立体映像視聴用眼鏡150は、ノイズによる制御の乱れを低減することとなる。 As described above, in the present embodiment, only the effective command is automatically extracted from the received signal, and the influence of noise can be suppressed by removing noise and the like. As a result, the stereoscopic video viewing glasses 150 reduce control disturbance due to noise.
 図8は、本発明の実施例の別の例を示したもので、受信信号の受信タイミングとそれぞれの周期を示す図である。図8(a)は、立体映像視聴用眼鏡150が受信する信号を時間軸上で示した図である。図8(b)は、立体映像視聴用眼鏡150が受信したそれぞれの種類のコマンドの周期を算出した図である。図8(a)には、立体映像視聴用眼鏡150を制御するための4種類のコマンドを受信しているが、第1の信号(図8(a)中、円で囲まれた番号「1」及び下付番号「1」乃至「5」で示される。)には、ノイズが混入し不定期にコマンドを受信していることを示している。以下、図8(a)中、第1の信号を表す円で囲まれた番号に対応する「1」乃至「1」の符号を用いて、第1の信号のコマンド列が説明される。この図8に示す例では、第1の信号(「1」から「1」)のコマンド列から有効なコマンドを抽出する方法を説明する。 FIG. 8 shows another example of the embodiment of the present invention, and is a diagram showing reception timing of received signals and respective periods. FIG. 8A shows a signal received by the stereoscopic video viewing glasses 150 on the time axis. FIG. 8B is a diagram in which the period of each type of command received by the stereoscopic video viewing glasses 150 is calculated. In FIG. 8A, four types of commands for controlling the stereoscopic video viewing glasses 150 are received. The first signal (the number “1” surrounded by a circle in FIG. 8A). And subscript numbers “1” to “5”) indicate that noise is mixed and the command is received irregularly. In the following, in FIG. 8A, the command sequence of the first signal is described using the symbols “1 1 ” to “1 5 ” corresponding to the numbers surrounded by the circles representing the first signal. . In the example shown in FIG. 8, a method of extracting a valid command from the command sequence of the first signal (“1 1 ” to “1 5 ”) will be described.
 コマンド受信間隔算出部312は、図8(a)に示す第1の信号(「1」から「1」)を受信すると、これらの信号の受信タイミングに基づいてそれぞれの信号の受信間隔を算出する。図8の例では、受信間隔T1-12からT1-45までの計10個の受信間隔をコマンド受信間隔算出部312は取得する。 When receiving the first signals (“1 1 ” to “1 5 ”) shown in FIG. 8A, the command reception interval calculation unit 312 determines the reception interval of each signal based on the reception timing of these signals. calculate. In the example of FIG. 8, the command reception interval calculation unit 312 acquires a total of 10 reception intervals from the reception interval T 1-12 to T 1-45 .
 コマンド受信間隔算出部312は、取得したコマンド受信間隔が、あらかじめ想定されるフレームの表示時間の約2倍の時間の間隔になっているかを判定する。すなわち、例えば、立体映像が120Hzで左右の映像を表示している場合、左右それぞれのフレームの表示時間は、
 1000(ms) / 120(Hz) = 8.3(ms/frame)
となり、その2倍の約16.6msに、取得したコマンド受信間隔が一致するかどうかをコマンド受信間隔算出部312は判定する。
The command reception interval calculation unit 312 determines whether the acquired command reception interval is a time interval that is approximately twice as long as the frame display time that is assumed in advance. That is, for example, when a stereoscopic image is displaying left and right images at 120 Hz, the display time of each of the left and right frames is
1000 (ms) / 120 (Hz) = 8.3 (ms / frame)
Thus, the command reception interval calculation unit 312 determines whether or not the acquired command reception interval coincides with about 2 times that of 16.6 ms.
 図9は、その結果を示したもので、T1-12、T1-14、T1-24のコマンド間隔があらかじめ想定されるフレーム間隔の整数倍で受信されていることを意味しており、検査した5つの第1の信号から「1」、「1」、「1」の3つの信号が正しい制御信号であると推定することができる。 FIG. 9 shows the result, which means that the command intervals of T 1-12 , T 1-14 , and T 1-24 are received at an integer multiple of the presumed frame interval. From the five first signals examined, it can be estimated that the three signals “1 1 ”, “1 2 ”, and “1 4 ” are correct control signals.
 これにより、コマンド受信間隔算出部312は、8.3(ms)の2倍となる16.6(ms)の近辺の受信間隔で受信される信号を有効コマンドとして推定する。それ以外の信号を無効な信号(ノイズ)とする。図9の結果から、コマンド受信間隔算出部312は、「1」、「1」、「1」を有効コマンドとしてグルーピングし、「1」、「1」を無効な信号(ノイズ)と判定する。つまり、コマンド受信間隔算出部312は、受信した信号の周期が、予め決まっている周期の整数倍付近となるか否かにより、信号が有効であるか否かを判定することができる。 As a result, the command reception interval calculation unit 312 estimates a signal received at a reception interval near 16.6 (ms), which is twice 8.3 (ms), as an effective command. Other signals are invalid signals (noise). From the result of FIG. 9, the command reception interval calculation unit 312 groups “1 1 ”, “1 2 ”, and “1 4 ” as valid commands, and sets “1 3 ” and “1 5 ” as invalid signals (noise). ). That is, the command reception interval calculation unit 312 can determine whether or not the signal is valid based on whether or not the period of the received signal is near an integer multiple of a predetermined period.
 以上により、本実施の形態では、受信した信号から有効な信号のみを自動的に抽出し、ノイズ等を除去することで、ノイズによる影響を抑制することができる。その結果、立体映像視聴用眼鏡150は、ノイズによる制御の乱れを低減することとなる。 As described above, in the present embodiment, only the effective signal is automatically extracted from the received signal, and the influence of noise can be suppressed by removing noise and the like. As a result, the stereoscopic video viewing glasses 150 reduce control disturbance due to noise.
 なお、本実施の形態で説明した演算部304(入力切り替え部311、コマンド受信間隔算出部312、有効コマンド抽出部313、フィルタ制御部314)は、図2で示したCPU204のソフトウェアプログラムとして実現することも、FPGA等のハードウェア構成として実現することも可能である。 Note that the calculation unit 304 (the input switching unit 311, the command reception interval calculation unit 312, the valid command extraction unit 313, and the filter control unit 314) described in this embodiment is realized as a software program of the CPU 204 shown in FIG. It can also be realized as a hardware configuration such as an FPGA.
 上述された実施形態は、以下の構成を主に備える。 The embodiment described above mainly includes the following configuration.
 上述の実施形態の一局面に係る立体映像視聴用眼鏡は、外部から受信した信号の周期を算出し、算出した周期に従って有効な信号を決定するコマンド受信間隔算出部と、外部から受信した信号から前記有効な信号のみを抽出する有効コマンド抽出部と、前記抽出されたコマンドに従って、視聴者の左右両眼に入射する光量を調整する左眼フィルタ部と右眼フィルタ部とを制御するフィルタ制御部と、を備えることを特徴とする。 The glasses for stereoscopic video viewing according to one aspect of the above-described embodiment calculate a period of a signal received from the outside, and determine a valid signal according to the calculated period, and a signal received from the outside An effective command extraction unit that extracts only the effective signal, and a filter control unit that controls a left eye filter unit and a right eye filter unit that adjust the amount of light incident on the left and right eyes of the viewer according to the extracted command And.
 これにより、外部からのコマンド受信がある期間に立体映像視聴用眼鏡はコマンドの受け入れを行うので、ノイズを受信する確率が低くなり、立体映像視聴用眼鏡の制御が乱される可能性を低くすることができる。 This allows the stereoscopic video viewing glasses to accept commands during a period in which a command is received from the outside, so the probability of receiving noise is low and the possibility of disturbing the control of the stereoscopic video viewing glasses is reduced. be able to.
 上記構成において、前記コマンド受信間隔算出部は、外部から受信した信号の周期を信号の種類毎に算出し、該算出した周期の整数倍と予め設定された周期との差が所定の範囲内となる信号を、有効な信号と決定することが好ましい。 In the above configuration, the command reception interval calculation unit calculates the period of the signal received from the outside for each signal type, and the difference between the integer multiple of the calculated period and a preset period is within a predetermined range. the composed signal, it is preferable to determine the valid signal.
 上記構成によれば、立体映像視聴用眼鏡は、ノイズによりその制御を乱される可能性を低減することができる。 According to the above-described configuration, the stereoscopic video viewing glasses can reduce the possibility that the control is disturbed by noise.
 上記構成において、前記コマンド受信間隔算出部は、外部から受信した信号の周期を信号の種類毎に算出し、該信号相互間の周期の誤差の大きさにより、有効な信号を決定することが好ましい。 In the above configuration, it is preferable that the command reception interval calculation unit calculates the period of a signal received from the outside for each type of signal, and determines an effective signal according to the magnitude of the period error between the signals. .
 上記構成によれば、立体映像視聴用眼鏡は、ノイズによりその制御を乱される可能性を低減することができる。 According to the above-described configuration, the stereoscopic video viewing glasses can reduce the possibility that the control is disturbed by noise.
 本出願の発明は立体映像表示装置からの信号に基づいてシャッター(フィルター)の開閉制御を行う立体映像視聴用眼鏡に利用である。 The invention of the present application is used for stereoscopic video viewing glasses that perform opening / closing control of a shutter (filter) based on a signal from a stereoscopic video display device.

Claims (3)

  1.  外部から受信した信号の周期を算出し、算出した周期に従って有効な信号を決定するコマンド受信間隔算出部と、
     外部から受信した信号から前記有効な信号のみを抽出する有効コマンド抽出部と、
     前記抽出されたコマンドに従って、視聴者の左右両眼に入射する光量を調整する左眼フィルタ部と右眼フィルタ部とを制御するフィルタ制御部と、
     を備える立体映像視聴用眼鏡。
    A command reception interval calculation unit that calculates a period of a signal received from the outside and determines a valid signal according to the calculated period;
    An effective command extraction unit that extracts only the effective signal from a signal received from the outside;
    A filter control unit for controlling a left eye filter unit and a right eye filter unit for adjusting the amount of light incident on the left and right eyes of the viewer according to the extracted command;
    Glasses for viewing stereoscopic images.
  2.  前記コマンド受信間隔算出部は、外部から受信した信号の周期を信号の種類毎に算出し、該算出した周期の整数倍と予め設定された周期との差が所定の範囲内となる信号を、有効な信号と決定する、
     請求項1に記載の立体映像視聴用眼鏡。
    The command reception interval calculation unit calculates a period of a signal received from the outside for each signal type, and a signal in which a difference between an integer multiple of the calculated period and a preset period is within a predetermined range, Determine a valid signal,
    The stereoscopic image viewing glasses according to claim 1.
  3.  前記コマンド受信間隔算出部は、外部から受信した信号の周期を信号の種類毎に算出し、該信号相互間の周期の誤差の大きさにより、有効な信号を決定する、
     請求項1に記載の立体映像視聴用眼鏡。
    The command reception interval calculation unit calculates the period of a signal received from the outside for each type of signal, and determines an effective signal according to the magnitude of the period error between the signals.
    The stereoscopic image viewing glasses according to claim 1.
PCT/JP2010/005896 2010-09-30 2010-09-30 Glasses for viewing 3d video WO2012042575A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE212010000155U DE212010000155U1 (en) 2010-09-30 2010-09-30 Glasses for watching stereoscopic images
CN2010900007010U CN202514019U (en) 2010-09-30 2010-09-30 Glasses used for watching stereoscopic images
PCT/JP2010/005896 WO2012042575A1 (en) 2010-09-30 2010-09-30 Glasses for viewing 3d video
FR1158455A FR2965694B3 (en) 2010-09-30 2011-09-22 STEREOSCOPIC IMAGE VIEW GLASSES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005896 WO2012042575A1 (en) 2010-09-30 2010-09-30 Glasses for viewing 3d video

Publications (1)

Publication Number Publication Date
WO2012042575A1 true WO2012042575A1 (en) 2012-04-05

Family

ID=45868967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005896 WO2012042575A1 (en) 2010-09-30 2010-09-30 Glasses for viewing 3d video

Country Status (4)

Country Link
CN (1) CN202514019U (en)
DE (1) DE212010000155U1 (en)
FR (1) FR2965694B3 (en)
WO (1) WO2012042575A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239784A (en) * 1986-04-11 1987-10-20 Sanyo Electric Co Ltd Stereoscopic television control system
JPH0292187A (en) * 1988-09-29 1990-03-30 Victor Co Of Japan Ltd Spectacle device for stereoscopic picture
JPH1198538A (en) * 1997-09-19 1999-04-09 Sanyo Electric Co Ltd Drive unit of liquid crystal shutter eyeglass
JP2010273259A (en) * 2009-05-25 2010-12-02 Sony Corp Reception device, shutter glasses, and transmission/reception system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238046A1 (en) 1992-11-11 1994-05-19 Basf Ag New bis (4-substituted-2,6-diisopropylphenyl) carbodiimides, a process for their preparation and their use and the 4-substituted 2,6-diisopropylphenyl isocyanates which can be used for their preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239784A (en) * 1986-04-11 1987-10-20 Sanyo Electric Co Ltd Stereoscopic television control system
JPH0292187A (en) * 1988-09-29 1990-03-30 Victor Co Of Japan Ltd Spectacle device for stereoscopic picture
JPH1198538A (en) * 1997-09-19 1999-04-09 Sanyo Electric Co Ltd Drive unit of liquid crystal shutter eyeglass
JP2010273259A (en) * 2009-05-25 2010-12-02 Sony Corp Reception device, shutter glasses, and transmission/reception system

Also Published As

Publication number Publication date
FR2965694A3 (en) 2012-04-06
FR2965694B3 (en) 2012-09-21
CN202514019U (en) 2012-10-31
DE212010000155U1 (en) 2012-07-10

Similar Documents

Publication Publication Date Title
KR101446559B1 (en) Method to generate signal for watching 3D image and image watching apparatus thereof
JP2011193460A (en) Method for adjusting 3d-image quality, 3d-display apparatus, 3d-glasses, and system for providing 3d-image
WO2010141514A3 (en) Method of stereoscopic synchronization of active shutter glasses
JP2011139456A (en) 3d glass driving method, and 3d glass and 3d display device using the same
JP2011188118A (en) Display device, system, and glasses
EP2381689A3 (en) 2D/3D switchable shutter glasses for stereoscopic image display system
WO2012047073A3 (en) Three-dimensional glasses, three-dimensional image display apparatus, and method for driving the three-dimensional glasses and the three-dimensional image display apparatus
JP2011139222A (en) Stereoscopic image processor, tv receiver, and stereoscopic image processing method
US20120099195A1 (en) Eyewear, three-dimensional image display system employing the same, and method of allowing viewing of image
JP2011142606A5 (en)
JP2012142748A (en) Imaging control device, imaging control method, imaging control program, and imaging apparatus
KR20130065611A (en) Disparity setting method and corresponding device
JP2011155631A (en) Display device and method of driving the same, and shutter type three-dimensional glasses and method of driving the same
WO2011108287A1 (en) Illumination control device, illumination device and illumination system using illumination control device, and display device and eyeglass device used together with the illumination control device
CN102714750B (en) Glasses device and video system
JP3172275U (en) Stereoscopic viewing glasses
JP2011030219A (en) Three-dimensional image providing and receiving apparatuses, three-dimensional image providing and receiving methods using the same, and three-dimensional image system
WO2012042575A1 (en) Glasses for viewing 3d video
US9167238B2 (en) 3D display apparatus for use in synchronization with 3D glasses and 3D display method thereof
US8441413B2 (en) Apparatus and system for viewing 3D image
JP3173405U (en) Stereoscopic viewing glasses
JP2012019376A (en) Spectacles for stereoscopic video appreciation
JP5511969B2 (en) 3D image viewing glasses and control method thereof
JP2013048358A (en) Viewing system and control method of the same
JP2012227678A (en) Display device and video system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090000701.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011600041

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 212010000155

Country of ref document: DE

Ref document number: 2120100001551

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857792

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10857792

Country of ref document: EP

Kind code of ref document: A1