WO2012042084A1 - Plataforma automática de fenotipado - Google Patents

Plataforma automática de fenotipado Download PDF

Info

Publication number
WO2012042084A1
WO2012042084A1 PCT/ES2011/070667 ES2011070667W WO2012042084A1 WO 2012042084 A1 WO2012042084 A1 WO 2012042084A1 ES 2011070667 W ES2011070667 W ES 2011070667W WO 2012042084 A1 WO2012042084 A1 WO 2012042084A1
Authority
WO
WIPO (PCT)
Prior art keywords
irrigation
automatic
carriage
plant
phenotyping platform
Prior art date
Application number
PCT/ES2011/070667
Other languages
English (en)
French (fr)
Inventor
Luis AGUIRREZÁBAL
Gustavo Pereyra Irujo
Emmanuel Gasco
Original Assignee
Conicet -Consejo Nac. De Investigaciones Científicas Y Técnicas
Castagnaro Rosini, Atilio Pedro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conicet -Consejo Nac. De Investigaciones Científicas Y Técnicas, Castagnaro Rosini, Atilio Pedro filed Critical Conicet -Consejo Nac. De Investigaciones Científicas Y Técnicas
Priority to BR112013007252-0A priority Critical patent/BR112013007252B1/pt
Priority to MX2013003449A priority patent/MX352196B/es
Publication of WO2012042084A1 publication Critical patent/WO2012042084A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/003Controls for self-acting watering devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present invention relates to an automatic phenotyping platform, preferably applicable in plants under water deficit, allowing it to simplify the task of phenotyping and the simultaneous management of a multiplicity of plants, as well as the automatic acquisition of the results obtained. for later analysis.
  • devices that allow hydration, automatic plant irrigation or plant analysis, by different types of mechanisms such as those disclosed in US 6161329 (Spelt) patents of 12/19/ 00, US 3085364 (Chap ⁇ n) of 4/16/63, US 4062491 (Von Skwarski) dated 1312/77, US 5315787 (Scheleicher and others) dated 5/31/94, NL 8202434 (Schulte) published on 16 / 1/1984, US 5421515 (Rin Kewich) dated 6/6/1995 and JP2004191243 (Rikagaku Kenkyusho) dated 8/7/2004.
  • a platform developed by the company is also known
  • REPLACEMENT SHEET (Rule 26) In none of the devices of the closest prior art, irrigation, weighing, stereoscopic photography, etc., of multiple plants of a wide range of sizes and with simple, easily replaceable or repairable mechanisms as in the present invention are allowed, without requiring electronic technology of advanced nor complex control systems that allow to move along the x and z axes. This invention is easily adaptable to different types of pots / plants and easily expandable to phenotype more plants and only requires a movement along the xz axes.
  • Figure i is a perspective view of the phenotyping platform of the present invention.
  • Figure 2 is a front view of the platform plotted in Figure i:
  • Figure 3 illustrates a side view of the platform of Figure 1, showing the movements that are carried out therein;
  • Figure 4 allows to see the weight measurement systems taking said data from each pot line.
  • Figures 5a and 5b show side views of the platform and their corresponding movements of carriage movement and lifting of the weighing system
  • Figure 6 illustrates a plan view of the phenotyping platform of the present invention
  • Figure 7 is a perspective view of the transport carriage with the corresponding measurement systems
  • Figure 8 shows a front view of the left half of the phenotyping platform of the present invention.
  • Figure 9 shows a perspective view of the left half of the proposed phenotyping platform
  • the platform for phenotyping in a preferred embodiment is composed of eight cross-linked beams 2, which are located parallel to each other, forming four corresponding rows between two adjacent 3. Between said rows and along all the beams 2, the plants will be located with their corresponding pots 1 forming a plurality of rows.
  • the pots 1, which contain the plants la are located above ib trays, which rest on the beams 2, and inside cylindrical bodies ic.
  • the mentioned tray ib is the one that comes into contact with the balance 4 in order to take the corresponding weight measurement.
  • Said pot 1 that carries the plant will receive irrigation water through a hose 5a, water that will arrive by pumping a peristaltic pump 5b; the hose 5a being mounted on a vertical column 6a. Perpendicular to said vertical column 6a a support bar 6b has been mounted, on which they are fixed corresponding cameras.
  • the aforementioned irrigation and weighing systems are mounted on a parallelepiped structure A, which we will call a car, having mobility along the beams 2, by using an electric motor 8, with corresponding gearbox, and whose rotation will produce the movement of the axle 14 and consequently of the wheels 10 of the carriage A. Said wheels 10 move along respective rails 11.
  • Figure 2 clearly shows the axis 13, and its rotation motor 9, on which the lifting and lowering mechanisms are mounted, which at the time that the scales 4 are positioned below the trays ib, will produce the elevation of the same ones with the pots 1 that carry their corresponding plant, then being able to take the weight of said plant the. Also, the cameras 7 properly positioned above the plants, will take the corresponding photos for each of them. Here the irrigation of each of the plants will be carried out to the extent or amount that is considered appropriate for each plant according to its condition and the weight of the pot, which will allow estimating the soil moisture contained within it. . All the information acquired, which will be particular for each of the plants of the phenotyping platform will be supplied to a central computer that will then allow the results to be conveniently visualized.
  • the carriage In the preferred embodiment of the platform there will be four rows of plants, formed between the beams 2, therefore the carriage must have four scales 4, which once they have taken the corresponding weight, will move with the carriage A towards a next row of plants, all this until crossing all the rows of plants and reaching the final end of the beams 2.
  • FIGS 3 and 4 show the upward movement (arrow B) of the balance
  • Figures 5a and 5b clearly show the positioning of carriage A in one of the middle rows of the platform, indicating its movements forward (date El) and backward (arrow E2) and upward movement (arrow B) to carry out the measurement and irrigation of each plant.
  • Figure 7 shows the car in perspective with its rotating axes 13 and 14 that achieve the movements of the platform, the first one, 13, rotates on some bearings i2d fixed to carriage A, and with its cams 12c it manages to raise and make lowering the arm 12a containing at its end to the balance 4.
  • the second axle 14 rotates by means of the motor 8, and produces a reduction gearbox, the rotation of the wheels 10 that moves the carriage A along the platform.
  • Figure 8 shows the application of the wheels 10 of the carriage A on the rails 11.
  • the phenotyping platform in its preferred embodiment comprises a fixed structure composed of eight retracted steel beams, which allow four rows to be formed, that is to say two beams per row, of a preferred length of 10 meters and between which the supports are supported. pots. Each row supports thirty pots of up to 12 kilos each. The irrigation and measurement systems of the car pass between the rows. The space between two pairs of rows is approximately 70 centimeters in order to be passable by a person.
  • the mobile stands of the pots are 120 for the amount of beams and length mentioned. Being a flat structure (base), which is supported between the beams, this base being raised by a balance, as well as raising a structure of pot holder, which maintains the stability of the pot and in turn, contains water percolation at the lower end; preferably having a numerical identification visible to the user.
  • Each of the 120 pots is cylindrical, made of PVC material, and 33 cm high by 10 cm in diameter. Its lower end is covered by a plastic mesh type mosquito net; counting on a funnel system to receive the water coming from the irrigation system of the car, and distributing slowly and evenly on the surface of the pot.
  • the irrigation and measurement mechanism has a displacement and positioning system composed of a three-phase motor 6 of 1 HP coupled to a gearbox that produces the traction of the car A, this motor is fed and driven through a programmable speed variator, which protects by low and overvoltage and by excess current consumption of the motor, also by its programming allows changes in the direction of rotation of the motor of its speed.
  • Carriage A travels on rails located below the plant supports, stopping where the pots are located. It is controlled by a programmable microcontroller in Basic language, communicated to the central computer, which reads in which positions there are pots using an optical system located at one end of the car, this reads the obstruction of a beam of light, which indicates that the car is In a weighing position.
  • the lifting system of the scales is coupled within the displacement system and is composed of a three-phase 1 HP motor coupled to a gearbox that moves the shaft and a lever system, producing a linear movement of the scales (upwards) and supports the weight of the pots when lifting them. Raise the scale and along with it the mobile support, in order to perform the weighing of the pot that carries the plant.
  • the motor of this system is powered and driven by a programmable speed variator, which protects the motor from low and over voltage and from excess current consumption, also by programming it allows changes in the direction of rotation of the motor. of your speed It is governed by the car's microcontroller, which receives orders from the central computer.
  • Irrigation System 5 it is composed of four irrigation hoses 5a and four pumps 5b of the peristaltic type independently operated and supported on a vertical support column 6a.
  • the mentioned pumps 5b communicate through an RS232 interface with the central computer that will indicate the amount of turns to be given and therefore the amount of water to be delivered to each plant.
  • Two digital cameras were placed, (with USB connection), with the possibility of attaching a thermal imager or other type of sensors. These 3 megapixel cameras are located in the center of each row of plants, and also have communication with the central computer. The height, the inclination and the distance between cameras can be regulated manually, in order to adjust to the size of the cultivated plant. One of the cameras will take a zenith image of the plant, the other will be displaced between 5 and 15 centimeters to the side, with an inclination that can be regulated according to the distance of the plant.
  • the central controller software should take the images of both cameras with the least possible time difference between them, and store them to be analyzed preferably by the method of Biskup et al ("A stereo imaging system for measuring structural parameters of plant canopies", published in "Plant, Cell and Environment” volume 30, pages 1299-1308, year 2007) of stereoscopic image analysis (this will be done by another program or module).
  • Biskup et al A stereo imaging system for measuring structural parameters of plant canopies", published in "Plant, Cell and Environment” volume 30, pages 1299-1308, year 2007
  • a grid plate must be placed for automatic calibration of the stereoscopic vision system.

Abstract

Plataforma automática de fenotipado, preferentemente aplicable en plantas bajo déficit hídrico, permitiendo la misma la simplificación de la tarea de fenotipado y el manejo simultaneo de una multiplicidad de plantas, como así también la carga automática de los resultados obtenidos para su posterior análisis. La plataforma comprende al menos un par de vigas (2) entre las que se ubica al menos una planta (1a), y por debajo de las cuales se ubica un carro (A) con ruedas (10) desplazable a lo largo de dicho al menos un par de vigas (2); y en donde el carro (A) dispone de al menos medio de pesaje (4) con un mecanismo de ascenso y descenso de la misma, ubicadodicho medio de pesaje (4) por debajo de la planta (1a); al menos un medio de riego (5a, 5b) y al menos un medio sensor de imágenes de plantas (7); estando conectamos dichos medios de pesaje (4), de riego (5a,5b) y de toma de imágenes a una computadora central capaz de almacenar los datos recibidos y variar los tiempos de accionamiento de los tiempos de riego y medición mediante su conexión a dicho medio de riego (5a, 5b).

Description

PLATAFORMA AUTOMÁTICA DE FENOTIPADO
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se refiere a una plataforma automática de fenotipado, preferentemente aplicable en plantas bajo déficit hídrico, permitiendo la misma la simplificación de la tarea de fenotipado y el manejo simultaneo de una multiplicidad de plantas, como así también la adquisición automática de los resultados obtenidos para su posterior análisis.
ESTADO DE LA TÉCNICA Y PROBLEMAS A SOLUCIONAR
En relación al arte previo más próximo de la presente invención se conocen dispositivos que permiten la hidratación, riego de planta automática ó análisis de plantas, mediante distintos tipos de mecanismo tales como los divulgados en las patentes US 6161329 (Spelt) del 19/12/00, US 3085364 (Chapín) del 16/4/63, US 4062491 (Von Skwarski) de fecha 1312/77, US 5315787 (Scheleicher y otros) de fecha 31/5/94, NL 8202434 (Schulte) publicado el 16/1/1984, US 5421515 (Rin Kewich) de fecha 6/6/1995 y JP2004191243 (Rikagaku Kenkyusho) de fecha 8/7/2004.
Asimismo resulta de conocimiento una plataforma desarrollada por la empresa
"Optimalog", la cual ha desarrollado para el proyecto "Phenopsis", un equipo de fenotipado en el cual una particular estructura robótica se desplaza dentro de un marco rectangular y en forma individual, moviéndose según los ejes x-y-z, por cada una de las macetas de tamaño pequeño y fijo que portan plantas, llevando a cabo la provisión de agua, toma de peso mediante balanza y de imagen digital o termográfica correspondiente, para un análisis posterior, para mayor información del proyecto es posible acceder a:
-k¾.; ÍQ g .supagro
1
HOJA DE REEMPLAZO (Regla 26) En ninguno de los dispositivos del arte previo más cercano se permite el riego, pesaje, fotografía estereoscópica, etc, de múltiples plantas de un amplio rango de tamaños y con mecanismos simples, fácilmente reemplazables o reparables como en la presente invención, sin requerirse tecnología electrónica de avanzada ni complejos sistemas de control que permiten desplazarse según los ejes x-y-z. Esta invención es fácilmente adaptable a diferentes tipos de macetas/plantas y fácilmente ampliable para fenotipear mayor número de plantas y sólo requiere de un movimiento según los ejes x-z.
Es por lo tanto un objetivo de la presente invención el proveer de una plataforma que permite la automatización del fenotipado de plantas, especialmente bajo déficit hídrico, estando la misma conectada a una computadora central capaz de permitir el análisis de cada una de las plantas que se encuentran en la mencionada plataforma.
BREVE DESCRIPCION DE LAS FIGURAS DE LA INVENCIÓN
A fin de que la presente invención sea claramente comprendida y llevada a la práctica con facilidad ha sido presentada en una de sus formas preferentes de realización en las figuras de carácter ilustrativo y no limitativo que acompaña a esta memoria, en donde:
La figura i es una vista en perspectiva de la plataforma de fenotipado de la presente invención;
La figura 2 es una vista frontal de la plataforma graficada en la figura i:
La Figura 3 ilustra una vista lateral de la plataforma de la figura 1, mostrando los movimientos que se llevan a cabo en la misma;
La figura 4 permite ver los sistemas de medición de peso tomando dicho dato de cada línea lateral de maceta.
Las figuras 5a y 5b muestran vistas laterales de la plataforma y sus correspondientes movimientos de desplazamiento de carro y de elevación del sistema de pesaje;
La figura 6 ilustra una vista en planta de la plataforma de fenotipado de la presente invención; La figura 7 es una vista en perspectiva del carro de transporte con los sistemas de mediciones correspondientes;
La figura 8 permite ver una vista frontal de la mitad izquierda de la plataforma de fenotipado de la presente invención;
La figura 9 muestra una vista en perspectiva de la mitad izquierda de la plataforma de fenotipado propuesta;
En todas las figuras iguales números y letras de referencias se corresponden con idénticos elementos de la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se observa en la figura 1, la plataforma para fenotipado en una forma preferida de realización esta compuesta por ocho vigas reticuladas 2, las cuales se ubican paralelamente entre si, formando entre dos contiguas correspondiente cuatro filas 3. Entre dichas filas y a lo largo de todas las vigas 2, se ubicarán las plantas la con sus macetas 1 correspondientes formando una pluralidad de filas. En esta figura 1, y a efectos de claridad, solo se observa la primera fila de plantas y macetas. Se muestra allí que las macetas 1, que contienen las plantas la, se ubican por sobre bandejas ib, que apoyan sobre las vigas 2, y dentro de cuerpos cilindricos íc. La mencionada bandeja ib es la que entra en contacto con la balanza 4 a fin de tomar la medida de peso correspondiente. A fin de entrar en contacto dicha balanza 4 con la bandeja ib, resulta necesario lograr un movimiento ascendente y descendente de la balanza mediante un mecanismo del tipo preferentemente leva 12c ó del tipo biela y manivela, que mediante el giro de un eje 13 originado por un motor eléctrico 9, con su caja de reducción correspondiente, produce el giro de dicha leva, y la elevación de la balanza 4 para que pueda tomar las mediciones de peso correspondiente.
Dicha maceta 1 que porta la planta la recibirá agua de riego a través de una manguera 5a, agua que llegará mediante el bombeo de una bomba peristáltica 5b; estando montada la manguera 5a sobre una columna vertical 6a. Perpendicularmente a dicha columna vertical 6a se haya montado una barra sostén 6b, sobre la cual se fijan correspondientes cámaras de fotografía.
Los mencionados sistemas de riego y pesaje se encuentran montados sobre un estructura paralelepípeda A, que denominaremos carro, teniendo movilidad a lo largo de las vigas 2, mediante el uso de un motor eléctrico 8, con correspondiente caja reductora, y cuyo giro producirá el movimiento del eje 14 y consecuentemente de las ruedas 10 del carro A. Dichas ruedas 10 se desplazan a lo largo de respectivos rieles 11.
En la figura 2 se observa claramente el eje 13, y su motor de giro 9, sobre el que se montan los mecanismos de elevación y descenso que en el momento de que las balanzas 4 se posicionen por debajo de las bandejas ib, producirán la elevación de las mismas con las macetas 1 que portan su planta la correspondiente, pudiendo entonces tomar el peso de dicha planta la. Asimismo, las cámaras fotográficas 7 posicionadas adecuadamente por sobre las plantas la, tomarán las fotos correspondientes para cada una de las mismas. Aquí mismo se llevará a cabo el riego de cada una de las plantas en la medida o cantidad que se considere adecuada para cada planta acorde a su estado y al peso de la maceta la lo que permitirá estimar la humedad del suelo contenido dentro de la misma. Toda la información adquirida, que será particular para cada una de las plantas la de la plataforma de fenotipado será suministrada a una computadora central que permitirá luego visualizar convenientemente los resultados.
En la forma preferida de realización de la plataforma existirán cuatro hileras de plantas, conformadas entre las vigas 2, debiendo por lo tanto el carro A disponer de cuatro balanzas 4, las cuales una vez que hayan tomado el peso correspondiente, se moverán con el carro A hacia una próxima fila de plantas, todo esto hasta recorrer todas las filas de plantas y llegar al extremo final de las vigas 2.
Las figuras 3 y 4 muestra el movimiento ascendente (flecha B) de la balanza
4 a través del brazo 12a que forma parte del mecanismo de ascenso y descenso 12, y el movimiento del carro A (flecha C) que se desplaza por el giro de sus ruedas 10 a lo largo de los rieles 11. Vemos que la manguera 5a lleva el agua de riego hacia la maceta 1, posicionada sobre la base ib que apoya en las vigas 2.
En las figuras 5a y 5b se muestra claramente el posicionamiento del carro A en una de las filas medias de la plataforma, indicándose sus movimientos hacia delante (fecha El) y hacia atrás (flecha E2) y el movimiento ascendente (flecha B) para llevar a cabo la medición y riego de cada planta la.
Vemos en la figura 6 al carro A posicionado en un extremo de la plataforma de fenotipeado de la presente invención, con sus cuatro balanzas 4 y macetas 1 correspondientes. Dicho carro A se moverá a lo largo de los rieles 11.
La figura 7 muestra el carro en perspectiva con sus ejes giratorios 13 y 14 que logran los movimientos de la plataforma, el primero de ellos, el 13, gira sobre algunos rodamientos i2d fijos al carro A, y con sus levas 12c logra elevar y hacer descender el brazo 12a que contiene en su extremo a la balanza 4. El segundo eje 14 gira por medio del motor 8, y produce previa caja de reducción, el giro de las ruedas 10 que traslada el carro A a lo largo de la plataforma. La figura 8 permite ver la aplicación de las ruedas 10 del carro A sobre los rieles 11.
En la figura 9 podemos observar la porción izquierda del extremo de la plataforma de fenotipado propuesta permitiendo identificar con mayor claridad los ejes 13 y 14, los rulemanes i2d, y levas 12c.
FORMA PREFERIDA DE REALIZACIÓN DE LA INVENCION
La plataforma de fenotipado en su forma preferente de realización comprende una estructura fija compuesta por ocho vigas reti culadas de acero, que permiten conformar cuatro hileras, es decir dos vigas por hilera, de una longitud preferente de 10 metros y entre las que se apoyan las macetas. Cada hilera soporta treinta macetas de hasta 12 kilos de peso cada una. Por entre las hileras pasan los sistemas de riego y medición del carro. El espacio entre dos pares de hileras tiene aproximadamente 70 centímetros de forma de permitir ser transitable por una persona.
Los soportes móviles de las macetas son 120 para la cantidad de vigas y longitud mencionada. Siendo una estructura plana (base), la cual se apoya entre las vigas, siendo esta base elevada por una balanza, como asi también elevándose una estructura de soporte para la maceta, que mantiene la estabilidad de la maceta y a su vez, contiene la percolación de agua por el extremo inferior; contando preferentemente con una identificación numérica visible al usuario.
Cada una de las 120 macetas es cilindrica, de material PVC, y de 33 cm de altura por 10 cm de diámetro. Su extremo inferior esta cubierto por una malla plástica tipo mosquitero; contando con un sistema de embudo para recibir el agua proveniente del sistema de riego del carro, y distribuyendo de manera lenta y pareja en la superficie de la maceta.
Con relación al mecanismo de riego y medición, el mismo posee un sistema de desplazamiento y posicionamiento compuesto de un motor trifásico 6 de 1 HP acoplado a una caja reductora que produce la tracción del carro A, este motor se alimenta y acciona a través de un variador de velocidad programable, que protege por baja y sobretensión y por consumo en exceso de corriente del motor, también por su programación permite hacer cambios en el sentido de giro del motor de su velocidad. El carro A se desplaza sobre rieles ubicados por debajo de los soportes de plantas, deteniéndose en donde estén ubicadas las macetas. Esta controlado por un microcontrolador programable en lenguaje Basic, comunicado a la computadora central, que lee en que posiciones hay macetas mediante un sistema óptico ubicado en un extremo del carro, esto lee la obstrucción de un haz de luz, que indica que el carro esta en una posición de pesaje.
El sistema de elevación de las balanzas esta acoplado dentro del sistema de desplazamiento y se compone de un motor de 1 HP trifásico acoplado a una caja reductora que mueve el eje y un sistema de palancas, produciendo un movimiento lineal de las balanzas (hacia arriba) y soporta el peso de las macetas al levantarlas. Eleva la balanza y junto con esta el soporte móvil, de forma tal de realizar el pesaje de la maceta que porta la planta. El motor de este sistema se alimenta y acciona a través de un variador de velocidad programable, que protege por baja y sobre tensión y por consumos en exceso de corriente al motor, también por su programación permite hacer cambios en el sentido de giro del motor además de su velocidad. Está gobernado por el microcontrolador del carro, que recibe las órdenes de la computadora central. En Sistema de riego 5 está compuesto por cuatro mangueras de riego 5a y cuatro bombas 5b del tipo peristálticas accionadas independientemente y soportadas en una columna de soporte vertical 6a. Las mencionadas bombas 5b se comunican a través de una interfaz RS232 con la computadora central que le indicará la cantidad de vueltas a dar y por lo tanto de la cantidad de agua a entregar a cada planta.
Se utilizan cuatro balanzas Ohaus Trooper® de 6 kg de capacidad y íg de sensibilidad. Estas balanzas se comunican con la computadora central, enviado la información del peso tomado, por una interfaz de comunicación R.S232.
Se colocaron dos cámaras digitales, (con conexión USB), con la posibilidad de anexarle una cámara termográfica u otro tipo de sensores. Dichas cámaras de 3 megapixeles están ubicadas en el centro de cada hilera de plantas, y poseen también comunicación con la computadora central. La altura, la inclinación y la distancia entre cámaras es posible ser regulada manualmente, de forma de ajustaría al tamaño de planta cultivada. Una de las cámaras tomará una imagen cenital de la planta, la otra se encontrará desplazada entre 5 y 15 centímetros hacia un lado, con una inclinación que pueda ser regulada de acuerdo a la distancia de la planta. El software del controlador central deberá tomar las imágenes de ambas cámaras con la menor diferencia de tiempo posible entre ellas, y almacenarlas para ser analizadas preferentemente mediante el método de Biskup et al ("A stereo imaging system for measuring structural parameters of plant canopies", publicado en "Plant, Cell and Environment" volumen 30, páginas 1299-1308, año 2007) de análisis de imágenes estereoscópicas (esto será realizado por otro programa o modulo). En el final del recorrido del carro deberá ubicarse una placa cuadriculada para la calibración automática del sistema de visión estereoscópica.
En la prueba llevada a cabo con la plataforma preferentemente descripta, el recorrido del carro desde inicio a fin de carrera (sin pesar) tomó unos 5 minutos 30 segundos. Llevando a cabo el pesaje 30 veces y esperando 30 segundos a que se riegue la planta, el tiempo tomado fue de 20 minutos 30 segundos .

Claims

REINVINDICACIONES
Habiendo descripto y especificado la naturaleza y alcance de la invención y la manera de llevarla a la práctica, se declara reivindicar como de exclusivo derecho y propiedad:
1) Plataforma automática de fenotipado, caracterizada por comprender al menos un par de vigas (2) entre las que se ubica al menos una planta (la), y por debajo de las cuales se ubica un carro (A) con ruedas (10) desplazable a lo largo de dicho al menos un par de vigas (2); y en donde el carro (A) dispone de al menos medio de pesaje (4) con un mecanismo de ascenso y descenso de la misma, ubicado dicho medio de pesaje (4) por debajo de la planta (la); al menos un medio de riego (5a, 5b) y al menos un medio sensor de imagen (7); estando conectamos dichos medios de pesaje (4), de riego (5a,5b) y medios sensores de imagen a una computadora central capaz de almacenar los datos recepcionados y variar los tiempos de accionamiento de los tiempos de riego y de medición mediante su conexión a dicho medio de riego (5a, 5b).
2) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque la planta (la) se posiciona arriba de una placa o base (ib), y por dentro de un cuerpo hueco (íc).
3) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque dicho carro (A) se posiciona mediante ruedas (10) sobre rieles (11).
4) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque dicho medio de pesaje es una balanza (4).
5) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque dicho mecanismo de ascenso y descenso comprende una leva (12c) acoplada a un eje (13), el cual recibe movimiento desde un motor (9) con su correspondiente caja reductora.
6) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque dichas ruedas (10) reciben movimiento por acoplamiento a un eje (14) , el cual recibe movimiento desde un motor (8) con su correspondientes caja reductora. 7) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque dicho medio sensor de imagen (7) comprende dos cámaras fotográficas (7) capaces de tomar imágenes esteresocópicas , y una cámara termográfica.
8) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque los medios de riego comprenden una manguera (5a) acoplada a una bomba peristáltica (5b).
9) Plataforma automática de fenotipado, de acuerdo a la reivindicación 1, caracterizado porque dichos medios de riego se posicionan entre dichas al menos dos vigas (2).
PCT/ES2011/070667 2010-09-27 2011-09-26 Plataforma automática de fenotipado WO2012042084A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112013007252-0A BR112013007252B1 (pt) 2010-09-27 2011-09-26 Plataforma automática de fenotipagem
MX2013003449A MX352196B (es) 2010-09-27 2011-09-26 Plataforma automática de fenotipado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ARP100103498 AR091288A1 (es) 2010-09-27 2010-09-27 Plataforma automatica de fenotipado
ARP20100103498 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012042084A1 true WO2012042084A1 (es) 2012-04-05

Family

ID=45892012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070667 WO2012042084A1 (es) 2010-09-27 2011-09-26 Plataforma automática de fenotipado

Country Status (5)

Country Link
AR (1) AR091288A1 (es)
BR (1) BR112013007252B1 (es)
MX (1) MX352196B (es)
UY (1) UY33630A (es)
WO (1) WO2012042084A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148676A1 (en) * 2011-04-15 2012-11-01 Dow Agrosciences Llc Automated gravimetric screening platform system and method
EP3366112A1 (de) * 2017-02-28 2018-08-29 Phenospex B.V. Vorrichtung zur überwachung von pflanzen
CN108705903A (zh) * 2018-06-13 2018-10-26 苏州创存数字科技有限公司 一种基于环境净化的智能汽车车轮系统
WO2018231516A1 (en) * 2017-06-14 2018-12-20 Grow Solutions Tech Llc Systems and methods for managing a weight of a plant in a grow pod
US10470379B1 (en) * 2014-06-12 2019-11-12 Iowa State University Research Foundation, Inc. High-throughput large-scale plant phenotyping instrumentation
EP3757530A1 (en) * 2019-06-24 2020-12-30 KWS SAAT SE & Co. KGaA System and method for phenotyping of organisms

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111064A1 (es) * 2016-12-15 2018-06-21 Herrera Cadena Isaac Abraham Sistema de monitoreo y control de estrés hídrico para optimización de extracción de aceites

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764819A (en) * 1991-10-18 1998-06-09 Dekalb Genetics Corporation Methods for classifying plants for evaluation and breeding programs by use of remote sensing and image analysis technology

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764819A (en) * 1991-10-18 1998-06-09 Dekalb Genetics Corporation Methods for classifying plants for evaluation and breeding programs by use of remote sensing and image analysis technology

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAUZAT M ET AL.: "Un automate of phénotypage pour cultiver des plantes à des états hydriques du sol contrôlés : Un outil d'aide a the caractérisation from réponse from croissance et from transpiration à the sécheresse", PDF: PHENOPSIS_DAUZAT_CAHIER_DES_TECHNIQUES, 2004, Retrieved from the Internet <URL:http://bioweb.supagro.inra.fr/phenopsis/InfoBDD4.php> *
DENES DUDITS.: "Drought response of cereal plants monitored by the complex stress diagnostic system in greenhouse and field studies", PDF: 2IPPSJUELICH_DUDITS, 7 July 2011 (2011-07-07), Retrieved from the Internet <URL:https://www.congressa.of/phenosymp2011/index.php?articleid=50> *
GERIE VAN DER HEIJDEN: "Large scale phenotyping of tall pepper plants in the greenhouse", PDF: 2IPPSJUELICH_HEIJDEN 30092011., 7 July 2011 (2011-07-07), Retrieved from the Internet <URL:https://www.congressa.of/phenosymp2011/index.php?articleid=50> *
GRANIER C ET AL.: "PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit.", PDF: PHENOPSIS, AUTOMATED PLATFORM NEW PHYTOLOGIST, 2006, Retrieved from the Internet <URL:http://bioweb.supagro.inra.fr/phenopsis/InfoBDD4.php> *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148676A1 (en) * 2011-04-15 2012-11-01 Dow Agrosciences Llc Automated gravimetric screening platform system and method
US8955252B2 (en) 2011-04-15 2015-02-17 Dow Agrosciences Llc Automated gravimetric screening platform system and method
CN106234171A (zh) * 2011-04-15 2016-12-21 陶氏益农公司 自动称重筛选平台系统和方法
US9675012B2 (en) 2011-04-15 2017-06-13 Dow Agrosciences Llc Automated gravimetric screening platform system and method
US9681611B2 (en) 2011-04-15 2017-06-20 Dow Agrosciences Llc Automated gravimetric screening platform system and method
US10470379B1 (en) * 2014-06-12 2019-11-12 Iowa State University Research Foundation, Inc. High-throughput large-scale plant phenotyping instrumentation
EP3366112A1 (de) * 2017-02-28 2018-08-29 Phenospex B.V. Vorrichtung zur überwachung von pflanzen
WO2018231516A1 (en) * 2017-06-14 2018-12-20 Grow Solutions Tech Llc Systems and methods for managing a weight of a plant in a grow pod
US11154016B2 (en) 2017-06-14 2021-10-26 Grow Solutions Tech Llc Systems and methods for managing a weight of a plant in a grow pod
CN108705903A (zh) * 2018-06-13 2018-10-26 苏州创存数字科技有限公司 一种基于环境净化的智能汽车车轮系统
EP3757530A1 (en) * 2019-06-24 2020-12-30 KWS SAAT SE & Co. KGaA System and method for phenotyping of organisms
WO2020260304A1 (en) * 2019-06-24 2020-12-30 KWS SAAT SE & Co. KGaA System and method for phenotyping of organisms

Also Published As

Publication number Publication date
MX352196B (es) 2017-11-13
UY33630A (es) 2012-03-30
MX2013003449A (es) 2014-02-17
BR112013007252B1 (pt) 2018-06-12
AR091288A1 (es) 2015-01-28
BR112013007252A2 (pt) 2016-06-14

Similar Documents

Publication Publication Date Title
WO2012042084A1 (es) Plataforma automática de fenotipado
ES2922250T3 (es) Pulverizador agrícola
ES2846786T3 (es) Vehículo robot y procedimiento que utiliza un robot para un tratamiento automático de organismos vegetales
ES2898892T3 (es) Vehículo aéreo no tripulado para evaluación de campo agrícola
ES2748000T3 (es) Conjunto de pulverización para artefacto agrícola con pilotaje cartográfico
ES2674666T3 (es) Sistema para cosechar setas
ES2300420T3 (es) Sistema automatizado para la manipulacion de recipientes que contienen plantas.
CN102565061B (zh) 作物生物量无损检测图像采集处理装置及检测方法
ES2784901T3 (es) Equipo modular y desmontable para la clasificación automática en bolsas de paquetes
AR066797A1 (es) Clasificadora de semillas
ES2934144T3 (es) Vehículo autónomo omnidireccional
JP2020522980A (ja) アセンブリライン成長ポッドにおいてトレイから流体を除去するためのシステムおよび方法
ES2832490T3 (es) Cosecha selectiva automatizada de cultivos con sistemas y métodos relacionados
ES2365357T3 (es) Dispositivo para medida de parámetros anatómicos en animales domésticos.
CN109997680B (zh) 植物栽培系统以及植物栽培方法
ES2339291T3 (es) Dispositivo de centrado auto-regulable.
ES2326614T1 (es) Dispositivo de control de las luces de un vehiculo.
ES2231711T3 (es) Dispositivo para colocar material de plantas sobre o en un macizo o bancal.
CN114981044A (zh) 自主机器人
BR102020012012A2 (pt) método para operar um sistema de hidratação de plantas jovens para um aparelho de plantio
CN115468937A (zh) 基于叶绿素荧光成像的幼苗表型检测系统
KR20170077313A (ko) 벌꿀 채집이 용이한 스마트 벌통
CN212164498U (zh) 一种可实时称重的移动式栽培架
ES2605104T3 (es) Mesa de invernadero así como procedimiento para el cultivo de plantas en un invernadero con la correspondiente mesa de invernadero
CN102589508B (zh) 草坪盖度仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003449

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828177

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007252

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007252

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130327