WO2012041246A1 - 一种传输数据的方法及装置 - Google Patents

一种传输数据的方法及装置 Download PDF

Info

Publication number
WO2012041246A1
WO2012041246A1 PCT/CN2011/080405 CN2011080405W WO2012041246A1 WO 2012041246 A1 WO2012041246 A1 WO 2012041246A1 CN 2011080405 W CN2011080405 W CN 2011080405W WO 2012041246 A1 WO2012041246 A1 WO 2012041246A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
tdd
carrier corresponding
data
time slot
Prior art date
Application number
PCT/CN2011/080405
Other languages
English (en)
French (fr)
Inventor
李男
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to EP11828142.7A priority Critical patent/EP2624648B1/en
Publication of WO2012041246A1 publication Critical patent/WO2012041246A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2615Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid frequency-time division multiple access [FDMA-TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and apparatus for transmitting data. Background technique
  • TDD Time Division Duplexing
  • FDD frequency division duplex
  • FIG. 1 is a schematic diagram of a frequency band planned for a TDD system and an FDD system in the prior art. In FIG.
  • the FDD system occupies an uplink data in a frequency band of 2500 to 2570 MHz, and occupies a frequency band of 2620 to 2690 MHz to transmit downlink data
  • the TDD system occupies The 2580 ⁇ 2610MHz frequency band transmits uplink and downlink data, that is, the frequency band used by the TDD system to transmit uplink and downlink data is the same.
  • the frequency band between the frequency band occupied by the FDD system for transmitting uplink data and the frequency band occupied by the TDD system is 2570 ⁇ 2580MHz
  • the frequency band between the frequency band occupied by the FDD system for transmitting downlink data and the frequency band occupied by the TDD system is 2610.
  • ⁇ 2620MHz is the guard band used to reduce interference between the two systems.
  • the size of the guard band is related to the RF filter performance used by the device and the coupling loss between the FDD and TDD system base stations.
  • the guard band in Figure 1 is just an example.
  • these guard bands for reducing the interference between the two systems are not usable, that is, the frequency resources of the guard band cannot be used for transmitting data, and since the frequency resources are limited and non-reproducible Therefore, the method of transmitting data in the prior art is undoubtedly a waste of frequency resources.
  • the embodiments of the present invention provide a method and an apparatus for transmitting data, which are used to solve the problem that the method of transmitting data in the prior art wastes frequency resources.
  • the network side device configures communication configuration information for the carrier corresponding to the protection band for each protection frequency band between the time division duplex TDD system and the frequency division duplex FDD system, where the communication configuration information includes the carrier corresponding to the protection frequency band.
  • the carrier corresponding to the protection frequency band is used to transmit data based on the TDD technology.
  • a configuration module configured to configure communication configuration information for a carrier corresponding to the guard band for each guard band between the time division duplex TDD system and the frequency division duplex FDD system, where the communication configuration information includes the corresponding protection band The direction in which the carrier transmits data in a simplex communication manner;
  • a transmission module configured to transmit data according to the TDD technology by using a carrier corresponding to the protection frequency band according to the direction of the transmission data included in the configured communication configuration information.
  • a network side device provided by an embodiment of the present invention includes the device for transmitting data as described above.
  • An embodiment of the present invention provides a method and an apparatus for transmitting data, where the network side device configures communication configuration information for a carrier corresponding to the guard band for each guard band between the TDD system and the FDD system, where the communication configuration information includes The direction of the data transmitted by the carrier corresponding to the guard band in a simplex communication manner is used, and according to the direction of the transmission data included in the communication configuration information, the carrier corresponding to the guard band is used to transmit data based on the TDD technology.
  • data is transmitted in a protected frequency band based on TDD technology in a simplex communication manner, and thus When transmitting data on the guard band, it does not interfere with the adjacent-frequency FDD system, and the frequency resource of the guard band is used to transmit data, which also saves frequency resources.
  • FIG. 1 is a schematic diagram of a frequency band planned for a TDD system and an FDD system in the prior art
  • FIG. 2 is a process for transmitting data according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a frequency band occupied by a TDD system and an FDD system according to an embodiment of the present invention, and a protection frequency band;
  • FIG. 4 is a schematic diagram of a typical frame structure of an LTE TDD system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a time slot configured for a carrier corresponding to the guard band when uplink data is transmitted in the guard band according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of configuring a time slot for a carrier corresponding to the guard band and disabling a downlink time slot and a downlink pilot time slot when transmitting uplink data in the guard band according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the present invention. For example, when transmitting downlink data in the guard band, configuring a time slot for the carrier corresponding to the guard band, and disabling the uplink time slot;
  • FIG. 8 is a schematic diagram of configuring a time slot for a carrier corresponding to the guard band and disabling an uplink time slot and an uplink pilot time slot when transmitting downlink data in the guard band according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present invention. detailed description
  • the two systems will interfere with each other in the internal or edge of the working band when transmitting data. This is because the frequency bands used by the TDD system to transmit uplink data and downlink data are completely coincident, but the time slots used to transmit uplink data and downlink data at the same frequency point are different, and the FDD system transmits uplink data and downlink.
  • the frequency bands used in the data are not coincident, but The time slot is not distinguished, and the FDD system occupies the frequency band of 2500 ⁇ 2570MHz to transmit uplink data, and the TDD system occupies 2570 ⁇ 2610MHz transmission uplink/downlink data, that is, the frequency band in which the FDD system transmits uplink data and the TDD system transmits uplink/downlink data.
  • the TDD system If there is no guard band between the frequency bands, it will cause the two systems to transmit data in different directions at the same time and at the same frequency point, that is, at a certain time, the TDD system
  • the downlink data is transmitted at the frequency point, and at this time, the FDD system also transmits the uplink data at the frequency point, causing the data of different directions to collide and annihilate each other.
  • the embodiment of the present invention in order to save frequency resources, data is transmitted by using a guard band, and in order to avoid interference generated by the adjacent frequency FDD system when the data is transmitted in the guard band, the embodiment of the present invention transmits data on the guard band. It is based on TDD technology and transmits data in a simplex communication manner, specifically, the direction of transmitting data is consistent with the direction of transmission of data by the adjacent FDD system, so that the FDD system with adjacent frequency will not be transmitted when transmitting data on the guard band. Mutual interference.
  • FIG. 2 is a process for transmitting data according to an embodiment of the present invention, which specifically includes the following steps: S201: A network-side device is configured for each protection frequency band between a time division duplex TDD system and a frequency division duplex FDD system, where the protection frequency band corresponds to The carrier configuration communication configuration information includes a direction in which the carrier corresponding to the guard band is used to transmit data in a simplex communication manner.
  • the network side device transmits data according to the configured communication configuration information.
  • communication configuration information is configured for the carrier corresponding to the protection frequency band, that is, the carrier transmission data corresponding to the protection frequency band is used.
  • the network-side device transmits data in a simplex communication manner on the guard band, and thus the communication configuration information The direction of transmitting data in a simplex communication manner by using a carrier corresponding to the guard band.
  • the carrier corresponding to the guard band is a carrier whose carrier frequency band falls within the guard band.
  • the network side device first determines the frequency band occupied by the TDD system and the FDD system respectively, and
  • FIG. 3 is a schematic diagram of a frequency band occupied by a TDD system and an FDD system according to an embodiment of the present invention, and a protection frequency band.
  • the network side device determines that the FDD system occupies 2500 ⁇ 2570MHz frequency band to transmit uplink data, and the TDD system occupies 2580.
  • the uplink/downlink data is transmitted in the ⁇ 2610MHz band, and the frequency band of 2570 ⁇ 2580MHz is determined to be a guard band.
  • the band of 2610 ⁇ 2620MHz is determined to be another guard band.
  • the network side device configures communication configuration information for the carrier corresponding to the protection frequency band for each protection frequency band.
  • the direction of the transmission data included in the communication configuration information is consistent with the direction in which the TDD system of the adjacent frequency transmits data.
  • the network side device determines a direction in which the FDD system transmits data on a first frequency band adjacent to the guard frequency band, where the direction in which the FDD system transmits data includes an uplink direction and a downlink direction.
  • the direction in which the FDD system transmits data in the first frequency band is determined to be in the uplink direction
  • the direction in which the data is transmitted in the communication configuration information configured for the carrier corresponding to the protection band in the simplex communication manner is the uplink direction.
  • the direction in which the data is transmitted by the simplex communication included in the communication configuration information of the carrier configuration corresponding to the protection band is the downlink direction.
  • the network side device determines the direction in which the FDD system transmits data on the first frequency band adjacent to the guard frequency band for the protection frequency band of 2570 ⁇ 2580 MHz, that is, determines the FDD system in the 2570 ⁇
  • the direction of data transmission in the first frequency band of 2500 ⁇ 2570MHz adjacent to the 2580MHz protection band determines the direction of the transmitted data as the uplink direction, that is, the FDD system transmits the uplink data in the first frequency band of the adjacent frequency of 2500 ⁇ 2570MHz.
  • the network side device determines that the direction of the FDD system transmitting data in the first frequency band of 2620 ⁇ 2690MHz adjacent to the protection band of the 2610 ⁇ 2620MHz is the downlink direction, that is, the FDD system is in the downlink direction.
  • the downlink data is transmitted on the first frequency band of the adjacent frequency of 2620 to 2690 MHz.
  • the network side device transmits the data in the uplink direction according to the simplex communication mode included in the communication configuration information of the carrier corresponding to the 2570 ⁇ 2580MHz protection band.
  • the network side device includes, for the protection band of 2610 ⁇ 2620MHz, the communication configuration information configured for the carrier corresponding to the protection band of the 2610 ⁇ 2620MHz
  • the direction in which data is transmitted by simplex communication is the downstream direction.
  • the carrier corresponding to the protection frequency band is used to transmit data based on the TDD technology according to the direction of the transmission data included in the configured communication configuration information.
  • the network side device transmits uplink data on the carrier corresponding to the protection band of 2570 to 2580 MHz according to the TDD technology according to the communication configuration information configured for the carrier corresponding to the protection band of 2570 to 2580 MHz. No downlink data is transmitted.
  • the network side device transmits the downlink data on the carrier corresponding to the guard band of the 2610 ⁇ 2620 MHz according to the TDD technology according to the communication configuration information configured for the carrier corresponding to the guard band of the 2610 ⁇ 2620 MHz, and does not transmit the uplink data.
  • the network side device configures corresponding communication configuration information for each protection frequency band, and uses the protection frequency band between the TDD system and the FDD system to transmit data, which saves frequency resources and improves utilization of frequency resources. Moreover, since the direction in which the network side device transmits data on the guard band is consistent with the direction in which the FDD system adjacent to the guard band transmits data, the data transmitted on the guard band is not transmitted with the adjacent frequency FDD system. The data collides with the uplink and downlink, so it does not interfere with the adjacent-frequency FDD system.
  • FIG. 4 is a schematic diagram of a typical frame structure of an LTE TDD system according to an embodiment of the present invention.
  • each radio frame is composed of two half-frames, each of which has a length of 5 ms.
  • Each field is divided into eight regular time slots (TSs) of length 0.5ms and one special time slot of length 1ms, and each two regular time slots are paired to form one subframe.
  • TSs regular time slots
  • the special time slot is composed of a downlink pilot time slot (DwPTS), a guard time slot (GP) and an uplink pilot time slot (UpPTS), the lengths of the DwPTS and the UpPTS are configurable, and the total length of the DwPTS, the GP, and the UpPTS. Equal to lms.
  • the sub-frame 1 is a special time slot, and includes a DwPTS, a GP, and an UpPTS.
  • the sub-frame 6 can be a special time slot or a special time slot according to the time slot configuration policy. In FIG. 4, the subframe 6 is a non-special time slot. . .
  • the LTE TDD system supports 5ms and 10ms switching cycles, that is, once every half frame and every time.
  • the radio frames are cycled once, and subframe 0 and subframe 5 and DwPTS are always reserved for downlink transmission, and other subframes can be configured for downlink transmission or uplink transmission.
  • the specification determines the supported uplink and downlink time slots as shown in Table 1.
  • the letter D indicates a downlink time slot
  • the letter U indicates an uplink time slot
  • the letter S indicates a special time slot.
  • the configuration schemes 0, 1, and 2 are all 5ms switching cycles
  • configuration scheme 3-6 is a 10ms switching period.
  • TDD-Config TDD system configuration information
  • SIBl System Information Block Typel message
  • TS36.331 Message Definition of TS36.331, which includes the uplink and downlink of the TDD system.
  • the time slot ratio indication information (frame assignment) is used to indicate the uplink and downlink time slot ratio of the TDD system. Since the FDD system does not distinguish between time slots, the FDD system does not use this parameter.
  • the protection band of 2570 ⁇ 2580MHz in Figure 3 above and the ratio scheme 0 in Table 1 are taken as an example.
  • the network side device uses the carrier corresponding to the protection band of 2570 ⁇ 2580MHz to transmit uplink data, it can ensure that the adjacent frequency is not correct.
  • the 2500 ⁇ 2570MHz FDD system generates interference, but if based on the TDD technology, if all the time slots on the carrier corresponding to the guard band are used to transmit uplink data, then according to the time slot configuration of the ratio scheme 0 in Table 1,
  • the adjacent frequency TDD system of the protection band of 2570 ⁇ 2580MHz transmits downlink data in two time slots corresponding to subframe 0. In this way, the protection band of 2570 ⁇ 2580MHz and the adjacent-frequency TDD system will transmit data in different directions at the same time (two time slots corresponding to subframe 0) and the same frequency point (around 2580MHz frequency), thereby generating interference.
  • the network side device is included in the communication configuration information configured by the carrier corresponding to the guard band, in order to avoid interference with the adjacent-frequency TDD system when the carrier data corresponding to the guard band is used.
  • the configuration method is specifically as follows: The network side device searches for the saved TDD-Config containing the subframeAssignment, and carries the TDD-Config including the subframeAssignment in the configured communication configuration information.
  • the uplink and downlink timeslots that are the same as the adjacent-frequency TDD system are configured on the carrier corresponding to the guard band.
  • the downlink time slot forbidden parameter is added to the TDD-Config carried in the communication configuration information, and the downlink time slot is disabled in the time slot configured on the carrier corresponding to the protection band.
  • the downlink time slot disable parameter added in the TDD-Config may be a dl-disable parameter, and defines that when the parameter is 0, the downlink time slot is disabled, and when it is 1, the downlink time slot is not disabled. Of course, it can also be defined that when the parameter is 1, it means that the downlink time slot is disabled, and when it is 0, it means that the downlink time slot is not disabled.
  • the network side device uses the carrier corresponding to the protection band to transmit data based on the TDD technology, specifically: based on the TDD technology, according to the subframeAssignment included in the TDD-Config carried by the communication configuration information,
  • the carrier corresponding to the guard band is configured with the same uplink and downlink timeslots as the adjacent-frequency TDD system, and in the configured uplink and downlink time slots, the downlink time slot is disabled, and is selected for transmission in the configured uplink time slot.
  • the time slot of the uplink data uses the carrier corresponding to the guard band and the selected time slot to transmit the uplink data.
  • FIG. 5 is a schematic diagram of configuring a time slot for a carrier corresponding to the guard band and disabling a downlink time slot when the uplink data is transmitted in the guard band according to an embodiment of the present invention, as shown in FIG. 5, the network side device is based on 2570.
  • the communication configuration information of the carrier configuration corresponding to the protection band of the 2580 MHz is used to transmit the uplink data according to the carrier corresponding to the protection band of 2570 to 2580 MHz, and the subframeAssignment included in the TDD-Config carried in the communication configuration information corresponds to the protection band.
  • the same uplink and downlink time slots are configured on the carrier as the TDD system of the adjacent frequency 2580 2610 MHz. As shown in FIG.
  • the uplink and downlink time slot ratios used by the TDD system are configured as two uplink time slots and three downlink time slots, that is, the ratio of uplink and downlink time slots is 2:3, where the uplink data is transmitted.
  • Each first time slot is denoted by U
  • each second time slot used for transmitting downlink data is denoted by D.
  • the network side device is based on the TDD technology, and the same time slot is also configured on the carrier corresponding to the protection band of 2570 to 2580 MHz.
  • the downlink time slot is disabled, and the disabled time slot in Figure 5 is denoted by X.
  • the time slot for transmitting the uplink data is selected, that is, the time slot selected for transmitting the uplink data on the carrier corresponding to the guard band is no more than two, and the selected time slot is The location must be the same as the location of the first time slot of the TDD system.
  • ⁇ Using the above method to transmit uplink data in the guard band can ensure that the direction of data transmission on the guard band at the same time (that is, the same time slot) is the same as the direction in which the adjacent-frequency TDD system transmits data, and is all in the uplink direction. It will not interfere with the adjacent-frequency TDD system. Moreover, it is also ensured that the direction of data transmission on the guard band is the same as that of the adjacent-frequency FDD system, and does not interfere with the adjacent-frequency FDD system, and utilizes the prior art that cannot be utilized. Protecting the frequency band to transmit data saves frequency resources.
  • the time slot configured by the TDD system further includes a special time slot, and the DwPTS time slot in the special time slot is also used for transmitting downlink data. Therefore, in order to further avoid interference, the network side device adopts the protection. If the carrier corresponding to the frequency band transmits uplink data based on the TDD technology, if the network side device includes a special time slot in the time slot configured on the carrier corresponding to the protection frequency band, the DwPTS time slot in the special time slot is also disabled. As shown in Figure 6. FIG.
  • FIG. 6 is a schematic diagram of configuring a time slot for a carrier corresponding to the guard band and disabling a downlink time slot and a DwPTS time slot when uplink data is transmitted in the guard band according to an embodiment of the present disclosure
  • FIG. 6 is a network side device.
  • the uplink data of the carrier corresponding to the protection band of the 2570 ⁇ 2580MHz is used.
  • the configured time slot includes a special time slot.
  • the special time slot in FIG. 6 is represented by S.
  • the special time slot includes a DwPTS time slot, a GP time slot, and an UpPTS time slot. Therefore, the network side device also disables the DwPTS time slot to ensure that uplink data is transmitted in the protected frequency band. When it does not interfere with the adjacent-frequency TDD system.
  • the configuration method is specifically as follows: The network side device searches for the saved TDD-Config containing the subframeAssignment, and carries the TDD including the subframeAssignment in the configured communication configuration information. Config is configured to configure the same uplink and downlink timeslots as the adjacent-frequency TDD system on the carrier corresponding to the guard band. And adding an uplink time slot disable parameter to the TDD-Config carried in the communication configuration information, to disable the uplink time slot in the time slot configured on the carrier corresponding to the protection frequency band.
  • the uplink time slot disable parameter added in the TDD-Config may be an ul-disable parameter, and defines that when the parameter is 0, the uplink time slot is disabled, and when it is 1, the uplink time slot is not disabled. Of course, it can also be defined that when the parameter is 1, it means that the uplink time slot is disabled, and when it is 0, it means that the uplink time slot is not disabled.
  • the network side device uses the carrier corresponding to the protection band to transmit data based on the TDD technology, specifically: based on the TDD technology, according to the subframeAssignment included in the TDD-Config carried by the communication configuration information,
  • the carrier corresponding to the protection band is configured with the same uplink and downlink timeslots as the adjacent-frequency TDD system, and in the configured uplink and downlink time slots, the uplink time slot is disabled, and in the configured downlink time slot, the downlink is selected for transmission.
  • the time slot of the data using the carrier corresponding to the guard band, and the selected time slot to transmit the downlink data.
  • FIG. 7 is a schematic diagram of configuring a time slot for a carrier corresponding to the guard band and disabling an uplink time slot when the downlink data is transmitted in the guard band according to an embodiment of the present invention
  • the network side device is 2610
  • the communication configuration information of the carrier configuration corresponding to the protection band of the 2620 MHz is transmitted by using the carrier corresponding to the protection band of 2610 to 2620 MHz, and the subframeAssignment included in the TDD-Config carried by the communication configuration information corresponds to the protection band.
  • the same uplink and downlink time slots are configured on the carrier as the TDD system of the adjacent frequency 2580 2610 MHz.
  • the uplink and downlink time slot ratio used by the TDD system is configured by two uplink time slots and three downlink time slots, that is, the ratio of uplink and downlink time slots is 2:3, wherein the uplink data is used for transmitting uplink data.
  • Each first time slot is denoted by U
  • each second time slot used for transmitting downlink data is denoted by D.
  • the network side device is based on the TDD technology, and the same time slot is also configured on the carrier corresponding to the guard band of 2610 to 2620 MHz.
  • the uplink time slot is disabled, and the disabled time slot in Figure 7 is represented by the X table. Show.
  • the time slot for transmitting the downlink data is selected, that is, the time slot of the user selected to transmit the downlink data on the carrier corresponding to the guard band is no more than three, and the location of the selected time slot is selected. Must be the same location as the second time slot of the TDD system.
  • Using the above method to transmit downlink data on the guard band can ensure that the direction of data transmission on the guard band at the same time (that is, the same time slot) is the same as the direction in which the adjacent-frequency TDD system transmits data, both in the downlink direction, and therefore not It will interfere with the adjacent-frequency TDD system. Moreover, it is also ensured that the direction of data transmission on the guard band is the same as that of the adjacent-frequency FDD system, and does not interfere with the adjacent-frequency FDD system, and utilizes the prior art that cannot be utilized. Protecting the frequency band to transmit data saves frequency resources.
  • FIG. 8 is a schematic diagram of configuring a time slot for a carrier corresponding to the guard band and disabling an uplink time slot and an uplink pilot time slot when transmitting downlink data in the guard band according to an embodiment of the present invention, where the network is in FIG. 8
  • the side device uses the carrier corresponding to the guard band of the 2610 to 2620 MHz to transmit the downlink data.
  • the traffic is configured according to the carrier configuration information of the carrier corresponding to the guard band.
  • the configured time slot includes a special time slot.
  • the time slot, the special time slot in Figure 8 is represented by S.
  • the special time slot includes the DwPTS time slot, the GP time slot, and the UpPTS time slot. Therefore, the network side device also disables the UpPTS time slot to ensure that the protection frequency band is guaranteed. When transmitting downlink data, it will not interfere with the adjacent-frequency TDD system.
  • the above embodiment is to disable the downlink or uplink time slot by adding the dl-disable parameter and the ul-disable parameter to the TDD-Config.
  • only one parameter can be added in the TDD-Config to disable the downlink or uplink. Gap.
  • the ul-dl-disable parameter is added to the TDD-Config, and when the parameter is 0, the uplink time slot is disabled, and the downlink time slot is used to transmit downlink data.
  • the parameter is 1, the downlink time slot is disabled.
  • the uplink data is transmitted in the uplink time slot.
  • the network side device configures the carrier corresponding to the protection band according to the foregoing method.
  • the terminal When the communication configuration information is set, and the uplink data or the downlink data is transmitted by using the carrier corresponding to the protection frequency band according to the communication configuration information, the terminal also needs to transmit the uplink data or the downlink data by using a corresponding method. Otherwise, the terminal is in the wrong carrier. Up, or transmission of uplink data or downlink data on the wrong time slot, will result in reduced accuracy of the transmitted data, and will also cause interference to adjacent-frequency FDD systems and TDD systems. Therefore, the network side device further sends the communication configuration information to the terminal to instruct the terminal to transmit data according to the received communication configuration information.
  • the network-side device when the direction of the transmission data included in the communication configuration information configured by the network-side device for the carrier corresponding to the protection band is the uplink direction, the network-side device adds the corresponding protection band to the TDD-Config carried in the communication configuration information.
  • the carrier's center frequency indication parameter (EARFCN), and the communication configuration information to which the EARFCN is added is carried in the broadcast information, and the broadcast information is carried on the carrier other than the carrier corresponding to the guard band, and sent to the terminal to indicate The terminal transmits data on a carrier corresponding to the guard band according to the received communication configuration information.
  • the network side device sends the communication configuration information to the terminal in the form of a broadcast, wherein the downlink time slot is disabled for the carrier corresponding to the protection frequency band, and can only be used for transmitting the uplink data, so the protection frequency band cannot be used.
  • the carrier broadcasts the communication configuration information to the terminal and needs to be broadcast by other carriers.
  • communication configuration information can also be sent in other ways, such as by a dedicated signaling.
  • the terminal determines the carrier corresponding to the guard band according to the EARFCN in the TDD-Config carried in the received communication configuration information, and configures the uplink and downlink time slots corresponding to the carrier according to the subframeAssignment in the TDD-Config, and according to the The downlink time slot disable parameter in the TDD-Config disables the configured downlink time slot, and uses the carrier corresponding to the guard band to transmit uplink data based on the TDD technology.
  • the network side device when the direction in which the network side device transmits the data in the simplex communication manner in the communication configuration information of the carrier corresponding to the protection band is the downlink direction, the network side device carries the communication configuration information in the broadcast information.
  • the broadcast information is carried on the carrier corresponding to the protection band and sent to the terminal, to instruct the terminal to transmit data on the carrier corresponding to the protection band according to the received communication configuration information. That is, the network side device will communicate the configuration information in the form of a broadcast. Sending to the terminal, the uplink time slot of the carrier corresponding to the guard band is disabled, and the downlink data can be transmitted. Therefore, the carrier corresponding to the guard band can be directly used to broadcast the communication configuration information to the terminal. Carrier broadcast. Communication configuration information may also be sent in other forms, such as by dedicated signaling.
  • the embodiment of the present invention actually expands the frequency band of 2580 ⁇ 2610MHz occupied by the traditional TDD system transmission data to the frequency band of 2570 ⁇ 2620MHz, but only 2570 ⁇ 2580MHz.
  • the frequency band only transmits uplink data, all time slots for transmitting downlink data and downlink pilot time slots are disabled.
  • the frequency band of 2610 ⁇ 2620MHz only transmits downlink data, and all time slots for transmitting uplink data and uplink pilot time slots are disabled.
  • the frequency bands occupied by transmitting the uplink data and the downlink data are completely the same.
  • the TDD system after the extended frequency band can be called the asymmetric time division duplex of the frequency offset (offset) TDD) wireless communication system
  • the offset TDD system uses the same time slot configuration scheme and time synchronization requirements as the existing traditional TDD system, and at the same time, according to the actual deployment requirements of the network, the set uplink and downlink frequency bands are asymmetric, that is, the uplink frequency band.
  • it is a frequency band of 2570 ⁇ 2610MHz
  • the downlink frequency band is actually a frequency band of 2580 ⁇ 2620MHz.
  • the frequency band of 2580 ⁇ 2610MHz which overlaps two frequency bands and the uplink data are also sent to transmit downlink data, and the uncoincident frequency band only sends uplink according to the above method.
  • Data or downlink data the carrier corresponding to the frequency band of 2570 ⁇ 2580MHz which is not coincident, and the carrier corresponding to the frequency band of 2610 ⁇ 2620MHz may be called a special carrier.
  • the setting of the uplink and downlink frequency bands of the offset TDD system may be based on the following network deployment requirements: 1.
  • System characteristics of other systems deployed in a mixed manner with the offset TDD system, and other systems include an FDD system, and system characteristics include the following downlink resource configuration, sub- Band bandwidth, transmit power, radio frequency indicators, etc.;
  • the signal components of other systems may fall within the band of the offset TDD system.
  • the uplink and downlink frequency bands may have overlapping frequency bands or may not have overlapping frequency bands; the uplink and downlink frequency bands may be wider or narrower than the uplink and downlink frequency bands of the traditional TDD system;
  • the frequency bands occupied by the uplink and downlink bands may be continuous or intermittent, and the discontinuities may be single or There are multiple; the number of discontinuous points in the uplink and downlink bands may be the same or different; the frequency bands occupied by the discontinuous points of the uplink and downlink bands may or may not overlap.
  • the uplink and downlink frequency bands of the offset TDD system can be flexibly configured according to requirements, which helps to improve uplink and downlink interference in the working frequency band or the working frequency band when the offset TDD system is deployed in a mixed manner with other systems (such as FDD systems).
  • the protection band of 2570 ⁇ 2580MHz can also be used as the extended uplink frequency band of the adjacent-frequency FDD system, and the FDD system occupying the frequency band of 2500 ⁇ 2570MHz.
  • the method of bundling is similar to the above method, and the uplink data can only be transmitted on the same time slot as the uplink data transmitted by the adjacent-frequency TDD system, and the downlink time slot is disabled.
  • the guard band of 2610-2620MHz can also be used as an extended downlink frequency band of the adjacent-frequency FDD system, and is bundled with the FDD system occupying the frequency band of 2620 ⁇ 2690MHz.
  • the method is similar to the above method, and can only be used in the adjacent-frequency TDD system.
  • the downlink data is transmitted on the same time slot in which the downlink data is transmitted, and the uplink time slot is disabled, which is not repeated here.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present disclosure, which specifically includes: a configuration module 901, configured to: respectively, for each protection frequency band between a time division duplex TDD system and a frequency division duplex FDD system, corresponding to the protection frequency band
  • the carrier configuration communication configuration information where the communication configuration information includes a direction for transmitting data in a simplex communication manner by using a carrier corresponding to the guard band
  • a transmission module 902 configured to transmit according to the configured communication configuration information.
  • the carrier corresponding to the guard band is used to transmit data based on the TDD technology.
  • the configuration module 901 is specifically configured to: determine a direction in which the FDD system transmits data on a first frequency band that is adjacent to the protection frequency band, where the direction in which the FDD system transmits data includes an uplink direction and a downlink direction, when determining When the direction of the data transmitted by the FDD system in the first frequency band is the uplink direction, the direction of the data transmitted by the simplex communication included in the communication configuration information configured for the carrier corresponding to the protection band is the uplink direction. When the direction in which the FDD system transmits data in the first frequency band is the downlink direction, the direction in which the data is transmitted by the simplex communication included in the communication configuration information configured for the carrier corresponding to the protection band is the downlink direction.
  • the configuration module 901 is specifically configured to: search for the saved TDD system configuration information TDD-Config including the uplink and downlink slot ratio indication information subframeAssignment of the TDD system, and carry the TDD including the subframeAssignment in the configured communication configuration information.
  • - Config configured to configure an uplink and downlink time slot of the same TDD system as the carrier corresponding to the protection band, and add a downlink time slot disable parameter to the TDD-Config carried in the communication configuration information, where In the time slot configured on the carrier corresponding to the guard band, the downlink time slot is disabled.
  • the configuration module 901 is further configured to: add, in the TDD-Config carried in the communication configuration information, a center frequency indication parameter EARFCN of the carrier corresponding to the guard band;
  • the device also includes:
  • the broadcast module 903 is configured to: carry the communication configuration information that is added to the EARFCN in the broadcast information, and send the broadcast information to a carrier on a carrier other than the carrier corresponding to the guard band, to indicate the The terminal transmits data on the carrier corresponding to the guard band according to the received communication configuration information.
  • the configuration module 901 is specifically configured to: search for the saved TDD system configuration information TDD-Config including the uplink and downlink slot ratio indication information subframeAssignment of the TDD system, and carry the TDD including the subframeAssignment in the configured communication configuration information.
  • - Config configured to configure an uplink and downlink time slot identical to the TDD system on the carrier corresponding to the protection band, and add an uplink time slot disable parameter to the TDD-Config carried in the communication configuration information, where In the time slot configured on the carrier corresponding to the guard band, the uplink time slot is disabled.
  • the device also includes:
  • the broadcast module 903 is configured to carry the communication configuration information in the broadcast information, and send the broadcast information to the terminal corresponding to the guard band, and send the broadcast information to the terminal, to indicate that the terminal is configured according to the received communication Information, transmitting data on a carrier corresponding to the guard band.
  • FIG. 10 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention, including a network side device, a terminal, and a communication network connecting the network side device and the terminal.
  • the network side device is used according to the above method, between the TDD system and the FDD system
  • the carrier corresponding to each protection band configures communication configuration information, and transmits data according to the configured communication configuration information, which is not repeated here.
  • the network side device is further configured to send the configured communication configuration information to the terminal.
  • the terminal is configured to receive communication configuration information sent by the network side device, and perform corresponding time slot configuration on the carriers of each protection frequency band according to the received communication configuration information, disable the corresponding time slot, and select a time slot for transmitting data, The data is transmitted by using the corresponding time slot of each carrier and the network side device.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present invention, including a receiving module 1101, a control module 1102, and a transmission module 1103.
  • the receiving module 1101 is configured to receive the communication configuration information sent by the network side device.
  • the control module 1102 is configured to perform corresponding time slot configuration on the carrier of each protection frequency band according to the communication configuration information received by the receiving module 1101, and disable the corresponding time.
  • the slot is used to select a time slot for transmitting data.
  • the transmission module 1103 is configured to transmit data with the network side device according to the time slot and the carrier configured by the control module 1102.
  • An embodiment of the present invention provides a method and an apparatus for transmitting data, where the network side device configures communication configuration information for a carrier corresponding to the guard band for each guard band between the TDD system and the FDD system, where the communication configuration information includes The direction of the data transmitted by the carrier corresponding to the guard band in a simplex communication manner, and according to the direction of the transmission data included in the communication configuration information, the carrier corresponding to the guard band is used to transmit data based on the TDD technology.
  • data is transmitted in a protected frequency band based on TDD technology in a simplex communication manner according to the communication configuration information, so that data transmitted on the guard band does not interfere with the adjacent frequency FDD system, and the guard band is used.
  • the frequency resource transmits data and also saves frequency resources.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention may be employed in one or more A computer program product embodied on a computer usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • a computer usable storage medium including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种传输数据的方法及装置,该方法网络侧设备针对TDD系统与FDD系统之间的各保护频段,为该保护频段对应的载波配置通信配置信息,该通信配置信息中包含釆用该保护频段对应的载波以单工通信方式传输数据的方向,并按照该通信配置信息中包含的传输数据的方向,釆用该保护频段对应的载波基于TDD技术传输数据。由于本方案中按照通信配置信息在保护频段上基于TDD技术以单工通信的方式传输数据,因此在保护频段上传输数据时不会对邻频的FDD系统产生相互干扰,而且使用保护频段的频率资源传输数据,也节省了频率资源。

Description

一种传输数据的方法及装置 本申请要求在 2010 年 9 月 30 日提交中国专利局、 申请号为 201010298077.3、 发明名称为"无线通信系统以及在其中对载波进行时隙配置 的方法 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 尤其涉及一种传输数据的方法及装置。 背景技术
在现有的无线通信系统中, 通常存在基于至少两种通信技术的通信系统, 例如, 网络中存在基于时分双工( Time Division Duplexing, TDD )技术的 TDD 系统, 以及基于频分双工(Frequency Division Duplexing, FDD )技术的 FDD 系统。 其中, TDD系统和 FDD系统分别占用不同的频段。
在现有技术中, 为了降低网络中的 TDD系统和 FDD系统在传输数据时 产生的相互干扰,在进行频率规划时, 通常要在 TDD系统占用的频段和 FDD 系统占用的频段之间预留一部分频段间隔, 该预留的频段间隔可以作为保护 频段, 如图 1所示。 图 1为现有技术中为 TDD系统和 FDD系统规划的频段 示意图, 在图 1中, FDD系统占用 2500〜2570MHz的频段传输上行数据, 并 占用 2620~2690MHz的频段传输下行数据, 而 TDD系统占用 2580~2610MHz 的频段传输上行和下行数据, 也即, TDD 系统传输上行和下行数据所使用的 频段是相同的。 其中, FDD系统传输上行数据所占用的频段与 TDD系统所占 用的频段之间的频段间隔 2570~2580MHz, 以及 FDD系统传输下行数据所占 用的频段与 TDD系统所占用的频段之间的频段间隔 2610~2620MHz , 即为用 于降低两个系统之间干扰的保护频段。 保护频段的大小与设备采用的射频滤 波器性能, 以及 FDD和 TDD系统基站之间的耦合损耗有关, 图 1 中的保护 频段只是一个示例。 然而, 在现有技术中, 这些用于降低两个系统之间千扰的保护频段是不 可使用的, 也就是不能将保护频段的频率资源用于传输数据, 而由于频率资 源是有限且不可再生的, 因此现有技术中传输数据的方法对频率资源无疑是 一种浪费。 发明内容
有鉴于此, 本发明实施例提供一种传输数据的方法及装置, 用以解决现 有技术中传输数据的方法浪费了频率资源的问题。
本发明实施例提供的一种传输数据的方法, 包括:
网络侧设备针对时分双工 TDD系统与频分双工 FDD系统之间的各保护 频段, 为该保护频段对应的载波配置通信配置信息, 所述通信配置信息中包 含采用该保护频段对应的载波以单工通信的方式传输数据的方向; 并
按照配置的所述通信配置信息中包含的传输数据的方向, 采用该保护频 段对应的载波基于 TDD技术传输数据。
本发明实施例提供的一种传输数据的装置, 包括:
配置模块, 用于针对时分双工 TDD系统与频分双工 FDD系统之间的各 保护频段, 为该保护频段对应的载波配置通信配置信息, 所述通信配置信息 中包含釆用该保护频段对应的载波以单工通信的方式传输数据的方向;
传输模块, 用于按照配置的所述通信配置信息中包含的传输数据的方向, 采用该保护频段对应的载波基于 TDD技术传输数据。
本发明实施例提供的一种网络侧设备, 包括如上所述的传输数据的装置。 本发明实施例提供一种传输数据的方法及装置, 该方法网络侧设备针对 TDD系统与 FDD系统之间的各保护频段,为该保护频段对应的载波配置通信 配置信息, 该通信配置信息中包含采用该保护频段对应的载波以单工通信方 式传输数据的方向, 并按照该通信配置信息中包含的传输数据的方向, 釆用 该保护频段对应的载波基于 TDD技术传输数据。 由于本发明实施例中按照通 信配置信息在保护频段上基于 TDD技术以单工通信的方式传输数据, 因此在 保护频段上传输数据时不会对邻频的 FDD系统产生相互干扰, 而且使用保护 频段的频率资源传输数据, 也节省了频率资源。 附图说明
图 1为现有技术中为 TDD系统和 FDD系统规划的频段示意图; 图 2为本发明实施例提供的传输数据的过程;
图 3为本发明实施例提供的 TDD系统和 FDD系统分别占用的频段, 以 及保护频段的示意图;
图 4为本发明实施例提供的 LTE TDD系统的一种典型帧结构示意图; 图 5 为本发明实施例提供的当在该保护频段传输上行数据时, 为该保护 频段对应的载波配置时隙, 以及禁用下行时隙的示意图;
图 6 为本发明实施例提供的当在该保护频段传输上行数据时, 为该保护 频段对应的载波配置时隙 , 以及禁用下行时隙和下行导频时隙的示意图; 图 7 为本发明实施例提供的当在该保护频段传输下行数据时, 为该保护 频段对应的载波配置时隙, 以及禁用上行时隙的示意图;
图 8 为本发明实施例提供的当在该保护频段传输下行数据时, 为该保护 频段对应的载波配置时隙, 以及禁用上行时隙和上行导频时隙的示意图; 图 9为本发明实施例提供的传输数据的装置结构示意图;
图 10为本发明实施例提供的无线通信系统结构示意图;
图 11为本发明实施例提供的终端结构示意图。 具体实施方式
在实际应用中, 如果 TDD系统占用的频段和 FDD系统占用的频段之间 没有保护频段, 则会导致两个系统在传输数据时在其工作频带的内部或边缘 产生相互干扰。 这是因为 TDD系统传输上行数据和下行数据所采用的频段是 完全重合的, 但在相同的频点上传输上行数据和下行数据所采用的时隙是不 同的, 而 FDD系统传输上行数据和下行数据所采用的频段是没有重合的, 但 不区分时隙, 支设 FDD 系统占用 2500~2570MHz 的频段传输上行数据, 而 TDD系统占用 2570~2610MHz传输上 /下行数据, 也即 FDD系统传输上行数 据的频段和 TDD系统传输上 /下行数据的频段之间没有保护频段,则会导致在 两个系统占用频段相邻的一定频段范围内, 造成在同一时刻、 同一频点上, 两个系统传输不同方向的数据,即某个时刻 TDD系统某个频点传输下行数据, 而此时 FDD系统也在该频点传输上行数据, 导致方向不同的数据发生碰撞而 相互湮没。
因此, 本发明实施例为了节省频率资源, 使用保护频段传输数据, 并且 为了避免釆用保护频段传输数据时对邻频的 FDD系统产生如上所述的干扰, 本发明实施例在保护频段上传输数据时基于 TDD技术, 并以单工通信的方式 传输数据, 具体为传输数据的方向与邻频的 FDD系统传输数据的方向一致, 从而在保护频段上传输数据时与邻频的 FDD系统就不会产生相互干扰。
下面将结合说明书附图, 对本发明实施例进行详细描述。
图 2为本发明实施例提供的传输数据的过程, 具体包括以下步骤: S201 : 网络侧设备针对时分双工 TDD系统与频分双工 FDD系统之间的 各保护频段, 为该保护频段对应的载波配置通信配置信息, 所述通信配置信 息中包含采用该保护频段对应的载波以单工通信的方式传输数据的方向。
其中, 网络侧设备是根据配置的通信配置信息传输数据的, 本发明实施 例为了节省频率资源, 为该保护频段对应的载波配置通信配置信息, 即釆用 该保护频段对应的载波传输数据。 并且, 为了在采用该保护频段对应的载波 传输数据时, 不会对邻频的 FDD系统产生千扰, 网络侧设备在该保护频段上 以单工通信的方式传输数据, 因此该通信配置信息中包含釆用该保护频段对 应的载波以单工通信的方式传输数据的方向。 并且, 该保护频段对应的载波 即为, 载波的频段落在该保护频段范围内的载波。
具体的, 网络侧设备先确定 TDD系统和 FDD系统分别占用的频段, 将
TDD 系统和 FDD 系统分别占用的频段之间的频段确定为保护频段, 如图 3 所示。 图 3为本发明实施例提供的 TDD系统和 FDD系统分别占用的频段, 以 及保护频段的示意图, 在图 3 中, 网络侧设备确定 FDD 系统占用 2500~2570MHz的频段传输上行数据, TDD系统占用 2580~2610MHz的频段 传输上 /下行数据, 则确定 2570〜2580MHz的频段为一个保护频段, 类似的, 确定 2610~2620MHz的频段为另一个保护频段。
在本发明实施例中, 确定了各保护频段后, 网络侧设备则针对各保护频 段, 为该保护频段对应的载波配置通信配置信息。 其中, 该通信配置信息中 包含的传输数据的方向与邻频的 TDD系统传输数据的方向一致。 具体的, 网 络侧设备确定 FDD系统在与该保护频段邻频的第一频段上传输数据的方向, 其中, FDD系统传输数据的方向包括上行方向和下行方向。 当确定 FDD系统 在第一频段上传输数据的方向为上行方向时, 为该保护频段对应的载波配置 的通信配置信息中包含的以单工通信的方式传输数据的方向为上行方向。 当 确定 FDD系统在第一频段上传输数据的方向为下行方向时, 为该保护频段对 应的载波配置的通信配置信息中包含的以单工通信的方式传输数据的方向为 下行方向。
继续以图 3为例进行说明, 网络侧设备针对 2570~2580MHz的保护频段, 确定 FDD系统在与该保护频段邻频的第一频段上传输数据的方向, 也即确定 FDD系统在与该 2570〜2580MHz的保护频段邻频的 2500〜2570MHz的第一频 段上传输数据的方向, 确定传输数据的方向为上行方向, 也即 FDD系统在邻 频的 2500~2570MHz的第一频段上传输上行数据。 相应的, 网络侧设备针对 2610-2620MHz的保护频段, 确定 FDD系统在与该 2610〜2620MHz的保护频 段邻频的 2620~2690MHz 的第一频段上传输数据的方向为下行方向, 也即 FDD系统在邻频的 2620~2690MHz的第一频段上传输下行数据。
因此, 网络侧设备针对 2570~2580MHz的保护频段,为该 2570~2580MHz 的保护频段对应的载波配置的通信配置信息中包含的以单工通信的方式传输 数据的方向为上行方向。 相应的, 网络侧设备针对 2610~2620MHz的保护频 段, 为该 2610~2620MHz的保护频段对应的载波配置的通信配置信息中包含 的以单工通信的方式传输数据的方向为下行方向。
S203 : 按照配置的所述通信配置信息中包含的传输数据的方向, 采用该 保护频段对应的载波基于 TDD技术传输数据。
继续以图 3为例进行说明, 网络侧设备根据为该 2570〜2580MHz的保护 频段对应的载波配置的通信配置信息, 基于 TDD技术, 在该 2570~2580MHz 的保护频段对应的载波上传输上行数据, 不传输下行数据。 相应的, 网络侧 设备根据为该 2610〜2620MHz的保护频段对应的载波配置的通信配置信息, 基于 TDD技术,在该 2610〜2620MHz的保护频段对应的载波上传输下行数据, 不传输上行数据。
在上述过程中, 网络侧设备为各保护频段配置相应的通信配置信息, 利 用 TDD系统和 FDD系统之间的保护频段传输数据, 节省了频率资源, 提高 了频率资源的利用率。 并且, 由于网络侧设备在保护频段上传输数据的方向, 与在该保护频段邻频的 FDD系统传输数据的方向一致, 因此在该保护频段上 传输数据时不会与邻频的 FDD系统传输的数据发生上下行的碰撞, 因此不会 与邻频的 FDD系统产生相互干 ·ί尤。
在实际应用中, TDD技术就是将时间划分为一个一个的时隙, 对于每个 时隙, 规定其是上行时隙或者是下行时隙, 分别用于传输上行数据或下行数 据。 图 4为本发明实施例提供的 LTE TDD系统的一种典型帧结构示意图, 在 图 4中, 每一个无线帧由两个半帧 (half-frame)构成, 每一个半帧长度为 5ms。 每个半帧划分成 8个长度为 0.5ms的常规时隙 ( Time Slot, TS ) 和 1个长度 为 1ms的特殊时隙, 每两个常规时隙配对组成一个子帧。 该特殊时隙由下行 导频时隙(DwPTS )、保护时隙( GP )和上行导频时隙(UpPTS )构成, DwPTS 和 UpPTS的长度是可配置的, 并且 DwPTS、 GP以及 UpPTS的总长度等于 lms。 其中, 子帧 1为特殊时隙, 包含 DwPTS、 GP以及 UpPTS, 子帧 6按时 隙配置策略可以是特殊时隙也可以不是特殊时隙, 图 4 中以子帧 6为非特殊 时隙为例。。
LTE TDD系统支持 5ms和 10ms的切换周期, 即每个半帧循环一次和每 个无线帧循环一次,并且,子帧 0和子帧 5以及 DwPTS始终预留为下行传输, 其他子帧可以配置为下行传输或上行传输。 目前规范确定支持的上下行时隙 酉己比 ^表 1所示。
Figure imgf000009_0001
表 1
其中, 字母 D表示下行时隙, 字母 U表示上行时隙, 字母 S表示特殊时 隙。 配置方案 0、 1、 2均为 5ms的切换周期, 配置方案 3-6为 10ms的切换周 期。目前在 TS36.331的章节 6.2.2 Message definition中的系统信息块 1( System Information Block Typel message, SIBl ) 中定义了一个供选择的 TDD系统配 置信息 ( TDD-Config ) , 其中包含 TDD 系统上下行时隙配比指示信息 ( subframe Assignment ) , 用于指示 TDD 系统的上下行时隙配比, 由于 FDD 系统不区分时隙, 因此 FDD系统不使用该参数。
以上述图 3中 2570~2580MHz的保护频段, 以及表 1 中的配比方案 0为 例进行说明, 虽然网络侧设备采用 2570~2580MHz的保护频段对应的载波传 输上行数据, 可以保证不对邻频的 2500〜2570MHz的 FDD系统产生干扰, 但 是如果基于 TDD技术, 如果将该保护频段对应的载波上的所有时隙都用于传 输上行数据, 那么按照表 1 中配比方案 0的时隙配置, 与该 2570~2580MHz 的保护频段邻频的 TDD系统在子帧 0对应的两个时隙都是传输下行数据的, 这样,在该 2570〜2580MHz的保护频段与邻频的 TDD系统就会在同一时刻(子 帧 0对应的两个时隙)、 同一频点(2580MHz频点附近)传输不同方向的数据, 从而产生干扰。
因此, 为了避免采用该保护频段对应的载波传输数据时对邻频的 TDD系 统产生千扰, 在本发明实施例中, 当网络侧设备为该保护频段对应的载波配 置的通信配置信息中包含的以单工通信的方式传输数据的方向为上行方向 时, 配置方法具体为: 网络侧设备查找保存的包含 subframeAssignment 的 TDD-Config, 并在配置的通信配置信息中携带包含该 subframeAssignment的 TDD-Config,用以在该保护频段对应的载波上配置与邻频的 TDD系统相同的 上下行时隙。 并且, 在通信配置信息携带的该 TDD-Config中添加下行时隙禁 用参数, 用以在该保护频段对应的载波上配置的时隙中, 禁用下行时隙。
其中, 在 TDD-Config中添加的下行时隙禁用参数可以为 dl-disable参数, 并定义当该参数为 0时, 表示禁用下行时隙, 为 1 时表示不禁用下行时隙。 当然, 也可以定义该参数为 1 时表示禁用下行时隙, 为 0时表示不禁用下行 时隙。
此时, 网络侧设备按照该通信配置信息, 釆用该保护频段对应的载波基 于 TDD技术传输数据的过程具体为: 基于 TDD技术, 按照该通信配置信息 携带的 TDD-Config中包含的 subframeAssignment, 在该保护频段对应的载波 上配置与邻频的 TDD系统相同的上下行时隙, 并在配置的上下行时隙中, 将 下行时隙禁用, 并在配置的上行时隙中, 选择用于传输上行数据的时隙, 采 用该保护频段对应的载波, 以及选择的时隙传输上行数据。
图 5 为本发明实施例提供的当在该保护频段传输上行数据时, 为该保护 频段对应的载波配置时隙, 以及禁用下行时隙的示意图, 如图 5 所示, 网络 侧设备根据为 2570〜2580MHz的保护频段对应的载波配置的通信配置信息, 采用 2570~2580MHz的保护频段对应的载波传输上行数据时, 根据该通信配 置信息携带的 TDD-Config中包含的 subframeAssignment, 在该保护频段对应 的载波上配置与邻频 2580 2610MHz的 TDD系统相同的上下行时隙。 如图 5所示, TDD系统采用的上下行时隙配比为 2个上行时隙和 3个下 行时隙的配置, 即上下行时隙比例为 2:3, 其中, 传输上行数据所釆用的每个 第一时隙用 U表示 , 传输下行数据所采用的每个第二时隙用 D表示。 则网络 侧设备基于 TDD技术,在该 2570〜2580MHz的保护频段对应的载波上也配置 相同的时隙。 在配置的时隙中, 将下行时隙禁用, 图 5中禁用的时隙用 X表 示。 在配置的上行时隙中, 选择用于传输上行数据的时隙, 也即在该保护频 段对应的载波上选择的用于传输上行数据的时隙最多不超过 2 个, 并且选择 的时隙的位置必须与 TDD系统的第一时隙的位置相同。
釆用上述方法在保护频段上传输上行数据, 可以保证同一时刻 (也即同 一时隙 )在保护频段上传输数据的方向, 与邻频的 TDD系统传输数据的方向 相同, 都是上行方向, 因此不会对邻频的 TDD系统产生干扰。 并且, 也可以 保证在该保护频段上传输数据的方向, 与邻频的 FDD系统传输数据的方向相 同, 也不会对邻频的 FDD系统产生干扰, 而且利用了现有技术中所不能利用 的保护频段传输数据, 节省了频率资源。
同时, 如表 1所示, TDD系统配置的时隙中还包括特殊时隙, 该特殊时 隙中的 DwPTS时隙也用于传输下行数据, 因此为了进一步避免干扰, 当网络 侧设备采用该保护频段对应的载波, 基于 TDD技术传输上行数据时, 如果网 络侧设备在该保护频段对应的载波上配置的时隙中包括特殊时隙, 则还要将 该特殊时隙中的 DwPTS时隙禁用, 如图 6所示。 图 6为本发明实施例提供的 当在该保护频段传输上行数据时, 为该保护频段对应的载波配置时隙, 以及 禁用下行时隙和 DwPTS 时隙的示意图, 在图 6 中, 网络侧设备采用 2570~2580MHz的保护频段对应的载波传输上行数据,由于按照为该保护频段 对应的载波配置的通信配置信息, 对该保护频段对应的载波配置时隙时, 配 置的时隙中包括特殊时隙,图 6中特殊时隙用 S表示,该特殊时隙包括 DwPTS 时隙、 GP时隙、 UpPTS时隙, 因此, 网络侧设备还要将 DwPTS时隙也禁用, 保证在该保护频段传输上行数据时, 不会对邻频的 TDD系统产生干扰。
相应的, 当网络侧设备为该保护频段对应的载波配置的通信配置信息中 包含的以单工通信的方式传输数据的方向为下行方向时, 配置方法具体为: 网络侧设备查找保存的包含 subframeAssignment的 TDD-Config, 并在配置的 通信配置信息中携带包含该 subframeAssignment的 TDD-Config, 用以在该保 护频段对应的载波上配置与邻频的 TDD系统相同的上下行时隙。 并且, 在通 信配置信息携带的该 TDD-Config中添加上行时隙禁用参数,用以在该保护频 段对应的载波上配置的时隙中, 禁用上行时隙。
其中, 在 TDD-Config中添加的上行时隙禁用参数可以为 ul-disable参数, 并定义当该参数为 0时, 表示禁用上行时隙, 为 1 时表示不禁用上行时隙。 当然, 也可以定义该参数为 1 时表示禁用上行时隙, 为 0时表示不禁用上行 时隙。
此时, 网络侧设备按照该通信配置信息, 采用该保护频段对应的载波基 于 TDD技术传输数据的过程具体为: 基于 TDD技术, 按照该通信配置信息 携带的 TDD-Config中包含的 subframeAssignment, 在该保护频段对应的载波 上配置与邻频的 TDD系统相同的上下行时隙, 并在配置的上下行时隙中, 将 上行时隙禁用, 并在配置的下行时隙中, 选择用于传输下行数据的时隙, 采 用该保护频段对应的载波, 以及选择的时隙传输下行数据。
图 7 为本发明实施例提供的当在该保护频段传输下行数据时, 为该保护 频段对应的载波配置时隙, 以及禁用上行时隙的示意图, 如图 7 所示, 网络 侧设备根据为 2610〜2620MHz的保护频段对应的载波配置的通信配置信息, 采用 2610~2620MHz的保护频段对应的载波传输下行数据时, 根据该通信配 置信息携带的 TDD-Config中包含的 subframeAssignment, 在该保护频段对应 的载波上配置与邻频 2580 2610MHz的 TDD系统相同的上下行时隙。
如图 7所示, TDD系统采用的上下行时隙配比为 2个上行时隙和 3个下 行时隙的配置, 即上下行时隙比例为 2:3 , 其中, 传输上行数据所采用的每个 第一时隙用 U表示, 传输下行数据所采用的每个第二时隙用 D表示。 则网络 侧设备基于 TDD技术,在该 2610~2620MHz的保护频段对应的载波上也配置 相同的时隙。 在配置的时隙中, 将上行时隙禁用, 图 7中禁用的时隙用 X表 示。 在配置的下行时隙中, 选择用于传输下行数据的时隙, 也即在该保护频 段对应的载波上选择的用户传输下行数据的时隙最多不超过 3 个, 并且选择 的时隙的位置必须与 TDD系统的第二时隙的位置相同。
采用上述方法在保护频段上传输下行数据, 可以保证同一时刻 (也即同 一时隙 )在保护频段上传输数据的方向, 与邻频的 TDD系统传输数据的方向 相同, 都是下行方向, 因此不会对邻频的 TDD系统产生干扰。 并且, 也可以 保证在该保护频段上传输数据的方向, 与邻频的 FDD系统传输数据的方向相 同, 也不会对邻频的 FDD系统产生干扰, 而且利用了现有技术中所不能利用 的保护频段传输数据, 节省了频率资源。
并且, 与在保护频段传输上行数据类似的, 当网络侧设备采用该保护频 段对应的载波, 基于 TDD技术传输下行数据时, 如果网络侧设备在该保护频 段对应的载波上配置的时隙中包括特殊时隙, 则还要将该特殊时隙中的 UpPTS时隙禁用, 如图 8所示。 图 8为本发明实施例提供的当在该保护频段 传输下行数据时, 为该保护频段对应的载波配置时隙, 以及禁用上行时隙和 上行导频时隙的示意图, 在图 8中, 网络侧设备采用 2610〜2620MHz的保护 频段对应的载波传输下行数据, 由于按照为该保护频段对应的载波配置的通 信配置信息, 对该保护频段对应的载波配置时隙时, 配置的时隙中包括特殊 时隙, 图 8中特殊时隙用 S表示, 该特殊时隙包括 DwPTS时隙、 GP时隙、 UpPTS时隙, 因此, 网絡侧设备还要将 UpPTS时隙也禁用, 保证在该保护频 段上传输下行数据时, 不会对邻频的 TDD系统产生干扰。
上述实施例是以在 TDD-Config中添加 dl-disable参数和 ul-disable参数来 禁用下行或上行时隙的,本发明实施例还可以在 TDD-Config中只添加一个参 数实现禁用下行或上行时隙。 具体为, 在 TDD-Config中添加 ul-dl-disable参 数, 并定义当该参数为 0 时, 禁用上行时隙, 采用下行时隙传输下行数据, 当该参数为 1 时, 禁用下行时隙, 采用上行时隙传输上行数据。 当然, 也可 以定义该参数为 1时表示禁用上行时隙, 为 0时表示禁用下行时隙。
在本发明实施例中, 网络侧设备按照上述方法为保护频段对应的载波配 置了通信配置信息, 并按照该通信配置信息采用该保护频段对应的载波传输 上行数据或下行数据时, 也要保证终端釆用相应的方法传输上行数据或下行 数据, 否则, 终端在错误的载波上, 或者在错误的时隙上传输上行数据或下 行数据, 则会导致传输数据的准确性降低, 而且也会对邻频的 FDD 系统和 TDD系统造成干扰。 因此, 网络侧设备还要将该通信配置信息发送给终端, 以指示终端按照接收到的通信配置信息传输数据。
具体的, 当网络侧设备为保护频段对应的载波配置的通信配置信息中包 含的传输数据的方向为上行方向时, 网络侧设备在该通信配置信息携带的 TDD-Config中添加该保护频段对应的载波的中心频率指示参数 ( EARFCN ), 并将添加了 EARFCN的通信配置信息携带在广播信息中, 并将该广播信息承 载在除了该保护频段对应的载波以外的其他载波上发送给终端, 以指示所述 终端根据接收到的该通信配置信息, 在该保护频段对应的载波上传输数据。 也即, 网络侧设备将通信配置信息以广播的形式发送给终端, 其中, 由于该 保护频段对应的载波已经禁用了下行时隙, 只能用于传输上行数据, 因此不 能釆用该保护频段对应的载波将通信配置信息广播给终端, 而需要通过其他 载波广播。 当然, 也可以釆用其他方式发送通信配置信息, 例如通过专用信 令发送。
终端则根据接收到的该通信配置信息携带的 TDD-Config中的 EARFCN, 确定该保护频段对应的载波, 根据 TDD-Config中的 subframeAssignment, 为 该保护频段对应在载波配置上下行时隙,并根据 TDD-Config中的下行时隙禁 用参数, 禁用配置的下行时隙, 采用该保护频段对应的载波, 基于 TDD技术 传输上行数据。
相应的, 当网络侧设备为该保护频段对应的载波配置的通信配置信息中 包含的以单工通信的方式传输数据的方向为下行方向时, 网络侧设备将该通 信配置信息携带在广播信息中, 并将所述广播信息承载在该保护频段对应的 载波上发送给终端, 以指示终端根据接收到的该通信配置信息, 在该保护频 段对应的载波上传输数据。 也即, 网络侧设备将通信配置信息以广播的形式 发送给终端, 此时由于该保护频段对应的载波的上行时隙被禁用, 可以传输 下行数据, 因此可以直接釆用该保护频段对应的载波将通信配置信息广播给 终端, 当然, 也可以采用其他载波广播。 还可以采用其他形式发送通信配置 信息, 例如通过专用信令发送。
基于上述图 5、 6、 7、 8, 可以看出本发明实施例实际上是将传统的 TDD 系统传输数据占用的 2580~2610MHz的频段, 扩展到了 2570~2620MHz的频 段, 只不过 2570〜2580MHz的频段只传输上行数据, 所有发送下行数据的时 隙以及下行导频时隙都被禁用, 2610〜2620MHz的频段只传输下行数据, 所有 发送上行数据的时隙以及上行导频时隙都被禁用。 对比现有的传统 TDD系统 中, 发送上行数据和下行数据所占用的频段是完全相同的情况, 本发明提出 上述扩展了频段之后的 TDD系统可以称为频率偏移的非对称时分双工( offset TDD )无线通信系统, 该 offset TDD系统釆用与现有的传统 TDD系统相同的 时隙配置方案以及时间同步要求, 同时, 根据网络实际部署需求, 设置的上 下行频段不对称, 也即上行频段实际上是 2570〜2610MHz的频段, 而下行频 段实际上是 2580~2620MHz的频段, 两个频段重合的 2580~2610MHz的频段 及发送上行数据也发送下行数据, 未重合的频段按照上述方法只发送上行数 据或下行数据。 其中, 未重合的 2570~2580MHz 的频段对应的载波, 以及 2610〜2620MHz的频段对应的载波可以称为特殊载波。
其中, 该 offset TDD系统上下行频段的设置可以基于如下网络部署需求: 1、 与该 offset TDD系统混合部署的其他系统的系统特性 , 其他系统包括 FDD 系统, 系统特性包括如上下行资源配置、 子频带带宽、 发射功率、 射频 指标等;
2、 其他系统的信号分量可能落入该 offset TDD系统频带内的情况。
此外, 本发明中 offset TDD系统的上下行频段可以有重合的频段, 也可 以没有重合的频段; 上下行频段较传统 TDD系统的上下行频段可以更宽, 也 可以更窄; 上下行频段的带宽可以相同, 也可以不同; 上下行频段所占用的 频段可以是连续的, 也可以有间断点, 并且该间断点可以是单个的, 也可以 是多个的; 上下行频段的间断点数量可以相同, 也可以不同; 上下行频段的 间断点所占用的频段可以重叠, 也可以不重叠。 也即, offset TDD系统的上下 行频段可以根据需要灵活配置, 有助于改善 offset TDD系统与其他系统 (如 FDD系统) 混合部署时, 工作频段内部或工作频段边缘的上下行干扰。
通过上述实施方式, 只需要对现有的系统做很小的改动即可有效地支持 了上述 offset TDD系统的应用。
另夕卜, 基于同样的思路, 在上述图 5、 6、 7、 8中, 2570~2580MHz的保 护频段还可以作为邻频的 FDD系统的扩展上行频段, 与占用 2500〜2570MHz 的频段的 FDD 系统进行捆绑使用, 方法与上述方法类似, 只能在与邻频的 TDD系统传输上行数据的相同时隙上传输上行数据 , 禁用下行时隙。相应的, 2610-2620MHz的保护频段还可以作为邻频的 FDD系统的扩展下行频段, 与 占用 2620~2690MHz的频段的 FDD系统进行捆绑使用,方法与上述方法类似, 只能在邻频的 TDD系统传输下行数据的相同时隙上传输下行数据, 禁用上行 时隙, 这里就不再——赘述。
图 9为本发明实施例提供的传输数据的装置结构示意图, 具体包括: 配置模块 901 ,用于针对时分双工 TDD系统与频分双工 FDD系统之间的 各保护频段, 为该保护频段对应的载波配置通信配置信息, 所述通信配置信 息中包含采用该保护频段对应的载波以单工通信的方式传输数据的方向; 传输模块 902,用于按照配置的所述通信配置信息中包含的传输数据的方 向, 采用该保护频段对应的载波基于 TDD技术传输数据。
所述配置模块 901具体用于, 确定所述 FDD系统在与该保护频段邻频的 第一频段上传输数据的方向, 其中, 所述 FDD系统传输数据的方向包括上行 方向和下行方向, 当确定所述 FDD系统在所述第一频段上传输数据的方向为 上行方向时, 为该保护频段对应的载波配置的通信配置信息中包含的以单工 通信的方式传输数据的方向为上行方向, 当确定所述 FDD系统在所述第一频 段上传输数据的方向为下行方向时, 为该保护频段对应的载波配置的通信配 置信息中包含的以单工通信的方式传输数据的方向为下行方向。 所述配置模块 901具体用于, 查找保存的包含 TDD系统上下行时隙配比 指示信息 subframeAssignment的 TDD系统配置信息 TDD-Config, 并在配置 的所述通信配置信息中携带包含所述 subframeAssignment的 TDD-Config, 用 以在该保护频段对应的载波上配置与所述 TDD系统相同的上下行时隙, 在所 述通信配置信息携带的所述 TDD-Config中添加下行时隙禁用参数,用以在该 保护频段对应的载波上配置的时隙中, 禁用下行时隙。
所述配置模块 901还用于,在所述通信配置信息携带的 TDD-Config中添 加该保护频段对应的载波的中心频率指示参数 EARFCN;
所述装置还包括:
广播模块 903 , 用于将添加了所述 EARFCN的通信配置信息携带在广播 信息中, 并将所述广播信息承载在除了该保护频段对应的载波以外的其他载 波上发送给终端, 以指示所述终端根据接收到的所述通信配置信息, 在该保 护频段对应的载波上传输数据。
所述配置模块 901具体用于, 查找保存的包含 TDD系统上下行时隙配比 指示信息 subframeAssignment的 TDD系统配置信息 TDD-Config, 并在配置 的所述通信配置信息中携带包含所述 subframeAssignment的 TDD-Config , 用 以在该保护频段对应的载波上配置与所述 TDD系统相同的上下行时隙, 在所 述通信配置信息携带的所述 TDD-Config中添加上行时隙禁用参数,用以在该 保护频段对应的载波上配置的时隙中, 禁用上行时隙。
所述装置还包括:
广播模块 903 , 用于将所述通信配置信息携带在广播信息中, 并将所述广 播信息承载在该保护频段对应的载波上发送给终端, 以指示所述终端根据接 收到的所述通信配置信息, 在该保护频段对应的载波上传输数据。
本发明实施例还提供一种网络侧设备, 包括如上所述的传输数据的装置。 图 10为本发明实施例提供的无线通信系统结构示意图,包括网络侧设备、 终端, 以及连接网络侧设备和终端的通信网络。
其中, 网络侧设备用于根据上述方法, 为 TDD系统和 FDD系统之间的 各保护频段对应的载波配置通信配置信息, 并按照配置的通信配置信息传输 数据, 这里就不再——赘述。 并且, 网絡侧设备还用于将配置的通信配置信 息发送给终端。 终端用于接收网络侧设备发送的通信配置信息, 并根据接收 到的通信配置信息, 对各保护频段的载波进行相应的时隙配置, 禁用相应的 时隙, 选择用于传输数据的时隙, 并采用各载波的相应时隙与网络侧设备传 输数据。
基于同样的思路, 本发明实施例还提供一种终端, 如图 11 所示。 图 11 为本发明实施例提供的终端结构示意图, 包括接收模块 1101、控制模块 1102、 传输模块 1103。 其中, 接收模块 1101用于接收网络侧设备发送的通信配置信 息; 控制模块 1102用于根据接收模块 1101接收到的通信配置信息, 对各保 护频段的载波进行相应的时隙配置, 禁用相应的时隙, 选择用于传输数据的 时隙; 传输模块 1103用于根据控制模块 1102配置的时隙和载波, 与网络侧 设备传输数据。
本发明实施例提供一种传输数据的方法及装置, 该方法网络侧设备针对 TDD系统与 FDD系统之间的各保护频段,为该保护频段对应的载波配置通信 配置信息, 该通信配置信息中包含釆用该保护频段对应的载波以单工通信方 式传输数据的方向, 并按照该通信配置信息中包含的传输数据的方向, 采用 该保护频段对应的载波基于 TDD技术传输数据。 由于本发明实施例中按照通 信配置信息在保护频段上基于 TDD技术以单工通信的方式传输数据, 因此在 保护频段上传输数据时不会对邻频的 FDD系统产生相互干扰, 而且使用保护 频段的频率资源传输数据, 也节省了频率资源。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在 本发明保护的范围之内。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等) 上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种传输数据的方法, 其特征在于, 包括:
网络侧设备针对时分双工 TDD系统与频分双工 FDD系统之间的各保护 频段, 为该保护频段对应的载波配置通信配置信息, 所述通信配置信息中包 含采用该保护频段对应的载波以单工通信的方式传输数据的方向; 并
按照配置的所述通信配置信息中包含的传输数据的方向, 采用该保护频 段对应的载波基于 TDD技术传输数据。
2、 如权利要求 1所述的方法, 其特征在于, 为该保护频段对应的载波配 置包含传输数据的方向的通信配置信息, 具体包括:
所述网络侧设备确定所述 FDD系统在与该保护频段邻频的第一频段上传 输数据的方向, 其中, 所述 FDD系统传输数据的方向包括上行方向和下行方 向; 并
当确定所述 FDD系统在所述第一频段上传输数据的方向为上行方向时, 为该保护频段对应的载波配置的通信配置信息中包含的以单工通信的方式传 输数据的方向为上行方向;
当确定所述 FDD系统在所述第一频段上传输数据的方向为下行方向时, 为该保护频段对应的载波配置的通信配置信息中包含的以单工通信的方式传 输数据的方向为下行方向。
3、 如权利要求 2所述的方法, 其特征在于, 为该保护频段对应的载波配 置的通信配置信息中包含的以单工通信的方式传输数据的方向为上行方向, 具体包括:
所述网络侧设备查找保存的包含 TDD 系统上下行时隙配比指示信息 subframeAssignment的 TDD系统配置信息 TDD-Config; 并
在配置的所述通信配置信息中携带包含所述 subframeAssignment 的 TDD-Config,用以在该保护频段对应的载波上配置与所述 TDD系统相同的上 下行时隙; 以及 在所述通信配置信息携带的所述 TDD-Config中添加下行时隙禁用参数, 用以在该保护频段对应的载波上配置的时隙中, 禁用下行时隙。
4、 如权利要求 3所述的方法, 其特征在于, 所述方法还包括: 所述网络侧设备在所述通信配置信息携带的 TDD-Config 中添加该保护 频段对应的载波的中心频率指示参数 EARFCN;
将添加了所述 EARFCN的通信配置信息携带在广播信息中, 并将所述广 播信息承载在除了该保护频段对应的载波以外的其他载波上发送给终端, 以 指示所述终端根据接收到的所述通信配置信息, 在该保护频段对应的载波上 传输数据。
5、 如权利要求 2所述的方法, 其特征在于, 为该保护频段对应的载波配 置的通信配置信息中包含的以单工通信的方式传输数据的方向为下行方向, 具体包括:
所述网络侧设备查找保存的包含 TDD 系统上下行时隙配比指示信息 subframeAssignment的 TDD系统配置信息 TDD-Config; 并
在配置的所述通信配置信息中携带包含所述 subframeAssignment 的 TDD-Config,用以在该保护频段对应的载波上配置与所述 TDD系统相同的上 下行时隙; 以及
在所述通信配置信息携带的所述 TDD-Config中添加上行时隙禁用参数, 用以在该保护频段对应的载波上配置的时隙中, 禁用上行时隙。
6、 如权利要求 5所述的方法, 其特征在于, 所述方法还包括: 所述网络侧设备将所述通信配置信息携带在广播信息中, 并将所述广播 信息承载在该保护频段对应的载波上发送给终端, 以指示所述终端根据接收 到的所述通信配置信息, 在该保护频段对应的载波上传输数据。
7、 一种传输数据的装置, 其特征在于, 包括:
配置模块, 用于针对时分双工 TDD系统与频分双工 FDD系统之间的各 保护频段, 为该保护频段对应的载波配置通信配置信息, 所述通信配置信息 中包含采用该保护频段对应的载波以单工通信的方式传输数据的方向; 传输模块, 用于按照配置的所述通信配置信息中包含的传输数据的方向, 釆用该保护频段对应的载波基于 TDD技术传输数据。
8、 如权利要求 7所述的装置, 其特征在于, 所述配置模块具体用于, 确 定所述 FDD系统在与该保护频段邻频的第一频段上传输数据的方向, 其中, 所述 FDD 系统传输数据的方向包括上行方向和下行方向, 当确定所述 FDD 系统在所述第一频段上传输数据的方向为上行方向时, 为该保护频段对应的 载波配置的通信配置信息中包含的以单工通信的方式传输数据的方向为上行 方向,当确定所述 FDD系统在所述第一频段上传输数据的方向为下行方向时, 为该保护频段对应的载波配置的通信配置信息中包含的以单工通信的方式传 输数据的方向为下行方向。
9、 如权利要求 8所述的装置, 其特征在于, 所述配置模块具体用于, 查 找保存的包含 TDD系统上下行时隙配比指示信息 subframeAssignment的 TDD 系统配置信息 TDD-Config, 并在配置的所述通信配置信息中携带包含所述 subframeAssignment的 TDD-Config, 用以在该保护频段对应的载波上配置与 所述 TDD 系统相同的上下行时隙, 在所述通信配置信息携带的所述 TDD-Config中添加下行时隙禁用参数, 用以在该保护频段对应的载波上配置 的时隙中, 禁用下行时隙。
10、 如权利要求 9 所述的装置, 其特征在于, 所述配置模块还用于, 在 所述通信配置信息携带的 TDD-Config 中添加该保护频段对应的载波的中心 频率指示参数 EARFCN;
所述装置还包括:
广播模块, 用于将添加了所述 EARFCN的通信配置信息携带在广播信息 中, 并将所述广播信息承载在除了该保护频段对应的载波以外的其他载波上 发送给终端, 以指示所述终端根据接收到的所述通信配置信息, 在该保护频 段对应的载波上传输数据。
11、 如权利要求 8 所述的装置, 其特征在于, 所述配置模块具体用于, 查找保存的包含 TDD 系统上下行时隙配比指示信息 subframeAssignment 的 TDD系统配置信息 TDD-Config,并在配置的所述通信配置信息中携带包含所 述 subframeAssignment的 TDD-Config, 用以在该保护频段对应的载波上配置 与所述 TDD 系统相同的上下行时隙, 在所述通信配置信息携带的所述 TDD-Config中添加上行时隙禁用参数, 用以在该保护频段对应的载波上配置 的时隙中, 禁用上行时隙。
12、 如权利要求 11所述的装置, 其特征在于, 所述装置还包括: 广播模块, 用于将所述通信配置信息携带在广播信息中, 并将所述广播 信息承载在该保护频段对应的载波上发送给终端, 以指示所述终端根据接收 到的所述通信配置信息, 在该保护频段对应的载波上传输数据。
13、 一种网络侧设备, 其特征在于, 包括如权利要求 7~12任一所述的传 输数据的装置。
PCT/CN2011/080405 2010-09-30 2011-09-30 一种传输数据的方法及装置 WO2012041246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11828142.7A EP2624648B1 (en) 2010-09-30 2011-09-30 Method and device for data transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010298077.3 2010-09-30
CN201010298077.3A CN102448148B (zh) 2010-09-30 2010-09-30 无线通信系统以及在其中对载波进行时隙配置的方法

Publications (1)

Publication Number Publication Date
WO2012041246A1 true WO2012041246A1 (zh) 2012-04-05

Family

ID=45891974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080405 WO2012041246A1 (zh) 2010-09-30 2011-09-30 一种传输数据的方法及装置

Country Status (3)

Country Link
EP (1) EP2624648B1 (zh)
CN (1) CN102448148B (zh)
WO (1) WO2012041246A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906242B (zh) * 2012-12-26 2018-03-13 华为技术有限公司 一种无线通信方法、系统及基站和用户设备
WO2015074263A1 (zh) * 2013-11-25 2015-05-28 华为技术有限公司 下行信号传输方法和装置
CN104735802A (zh) * 2013-12-20 2015-06-24 微思泰(北京)信息技术有限公司 一种时频二维调度的双工通信方法
CN109802778B (zh) * 2017-11-16 2020-09-29 华为技术有限公司 一种指示和确定时域资源的方法、装置及系统
ES2962343T3 (es) * 2017-12-28 2024-03-18 Beijing Xiaomi Mobile Software Co Ltd Método de transmisión de datos, estación base y terminal
CN111757363B (zh) * 2019-03-29 2022-07-12 中国移动通信有限公司研究院 一种通信方法和终端、网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007146017A2 (en) * 2006-06-06 2007-12-21 Sr Télécom & Co, S.E.C. Utilizing guard band between fdd and tdd wireless systems
CN101729125A (zh) * 2008-10-31 2010-06-09 大唐移动通信设备有限公司 一种信号发送方法和装置
CN101778392A (zh) * 2009-01-08 2010-07-14 中国移动通信集团公司 一种保护频带的使用方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138427B2 (ja) * 2008-03-06 2013-02-06 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム
CN101835200B (zh) * 2009-03-13 2013-05-15 中国移动通信集团公司 系统接入方法、通信系统、用户终端及网络侧设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007146017A2 (en) * 2006-06-06 2007-12-21 Sr Télécom & Co, S.E.C. Utilizing guard band between fdd and tdd wireless systems
CN101729125A (zh) * 2008-10-31 2010-06-09 大唐移动通信设备有限公司 一种信号发送方法和装置
CN101778392A (zh) * 2009-01-08 2010-07-14 中国移动通信集团公司 一种保护频带的使用方法及设备

Also Published As

Publication number Publication date
EP2624648B1 (en) 2019-04-17
CN102448148A (zh) 2012-05-09
EP2624648A4 (en) 2017-02-15
EP2624648A1 (en) 2013-08-07
CN102448148B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN110881210B (zh) 用于控制寻呼操作的方法及其装置
TWI577222B (zh) 先聽後說頻道接取技術
JP2023510912A (ja) 無線通信システムにおける確認応答送信
WO2019080817A1 (zh) 一种信号配置方法及相关设备
EP3217582B1 (en) Data transmission method and device in unlicensed frequency band
KR20170128428A (ko) 제어 시그널링의 수신을 위한 방법 및 장치
EP3099125B1 (en) Method, apparatus and device for scheduling data by using unlicensed spectrum
CN104540164A (zh) 数据传输方法、数据传输装置和数据传输系统
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
WO2012041246A1 (zh) 一种传输数据的方法及装置
US20160219574A1 (en) Method and Apparatus for Device to Device Communication
EP3506544B1 (en) Method and apparatus for transmitting downlink control signal
CN109120382B (zh) 信号发送和接收方法、装置
KR102196193B1 (ko) 상향링크 참조 신호 송신 방법, 상향링크 참조 신호 수신 방법, 및 장치
WO2018177214A1 (zh) 随机接入物理资源的指示方法及装置、存储介质
WO2012071963A1 (zh) 数据传输方法、系统和设备
CN109309545A (zh) 一种指示时隙格式的方法、设备及系统
WO2014101788A1 (zh) 一种无线通信方法、系统及基站和用户设备
US20220400482A1 (en) Method and device for processing sidelink operation
CN107453852B (zh) 一种子帧类型通知、确定方法及装置
EP3139530B1 (en) Apparatus and method for determining transmission direction of secondary carrier
EP3595216B1 (en) Method and device for signal transmission and reception
WO2021147955A1 (zh) 资源配置方法、装置和设备
JP2022525727A (ja) 伝送帯域幅の決定方法、デバイス、及び記憶媒体
US11212795B2 (en) Method and apparatus for indicating and determining slot structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011828142

Country of ref document: EP