WO2012041211A1 - Oscillating power tool - Google Patents

Oscillating power tool Download PDF

Info

Publication number
WO2012041211A1
WO2012041211A1 PCT/CN2011/080193 CN2011080193W WO2012041211A1 WO 2012041211 A1 WO2012041211 A1 WO 2012041211A1 CN 2011080193 W CN2011080193 W CN 2011080193W WO 2012041211 A1 WO2012041211 A1 WO 2012041211A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shaft
power tool
output shaft
eccentric
Prior art date
Application number
PCT/CN2011/080193
Other languages
French (fr)
Chinese (zh)
Inventor
王勇
何明明
付涛
周昶
田角峰
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010511574.7A external-priority patent/CN102441873B/en
Priority claimed from CN201010511627.5A external-priority patent/CN102441874B/en
Priority claimed from CN2010105116330A external-priority patent/CN102441875A/en
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2012041211A1 publication Critical patent/WO2012041211A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B19/00Other reciprocating saws with power drive; Fret-saws
    • B27B19/006Other reciprocating saws with power drive; Fret-saws with oscillating saw blades; Hand saws with oscillating saw blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D51/00Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends
    • B23D51/16Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of drives or feed mechanisms for straight tools, e.g. saw blades, or bows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/04Portable grinding machines, e.g. hand-guided; Accessories therefor with oscillating grinding tools; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools

Definitions

  • the power switch unit includes a metal-oxide-semiconductor-field effect transistor MOS FE T (referred to as a MOS transistor) connected in series between the power source and the motor, and the MOS transistor is in an on-off state. Switch between to change the size of the duty cycle.
  • MOS FE T metal-oxide-semiconductor-field effect transistor
  • Fig. 13 is a schematic view showing the state in which the eccentric transmission structure shown in Fig. 12 is in the second working mode.
  • Figure 14 is a perspective exploded view of a portion of the eccentric transmission structure of Figure 12;
  • Figure 15 is a plan view of the eccentric transmission structure of Figure 12.
  • the drive member 7 is a ball bearing having an outer bore 7 1 and an inner bore 72, wherein the outer bore 7 1 has a spherical outer surface and the inner bore 72 is sleeved on the eccentric shaft 3 1 .
  • the axis of the eccentric shaft 3 1 does not coincide with the axis of the motor shaft 3 and is radially offset by a certain amount.
  • the fork 62 of the shift fork 6 is generally U-shaped and includes two oppositely disposed extension arms 62 1 .
  • the eccentric shaft 31 includes a flange portion 311 and a section 312 and a second section 313 respectively located at two sides of the flange portion 311.
  • the motor shaft 3 is axially opened at one end of the eccentric shaft 31 with an r-shaped receiving groove 32. . Both sides of the first segment 312 of the eccentric shaft 31 are cut away to form an r-square shape, and are slidably received in the receiving groove 32 of the motor shaft 3.
  • the drive member 7 is mounted on the second section 313 of the eccentric shaft 31, and the collar 83 of the adjustment device 8 is located between the drive member 7 and the flange portion 311 of the eccentric shaft 31.
  • the inner diameter of the collar 83 is much larger than the outer diameter of the second section 313.
  • the adjustment device 93 includes a push button 93 1 that can be manually pushed and a lever 932 that is perpendicular to the push button 93 1 .
  • the push button 93 1 is disposed outside the casing (not shown), the lever 932 is connected to the push button 93 1 , and the other end has a collar 93 3 that is sleeved on the eccentric shaft 97.
  • Push button 93 1 and case 1 can be matched and locked in several different working modes. When push button 93 1 is pushed, push button 93 1 will move lever 932 to move.
  • One end of the eccentric shaft 97 extends axially into the motor shaft 9 1 and is axially slidable relative to the motor shaft 9 1 .
  • the oscillating power tool of the present invention can drive the eccentric transmission mechanism to switch between different working modes through the adjusting device, so that the output shaft has different swinging angles, thereby meeting the requirements of different functional applications, so that The oscillating power tool has a larger field of application.
  • the invention overcomes the technical prejudice that the swinging angle of the swinging power tool is set to 3 or less, and by setting a large swing angle greater than 4°, and simultaneously adopting a swing frequency greater than 10,000 times of the spear minute, the vibration frequency is greatly improved.
  • the working efficiency of the oscillating power tool solves the technical problems that people have long been eager to solve.
  • a current sampling amplifying circuit 17 is connected in series between the motor 11 and the controller 12 for detecting the load current Ic when the motor 11 is operating.
  • the current sampling amplifying circuit 17 amplifies the detected load current Ic when the motor 11 is operating, and then transmits the value of the load current Ic to the controller 12 through the input port AN6.
  • the control system of the multifunctional machine 100 of the present invention by directly detecting the motor 11

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Sawing (AREA)

Abstract

An oscillating power tool comprises a casing, an electric motor arranged inside of the casing, a motor shaft and an output shaft driven by the electric motor, and an eccentric drive mechanism arranged between the motor shaft and the output shaft. The eccentric drive mechanism can be selectively switched between at least two working modes. Different working modes of the eccentric drive mechanism provide the output shaft with different oscillation angles, thereby enabling an oscillating power tool to satisfy different functional requirements and be applicable to different work environments.

Description

摆动动力 工具 技术领域  Swing power tool technology field
本发明涉及一种动力 工具, 具体是一种摆动动力工具。  The present invention relates to a power tool, and more particularly to a swing power tool.
背 景技术 Background technique
多功能机是业界常见的手持式摆动动力工具, 它的工作原理是输 出轴围 绕 自 身的轴线做摆动运动。 因此, 当 用 户在输出轴上安装有不 同 的工作头附件后, 可以实现多种不同 的操作功能。 常见的工作头附 件包括直锯片 、 圓锯片 、 三角 形磨砂盘、 刮刀等, 可以实现如锯、 切、 磨、 刮等工作需求。  The multi-function machine is a common hand-held oscillating power tool in the industry. It works by swinging the output shaft around its own axis. Therefore, when the user installs different head attachments on the output shaft, a variety of different operating functions can be implemented. Common head attachments include straight saw blades, circular saw blades, triangular sanding discs, scrapers, etc., which can be used for sawing, cutting, grinding, scraping, etc.
具体参考图 1 和图 2, 现有的一种摆动动力工具 100', 包括机壳 Γ、 自 机壳 Γ内延伸 出 的驱动轴 2 '、 设置在机壳 Γ内 的电机 1 Γ及由 电机 1 Γ驱动的主轴 4'。 主轴 4'一端连接有偏移其轴线设置的连接轴 41', 连接轴 4 Γ上安装有一具有球形外表面 8Γ的轴承 8'。 主轴 4'和 驱动轴 2 '之间设有拨叉 7 ', 拨叉 7 '的一端枢动连接在驱动轴 2 '上, 另 一端形成有一对位于轴承 8 '两侧的臂部 71'。 驱动轴 2 '与主轴 4 '的轴 线大致垂直, 轴承 8 '的外表面 8 Γ与拨叉 7 '的臂部 71 '的 内表面 紧密接 触。 主轴 4 '围 绕其轴线转动时, 通过轴承 8 '与拨叉 7 '的配合, 带动驱 动轴 2 '围 绕其 自 身轴线的在一定的摆动角 度内做旋转往复摆动运动, 进而带动安装在驱动轴 2 '的工具头 6 '往复摆动。  1 and 2, a conventional swinging power tool 100' includes a casing Γ, a drive shaft 2' extending from the casing 、, a motor 1 设置 disposed in the casing Γ, and a motor 1 Γ Driven spindle 4'. The main shaft 4' is connected at one end with a connecting shaft 41' offset from its axis, and the connecting shaft 4 is mounted with a bearing 8' having a spherical outer surface 8Γ. A shift fork 7' is provided between the main shaft 4' and the drive shaft 2', and one end of the shift fork 7' is pivotally coupled to the drive shaft 2', and the other end is formed with a pair of arms 71' on both sides of the bearing 8'. The drive shaft 2' is substantially perpendicular to the axis of the main shaft 4', and the outer surface 8' of the bearing 8' is in close contact with the inner surface of the arm portion 71' of the shift fork 7'. When the main shaft 4' rotates about its axis, the rotation of the drive shaft 2' around its own axis within a certain swing angle is caused by the cooperation of the bearing 8' and the shifting fork 7', thereby driving the drive shaft 2 to be mounted on the drive shaft 2 'The tool head 6' reciprocates.
上述摆动动力工具 100'在工作时, 轴承 8'在连接轴 41 '的带动下 绕主轴 4 '的轴线转动, 拨叉 7 '用 来与轴承 8 '接触的 区域一直没变, 因 此, 摆动动力工具 100'的驱动轴 2'只 能在一个固 定的摆动角 度范围 内 摆动。 而在使用过程中 , 用 户 通常希望摆动动力工具 100'可以输出不 同 的摆动角 度, 以满足更多 的功能应用 。 比如, 当使用摆动动力工具 100'安装直锯片 在不同硬度的木质材料上开槽时, 如果木质材料的硬 度较低时, 驱动轴 2 '输出 常用 的较小摆动 角度即可; 而木质材料的硬 度较高时, 较小的摆动角 度下, 木屑不容易排出 , 从而使直锯片 很容 易被卡住, 此时需要驱动轴 2'输出较大的摆动角 度。 显然, 摆动动力 工具 100 '已经不能满足这种需求。 为此, 确实有必要提供一种改进的摆动动力 工具, 以克服上述摆 动动力工具存在的不足。 发 明 内 容 When the oscillating power tool 100' is in operation, the bearing 8' is rotated about the axis of the main shaft 4' by the connecting shaft 41', and the area of the fork 7' for contacting the bearing 8' remains unchanged, therefore, the oscillating power The drive shaft 2' of the tool 100' can only oscillate over a fixed range of swing angles. In use, the user usually wants the swing power tool 100' to output different swing angles to meet more functional applications. For example, when the oscillating power tool 100' is used to mount a straight saw blade to groove on wood materials of different hardnesses, if the hardness of the wood material is low, the drive shaft 2' outputs a commonly used small swing angle; When the hardness is high, the wood chips are not easily discharged at a small swing angle, so that the straight saw blade is easily caught, and the drive shaft 2' is required to output a large swing angle. Obviously, the oscillating power tool 100' has been unable to meet this demand. For this reason, it is indeed necessary to provide an improved oscillating power tool to overcome the deficiencies of the above-described oscillating power tool. Summary of the invention
针对现有技术的不足, 本发明的 目 的在于提供一种具有不同摆动 角度的摆动动力工具。  In view of the deficiencies of the prior art, it is an object of the present invention to provide an oscillating power tool having different oscillating angles.
本发明解决其技术问 题所采用 的技术方案是 : 一种摆动动 力 工 具, 包括机壳、 设置在机壳 内 的电机、 由 电机驱动的偏心传动机构, 以及由所述偏心传动机构 带动并 围 绕其 自 身轴线做旋转往复摆动运 动的输出轴 , 其特征在于: 所述摆动动力 工具包括可驱动所述偏心传 动机构在不 同工作模式之间转换的调节装置, 以使所述输出轴具有不 同 的摆动角 度。  The technical solution adopted by the present invention to solve the technical problem thereof is: an oscillating power tool, comprising: a casing, a motor disposed in the casing, an eccentric transmission mechanism driven by the motor, and the eccentric transmission mechanism driving and surrounding the eccentric transmission mechanism An output shaft whose own axis performs a rotary reciprocating oscillating motion, wherein: the oscillating power tool includes an adjusting device that can drive the eccentric transmission mechanism to switch between different operating modes, so that the output shaft has different swing angles .
优选地 , 所述偏心传动机构包括拨叉和连接在所述电机的电机轴 上的驱动件 , 所述拨叉的一二 连接在所述输出轴上, 所述拨叉的另一 端与所述驱动件相配合, 所述驱动件可在所述调节装置的带动下与所 述拨叉的不 同位置配合。  Preferably, the eccentric transmission mechanism includes a shift fork and a driving member connected to a motor shaft of the motor, and one or two of the shifting forks are coupled to the output shaft, and the other end of the shifting fork is The driving member is matched, and the driving member can be engaged with different positions of the fork under the driving of the adjusting device.
优选地 , 所述拨叉具有与所述驱动件配合的配合部, 所述配合部 沿所述电机轴的轴线方向延伸 , 所述调节装置带动所述驱动件沿所述 电机轴的轴线相对所述拨叉的配合部滑动  Preferably, the shifting fork has a mating portion that cooperates with the driving member, the engaging portion extends along an axial direction of the motor shaft, and the adjusting device drives the driving member to face the axis of the motor shaft Sliding of the mating portion of the fork
优选地 , 所述偏心传动机构包括拨叉及间隔连接在所述电机的电 机轴上的第一驱动件和第二驱动件, 所述拨叉上设置有可分別与所述 第一驱动件和所述第二驱动件配合的第一配合部和第二配合部 所述 偏心传动机构具有第一工作模式和第二工作模式, 当所述偏心传动机 构处于第 ―工作模式时, 所述第一驱动件与所述拨叉的第一配合部相 配合; 在所述偏心传动机构处于第二工作模式时, 所述第二驱动件与 所述拨叉的第二配合部相配合  Preferably, the eccentric transmission mechanism includes a shift fork and a first driving member and a second driving member spaced apart from each other on a motor shaft of the motor, and the shifting fork is provided with a first driving member and The eccentric transmission mechanism of the first engaging portion and the second engaging portion of the second driving member has a first working mode and a second working mode, and when the eccentric transmission mechanism is in the first working mode, the first The driving member cooperates with the first mating portion of the shift fork; when the eccentric transmission mechanism is in the second working mode, the second driving member cooperates with the second mating portion of the shift fork
优选地 , 所述电机轴上连接有偏心轴, 所述驱动件安装在所述偏 心轴上, 所述偏心轴可相对所述电机轴轴向滑动。  Preferably, an eccentric shaft is connected to the motor shaft, and the driving member is mounted on the eccentric shaft, and the eccentric shaft is axially slidable relative to the motor shaft.
优选地 , 所述调节装置包括推钮和与所述推钮连接的拨杆 通过 所述推钮可驱动所述拨杆带动所述驱动件相对所述拨叉移动。  Preferably, the adjusting device comprises a push button and a lever connected to the push button. The push button can drive the lever to drive the driving member to move relative to the fork.
优选地 , 所述摆动动力工具设有在所述输出轴的摆动角度变化时 调节所述输出轴的摆动频率的调速装置 , 所述调速装置包括档位调节 电路和控制 器, 当所述输出轴的摆动角度改变时 所述控制器通过所 述档位调节 电路调节所述电机的转速 Preferably, the oscillating power tool is provided with a speed adjusting device that adjusts a swing frequency of the output shaft when a swing angle of the output shaft changes, and the speed adjusting device includes gear position adjustment a circuit and a controller, wherein the controller adjusts a speed of the motor through the gear position adjusting circuit when a swing angle of the output shaft changes
优选地, 所述摆动动力工具包括电源 所述电机具有至少一个预 设转速 , 所述摆动动力工具设置有使所述电机在所述预设转速下恒定 转动的稳速控制 系 统 , 所述稳速控制 系 统包括控制器和用 于连接所述 电源和所述电机的动力 开关单元, 所述控制 测所述电机的工作电 压和 负 载电流, 并根据所述电机的 负 载电流计算达到预设转速所需的 目 标电压, 调整所述电机的工作电压至所述 目 标电压, 使所述电机在 预设转速下恒定转动  Preferably, the oscillating power tool includes a power source, the motor has at least one preset rotation speed, and the oscillating power tool is provided with a steady speed control system for constantly rotating the motor at the preset rotation speed, the steady speed The control system includes a controller and a power switch unit for connecting the power source and the motor, the control measures an operating voltage and a load current of the motor, and calculates a required speed to reach a preset speed according to a load current of the motor a target voltage, adjusting an operating voltage of the motor to the target voltage, causing the motor to rotate constantly at a preset speed
优选地, 所述电机的预设转速在每分钟 1 00 00 转以上 。  Preferably, the preset speed of the motor is above 100 rpm.
本发明解决其技术问题所采用 的另一技术方案是: 一种摆动动力 工具, 包括机壳、 设置在机壳 内 的电机、 由 电机驱动的偏心传动机构, 以 及由所述偏心传动机构 带动并 围 绕其 自 身轴线做往复摆动运动的 输出轴, 其中 , 所述偏心传动机构具有至少在两个工作模式, 所述偏 心传动机构位于不 同 的工作模式时, 所述输出 轴具有不 同 的摆动 角 度。  Another technical solution adopted by the present invention to solve the technical problem thereof is: an oscillating power tool comprising a casing, a motor disposed in the casing, an eccentric transmission mechanism driven by the motor, and driven by the eccentric transmission mechanism An output shaft that reciprocates an oscillating motion about its own axis, wherein the eccentric transmission has at least two operating modes, the output shaft having different oscillating angles when the eccentric transmission is in different operating modes.
本发明的有益效果是: 本发明的摆动动力工具通过设置可在不同 工作模式间转换的偏心传动机构, 使输出轴可在不同 的摆动 角度内摆 动, 从而可满足不同 的功能需求, 应用于不同 的工作场合。  The utility model has the beneficial effects that: the oscillating power tool of the invention can oscillate the output shaft in different swing angles by setting an eccentric transmission mechanism that can be switched between different working modes, thereby meeting different functional requirements and being applied to different Work place.
本发明还提供一种具有较高工作效率的摆动动力工具。  The invention also provides a swaying power tool with higher working efficiency.
本发明解决其技术问 题所采用 的技术方案是: 一种摆动动力 工 具, 包括机壳、 设置在机壳 内 的电机、 由 电机驱动的偏心传动机构, 以及由所述偏心传动机构 带动并 围 绕其 自 身轴线做往复摆动运动的 输出轴。 其中 , 所述输出轴的摆动角度大于 4 °  The technical solution adopted by the present invention to solve the technical problem thereof is: an oscillating power tool, comprising: a casing, a motor disposed in the casing, an eccentric transmission mechanism driven by the motor, and the eccentric transmission mechanism driving and surrounding the eccentric transmission mechanism The output shaft of the reciprocating oscillating motion of its own axis. Wherein the swing angle of the output shaft is greater than 4 °
优选地, 所述输出轴的摆动频率大于每分钟 1 0000 次。  Preferably, the output shaft has a swing frequency greater than 1 0000 per minute.
优选地, 所述偏心传动机构可选择地至少在第一工作模式和第二 工作模式之间转换, 所述偏心传动机构位于不同 的工作模式时, 所述 输出轴具有不同 的摆动角度, 所述摆动动力工具还包括可驱动所述偏 心传动机构在第一工作模式和第二工作模式之间转换的调节装置。  Preferably, the eccentric transmission mechanism is selectively switchable between at least a first working mode and a second working mode, and when the eccentric transmission mechanism is in different working modes, the output shaft has different swinging angles, The oscillating power tool also includes adjustment means that can drive the eccentric transmission to switch between the first mode of operation and the second mode of operation.
优选地, 所述偏心传动机构包括拨叉和连接在所述电机轴上的偏 心件, 所述拨叉的一端连接在所述输出轴上, 所述拨叉的另 一端与所 述偏心件相配合, 所述偏心件可在所述调节装置的带动下与所述拨叉 的不同位置 配合。 Preferably, the eccentric transmission mechanism includes a shift fork and an eccentric member connected to the motor shaft, one end of the shift fork is connected to the output shaft, and the other end of the shift fork is The eccentric members are matched, and the eccentric member can be engaged with different positions of the fork under the driving of the adjusting device.
优选地 , 所述拨叉具有与所述偏心件配合的配合部 , 所述配合部 沿所述电机轴的轴线方向延伸, 所述调节装置带动所述偏心件沿所述 电机轴的轴线相对所述拨叉的配合部滑动。  Preferably, the shifting fork has a mating portion that cooperates with the eccentric member, the mating portion extends along an axial direction of the motor shaft, and the adjusting device drives the eccentric member to be opposite to the axis of the motor shaft. The mating portion of the shift fork slides.
优选地 , 所述偏心传动机构包括拨叉及间隔连接在所述电机的电 机轴上的第一偏心件和第二偏心件, 所述拨叉上设置有可分別与所述 第一偏心件和所述第二偏心件配合的第一配合部和第二酉己合部 所述 偏心传动机构具有第 ―工作模式和第二工作模式 , 当所述偏心传动机 构处于第 ―工作模式时, 所述第一偏心件与所述拨叉的矛 配合部相 配合; 在所述偏心传动机构处于第二工作模式时 , 所述矛 ―偏心件与 所述拨叉的第二配合部相配合。  Preferably, the eccentric transmission mechanism includes a shift fork and a first eccentric member and a second eccentric member spaced apart from each other on a motor shaft of the motor, and the shift fork is provided with a first eccentric member and The first eccentric portion and the second eccentric portion of the second eccentric member cooperate with the eccentric transmission mechanism having a first working mode and a second working mode, when the eccentric transmission mechanism is in the first working mode, The first eccentric member cooperates with the lance engaging portion of the shift fork; and when the eccentric transmission mechanism is in the second working mode, the lance-eccentric member cooperates with the second engaging portion of the shift fork.
优选地 , 所述摆动动力工具设有在所述输出轴的摆动角度变化时 可调节所述输出轴的摆动频率的频率匹配装置。  Preferably, the oscillating power tool is provided with frequency matching means for adjusting the oscillating frequency of the output shaft when the swing angle of the output shaft changes.
优选地 , 所述频率匹配装置包括档位调节电路和控制器 当所述 输出轴的摆动角度改变时 , 所述控制器通过所述档位调节电路调节所 述电机的转速。  Preferably, the frequency matching means includes a gear position adjusting circuit and a controller, and the controller adjusts the rotational speed of the motor through the gear position adjusting circuit when the swing angle of the output shaft is changed.
优选地 , 所述调节装置包括设置在所述机壳夕卜部的推钮和与所述 推钮连接的拨杆, 通过所述推钮可驱动所述拨杆带动所述偏心件相对 所述拨叉移动  Preferably, the adjusting device comprises a push button disposed at the outer portion of the casing and a lever connected to the push button, and the push button can drive the lever to drive the eccentric member relative to the dial Fork movement
优选地 , 所述电机具有至少一个预设转速, 所述摆动动力 工具设 置有使所述电机在所述预设转速下恒定转动的稳速控制 系 统  Preferably, the motor has at least one preset rotational speed, and the oscillating power tool is provided with a steady speed control system for constantly rotating the motor at the preset rotational speed.
优选地 , 所述稳速控制 系 统包括包括: 电源 ; 控制器, 其监测所 述电机的工作电压和 负 载电流, 并根据所述电机的 负 载电流计算出所 述电机的 标电压, 然后根据所述工作电压和所述 目 标电压的差值来 指定所述工作电压的 占 空比; 以及动力 开关单元 , 其连接所述电源和 所述电机 所述动力 开关单元将所述控制 器指定的所述工作电压的 占 空 比 加到所述电机上, 使所述电机的工作 电压调整至所述 标电 压。  Preferably, the steady speed control system includes: a power supply; a controller that monitors an operating voltage and a load current of the motor, and calculates a standard voltage of the motor according to a load current of the motor, and then according to the a difference between the operating voltage and the target voltage to specify a duty cycle of the operating voltage; and a power switching unit that connects the power source and the motor to the power switch unit to specify the operation of the controller A duty cycle of the voltage is applied to the motor to adjust the operating voltage of the motor to the target voltage.
优选地, 所述电机的预设转速在每分钟 1 0000 转以上 。  Preferably, the preset speed of the motor is more than 1 0000 revolutions per minute.
优选地, 所述机壳 内设置有用 于减少所述摆动动力工具工作时所 产生震动的弹性件。 Preferably, the casing is provided with a mechanism for reducing the operation of the oscillating power tool A vibrating elastic member.
优选地, 所述机壳包括头壳, 所述头壳的一端沿所述输出轴的方 向延伸有侧壁 , 所述弹性件径向地连接在所述输 出 轴和所述侧壁之 间 。  Preferably, the casing includes a head casing, one end of the head casing extending a side wall in a direction of the output shaft, and the elastic member is radially connected between the output shaft and the side wall.
优选地, 所述机壳包括头壳 , 所述头壳 内设有垂直于所述输出轴 的压板, 所述输出轴的末端设有法兰部 所述弹性件轴向套设在所述 输出轴上且两端分別抵持所述法兰部和所述压板。  Preferably, the casing includes a head casing, the head casing is provided with a pressure plate perpendicular to the output shaft, and an end of the output shaft is provided with a flange portion, and the elastic member is axially sleeved on the output. The flange portion and the pressure plate are respectively abutted on the shaft and at both ends.
优选地, 所述偏心传动机构包括拨叉及驱动拨叉往复摆动的偏心 件 所述拨叉包括与所述输出轴连接的第 及与所述偏心件配合的  Preferably, the eccentric transmission mechanism includes an eccentric portion of the fork and the driving fork reciprocatingly swinging, and the shifting fork includes a first portion connected to the output shaft and cooperates with the eccentric member
>  >
所述弟 ―  The younger ―
第二端, ¾包括两相对设置的外壁, 所述拨叉的外壁与所述 头冗之间, 在所述拨叉的摆动方向上分別设置有所述弹性件。 The second end, 3⁄4, includes two oppositely disposed outer walls, between the outer wall of the fork and the head, and the elastic members are respectively disposed in the swinging direction of the fork.
优选地, 所述输出轴上配接有支架 所述支架与所述壳体之间设 有弹性件。  Preferably, the output shaft is coupled with a bracket, and an elastic member is disposed between the bracket and the housing.
优选地, 所述弹性件分为 第 弹性件和第二弹性件, 所述支架具 有与壳体相对的第一侧壁及第二侧壁, 所述第 弹性件和第二弹性件 分別设置在所述第一侧壁、 第二侧壁与所述壳体之间, 所述第一弹性 件和第二弹性件朝向相反的方向挤压所述支架  Preferably, the elastic member is divided into a first elastic member and a second elastic member, and the bracket has a first side wall and a second side wall opposite to the housing, and the first elastic member and the second elastic member are respectively disposed at Between the first side wall, the second side wall and the housing, the first elastic member and the second elastic member press the bracket in opposite directions
优选地, 所述输出轴的摆动 角度最小值为 5 0 6 ° 7 ° 8 ° 9 或 1 0 ° 中 的一种。 Preferably, the minimum swing angle of the output shaft is one of 5 0 6 ° 7 ° 8 ° 9 or 10 °.
优选地, 所述输出轴的摆动角度大于 1 0 °  Preferably, the swing angle of the output shaft is greater than 10 °
优选地, 所述电机的输入功率大于 5 00 W  Preferably, the input power of the motor is greater than 500 W
优选地, 所述机壳上设置有操作手柄。  Preferably, the casing is provided with an operating handle.
优选地, 所述偏心传动机构包括拨叉和驱动所述拨叉旋转往复摆 动的偏心件, 所述偏心件为轴承且其外径和内径的比值在 1 9/ 7 以上。  Preferably, the eccentric transmission mechanism includes a shift fork and an eccentric member that drives the shifting fork to rotate and reciprocate, the eccentric member being a bearing and having a ratio of an outer diameter to an inner diameter of more than 1 9/7.
本发明的有益效果是: 本发明的摆动动力工具通过增大输出轴的 摆动角度, 提高 了摆动动力 工具的工作效率, 并使摆动动力 工具可扩 展更多 的应用功能。  The beneficial effects of the present invention are: The oscillating power tool of the present invention increases the working efficiency of the oscillating power tool by increasing the swing angle of the output shaft, and allows the oscillating power tool to expand more application functions.
本发明另 外提供一种动力 工具的稳速控制 系 统, 可使该动力工具 的电机在近似恒定的预设转速下转动。  The present invention further provides a steady speed control system for a power tool that allows the motor of the power tool to rotate at an approximately constant preset speed.
为实现上述 目 的, 本发明所采用 的技术方案如下: 一种用 于动力 工具的稳速控制 系 统, 所述动力 工具包括电源和电机, 所述电机具有 至少一个预设转速。 该稳速控制 包括控制器 以及连接所述电源和 所述电机的动力 开关单元, 其中 述控制器监测所述电机的工作电 压和 负 载电流, 并根据所述电机的 载电流计算达到预设转速所需的 目 标电压, 调整所述电机的工作电压至所述 目 标电压, 使所述电机在 预设转速下恒定转动。 In order to achieve the above object, the technical solution adopted by the present invention is as follows: A steady speed control system for a power tool, the power tool including a power source and a motor, the motor having At least one preset speed. The steady speed control includes a controller and a power switch unit that connects the power source and the motor, wherein the controller monitors an operating voltage and a load current of the motor, and calculates a preset speed according to a load current of the motor. The required target voltage is adjusted to the target voltage of the motor to cause the motor to rotate constantly at a preset speed.
优选地, 所述控制器根据所述工作电压和 目 标电压的差值来指定 相应的 占 空 比, 并将所述占 空比施加给所述动力 开关单元以调节所述 电机的工作电压到 目 标电压。  Preferably, the controller specifies a corresponding duty ratio according to a difference between the working voltage and the target voltage, and applies the duty ratio to the power switch unit to adjust an operating voltage of the motor to a target. Voltage.
优选地, 所述电机的工作电压通过差分放大电路检测并输入到所 述控制器  Preferably, the operating voltage of the motor is detected by a differential amplifying circuit and input to the controller
优选地, 所述电机的 负 载电流通过电流采样放大电路检测并输入 到所述控制 器。  Preferably, the load current of the motor is detected by a current sampling amplifying circuit and input to the controller.
优选地, 所述动力 开关单元包括串联连接在所述电源和所述电机 之间的金属 -氧化层-半导体 -场效晶体管 M O S FE T (简称为 M O S 管), 所述 M O S 管在通断状态之间切换, 以改变所述占 空比的大小。  Preferably, the power switch unit includes a metal-oxide-semiconductor-field effect transistor MOS FE T (referred to as a MOS transistor) connected in series between the power source and the motor, and the MOS transistor is in an on-off state. Switch between to change the size of the duty cycle.
本发明的另 一 目 的是提供一种摆动动力工具, 该摆动动力 工具可 在近似恒定的预设转速下转动。  Another object of the present invention is to provide an oscillating power tool that is rotatable at an approximately constant preset speed.
为实现上述 目 的, 本发明所采用 的技术方案如下:一种动力工具, 包括 : 电源 ; 电机, 具有电机轴, 该电机具有至少一个预设转速; 输 出轴 用 于安装工作头 ; 偏心传动机构, 设置于所述电机轴和所述输 出轴之间 将所述电机轴的转动转换为所述输出轴的旋转往复摆动 ; 控制器 , 以及动力 开关单元, 其连接所述电源和所述电机。 其中 , 所 述控制器监测所述电机的工作电压和 负 载电流, 并根据所述电机的 负 载电流计算达到预设转速所需的 目 标电压, 调整所述电机的工作电压 至所述 标电压, 使所述电机在预设转速下恒定转动。  In order to achieve the above object, the technical solution adopted by the present invention is as follows: a power tool comprising: a power source; a motor having a motor shaft, the motor having at least one preset speed; an output shaft for mounting the working head; an eccentric transmission mechanism, And rotating between the motor shaft and the output shaft to convert the rotation of the motor shaft into a rotary reciprocating swing of the output shaft; a controller, and a power switch unit that connects the power source and the motor. The controller monitors an operating voltage and a load current of the motor, and calculates a target voltage required to reach a preset speed according to a load current of the motor, and adjusts an operating voltage of the motor to the standard voltage, so that The motor rotates constantly at a preset speed.
优选地, 所述控制器根据所述工作电压和 目 标电压的差值来指定 相应的 占 空 比, 并将所述占 空比施加给所述动力 开关单元以调节所述 电机的工作电压到 目 标电压。  Preferably, the controller specifies a corresponding duty ratio according to a difference between the working voltage and the target voltage, and applies the duty ratio to the power switch unit to adjust an operating voltage of the motor to a target. Voltage.
优选地 , 所述动力 开关单元包括串联连接在所述电源和所述电机 之间的金属 -氧化层-半导体 -场效晶体管 M O S FE T (简称为 M O S 管), 所述 M O S 管在通断状态之间切换, 以改变所述占 空比的大小。 优选地, 所述摆动动力工具包括可驱动所述偏心传动机构在不同 工作模式之间转换的调节装置, 以使所述输出 轴具有不 同 的摆动 角 度。 Preferably, the power switch unit includes a metal-oxide-semiconductor-field effect transistor MOS FE T (referred to as a MOS transistor) connected in series between the power source and the motor, and the MOS transistor is in an on-off state. Switch between to change the size of the duty cycle. Preferably, the oscillating power tool includes adjustment means that can drive the eccentric transmission to switch between different operating modes such that the output shafts have different oscillating angles.
优选地, 所述摆动动力工具设有在所述输出轴的摆动角度变化时 调节所述输出轴的摆动频率的调速装置, 所述调速装置包括档位调节 电路和控制 器, 当所述输出轴的摆动角度改变时, 所述控制器通过所 述档位调节 电路调节所述电机的转速。  Preferably, the oscillating power tool is provided with a speed adjusting device that adjusts a swing frequency of the output shaft when a swing angle of the output shaft changes, the speed adjusting device includes a gear position adjusting circuit and a controller, when When the swing angle of the output shaft changes, the controller adjusts the rotational speed of the motor through the gear position adjustment circuit.
与现有技术相比, 本发明的有益效果是: 通过直接检测电机两端 的工作电压及负 载电流, 不需设置速度传感器, 就可使动力 工具的电 机保持近似恒定的转速, 结构简 单, 性能较稳定。 附 图 说 明  Compared with the prior art, the beneficial effects of the present invention are: By directly detecting the working voltage and the load current at both ends of the motor, the motor of the power tool can be maintained at an approximately constant rotational speed without setting a speed sensor, and the structure is simple and the performance is better. stable. Attachment
图 1 为现有的一种摆动动力工具的剖面示意图 。  Figure 1 is a schematic cross-sectional view of a conventional oscillating power tool.
图 2 为 图 1 所示摆动动力工具的局部结构示意图 。  Figure 2 is a partial structural view of the oscillating power tool shown in Figure 1.
图 3 为本发明摆动动力工具第一实施方式的结构示意图 。  3 is a schematic structural view of a first embodiment of a swing power tool according to the present invention.
图 4 为 图 3所示摆动动力 工具的偏心传动结构位于第一工作模式 的状态示意图 。  Fig. 4 is a schematic view showing the state in which the eccentric transmission structure of the oscillating power tool shown in Fig. 3 is in the first working mode.
图 5 为 图 3 所示摆动动力工具的使用状态参考图 , 此时输出轴及 锯片 沿着逆时针方向摆动。  Figure 5 is a reference diagram of the state of use of the oscillating power tool shown in Figure 3, in which the output shaft and the saw blade are swung counterclockwise.
图 6 为 图 3 所示摆动动力工具的使用状态参考图 , 此时输出轴及 锯片 及锯片 位于初始位置。  Figure 6 is a reference view of the state of use of the oscillating power tool shown in Figure 3, in which the output shaft and the saw blade and the saw blade are in the initial position.
图 7 为 图 3 所示摆动动力工具的使用状态参考图 , 此时输出轴及 锯片 沿着顺时针方向摆动。  Figure 7 is a reference diagram of the state of use of the oscillating power tool shown in Figure 3, in which the output shaft and the saw blade are swung clockwise.
图 8 为 图 3所示摆动动力 工具的偏心传动结构位于第二工作模式 的状态示意图 。  Fig. 8 is a schematic view showing the state in which the eccentric transmission structure of the oscillating power tool shown in Fig. 3 is in the second working mode.
图 9 为 图 3 所示摆动动力工具的部分元件立体分解示意图 。  Figure 9 is a perspective exploded view of some components of the oscillating power tool shown in Figure 3.
图 1 0 为 图 4 所示偏心传动结构的俯视图 。  Figure 10 is a top view of the eccentric transmission structure shown in Figure 4.
图 1 1 为 图 8 所示偏心传动结构的俯视图 。  Figure 1 1 is a top view of the eccentric transmission structure shown in Figure 8.
图 1 2 为本发明 第二实施方式中偏心传动结构位于第一工作模式 的状态示意图 。  Figure 1 2 is a schematic view showing the state in which the eccentric transmission structure is in the first working mode in the second embodiment of the present invention.
图 1 3 为 图 1 2 所示偏心传动结构位于第二工作模式的状态示意 图 。 图 14 为 图 12 所偏心传动结构的部分元件立体分解示意图 图 15 为 图 12 所示偏心传动结构的俯视图 。 Fig. 13 is a schematic view showing the state in which the eccentric transmission structure shown in Fig. 12 is in the second working mode. Figure 14 is a perspective exploded view of a portion of the eccentric transmission structure of Figure 12; Figure 15 is a plan view of the eccentric transmission structure of Figure 12.
图 16 为 图 13 所示偏心传动结构的俯视图 。  Figure 16 is a top view of the eccentric transmission structure shown in Figure 13.
图 17 为 本发明动力工具的稳速控制 系 统的原理框图 。  Figure 17 is a block diagram showing the steady-state control system of the power tool of the present invention.
图 18 为 图 17 所示稳速控制 系 统的电路图 。  Figure 18 is a circuit diagram of the steady-speed control system shown in Figure 17.
其中 , 相关元件对应编号如下:  Among them, the corresponding component corresponding number is as follows:
100 '、 摆动动力工具 1'、 机壳 11'、 , 电机  100 ', oscillating power tool 1', housing 11', , motor
2'、 驱动轴 4'、 主轴 41'、 . 连接轴  2', drive shaft 4', spindle 41', . connecting shaft
6'、 工具头 T、 拨叉 71'、 . 臂部  6', tool head T, fork 71', . arm
8'、 轴承 8 、 夕卜表面 100 、 多功能机 8', bearing 8, 夕卜 surface 100, multi-function machine
1、 机壳 2、 输出轴 3、 电机轴 1, the casing 2, the output shaft 3, the motor shaft
31、 偏心轴 311 、 法兰部 312 、 第一段  31. Eccentric shaft 311, flange part 312, first paragraph
313 、 第二段 32、 收容槽 4、 偏心传动机构 313, second paragraph 32, receiving trough 4, eccentric transmission mechanism
5、 锯片 6、 拨叉 61、 套管 5, saw blade 6, fork fork 61, casing
62、 叉状部 621 、 延伸臂 622 、 配合部  62, fork 621, extension arm 622, mating portion
623 、 内侧壁 7、 驱动件 71、 外圏  623, inner side wall 7, drive member 71, outer casing
72、 内 圏 8、 调节装置 81、 拨杆  72, inner 圏 8, adjusting device 81, lever
82、 推钮 83、 套环 91、 电机轴  82, push button 83, collar 91, motor shaft
911 收容槽 92、 输出轴 93、 调节装置 911 receiving slot 92, output shaft 93, adjusting device
931 、 推钮 932 、 拨杆 933 、 套环 931, push button 932, lever 933, collar
94、 拨叉 941 、 第一配合部 942 、 第二配合部 94, fork 941, first mating part 942, second mating part
943 、 第一内侧壁 944 、 第二内侧壁 95、 第一驱动件943, first inner side wall 944, second inner side wall 95, first driving member
96、 第二驱动件 97、 偏心轴 971 、 法兰部 96, the second drive member 97, the eccentric shaft 971, the flange portion
972 、 第一段 973 、 第二段 974 、 第三段  972, first paragraph 973, second paragraph 974, third paragraph
10、 电源 101 、 电池温度检测电路 102 、 电池电压检测 10, power supply 101, battery temperature detection circuit 102, battery voltage detection
11、 电机 111 、 续流管 12、 控制 器 11, motor 111, freewheeling tube 12, controller
13、 动力 开关单元 131 、 MOS 管 132 、 MOSFET 驱动 13. Power switch unit 131, MOS transistor 132, MOSFET drive
14、 主开关 15、 降压电路 16、 差分放大电路14, the main switch 15, the step-down circuit 16, differential amplifier circuit
17、 电流采样放大电路 18、 档位调节电路 19、 角度传感器 具体实 施 方 式 17, current sampling amplifier circuit 18, gear position adjustment circuit 19, angle sensor specific implementation
下面结合图 3 至图 8, 首先对本发明的第一实施方式进行说明。 请参阅 图 3 至图 4, 一种摆动动力工具, 尤其是一种手持式的摆 动动力工具, 即多功能机 1 00, 包括机壳 1 和 自 机壳 1 中竖直延伸延 伸的输出轴 2。 其中 , 在机壳 1 中设置有电机 (未图示)、 由 电机驱动 旋转且水平方向设置的电机轴 3 及设置在电机轴 3 和输出轴 2之间的 偏心传动机构 4。电机轴 3 大致垂直于输出轴 2,通过偏心传动机构 4, 将电机轴 3 的转动转换为输出轴 2 的旋转往复摆动。 输出轴 2 的一端 与偏心传动机构 4 配接, 另 一端安装有工作头, 在本实施方式中 为工 作头具体为锯片 5, 输出轴 2 可带动锯片 5 —起围 绕其 自 身轴线 X 旋 转往复摆动。 Next, a first embodiment of the present invention will be described first with reference to Figs. 3 to 8. Referring to FIG. 3 to FIG. 4, an oscillating power tool, in particular, a hand-held oscillating power tool, that is, a multi-function machine 100, includes a casing 1 and an output shaft 2 extending vertically from the casing 1 . Among them, a motor (not shown), a motor shaft 3 that is driven by the motor and horizontally disposed, and an eccentric transmission mechanism 4 provided between the motor shaft 3 and the output shaft 2 are disposed in the casing 1. The motor shaft 3 is substantially perpendicular to the output shaft 2, and the rotation of the motor shaft 3 is converted into a reciprocating swing of the output shaft 2 by the eccentric transmission mechanism 4. One end of the output shaft 2 is coupled to the eccentric transmission mechanism 4, and the other end is mounted with a working head. In the present embodiment, the working head is specifically a saw blade 5, and the output shaft 2 can drive the saw blade 5 to rotate around its own axis X. Reciprocating swing.
参照图 4, 偏心传动机构 4 包括拨叉 6 和连接在电机轴 3 上的驱 动件 7, 电机轴 3 朝向拨叉 6 的一端安装有偏心轴 3 1, 驱动件 7 安装 在偏心轴 3 1 上。 拨叉 6 的一端连接在输出轴 2 的顶端, 其另 一端与 驱动件 7 相配合。 拨叉 6 包括套设在输出轴 2 上的套管 6 1 及 自 套管 6 1 一侧朝向电机轴 3 水平延伸的叉状部 62。 驱动件 7 为滚珠轴承, 其具有外圏 7 1 和内 圏 72, 其中 , 外圏 7 1 具有球形外表面, 内 圏 72 套设在偏心轴 3 1 上。 偏心轴 3 1 的轴线与 电机轴 3 的轴线不重合, 且 径向偏移一定的 间踞。 拨叉 6 的叉状部 62 大致呈 U 型, 其包括两个 相对设置的延伸臂 62 1。 这两个延伸臂 62 1 末端分別设有包覆在驱动 件 7 的外圏 7 1 的两侧的配合部 622,该配合部 622 具有大致呈平面的 内侧壁 623, 内侧壁 623 与外圏 7 1 的外表面 紧密地滑动接触。  Referring to Figure 4, the eccentric transmission mechanism 4 includes a shift fork 6 and a drive member 7 coupled to the motor shaft 3, and the motor shaft 3 is mounted with an eccentric shaft 3 toward one end of the shift fork 6, and the drive member 7 is mounted on the eccentric shaft 3 1 . One end of the shift fork 6 is attached to the top end of the output shaft 2, and the other end is engaged with the driving member 7. The shift fork 6 includes a sleeve 6 1 sleeved on the output shaft 2 and a fork 62 extending horizontally from the side of the sleeve 6 1 toward the motor shaft 3. The drive member 7 is a ball bearing having an outer bore 7 1 and an inner bore 72, wherein the outer bore 7 1 has a spherical outer surface and the inner bore 72 is sleeved on the eccentric shaft 3 1 . The axis of the eccentric shaft 3 1 does not coincide with the axis of the motor shaft 3 and is radially offset by a certain amount. The fork 62 of the shift fork 6 is generally U-shaped and includes two oppositely disposed extension arms 62 1 . The ends of the two extending arms 62 1 are respectively provided with engaging portions 622 covering the two sides of the outer cymbal 7 1 of the driving member 7, the engaging portions 622 having substantially planar inner side walls 623, inner side walls 623 and outer cymbals 7 The outer surface of 1 is in tight sliding contact.
当 电机驱动电机轴 3 转动时, 偏心轴 3 1 则在电机轴 3 的带动下 相对电机轴 3 的轴线偏心旋转, 进而 带动驱动件 7 相对电机轴 3 的轴 线偏心旋转。 驱动件 7偏心旋转时, 通过驱动件 7 的外圏 7 1 与拨叉 6 的配合部 622 的配合, 带动拨叉 6 产生围 绕输出轴 2 的轴线 X旋转往 复摆动, 进一步地带动输出轴 2 围 绕其 自 身轴线 X做旋转往复摆动运 动。  When the motor drive motor shaft 3 rotates, the eccentric shaft 3 1 rotates eccentrically with respect to the axis of the motor shaft 3 under the driving of the motor shaft 3, thereby driving the driving member 7 to rotate eccentrically with respect to the axis of the motor shaft 3. When the driving member 7 is eccentrically rotated, the outer fork 7 1 of the driving member 7 cooperates with the engaging portion 622 of the shifting fork 6 to drive the shifting fork 6 to generate a reciprocating swing about the axis X of the output shaft 2, further driving the output shaft 2 to surround Its own axis X makes a rotary reciprocating oscillating motion.
下面请参考图 5 至图 7, 详细介绍输出轴 2 带动锯片 5 往复旋转 摆动的过程。 本实施方式中 , 锯片 5 水平安装在输出轴 2 上, 在静止 时, 锯片 5 的纵向 中心线平行于上述电机轴 3 的轴线。 在工作时, 输 出轴 2会带动锯片 5 在一定的摆动角度 α 内旋转往复摆动。 如图 5 所 示, 锯片 5 相对电机轴 3 的轴线逆时针最大的摆动角度是 θ °。 当锯片 5 逆时针摆动到最大的 角度 Θ。后 , 开始顺时针回复摆动, 如图 6 所示, 锯片 5 会回复摆动至其中心线与 电机轴 3 的轴线平行的位置。 如图 7 所示, 锯片 5 继续顺时针摆动, 直到摆动至顺时针最大的 角度 Θ。后 , 开始逆时针回复摆动。 周 而 复始, 输出轴 2 带动锯片 5 旋转往复摆动, 从而实现切割、 锯等功能。 由上可知, 输出轴 2在整个摆动行程中 的 摆动角度 α等于 2Θ°。 Referring to FIG. 5 to FIG. 7 , the process of the output shaft 2 driving the reciprocating rotation of the saw blade 5 will be described in detail. In the present embodiment, the saw blade 5 is horizontally mounted on the output shaft 2, and the longitudinal center line of the saw blade 5 is parallel to the axis of the motor shaft 3 when stationary. In operation, the output shaft 2 drives the saw blade 5 to rotate back and forth within a certain swing angle α. As shown in Fig. 5, the maximum swing angle of the saw blade 5 counterclockwise with respect to the axis of the motor shaft 3 is θ ° . When the saw blade 5 Swing counterclockwise to the maximum angle Θ. After that, the clockwise return swing is started. As shown in Fig. 6, the saw blade 5 will swing back to a position where its center line is parallel to the axis of the motor shaft 3. As shown in Figure 7, the blade 5 continues to swing clockwise until it swings to the largest angle 顺 clockwise. After that, start to counterclockwise to resume the swing. Repeatedly, the output shaft 2 drives the saw blade 5 to rotate and reciprocate to realize functions such as cutting and sawing. As can be seen from the above, the swing angle α of the output shaft 2 during the entire swing stroke is equal to 2 Θ.
下面 同 时参考图 4 和图 8, 本实施方式多功能机 100 的偏心传动 机构 4 可通过拨叉 6 和驱动件 7 的配合在不同 的工作模式间转换, 在 不同 的工作模式时, 可使输出轴 2 输出 不同 的摆动 角度 α。 多功能机 100还包括设置在偏心轴 31 上的调节装置 8, 该调节装置 8 可驱动上 述偏心传动机构 4在不 同 的工作模式之间转换。  Referring to FIG. 4 and FIG. 8 simultaneously, the eccentric transmission mechanism 4 of the multi-function machine 100 of the present embodiment can be switched between different working modes by the cooperation of the shift fork 6 and the driving member 7, and the output can be made in different working modes. Axis 2 outputs a different swing angle α. The multifunction machine 100 further includes an adjustment device 8 disposed on the eccentric shaft 31, which can drive the eccentric transmission mechanism 4 to switch between different operating modes.
拨叉 6 的两配合部 622 的 内侧壁 623 相平行, 且沿水平方向延伸 有一段距离 。 调节装置 8 包括拨杆 81 和与拨杆 81 相连接的推钮 82, 其中 , 拨杆 81 位于驱动件 7 的一侧并包括套设在偏心轴 31 上的套环 83 , 推钮 82 连接于拨杆 81 的 自 由端且与拨杆 81 大致垂直。 推钮 82 设在上述机壳 1 的外部, 并与机壳 1 可在若干不 同位置配合并锁定, 手动推动推钮 82 时, 推钮 82 会带动拨杆 81 —起移动。  The inner side walls 623 of the two mating portions 622 of the shift fork 6 are parallel and extend a distance in the horizontal direction. The adjusting device 8 includes a lever 81 and a push button 82 connected to the lever 81. The lever 81 is located at one side of the driving member 7 and includes a collar 83 sleeved on the eccentric shaft 31. The push button 82 is connected to The free end of the lever 81 is substantially perpendicular to the lever 81. The push button 82 is disposed outside the casing 1 and can be locked and locked in a plurality of different positions with the casing 1. When the push button 82 is manually pushed, the push button 82 drives the lever 81 to move.
如图 9 所示, 偏心轴 31 包括法兰部 311 及分別位于法兰部 311 两侧的 一段 312 及第二段 313, 电机轴 3 朝向偏心轴 31 的一端轴向 开设有 r 方形收容槽 32。 偏心轴 31 的第一段 312 的两侧被切除而形 成 r 方形 , 并可滑动地收容在电机轴 3 的收容槽 32 内 。 驱动件 7 安 衣在偏心轴 31 的第二段 313 上, 调节装置 8 的套环 83 位于驱动件 7 和偏心轴 31 的法兰部 311 之间 。 套环 83 的 内径远大于第二段 313 的 外径 当 电机轴 3 带动偏心轴 31 转动时, 偏心轴 31 的第二段 313 不 会干涉到调节装置 8 的套环 83。  As shown in FIG. 9, the eccentric shaft 31 includes a flange portion 311 and a section 312 and a second section 313 respectively located at two sides of the flange portion 311. The motor shaft 3 is axially opened at one end of the eccentric shaft 31 with an r-shaped receiving groove 32. . Both sides of the first segment 312 of the eccentric shaft 31 are cut away to form an r-square shape, and are slidably received in the receiving groove 32 of the motor shaft 3. The drive member 7 is mounted on the second section 313 of the eccentric shaft 31, and the collar 83 of the adjustment device 8 is located between the drive member 7 and the flange portion 311 of the eccentric shaft 31. The inner diameter of the collar 83 is much larger than the outer diameter of the second section 313. When the motor shaft 3 drives the eccentric shaft 31 to rotate, the second section 313 of the eccentric shaft 31 does not interfere with the collar 83 of the adjusting device 8.
并参考图 10 和图 11, 当推动调节装置 8 的推钮 82在图 面 内朝 左移动时 , 推钮 82 带动推杆 81 —起左移, 并通过推杆 81 的套环 83 推压驱动件 7 的右侧, 从而 带动驱动件 7 和偏心轴 31 —起相对电机 轴 3 向左移动。 相反, 当推动调节装置 8 的推钮 82在图 面 内朝右移 动时, 推钮 82 带动推杆 81 —起右移, 并通过推杆 81 的套环 83 推压 偏心轴 31 的法兰部 311 的左侧, 从而带动偏心轴 31 和驱动件 7 —起 相对电机轴 3 向右移动。 显然, 驱动件 7 的移动, 使其外圏 7 1 的外 表面相对拨叉 6 的配合部 622 的 内侧壁 623 滑动, 从而使拨叉 6 与驱 动件 7 可以在若干不同 的位置配合, 使偏心传动机构 4 具有若干不同 的工作模式。 Referring to FIG. 10 and FIG. 11, when the push button 82 of the push adjusting device 8 is moved to the left in the drawing, the push button 82 drives the push rod 81 to move leftward, and is driven by the collar 83 of the push rod 81. The right side of the member 7, thereby driving the driving member 7 and the eccentric shaft 31 to move to the left relative to the motor shaft 3. On the contrary, when the push button 82 of the push adjusting device 8 is moved to the right in the drawing, the push button 82 drives the push rod 81 to move rightward, and pushes the flange portion of the eccentric shaft 31 through the collar 83 of the push rod 81. The left side of 311, thereby driving the eccentric shaft 31 and the driving member 7 together Moves to the right relative to the motor shaft 3. Obviously, the movement of the driving member 7 causes the outer surface of the outer casing 7 1 to slide relative to the inner side wall 623 of the engaging portion 622 of the shifting fork 6, so that the shifting fork 6 and the driving member 7 can be engaged at a plurality of different positions, so that the eccentricity The transmission 4 has several different operating modes.
如图 1 0 所示, 偏心传动机构 4位于第一工作模式, 此时驱动件 7 与拨叉 6 的配合部 622 的右端配合, 驱动件 7 到输出轴 2 的轴心的水 平距离 为 D 1, 此时输出轴 2 具有摆动 角度 α 1。 如图 1 1 所示, 偏心传 动机构 4 位于第二工作模式, 此时驱动件 7 与拨叉 6 的配合部 622 的 左端酉己合 驱动件 7 到输出轴 2 的轴心的水平距离 为 D 2, 此时输出 轴 2 具有摆动角度 α2。 显然, 当通过调节装置 8 驱动偏心传动机构 4 由 第一工作模式移动至第二工作模式时, 驱动件 7 到输出轴 2 的轴心 的水平距离 由 D 1 逐渐减小为 D 2, 相应地, 输出轴 2 的摆动角 度则 由 α 1 逐渐增大 .到 α2。  As shown in FIG. 10, the eccentric transmission mechanism 4 is in the first working mode. At this time, the driving member 7 is engaged with the right end of the engaging portion 622 of the shifting fork 6, and the horizontal distance of the driving member 7 to the axial center of the output shaft 2 is D1. At this time, the output shaft 2 has a swing angle α 1 . As shown in Fig. 11, the eccentric transmission mechanism 4 is in the second working mode, and the horizontal distance between the left end of the engaging portion 622 of the driving member 7 and the shifting fork 6 to the shaft of the output shaft 2 is D. 2. At this time, the output shaft 2 has a swing angle α2. Obviously, when the eccentric transmission mechanism 4 is moved by the adjusting device 8 from the first working mode to the second working mode, the horizontal distance of the driving member 7 to the axis of the output shaft 2 is gradually reduced from D 1 to D 2 , correspondingly The swing angle of the output shaft 2 is gradually increased from α 1 to α2.
而要指 出 的是, 调节装置 8 的推钮 82 与机壳 1 可在若干不同位 置配合并锁定 , 因此, 可在第一工作模式和第二工作模式之间设置其 工作模式 从而使偏心传动机构 4 可在多个工作模式之间转换, 以 使输出轴 2 可选择输出 多个不同 的摆动角 度 α。  It should be noted that the push button 82 of the adjusting device 8 and the casing 1 can be engaged and locked in a plurality of different positions, so that the working mode can be set between the first working mode and the second working mode to make the eccentric transmission mechanism 4 It is possible to switch between multiple operating modes so that output shaft 2 can optionally output a number of different swing angles a.
下面结合图 1 2 至图 1 6, 具体描述本发明的第二实施方式。  Next, a second embodiment of the present invention will be specifically described with reference to Figs. 1 2 to 1 .
本实施方式与 第一实施方式的不同之处主要在于偏心传动机构, 后续主要针对本实施方式中 的偏心传动机构进行介绍。 本发明摆动动 力工具包括由 电机 (未图示) 驱动的电机轴 9 1 和相对电机轴 9 1 垂直 设置的输出轴 92 以及设置在电机轴 9 1 与输出轴 92 之间的偏心传动 机构。 图 1 2 中所示偏心传动机构位于第一工作模式, 图 1 3 中所示偏 心传动机构位于第二工作模式。 本实施方式的偏心传动机构可选择地 在第一工作模式和第二工作模式之间转换, 偏心传动机构位于不同 的 工作模式时, 输出轴 92 输出不 同 的摆动角 度。 摆动动力工具还包括 可驱动偏心传动机构在第一工作模式和第 二工作模式之间转换的调 节装置 93。  The difference between this embodiment and the first embodiment is mainly the eccentric transmission mechanism, and the eccentric transmission mechanism in the present embodiment will be mainly described later. The oscillating power tool of the present invention includes a motor shaft 9 1 driven by a motor (not shown) and an output shaft 92 disposed perpendicularly to the motor shaft 9 1 and an eccentric transmission mechanism disposed between the motor shaft 9 1 and the output shaft 92. The eccentric drive shown in Figure 1 2 is in the first mode of operation, and the eccentric drive shown in Figure 13 is in the second mode of operation. The eccentric transmission of the present embodiment is selectively switchable between a first mode of operation and a second mode of operation, and the output shaft 92 outputs a different angle of oscillation when the eccentric transmission is in a different mode of operation. The oscillating power tool further includes an adjustment device 93 that drives the eccentric transmission to switch between the first mode of operation and the second mode of operation.
偏心传动机构包括拨叉 94和可分別与拨叉 94配合的第一驱动件 95 和第二驱动件 96。 电机轴 9 1 上连接有偏心轴 97, 电机轴 9 1 和偏 心轴 97 的轴线不重合并偏移一定的距离 。 上述第一驱动件 95 和第二 驱动件 96 间隔套设在偏心轴 97 上, 而且第一驱动件 95 的外径尺寸 小于第二驱动件 96 的外径尺寸。 拨叉 94 呈 U型, 其上设有可分別与 第一驱动件 95 和第二驱动件 96配合的第一配合部 94 1 和第二配合部 942。 第一配合部 94 1 具有两相对平行设置的第一内侧壁 943, 第二配 合部 942 具有两相对平行设置的第二内侧壁 944, 两 第一内侧壁 943 之间的间距小于两 第二内侧壁 944 之间 的间距。 The eccentric transmission mechanism includes a shift fork 94 and a first drive member 95 and a second drive member 96 that are engageable with the shift fork 94, respectively. An eccentric shaft 97 is connected to the motor shaft 9 1 , and the axes of the motor shaft 9 1 and the eccentric shaft 97 are not overlapped and offset by a certain distance. The first driving member 95 and the second The driving member 96 is sleeved on the eccentric shaft 97, and the outer diameter of the first driving member 95 is smaller than the outer diameter of the second driving member 96. The shifting fork 94 is U-shaped and is provided with a first engaging portion 94 1 and a second engaging portion 942 which are respectively engageable with the first driving member 95 and the second driving member 96. The first mating portion 94 1 has two first inner sidewalls 943 disposed opposite to each other, and the second mating portion 942 has two second inner sidewalls 944 disposed opposite to each other. The spacing between the two first inner sidewalls 943 is smaller than the two second inner sides. The spacing between the walls 944.
调节装置 93 包括可手动推动的推钮 93 1 和垂直于推钮 93 1 的拨 杆 932。 推钮 93 1 设置在机壳 (未图示) 的外部, 拨杆 932—端连接 在推钮 93 1 上, 另 一端具有套设在偏心轴 97 上的套环 93 3。 推钮 93 1 与机壳 1 可在若干不 同工作模式配合并锁定, 推动推钮 93 1 时, 推钮 93 1 会带动拨杆 932 —起移动。 偏心轴 97 的一端轴向伸入电机轴 9 1 内 , 并可相对电机轴 9 1 轴向滑动。 通过操作调节装置 93 的推钮 93 1, 带动拨杆 932在水平方向 内往复移动, 进而推动第一驱动件 95、 第二 驱动件 96 和偏心轴 97 —起相对电机轴 9 1 轴向往复移动, 从而使偏 心传动机构在不 同的工作模式间转换。  The adjustment device 93 includes a push button 93 1 that can be manually pushed and a lever 932 that is perpendicular to the push button 93 1 . The push button 93 1 is disposed outside the casing (not shown), the lever 932 is connected to the push button 93 1 , and the other end has a collar 93 3 that is sleeved on the eccentric shaft 97. Push button 93 1 and case 1 can be matched and locked in several different working modes. When push button 93 1 is pushed, push button 93 1 will move lever 932 to move. One end of the eccentric shaft 97 extends axially into the motor shaft 9 1 and is axially slidable relative to the motor shaft 9 1 . By operating the push button 93 1 of the adjusting device 93, the driving lever 932 is reciprocated in the horizontal direction, thereby pushing the first driving member 95, the second driving member 96 and the eccentric shaft 97 to reciprocate axially relative to the motor shaft 9 1 . , thereby causing the eccentric transmission to switch between different operating modes.
如图 1 4 所示, 偏心轴 97 包括法兰部 97 1、 分別位于法兰部 97 1 两侧的第一段 972 及第二段 973, 以及在图 面 内位于第二段 973 左侧 的第三段 974。 电机轴 9 1 朝向偏心轴 97 的一端轴向开设有烏方形收 容槽 9 1 1, 偏心轴 97 的第一段 972 的两侧被切除而形成烏方形, 并可 滑动地收容在电机轴 3 的收容槽 9 1 1 内 。 第一驱动件 95 安装在偏心 轴 97 的第三段 974 上, 第二驱动件 96 安装在偏心轴 97 的第二段 973 上, 且第一驱动件 95 与 第二驱动件 96 之间存在一定间 隔。 调节装置 93 的套环 93 3 位于第二驱动件 96 和偏心轴 97 的法兰部 97 1 之间,且 套环 93 3 的 内径远大于第二段 973 的外径, 当 电机轴 9 1 带动偏心轴 97 转动时, 偏心轴 97 的第二段 973 不会干涉到调节装置 93 的套环 93 3。  As shown in FIG. 14 , the eccentric shaft 97 includes a flange portion 97 1 , a first segment 972 and a second segment 973 respectively located at two sides of the flange portion 97 1 , and a left side of the second segment 973 in the drawing. Third paragraph 974. The motor shaft 9 1 is axially opened at one end of the eccentric shaft 97 with a square receiving groove 9 1 1 , and both sides of the first segment 972 of the eccentric shaft 97 are cut away to form a square shape, and are slidably received in the motor shaft 3 The storage slot is 9 1 1 . The first driving member 95 is mounted on the third segment 974 of the eccentric shaft 97, and the second driving member 96 is mounted on the second segment 973 of the eccentric shaft 97, and there is a certain relationship between the first driving member 95 and the second driving member 96. interval. The collar 93 3 of the adjusting device 93 is located between the second driving member 96 and the flange portion 97 1 of the eccentric shaft 97, and the inner diameter of the collar 93 3 is much larger than the outer diameter of the second portion 973, when the motor shaft 9 1 is driven When the eccentric shaft 97 rotates, the second section 973 of the eccentric shaft 97 does not interfere with the collar 93 3 of the adjustment device 93.
请参考图 1 5, 偏心传动机构在调节装置 93 的驱动下, 位于第一 工作模式。 此时, 第二驱动件 96 的两侧与拨叉 94 的第二配合部 942 的两 第二内侧壁 944 相分离 , 而第一驱动件 95 的两侧与拨叉 94 的第 一配合部 94 1 的两 第一内侧壁 943 紧密接触。 第一驱动件 95 至输出 轴 92 的轴心的距离 为 D 3, 输出轴 92 具有第一摆动角度 α 3。 请参考图 1 6, 偏心传动机构在调节装置 93 的驱动下, 由 第一工 作模式转换至第二工作模式。 此时, 第一驱动件 95 的两侧与拨叉 94 的第一配合部 94 1 的两 第一内侧壁 943 相分离开, 而第二驱动件 96 的两侧与拨叉 94 的第二配合部 942 的两 第二内侧壁 944 紧密接触 第二驱动件 96 至输出轴 92 的轴心的距离 为 D 4, 输出轴 92 具有第二 摆动角度 α4。 Referring to FIG. 15, the eccentric transmission mechanism is driven by the adjusting device 93 in the first working mode. At this time, the two sides of the second driving member 96 are separated from the two second inner side walls 944 of the second engaging portion 942 of the shifting fork 94, and the first engaging portions 94 of the first driving member 95 and the first engaging portion 94 of the shifting fork 94 are separated. The two first inner side walls 943 of 1 are in close contact. The distance from the first drive member 95 to the axis of the output shaft 92 is D 3 , and the output shaft 92 has a first swing angle α 3 . Referring to FIG. 16, the eccentric transmission mechanism is switched from the first working mode to the second working mode under the driving of the adjusting device 93. At this time, the two sides of the first driving member 95 are separated from the two first inner side walls 943 of the first engaging portion 94 1 of the shifting fork 94, and the two sides of the second driving member 96 are secondly matched with the shifting fork 94. The two second inner side walls 944 of the portion 942 are in close contact with the axis of the second driving member 96 to the output shaft 92 by a distance D 4 , and the output shaft 92 has a second swing angle α4.
可以理解, 由于第一驱动件 95 的外径尺寸小于第二驱动件 96 的 外径尺寸, 而第一驱动件 95 到输出轴 92 的轴心的距离 D 3 小于第二 驱动件 96 到输出轴 92 的轴心的距离 D 4。 由于, 输出轴 92 的摆动角 度是由驱动件的外径尺寸和到输出 轴的轴心的距离共同确 定的, 因 此 可使第一摆动角度 α3 与 第二摆动角度 α4 不等。 因此, 通过操作 调节装置 93, 可驱动偏心传动机构在第一工作模式和第二工作模式之 间转换 , 从而使输出轴 92 可选择地输出 第一摆动角度 α 3 或第二摆动 角度 4。  It can be understood that since the outer diameter of the first driving member 95 is smaller than the outer diameter of the second driving member 96, the distance D 3 of the first driving member 95 to the axial center of the output shaft 92 is smaller than the second driving member 96 to the output shaft. The distance of the axis of 92 is D 4 . Since the swing angle of the output shaft 92 is determined by the outer diameter dimension of the drive member and the distance from the axial center of the output shaft, the first swing angle α3 and the second swing angle α4 can be made unequal. Therefore, by operating the adjusting device 93, the eccentric transmission mechanism can be driven to switch between the first operating mode and the second operating mode, thereby causing the output shaft 92 to selectively output the first swing angle α 3 or the second swing angle 4 .
而要指 出 的是, 本实施方式中 第一驱动件 95、 第二驱动件 96 和 偏心轴 96 起相对电机轴 9 1 滑动设置, 也可以用其它方式来实现 如 : 偏心轴 96 可相对电机轴 9 1 固 定设置, 并在偏心轴 96 上设置可 相对偏心轴 96 滑动的套管, 将第一驱动件 95 和第二驱动件 96 安装 在套管上。 通过调节装置 93 的驱动, 可使第一驱动件 95 和第二驱动 件 96一 -起相对偏心轴 96 滑动。 另 外, 偏心传动机构也不限于在两个 工作模式之间转换, 可以通过增加驱动件的数量来实现在更多工作模 式之间的转换, 从而使输出轴具有更多 的摆动角 度。  It should be noted that, in this embodiment, the first driving member 95, the second driving member 96 and the eccentric shaft 96 are slidably disposed relative to the motor shaft 9 1 , and may be implemented in other manners as follows: The eccentric shaft 96 can be opposite to the motor shaft 9 1 Fixed setting, and a sleeve slidable relative to the eccentric shaft 96 is disposed on the eccentric shaft 96, and the first driving member 95 and the second driving member 96 are mounted on the sleeve. By driving the adjustment device 93, the first driving member 95 and the second driving member 96 can be slid together with respect to the eccentric shaft 96. In addition, the eccentric transmission mechanism is not limited to switching between the two operating modes, and the conversion between more operating modes can be realized by increasing the number of driving members, so that the output shaft has more swing angles.
与现有技术相比, 本发明的摆动动力 工具可通过调节装置来驱动 偏心传动机构在不同 的工作模式之间转换, 从而使输出轴具有不同 的 摆动角度, 进而满足不同功能应用 的需求, 使该摆动动力工具具有更 大的应用领域。  Compared with the prior art, the oscillating power tool of the present invention can drive the eccentric transmission mechanism to switch between different working modes through the adjusting device, so that the output shaft has different swinging angles, thereby meeting the requirements of different functional applications, so that The oscillating power tool has a larger field of application.
可以理解, 由于本发明的摆动动力工具的输出轴可以输出 不同 的 摆动角度, 因此可以设置输出轴具有至少一个摆动角度大于 4 °, 可以 设置为 大于 4。的任何值, 如可以是 5。、 6。、 7。、 8。、 9。或 1 0。中 的 ― 种 也可以 大于 1 0 °。 通过设置较大的摆动角 度, 可获得较高的工作 效率。 下面参考下表中 的实验数据, 进一步说明 大摆动 角度下摆动动力 工具效率的提高情况。 从下表中 可看 出 , 输出轴 92 的摆动角度为 7。 时, 在使用精确锯片 切割相 同尺寸的 白松板或中等密度板时, 效率较 摆动角度为 4°时均提高 70%以上; 而在使用标准锯片 切割 中等密度板 时, 效率也可以较摆动角度为 4。时提高 50%; 另 外, 在使用双断锯片 切割铁钉时, 效率则 可以提高 48%。 It can be understood that since the output shaft of the oscillating power tool of the present invention can output different swing angles, it can be set that the output shaft has at least one swing angle greater than 4° and can be set to be greater than 4. Any value, such as can be 5. 6, 6. , 7. , 8. , 9. Or 1 0. The species in the middle can also be greater than 10 °. By setting a larger swing angle, higher work efficiency can be achieved. Referring to the experimental data in the table below, the improvement of the efficiency of the oscillating power tool at a large swing angle is further explained. As can be seen from the table below, the output shaft 92 has a swing angle of seven. When using a precision saw blade to cut a white or medium density board of the same size, the efficiency is increased by more than 70% compared to a swing angle of 4°. When cutting a medium density board with a standard saw blade, the efficiency can be more oscillated. The angle is 4. Increase by 50%; in addition, when using double-broken saw blades to cut nails, the efficiency can be increased by 48%.
Figure imgf000016_0001
上述实施方式中 , 输出轴 92 的摆动角度为 7 ° 时, 输出轴 92 的 摆动频率为每分钟 18000 次。 需要指 出 的是, 本发明摆动动力工具 当输出轴的摆动角度大于 4 ° 时, 输出轴的摆动频率至少 大于每分钟
Figure imgf000016_0001
In the above embodiment, when the swing angle of the output shaft 92 is 7 °, the swing frequency of the output shaft 92 is 18,000 times per minute. It should be noted that, when the swinging angle of the output shaft is greater than 4 °, the swinging frequency of the output shaft is at least greater than that per minute.
10000 .次 , 10,000 times,
另 外 , 本发 明 中 的偏心件不限于采用 上述实施方式中 的滚珠轴 承, 也可采用 滚针轴承。 为 了保证偏心件可以承载较大的 负 载, 本发 明 中偏心件所采用轴承的外径与 内径的比值优选为 19/7 或 16/6 也 可以是大于 19/7 的其它值。 偏心件通过选用上述尺寸的轴承, 可以承 受更高的 负 载, 并延长偏心件的使用寿命。  Further, the eccentric member in the present invention is not limited to the ball bearing in the above embodiment, and a needle bearing may be employed. In order to ensure that the eccentric member can carry a large load, the ratio of the outer diameter to the inner diameter of the bearing used in the eccentric member of the present invention is preferably 19/7 or 16/6 or other values greater than 19/7. By using bearings of the above dimensions, the eccentric can withstand higher loads and extend the life of the eccentric.
与现有技术相比, 本发明克服了人们将摆动动力工具的摆动角度 设置为 3 以下的技术偏见, 通过设置大于 4 ° 的大摆动角度, 同 时采 用 大于矛分钟 10000 次的摆动频率, 大大提高 了摆动动力工具的工作 效率, 解决 了人们长期 以来渴望解决的技术问题。 Compared with the prior art, the invention overcomes the technical prejudice that the swinging angle of the swinging power tool is set to 3 or less, and by setting a large swing angle greater than 4°, and simultaneously adopting a swing frequency greater than 10,000 times of the spear minute, the vibration frequency is greatly improved. The working efficiency of the oscillating power tool solves the technical problems that people have long been eager to solve.
另 外 , 上述实施方式中 , 多功能机的功率为 250W, 本发明摆动 动力工具的功率也可以是其它值。 很容易理解, 当摆动动力 工具的尺 寸较大时 , 如果要获得较高 的工作效率, 则 需要电机具有较大的输出 功率。 本发明的摆动动力工具, 电机的输入功率大于 500W, 以使该 摆动动力工具具有更高的工作效率。 相应地, 为 了便于操作 大尺寸的 摆动动力工具, 可以在摆动动力 工具的机壳上安装便于握持的操作手 柄。 该操作手柄可以设置成环形的, 也可以是直线形的, 可与机壳一 体成型, 也可与机壳可拆卸地分体设置。 Further, in the above embodiment, the power of the multi-function machine is 250 W, and the power of the swing power tool of the present invention may be other values. It is easy to understand that when the size of the oscillating power tool is large, if a higher working efficiency is to be obtained, the motor needs to have a larger output power. In the oscillating power tool of the present invention, the input power of the motor is greater than 500 W, so that the oscillating power tool has higher working efficiency. Accordingly, in order to facilitate the operation of large sizes The oscillating power tool can be mounted on the casing of the oscillating power tool to facilitate the grip of the operating handle. The operating handle can be arranged in a ring shape or a straight shape, and can be integrally formed with the casing, or can be detachably arranged separately from the casing.
通过设置一种较大 ( 大于 4° ) 的输出轴摆动 角度 可获得较高 的 工作效率 , 并且便于锯片 工作时碎屑 的排出 。 另 外, 大的摆动角 度可 配合安装其它种类的 附件工作 头 , 从而扩展摆动动力 工具的应 用 功 By setting a larger (greater than 4°) output shaft swing angle, higher operating efficiency is achieved and debris is easily removed during saw blade operation. In addition, the large swing angle can be used with other types of accessory heads to extend the application of the oscillating power tool.
3匕 , 如剪草、 钻孔、 锤击等。 当 然, 大的摆动角 度, 也会带来另一方 面的后果 , 即震动的增加。 而 常规较小 (小于 4。) 的摆动角 度, 效率 虽然相对低一些, 但是相应震动也较小。 因此, 用 户 可以根据需要, 选择不同 的摆动角度来实现不同 的功能。 因此, 本发明的摆动动力工 具, 输出轴可根据用 户选择输出 不同 的摆动角度, 大大提高 了该摆动 动力工具的适用性。 3匕, such as cutting grass, drilling, hammering, etc. Of course, a large swing angle will also have the other side effect, that is, the increase in vibration. While the conventional swing angle is smaller (less than 4.), the efficiency is relatively low, but the corresponding vibration is also small. Therefore, the user can select different swing angles to achieve different functions as needed. Therefore, in the oscillating power tool of the present invention, the output shaft can selectively output different swing angles according to the user, and the applicability of the oscillating power tool is greatly improved.
为 了进一步提高本发明实施方式中摆动动力 工具的工作效率 , 该 摆动动力工具有使电机的转速保持恒定的稳速控制 系 统  In order to further improve the working efficiency of the oscillating power tool in the embodiment of the present invention, the oscillating power tool has a steady speed control system for keeping the rotational speed of the motor constant.
图 17 所示为 本发明的稳速控制 系 统的原理框图 该稳速控制 系 统包括控制器 12 及动力 开关单元 13。 摆动动力 工具进一步包括为其 供电的电源 10, 且电机 11 (即上文中所提到 的电机) 具有若干预设 转速 n*, 可根据选择以某个具体的预设转速 n*转动。  Figure 17 shows a block diagram of the steady speed control system of the present invention. The steady speed control system includes a controller 12 and a power switch unit 13. The oscillating power tool further includes a power source 10 for supplying power thereto, and the motor 11 (i.e., the motor mentioned above) has a plurality of preset speeds n* which can be rotated at a specific preset speed n* depending on the selection.
控制器 12监测电机 11 工作时两端的工作电压 Uc和 负 载电流 Ic, 并根据电机 11 的 负 载电流 Ic 计算出 电机 11 要达到预设转速 n*所需 的 目 标电压 Uo; 进而基于工作电压 Uc 和 目 标电压 Uo 的差值调整电 源 10 的 P WM 占 空比, 并将 PWM 占 空比施加给动力 开关单元 13 以 调节电机 11 的工作电压 Uc 到 目 标电压 Uo, 从而使电机 11 在预设转 速 n *下近似地恒定转动。  The controller 12 monitors the working voltage Uc and the load current Ic at both ends of the operation of the motor 11, and calculates the target voltage Uo required for the motor 11 to reach the preset speed n* according to the load current Ic of the motor 11; and further based on the operating voltage Uc and The difference of the target voltage Uo adjusts the P WM duty ratio of the power source 10, and applies the PWM duty ratio to the power switch unit 13 to adjust the operating voltage Uc of the motor 11 to the target voltage Uo, thereby causing the motor 11 to be at the preset speed n * The next approximately constant rotation.
本实施方式中 , 动力 开关单元 13 包括串联连接在电源 10 和电机 11 之间 的金属 -氧化层 -半导体 -场 效晶体管 MOSFET(简 称为 MOS 管) 131, MO S 管 131 在通断状态之间切换, 以改变 P WM 占 空比的脉 冲宽度。  In the present embodiment, the power switch unit 13 includes a metal-oxide-semiconductor-field effect transistor MOSFET (referred to as a MOS transistor) 131 connected in series between the power source 10 and the motor 11, and the MO S transistor 131 is in an on-off state. Switch to change the pulse width of the P WM duty cycle.
图 18 所示为 本发明 中稳速控制 系 统的详细电路图 , 下面结合图 11 和图 12 进一步详细描述本发明多功能机 100 控制 系 统的详细工作 原理。 该电路包括主开关 14, 主开关 14 用 于控制整个电路的断开和闭 合。 电机 11 为直流电机, 具体可以为直流永磁电机或者直流无刷电 机。 电源 10 为 可充电的 10.8仗电池, 电源 10 通过降压电路 15 与控 制器 12 的输入端 口 VDD 相连, 为控制 器 12 提供稳定的 5 仗电源。 电机 11 和 MOS 管 131 —起, 与 电源 10 及主开关 14 串联。 Figure 18 is a detailed circuit diagram of the steady-speed control system of the present invention. The detailed operation of the control system of the multi-function machine 100 of the present invention will be further described in detail below with reference to Figures 11 and 12. The circuit includes a main switch 14 for controlling the opening and closing of the entire circuit. The motor 11 is a DC motor, and specifically may be a DC permanent magnet motor or a DC brushless motor. The power supply 10 is a rechargeable 10.8 仗 battery. The power supply 10 is connected to the input port VDD of the controller 12 via a buck circuit 15 to provide a stable 5 仗 power supply to the controller 12. The motor 11 and the MOS transistor 131 are connected in series with the power source 10 and the main switch 14.
电机 11 两端并联有差分放大电路 16, 以检测电机 11 工作时两端 的工作电压 Uc。 该差分放大电路 16 将检测到的电机 11 两端的工作 电压 Uc进行放大, 然后通过输入端 口 VDD 将工作电压 Uc 的数值传 递至控制器 12。  A differential amplifying circuit 16 is connected in parallel with the motor 11 to detect the operating voltage Uc at both ends of the motor 11 during operation. The differential amplifying circuit 16 amplifies the detected operating voltage Uc across the motor 11, and then transmits the value of the operating voltage Uc to the controller 12 through the input port VDD.
电机 11 与控制器 12 之间 串联有电流采样放大电路 17, 用 于检测 电机 11 工作时的 负 载电流 Ic。 该电流采样放大电路 17将检测到 的电 机 11 工作时的 负 载电流 Ic进行放大, 然后通过输入端 口 AN6将 负 载 电流 Ic 数值传递至控制器 12。  A current sampling amplifying circuit 17 is connected in series between the motor 11 and the controller 12 for detecting the load current Ic when the motor 11 is operating. The current sampling amplifying circuit 17 amplifies the detected load current Ic when the motor 11 is operating, and then transmits the value of the load current Ic to the controller 12 through the input port AN6.
动力 开关单元 13 还包括与 MOS 管 131 连接的 MOSFET 驱动器 132, 用 于根据来 自 控制器 12 的 PWM 占 空比调节 MOS 管的通断。 该 MOSFET 驱动器 132 的输入端与控制器 12 的输出端 口 P WM相连, 其 输出端与 MOS 管的输入端相连。  The power switch unit 13 further includes a MOSFET driver 132 connected to the MOS transistor 131 for regulating the on and off of the MOS transistor in accordance with the PWM duty ratio from the controller 12. The input of the MOSFET driver 132 is connected to the output port P WM of the controller 12, and the output terminal thereof is connected to the input terminal of the MOS transistor.
下面详细介绍动力 开关单元 13 调节电机 11 两端的工作电压 Uc 的原理。 首先, MOS 管具有根据接收到的 PWM 占 空 比, 迅速的导通、 关断的作用 。 在本实施例 中 , 控制器 12 以 2000HZ 的频率输出 PWM 占 空比, 即 PWM 占 空比信号具有周期 T = 0.5 毫秒。 该 PWM 占 空 比信 号经 MOSFET 驱动器 132 放大, 由 5 仗变为 12仗, 以驱动 MOS 管导 通或关断。 在周期 T 内 , 脉冲信号具有一个高 电平和一个低电平, 高 电平和低电平在周期 T 内持续时间长度的比值即为可变化的 PWM 占 空比。 其中 , 在脉冲信号为 高 电平时, MO S 管处于导通的状态, 此时 电源 10 的电压可以通过 MO S 管施加到 电机 11 上; 在脉冲信号为低 电平时, MOS 管处于关闭 的状态, 此时电源 10 的电压无法通过 MOS 管施加到 电机 11 上, 但可以通过电机 11 两端的续流管 111。 这样, 通过调节 MOS 管的 PWM 占 空比, 可以调节周期 T 内 电源 10 的电压 有效的施加到 电机 11 上的时间, 即可以调节周期 T 内 电源 10 传输给 电机 11 的能量, 从而调节 电机 11 两端的工作电压 Uc。 由于周期 T 持续时间短, 在操作者可感知的时间上电机 11 始终是被驱动的。 该系 统还包括用 来检测电源 10的电池电压 Ub的电池电压检测电 路 102, 用来保护电源 10, 防止电源 10 过放。 该电池电压检测电路 102将检测到 的电源 10的电池电压 Ub通过输入端 口 AN3输出 至控制 器 12, 当 电池电压 Ub 低于一定的预定值时, 控制器 12 会断开整个 系 统, 切断电源 10 的供电。 The principle of the power switch unit 13 adjusting the operating voltage Uc across the motor 11 will be described in detail below. First, the MOS transistor has a function of rapidly turning on and off according to the received PWM duty ratio. In the present embodiment, the controller 12 outputs the PWM duty cycle at a frequency of 2000 Hz, that is, the PWM duty cycle signal has a period of T = 0.5 milliseconds. The PWM duty cycle signal is amplified by MOSFET driver 132 from 5 仗 to 12 仗 to drive the MOSFET to turn on or off. During the period T, the pulse signal has a high level and a low level, and the ratio of the duration of the high level and the low level in the period T is the variable PWM duty ratio. Wherein, when the pulse signal is at a high level, the MO S tube is in an on state, and the voltage of the power source 10 can be applied to the motor 11 through the MO S tube; when the pulse signal is low, the MOS tube is in a closed state. At this time, the voltage of the power source 10 cannot be applied to the motor 11 through the MOS tube, but can pass through the freewheeling tube 111 at both ends of the motor 11. Thus, by adjusting the PWM duty ratio of the MOS transistor, the time during which the voltage of the power source 10 in the period T is effectively applied to the motor 11 can be adjusted, that is, the energy transmitted from the power source 10 to the motor 11 in the period T can be adjusted, thereby adjusting the motor 11 Working voltage Uc at both ends. Due to cycle T The duration is short and the motor 11 is always driven at an operator-perceivable time. The system also includes a battery voltage detection circuit 102 for detecting the battery voltage Ub of the power source 10 for protecting the power source 10 from over-discharging of the power source 10. The battery voltage detecting circuit 102 outputs the detected battery voltage Ub of the power source 10 to the controller 12 through the input port AN3. When the battery voltage Ub is lower than a predetermined value, the controller 12 turns off the entire system and cuts off the power supply 10 Power supply.
为 了保护电源 10, 本系 统进一步设置 了 电池温度检测电路 101, 以检测电源 10 两端的电池温度 Tb, 并通过输入端 口 AN7将电池温度 输入至控制器 12。 当 电池温度 Tb 超过一定的预设值时, 控制 器 12 同样会断开整个系 统, 切断电源 10 的供电。  In order to protect the power source 10, the system further sets a battery temperature detecting circuit 101 to detect the battery temperature Tb across the power source 10, and inputs the battery temperature to the controller 12 through the input port AN7. When the battery temperature Tb exceeds a certain preset value, the controller 12 also disconnects the entire system and cuts off the power supply to the power supply 10.
摆动动力 工具通常需要设置不同 的转速供用 户选择, 因此, 本稳 速控制 系 统还设置有档位调节 电路 18。 控制 器 12 可通过输出端 口 AN4 控制转速调节电路 18, 使电机 11 的转速可在若干不同 的预设转 速 n *之间转换。  The oscillating power tool usually needs to set different speeds for the user to select. Therefore, the steady speed control system is also provided with the gear position adjusting circuit 18. The controller 12 can control the speed adjustment circuit 18 via the output port AN4 so that the speed of the motor 11 can be switched between several different preset speeds n*.
下面介绍本发 明摆动动力 工具的稳速控制 系 统调节 电机速度的 详细过程。  The detailed process of adjusting the speed of the motor by the steady speed control system of the swing power tool of the present invention will be described below.
主开关 14 打开时, 控制整个系 统电路通电, 控制器 12被预置, 预置包括控制器 12 内 的寄存器初始化, 以及定时器复位调整。 在本 阶段, 控制 器 12 会读取速度设定部分输入的信号, 根据用 户选择设 定一个预设转速 n*, 电机 11 开始 以预设转速 n*转动。  When the main switch 14 is turned on, the entire system circuit is controlled to be energized, the controller 12 is preset, the preset includes register initialization in the controller 12, and the timer reset adjustment. At this stage, the controller 12 reads the signal input from the speed setting section, and according to the user's selection to set a preset speed n*, the motor 11 starts to rotate at the preset speed n*.
与此同 时, 差分放大电路 16 将检测到的电机 11 的工作电压 Uc 传递给控制器 12, 而电流采样放大电路 17 则将检测到的电机 11 的 负 载电流 Ic 同样传递至控制器 12。 控制器 12 通过电机 11 的预设转速 n*和实时监测到的电机 11 的 负 载电流 Ic, 根据相应的公式计算出在 负 载电流 Ic 时, 使电机 11 的实际转速 n保持为预设转速 n*所需要的 目 标电压 Uo。 控制器 12 根据相应算法来调节输出 的 P WM 占 空比信 号的频宽比, 从而通过 MOSFET 驱动器 132控制 MOS 管 131 的导通 时间 。 在 MOS 管 131 导通时, 电机 11 的两端才会受到 电源 10 的电 压; 在不导通时, 电机 11 的两端没有受到 电压, 这样, 通过调节 PWM 占 空比信号的频宽比, 可以调节一定时间周期 内 施加给电机 11 有效 电压的时间 比例, 进而调节在宏观上一定时间 内 施加到 电机 11 两端 的工作电压 Uc, 以及电源 10 输出 的能量, 进而调节实际转速 n。 当 电机 11 的工作电压 Uc 高于 目 标电压 Uo 时,控制 器 12调节降低 P WM 占 空比信号的频宽比, 电机 11 接受的能量减少 , 电机 11 两端的工作 电压 Uc 减小而接近于 目 标电压 Uo, 从而使电机 11 的实 际转速 n 得 以降低, 使之接近于预设转速 n*。 反之亦然, 当 电机 11 的工作电压 Uc低于 目 标电压 Uo 时, 控制器 12 调节提高 P WM 占 空比信号的频宽 比, 电机 11 接受的能量增多 , 电机 11 两端的工作电压 Uc 增大而接 近于 目 标电压 Uo, 从而使电机 11 的实际转速 n得以升高, 使之接近 于预设转速 n*。 At the same time, the differential amplifying circuit 16 transmits the detected operating voltage Uc of the motor 11 to the controller 12, and the current sampling amplifying circuit 17 transmits the detected load current Ic of the motor 11 to the controller 12. The controller 12 calculates the actual rotational speed n of the motor 11 at the preset rotational speed n* when the load current Ic is calculated by the preset rotational speed n* of the motor 11 and the load current Ic of the motor 11 monitored in real time according to the corresponding formula. The required target voltage Uo. The controller 12 adjusts the bandwidth ratio of the output P WM duty signal according to a corresponding algorithm, thereby controlling the on-time of the MOS transistor 131 through the MOSFET driver 132. When the MOS transistor 131 is turned on, both ends of the motor 11 are subjected to the voltage of the power source 10; when not conducting, the two ends of the motor 11 are not subjected to voltage, so by adjusting the bandwidth ratio of the PWM duty signal, The time ratio of the effective voltage applied to the motor 11 during a certain period of time can be adjusted, and the adjustment is applied to both ends of the motor 11 for a certain period of time in the macroscopic time. The operating voltage Uc, as well as the energy output by the power source 10, adjusts the actual speed n. When the operating voltage Uc of the motor 11 is higher than the target voltage Uo, the controller 12 adjusts the bandwidth ratio of the P WM duty ratio signal, the energy received by the motor 11 decreases, and the operating voltage Uc across the motor 11 decreases to be close to the target. The voltage Uo is such that the actual rotational speed n of the motor 11 is lowered to be close to the preset rotational speed n*. Vice versa, when the operating voltage Uc of the motor 11 is lower than the target voltage Uo, the controller 12 adjusts the bandwidth ratio of the P WM duty signal, the energy received by the motor 11 increases, and the operating voltage Uc across the motor 11 increases. Close to the target voltage Uo, the actual rotational speed n of the motor 11 is raised to be close to the preset rotational speed n*.
具体的, 控制器 12 将电机 1 当前的工作电压 Uc 和 目 标电压 Uo 比较, 得出 电压的偏差 AU, 控制器 12 根据偏差 AU 计算得出 当 前为 达到 目 标电压 Uo 应输出 的 PWM 占 空比信号, PWM 占 空比信号经 MOSFET 驱动器 132 放大并传递到 MOS 管 131, 以控制 电源 10 特定 时间 内输送给电机 11 的能量, 使电机 1 当 前的工作电压 Uc 达到 目 标 电压 Uo。  Specifically, the controller 12 compares the current operating voltage Uc of the motor 1 with the target voltage Uo to obtain a voltage deviation AU, and the controller 12 calculates the PWM duty cycle signal that should be outputted to the target voltage Uo according to the deviation AU. The PWM duty cycle signal is amplified by the MOSFET driver 132 and passed to the MOS transistor 131 to control the energy supplied to the motor 11 by the power source 10 for a specific time, so that the current operating voltage Uc of the motor 1 reaches the target voltage Uo.
在本实施例 中 , 控制器 12 计算其输出 的脉冲信号频宽比所采用 的算法为 比例 -积分-微分算法(简称 PID 算法)。 PID 算法是工业上常 见的控制算法, 在 PID 算法里, 这个算法会计算比例、 积分、 微分的 响应和这三者的和, 以此来计算真实的输出 。  In the present embodiment, the controller 12 calculates the pulse signal bandwidth ratio of the output to be a proportional-integral-derivative algorithm (referred to as the PID algorithm). The PID algorithm is an industrially common control algorithm. In the PID algorithm, this algorithm calculates the proportional, integral, differential response and the sum of the three to calculate the true output.
进一步的, 本实施例采用增量式 PID 算法。 在调节过程中 , 处理 器 12 每 50 毫秒对电机 11 两端的工作电压 Uc进行取样计算, 并将其 存储, 处理器 12 根据当前工作电压 Uc 1、 前次工作电压 Uc2、 再前次 工作电压 Uc3 进行比例积分微分计算, 得出输出 PWM 占 空比信号。  Further, this embodiment adopts an incremental PID algorithm. During the adjustment process, the processor 12 samples and calculates the working voltage Uc at both ends of the motor 11 every 50 milliseconds, and stores the processor 12 according to the current working voltage Uc1, the previous working voltage Uc2, and the previous working voltage Uc3. The proportional integral differential calculation is performed to obtain the output PWM duty cycle signal.
具体的, 脉冲宽度调制信号的频宽比可根据以下的方法计算来获 得:  Specifically, the bandwidth ratio of the pulse width modulated signal can be calculated according to the following method:
第一、 差分放大电路 16 测量电机 11 的工作电压 Uc, 并输出信 号到控制器 12。  First, the differential amplifying circuit 16 measures the operating voltage Uc of the motor 11, and outputs a signal to the controller 12.
第二、 控制器 12 记录电机 11 的 当 前工作电压 Uc 1、 前次工作电 压 Uc2、 再前次工作电压 Uc3, 并计算它们的偏差。  Second, the controller 12 records the current working voltage Uc 1 of the motor 11, the previous working voltage Uc2, and the previous working voltage Uc3, and calculates their deviations.
第三、 根据工作电压 Uc 的偏差, 调整 PWM 占 空 比(PWM 占 空比) 信号。 矛 四 、 MOS 管 131 根据接收的 PWM 占 空 比信号调节电机 : 11 两 的工作电压 Uc 达到 目 标电压 Uo, 从而调节 电机 11 的实际转速 n 逼近于预设转速 n *。 Third, adjust the PWM duty cycle (PWM duty cycle) signal according to the deviation of the operating voltage Uc. The MOS transistor 131 adjusts the motor according to the received PWM duty signal: 11 The operating voltage Uc of the two reaches the target voltage Uo, so that the actual rotational speed n of the motor 11 is adjusted to be close to the preset rotational speed n*.
本发明多功能机 100 的控制 系 统, 通过直接检测电机 11 两 山  The control system of the multifunctional machine 100 of the present invention, by directly detecting the motor 11
的 工作电压 Uc 及负 载电流 Ic, 不需设置速度传感器来检测电机 11 的转 速 就可使多功能机 100 的电机 11 保持近似恒定的预设转速 n* 结 构 间 单 , 性能较稳定。  The operating voltage Uc and the load current Ic, without setting a speed sensor to detect the rotational speed of the motor 11, can maintain the motor 11 of the multi-function machine 100 at an approximately constant preset speed n* structure, and the performance is relatively stable.
另 外, 如图 17 所示, 由于本发明 多功能机 100 的输出轴 2 可以 输出不同 的摆动角度 α, 而输出轴 2 的摆动角度 α不 同 时, 相应所产 生的震动大小也不同 。 因此, 多功能机 100 设置了调速装置。 在输出 轴 2 的摆动 角度 α 改变时, 该调速装置可 自 动改变输出轴 2 的摆动频 午  Further, as shown in Fig. 17, since the output shaft 2 of the multifunction machine 100 of the present invention can output different swing angles α, and the swing angle α of the output shaft 2 is different, the magnitude of the corresponding vibration is also different. Therefore, the multifunction machine 100 is provided with a speed governing device. When the swing angle α of the output shaft 2 changes, the speed control device can automatically change the swing frequency of the output shaft 2
上述调速装置包括与控制 器 12连接的角度传感器 99和上文介绍 过的档位调节电路 18 及控制器 2, 角度传感器 99 将检测到 的输出轴 The above-described speed governing device includes an angle sensor 99 connected to the controller 12 and the gear position adjusting circuit 18 and the controller 2 described above, and the angle sensor 99 will detect the output shaft
2 的摆动角度 α传递至控制 器 12, 当输出轴 2 的摆动角度 α 改变时, 控制器 2 通过档位调节电路 18 自 动改变电机 11 的预设转速 η*。很容 易理解, 由于电机 11 与输出轴 2 之间未设置任何减速装置, 因此改 变电机 11 的预设转速 η*, 就相应改变 了输出轴 2 的摆动频率。 The swing angle α of 2 is transmitted to the controller 12, and when the swing angle α of the output shaft 2 is changed, the controller 2 automatically changes the preset rotational speed η* of the motor 11 through the gear position adjusting circuit 18. It is easy to understand that since no deceleration device is provided between the motor 11 and the output shaft 2, changing the preset rotation speed η* of the motor 11 changes the oscillation frequency of the output shaft 2 accordingly.
举体来说,多功能机 100的输出轴 2具有依次增大的摆动角度 α 1、 α2、 α3, 而电机 11 则有依次增大的预设转速 η 1、 η2、 η3。 本实施方 式中 , 摆动角度 α 1、 α2、 α3 与预设转速 η 1、 η2、 η3 依次对应 。 即 当 输出轴 2 的摆动角度 α 增大时, 相应降低电机 11 的预设转速 η*, 以 使输出轴 2在较大的摆动角度 α 时, 相应的摆动频率较小, 从而使输 出轴 2 的震动相对较小, 使多功能机 100 具有较好的操作手感 。 调速 装置的具体工作过程如下: 角度传感器 99 实时监测输出轴 2 的摆动 角度 并传递至控制器 12, 当控制器 12 发现输出轴的摆动 角度 α 由 αΐ 变为 α2 或 α3 时,则通过档位调节电路 18 调节电机 11 的预设转速 η*由 nl 变为 n2 或 n3。  In the embodiment, the output shaft 2 of the multifunction machine 100 has a swing angle α 1 , α2, α3 which are sequentially increased, and the motor 11 has preset rotation speeds η 1 , η2, η3 which are sequentially increased. In the present embodiment, the swing angles α 1 , α2 , α3 are sequentially associated with the preset rotational speeds η 1 , η2, and η3. That is, when the swing angle α of the output shaft 2 is increased, the preset rotational speed η* of the motor 11 is correspondingly reduced, so that when the output shaft 2 is at a large swing angle α, the corresponding swing frequency is small, so that the output shaft 2 is made The vibration is relatively small, so that the multifunction machine 100 has a good operating feel. The specific working process of the speed governor is as follows: The angle sensor 99 monitors the swing angle of the output shaft 2 in real time and transmits it to the controller 12. When the controller 12 finds that the swing angle α of the output shaft changes from αΐ to α2 or α3, The bit adjustment circuit 18 adjusts the preset rotational speed η* of the motor 11 from n1 to n2 or n3.
本发明 系 统的 电路元件并不限于上述实施方式 中所列 举的的具 体形式, 如业界人士容易知悉的, 这些元件的具体形式的选择是多样 的。 例如, 控制器 12 也可以为模拟比较电路; 也可以通过其它的电 路来检测电机 11 两端的工作电压 Uc 和 负 载电流 Ic; 动力 开关单元 13 也可以采用除 MOS 管 131 以外的其它类型的场效晶体管 ; 输出轴 2 的摆动角度 α 和电机 11 的预设转速 η*也不限于三种, 也可以在摆 动角度 α增大时, 同 时提高预设转速 η*, 以具有更高的工作效率。 The circuit elements of the system of the present invention are not limited to the specific forms recited in the above embodiments, and as will be readily appreciated by those skilled in the art, the selection of the specific forms of these elements is varied. For example, the controller 12 can also be an analog comparison circuit; The circuit detects the operating voltage Uc and the load current Ic at both ends of the motor 11; the power switch unit 13 can also use other types of field effect transistors other than the MOS transistor 131; the swing angle α of the output shaft 2 and the preset speed η of the motor 11 * It is not limited to three types. It is also possible to increase the preset rotation speed η* at the same time as the swing angle α is increased to have higher work efficiency.
多功能机 100 在工作时, 锯片 5 的 负 载通常不是一成不变, 而是 不断变化的。 通过设置稳速控制 系 统, 在锯片 5 的 负 载变化时, 也不 会改变电机 11 的转速, 而是始终使电机 11 的转速保持相对恒定, 从 而使输出轴 2 的摆动频率相对恒定, 进而使锯片 5 具有相对恒定的摆 动频率, 从而 大大提高 了 多功能机 100 的工作效率。  When the multifunction machine 100 is in operation, the load on the saw blade 5 is usually not constant, but is constantly changing. By setting the steady speed control system, when the load of the saw blade 5 changes, the rotational speed of the motor 11 is not changed, but the rotational speed of the motor 11 is always kept relatively constant, so that the swing frequency of the output shaft 2 is relatively constant, thereby The saw blade 5 has a relatively constant oscillation frequency, thereby greatly improving the working efficiency of the multifunction machine 100.

Claims

权 利 要 求 书 一种摆动动力工具, 包括机壳、 设置在机壳内的电机、 由电机驱动的 偏心传动机构, 以及由所述偏心传动机构带动并围绕其 自 身轴线做旋 转往复摆动运动的输出轴, 其特征在于: 所述摆动动力工具包括可驱 动所述偏心传动机构在不同工作模式之间转换的调节装置 以使所述 输出轴具有不同的摆动角度。 The invention relates to an oscillating power tool comprising a casing, a motor disposed in the casing, an eccentric transmission mechanism driven by the motor, and an output shaft driven by the eccentric transmission mechanism and performing a rotary reciprocating oscillating motion about its own axis The oscillating power tool includes an adjustment device that can drive the eccentric transmission to switch between different operating modes such that the output shaft has different oscillating angles.
2. 如权利要求 1 所述的摆动动力工具, 其特征在于: 所述偏心传动机构 包括拨叉和连接在所述电机的电机轴上的驱动件, 所述拨叉的一端连 接在所述输出轴上, 所述拨叉的另一端与所述驱动件相配合, 所述驱 动件可在所述调节装置的带动下与所述拨叉的不同位置配合  2. The oscillating power tool according to claim 1, wherein: the eccentric transmission mechanism includes a shift fork and a driving member connected to a motor shaft of the motor, and one end of the shift fork is connected to the output On the shaft, the other end of the shifting fork cooperates with the driving member, and the driving member can be matched with the different positions of the shifting fork by the adjusting device.
3 . 如权利要求 2所述的摆动动力工具, 其特征在于: 所述拨叉具有与所 述驱动件配合的配合部, 所述配合部沿所述电机轴的轴线方向延伸, 所述调节装置带动所述驱动件沿所述电机轴的轴线相对所述拨叉的配 合部滑动。  The oscillating power tool according to claim 2, wherein: the shifting fork has a fitting portion that cooperates with the driving member, the engaging portion extends in an axial direction of the motor shaft, and the adjusting device The driving member is slid along the axis of the motor shaft with respect to the engaging portion of the fork.
4. 如权利要求 1 所述的摆动动力工具, 其特征在于: 所述偏心传动机构 包括拨叉及间隔连接在所述电机的电机轴上的第一驱动件和第二驱动 件, 所述拨叉上设置有可分別与所述第一驱动件和所述第二驱动件配 合的第一配合部和第二配合部, 所述偏心传动机构具有第一工作模式 和第二工作模式, 当所述偏心传动机构处于第一工作模式时, 所述第 一驱动件与所述拨叉的第一配合部相配合; 在所述偏心传动机构处于 第二工作模式时, 所述第二驱动件与所述拨叉的第二配合部相配合。 4. The oscillating power tool according to claim 1, wherein: said eccentric transmission mechanism comprises a shift fork and a first driving member and a second driving member spaced apart from each other on a motor shaft of said motor, said dialing The fork is provided with a first engaging portion and a second engaging portion respectively engageable with the first driving member and the second driving member, and the eccentric transmission mechanism has a first working mode and a second working mode, When the eccentric transmission mechanism is in the first working mode, the first driving member is matched with the first engaging portion of the shift fork; when the eccentric transmission mechanism is in the second working mode, the second driving member is The second mating portions of the shift forks cooperate.
5 . 如权利要求 2或 4所述的摆动动力工具, 其特征在于: 所述电机轴上 连接有偏心轴, 所述驱动件安装在所述偏心轴上, 所述偏心轴可相对 所述电机轴轴向滑动。 The oscillating power tool according to claim 2 or 4, wherein: the motor shaft is connected with an eccentric shaft, the driving member is mounted on the eccentric shaft, and the eccentric shaft is opposite to the motor The shaft slides axially.
6. 如权利要求 1 所述的摆动动力工具, 其特征在于: 所述调节装置包括 推钮和与所述推钮连接的拨杆, 通过所述推钮可驱动所述拨杆带动所 述驱动件相对所述拨叉移动。  6. The oscillating power tool according to claim 1, wherein: said adjusting device comprises a push button and a lever connected to said push button, said push button driving said lever to drive said drive The piece moves relative to the shift fork.
7. 如权利要求 1 所述的摆动动力工具, 其特征在于: 所述摆动动力工具 设有在所述输出轴的摆动角度变化时调节所述输出轴的摆动频率的调 速装置, 所述调速装置包括档位调节电路和控制器, 当所述输出轴的 摆动角度改变时, 所述控制器通过所述档位调节电路调节所述电机的 转速。 7. The oscillating power tool according to claim 1, wherein: the oscillating power tool is provided with a speed adjusting device that adjusts a swing frequency of the output shaft when a swing angle of the output shaft changes, the adjusting The speed device includes a gear position adjusting circuit and a controller, and the controller adjusts the motor through the gear position adjusting circuit when a swing angle of the output shaft changes Rotating speed.
8 . 如权利要求 1 所述的摆动动力工具, 其特征在于: 所述摆动动力工具 包括电源, 所述电机具有至少一个预设转速, 所述摆动动力工具设置 有使所述电机在所述预设转速下恒定转动的稳速控制系统, 所述稳速 控制 系统包括控制器和用 于连接所述电源和所述电机的动力开关单 元, 所述控制器监测所述电机的工作电压和负载电流, 并根据所述电 机的负载电流计算达到预设转速所需的 目标电压, 调整所述电机的工 作电压至所述目标电压, 使所述电机在预设转速下恒定转动。  8. The oscillating power tool according to claim 1, wherein: said oscillating power tool comprises a power source, said motor has at least one preset rotational speed, and said oscillating power tool is provided with said motor in said pre-preparation a steady speed control system for constant rotation at a rotational speed, the steady speed control system comprising a controller and a power switch unit for connecting the power source and the motor, the controller monitoring an operating voltage and a load current of the motor And calculating a target voltage required to reach the preset speed according to the load current of the motor, adjusting an operating voltage of the motor to the target voltage, so that the motor rotates at a preset speed.
9. 如权利要求 8 所述的摆动动力工具, 其特征在于: 所述电机的预设转 速在每分钟 1 0000转以上。  9. The oscillating power tool according to claim 8, wherein: the preset speed of the motor is more than 10,000 rpm.
1 0.—种摆动动力工具, 包括机壳、 设置在机壳内的电机、 由电机驱动的 偏心传动机构, 以及由所述偏心传动机构带动并围绕其 自 身轴线做往 复摆动运动的输出轴, 其特征在于: 所述偏心传动机构具有至少在两 个工作模式, 所述偏心传动机构位于不同的工作模式时, 所述输出轴 具有不同的摆动角度。  1 0. An oscillating power tool comprising a casing, a motor disposed within the casing, an eccentric transmission mechanism driven by the motor, and an output shaft driven by the eccentric transmission mechanism and reciprocatingly swinging about its own axis, The eccentric transmission mechanism has at least two working modes, and the output shaft has different swing angles when the eccentric transmission mechanism is in different working modes.
PCT/CN2011/080193 2010-10-01 2011-09-27 Oscillating power tool WO2012041211A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010511574.7A CN102441873B (en) 2010-10-01 2010-10-01 Swing-type power tool
CN201010511633.0 2010-10-01
CN201010511627.5A CN102441874B (en) 2010-10-01 2010-10-01 Swing-type power tool
CN201010511574.7 2010-10-01
CN201010511627.5 2010-10-01
CN2010105116330A CN102441875A (en) 2010-10-01 2010-10-01 Power tool and speed stabilizing control system thereof

Publications (1)

Publication Number Publication Date
WO2012041211A1 true WO2012041211A1 (en) 2012-04-05

Family

ID=45891951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080193 WO2012041211A1 (en) 2010-10-01 2011-09-27 Oscillating power tool

Country Status (1)

Country Link
WO (1) WO2012041211A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046541A1 (en) * 2011-09-28 2013-04-04 Hitachi Koki Co., Ltd. Oscillation tool
WO2014108085A1 (en) * 2013-01-09 2014-07-17 Techtronic Power Tools Technology Limited Tool with rotatable head
CN104669218A (en) * 2013-11-29 2015-06-03 苏州宝时得电动工具有限公司 Swing power tool
US10213852B2 (en) 2013-11-29 2019-02-26 Positec Power Tools (Suzhou) Co., Ltd Oscillating power tool
CN109396545A (en) * 2018-11-30 2019-03-01 张家港市创基机械设备制造有限公司 Electric swing saw
US12005560B2 (en) 2019-09-04 2024-06-11 Milwaukee Electric Tool Corporation Oscillating power tool with adjustable angular amplitude of oscillation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441450A (en) * 1993-05-05 1995-08-15 C.&E. Fein Gmbh & Co. Power tool having means to switch from oscillatory movement to rotary movement
US5681213A (en) * 1995-05-16 1997-10-28 Ryobi Limited Sanding tool
CN100575004C (en) * 2003-12-01 2009-12-30 罗伯特·博施有限公司 Hand held power machine
CN201511357U (en) * 2009-09-15 2010-06-23 苏州宝时得电动工具有限公司 Swing power tool
CN201534325U (en) * 2009-07-16 2010-07-28 王亮 Multi-functional electric hand tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441450A (en) * 1993-05-05 1995-08-15 C.&E. Fein Gmbh & Co. Power tool having means to switch from oscillatory movement to rotary movement
US5681213A (en) * 1995-05-16 1997-10-28 Ryobi Limited Sanding tool
CN100575004C (en) * 2003-12-01 2009-12-30 罗伯特·博施有限公司 Hand held power machine
CN201534325U (en) * 2009-07-16 2010-07-28 王亮 Multi-functional electric hand tool
CN201511357U (en) * 2009-09-15 2010-06-23 苏州宝时得电动工具有限公司 Swing power tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046541A1 (en) * 2011-09-28 2013-04-04 Hitachi Koki Co., Ltd. Oscillation tool
US9670998B2 (en) 2011-09-28 2017-06-06 Hitachi Koki Co., Ltd. Oscillation tool
WO2014108085A1 (en) * 2013-01-09 2014-07-17 Techtronic Power Tools Technology Limited Tool with rotatable head
CN104797381A (en) * 2013-01-09 2015-07-22 创科电动工具科技有限公司 Power tool with rotatable head
US9956676B2 (en) 2013-01-09 2018-05-01 Techtronic Power Tools Technology Limited Tool with rotatable head
CN104669218A (en) * 2013-11-29 2015-06-03 苏州宝时得电动工具有限公司 Swing power tool
US10213852B2 (en) 2013-11-29 2019-02-26 Positec Power Tools (Suzhou) Co., Ltd Oscillating power tool
US10821530B2 (en) 2013-11-29 2020-11-03 Positec Power Tools (Suzhou) Co., Ltd. Oscillating power tool
CN109396545A (en) * 2018-11-30 2019-03-01 张家港市创基机械设备制造有限公司 Electric swing saw
US12005560B2 (en) 2019-09-04 2024-06-11 Milwaukee Electric Tool Corporation Oscillating power tool with adjustable angular amplitude of oscillation

Similar Documents

Publication Publication Date Title
WO2012041211A1 (en) Oscillating power tool
CN102441874B (en) Swing-type power tool
US10549396B2 (en) Electric power tool
CN102441873A (en) Swinging power tool
US20160193673A1 (en) Electric power tool
JP2004522154A5 (en)
CN103248299B (en) Method for operating an work tool with an electric motor and a work tool with an electric motor
RU2008130815A (en) AN ELECTRIC TOOTHBRUSH
JP2010284164A (en) Method for controlling reversal of blade of bush cutter
WO2017173705A1 (en) Brushless motor-based, controllable, detachable power apparatus
CN105619342B (en) Electric tool
CN102441875A (en) Power tool and speed stabilizing control system thereof
JP2007083375A (en) Power tool
WO2019210790A1 (en) Electric tool and control method therefor
US9975191B2 (en) Oscillatory drive
JP2010110875A (en) Motor rotation controlling device for driving power tool
CN219946098U (en) Power tool
US5856731A (en) Electric screwdriver
JP2003145447A (en) Electrically-driven tool
US7395875B2 (en) Rechargeable battery-operated hand machine tool
WO2021093514A1 (en) Reciprocating saw
CN114902551A (en) Selectable current limiting for power tools
JP4004999B2 (en) Reciprocating power tool
CN102528766B (en) Multifunctional swing tool provided with stroboscopic part
CN205587771U (en) Simple and easy deburring device of manual formula

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828107

Country of ref document: EP

Kind code of ref document: A1