WO2012041019A1 - 一种含有机质废弃物的两级等离子体气化熔融裂解方法及其装置 - Google Patents
一种含有机质废弃物的两级等离子体气化熔融裂解方法及其装置 Download PDFInfo
- Publication number
- WO2012041019A1 WO2012041019A1 PCT/CN2011/070064 CN2011070064W WO2012041019A1 WO 2012041019 A1 WO2012041019 A1 WO 2012041019A1 CN 2011070064 W CN2011070064 W CN 2011070064W WO 2012041019 A1 WO2012041019 A1 WO 2012041019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- plasma
- magnetic field
- gasification
- magnetic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/005—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/02—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
- C03B5/025—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by arc discharge or plasma heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
- C10J3/18—Continuous processes using electricity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/123—Heating the gasifier by electromagnetic waves, e.g. microwaves
- C10J2300/1238—Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1625—Integration of gasification processes with another plant or parts within the plant with solids treatment
- C10J2300/1628—Ash post-treatment
- C10J2300/1634—Ash vitrification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
Definitions
- the invention relates to a method for treating organic waste, in particular to a two-stage plasma gasification melt cracking method and device for containing organic waste, belonging to the technical field of gasification melt cracking. Background technique
- Chinese invention patent Zhu Tianfan, et al. CN 1935399A an organic waste decomposition treatment method and an organic waste thermal decomposition device, which introduces the release of electrons at a certain temperature for irregular movement, under the action of a permanent magnetic field placed around, excitation Accelerating the spiral motion, with the collision of each other, bombarding the organic matter to produce positive ions and electrons, inducing a corona plasma reaction, and a highly unstable electric field.
- the newly generated positive ions and electrons are randomly multiplied to induce a corona plasma reaction, which causes positive ions and electrons to be generated in the adjacent organic matter, thereby generating a chain corona thermal plasma reaction.
- the organic matter is gasified and decomposed into water vapor, a gas with negative ions, and a small amount of ash with negative ions.
- the air with negative ions After passing through the air magnetizer, the air with negative ions enters the corona plasma reaction region, and under the common excitation of the disturbed original magnetic field and the unstable electric field, turbulence is generated, and the chain corona plasma is promoted to diffuse. Accelerating the gasification of organic matter has achieved good results.
- one of the problems is that it is inconvenient to handle a large amount of inorganic materials, especially ceramics and metal wastes, especially hazardous wastes.
- the second problem is that the reaction temperature is generally 150 ⁇ 650 °C, which is inevitable.
- the third problem is that the air magnetizer is used, and the composition of the air is not changed. A large amount of nitrogen is introduced, which only increases the burden of the subsequent exhaust gas treatment system.
- the fourth problem is that the air magnetizer is weakly magnetic. The ionization of the air is weak, and the pyrolysis rate of the organic matter in the reactor is slow.
- the fifth problem is that the high magnetic energy product permanent magnet does not have a cooling system. It is obvious that the permanent magnet is at a higher temperature due to the Curie point temperature effect. Demagnetization occurs, which directly leads to the deterioration of the effect of magnetron plasma.
- the sixth problem is that the ash produced must be treated extra, especially the enrichment of toxic ash requires special treatment.
- a magnetic fluid and magnetic unit processor is described in Japanese Patent No. 2007-105703, which utilizes the high field strength magnetic field formed by the internal passage of the high magnetic energy product permanent magnet assembly of the HALBACH array.
- the fluid flowing through this channel is magnetized to obtain an active fluid containing ionic properties.
- the fluid is air, air having high reactivity with other substances can be obtained, but the air component is not changed. If applied to the pyrolysis of organic matter, nearly three-quarters of the nitrogen in the air does not play an effective role, but it will impose an unnecessary burden on the subsequent exhaust gas treatment.
- the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a two-stage plasma gasification melt cracking method and device thereof containing organic waste to solve the problem of plasma arc melt cracking treatment containing organic waste. It is a serious shortage of large consumption and fly ash, thus completely maximizing the utilization of organic matter and processing efficiency, thoroughly cracking tar, reducing the probability of generation of dioxins, and obtaining as much as possible high-quality and high calorific value syngas.
- a two-stage plasma gasification melt cracking method containing organic waste and a device thereof, the method comprising: the method comprises a magnetron plasma gasification, a pulse strengthening cyclone effect Self-capturing fly ash vitrification and plasma arc melt cracking to produce syngas, recover precious metals and vitreous; the magnetron plasma gasification is in the inner space of the three-layer furnace shell of the magnetron plasma gasification chamber Set pyroelectric mineral materials such as tourmaline and amethyst and water-cooled high magnetic energy permanent magnets to establish the original magnetic field, while introducing oxygen-enriched air containing low-density plasma, pyroelectric mineral materials emit electrons, bombarding organic matter, induced And or multiply induced chain corona plasma reaction; oxygen-enriched air containing low-density plasma is input into the enhanced chain corona plasma reaction, and the gasification temperature range is 150 ° C to 950 ° C; the pulse-enhanced cyclone effect Self-captured fly ash vitrification and plasma arc melt crack
- the oxygen-enriched air containing a low-density plasma is produced by an oxygen-enriched air generator containing a low-density plasma, which is formed by a magnetic field processor and a multi-stage magnetic field processor.
- Each magnetic field processor is further composed of four magnetic field processing units MM 2 , M 3 , M 4 arranged in a spiral arrangement according to a magnetic field, and each magnetic field processing unit is further insulated from each other by a magnetic isolation plate;
- a field processing unit 8 by the two sizes of high-energy product permanent magnet is arranged in a manner HALBACH, Yamagata pole head disposed within the interior channel has N 2 gas spill passage, there is N 2 diamagnetic substance overflow chevron structure channel, N 2 with a high-energy product spill passage holes in the permanent magnets, the diamagnetic material outside the square pipe overflow path of N 2, the corresponding through.
- the magnetron plasma gasification chamber is provided with a pyroelectric mineral material in the inner layer space of the furnace shell and a vertical strip-shaped water-cooled high magnetic energy product permanent magnet to establish a raw magnetic field, and the inner layer furnace material is made of non-magnetic stainless steel.
- the inner layer furnace material is made of non-magnetic stainless steel.
- There is a vertical strip-shaped grid hole the grid hole length is 10CM-30CM, the grid hole width is 0.1CM-1CM, the distance between each two grid holes is 1CM-10CM; the water-cooled high magnetic energy product permanent magnet is pressed by S and N poles.
- the phase between the adjacent S and N poles is 20-40CM; a through hole is arranged between the adjacent S and N poles, and is connected with an oxygen-enriched air generator containing a low-density plasma outside the furnace shell.
- the multi-function pulse-enhancing cyclone effect chamber is provided with a rotatable large gear above the inner portion thereof, and the rotatable large gear is attached with the furnace dice; the outer air bag is provided with a plurality of venturi nozzles, and the functional pulse-enhanced cyclone effect chamber casing is
- the layer hollow steam generator, the multi-function pulse-enhanced cyclone effect chamber casing is further provided with a left hollow rotating shaft and a right hollow rotating shaft to form a syngas discharge passage.
- At least one DC plasma arc generator and a dragging system thereof are disposed on the outer casing of the plasma arc melting cracking chamber, and the syngas outlet passage of the plasma arc melting cracking chamber passes through the syngas water cooler and the multifunctional
- the right hollow rotating shaft provided on the pulse-enhanced cyclone effect chamber is sealed and docked, and the syngas generated by the plasma arc melting cracking chamber is reliably outputted; the molten metal and the molten glass body are smoothly discharged through the passage; the subsequent syngas purification
- the obtained fly ash can be returned to the plasma arc melt cracking to recover the vitreous body.
- the indoor area of the magnetron plasma is subjected to heat radiation by the lower plasma arc melt cracking, and the magnetic waste containing the less dangerous waste such as garbage incineration fly ash and the synthetic gas purification fly ash is subjected to pelletizing and granulation.
- the plasma chamber is preheated at 100 ° C to 500 ° C, and is subjected to a rotary furnace scorpion control treatment to enter the plasma arc melt cracking zone vitrification and metal melting thereof.
- Two-stage plasma gasification melt cracking which completely exhausts organic wastes, carbonaceous materials, etc., minimizes energy consumption, maximizes syngas production capacity, and recovers available building materials.
- Direct use of glass The glass and precious metals, which make the best use of the materials, completely emit no pollutants and transfer, can meet any strict environmental standards, and are a non-incineration environmentally friendly technology.
- Magnetron plasma gasification reflects the continuous operation design, especially the introduction of low-density plasma oxygen-enriched air, which makes the gasification reaction more efficient.
- the entire reaction unit does not need to add auxiliary fuel, which can realize quick start and quick stop; the scale can be large or small, and it does not affect the efficiency.
- the project implementation period is short, convenient for site selection, and easy for large-scale commercialization.
- Figure 1 is a schematic view showing the structure of a two-stage plasma gasification melt cracking device
- FIGS. 1 and Figure 3 are schematic views of the controllable cloth type silo and its top view
- FIGS. 4 and 5 are schematic views showing the cross section and longitudinal section of the magnetron plasma gasification chamber
- Figure 6 is a schematic cross-sectional view of a magnetic field processing unit containing a low-density plasma oxygen-enriched air generator
- Figure 7 is a schematic diagram of a magnetic field processor including a low-density plasma oxygen-enriched air generator
- FIG. 8 is a schematic diagram of a spiral magnetic field arrangement of four magnetic field processing units ⁇ ⁇ 3 and ⁇ 4 including a low-density plasma oxygen-enriched air generator magnetic field processor;
- Figure 9 is a series diagram of a multi-stage magnetic field processor with a low density plasma oxygen-enriched air generator
- controllable fabric silo, 2 magnetron plasma gasification chamber, 3, multi-function pulse-enhanced cyclone effect chamber, 4-1 and 4-2 are the whole device tiltable left and right hollow shaft Support, 5, plasma arc melting cracking chamber, 6-1 and 6-2 are the overall device pillars.
- Fig. 2 and Fig. 3 101, induced draft fan, 102, fabric roller, 10201, star-shaped arrangement combined material, 10202, universal joint coupling, 10203, variable frequency reducer and its drive motor.
- 201 a hollow outer casing, 202, a liner, 203, a low-density plasma oxygen-enriched air generator, 204, a low-density plasma oxygen-enriched air intake pipe, 205, a water-cooled permanent magnet, 206, Thermocouple, 207, Electrolytic Mineral Material, 208, Magnetron Plasma Gasification Gasification Zone, 209, Magnetron Plasma Gasification Chamber Base Flange, 210, Gasifier Replenishment Port, 211, Magnetron Plasma Gas The top flange of the chamber, 212, sealed viewing window, 213, grid hole, 214, sealed manhole, 215, thermocouple.
- FIG. 12 and Figure 13 501, DC plasma arc generator, 50101, DC plasma arc generator drive system, 502, furnace syngas cooler, 50201, syngas water cooler seal cover, 50202, syngas water cooling Water outlet, 50203, syngas water cooler inlet, 503, furnace potential test lead, 504, manhole, 50401, manhole seal cover, 505, syngas outlet, 506, observation hole channel, 50601, observation Hole seal cover, 507, high temperature camera system, 508, nozzle I slag port, 509, water I slag nozzle, 510, syngas water cooler butt flange, 511, refractory, 512, molten pool, 513, thermoelectric Even, 514, thermocouple.
- the apparatus of the invention comprises four main unit units with a controllable cloth type silo, a magnetron plasma gasification chamber 2, a multi-function pulse-enhancing cyclone effect chamber 3, and a plasma arc melting cracking chamber 5.
- one auxiliary unit is the support structure of the whole device, which further comprises supports 4-1 and 4-2 for the whole device to tilt the left and right hollow shafts, and the whole device pillars 6-1 and 6-2, 4
- the main unit is reliably connected by a flange seal.
- Fig. 2 and Fig. 3 are respectively a front view of the controllable cloth type silo 1 and a plan view thereof.
- an air blower 101 is provided, the function of which is to suck the exhaust gas and dust appearing during the feeding and blanking of the controllable cloth silo 1 into the induced draft fan 101, and send it to In the magnetron plasma gasification chamber 2, the machine-containing waste to be processed is piled up in the upper middle portion of the controllable cloth type silo 1, and the cloth roller with controllable speed is disposed in the lower part of the controllable cloth type silo 1.
- a universal joint coupling 10202 is provided between the 102 and the variable speed reducer and its drive motor system 10203.
- FIGS. 4 and 5 are schematic views showing the cross section and longitudinal section of the magnetron plasma gasification chamber 2.
- the hollow casing 201 and the inner tank 202 together form a three-layer furnace shell.
- the hollow outer casing 201 and the inner tank 202 are filled with a discharge mineral material 207, and the inner tank 202 is provided with a grid-shaped hole 213 at a portion below the filling height of the discharge mineral material 207.
- the electrons that facilitate the release of the electrically conductive mineral material 207 enter the magnetron plasma gasification gasification zone 208.
- a high-energy product water-cooled permanent magnet 205 is disposed between the hollow casing 201 and the inner tank 202, and the water-cooled permanent magnet 205 is disposed between the inner and outer N and S poles of the inner casing 202, and the N and S pole pitches are 20 to 40 CM, thereby
- the ions and electrons entering the magnetic field are spirally moved under the action of Lorentz force, which facilitates multiple bombardment of organic matter. Under the bombardment of ions and electrons, organic matter produces positive and negative ions and electrons, and these positive and negative ions and electrons.
- the magnetron plasma gasification chamber 2 Under the control of the magnetic field, it continues to move under the action of Lorentz force, and then bombards the organic matter again, generating positive and negative ions and electrons again, forming a multiplication-induced corona plasma reaction.
- the silos 1 are connected and the joints ensure a good sealing effect.
- a gasifying agent supply port 210 is provided on the upper side surface of the magnetron plasma gasification chamber 2, and a gasifying agent is added as needed, and the gasifying agent can make oxygen gas, water vapor, or air.
- Thermocouples 206 and 215 are respectively disposed at the middle and the bottom of the magnetron plasma gasification chamber 2 to monitor the temperature of different positions of the magnetron plasma gasification zone, thereby adjusting the amount of gasification agent added or discarded. The height of the addition and the feed rate.
- the upper and lower parts of the 2 are respectively provided with a sealed viewing window 212 and a sealed inspection hole 214, which play an important role in equipment maintenance and observation of waste gasification status.
- the gasification temperature can be controlled from room temperature to 95CTC from top to bottom.
- a low-density plasma oxygen-enriched air generator 203 is connected to the three-layer furnace shell composed of the hollow outer casing 201 and the inner tank 202.
- the generator may be as shown in FIG. 6 or in FIG.
- the multi-stage magnetic field processor shown, each magnetic field processor, is further arranged by four magnetic field processing units M1, M2, M3, M4 according to the spiral advancing magnetic field shown in Fig. 7 and Fig. 8.
- Figure 6 Schematic diagram of the cross-sectional structure of a magnetic field processing unit with a low-density plasma oxygen-enriched air generator
- Figure 7 shows the structure of a magnetic field processor with a low-density plasma oxygen-enriched air generator
- Figure 8 contains a low-density plasma oxygen-enriched air generator.
- FIG. 9 Schematic diagram of the helical magnetic field arrangement of the four magnetic field processing units MM 2 , M 3 , M 4 of the magnetic field processor, and FIG. 9 is a series diagram of the multi-stage magnetic field processor with the low density plasma oxygen-enriched air generator.
- each magnetic field processing unit magnetic pole is composed of two kinds of high magnetic energy product permanent magnets, namely a non-porous permanent magnet 20301, a hole (N 2 overflow channel) permanent magnet 20302, and a non-porous permanent magnet 20301 distribution.
- N 2 overflow channels At the four corners of the magnetic field processing unit, there are holes (N 2 overflow channels).
- the permanent magnets 20302 are distributed in the middle of the four sides of the square, but the direction of magnetization of these perforated (N 2 overflow channels) permanent magnets 20302 Regarding the position, the magnetization directions and arrangement of the non-porous permanent magnets 20301 of the same four corners are also not arbitrary, and the eight permanent magnet combinations are arranged in the HALBACH manner.
- the magnetic field strength of the internal air channel is generally increased by 1.5 to 3 times than that of the conventional arrangement, and a hole (N 2 overflow channel) is provided in the channel.
- N 2 overflow channel anti-magnetic mountain structure 20306, which increases the magnetic field gradient value of this region, where the gradient magnetic field acts, paramagnetic oxygen is concentrated in the channel, and diamagnetic nitrogen by providing the overflow path 2 N 203021 orifice head through the magnetic pole on the permanent magnet hole 2 N 2 N spill passage and a spill passage hole 203051 (2 N spill passage) diamagnetic substance smooth chevron structure overflow 20306203061 Thereby, the accumulation of oxygen is completed; the overflowed nitrogen is collected through the porous (N 2 overflow passage) N 2 overflow passage 203081 of the anti-magnetic plugging plate 20308 overflows the magnetic field processor.
- the four magnetic field processing units are combined into a magnetic field processor according to the internal air presenting swirling manner, and each of the magnetic field processing units is isolated by using a magnetic-resistant insulating plate 20309 to avoid mutual interference of the magnetic fields of the respective units.
- the magnetic field processor adopts a shell anti-magnetic square tube 20304, and the inner shell adopts an antimagnetic perforated ( ⁇ out hole) square tube 20303, which has 203031 outlet holes, and these designs are all smooth on the structure of nitrogen. Guarantee.
- a plurality of magnetic field processors with a magnetic anti-magnetic gas outlet 20312 and an anti-magnetic connecting elbow 20311 to form a multi-stage magnetic field processor.
- the multi-stage magnetic field processor anti-magnetic air intake pipe 20307 is connected with a gas valve 20310, which can effectively control the amount of air entering.
- oxygen Due to the paramagnetism of oxygen and the diamagnetism of gases such as nitrogen, in a gradient magnetic field, oxygen is accumulated, and nitrogen is repelled, and The stronger the magnetic field, the larger the magnetic field gradient, the more favorable it is for the accumulation of oxygen.
- the scientific and technological community has reached a consensus, and the mechanism will not be repeated here.
- oxygen can be activated in a magnetic field to produce a low-density plasma.
- the high magnetic energy product permanent magnets are arranged in a square tube-shaped magnetic field processing unit M1, M2, M3, M4 according to the HALBACH array, so that the magnetic field strength of the internal air channel is increased by 1.5 to 3 times than that of the conventional arrangement, and a mountain shape is set in the channel.
- the magnetic pole head further increases the magnetic field gradient value of the region; the four magnetic field processing units are combined into a magnetic field processor according to the internal air presenting swirling manner, and the magnetic magnetic isolation board 20309 is used for isolation between each magnetic field processing unit. Try to avoid mutual interference of the magnetic fields of each unit. In order to get better processing results, we can also connect multiple magnetic field processors in series to form a multi-stage magnetic field processor.
- the spintronic electrons Because of the fundamental particle-electron spin (self-twisting) movement of the constituent material, the spintronic electrons generate electromagnetic ether to form a magnetic dipole and a magnetic moment, so all the atoms of the chemical element enter a certain intensity of the magnetic field.
- the direction of the magnetic pole and the external magnetic field are opposite, when the magnetic effect reaches or exceeds the ionization energy of the element, the electron can break away from the attraction of the nucleus to become a photoelectron, that is, a quantum transition phenomenon occurs.
- the electrons are excited to bring the ground state of the atom into the excited state, realizing the conversion from magnetic energy to ionization energy.
- the magnetic ionization effect is closely related to the magnetic penetration.
- Magnetic field energy density ' I due to the high magnetic energy accumulation of iron-boron material, the magnetic energy product can increase from 260kJ/M 3 to more than 500 kJ/M 3 with the increase of the content of metal ruthenium, plus the speciality of HALBACH array.
- the magnetic field energy density in the magnetic field processing unit channel here can be as high as 650 kJ/M 3 or more. Since the first ionization energies of oxygen and nitrogen are 13.618eV and 14.53eV, respectively, the first ionization energies of oxygen and nitrogen can be 1313.95kJ/mol and 1401.95kJ/mol, respectively, if other factors are not considered. first ionization nitrogen and oxygen can in turn are converted to 58685.5kJ / NM 3 and 62486.4 kJ / NM 3.
- the magnetic field processing unit channel can provide sufficient magnetic energy for oxygen and nitrogen ionization in the air, that is, about 1% of the air can be ionized in the magnetic field processing unit channel, wherein the oxygen ionization capacity is 1.07 of the nitrogen ionization capacity. Times. If multi-stage treatment is considered, the value of the stepwise addition of oxygen is increased, and a small portion of the ionized oxygen-enriched air has a low-density plasma and active oxygen.
- the oxygen-enriched air containing a low-density plasma is provided for the chain corona plasma reaction through the original oxygen-enriched air generator containing a low-density plasma, and the low density in the oxygen-enriched air Isolate
- the positive and negative ions and free electrons in the daughter body after entering the magnetic field, act as a spiral under the action of Lorentz force, bombard the organic matter, and strengthen the existing corona plasma reaction; in the oxygen-enriched air of low-density plasma Active oxygen, such as singlet oxygen, is converted from ground state oxygen by magnetic energy.
- ⁇ 0 2 state is 93.7kJ (22.4kcal) higher than the ground state oxygen
- l ⁇ g + state is more active than the ground state oxygen 156.9kJ (37.5kcal), which makes The plasma gasification process speeds up.
- the magnetic field processor can enrich and increase oxygen by nearly 1 to 3 percentage points, and the combustion reaction can increase the reaction temperature by about 50 ° C for every 1 percentage point of oxygen in the reaction air, so according to the gasification reaction.
- the required temperature is controlled, and the number of series stages of the magnetic field processor is selected, which is the main reason why the multi-stage magnetic field processor is set as needed here.
- Fig. 10 and Fig. 11 are schematic plan views of the multi-function pulse-enhanced cyclone effect chamber 3 in a front view. It is called multi-functional because it is used as a "furnace waist", which not only plays a role in the upper magnetron plasma gasification chamber 2 and the lower plasma arc melt cracking chamber 5, but also in this The region has also completed three other functions, as follows:
- a hollow water-cooled cross gear support frame 301 penetrating therethrough is disposed on the outer casing double-layered hollow steam generator 307 of the multi-function pulse-enhanced cyclone effect chamber 3, and four gears are supported on the hollow water-cooled cross gear support frame 301.
- the wheel 302 supports a rotatable large gear 303 which is rotated by the pinion drive reduction motor 317 and the pinion 305.
- the spokes 320 are provided on the spokes of the bull gear 302.
- a shifter that rotates in synchronization with the large gear 302 can be provided on the gear center positioning pin 304 as needed to prevent the upper waste from agglomerating during the gasification process.
- the gasification gas generated by the magnetron plasma gasification chamber 2 is drawn down under the negative pressure in the lower plasma arc melting cracking chamber 5, and inorganic substances such as ash and other metals pass through the furnace dike 320 and fall into the lower plasma arc melt cracking.
- Room 5 the organic residue and the long-chain tar and residual carbon that have not been completely vaporized into small molecules also enter the plasma arc melting cracking chamber 5, which is an important furnace for the "burning waist". Isolation.
- a pulse electric venturi nozzle (4 sets) 309 is disposed on the air bag 308 disposed on the double-layered hollow steam generator 307, and the pulse gas can be made of nitrogen gas, water vapor, and or air, and the multi-function pulse is caused by the pulse gas.
- the pulse-enhanced cyclone effect is enhanced in the cyclone effect chamber 3, so that a large amount of dust carried by the gasification gas is retained on the wall of the refractory material, and the residence path of the gasification gas in the device is increased to reach a certain thickness or melting and softening point. Flowing down the furnace wall into the plasma arc melt cracking chamber 5 molten pool 512. This is called pulse-enhanced cyclone effect to complete the main role of intercepting fly ash in the furnace, and at the same time prolong the residence time of the gasification gas.
- the gasification gas generated by the upper magnetron plasma gasification chamber often needs to be reformed, and the superheated steam for reforming is generated in the double-layer hollow steam generator 307, so that the necessary liquid level gauge 314 is disposed thereon.
- Water vapor outlet pipe 306 The cold water supply inlet 319, the hot gas discharge port 321 for adjusting the gas production amount, and the vaporization reforming water vapor inlet 318.
- the apparatus Since the apparatus is arranged to smoothly discharge the molten metal and the vitreous body in the molten pool 512 of the plasma arc melting cracking chamber 5, the entire apparatus is provided with a rotating mechanism, and the rotating shaft is disposed in the outer shell of the multifunctional pulse-enhancing cyclone effect chamber 3.
- the syngas outlet In the generator 307, in order to smoothly integrate the syngas with the syngas purification system, and because the docking position is relatively stationary, the syngas outlet is disposed in the hollow rotating shaft, and the ends of the left and right hollow shafts are each provided with a hollow shaft flange 310. .
- thermocouple 315 is disposed in the left hollow shaft 316 for measuring the temperature in the multi-function pulse-enhanced cyclone effect chamber 3, and a water-cooled vertical syngas channel 312 is disposed in the vicinity of the right hollow shaft 311 of the syngas channel and is connected therethrough, and the water-cooled vertical synthesis Below the gas passage 312, the furnace syngas cooler 502 disposed on the plasma arc melt cracking chamber 5 is sealed and docked.
- FIG. 12 and FIG. 13 are schematic views of a front view and a top view of a plasma arc melting cracking chamber 5, in which a metal is remelted, other inorganic materials are vitrified, and residual organic matter, including intermediate organic tar, is completely cracked into an environmentally friendly small molecule gas.
- CO, H 2 , HC1, etc. residual carbon under the action of water vapor plasma arc, complete conversion or coal gasification reaction, to obtain recoverable precious metals, glass bodies, hydrogen-rich high-energy synthesis gas that can be directly used in building materials, This is also one of the basic points of the present invention.
- a plasma arc melting generator 501 and a dragging system 50101 are disposed on the plasma arc melting cracking chamber 5 to provide a plasma arc high temperature zone of 3000 ° C to 10000 ° C for indoor reaction, and a plasma arc melting cracking chamber is ensured.
- the 5" furnace" temperature is between 1250 ° C and 1550 ° C to ensure that the syngas outlet temperature is 1250 ° C.
- the DC plasma arc generator 501 can use a graphite electrode with a carrier gas such as water vapor in the center with a hole, or a transfer arc or a non-transfer arc water-cooled metal plasma arc torch, and the number of the DC plasma arc generators 501 is at least one.
- a furnace bottom potential test lead 503 is provided in the furnace bottom refractory for extracting the potential signal.
- the syngas outlet passage 505 is disposed on the side wall of the refractory material 511 on the upper side of the molten pool, and is sealed and butted with a syngas water cooler 502, which is provided with a syngas water cooler sealing cover 50201 and a syngas water cooler outlet. 50202, a syngas water cooler inlet 50203, a syngas water cooler docking flange 510.
- an observation hole passage 506, an observation hole sealing cover 50601, and a high temperature imaging system 507 are respectively disposed on the plasma arc melting cracking chamber 5.
- the glass body and the molten metal in the molten pool 512 pass through the 508 nozzle I slag port and the water I slag nozzle 509 to allow the slag gold to be poured with the outflow furnace, and the natural stratification is completed in the ingot mold, and the slag port and the nozzle can be respectively set and poured separately.
- the thermocouple 513 can accurately feed back the average temperature of the plasma arc chamber, and the thermocouple 514 can accurately feed out the temperature of the syngas.
- the plasma arc melting cracking chamber 5 is further provided with an inspection hole 504 through which the inspection hole sealing cover 50401 is reliably sealed.
- the material in the upper magnetron plasma gasification chamber can also be preheated, thus for hazardous wastes containing less organic matter such as waste incineration fly ash and or syngas Purification Fly ash, after pelletizing, can enter the device to preheat 100 ° C ⁇ 500 ° C, through the rotary furnace tweezers control processing speed, into the plasma arc melt cracking zone vitrification and metal melting.
- HHV high calorific value 15MJ/kg, treatment capacity 500kg/hr, composition (%wt): 50C, 7H, 25.70, IN, 0.5S, 0.8C1, 15 ASH (ash), 35Moisture ( Humidity); DC plasma arc power 100 kW; obtaining a glass body of about 75 kg / hr; producing syngas 1200 ° C, 1550 NM 3 / hr, syngas chemical hot dry HHV4.14MJ / NM 3 , wet basis HHV3.39 MJ / NM 3 , sensible heat 2932 MJ / hr; synthesis gas molar ratio (% mol): O.OICH4, 0.00C 2 H 2 , 0.00C 2 H 4 , 13.76CO, 7.82C0 2 ,
- the body arc power is 200kW; the vitreous body is about 240 kg/hr; the syngas is produced at 1200 °C, 2211NM 3 / hr, the syngas is chemically hot-drying HHV (high calorific value) 3.72MJ/NM 3 , wet basis HHV3.02 MJ/ NM 3 , sensible heat 4329 MJ/hr; synthesis gas molar ratio (%mol): O.OICH4, O.OOC2H2, O.OOC2H4, 14.33CO, I I.O2CO2, 11.57H 2 , 0.00HC1, 18.83H 2 0 , 0.04H 2 S, 44.20 N 2 o
- Abandoned computer motherboard with components organic matter is mainly brominated epoxy 40%wt, inorganic oxide 30%wt, metal 30%wt, after two-stage plasma gasification melt cracking treatment, DC plasma arc power consumption At 750 kWh/T, a mixed metal ingot of 295 kg/T is obtained, the metal recovery rate is 98.5%, the vitreous body is about 320 kg/T, and about 40 kg/T of a carbonate-based slag containing K and or Na is required.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Plasma & Fusion (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Plasma Technology (AREA)
- Gasification And Melting Of Waste (AREA)
Description
说明书 一种含有机质废弃物的两级等离子体气化熔融裂解方法及其装置 技术领域
本发明涉及一种含有机质废弃物的的处理方法,具体涉及一种含有机质废弃物的两级 等离子体气化熔融裂解方法及其装置, 属气化熔融裂解技术领域。 背景技术
中国发明专利竹田 繁司等人 CN 1935399A一种有机物垃圾的分解处理方法及有机 物垃圾热分解器,介绍了释电材料在一定温度下释放电子作不规则运动,在周围设置的永 久磁场作用下, 激励加速螺旋运动, 伴随相互撞击, 轰击有机物质产生正离子和电子, 诱 发电晕等离子体反应, 出现极不稳定电场。而新产生的正离子和电子, 又随机地倍增诱发 电晕等离子体反应,使临近有机质产生正离子和电子,从而产生链式电晕热等离子体反应。 进而将有机质气化分解为水蒸气、带有负离子的气体和少量带有负离子的灰烬。经过空气 磁化器, 带有负离子的空气, 进入电晕等离子体反应区域, 在受扰动的原始磁场和不稳定 电场的共同激励下,产生紊流,促进链式电晕等离子体反映扩散开来,加速有机质的气化, 取得了较好的效果。但是出现的问题之一是,不便于处理含有大量无机质尤其是陶瓷和金 属废弃物, 特别是危险废弃物不能处理; 问题之二是由于反应温度一般在 150〜650°C, 会不可避免的产生焦油和二噁英;问题之三是使用得空气磁化器,并没有改变空气的组分, 大量的氮气带入, 只会加重后续尾气处理系统的负担; 问题之四空气磁化器磁性较弱, 使 得空气离子化较弱,反应器中有机质的热解速度缓慢; 问题之五是高磁能积永久磁铁没有 设置冷却系统, 显然永久磁铁由于居里点温度效应, 长期处于较高温度下, 会发生退磁, 直接会导致磁控等离子体效果的衰退; 问题之六, 所产灰渣必需额外处理, 特别是富集毒 性灰渣更需特殊处理。
国际专利山本 正一的 W0 2009/08463 K 日本专利青木 硕志等人的特开 2010-58103 与河源 武史等人的特开 2008-175511、 中国专利平久井健三的 CN 201069309Y和原田义 和等人的 CN2860646Y基本原理与中国发明专利竹田 繁司等人 CN 1935399A相似, 只是 反应器结构上有区别, 仍都存在上述六大问题, 即使经过结构上改进, 可以处理一些带有 少数量无机物质组分的废弃物,但得到的含有金属、陶瓷等混合灰渣仍需要后续工艺特别
处理。
日本专利中岛 和也等人的特开 2007-105703 中介绍了一种磁流体和磁单元处理器, 主要利用了 HALBACH阵列的高磁能积永久磁体组合体内部通道形成的高场强磁场, 将 流经此通道的流体进行磁化, 得到含有离子特性的活性流体。 比如, 此流体是空气, 则可 以得到与其它物质反应活性高的空气,但是空气组分并没有改变。如果应用到有机物质的 热解方面, 则占有空气的近 3/4的氮气几乎没有起到有效的作用, 反而会给后续尾气处理 带来不必要的负担。
本人的中国专利 CN 101088581、 CN 101648200和 CN 201496973U 中注重的是将废弃 物直接一步进入等离子体弧区熔融裂解, 虽然可一步回收金属、 玻璃体和合成气, 但是电 能消耗较高, 而且飞灰量较大, 如果后续燃气发电, 可能发出的电力不能自给自足。 发明内容
本发明的目的是为克服上述现有技术的不足之处,提供一种含有机质废弃物的两级等 离子体气化熔融裂解方法及其装置,以解决等离子体弧熔融裂解处理含有机质废物的能耗 大、飞灰多的严重不足, 从而彻底达到最大化的利用有机物质能和处理效率、彻底裂解焦 油、减少二噁英的生成几率、尽可能多的得到高品质高热值合成气, 为后续气化发电、氢 能回收或绿色液体燃料的生产提供保障,同时完成一步回收贵重金属和可以直接利用建材 领域的玻璃体,为含有机质废弃物质能大规模的商业化开发和应用打下基础, 同时彻底解 决有机质气化特别是危险废弃物气化过程中可能的污染物的排放问题。
本发明是以如下技术方案实现的:一种含有机质废弃物的两级等离子体气化熔融裂解 方法及其装置, 其特征是: 所述的方法包括磁控等离子体气化、脉冲强化旋风效应自主捕 获飞灰玻璃化和等离子体弧熔融裂解, 生成合成气、 回收贵重金属和玻璃体; 所述的磁控 等离子体气化是在磁控等离子体气化室的三层炉壳的内层空间设置热释电矿物材料如电 气石和或紫水晶等物质以及水冷高磁能积永久磁体建立原始磁场,同时通入含有低密度等 离子体的富氧空气, 热释电矿物材料发射电子, 轰击有机质, 诱发和或倍增诱发链式电晕 等离子体反应;含有低密度等离子体的富氧空气输入强化链式电晕等离子体反应,气化温 度区间 150°C〜950°C ; 所述的脉冲强化旋风效应自主捕获飞灰玻璃化区域温度区间 950 °C〜1250°C ; 所述的等离子体弧熔融裂解温度区间 1250°C〜1550°C, 物料通过可控布料 式料仓均匀进入磁控等离子体气化室内,气化得到的气化气及残余物穿过多功能脉冲强化 旋风效应室, 捕获飞灰玻璃化, 最后进入等离子体弧熔融裂解室, 得到的熔融玻璃体和液
态金属通过通道排出体外,得到的合成气穿过通道进入合成气水冷器,排入可倾转中空轴, 进而在密封条件下, 引入合成气净化系统回收利用。
所述的含有低密度等离子体的富氧空气是由含有低密度等离子体的富氧空气发生器 产生,所述的富氧空气发生器是由磁场处理器和或多级磁场处理器串联而成,每个磁场处 理器又由 4个磁场处理单元 M M2、 M3、 M4按照磁场螺旋式布置串接而成, 每个磁场 处理单元之间又有抗磁质隔离板相互进行隔离;每个磁场处理单元由 8块两种尺寸规格的 高磁能积永久磁体按照 HALBACH方式排列, 在内部气体通道内设置的山形磁极头上有 N2溢出通道, 抗磁质山形结构体上有 N2溢出通道, 高磁能积永久磁体上的有 N2溢出通 道孔, 外面的抗磁材料方管的 N2溢出通道, 对应贯通。
所述的磁控等离子体气化室在炉壳的内层空间设置热释电矿物材料以及竖条形水冷 高磁能积永久磁体建立原始磁场,所述的内层炉胆材料采用无磁不锈钢,其上设置有竖条 状栅形孔, 栅形孔长度 10CM-30CM , 栅形孔宽度 0.1CM-1CM , 每两个栅形孔间距 1CM-10CM; 水冷高磁能积永久磁体按 S、 N极相间而设, 相邻 S、 N极相距 20-40CM; 相邻 S、 N极之间设置一个通孔, 并与炉壳外面的含有低密度等离子体的富氧空气发生器 相连接。
所述的多功能脉冲强化旋风效应室在其内部上方设置有可旋转大齿轮,可旋转大齿轮 附着有炉箅子;外部气囊中设置有多个文丘里喷嘴,功能脉冲强化旋风效应室外壳为层中 空蒸气产生器,多功能脉冲强化旋风效应室外壳上还设置有左中空旋转轴、右中空旋转轴, 形成合成气排出通道。
所述的等离子体弧熔融裂解室的外壳上设置至少 1个直流等离子体弧发生器及其拖动 系统,所述等离子体弧熔融裂解室的合成气出炉通道通过出炉合成气水冷器与多功能脉冲 强化旋风效应室上设置的右中空旋转轴进行密封对接,可靠的把等离子体弧熔融裂解室产 生的合成气对外输出;金属熔体和或熔融玻璃体经通道顺利排出体外;后续的合成气净化 得到的飞灰可以返回重新进行等离子体弧熔融裂解, 回收玻璃体。
所述的磁控等离子体室内区域受到下部等离子体弧熔融裂解热量辐射,对于含有机质 较少的危险废弃物如垃圾焚烧飞灰和或合成气净化飞灰,经过造球制粒,进入磁控等离子 体室内预热 100°C〜500°C, 经过旋转炉箅子调控处理, 进入等离子体弧熔融裂解区域玻 璃化及其金属熔融。
本发明的优点是: (1 )两级等离子体气化熔融裂解, 使得含有机物废弃物、含碳物质 等得到彻底气化, 能耗最小化, 合成气产能最大化, 同时回收可供建材领域直接利用的玻
璃体以及贵重金属, 物尽其用, 彻底无污染物排放和转移, 能满足任何严格的环保标准, 是一项非焚烧的环保型技术。
( 2)磁控等离子体气化反映连续运行设计, 特别是低密度等离子体富氧空气的通入, 使得气化反应达到高效化。
( 3 ) 气化气下行快速升温持续分解, 脉动强化旋风效应设计, 使得烟气中的飞灰类 留在炉内完成玻璃化, 未完成气化物质、 中间产物包括焦油类物质继续分解。
(4) 所有上述两步处理未彻底的物质, 彻底裂解为对环境友善的小分子气体, 熔融 玻璃化, 金属熔融化, 残碳彻底气化, 都能在下部高温等离子体弧熔融裂解区域, 得到圆 满解决; 进而使得到的合成气能量最大化, 最大化地提高有机质的气化效率。在此需要特 别指出的是, 合成气中由原料裂解而得到的 HC1、 S02等酸性气体分子, 可以很轻松的在 后续合成气净化中通过碱性中和处理而转化为盐类回收;后续净化合成气产生的飞灰可以 返回等离子体弧二次熔融裂解, 从而彻底达到污染物零排放。
( 5 ) 整个反应装置无需添加辅助燃料, 可实现快速启动快速停止; 规模可大可小, 不影响效率。
(6) 资源化利用程度高, 排出物全部是有价值产品。
( 7) 项目实施周期短, 方便选址, 易于大规模的商业化普及。
(8)应用领域广阔, 可广泛处理: 生物质、 含碳物料包括能源物质、 含有机质废弃物 及危险废弃物等,对相对湿度大,物料来源复杂或者各类高危险如医疗垃圾和难分解的废 弃物如含有 12种持久性有机污染物 (POPs ) 的废弃物, 同样可以高效处理。 附图说明
图 1是两级等离子体气化熔融裂解装置结构示意图;
图 2与图 3 是可控布料式料仓正视及其俯视结构示意图;
图 4与图 5 是磁控等离子体气化室横截面和纵剖面结构示意图;
图 6 是含有低密度等离子体富氧空气发生器磁场处理单元横截面结构示意图; 图 7 是含有低密度等离子体富氧空气发生器磁场处理器结构示意图;
图 8 是含有低密度等离子体富氧空气发生器磁场处理器的 4个磁场处理单元 Μ^Μ^ Μ3、 Μ4的螺旋式磁场布置示意图;
图 9是含有低密度等离子体富氧空气发生器多级磁场处理器串联示意图;
图 10与图 11多功能脉冲强化旋风效应室正视俯视结构示意图;
图 12与图 13 等离子体弧熔融裂解室正视与俯视结构示意图;
图 1 中, 1、 可控布料式料仓, 2、 磁控等离子体气化室, 3、 多功能脉冲强化旋风效 应室, 4-1与 4-2分别是整体装置可倾转左右中空轴支座, 5、等离子体弧熔融裂解室, 6-1 与 6-2分别是整体装置支柱。
图 2与图 3中, 101、 引风机, 102、 布料辊, 10201、 星型布置组合拨料齿, 10202、 万向节式联轴器, 10203、 变频减速机及其驱动电机。
图 4与图 5中, 201、 中空外壳, 202、 内胆, 203、 含有低密度等离子体富氧空气发 生器, 204、 低密度等离子体富氧空气进气管, 205、 水冷永久磁体, 206、 热电偶, 207、 释电矿物材料, 208、 磁控等离子体气化气化区域, 209、 磁控等离子体气化室底座法兰, 210、 气化剂补给口, 211、 磁控等离子体气化室顶部法兰, 212、 密封式瞭望窗口, 213、 栅形孔, 214、 密封式检修孔, 215、 热电偶。
图 6、 7、 8、 9中, 20301、 无孔永久磁体, 20302、 有孔 (N2溢出通道)永久磁体, 203021、 N2溢出通道, 20303、抗磁有孔(N2溢出孔)方管, 203031、 N2溢出孔, 20304、 抗磁方管, 20305、 有孔 (N2溢出通道) 山形磁极头, 203051 、 N2溢出通道, 20306、 有 孔(N2溢出通道)抗磁质山形结构体, 203061 N2溢出通道, 20307、抗磁质进气管, 20308、 有孔(N2溢出通道)抗磁质封堵板, 203081、 N2溢出通道, 20309、抗磁质隔离板, 20310、 气阀, 20311、 抗磁质连接弯管, 20312、 抗磁质出气管。
图 10与图 11中, 301、 中空水冷十字齿轮支持架, 302、 齿轮支持轮(共 4个), 303、 大齿轮, 304、 齿轮中心定位销, 305、 小齿轮, 306、 水蒸气出口管, 307、 双层中空蒸汽 产生器, 308、 气囊, 309、 脉冲电动文丘里喷嘴 (4套), 310、 中空轴法兰, 311、 右中 空轴 (合成气通道), 312、 水冷垂直合成气通道, 313、 法兰, 314、 液位计, 315、 热电 偶, 316、 左中空轴, 317、 小齿轮驱动减速电机, 318、 气化气重整用气入口, 319、 冷水 补入口, 320、 炉箅子, 321、 热水排出口。
图 12与图 13中, 501、 直流等离子体弧发生器, 50101、 直流等离子体弧发生器拖 动系统, 502、 出炉合成气水冷器, 50201、 合成气水冷器密封盖, 50202、 合成气水冷器 出水口, 50203、合成气水冷器进水口, 503、炉底电位测试引出极, 504、检修孔, 50401、 检修孔密封盖, 505、 合成气出炉通道, 506、 观测孔通道, 50601、 观测孔密封盖, 507、 高温摄像系统, 508、 水口 I渣口通道, 509、 水 I渣咀, 510、 合成气水冷器对接法兰, 511、 耐火材料, 512、 熔池, 513、 测温热电偶, 514、 测温热电偶。
具体实施方式
下面结合附图对本发明作进一步详细说明:
如图 1所示, 该发明装置包括 4个主体单元有顶部的可控布料式料仓 1、 磁控等离子 体气化室 2、 多功能脉冲强化旋风效应室 3、 等离子体弧熔融裂解室 5, 和 1个辅助单元 为整体装置的支撑结构, 它又包括可供整体装置可倾转左右中空轴的支座 4-1及 4-2、 整 体装置支柱 6-1及 6-2, 4个主体单元之间通过法兰密封可靠连接。
图 2、 图 3分别是可控布料式料仓 1的正视及其俯视结构示意图。 在可控布料式料仓 1的顶端侧面, 设置 1个引风机 101, 其功能是将可控布料式料仓 1进料和落料时出现的 废气和粉尘吸入引风机 101, 并将之送入磁控等离子体气化室 2中, 在可控布料式料仓 1 的中上部堆积要处理的含有机废弃物,在可控布料式料仓 1的下部,设置有可控速度的布 料辊 102, 其上设置有星型布置组合拨料齿 10201, 用于将袋装废弃物的包装勾刺破袋, 同时兼有撕碎撕散功能并完成均匀布料。由于布料辊 102根据物料的不同,要求它具有一 定的退让和访卡死功能, 因此可以将布料辊 102 两端正支撑轴承座可以设计成可退让结 构, 为了满足其相对柔性运转, 特别在布料辊 102与变频减速机及其驱动电机系统 10203 之间设置万向节式联轴器 10202。
图 4与图 5是磁控等离子体气化室 2横截面和纵剖面结构示意图。中空外壳 201和内 胆 202共同组成三层炉壳, 在中空外壳 201和内胆 202之间填充有释电矿物材料 207, 内 胆 202在释电矿物材料 207填充高度以下部位设置栅形孔 213,便于释电矿物材料 207溢 出的电子进入磁控等离子体气化气化区域 208。在中空外壳 201和内胆 202之间设置高磁 能积的水冷永久磁体 205, 并且水冷永久磁体 205在内胆 202的内侧 N、 S极相间而设, N、 S极间距 20〜40CM, 从而使得进入磁场区域的离子、 电子在洛仑兹力作用下, 呈螺旋 式运动, 便于多次轰击有机质, 有机质在离子、 电子的轰击下, 产生正、 负离子及电子, 同时这些正、 负离子及电子, 在磁场控制下, 又继续在洛仑兹力作用下, 呈螺旋式运动, 再次轰击有机质, 再次产生正、 负离子及电子, 形成倍增诱发电晕等离子体反应。磁控等 离子体气化室 2, 通过磁控等离子体气化室底座法兰 209、 磁控等离子体气化室顶部法兰 211用螺栓分别与多功能脉冲强化旋风效应室 3和可控布料式料仓 1相连接,连接处保证 良好的密封效果。在磁控等离子体气化室 2的上部侧面设置气化剂补给口 210, 根据需要 添加气化剂, 气化剂可以使氧气、水蒸汽和或空气等。在磁控等离子体气化室 2的中部和 底部分别设置热电偶 206和 215,以便对磁控等离子体气化区域的不同位置进行测温监控, 进而可以调节气化剂的加入量和或废弃物的加入高度和进料速度。在磁控等离子体气化室
2的上、 下部分别设置有密封式瞭望窗口 212、 密封式检修孔 214, 对于设备维护和废弃 物气化状况观察都起到了重要作用。
磁控等离子体气化区域内, 气化温度从上至下可以控制在室温〜 95CTC范围内。
在由中空外壳 201和内胆 202共同组成三层炉壳上连接有含有低密度等离子体富氧空 气发生器 203 , 该发生器根据需要可以是图 6中所示的, 也可以是图 9中所示多级磁场 处理器, 每个磁场处理器, 又由 4个磁场处理单元 Ml、 M2、 M3、 M4按照图 7、 图 8所 示螺旋式前进状磁场布置而成。 图 6 含有低密度等离子体富氧空气发生器磁场处理单元 横截面结构示意图, 图 7 含有低密度等离子体富氧空气发生器磁场处理器结构示意图, 图 8 含有低密度等离子体富氧空气发生器磁场处理器的 4个磁场处理单元 M M2、 M3、 M4的螺旋式磁场布置示意图, 图 9是含有低密度等离子体富氧空气发生器多级磁场处理 器串联示意图。 如图 7所示, 每个磁场处理单元磁极由两种高磁能积永久磁体组合而成, 分别是无孔永久磁体 20301、 有孔 (N2溢出通道) 永久磁体 20302, 无孔永久磁体 20301 分布在磁场处理单元的 4个角部, 有孔(N2溢出通道)永久磁体 20302分布在正方形的 4 个边的中部, 但这些有孔(N2溢出通道)永久磁体 20302的充磁方向与所处的位置有关, 同样 4个角部的无孔永久磁体 20301的充磁方向及其布置也并非随便, 8块永久磁体组合 是按照 HALBACH方式排列的。 为了使磁场单元处理器内部通道中磁场达到最强, 一般 使得内部空气通道磁场强度比常规排列方式磁场强度增至 1.5〜3倍, 在此通道内设置有 孔 (N2溢出通道) 山形磁极头 20305, 和有孔 (N2溢出通道) 抗磁质山形结构体 20306, 更加增大了此区域的磁场梯度值, 在此处梯度磁场作用, 顺磁性氧气聚集于通道之中, 而 抗磁性氮气则通过设置在永久磁体上 N2溢出通道 203021与磁极头贯穿的小孔 N2溢出通 道 203051和有孔(N2溢出通道)抗磁质山形结构体 20306上小孔 N2溢出通道 203061顺 利溢出, 从而完成氧气的聚集; 溢出的氮气汇集通过有孔 (N2溢出通道) 抗磁质封堵板 20308的 N2溢出通道 203081溢出磁场处理器。 4个磁场处理单元按照内部空气呈现旋流 方式组合为磁场处理器,在每个磁场处理单元之间采用抗磁质隔离板 20309进行隔离,尽 量避免各单元磁场的相互干扰。 磁场处理器的采用外壳抗磁方管 20304 , 内壳采用抗磁 有孔 (Ν^≤出孔) 方管 20303, 其上有 203031 出孔, 这些设计均是为氮气的顺利外 排的结构上的保证。为了得到较好的处理效果,我们还可以将多个磁场处理器用抗磁质出 气管 20312及抗磁质连接弯管 20311相互连接,形成多级磁场处理器。多级磁场处理器抗 磁质进气管 20307连接有气阀 20310, 可以对空气的进入量进行有效的控制。
由于氧气顺磁性和氮气等气体的抗磁性, 在梯度磁场中, 聚集氧气, 排斥氮气, 而且
磁场越强, 磁场梯度越大, 越有利于氧气的聚集, 科技界已成共识, 在此不再重复介绍其 机理。但是在磁场中可以使氧气得到活化, 产生低密度等离子体, 还鲜为人知。将高磁能 积永久磁体按照 HALBACH阵列排列成方形管段状磁场处理单元 Ml、 M2、 M3、 M4, 使得内部空气通道磁场强度比常规排列方式磁场强度增至 1.5〜3倍, 在此通道内设置山 形磁极头, 更加增大了此区域的磁场梯度值; 4个磁场处理单元按照内部空气呈现旋流方 式组合为磁场处理器,在每个磁场处理单元之间采用抗磁质隔离板 20309进行隔离,尽量 避免各单元磁场的相互干扰。为了得到较好的处理效果,我们还可以将多个磁场处理器串 联形成多级磁场处理器。
由于构成物质的基本粒子——电子自旋(自禀)运动, 导致自旋电子产生电磁以太蜗 旋形成磁偶极和磁矩, 因此所有化学元素的原子进入一定强度的磁场中, 当电子自旋磁极 和外磁场的方向相反时,在磁力作用效应达到或超过该元素的电离能时, 电子就可以挣脱 原子核的吸引成为光电子, 即产生量子跃迁现象。 电子受激发使原子的基态进入激发态, 实现了从磁能到电离能的转化, 显然, 磁的电离效应与磁的穿透作用有密切的联系。 磁场磁能的计算公式是 W = j'ii >H, 其中 W表示磁场磁能, H、 B分别为磁场强 度和磁感应强度,积分遍及磁场存在的空间,这表明可以将磁场存在的空间分成无数体积 元, 即每个体积元的磁能为 dv, 总的磁能则是他们的求和 (积分)。 磁场能量密度 ' I , 由于高磁能积钕铁硼材料, 随着金属钕的含量增加, 磁能积从 260kJ/M3已 经可以增到 500 kJ/M3以上, 再加上 HALBACH阵列的特殊性, 这里的磁场处理单元通道 内的磁场能量密度已可高达 650 kJ/M3以上。 又由于氧元素和氮元素的第一电离能分别为 13.618eV 和 14.53eV, 换算可得氧元素和氮元素的第一电离能分别为 1313.95kJ/mol 和 1401.95kJ/mol , 如不考虑其它因素, 氧元素和氮元素的第一电离能又可分别换算为 58685.5kJ/NM3和 62486.4 kJ/NM3。 显然该磁场处理单元通道内可以为空气中氧气和氮气 电离提供了足够的磁能, 也就是说, 在该磁场处理单元通道内可以电离约 1%的空气, 其 中氧气电离能力是氮气电离能力的 1.07倍。 如果考虑多级处理, 在加上氧气的逐级含量 数值增加, 小部分电离后的富氧空气, 出现了低密度等离子体和活性氧。
作为气化反应基本热量的保证, 通过独创的含有低密度等离子体的富氧空气发生器, 为链式电晕等离子体反应提供含有低密度等离子体的富氧空气,富氧空气中的低密度等离
子体中的正负离子、 自由电子在进入磁场后, 在洛伦兹力作用下, 作螺旋式运动, 轰击有 机质, 强化了已有的电晕等离子体反应; 低密度等离子体的富氧空气中活性氧, 如单线态 氧 (singlet oxygen), 它是基态氧接受了磁能而转变成的。 单线态氧有两种: §02状态比 基态氧的能量高出 93.7kJ(22.4kcal) ; l∑g+状态则更活泼比基态氧的能量高出 156.9kJ (37.5kcal), 从而更使得等离子体气化进程加快了速度。
一般情况下, 该磁场处理器可以富集增加氧气近 1〜3个百分点, 而燃烧反应中参与 反应空气中每增加 1个百分点氧气, 就可以增加反应温度约 50°C, 所以根据气化反应所 需控制温度,选择磁场处理器的串联级数,这也就是此处根据需要设置多级磁场处理器的 主要原因。
图 10与图 11是多功能脉冲强化旋风效应室 3正视俯视结构示意图。之所以称之为多 功能, 是因为, 在这里作为 "炉腰", 它不仅对上部的磁控等离子体气化室 2和下部等离 子体弧熔融裂解室 5起到承上启下的作用,而且在这个区域还完成了另外 3项功能,具体 说明如下:
在多功能脉冲强化旋风效应室 3的外壳双层中空蒸汽产生器 307上设置了与其相贯通 的中空水冷十字齿轮支持架 301,在这个中空水冷十字齿轮支持架 301之上通过设置 4个 齿轮支持轮 302支撑着可以旋转的大齿轮 303, 在小齿轮驱动减速电机 317和小齿轮 305 的驱动下, 大齿轮 302得以旋转。 大齿轮 302的轮辐上设置有带有炉箅子 320。 在齿轮中 心定位销 304上根据需要, 可以设置与大齿轮 302 同步旋转的拨料器, 以防止上部废弃 物在气化过程中结块。磁控等离子体气化室 2产生的气化气在下部等离子体弧熔融裂解室 5内负压牵引下下行, 灰烬及其它金属等无机物通过炉箅子 320, 落入下部等离子体弧熔 融裂解室 5, 未彻底气化成小分子的有机物残物及中间长链焦油、残碳也随之进入等离子 体弧熔融裂解室 5, 这是作为 "炉腰"起到的承上启下的重要的炉箅子隔离作用。
双层中空蒸汽产生器 307上设置的气囊 308上, 布置有脉冲电动文丘里喷嘴 (4套) 309, 脉冲气体可以采用氮气、 水蒸气、 和或空气, 在脉冲气体作用下, 使得多功能脉冲 强化旋风效应室 3中呈现脉冲强化旋风效应,使得气化气携带的大量粉尘滞留于耐火材料 炉壁上, 同时增长了气化气在装置内的停留路径, 达到一定厚度或熔化、 软化点, 沿炉壁 流下进入等离子体弧熔融裂解室 5熔池 512。这称之为脉冲强化旋风效应完成炉内拦截飞 灰主要作用, 同时延长气化气的炉内停留时间。
上部磁控等离子体气化室产生的气化气往往需要重整,作为重整用过热水蒸气的产生 便在双层中空蒸汽产生器 307里, 所以其上设置必须的液位计 314、 水蒸气出口管 306、
冷水补入口 319、 调整产气量用热水排出口 321, 气化重整用水蒸气入口 318。
由于本装置为了使等离子体弧熔融裂解室 5熔池 512 中的金属熔体和玻璃体出炉顺 畅,整个装置设置旋转机构,旋转轴就设置在多功能脉冲强化旋风效应室 3的外壳双层中 空蒸汽产生器 307上,为了使合成气顺利与合成气净化系统对接,又由于对接位置要相对 静止, 将合成气出口设置在中空旋转轴内, 左右中空轴的端部均设有中空轴法兰 310。 左 中空轴 316内设置热电偶 315, 用于测量多功能脉冲强化旋风效应室 3内温度, 作为合成 气通道右中空轴 311附近又设置水冷垂直合成气通道 312并与之贯通,而水冷垂直合成气 通道 312下方与等离子体弧熔融裂解室 5上设置的出炉合成气水冷器 502实现密封对接。
图 12与图 13是等离子体弧熔融裂解室 5正视与俯视结构示意图, 在此室内, 金属重 熔,其他无机物玻璃化,残余有机物包括中间有机物焦油等彻底裂解为对环境友善的小分 子气体 CO、 H2、 HC1等, 残碳在水蒸气等离子体弧作用下, 完成彻底转化和或煤气化反 应, 得到可回收的贵重金属、 可直接用于建材领域的玻璃体、 富氢高能合成气, 这也是本 发明的基本点之一。
在等离子体弧熔融裂解室 5上设置有直流等离子体弧发生器 501及其拖动系统 50101, 为室内反应提供 3000°C〜10000°C的等离子体弧高温区,保障等离子体弧熔融裂解室 5"炉 膛"温度在 1250°C〜1550°C,保证合成气出炉温度为 1250°C。直流等离子体弧发生器 501 可以使用中心带孔通入水蒸汽等载气的石墨电极,也可以使用转移弧或非转移弧水冷金属 等离子体弧炬,直流等离子体弧发生器 501数量至少 1个,为了调节多个直流等离子体弧 发生器与熔池的距离, 在炉底耐火材料中设置炉底电位测试引出极 503, 用于取出电位信 号。合成气出炉通道 505设置在熔池上方侧面耐火材料 511炉壁上,与之密封对接的是的 出炉合成气水冷器 502,其上设有合成气水冷器密封盖 50201、合成气水冷器出水口 50202、 合成气水冷器进水口 50203、 合成气水冷器对接法兰 510。 为了设备运行时便于控制, 在 等离子体弧熔融裂解室 5上还分别设置有观测孔通道 506, 观测孔密封盖 50601, 高温摄 像系统 507。 熔池 512中玻璃体以及金属熔体通过 508 水口 I渣口通道和水 I渣咀 509 允许渣金同流出炉浇注,在锭模中完成自然分层,也可以分别设置渣口和水口,分别浇注。 测温热电偶 513可以准确反馈出等离子体弧室平均温度,测温热电偶 514可以准确反馈出 合成气的出炉温度。 为了便于检修, 在等离子体弧熔融裂解室 5上还设置有检修孔 504, 其上通过检修孔密封盖 50401进行可靠密封。
特别说明, 由于下部等离子体弧热量辐射和传导,在上部的磁控等离子体气化室的物 料还可以接受预热,因此对于含有机质较少的危险废弃物如垃圾焚烧飞灰和或合成气净化
飞灰, 经过造球制粒, 可以进入装置预热 100°C〜500°C, 经过旋转炉箅子调控处理速度, 进入等离子体弧熔融裂解区域玻璃化及其金属熔融。
实施例 1、
医疗废弃物, 热值 HHV (高位热值) 15MJ/kg, 处理量 500kg/hr, 成份(%wt): 50C, 7H, 25.70, IN, 0.5S, 0.8C1, 15 ASH (灰分), 35Moisture (湿度); 直流等离子体弧功 率 lOOkW; 得到玻璃体约 75 kg/hr; 产生合成气 1200 °C, 1550NM3/ hr, 合成气化学热干 基 HHV4.14MJ/NM3,湿基 HHV3.39 MJ/NM3,显热 2932 MJ/ hr; 合成气摩尔比(% mol): O.OICH4, 0.00C2H2, 0.00C2H4, 13.76CO, 7.82C02,
15.17H2, 0.12HC1, 18.19H20, 0.08H2S, 44.87N2; 合成气净化利用后尾气二噁英排放量 < 0.1 ng I-TEQ/NM3 o
实施例 2、
稻壳, 热值 HHV (高位热值) 10.2MJ/kg, 处理量, 1000kg/hr, 成份(%wt): 32.4C, 4.6H, 38.50, 0.6N, 0.2S, 23.7ASH, 15Moisture; 直流等离子体弧功率 200kW; 得到玻 璃体约 240 kg/hr; 产生合成气 1200 °C, 2211NM3/ hr, 合成气化学热干基 HHV (高位热 值) 3.72MJ/NM3, 湿基 HHV3.02 MJ/NM3, 显热 4329 MJ/ hr; 合成气摩尔比 (%mol): O.OICH4, O.OOC2H2, O.OOC2H4, 14.33CO, I I.O2CO2 , 11.57H2, 0.00HC1, 18.83H20, 0.04H2S, 44.20 N2 o
实施例 3、
带元器件的废弃电脑主板, 有机物主要是溴化环氧树脂 40%wt, 无机氧化物 30%wt, 金属 30%wt, 经两级等离子体气化熔融裂解处理, 直流等离子体弧功率消耗约为 750kWh/T, 可得到混合金属锭 295kg/T, 金属回收率 98.5%, 玻璃体约 320 kg/T, 需要约 40 kg/T含 K和或 Na的碳酸盐类稀渣剂。
实施例 4、
生活垃圾焚烧飞灰, 经制粒 3-10mm, 制粒时加入适量碱金属和或碱土金属的化合物 稀渣剂, 经本装置处理后, 飞灰中的二噁英类有机物裂解去除率 99.9999%, 电耗约 650kWh/T o
综上所述, 仅为本发明的较佳实施方案及实施例, 并不能以此限定本发明实施范围, 依照本发明的技术方案及说明书内容所作的等效变化与修饰, 皆属于本发明涵盖的范围。
Claims
1、 一种含有机质废弃物的两级等离子体气化熔融裂解方法, 其特征是: 所述的方法包括 磁控等离子体气化、脉冲强化旋风效应自主捕获飞灰玻璃化和等离子体弧熔融裂解, 生成 合成气、 回收贵重金属和玻璃体; 所述的磁控等离子体气化是在磁控等离子体气化室(2) 的三层炉壳的内层空间设置有热释电矿物材料以及水冷高磁能积永久磁体建立原始磁场, 同时通入含有低密度等离子体的富氧空气, 热释电矿物材料发射电子, 轰击有机质, 诱发 和 /或倍增诱发链式电晕等离子体反应; 含有低密度等离子体的富氧空气输入进行强化链 式电晕等离子体反应, 控制气化温度区间 150°C〜950°C ; 所述的脉冲强化旋风效应自主 捕获飞灰玻璃化区域温度区间 950°C〜1250°C ;所述的等离子体弧熔融裂解温度区间 1250 °C〜1550°C, 物料通过可控布料式料仓 (1 )均匀进入磁控等离子体气化室 (2 ) 内, 气化 得到的气化气及残余物穿过多功能脉冲强化旋风效应室(3), 捕获飞灰玻璃化, 最后进入 等离子体弧熔融裂解室 (5), 得到的熔融玻璃体和液态金属通过通道 (508 ) 排出体外, 得到的合成气穿过通道 (505 ) 进入合成气水冷器 (502), 排入可倾转中空轴 (311 ), 进 而在密封条件下, 引入合成气净化系统回收利用。
2、 根据权利要求 1所述的方法, 其特征是: 所述的含有低密度等离子体的富氧空气是由 含有低密度等离子体的富氧空气发生器(203 )产生, 所述的富氧空气发生器(203 )是由 磁场处理器和或多级磁场处理器串联而成, 每个磁场处理器又由 4个磁场处理单元 Mi、 M2、 M3、 M4按照磁场螺旋式布置串接而成, 每个磁场处理单元之间又有抗磁质隔离板
( 20309 ) 相互进行隔离; 每个磁场处理单元由 8 块两种尺寸规格的高磁能积永久磁体 ( 20301 )、 ( 20302 ) 按照 HALBACH 方式排列, 在内部气体通道内设置的山形磁极头 (20305 ) 上有 N2溢出通道 (203051 ), 抗磁质山形结构体 (20306 ) 上有 N2溢出通道 (203061 ), 高磁能积永久磁体 (20302) 上的有 N2溢出通道孔 (203021 ), 外面的抗磁材 料方管 (20303 ) 的 N2溢出通道 (203031 ), 对应贯通。
3、 根据权利要求 1所述的方法, 其特征是: 所述的磁控等离子体气化室 (2)在炉壳的内 层空间设置热释电矿物材料(207 ) 以及竖条形水冷高磁能积永久磁体(205 )建立原始磁 场, 所述的内层炉胆 (202) 材料采用无磁不锈钢, 其上设置有竖条状栅形孔 (213), 栅 形孔长度 10CM-30CM, 栅形孔宽度 0.1CM-1CM, 每两个栅形孔间距 1CM-10CM; 水冷 高磁能积永久磁体 (205 ) 按3、 N极相间而设, 相邻 S、 N极相距 20-40CM; 相邻 S、 N 极之间设置一个通孔(204),并与炉壳外面的含有低密度等离子体的富氧空气发生器 (203 ) 相连接。
4、 根据权利要求 1所述的方法, 其特征是: 所述的多功能脉冲强化旋风效应室 (3)在其 内部上方设置有可旋转大齿轮 (303), 可旋转大齿轮 (303) 附着有炉箅子 (320); 外部 气囊 (308) 中设置有多个文丘里喷嘴 (309), 功能脉冲强化旋风效应室 (3)外壳为层中 空蒸气产生器 (307),多功能脉冲强化旋风效应室(3)外壳上还设置有左中空旋转轴(316)、 右中空旋转轴 (311 ), 形成合成气排出通道。
5、 根据权利要求 1所述的方法, 其特征是: 所述的等离子体弧熔融裂解室 (5) 的外壳上 设置至少 1个直流等离子体弧发生器 (501 ) 及其拖动系统 (50101 ), 所述等离子体弧熔 融裂解室 (5) 的合成气出炉通道 (505 ) 通过出炉合成气水冷器 (502) 与多功能脉冲强 化旋风效应室 (3) 上设置的右中空旋转轴 (311 )进行密封对接, 可靠的把等离子体弧熔 融裂解室 (5)产生的合成气对外输出; 金属熔体和或熔融玻璃体经通道 (508)顺利排出 体外;后续的合成气净化得到的飞灰可以返回重新进行等离子体弧熔融裂解,回收玻璃体。
6、 根据权利要求 1所述的方法, 其特征是: 所述的磁控等离子体室 (2) 内区域 (208) 受到下部等离子体弧熔融裂解热量辐射,对于含有机质较少的危险废弃物如垃圾焚烧飞灰 和或合成气净化飞灰, 经过造球制粒, 进入磁控等离子体室 (2) 内预热 100°C〜500°C, 经过旋转炉箅子 (320) 调控处理, 进入等离子体弧熔融裂解区域玻璃化及其金属熔融。
7、 一种含有机质废弃物的两级等离子体气化熔融裂解装置, 其特征是它包括:
一可控布料式料仓(1 ), 在该可控布料式料仓 1的顶端侧面设置有将可控布料式料仓 1进料和落料时出现的废气和粉尘吸入并将之送入下部的磁控等离子体气化室 2中的引风 机 101, 在该可控布料式料仓 1的下部设置有可控速度的布料辊 102, 布料辊 102上设置 有用于将袋装废弃物的包装勾刺破袋, 同时兼有撕碎撕散功能并完成均匀布料的星型布置 组合拨料齿 10201 ;
一磁控等离子体气化室 (2), 该磁控等离子体气化室 (2) 设有三层炉壳, 所述三层 炉壳的内层空间设置有热释电矿物材料、建立原始磁场的水冷高磁能积永久磁体以及能产 生含有低密度等离子体的富氧空气的富氧空气发生器 (203);
一多功能脉冲强化旋风效应室 (3 ), 多功能脉冲强化旋风效应室 (3) 与前述的磁控 等离子体气化室 (2)密封相通, 在多功能脉冲强化旋风效应室 (3) 的内部上方设置有可 旋转大齿轮 (303), 可旋转大齿轮 (303) 附着有炉箅子 (320); 外部气囊 (308) 中设置 有多个文丘里喷嘴(309),功能脉冲强化旋风效应室(3)外壳为层中空蒸气产生器(307), 多功能脉冲强化旋风效应室(3)外壳上还设置有左中空旋转轴(316)、右中空旋转轴(311 ), 形成合成气排出通道;
一等离子体弧熔融裂解室 (5 ), 该等离子体弧熔融裂解室 (5 ) 的外壳上设置至少 1 个直流等离子体弧发生器(501 )及其拖动系统(50101 ), 所述等离子体弧熔融裂解室(5 ) 的合成气出炉通道(505 )通过出炉合成气水冷器(502)与多功能脉冲强化旋风效应室(3 ) 上设置的右中空旋转轴 (311 )进行密封对接, 可靠的把等离子体弧熔融裂解室 (5 )产生 的合成气对外输出; 金属熔体和或熔融玻璃体经通道 (508 ) 顺利排出体外;
一为整体装置进行支撑结构的辅助单元, 该辅助单元包括可供整体装置可倾转左右的 中空轴的支座 4-1及 4-2、 整体装置支柱 6-1及 6-2。
8、 根据权利要求 7所述的装置, 其特征是所述的富氧空气发生器(203 )是由磁场处理器 和或多级磁场处理器串联而成, 每个磁场处理器又由 4个磁场处理单元 Mi、 M2、 M3、 M4按照磁场螺旋式布置串接而成, 每个磁场处理单元之间又有抗磁质隔离板(20309)相 互进行隔离; 每个磁场处理单元由 8 块两种尺寸规格的高磁能积永久磁体 (20301 )、
(20302) 按照 HALBACH方式排列, 在内部气体通道内设置的山形磁极头 (20305 ) 上 有 N2溢出通道 (203051 ), 抗磁质山形结构体 (20306) 上有 N2溢出通道 (203061 ), 高 磁能积永久磁体(20302)上的有 N2溢出通道孔(203021 ), 外面的抗磁材料方管(20303 ) 的 N2溢出通道 (203031 ), 对应贯通。
9、 根据权利要求 7所述的装置, 其特征是: 所述的磁控等离子体气化室 (2)在炉壳的内 层空间设置热释电矿物材料(207 ) 以及竖条形水冷高磁能积永久磁体(205 )建立原始磁 场, 所述的内层炉胆 (202) 材料采用无磁不锈钢, 其上设置有竖条状栅形孔 (213), 栅 形孔长度 10CM-30CM, 栅形孔宽度 0.1CM-1CM, 每两个栅形孔间距 1CM-10CM; 水冷 高磁能积永久磁体 (205 ) 按3、 N极相间而设, 相邻 S、 N极相距 20-40CM; 相邻 S、 N 极之间设置一个通孔(204),并与炉壳外面的含有低密度等离子体的富氧空气发生器 (203 ) 相连接。
10、 根据权利要求 7所述的装置, 其特征是: 所述的磁控等离子体室 (2) 内区域 (208 ) 受到下部等离子体弧熔融裂解热量辐射,对于含有机质较少的危险废弃物如垃圾焚烧飞灰 和或合成气净化飞灰, 经过造球制粒, 进入磁控等离子体室 (2) 内预热 100°C〜500°C, 经过旋转炉箅子 (320) 调控处理, 进入等离子体弧熔融裂解区域玻璃化及其金属熔融。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010505509.3 | 2010-09-28 | ||
CN2010105055093A CN102000691B (zh) | 2010-09-28 | 2010-09-28 | 一种含有机质废弃物的两级等离子体气化熔融裂解方法及其装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012041019A1 true WO2012041019A1 (zh) | 2012-04-05 |
Family
ID=43808538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/070064 WO2012041019A1 (zh) | 2010-09-28 | 2011-01-06 | 一种含有机质废弃物的两级等离子体气化熔融裂解方法及其装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102000691B (zh) |
WO (1) | WO2012041019A1 (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102665066A (zh) * | 2012-04-23 | 2012-09-12 | 上海金匙环保科技股份有限公司 | 废弃物裂解炉监控系统 |
CN103316899B (zh) * | 2013-07-08 | 2016-07-06 | 苑忠宝 | 一种生活垃圾闪蒸矿化处理器箱体 |
CN105135434B (zh) * | 2015-08-04 | 2017-10-10 | 上海交通大学 | 生活垃圾的低二噁英等离子气化‑燃烧一体化转化装置 |
US9518733B1 (en) * | 2016-02-24 | 2016-12-13 | Amen Dhyllon | Furnace apparatus |
KR101704768B1 (ko) * | 2016-05-12 | 2017-02-09 | 에코트리젠 주식회사 | 초전효과를 이용하는 가스화장치 |
CN107043642B (zh) * | 2017-03-17 | 2019-12-03 | 山东省科学院能源研究所 | 一种生物质燃气焦油组分去除装置 |
CN107216916B (zh) * | 2017-07-21 | 2019-08-16 | 东莞中普环境科技有限公司 | 一种固体垃圾等离子气化裂解再生转化方法 |
CN107755407B (zh) * | 2017-08-09 | 2020-06-16 | 北京国电富通科技发展有限责任公司 | 有机危废的无害化资源化处理装置及其处理方法 |
CN107559834A (zh) * | 2017-08-16 | 2018-01-09 | 神雾科技集团股份有限公司 | 一种等离子垃圾处理系统及处理垃圾的方法 |
CN109365488B (zh) * | 2018-12-03 | 2024-02-23 | 广西昇跃环保科技有限公司 | 一种生活垃圾闪蒸矿化处理器 |
CN110695057B (zh) * | 2019-10-20 | 2021-07-27 | 航天神禾(北京)环保有限公司 | 油泥裂解处理方法 |
CN110695056B (zh) * | 2019-10-20 | 2021-07-30 | 航天神禾(北京)环保有限公司 | 油泥裂解处理装置 |
CN110695055B (zh) * | 2019-10-20 | 2021-08-13 | 航天神禾(北京)环保有限公司 | 赤泥裂解处理方法 |
CN112792091A (zh) * | 2020-12-15 | 2021-05-14 | 西安交通大学 | 一种垃圾飞灰资源化利用无害化处理系统及处理方法 |
CN112664945A (zh) * | 2021-01-15 | 2021-04-16 | 清华大学 | 医疗废弃物处理设备的反应装置及操作方法 |
CN112797412A (zh) * | 2021-01-15 | 2021-05-14 | 清华大学 | 医疗废弃物处理方法 |
CN112980477A (zh) * | 2021-02-05 | 2021-06-18 | 中科云越(北京)科技发展有限公司 | 分布式热等离子体炬的生物质连续高效热裂解气化装置 |
CN114165788A (zh) * | 2021-11-16 | 2022-03-11 | 领航国创等离子技术研究院(北京)有限公司 | 可燃性固体废物的等离子体气化熔融处理系统及工艺 |
CN114350409B (zh) * | 2021-12-28 | 2022-08-23 | 宁波中能连通机械有限公司 | 负氧离子中低温气化无害化的固体废弃物处理系统和方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431612A (en) * | 1982-06-03 | 1984-02-14 | Electro-Petroleum, Inc. | Apparatus for the decomposition of hazardous materials and the like |
CN1057010A (zh) * | 1989-09-15 | 1991-12-18 | 体系创新工程股份有限公司 | 将有害物变成惰性固体的系统和方法 |
CN1935399A (zh) * | 2006-07-27 | 2007-03-28 | 竹田繁司 | 一种有机物垃圾的分解处理方法及有机物垃圾热分解器 |
CN101648200A (zh) * | 2009-07-15 | 2010-02-17 | 徐州市润博等离子体环保设备有限公司 | 废弃物等离子体弧辅助加热熔融裂解处理方法与装置 |
CN201496973U (zh) * | 2009-07-15 | 2010-06-02 | 徐州市润博等离子体环保设备有限公司 | 废弃物等离子体弧辅助熔融裂解处理装置 |
CN201807601U (zh) * | 2010-09-28 | 2011-04-27 | 徐州市润博等离子体环保设备有限公司 | 一种含有机质废弃物的两级等离子体气化熔融裂解装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2860646Y (zh) * | 2005-09-24 | 2007-01-24 | 原田义和 | 磁能有机物分解处理器 |
JP2007105703A (ja) * | 2005-10-17 | 2007-04-26 | Sasaya:Kk | 古い綿布団の処理方法、及び植物苗形成シート |
JP2008175511A (ja) * | 2007-01-22 | 2008-07-31 | Takeshi Kawahara | 廃棄物処理装置 |
CN201069309Y (zh) * | 2007-07-27 | 2008-06-04 | 平久井健三 | 塑胶废品磁力低温热分解炉 |
CN102036760A (zh) * | 2007-12-27 | 2011-04-27 | 山本正一 | 处理物的低温分解处理方法及装置 |
JP2010058103A (ja) * | 2008-09-01 | 2010-03-18 | Eco Clean Eiko:Kk | 磁気空気作用による有機物熱分解装置 |
-
2010
- 2010-09-28 CN CN2010105055093A patent/CN102000691B/zh not_active Expired - Fee Related
-
2011
- 2011-01-06 WO PCT/CN2011/070064 patent/WO2012041019A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431612A (en) * | 1982-06-03 | 1984-02-14 | Electro-Petroleum, Inc. | Apparatus for the decomposition of hazardous materials and the like |
CN1057010A (zh) * | 1989-09-15 | 1991-12-18 | 体系创新工程股份有限公司 | 将有害物变成惰性固体的系统和方法 |
CN1935399A (zh) * | 2006-07-27 | 2007-03-28 | 竹田繁司 | 一种有机物垃圾的分解处理方法及有机物垃圾热分解器 |
CN101648200A (zh) * | 2009-07-15 | 2010-02-17 | 徐州市润博等离子体环保设备有限公司 | 废弃物等离子体弧辅助加热熔融裂解处理方法与装置 |
CN201496973U (zh) * | 2009-07-15 | 2010-06-02 | 徐州市润博等离子体环保设备有限公司 | 废弃物等离子体弧辅助熔融裂解处理装置 |
CN201807601U (zh) * | 2010-09-28 | 2011-04-27 | 徐州市润博等离子体环保设备有限公司 | 一种含有机质废弃物的两级等离子体气化熔融裂解装置 |
Non-Patent Citations (1)
Title |
---|
XIE HONG ET AL.: "Application of Plasma Technology in Treatment of High-risk Litter.", CHINA RESOURCES COMPREHENSIVE UTILIZATION., vol. 27, no. 7, July 2009 (2009-07-01), pages 44 * |
Also Published As
Publication number | Publication date |
---|---|
CN102000691B (zh) | 2013-07-10 |
CN102000691A (zh) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012041019A1 (zh) | 一种含有机质废弃物的两级等离子体气化熔融裂解方法及其装置 | |
Sikarwar et al. | Progress in waste utilization via thermal plasma | |
Changming et al. | Plasma methods for metals recovery from metal–containing waste | |
CN101695704B (zh) | 热等离子体处置固体废弃物的装置与方法 | |
US7752983B2 (en) | Method and apparatus for plasma gasification of waste materials | |
CN103666580B (zh) | 一种耦合式生物质加压热解工艺及系统 | |
US20120031232A1 (en) | Method and Apparatus For Coproduction of Pig Iron and High Quality Syngas | |
RU2190030C2 (ru) | Способ получения магния | |
WO2013106004A1 (en) | Multi-ring plasma pyrolysis chamber | |
CN104479756A (zh) | 一种废弃印刷线路板的水蒸气气化分离装置及方法 | |
WO2004048851A1 (en) | Integrated plasma-frequency induction process for waste treatment, resource recovery and apparatus for realizing same | |
CN216144143U (zh) | 一种废钢回收处理装置 | |
WO2021208481A1 (zh) | 一种基于自持阴燃的有机废弃物热解制油设备及方法 | |
CN201807601U (zh) | 一种含有机质废弃物的两级等离子体气化熔融裂解装置 | |
CN204325282U (zh) | 等离子辅助垃圾流化床气化系统 | |
CN207831365U (zh) | 处理废物的装置 | |
WO2004044492A1 (en) | Method and device for integrated plasma-melt treatment of wastes | |
CN108735399A (zh) | 基于热解熔析原理对废线路板/废漆包线的连续处理设备 | |
CN111549195B (zh) | 一种等离子快速气化热解医疗垃圾还原铁矿粉工艺及系统 | |
CN214078432U (zh) | 一种有机废物处理装置 | |
CN206405152U (zh) | 一种固渣分离的电子垃圾热解装置 | |
CN203582820U (zh) | 一种耦合式生物质加压热解系统 | |
Boulos et al. | Plasma In The Waste Treatment Industry | |
CN105861006B (zh) | 一种基于高电压电解式生物质加压热解工艺 | |
WO2007097729A1 (fr) | Installation énergétique technologique destinée au traitement de carburant solide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11827917 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11827917 Country of ref document: EP Kind code of ref document: A1 |