WO2012040009A2 - Methods of preventing shorting in an electrified animal deterrent device - Google Patents

Methods of preventing shorting in an electrified animal deterrent device Download PDF

Info

Publication number
WO2012040009A2
WO2012040009A2 PCT/US2011/051513 US2011051513W WO2012040009A2 WO 2012040009 A2 WO2012040009 A2 WO 2012040009A2 US 2011051513 W US2011051513 W US 2011051513W WO 2012040009 A2 WO2012040009 A2 WO 2012040009A2
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
traces
conductive
conductive trace
shape
Prior art date
Application number
PCT/US2011/051513
Other languages
French (fr)
Other versions
WO2012040009A3 (en
Inventor
Bruce Donoho
Original Assignee
Bird-B-Gone, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/890,328 external-priority patent/US7937885B2/en
Priority claimed from US13/043,204 external-priority patent/US8015747B2/en
Application filed by Bird-B-Gone, Inc. filed Critical Bird-B-Gone, Inc.
Publication of WO2012040009A2 publication Critical patent/WO2012040009A2/en
Publication of WO2012040009A3 publication Critical patent/WO2012040009A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/24Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves
    • A01M29/26Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves specially adapted for birds, e.g. electrified rods, cords or strips

Definitions

  • the field of the invention is animal deterrents, and especially as they relate to bird deterrents.
  • a blanket can be configured to include a plurality of vertically arranged and spaced apart electrodes as described in U.S. Pat. No. 6,925,748. While such devices may protect a relatively large area, numerous disadvantages remain. Among other things, pooling of water must be avoided at all times to allow for continuous operation. Moreover, as such devices are typically flexible, inadvertent short circuiting may occur by folding or bending a portion of the blanket.
  • conductive traces are mounted to an elevated carrier portion that includes spaces to allow for drainage and flexible installation as shown in U.S. Pat. No. 6,283,064 and U.S. Pat. No. 6,928,768. While such devices are often more reliable than known devices when exposed to moisture or droppings, other disadvantages arise. For example, due to the raised position of the wires, installation is frequently esthetically less pleasing than relatively flat rail-type structures. Moreover, positioning of the wires is at a fixed distance and in a manner that will allow at least some birds to perch in a position in which the bird will not receive the electrical impulse or current.
  • the present invention is directed to configurations and methods for animal deterring devices in which at least two electrically conductive traces are mounted on a carrier and in which the two traces are separated by an arc suppressor.
  • an animal deterring device comprises a stripe-shaped carrier having a first conductive trace that is separated from a second conductive trace by an umbrelloid arc suppressor, wherein the carrier has a cutout that is configured to allow bending of the device and wherein the device has a height to width ratio between 1 :5 and 1 :2.
  • the carrier in such devices is fabricated from a flexible material, and/or that the carrier has one or more cutouts that are configured to allow bending of the device (e.g., to accommodate horizontal and/or vertical curvature).
  • exemplary umbrelloid arc suppressors may have a T-shape, a stemmed inverted U- shape, or a stemmed inverted V-shape.
  • the arc suppressor is continuous along the length of the carrier, and that at least one of the first and second conductive traces are continuous along the length of the carrier.
  • at least part of the carrier and/or at least part of the arc suppressor is angled, wherein the angle is selected such that when the device is installed on a horizontal surface water runs off the angled part.
  • the first and second conductive traces are spaced apart at a distance that allows formation of an electric circuit via a foot of a bird (e.g., adult pigeon or adult seagull).
  • Figure 1A is a perspective view of one exemplary device according to the inventive subject matter.
  • Figure IB is a vertical cross sectional view of the exemplary device of Figure 1A.
  • Figures 2A to 2D are exemplary alternative shapes for contemplated umbrelloid arc suppressors.
  • Figures 3A-3B are perspective and vertical cross-sectional views, respectively, of another embodiment of a bird deterrent device.
  • Figure 3C is a perspective view of the bird deterrent device of Figure 3 A.
  • animal deterring devices can be manufactured in which at least two electrically conductive traces are mounted on a carrier and in which the two traces are separated by an arc suppressor.
  • the arc suppressor in contemplated devices will have an umbrelloid shape and/or a configuration effective to increase creep distance between the first and second conductive traces by at least 1.5 times.
  • Figure 1A One exemplary embodiment is depicted in Figure 1A in which the device 100A has a rail shape.
  • carrier 102 A is typically manufactured from a thermoplastic elastomer or rubber-containing compound to which the conductive traces 120A and 122A are coupled (e.g., glued, stapled, sewn, etc.).
  • the traces 120A and 122A are separated by the arc suppressor 1 10A that has an umbrelloid shape (here: T-shape).
  • the traces may be coupled to the carrier on a horizontal or angled (104A) surface as shown in Figure 1A.
  • the carrier may further include one or more cutouts 106A (shown in dashed lines), which are most preferably configured such that the device can be bent sideways while resting on a horizontal surface without warping of the carrier. It should be noted that the shape of the arc suppressor will generate a space 1 12A that is protected from contact with conductive material falling vertically (and even from falling at an angle of up to 45 degrees, and more) onto the device.
  • the shape of the arc suppressor will also provide for a vertical clearance (i.e., empty space between the shortest vertical distance between at least one of the conductive traces and the top surface of the device or the arc suppressor) that is effective in disrupting a conductive film, flow, and/or layer between the traces.
  • a vertical clearance i.e., empty space between the shortest vertical distance between at least one of the conductive traces and the top surface of the device or the arc suppressor
  • the carrier 102B will have a strip or otherwise elongated configuration, and is most preferably relatively flat such that the device can be bent, or even provided in a rolled-up configuration.
  • Figure IB depicts a vertical cross section of the device in which the carrier 102B has an angled section 104B and a horizontal section onto which the conductive traces 120B and 122B are mounted. Between the traces is the arc suppressor HOB. It should be recognized that contemplated devices may not only have an arc suppressor that separates the first and second conductive traces, but may also have an (second) arc suppressor that separates at least one of the conductive traces from the material upon which the device is mounted (e.g., metal roof).
  • the second suppressor will have a downward facing surface that forms in combination with another surface an edge or other protruding shape from which water, condensation, or other liquid will run off.
  • a metal wire of other deformable material may be included to maintain a particular shape where the carrier is intentionally deformed.
  • the shape of the arc suppressor will elongate the creep distance between the conductive traces at least 1.5 times, thereby preventing all or almost all circumstances where moisture, dew, or rain may cause short- circuiting.
  • the term “creep distance” refers to a distance that is measured between two points on a body when following the shortest path between those points along the surface of that body.
  • the term “umbrelloid shape” refers to any shape of an element that is coupled to the device where that element has a downward facing surface portion when the device is installed on a horizontal surface.
  • the downward facing portion is contiguous with an upward facing portion, and the element will therefore have a sharp angled or rounded edge from which water or other fluids can drip off.
  • elements with umbrelloid shape will generally have a downward facing portion and an upward facing portion that are either substantially parallel (+/- 15 degrees), or form an angle between 15 and less than 90 degrees.
  • Exemplary umbrelloid shapes are depicted in Figures 2A to 2D. Suitable umbrelloid shapes therefore especially include a T-shape, a stemmed inverted U-shape, and a stemmed inverted V-shape.
  • the carrier may be fabricated from numerous materials, including natural and synthetic materials, wood, glass, metals and metal alloys, and all reasonable combination thereof. However, especially preferred materials include those that provide sufficient flexibility to the carrier to allow the carrier to conform to uneven surfaces. Most preferably, the carrier is soft enough to be manually deformed. It is also noted that where the carrier is especially pliable, a desired form may be retained by inclusion of a more resilient element within or coupled to the carrier. For example, contemplated carriers may include a metal wire or other deformable element that assists the carrier to maintain a desired configuration.
  • the carrier material is non-conductive and that the conductive traces are coupled to the carrier in a relatively simple manner (e.g., via gluing, sewing, stapling, etc.).
  • the carrier may also be made from, or include a conductive material. In such devices, it is then contemplated that only one conductive trace may be needed, and that such trace is typically coupled to the carrier via an insulator.
  • the carrier is generally flat (i.e., has a width and length that is larger than the height) and configured as a stripe or has an otherwise elongated structure, wherein the particular width and height are in most circumstances determined by the size of bird or other animal that is to be deterred.
  • the carrier will be configured such that entire device has a height to width ratio between 1 :5 and 1 :2, and more typically between 1 :4 and 1 :3.
  • suitable carriers may have a width between 1 cm and 10 cm, more typically between 2 cm and 7 cm, and most typically between 3 cm and 5 cm.
  • the length of such devices is generally determined by the desired overall length of the device or device segment and may therefore vary between several cm and several meters and even longer.
  • contemplated devices will generally be between 1 mm and 3 cm, and more typically between 3 mm and 1 cm.
  • Further contemplated carriers may include one or more cutouts having a size that allows side-to-side flexing of the carrier.
  • cutouts may be formed to allow positioning the carrier in a 90 degree angle with a radius of less than 20 cm, more preferably less than 15 cm, and most preferably less than 10 cm.
  • First and second conductive traces are typically spaced apart at a distance that allows formation of an electric circuit when a foot of a bird (e.g., an adult pigeon, an adult seagull) rests on the device. Therefore, and depending on the particular bird, suitable distances between first and second traces will be between 5 mm and 2 cm, and more typically between 7 mm and 1.5 cm.
  • the first and second conductive traces are parallel to the arc suppressor, and/or at least one of the first and second conductive traces are continuous along substantially (+/- 5%) the entire length of the carrier.
  • at one part of the carrier is angled to a degree such that when the device is installed on a horizontal surface water runs off the angled part.
  • the angled part may include the portion to which the trace is coupled, and/or a portion between conductive trace and the arc suppressor or the outer edge of the carrier.
  • the arc suppressor has an umbrelloid shape and is continuous along the length of the carrier. While there are numerous alternative configurations are contemplated for the arc suppressor, it is generally preferred that the arc suppressor increases the creep distance at least 1.5 times, more typically at least 1.7 times, even more typically at least 2.0 times, and most typically at least 2.2 time. In especially preferred aspects, the arc suppressor has an umbrelloid shape and a height to width ratio between 1 : and 1 : 1, and more typically between 1 :6 and 1 : 1.
  • contemplated arc suppressors generally include stemmed structures in which a first generally vertical element carries a horizontal or curved element to form a T-shape, a stemmed inverted V-shape, a stemmed inverted U-shape, or an otherwise stemmed structure that has at least one generally horizontally extending protrusion.
  • a vertical gap will be formed between at least part of the arc suppressor and the portion of the carrier to which the traces are coupled, and that such gap will assist in breaking a layer of conductive material that extends across the device.
  • Further alternative arc suppressors will resemble in shape insulator chains as known from high voltage power lines.
  • the arc suppressor is continuous along substantially the entire length (+/- 5%) of the carrier.
  • at least part of the arc suppressor may be angled, wherein the angle is selected such that when the device is installed on a horizontal surface water runs off the angled part. Therefore, particularly preferred devices will have a stripe-shaped carrier having a first conductive trace that is separated from a second conductive trace by an umbrelloid arc suppressor, wherein the device has a height to width ratio between 1 :5 and 1 :2.
  • FIG. 3A - 3C Another embodiment of a bird deterrent device 300 is shown in Figures 3A - 3C, in which the device 300 has an elongated carrier 302, to which conductive traces 320 and 322 can be coupled using any commercially suitable fastener(s) including, for example, glues and other adhesives, and metal and plastic staples, thread, and other mechanical fasteners, and any combination(s) thereof.
  • Carrier 302 can be manufactured from a thermoplastic elastomer or rubber-containing compound, or other commercially suitable materials or combinations thereof. In preferred embodiments, the carrier 302 is relatively flat such that the device 300 can be bent, or even provided in a rolled-up configuration.
  • Traces 330 and 332 are preferably knitted, such as those described in U.S. patent publ. no. 2010/0180490 to Donoho, although braided traces are also contemplated.
  • each of the conductive traces 320 and 322 are coupled to carrier 302 by threads 330 and 332, respectively.
  • the traces 320 and 322 may be coupled to the carrier 302 on a horizontal surface or an angled surface 304, and are preferably disposed over glue troughs 340 and 342, respectively.
  • the first trace 320 is coupled to the carrier 302 by a thread 330 that extends from the first trace 320 to the first glue trough 340 to form first and second stitches 350 and 352, respectively
  • the second trace 322 is coupled to the carrier 302 by a thread 332 that extends from the second trace 322 to the second glue trough 342 to form third and fourth stitches 354 and 356, respectively.
  • Sewing traces 320 and 322 to the carrier 302 advantageously allows the traces 320 and 322 to flex as the carrier 302 flexes. Furthermore, sewing the traces 320 and 322 to glue troughs 340 and 342 rather than the bottom of carrier 302 advantageously raises the stitches 350 and 352 from the bottom of carrier 302, which ensures that that an accumulation of water beneath the carrier 302 will not short the traces 320 and 322 due to absorption of water by thread 330 and/or 332.
  • glue can be disposed in glue troughs 340 and 342 to attach the carrier 302 to a surface, which can create a barrier between any accumulated water and stitches 354 and 356 to further prevent water from being absorbed by, and seeping up, threads 330 and 332. In this manner, shorting of one or both of traces 320 and 322 can be prevented because water is prevented from seeping up threads 330 and 332. If the threads 330 and 332 were otherwise extended to a bottom of carrier 302, rain or other sources of water could be absorbed by, and seep up, thread 330 or 332, which could cause trace 320 or 322 to short.
  • the traces 320 and 322 can be coupled to the carrier 302 using plastic thread, metal staples, or plastic staples, for example, which would also prevent water from seeping up the fasteners.
  • the traces 320 and 322 can be separated by an arc suppressor 310 having an T-shape, although other umbrelloid shapes or other commercially suitable shapes could be used that are sufficient to prevent the traces 320 and 322 from arching. It should be noted that the shape of the arc suppressor 310 can advantageously generate a space 1 12A that is protected from contact with conductive material falling vertically (and even from falling at an angle of up to 45 degrees, and more) onto the device 300.
  • the shape of the arc suppressor 310 will also provide for a vertical clearance (i.e., empty space between the shortest vertical distance between at least one of the conductive traces 320, 322 and the top surface of the device 300 or the arc suppressor 310) that is effective in disrupting a conductive film, flow, and/or layer between the traces 320 and 322.
  • a vertical clearance i.e., empty space between the shortest vertical distance between at least one of the conductive traces 320, 322 and the top surface of the device 300 or the arc suppressor 3

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Elimination Of Static Electricity (AREA)
  • Catching Or Destruction (AREA)

Abstract

An animal deterring device has a carrier with a first conductive trace that is separated from a second conductive trace. The carrier has a bottom with a first glue trough disposed beneath the first conductive trace. The first conductive trace is coupled to the carrier by a first fastener that extends from the first glue trough to the first conductive trace.

Description

METHODS OF PREVENTING SHORTING IN AN ELECTRIFIED ANIMAL DETERRENT DEVICE
This application is a continuation-in-part application of U.S. patent application no. 13/224183 filed on September 1, 2011, which is a divisional application of U.S. patent application no. 13/043204 filed on March 8, 2011, now issued patent 8015747, which is a continuation-in-part application of U.S. patent application no. 12/959834 filed on December 3, 2010, which is a divisional of U.S. patent application no. 12/890328 filed on September 24, 2010, now issued patent 7937885, which is a divisional of U.S. patent application no. 1 1/376270 filed on March 14, 2006, now issued patent 7802396, and is also a continuation- in-part application of U.S. patent application no. 12/689406 filed on January 19, 2010, which claims priority to U.S. provisional patent application no. 61/145715 filed on January 19, 2009. These and all other extrinsic materials discussed herein are incorporated by reference in their entirety. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
Field of the Invention
The field of the invention is animal deterrents, and especially as they relate to bird deterrents.
Background of the Invention
There are numerous animal deterring devices known in the art, and many of those use electric current to deter, and in some case even kill birds and other relatively small animals. For example, where a relatively large structure is to be protected, a blanket can be configured to include a plurality of vertically arranged and spaced apart electrodes as described in U.S. Pat. No. 6,925,748. While such devices may protect a relatively large area, numerous disadvantages remain. Among other things, pooling of water must be avoided at all times to allow for continuous operation. Moreover, as such devices are typically flexible, inadvertent short circuiting may occur by folding or bending a portion of the blanket.
Other known electrified devices include those described in U.S. Pat. No. 4,015, 176 and EP 1 314 355 in which a string-shaped carrier includes conductive traces embedded or attached to the carrier. Similarly, string-shaped structures may be formed from braided wire that further includes insulator disks as described in U.S. Pat. No. 5,031,353. While such devices are generally simple to manufacture and operate, various difficulties remain. Among other problems, such devices often fail to operate properly when moisture or rain runs along the wire, or where droppings are deposited on the wire. Similar disadvantages are observed in devices that have a rail with partially embedded conductive traces from which raised conductive tabs protrude as shown in U.S. Pat. No. 6,006,698, or in devices having a rail with two elevated conductive traces as described in U.S. Pat. App. No. 20050132635. Such devices are particularly sensitive to puddling or fecal contamination.
In still further known electrified deterring devices, conductive traces are mounted to an elevated carrier portion that includes spaces to allow for drainage and flexible installation as shown in U.S. Pat. No. 6,283,064 and U.S. Pat. No. 6,928,768. While such devices are often more reliable than known devices when exposed to moisture or droppings, other disadvantages arise. For example, due to the raised position of the wires, installation is frequently esthetically less pleasing than relatively flat rail-type structures. Moreover, positioning of the wires is at a fixed distance and in a manner that will allow at least some birds to perch in a position in which the bird will not receive the electrical impulse or current.
Therefore, while there are numerous devices and methods for deterring animals, and especially birds are known in the art, all or almost all of them suffer from various disadvantages. Thus, there is still a need for new configurations and methods for bird deterrents.
Summary of the Invention
The present invention is directed to configurations and methods for animal deterring devices in which at least two electrically conductive traces are mounted on a carrier and in which the two traces are separated by an arc suppressor.
In one aspect of the inventive subject matter, an animal deterring device comprises a stripe-shaped carrier having a first conductive trace that is separated from a second conductive trace by an umbrelloid arc suppressor, wherein the carrier has a cutout that is configured to allow bending of the device and wherein the device has a height to width ratio between 1 :5 and 1 :2. It is generally preferred that the carrier in such devices is fabricated from a flexible material, and/or that the carrier has one or more cutouts that are configured to allow bending of the device (e.g., to accommodate horizontal and/or vertical curvature). As above, exemplary umbrelloid arc suppressors may have a T-shape, a stemmed inverted U- shape, or a stemmed inverted V-shape.
Moreover, it is generally preferred that the arc suppressor is continuous along the length of the carrier, and that at least one of the first and second conductive traces are continuous along the length of the carrier. Where desired, at least part of the carrier and/or at least part of the arc suppressor is angled, wherein the angle is selected such that when the device is installed on a horizontal surface water runs off the angled part. Most typically, the first and second conductive traces are spaced apart at a distance that allows formation of an electric circuit via a foot of a bird (e.g., adult pigeon or adult seagull). Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention.
Brief Description of the Drawing
Figure 1A is a perspective view of one exemplary device according to the inventive subject matter.
Figure IB is a vertical cross sectional view of the exemplary device of Figure 1A.
Figures 2A to 2D are exemplary alternative shapes for contemplated umbrelloid arc suppressors.
Figures 3A-3B are perspective and vertical cross-sectional views, respectively, of another embodiment of a bird deterrent device.
Figure 3C is a perspective view of the bird deterrent device of Figure 3 A.
Detailed Description
The inventor has discovered that animal deterring devices can be manufactured in which at least two electrically conductive traces are mounted on a carrier and in which the two traces are separated by an arc suppressor. Most typically, the arc suppressor in contemplated devices will have an umbrelloid shape and/or a configuration effective to increase creep distance between the first and second conductive traces by at least 1.5 times. One exemplary embodiment is depicted in Figure 1A in which the device 100A has a rail shape. Here, carrier 102 A is typically manufactured from a thermoplastic elastomer or rubber-containing compound to which the conductive traces 120A and 122A are coupled (e.g., glued, stapled, sewn, etc.). The traces 120A and 122A are separated by the arc suppressor 1 10A that has an umbrelloid shape (here: T-shape). The traces may be coupled to the carrier on a horizontal or angled (104A) surface as shown in Figure 1A. The carrier may further include one or more cutouts 106A (shown in dashed lines), which are most preferably configured such that the device can be bent sideways while resting on a horizontal surface without warping of the carrier. It should be noted that the shape of the arc suppressor will generate a space 1 12A that is protected from contact with conductive material falling vertically (and even from falling at an angle of up to 45 degrees, and more) onto the device. Still further, it should be noted that the shape of the arc suppressor will also provide for a vertical clearance (i.e., empty space between the shortest vertical distance between at least one of the conductive traces and the top surface of the device or the arc suppressor) that is effective in disrupting a conductive film, flow, and/or layer between the traces.
Typically, the carrier 102B will have a strip or otherwise elongated configuration, and is most preferably relatively flat such that the device can be bent, or even provided in a rolled-up configuration. Figure IB depicts a vertical cross section of the device in which the carrier 102B has an angled section 104B and a horizontal section onto which the conductive traces 120B and 122B are mounted. Between the traces is the arc suppressor HOB. It should be recognized that contemplated devices may not only have an arc suppressor that separates the first and second conductive traces, but may also have an (second) arc suppressor that separates at least one of the conductive traces from the material upon which the device is mounted (e.g., metal roof). With respect to the shape of contemplated second arc suppressors it should be recognized that the second suppressor will have a downward facing surface that forms in combination with another surface an edge or other protruding shape from which water, condensation, or other liquid will run off. A metal wire of other deformable material may be included to maintain a particular shape where the carrier is intentionally deformed.
It should still be especially appreciated that the shape of the arc suppressor will elongate the creep distance between the conductive traces at least 1.5 times, thereby preventing all or almost all circumstances where moisture, dew, or rain may cause short- circuiting. As used herein, the term "creep distance" refers to a distance that is measured between two points on a body when following the shortest path between those points along the surface of that body. As also used herein, the term "umbrelloid shape" refers to any shape of an element that is coupled to the device where that element has a downward facing surface portion when the device is installed on a horizontal surface. Most typically, the downward facing portion is contiguous with an upward facing portion, and the element will therefore have a sharp angled or rounded edge from which water or other fluids can drip off. Viewed from a different perspective, elements with umbrelloid shape will generally have a downward facing portion and an upward facing portion that are either substantially parallel (+/- 15 degrees), or form an angle between 15 and less than 90 degrees. Exemplary umbrelloid shapes are depicted in Figures 2A to 2D. Suitable umbrelloid shapes therefore especially include a T-shape, a stemmed inverted U-shape, and a stemmed inverted V-shape.
With respect to the carrier, it is contemplated that the carrier may be fabricated from numerous materials, including natural and synthetic materials, wood, glass, metals and metal alloys, and all reasonable combination thereof. However, especially preferred materials include those that provide sufficient flexibility to the carrier to allow the carrier to conform to uneven surfaces. Most preferably, the carrier is soft enough to be manually deformed. It is also noted that where the carrier is especially pliable, a desired form may be retained by inclusion of a more resilient element within or coupled to the carrier. For example, contemplated carriers may include a metal wire or other deformable element that assists the carrier to maintain a desired configuration. Furthermore, it is generally preferred that the carrier material is non-conductive and that the conductive traces are coupled to the carrier in a relatively simple manner (e.g., via gluing, sewing, stapling, etc.). However, in alternative aspects, the carrier may also be made from, or include a conductive material. In such devices, it is then contemplated that only one conductive trace may be needed, and that such trace is typically coupled to the carrier via an insulator.
It is still further preferred that the carrier is generally flat (i.e., has a width and length that is larger than the height) and configured as a stripe or has an otherwise elongated structure, wherein the particular width and height are in most circumstances determined by the size of bird or other animal that is to be deterred. Thus, and most commonly, the carrier will be configured such that entire device has a height to width ratio between 1 :5 and 1 :2, and more typically between 1 :4 and 1 :3. For example, suitable carriers may have a width between 1 cm and 10 cm, more typically between 2 cm and 7 cm, and most typically between 3 cm and 5 cm. The length of such devices is generally determined by the desired overall length of the device or device segment and may therefore vary between several cm and several meters and even longer. The height of contemplated devices will generally be between 1 mm and 3 cm, and more typically between 3 mm and 1 cm. Further contemplated carriers may include one or more cutouts having a size that allows side-to-side flexing of the carrier. For example, such cutouts may be formed to allow positioning the carrier in a 90 degree angle with a radius of less than 20 cm, more preferably less than 15 cm, and most preferably less than 10 cm.
First and second conductive traces are typically spaced apart at a distance that allows formation of an electric circuit when a foot of a bird (e.g., an adult pigeon, an adult seagull) rests on the device. Therefore, and depending on the particular bird, suitable distances between first and second traces will be between 5 mm and 2 cm, and more typically between 7 mm and 1.5 cm. In still further preferred aspects, the first and second conductive traces are parallel to the arc suppressor, and/or at least one of the first and second conductive traces are continuous along substantially (+/- 5%) the entire length of the carrier. Where desirable, at one part of the carrier is angled to a degree such that when the device is installed on a horizontal surface water runs off the angled part. Depending on the particular configuration, the angled part may include the portion to which the trace is coupled, and/or a portion between conductive trace and the arc suppressor or the outer edge of the carrier.
With respect to the arc suppressor, it is generally preferred that the arc suppressor has an umbrelloid shape and is continuous along the length of the carrier. While there are numerous alternative configurations are contemplated for the arc suppressor, it is generally preferred that the arc suppressor increases the creep distance at least 1.5 times, more typically at least 1.7 times, even more typically at least 2.0 times, and most typically at least 2.2 time. In especially preferred aspects, the arc suppressor has an umbrelloid shape and a height to width ratio between 1 : and 1 : 1, and more typically between 1 :6 and 1 : 1. For example, contemplated arc suppressors generally include stemmed structures in which a first generally vertical element carries a horizontal or curved element to form a T-shape, a stemmed inverted V-shape, a stemmed inverted U-shape, or an otherwise stemmed structure that has at least one generally horizontally extending protrusion. Depending on the particular shape, it should be appreciated that a vertical gap will be formed between at least part of the arc suppressor and the portion of the carrier to which the traces are coupled, and that such gap will assist in breaking a layer of conductive material that extends across the device. Further alternative arc suppressors will resemble in shape insulator chains as known from high voltage power lines. While not limiting to the inventive subject matter, it is generally preferred that the arc suppressor is continuous along substantially the entire length (+/- 5%) of the carrier. To further facilitate run-off of moisture, condensation, mist, or other fluids, it is generally preferred that at least part of the arc suppressor may be angled, wherein the angle is selected such that when the device is installed on a horizontal surface water runs off the angled part. Therefore, particularly preferred devices will have a stripe-shaped carrier having a first conductive trace that is separated from a second conductive trace by an umbrelloid arc suppressor, wherein the device has a height to width ratio between 1 :5 and 1 :2.
Another embodiment of a bird deterrent device 300 is shown in Figures 3A - 3C, in which the device 300 has an elongated carrier 302, to which conductive traces 320 and 322 can be coupled using any commercially suitable fastener(s) including, for example, glues and other adhesives, and metal and plastic staples, thread, and other mechanical fasteners, and any combination(s) thereof. Carrier 302 can be manufactured from a thermoplastic elastomer or rubber-containing compound, or other commercially suitable materials or combinations thereof. In preferred embodiments, the carrier 302 is relatively flat such that the device 300 can be bent, or even provided in a rolled-up configuration.
Traces 330 and 332 are preferably knitted, such as those described in U.S. patent publ. no. 2010/0180490 to Donoho, although braided traces are also contemplated.
In preferred embodiments, each of the conductive traces 320 and 322 are coupled to carrier 302 by threads 330 and 332, respectively. The traces 320 and 322 may be coupled to the carrier 302 on a horizontal surface or an angled surface 304, and are preferably disposed over glue troughs 340 and 342, respectively. In especially preferred embodiments, the first trace 320 is coupled to the carrier 302 by a thread 330 that extends from the first trace 320 to the first glue trough 340 to form first and second stitches 350 and 352, respectively, and the second trace 322 is coupled to the carrier 302 by a thread 332 that extends from the second trace 322 to the second glue trough 342 to form third and fourth stitches 354 and 356, respectively. Sewing traces 320 and 322 to the carrier 302 advantageously allows the traces 320 and 322 to flex as the carrier 302 flexes. Furthermore, sewing the traces 320 and 322 to glue troughs 340 and 342 rather than the bottom of carrier 302 advantageously raises the stitches 350 and 352 from the bottom of carrier 302, which ensures that that an accumulation of water beneath the carrier 302 will not short the traces 320 and 322 due to absorption of water by thread 330 and/or 332. Moreover, glue can be disposed in glue troughs 340 and 342 to attach the carrier 302 to a surface, which can create a barrier between any accumulated water and stitches 354 and 356 to further prevent water from being absorbed by, and seeping up, threads 330 and 332. In this manner, shorting of one or both of traces 320 and 322 can be prevented because water is prevented from seeping up threads 330 and 332. If the threads 330 and 332 were otherwise extended to a bottom of carrier 302, rain or other sources of water could be absorbed by, and seep up, thread 330 or 332, which could cause trace 320 or 322 to short.
In some contemplated embodiments, the traces 320 and 322 can be coupled to the carrier 302 using plastic thread, metal staples, or plastic staples, for example, which would also prevent water from seeping up the fasteners. In other contemplated embodiments, the traces 320 and 322 can be separated by an arc suppressor 310 having an T-shape, although other umbrelloid shapes or other commercially suitable shapes could be used that are sufficient to prevent the traces 320 and 322 from arching. It should be noted that the shape of the arc suppressor 310 can advantageously generate a space 1 12A that is protected from contact with conductive material falling vertically (and even from falling at an angle of up to 45 degrees, and more) onto the device 300. Still further, it should be noted that the shape of the arc suppressor 310 will also provide for a vertical clearance (i.e., empty space between the shortest vertical distance between at least one of the conductive traces 320, 322 and the top surface of the device 300 or the arc suppressor 310) that is effective in disrupting a conductive film, flow, and/or layer between the traces 320 and 322.
Thus, specific embodiments and applications of electrified animal repellent tracks have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms "comprises" and "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Furthermore, where a definition or use of a term in a reference, which is incorporated by reference herein, is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.

Claims

CLAIMS What is claimed is:
1. A method of preventing shorting in an electrified animal deterrent device having an
elongated carrier with first and second conductive traces, comprising:
providing the carrier with a first insulating trough at least partially disposed beneath the first conductive trace;
sewing the first conductive trace to the carrier through the first insulating trough; and filling the trough with an fluidly insulating material.
2. The method of claim I, wherein the first insulating trough extends beneath at least a
portion of each of the first and second conductive traces.
3. The method of claim I, wherein the step of providing the carrier further comprises
providing the carrier with a second insulating trough at least partially disposed beneath the second conductive trace.
4. The method of claim 1, wherein the step of sewing the first conductive trace to the carrier comprises sewing the first conductive trace to the carrier using thread.
5. The method of claim 4, wherein the step of filling the trough further comprises insulating the thread with the fluidly insulating material.
6. The method of claim 1, wherein the first conductive trace comprises a braided wire.
7. The method of claim 1, wherein each of the first and second conductive traces comprises a braided wire.
8. The method of claim 1, wherein the first conductive trace comprises a knitted wire.
9. The method of claim 1, wherein the carrier comprises an elevated arc suppressor disposed between the first and second conductive traces.
PCT/US2011/051513 2010-09-24 2011-09-14 Methods of preventing shorting in an electrified animal deterrent device WO2012040009A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US12/890,328 US7937885B2 (en) 2006-03-14 2010-09-24 Electrified bird repellent track
US12/890,328 2010-09-24
US12/959,834 2010-12-03
US12/959,834 US8020340B2 (en) 2006-03-14 2010-12-03 Electrified bird repellent track
US13/043,204 US8015747B2 (en) 2006-03-14 2011-03-08 Electrified bird repellent track
US13/043,204 2011-03-08
US13/224,183 US8196341B2 (en) 2006-03-14 2011-09-01 Electrified bird repellent track
US13/224,183 2011-09-01

Publications (2)

Publication Number Publication Date
WO2012040009A2 true WO2012040009A2 (en) 2012-03-29
WO2012040009A3 WO2012040009A3 (en) 2012-06-14

Family

ID=45874287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/051513 WO2012040009A2 (en) 2010-09-24 2011-09-14 Methods of preventing shorting in an electrified animal deterrent device

Country Status (1)

Country Link
WO (1) WO2012040009A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293044B1 (en) 2012-06-26 2012-10-23 Bird Barrier America, Inc. Animal deterrent device with insulated fasteners
US8863434B2 (en) 2011-10-04 2014-10-21 Bird-B-Gone, Inc. Electrified bird deterrent device with cavity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850808A (en) * 1997-10-14 1998-12-22 Fi-Shock, Inc. System for repelling pests
US7351913B2 (en) * 2004-02-19 2008-04-01 Bell Environmental Services, Inc. Anti-roosting device
US7481021B2 (en) * 2003-12-04 2009-01-27 Bird Barrier America, Inc. Electric deterrent device
WO2010083516A1 (en) * 2009-01-19 2010-07-22 Bird-B-Gone, Inc. Electric deterrent device having knitted conductors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850808A (en) * 1997-10-14 1998-12-22 Fi-Shock, Inc. System for repelling pests
US7481021B2 (en) * 2003-12-04 2009-01-27 Bird Barrier America, Inc. Electric deterrent device
US7351913B2 (en) * 2004-02-19 2008-04-01 Bell Environmental Services, Inc. Anti-roosting device
WO2010083516A1 (en) * 2009-01-19 2010-07-22 Bird-B-Gone, Inc. Electric deterrent device having knitted conductors

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8863434B2 (en) 2011-10-04 2014-10-21 Bird-B-Gone, Inc. Electrified bird deterrent device with cavity
US9462800B2 (en) 2011-10-04 2016-10-11 Bird-B-Gone, Inc. Electrified bird deterrent device with cavity
US9717230B2 (en) 2011-10-04 2017-08-01 Bird-B-Gone Electrified bird deterrent device with cavity
US8293044B1 (en) 2012-06-26 2012-10-23 Bird Barrier America, Inc. Animal deterrent device with insulated fasteners
US8430063B1 (en) 2012-06-26 2013-04-30 Bird Barrier America, Inc. Animal deterrent device with insulated fasteners
US8434209B1 (en) 2012-06-26 2013-05-07 Bird Barrier America, Inc. Animal deterrent device with insulated fasteners
WO2014003904A1 (en) 2012-06-26 2014-01-03 Bird Barrier America, Inc. Animal deterrent device with insulated fasteners
AU2013281179B2 (en) * 2012-06-26 2017-02-02 Bird Barrier America, Inc. Animal deterrent device with insulated fasteners

Also Published As

Publication number Publication date
WO2012040009A3 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
US9232781B2 (en) Electrified bird repellent track
US7937885B2 (en) Electrified bird repellent track
US9717230B2 (en) Electrified bird deterrent device with cavity
US9277742B2 (en) Electrified bird deterrent device with treads
US8430063B1 (en) Animal deterrent device with insulated fasteners
US20110214339A1 (en) Electric Pest Deterrent Tracks and Systems
EP1112686A3 (en) Pest repelling device
KR20050057158A (en) Device for repelling insects moving along the ground
WO2012040009A2 (en) Methods of preventing shorting in an electrified animal deterrent device
US9078423B2 (en) Translucent electrified bird deterrent device
US20140150330A1 (en) Electrified Deterrent Device Having Insulative Layer
JP3088514U (en) Bird and beast harm prevention device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11827239

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11827239

Country of ref document: EP

Kind code of ref document: A2