WO2012039430A1 - Method for isolating cancer stem cells - Google Patents

Method for isolating cancer stem cells Download PDF

Info

Publication number
WO2012039430A1
WO2012039430A1 PCT/JP2011/071504 JP2011071504W WO2012039430A1 WO 2012039430 A1 WO2012039430 A1 WO 2012039430A1 JP 2011071504 W JP2011071504 W JP 2011071504W WO 2012039430 A1 WO2012039430 A1 WO 2012039430A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer stem
stem cells
antibody
sugar chain
cancer
Prior art date
Application number
PCT/JP2011/071504
Other languages
French (fr)
Japanese (ja)
Inventor
三善英知
森脇健太
奥戸久美子
黒田俊一
武石俊作
澤木弘道
成松久
Original Assignee
株式会社Gpバイオサイエンス
国立大学法人大阪大学
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gpバイオサイエンス, 国立大学法人大阪大学, 国立大学法人名古屋大学 filed Critical 株式会社Gpバイオサイエンス
Publication of WO2012039430A1 publication Critical patent/WO2012039430A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0695Stem cells; Progenitor cells; Precursor cells

Definitions

  • the present invention relates to a method for isolating cancer stem cells, and more particularly, to a method for isolating cancer stem cells using sugar chains, and a method for selecting high-purity cancer stem cells. Moreover, it is related with the isolation method of the cancer stem cell regarding the process in the molecular determination for isolating a cancer stem cell.
  • Cancer stem cells are involved in cancer development, malignant transformation, resistance to treatment, and the like, and can be said to be the largest topic of current cancer research. It has been known that cells isolated by surface molecules such as CD133 have a remarkable tumor forming ability even with a very small number of cancer cells.
  • CD133 itself does not have a function of transforming cancer cells as stem cells and is currently considered to be one of surface molecules.
  • CD133 as a marker for cancer stem cells progresses and concerns. Stem Cells Dev. 2009, 1127-34, review. How powerful is CD133 as a cancer stem cell marker in brain tumors CancerTreat Rev. 2009: 403-8, review. The utilities and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 86, 1025-32, 2008 review. Strategy for Glycoproteomics: Identification of Glyco-Alteration Using Multiple Glycan Profiling Tools. J. Proteome 2009, 8, 1358-67
  • the present invention relates to a method for isolating cancer stem cells, a characteristic study of cancer stem cells, and a method for distinguishing cancer severity and recurrence.
  • the invention described in claim 1 A method for isolating cancer stem cells, which comprises selecting cancer stem cells based on differences in sugar chain structures on the cells.
  • the invention according to claim 2 After selecting the cancer cells, characterize the sugar chain structure of the selected cancer cells and correlate the cell characteristics with the characteristics of the sugar chain structure to make a molecular determination for isolating cancer stem cells.
  • the invention described in claim 3 After selecting cancer cells, a cell group having at least one of the characteristics of high tumorigenicity, high metastasis ability, and high drug resistance is selected, and the sugar chain structure of the selected cell group is selected.
  • the invention according to claim 4 4.
  • the selection of a cell group having any one or more of the high tumorigenic potential, high metastatic potential, and high drug resistance is performed by a cultured cell experiment and / or an animal experiment. It is the isolation method of the cancer stem cell of description.
  • the invention according to claim 5 The method for isolating cancer stem cells according to claim 3 or 4, wherein the characterization of the sugar chain structure of the selected cell group is performed by a sugar chain structure evaluation means.
  • the sugar chain structure evaluation means is based on any one of a lectin array, MS, HPLC, Western blotting, and electrophoretic electrophoresis, or a combination of a plurality of them. It is the isolation method of the cancer stem cell of description.
  • the invention described in claim 7 The cancer cell is selected using a CD marker, any one of sugar chains, or a combination of plural kinds thereof.
  • CD marker or any one of sugar chains, or a combination of a plurality of them is a CD marker alone, and one type of CD marker or a plurality of types of CD.
  • the cancer cells are selected by a combination of markers, the sugar chain alone is used, and when the cancer cells are selected by a combination of one type of sugar chain or a plurality of types of sugar chains, one type or a plurality of types of CDs are used. Any of the cases where the cancer cells are selected by a combination of a marker and one or more kinds of sugar chains is included.
  • the invention described in claim 8 The selection of the cancer cells is performed using any one of an anti-CD marker antibody, a lectin, and an anti-sugar chain antibody, or a combination of a plurality of these. It is the isolation method of the cancer stem cell as described in any one of Claim 6.
  • the invention according to claim 9 The selection of the cancer cells is performed using an anti-CD marker antibody, a lectin, an anti-glycan antibody, a column using a combination of a plurality of these, or affinity beads.
  • an anti-CD marker antibody or any one of lectins and anti-sugar chain antibodies, or a combination of plural types thereof refers to an anti-CD marker antibody alone.
  • the cancer cells can be selected by using a single lectin or a combination of multiple types of lectins.
  • cancer cells When performing the selection of the cancer cells by using only one type of anti-sugar chain antibody or a combination of a plurality of types of anti-sugar chain antibodies, When selecting the cancer cells by combining with one or more lectins, one or more anti-CD marker antibodies and one or When the cancer cells are selected by a combination with a plurality of types of anti-sugar chain antibodies, and when the cancer cells are selected by a combination of one type or a plurality of types of lectins and one or more types of anti-sugar chain antibodies. These include any of cases where the cancer cells are selected by a combination of one or more kinds of anti-CD marker antibodies, one or more kinds of lectins and one or more kinds of anti-sugar chain antibodies.
  • the invention according to claim 10 provides: 10. The isolation of cancer stem cells according to claim 8 or 9, wherein the lectin and the anti-sugar chain antibody are a lectin that recognizes the characterized sugar chain structure and an anti-sugar chain antibody. Is the method.
  • the invention according to claim 11 11 The cancer stem cell unit according to claim 10, wherein the anti-sugar chain antibody is any one of a natural antibody, a recombinant antibody, a part of the antibody, an artificial antibody including an aptamer, a nucleotide, and an artificial structure. It is a separation method.
  • the invention according to claim 12 The cancer stem cell unit according to claim 7, wherein CD133 or CD13 or a combination thereof is used as a CD marker, and ⁇ 2,6 sialic acid, ⁇ 2,3 sialic acid or a combination thereof is used as a sugar chain. It is a separation method.
  • the invention according to claim 13 The method for isolating cancer stem cells according to claim 12, wherein the isolation of cancer stem cells is isolation of cancer stem cells in liver cancer stem cells.
  • Anti-CD133 antibody or anti-CD13 antibody or a combination thereof is used as an anti-CD marker antibody, ⁇ 2,6-sialic acid recognition lectin or ⁇ 2,3-sialic acid recognition lectin or a combination thereof is used as a lectin, and anti- ⁇ 2 is used as an anti-sugar chain antibody.
  • the invention according to claim 15 is: The method for isolating cancer stem cells according to claim 14, wherein the isolation of cancer stem cells is isolation of cancer stem cells in liver cancer stem cells.
  • the invention according to claim 16 The method for isolating cancer stem cells according to claim 14 or 15, wherein the ⁇ 2,6-sialic acid-recognizing lectin is one of SNA, SSA, and TJA-I.
  • the ⁇ 2,6-sialic acid recognition lectin is not limited to any one of SNA, SSA, and TJA-I.
  • the ⁇ 2,3-sialic acid recognition lectin is not limited to MAL-I.
  • the invention according to claim 18 A cancer stem cell identification method comprising identifying cancer stem cells using an identification method based on gene expression levels.
  • the invention according to claim 19 19.
  • the invention according to claim 20 provides The method for identifying cancer stem cells according to claim 18 or 19, wherein the gene is a glycosyltransferase gene.
  • the invention according to claim 21 21 21.
  • the invention according to claim 22 A method for selecting cancer stem cells, which comprises using cells presenting both a CD marker and a sugar chain as a target for delivery of an object to cancer stem cells.
  • the invention described in claim 23 A cancer stem cell selection method characterized by presenting both an anti-CD antibody and a sugar chain recognition molecule as a target molecule to be presented on the surface of a DDS (drug delivery system) molecule.
  • the invention according to claim 24 provides 23.
  • the invention according to claim 25 provides The method for selecting cancer stem cells according to claim 23, wherein the anti-CD antibody is an anti-CD133 antibody.
  • the invention according to claim 26 provides The method for selecting cancer stem cells according to claim 23, wherein the sugar chain recognition molecule is a sialic acid recognition molecule.
  • the invention according to claim 27 provides 27.
  • the present invention is not limited to the above lectins such as SNA, and all other sialic acid recognizing lectins can be employed.
  • the invention according to claim 28 provides 24.
  • the anti-CD antibody includes a full-body antibody, a single chain antibody, a Fab fragment, a partial antibody (ie, a part of an antibody), an artificial antibody including a chimeric antibody, an aptamer, and a mimic molecule.
  • Item 24 The method for selecting cancer stem cells according to Item 23.
  • mimic molecule examples include mimic RNA.
  • the invention according to claim 30 provides 24.
  • the above-mentioned artificially created one includes, for example, an artificially produced one by a method such as “phage display”.
  • the invention of claim 31 is 26.
  • the sialic acid recognition molecule comprises a full-body antibody, a single chain antibody, a Fab fragment, a partial antibody (ie, a part of an antibody), an artificial antibody including a chimeric antibody, an aptamer, and a mimic molecule.
  • Item 27 The method for selecting cancer stem cells according to Item 26.
  • mimic molecule examples include mimic RNA.
  • the invention of claim 33 is 27.
  • the above-mentioned artificially created one includes, for example, an artificially produced one by a method such as “phage display”.
  • lectins include not only wild type ⁇ lectins, but also recombinant and artificially modified lectins.
  • the invention according to claim 34 provides 27.
  • the invention of claim 35 is The cancer treatment method is characterized in that a cancer treatment target is a cell presenting both a CD marker and a sugar chain.
  • the invention according to claim 36 provides 36.
  • the invention of claim 37 is A method for treating cancer characterized in that an anticancer agent, RNAi, or a molecule that inhibits gene expression is placed on a molecule used in a DDS (drug delivery system) and delivered to a cancer stem cell group. .
  • the molecule to be delivered to the cancer stem cell group on the anticancer drug, RNAi, or molecule that inhibits gene expression is any molecule that can be used as a DDS (drug delivery system) technology. Can also be used. For example, a liposome can be mentioned.
  • the invention according to claim 38 provides 38.
  • the invention according to claim 39 provides 38.
  • the cancer according to claim 37, wherein the RNAi or the inhibition target of the molecule that inhibits gene expression is ST6GALNAC1, GCNT3, MGAT5, or a combination of two or more of these. This is a treatment method.
  • the invention according to claim 40 provides 38.
  • the invention of claim 41 is 38.
  • a method capable of determining a cell trait at the gene expression level as well as the conventional FACS technique in the future is developed, a method for identifying CSC in ST6GALNAC1, GCNT3, or MGAT5 And can be applied.
  • the isolation method of the cancer stem cell regarding the process in the molecular determination for isolating a cancer stem cell can be provided.
  • the present invention makes it possible to provide a method for isolating high-purity cancer stem cells. That is, according to the present invention, it becomes possible to make a dramatic progress in the development of means for killing cancer stem cells while at the same time advancing research on the characteristics of cancer stem cells. This is a very big breakthrough that brings the realization of a major theme that has never been possible to cure cancer.
  • the cell group itself isolated by the same CD133 is also a heterogeneous population, and further fractionation concentrates a cell population having high tumorigenic potential in a certain fraction. I understand that By utilizing this research result, we have invented a method for isolating higher-purity cancer stem cells.
  • cancer cells are selected using a CD marker or the like, and from among the selected cells, a cell culture experiment or an animal experiment is performed.
  • a cell group having one or more of the above, that is, a cell group having a high malignancy is selected.
  • the selected group is characterized with respect to the glycan structure of the group by glycan structure evaluation means such as lectin array, MS (mass spectrometry), HPLC (high performance liquid chromatography), western blotting, and electrophoretic electrophoresis. Do.
  • glycan structure evaluation means such as lectin array, MS (mass spectrometry), HPLC (high performance liquid chromatography), western blotting, and electrophoretic electrophoresis.
  • CD133 and CD13 double positive cells are highly biologically malignant and have a trait as a cancer stem cell (CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 2010 in press).
  • CD133 positive / SSA positive cells had significantly higher tumorigenicity than the CD133 positive / SSA negative cells (Table 1 shown in FIG. 2 and FIG. 3).
  • SSA was used as the 2,6-sialic acid recognition lectin
  • MAL-I Mesackia amrensis Lectin I
  • Cancer Stem Cell cDNA Synthesis A cancer stem cell fraction sample prepared by the method according to claim 21 of the present application is washed with PBS (Dulbecco PBS (-) manufactured by Nissui Pharmaceutical Co., Ltd.) and then a commercially available RNA extraction kit ( The extract was used as cancer stem cell total RNA using Qiagen RNeasy plus mini kit).
  • PBS Dulbecco PBS (-) manufactured by Nissui Pharmaceutical Co., Ltd.
  • RNA extraction kit The extract was used as cancer stem cell total RNA using Qiagen RNeasy plus mini kit).
  • Cancer stem cell cDNA was prepared using 1 ⁇ g of cancer stem cell total RNA as a starting material and using a commercially available cDNA synthesis kit (Quantitect RT kit manufactured by Qiagen).
  • glycosyltransferase gene in the cancer stem cell fraction sample was a combination of ST6GALNAC1, GCNT3, and MGAT5.
  • Quantitative PCR analysis of glycosyltransferase gene expression level The amount of glycosyltransferase gene expression was quantified in cancer stem cell cDNA using a quantitative PCR method. Regarding the quantification method, the method using a quantitative PCR array described in Non-Patent Document 4 was followed.
  • the cancer stem cell cDNA was used as a template and qPCRQuickGoldStar Mastermix Plus from Eurogentec was used as a PCR enzyme.
  • ST6GALNAC1 gene transcript-specific detection set reagent F primer; 5'-ggtgcccactggaggata-3 '(SEQ ID NO: 1), R primer; 5'-gaagccataagcactcacctg-3' (SEQ ID NO: 2), TaqMan probe: ctggcc (sequence) Number x 3).
  • GCNT3 gene transcript-specific detection set reagent F primer; 5'-atccctaagcaggagagaagc-3 '(SEQ ID NO: 4), R primer: 5'-gtggagaccgagcacagg-3 (SEQ ID NO: 5), TaqMan probe: ctcctcca (SEQ ID NO: ⁇ 6).
  • MGAT5 gene transcript-specific detection set reagent F primer; 5'-ggggatgctacagagaatcaa-3 '(SEQ ID NO: 7), R primer: 5'-gggtggccacatcacttg-3 (SEQ ID NO: 8), TaqMan probe: cttctgcc (SEQ ID NO: ⁇ 9).
  • the numerical value of the measurement result was calculated as the copy number of the target gene transcript in the measurement data by applying it to a calibration curve prepared with a separately measured standard sample.

Abstract

Proposed is a method for isolating cancer stem cells with higher purity by simple combination of markers. A method for isolating cancer stem cells is characterized by screening cancer stem cells by the difference in carbohydrate structure on the cells.

Description

がん幹細胞の単離方法Methods for isolating cancer stem cells
 この発明は、がん幹細胞の単離方法に関し、特に、糖鎖を利用したがん幹細胞の単離方法であって、高純度ながん幹細胞の選別方法に関する。また、がん幹細胞を単離するための分子決定におけるプロセスに関するがん幹細胞の単離方法に関する。 The present invention relates to a method for isolating cancer stem cells, and more particularly, to a method for isolating cancer stem cells using sugar chains, and a method for selecting high-purity cancer stem cells. Moreover, it is related with the isolation method of the cancer stem cell regarding the process in the molecular determination for isolating a cancer stem cell.
 がん幹細胞は、がんの発生、悪性形質転換、治療に対する抵抗性などに関与し、現在のがん研究最大のトピックスと言える。これまでCD133などの表面分子によって単離された細胞は、非常に少数のがん細胞でも著しい腫瘍形成能をもつことが知られている。 Cancer stem cells are involved in cancer development, malignant transformation, resistance to treatment, and the like, and can be said to be the largest topic of current cancer research. It has been known that cells isolated by surface molecules such as CD133 have a remarkable tumor forming ability even with a very small number of cancer cells.
 しかし、近年、CD133以外にもがん幹細胞を単離できる様々な表面分子の報告があり、各がん細胞によって幹細胞に特徴的な表面分子は異なる可能性がある。またCD133そのものに、がん細胞を幹細胞として形質転換させる機能はなく、現在のところ、あくまで表面分子の1つと考えられている。 However, in recent years, there have been reports of various surface molecules that can isolate cancer stem cells other than CD133, and the surface molecules characteristic of stem cells may differ depending on each cancer cell. In addition, CD133 itself does not have a function of transforming cancer cells as stem cells and is currently considered to be one of surface molecules.
 本発明はがん幹細胞の単離方法、がん幹細胞の特性研究、がんの重篤度や再発性の鑑別方法に関するものである。 The present invention relates to a method for isolating cancer stem cells, a characteristic study of cancer stem cells, and a method for distinguishing cancer severity and recurrence.
 がん幹細胞の単離において、単独のCD markerによる現状のがん幹細胞の単離方法では、その純度に改善すべき余地がある。また、がん種によって、そのマーカーが変わることも、実際の臨床応用への困難さになっている。 In the isolation of cancer stem cells, there is room for improvement in the purity of current methods for isolation of cancer stem cells using a single CD marker. In addition, the change of the marker depending on the type of cancer also makes it difficult for actual clinical application.
 簡単なマーカーの組み合わせにより、より高純度のがん幹細胞の単離方法が求められており、更に簡便に誰にでもできる方法の提案が要請されている。 There is a demand for a method of isolating higher-purity cancer stem cells by combining simple markers, and a proposal for a method that can be easily performed by anyone is required.
 請求項1記載の発明は、
 細胞上の糖鎖構造の相違によってがん幹細胞を選別することを特徴とするがん幹細胞の単離方法である。
The invention described in claim 1
A method for isolating cancer stem cells, which comprises selecting cancer stem cells based on differences in sugar chain structures on the cells.
 請求項2記載の発明は、
 癌細胞の選別を行った後、当該選別した癌細胞について糖鎖構造に関する特徴付けを行い、細胞特性と糖鎖構造上の特徴を関連付けることにより、がん幹細胞を単離する為の分子決定を行うことを特徴とする請求項1記載のがん幹細胞の単離方法である。
The invention according to claim 2
After selecting the cancer cells, characterize the sugar chain structure of the selected cancer cells and correlate the cell characteristics with the characteristics of the sugar chain structure to make a molecular determination for isolating cancer stem cells. The method for isolating cancer stem cells according to claim 1, wherein the method is performed.
 請求項3記載の発明は、
 癌細胞の選別を行った後、高造腫瘍能、高転移能、高薬剤耐性能の中のいずれか一つ以上の特徴を有する細胞群を選別し、当該選別した細胞群について糖鎖構造に関する特徴付けを行い、細胞特性と糖鎖構造上の特徴を関連付けることにより、がん幹細胞を単離する為の分子決定を行うことを特徴とする請求項1記載のがん幹細胞の単離方法である。
The invention described in claim 3
After selecting cancer cells, a cell group having at least one of the characteristics of high tumorigenicity, high metastasis ability, and high drug resistance is selected, and the sugar chain structure of the selected cell group is selected. The method for isolating cancer stem cells according to claim 1, wherein molecular determination for isolating cancer stem cells is performed by characterizing and associating cell characteristics with features on the sugar chain structure. is there.
 請求項4記載の発明は、
 前記高造腫瘍能、高転移能、高薬剤耐性能の中のいずれか一つ以上の特徴を有する細胞群の選別は、培養細胞実験及び/又は動物実験により行うことを特徴とする請求項3記載のがん幹細胞の単離方法である。
The invention according to claim 4
4. The selection of a cell group having any one or more of the high tumorigenic potential, high metastatic potential, and high drug resistance is performed by a cultured cell experiment and / or an animal experiment. It is the isolation method of the cancer stem cell of description.
 請求項5記載の発明は、
 前記選別した細胞群についての糖鎖構造に関する特徴付けは糖鎖構造評価手段により行うことを特徴とする請求項3又は請求項4記載のがん幹細胞の単離方法である。
The invention according to claim 5
The method for isolating cancer stem cells according to claim 3 or 4, wherein the characterization of the sugar chain structure of the selected cell group is performed by a sugar chain structure evaluation means.
 請求項6記載の発明は、
 前記糖鎖構造評価手段は、レクチンアレイ、MS、HPLC、ウエスタンブロッティング、電機泳動の中のいずれかの手法、又は、これらの中の複数種の組み合わせによるものであることを特徴とする請求項5記載のがん幹細胞の単離方法である。
The invention described in claim 6
6. The sugar chain structure evaluation means is based on any one of a lectin array, MS, HPLC, Western blotting, and electrophoretic electrophoresis, or a combination of a plurality of them. It is the isolation method of the cancer stem cell of description.
 請求項7記載の発明は、
 前記癌細胞の選別は、CDマーカー、又は、糖鎖の中のいずれか一種、又は、これらの中の複数種の組み合せを用いて行うことを特徴とする請求項2~請求項6のいずれか一項記載のがん幹細胞の単離方法である。
The invention described in claim 7
The cancer cell is selected using a CD marker, any one of sugar chains, or a combination of plural kinds thereof. A method for isolating cancer stem cells according to one item.
 なお、ここで「CDマーカー、又は、糖鎖の中のいずれか一種、又は、これらの中の複数種の組み合せ」とは、CDマーカー単独であって、一種類のCDマーカーあるいは複数種のCDマーカーの組み合わせによって前記癌細胞の選別を行う場合、糖鎖単独であって、一種類の糖鎖あるいは複数種の糖鎖の組み合わせによって前記癌細胞の選別を行う場合、一種類または複数種のCDマーカーと一種類または複数種の糖鎖との組み合わせによって前記癌細胞の選別を行う場合のいずれをも含むものである。 Here, “CD marker, or any one of sugar chains, or a combination of a plurality of them” is a CD marker alone, and one type of CD marker or a plurality of types of CD. When the cancer cells are selected by a combination of markers, the sugar chain alone is used, and when the cancer cells are selected by a combination of one type of sugar chain or a plurality of types of sugar chains, one type or a plurality of types of CDs are used. Any of the cases where the cancer cells are selected by a combination of a marker and one or more kinds of sugar chains is included.
 請求項8記載の発明は、
 前記癌細胞の選別は、抗CDマーカー抗体、又は、レクチン、抗糖鎖抗体の中のいずれか一種、又は、これらの中の複数種の組み合せを用いて行うことを特徴とする請求項2~請求項6のいずれか一項記載のがん幹細胞の単離方法である。
The invention described in claim 8
The selection of the cancer cells is performed using any one of an anti-CD marker antibody, a lectin, and an anti-sugar chain antibody, or a combination of a plurality of these. It is the isolation method of the cancer stem cell as described in any one of Claim 6.
 請求項9記載の発明は、
 前記癌細胞の選別は、抗CDマーカー抗体、又は、レクチン、抗糖鎖抗体の中のいずれか一種、又は、これらの中の複数種の組み合せを用いたカラム、アフィニティビーズを用いて行うことを特徴とする請求項2~請求項6のいずれか一項記載のがん幹細胞の単離方法である。
The invention according to claim 9
The selection of the cancer cells is performed using an anti-CD marker antibody, a lectin, an anti-glycan antibody, a column using a combination of a plurality of these, or affinity beads. The method for isolating cancer stem cells according to any one of claims 2 to 6, which is characterized by the following.
 なお、前記において、「抗CDマーカー抗体、又は、レクチン、抗糖鎖抗体の中のいずれか一種、又は、これらの中の複数種の組み合せ」とは、抗CDマーカー抗体単独であって、一種類の抗CDマーカー抗体あるいは複数種の抗CDマーカー抗体の組み合わせによって前記癌細胞の選別を行う場合、レクチン単独であって、一種類のレクチンあるいは複数種のレクチンの組み合わせによって前記癌細胞の選別を行う場合、抗糖鎖抗体単独であって、一種類の抗糖鎖抗体あるいは複数種の抗糖鎖抗体の組み合わせによって前記癌細胞の選別を行う場合、一種類または複数種の抗CDマーカー抗体と一種類または複数種のレクチンとの組み合わせによって前記癌細胞の選別を行う場合、一種類または複数種の抗CDマーカー抗体と一種類または複数種の抗糖鎖抗体との組み合わせによって前記癌細胞の選別を行う場合、一種類または複数種のレクチンと一種類または複数種の抗糖鎖抗体との組み合わせによって前記癌細胞の選別を行う場合、一種類または複数種の抗CDマーカー抗体と一種類または複数種のレクチンと一種類または複数種の抗糖鎖抗体との組み合わせによって前記癌細胞の選別を行う場合のいずれをも含むものである。 In the above description, “an anti-CD marker antibody, or any one of lectins and anti-sugar chain antibodies, or a combination of plural types thereof” refers to an anti-CD marker antibody alone, When selecting the cancer cells by using a combination of different types of anti-CD marker antibodies or a plurality of types of anti-CD marker antibodies, the cancer cells can be selected by using a single lectin or a combination of multiple types of lectins. When performing the selection of the cancer cells by using only one type of anti-sugar chain antibody or a combination of a plurality of types of anti-sugar chain antibodies, When selecting the cancer cells by combining with one or more lectins, one or more anti-CD marker antibodies and one or When the cancer cells are selected by a combination with a plurality of types of anti-sugar chain antibodies, and when the cancer cells are selected by a combination of one type or a plurality of types of lectins and one or more types of anti-sugar chain antibodies. These include any of cases where the cancer cells are selected by a combination of one or more kinds of anti-CD marker antibodies, one or more kinds of lectins and one or more kinds of anti-sugar chain antibodies.
 請求項10記載の発明は、
 前記レクチン及び、抗糖鎖抗体は、前記特徴付けが行われた糖鎖構造を認識するレクチン及び、抗糖鎖抗体であることを特徴とする請求項8又は9記載のがん幹細胞の単離方法である。
The invention according to claim 10 provides:
10. The isolation of cancer stem cells according to claim 8 or 9, wherein the lectin and the anti-sugar chain antibody are a lectin that recognizes the characterized sugar chain structure and an anti-sugar chain antibody. Is the method.
 請求項11記載の発明は、
 前記抗糖鎖抗体が、天然の抗体、リコンビナント抗体、抗体の一部、アプタマーを含む人工抗体、ヌクレオチド、人工構造体のいずれかであることを特徴とする請求項10記載のがん幹細胞の単離方法である。
The invention according to claim 11
11. The cancer stem cell unit according to claim 10, wherein the anti-sugar chain antibody is any one of a natural antibody, a recombinant antibody, a part of the antibody, an artificial antibody including an aptamer, a nucleotide, and an artificial structure. It is a separation method.
 請求項12記載の発明は、
 CDマーカーとしてCD133又はCD13あるいはこれらの組み合わせを用い、糖鎖としてα2,6シアル酸、又は、α2,3シアル酸あるいはこれらの組み合せを用いることを特徴とする請求項7記載のがん幹細胞の単離方法である。
The invention according to claim 12
The cancer stem cell unit according to claim 7, wherein CD133 or CD13 or a combination thereof is used as a CD marker, and α2,6 sialic acid, α2,3 sialic acid or a combination thereof is used as a sugar chain. It is a separation method.
 請求項13記載の発明は、
 がん幹細胞の単離が、肝臓癌幹細胞におけるがん幹細胞の単離であることを特徴とする請求項12記載のがん幹細胞の単離方法である。
The invention according to claim 13
The method for isolating cancer stem cells according to claim 12, wherein the isolation of cancer stem cells is isolation of cancer stem cells in liver cancer stem cells.
 請求項14記載の発明は、
 抗CDマーカー抗体として抗CD133抗体または抗CD13抗体あるいはこれらの組み合わせを用い、レクチンとしてα2,6シアル酸認識レクチン又はα2,3シアル酸認識レクチンあるいはこれらの組み合わせを用い、抗糖鎖抗体として抗α2,6シアル酸抗体または抗α2,3シアル酸抗体あるいはこれらの組み合わせを用いることを特徴とする請求項8~請求項11のいずれか一項記載のがん幹細胞の単離方法である。
The invention according to claim 14
Anti-CD133 antibody or anti-CD13 antibody or a combination thereof is used as an anti-CD marker antibody, α2,6-sialic acid recognition lectin or α2,3-sialic acid recognition lectin or a combination thereof is used as a lectin, and anti-α2 is used as an anti-sugar chain antibody. The method for isolating cancer stem cells according to any one of claims 8 to 11, wherein an antibody, 6, sialic acid antibody, anti-α2,3-sialic acid antibody, or a combination thereof is used.
 請求項15記載の発明は、
 がん幹細胞の単離が、肝臓癌幹細胞におけるがん幹細胞の単離であることを特徴とする請求項14記載のがん幹細胞の単離方法である。
The invention according to claim 15 is:
The method for isolating cancer stem cells according to claim 14, wherein the isolation of cancer stem cells is isolation of cancer stem cells in liver cancer stem cells.
 請求項16記載の発明は、
 前記α2,6シアル酸認識レクチンが、SNA、SSA、TJA-Iのいずれかであることを特徴とする請求項14又は15記載のがん幹細胞の単離方法である。
The invention according to claim 16
The method for isolating cancer stem cells according to claim 14 or 15, wherein the α2,6-sialic acid-recognizing lectin is one of SNA, SSA, and TJA-I.
 なお、請求項14、15記載の発明のように、全てのα2,6シアル酸認識レクチン、全ての抗α2,6シアル酸抗体を用いても、同様の効果を得ることができるものであり、本発明において、前記α2,6シアル酸認識レクチンが、SNA、SSA、TJA-Iのいずれかに限定されるものではない。 In addition, as in the inventions of claims 14 and 15, even if all α2,6-sialic acid recognition lectins and all anti-α2,6-sialic acid antibodies are used, the same effect can be obtained. In the present invention, the α2,6-sialic acid recognition lectin is not limited to any one of SNA, SSA, and TJA-I.
 請求項17記載の発明は、
 前記α2,3シアル酸認識レクチンが、MAL-Iであることを特徴とする請求項14又は15記載のがん幹細胞の単離方法である。
The invention described in claim 17
The method for isolating cancer stem cells according to claim 14 or 15, wherein the α2,3-sialic acid-recognizing lectin is MAL-I.
 なお、請求項14、15記載の発明のように、全てのα2,3シアル酸認識レクチン、全ての抗α2,3シアル酸抗体を用いても、同様の効果を得ることができるものであり、本発明において、前記α2,3シアル酸認識レクチンが、MAL-Iに限定されるものではない。 In addition, as in the inventions of claims 14 and 15, even if all α2,3-sialic acid-recognizing lectins and all anti-α2,3-sialic acid antibodies are used, the same effect can be obtained. In the present invention, the α2,3-sialic acid recognition lectin is not limited to MAL-I.
 請求項18記載の発明は、
 遺伝子発現レベルによる同定方法を用いてがん幹細胞の同定を行うことを特徴とするがん幹細胞の同定方法である。
The invention according to claim 18
A cancer stem cell identification method comprising identifying cancer stem cells using an identification method based on gene expression levels.
 請求項19記載の発明は、
 前記遺伝子の発現レベルをPCRにより増幅させた際のコピー数によって定量することを特徴とする請求項18記載のがん幹細胞の同定方法である。
The invention according to claim 19
19. The method for identifying cancer stem cells according to claim 18, wherein the expression level of the gene is quantified by the copy number when amplified by PCR.
 請求項20記載の発明は、
 前記遺伝子を糖転移酵素遺伝子とすることを特徴とする請求項18又は19記載のがん幹細胞の同定方法である。
The invention according to claim 20 provides
The method for identifying cancer stem cells according to claim 18 or 19, wherein the gene is a glycosyltransferase gene.
 請求項21記載の発明は、
 前記糖転移酵素遺伝子が、ST6GALNAC1、GCNT3、MGAT5の中のいずれか一種、またはこれらの中の2種類以上の組み合わせであることを特徴とする請求項20記載のがん幹細胞の同定方法である。
The invention according to claim 21
21. The method for identifying cancer stem cells according to claim 20, wherein the glycosyltransferase gene is any one of ST6GALNAC1, GCNT3, and MGAT5, or a combination of two or more thereof.
 請求項22記載の発明は、
 がん幹細胞への目的物送達の対象として、CDマーカー及び糖鎖の両方を提示している細胞を用いることを特徴とするがん幹細胞の選別方法である。
The invention according to claim 22
A method for selecting cancer stem cells, which comprises using cells presenting both a CD marker and a sugar chain as a target for delivery of an object to cancer stem cells.
 請求項23記載の発明は、
 DDS(薬物送達システム)分子の表面に提示するターゲット用分子として、抗CD抗体及び糖鎖認識分子の両方を提示していることを特徴とするがん幹細胞の選別方法である。
The invention described in claim 23
A cancer stem cell selection method characterized by presenting both an anti-CD antibody and a sugar chain recognition molecule as a target molecule to be presented on the surface of a DDS (drug delivery system) molecule.
 請求項24記載の発明は、
 前記CDマーカーがCD133、前記糖鎖がシアル酸であることを特徴とする請求項22記載のがん幹細胞の選別方法である。
The invention according to claim 24 provides
23. The method for selecting cancer stem cells according to claim 22, wherein the CD marker is CD133 and the sugar chain is sialic acid.
 請求項25記載の発明は、
 前記抗CD抗体が、抗CD133抗体であることを特徴とする請求項23記載のがん幹細胞の選別方法である。
The invention according to claim 25 provides
The method for selecting cancer stem cells according to claim 23, wherein the anti-CD antibody is an anti-CD133 antibody.
 請求項26記載の発明は、
 前記糖鎖認識分子がシアル酸認識分子であることを特徴とする請求項23記載のがん幹細胞の選別方法である。
The invention according to claim 26 provides
The method for selecting cancer stem cells according to claim 23, wherein the sugar chain recognition molecule is a sialic acid recognition molecule.
 請求項27記載の発明は、
 前記シアル酸認識分子が、SNA、SSA、 TJA-I、MAL-I、ACG、ABA、ACA、Jacalin、MAHのいずれかであることを特徴とする請求項26記載のがん幹細胞の選別方法である。
The invention according to claim 27 provides
27. The method for sorting cancer stem cells according to claim 26, wherein the sialic acid recognition molecule is any one of SNA, SSA, TJA-I, MAL-I, ACG, ABA, ACA, Jacalin, and MAH. is there.
 なお、前記のSNAなどのレクチンに限定されるものではなく、その他のシアル酸認識レクチンは全て採用可能である。 It should be noted that the present invention is not limited to the above lectins such as SNA, and all other sialic acid recognizing lectins can be employed.
 請求項28記載の発明は、
 前記糖鎖認識分子がシアル酸認識抗体であることを特徴とする請求項23記載のがん幹細胞の選別方法である。
The invention according to claim 28 provides
24. The method for selecting cancer stem cells according to claim 23, wherein the sugar chain recognition molecule is a sialic acid recognition antibody.
 請求項29記載の発明は、
 前記抗CD抗体が、フルボディの抗体、1本鎖抗体、Fabフラグメント、部分抗体(すなわち、抗体の一部)、キメラ抗体を含む人工抗体及び、アプタマー、mimic分子を含むことを特徴とする請求項23記載のがん幹細胞の選別方法である。
The invention according to claim 29 provides
The anti-CD antibody includes a full-body antibody, a single chain antibody, a Fab fragment, a partial antibody (ie, a part of an antibody), an artificial antibody including a chimeric antibody, an aptamer, and a mimic molecule. Item 24. The method for selecting cancer stem cells according to Item 23.
 前記のmimic分子としては、例えば、mimic RNA 等があげられる。 Examples of the mimic molecule include mimic RNA.
 請求項30記載の発明は、
 前記抗CD抗体が、wild type の抗体及び、人工的に作られたものを含むことを特徴とする請求項23記載のがん幹細胞の選別方法である。
The invention according to claim 30 provides
24. The method for selecting cancer stem cells according to claim 23, wherein the anti-CD antibody comprises a wild type antibody and an artificially produced antibody.
 前記の人工的に作られたものとしては、例えば、phage display 等の手法による人工的に作られたものが含まれる。 The above-mentioned artificially created one includes, for example, an artificially produced one by a method such as “phage display”.
 請求項31記載の発明は、
 前記抗CD133抗体が、ペプチド及び、ヌクレオチドを対象とすることを特徴とする請求項25記載のがん幹細胞の選別方法である。CD133を認識する以上、ペプチドやヌクレオチド、その他の分子も対象となるからである。
The invention of claim 31 is
26. The method for selecting cancer stem cells according to claim 25, wherein the anti-CD133 antibody targets peptides and nucleotides. This is because as long as it recognizes CD133, peptides, nucleotides, and other molecules are also targeted.
 請求項32記載の発明は、
 前記シアル酸認識分子がフルボディの抗体、1本鎖抗体、Fabフラグメント、部分抗体(すなわち、抗体の一部)、キメラ抗体を含む人工抗体及び、アプタマー、mimic分子を含むことを特徴とする請求項26記載のがん幹細胞の選別方法である。
The invention according to claim 32 provides
The sialic acid recognition molecule comprises a full-body antibody, a single chain antibody, a Fab fragment, a partial antibody (ie, a part of an antibody), an artificial antibody including a chimeric antibody, an aptamer, and a mimic molecule. Item 27. The method for selecting cancer stem cells according to Item 26.
 前記のmimic分子としては、例えば、mimic RNA 等があげられる。 Examples of the mimic molecule include mimic RNA.
 請求項33記載の発明は、
 前記シアル酸認識分子が、wild type の抗体及び、人工的に作られたものを含むことを特徴とする請求項26記載のがん幹細胞の選別方法である。
The invention of claim 33 is
27. The method for selecting cancer stem cells according to claim 26, wherein the sialic acid recognition molecule includes a wild type antibody and an artificially produced antibody.
 前記の人工的に作られたものとしては、例えば、phage display 等の手法による人工的に作られたものが含まれる。 The above-mentioned artificially created one includes, for example, an artificially produced one by a method such as “phage display”.
 なお、レクチンにおいてはwild type のレクチンだけでなく、リコンビナント化したものや、人工的に手を加えたものも含む。 In addition, lectins include not only wild type レ lectins, but also recombinant and artificially modified lectins.
 請求項34記載の発明は、
 前記シアル酸認識分子が、ペプチド及び、ヌクレオチドを対象とすることを特徴とする請求項26記載のがん幹細胞の選別方法である。シアル酸を認識する以上、ペプチドやヌクレオチド、その他の分子も対象となるからである。
The invention according to claim 34 provides
27. The method for selecting cancer stem cells according to claim 26, wherein the sialic acid recognition molecule targets peptides and nucleotides. This is because as long as sialic acid is recognized, peptides, nucleotides, and other molecules are also targeted.
 請求項35記載の発明は、
 がん治療の対象を、CDマーカー及び糖鎖の両方を提示している細胞とすることを特徴とするがんの治療方法である。
The invention of claim 35 is
The cancer treatment method is characterized in that a cancer treatment target is a cell presenting both a CD marker and a sugar chain.
 請求項36記載の発明は、
 前記CDマーカーCD133で、前記糖鎖がシアル酸であることを特徴とする請求項35記載のがんの治療方法である。
The invention according to claim 36 provides
36. The cancer treatment method according to claim 35, wherein the sugar chain is sialic acid in the CD marker CD133.
 請求項37記載の発明は、
 DDS(薬物送達システム)で使用される分子に、抗がん剤、RNAi、あるいは、遺伝子発現を阻害する分子をのせてがん幹細胞群に送達することを特徴とするがんの治療方法である。
The invention of claim 37 is
A method for treating cancer characterized in that an anticancer agent, RNAi, or a molecule that inhibits gene expression is placed on a molecule used in a DDS (drug delivery system) and delivered to a cancer stem cell group. .
 ここで、抗がん剤、RNAi、あるいは、遺伝子発現を阻害する分子をのせてがん幹細胞群に送達させる分子は、DDS(薬物送達システム)技術として使用される分子であればいずれであっても使用可能である。例えば、リポソームを挙げることができる。 Here, the molecule to be delivered to the cancer stem cell group on the anticancer drug, RNAi, or molecule that inhibits gene expression is any molecule that can be used as a DDS (drug delivery system) technology. Can also be used. For example, a liposome can be mentioned.
 請求項38記載の発明は、
 前記RNAiが、siRNA または、shRNAであるることを特徴とする請求項37記載のがんの治療方法である。
The invention according to claim 38 provides
38. The cancer treatment method according to claim 37, wherein the RNAi is siRNA or shRNA.
 請求項39記載の発明は、
 前記RNAi、あるいは、前記遺伝子発現を阻害する分子の阻害対象が、ST6GALNAC1、GCNT3 、MGAT5のいずれか、またはこれらの中の2種類以上の組み合わせであることを特徴とする請求項37記載のがんの治療方法である。
The invention according to claim 39 provides
38. The cancer according to claim 37, wherein the RNAi or the inhibition target of the molecule that inhibits gene expression is ST6GALNAC1, GCNT3, MGAT5, or a combination of two or more of these. This is a treatment method.
 請求項40記載の発明は、
 治療対象を、ST6GALNAC1、GCNT3、又は、MGAT5 の発現にかかわる転写因子を抑制する薬剤もしくは自然物質とすることを特徴とする請求項37記載のがんの治療方法である。
The invention according to claim 40 provides
38. The method of treating cancer according to claim 37, wherein the treatment target is a drug or natural substance that suppresses a transcription factor involved in the expression of ST6GALNAC1, GCNT3, or MGAT5.
 請求項41記載の発明は、
 ST6GALNAC1、GCNT3、又は、MGAT5 の働きを阻害することを特徴とする請求項37記載のがんの治療方法である。
The invention of claim 41 is
38. The cancer treatment method according to claim 37, wherein the function of ST6GALNAC1, GCNT3, or MGAT5 is inhibited.
 本発明によれば、将来的に従来のFACSの技術だけでなく、遺伝子発現レベルで細胞の形質を決定できる方法が開発されれば、ST6GALNAC1、GCNT3、またはMGAT5 を対象にCSC を同定する方法へと応用できる。 According to the present invention, if a method capable of determining a cell trait at the gene expression level as well as the conventional FACS technique in the future is developed, a method for identifying CSC in ST6GALNAC1, GCNT3, or MGAT5 And can be applied.
 この発明によれば、高純度ながん幹細胞の選別方法を提供することができる。また、がん幹細胞を単離するための分子決定におけるプロセスに関するがん幹細胞の単離方法を提供することができる。 According to this invention, it is possible to provide a method for selecting cancer stem cells with high purity. Moreover, the isolation method of the cancer stem cell regarding the process in the molecular determination for isolating a cancer stem cell can be provided.
 本発明により、高純度のがん幹細胞の単離方法を提供することが可能になる。すなわち、本発明によれば、がん幹細胞の特性研究を進歩させると同時に、がん幹細胞を死滅させる手段の開発を飛躍的に進歩させることが可能になる。これは癌根治というこれまで成しえなかった大きなテーマを現実のものにする、非常に大きなブレークスルーとなるものである。 The present invention makes it possible to provide a method for isolating high-purity cancer stem cells. That is, according to the present invention, it becomes possible to make a dramatic progress in the development of means for killing cancer stem cells while at the same time advancing research on the characteristics of cancer stem cells. This is a very big breakthrough that brings the realization of a major theme that has never been possible to cure cancer.
CD133陽性/シアル酸認識レクチン陰性と、CD133陽性/シアル酸認識レクチン陽性の癌細胞群に対するレクチンマイクロアレイによる解析結果を示す図。The figure which shows the analysis result by a lectin microarray with respect to a cancer cell group of CD133 positive / sialic acid recognition lectin negative and CD133 positive / sialic acid recognition lectin positive. 癌細胞接種後のマウスの写真であって、CD133陽性、レクチンX陽性がん細胞の腫瘍形成能に関する実験結果を表す図。It is a photograph of the mouse | mouth after cancer cell inoculation, Comprising: The figure showing the experimental result regarding the tumor formation ability of CD133 positive and a lectin X positive cancer cell. 図2に示す実験における腫瘤がみられた数を表す表。The table | surface showing the number by which the mass in the experiment shown in FIG. 2 was seen.
(糖鎖構造の相違によるがん幹細胞の選別、単離方法)
 本願の発明者等の研究により、同じCD133によって単離された細胞群自体もヘテロな集団であり、更に分画することで、ある種の画分に造腫瘍形成能が高い細胞集団が集中していることがわかってきた。この研究成果を利用することで、より高い純度のがん幹細胞の単離方法を発明したものである。
(Selection and isolation of cancer stem cells based on differences in sugar chain structure)
According to the study by the inventors of the present application, the cell group itself isolated by the same CD133 is also a heterogeneous population, and further fractionation concentrates a cell population having high tumorigenic potential in a certain fraction. I understand that By utilizing this research result, we have invented a method for isolating higher-purity cancer stem cells.
 本発明が提案するがん幹細胞の単離方法においては、CDマーカーなどによって癌細胞選別を行い、選別した細胞の中から培養細胞実験や動物実験などにより、造腫瘍能、薬剤耐性能などの中のいずれか一つ以上が高い細胞群、すなわち、悪性度の高い細胞群の選別を行う。 In the method of isolating cancer stem cells proposed by the present invention, cancer cells are selected using a CD marker or the like, and from among the selected cells, a cell culture experiment or an animal experiment is performed. A cell group having one or more of the above, that is, a cell group having a high malignancy is selected.
 そして、その選別したグループについて、レクチンアレイ、MS(質量分析法)、HPLC(高速液体クロマトグラフィー)、ウエスタンブロッティング、電機泳動等の糖鎖構造評価手段により、そのグループの糖鎖構造に関する特徴付けを行う。特徴的な糖鎖構造を利用して更にグループ分けすることで、前述した、造腫瘍能、薬剤耐性能などが高いグループを高度に絞り込むと同時に、糖鎖構造上の特徴を特定するのである。 The selected group is characterized with respect to the glycan structure of the group by glycan structure evaluation means such as lectin array, MS (mass spectrometry), HPLC (high performance liquid chromatography), western blotting, and electrophoretic electrophoresis. Do. By further grouping using the characteristic sugar chain structure, the above-mentioned group having high tumorigenic ability and drug resistance is highly narrowed down and at the same time, the characteristics on the sugar chain structure are specified.
 このプロセスにより造腫瘍能や薬剤耐性(この時点では幾つかのグループの特徴が特定されるので、転移性や分化度等の特徴付けも行われている)等の特性の異なるグループに分けられると同時に、その糖鎖構造上の特徴が付加されるため、あるグループの細胞を選別する為の抗体やレクチンのセットが決定されることになる。 When this process is divided into groups with different characteristics such as tumorigenicity and drug resistance (characteristics of several groups are specified at this point, metastaticity and differentiation degree are also characterized) At the same time, since the features of the sugar chain structure are added, a set of antibodies and lectins for selecting a certain group of cells is determined.
 こうして決定された抗体やレクチンを使用して、カラムやアフィニティビーズを構築することで、簡便に誰にでも高純度のがん幹細胞を単離することが可能となるのである。 By constructing columns and affinity beads using the antibodies and lectins thus determined, it becomes possible for anyone to easily isolate high-purity cancer stem cells.
 CD133とCD13のダブル陽性細胞は、極めて生物学的悪性度の高い、がん幹細胞としての形質をもつ(CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 2010 in press)。 CD133 and CD13 double positive cells are highly biologically malignant and have a trait as a cancer stem cell (CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 2010 in press).
 この細胞と親株を、レクチンアレイを用いて網羅的に糖鎖構造を解析したところ、α2,6シアル酸認識レクチンあるいはα2,3シアル酸認識レクチンとの親和性が高いことがわかった(図1)。 When the sugar chain structure of this cell and the parent strain was comprehensively analyzed using a lectin array, it was found that the affinity to α2,6-sialic acid recognition lectin or α2,3-sialic acid recognition lectin was high (FIG. 1). ).
 次に、CD133とSSA(Sambucus sieboldiana)を用いて、細胞株からがん幹細胞の単離することに成功した。高純度のがん幹細胞群であることの確認は、マウスにより造腫瘍能を観察することによって行った(図2)。 Next, using CD133 and SSA (Sambucus sieboldiana), we succeeded in isolating cancer stem cells from cell lines. Confirmation of the high-purity cancer stem cell group was performed by observing tumorigenicity with mice (FIG. 2).
 その結果CD133陽性/SSA陰性の細胞に比べて、CD133陽性/SSA陽性の細胞の方が、著しく造腫瘍能が高いことが分かった(図2及び、図3に示す表1)。 As a result, it was found that the CD133 positive / SSA positive cells had significantly higher tumorigenicity than the CD133 positive / SSA negative cells (Table 1 shown in FIG. 2 and FIG. 3).
 尚、本実施例においては、2,6シアル酸認識レクチンとしてSSAを、α2,3シアル酸認識レクチンとしてMAL-I(Maackia amrensis Lectin I)を用いた。 In this example, SSA was used as the 2,6-sialic acid recognition lectin, and MAL-I (Maackia amrensis Lectin I) was used as the α2,3-sialic acid recognition lectin.
(がん幹細胞の遺伝子発現プロファイル)
 がん幹細胞cDNA合成
 本願の特許請求の範囲の請求項21記載の方法で調製したがん幹細胞画分試料を、PBS(日水製薬社製ダルベッコPBS(-))で洗浄後に市販RNA抽出キット(キアゲン社製 RNeasy plus miniキット)を用いて抽出物をがん幹細胞トータルRNAとした。
(Gene expression profile of cancer stem cells)
Cancer Stem Cell cDNA Synthesis A cancer stem cell fraction sample prepared by the method according to claim 21 of the present application is washed with PBS (Dulbecco PBS (-) manufactured by Nissui Pharmaceutical Co., Ltd.) and then a commercially available RNA extraction kit ( The extract was used as cancer stem cell total RNA using Qiagen RNeasy plus mini kit).
 がん幹細胞トータルRNA1μgを出発材料として、市販cDNA合成キット(キアゲン社製 QuantitectRTキット)を用いて調製したcDNAをがん幹細胞cDNAとした。 Cancer stem cell cDNA was prepared using 1 μg of cancer stem cell total RNA as a starting material and using a commercially available cDNA synthesis kit (Quantitect RT kit manufactured by Qiagen).
 なお、前記のがん幹細胞画分試料における糖転移酵素遺伝子は、ST6GALNAC1と、GCNT3と、MGAT5とを組み合わせたものを使用した。 The glycosyltransferase gene in the cancer stem cell fraction sample was a combination of ST6GALNAC1, GCNT3, and MGAT5.
 糖転移酵素遺伝子発現レベルの定量PCR解析
 定量PCR法を用いてがん幹細胞cDNAについて糖転移酵素遺伝子の発現量を定量した。定量方法については非特許文献4に記載した定量PCRアレイを用いる方法に従った。
Quantitative PCR analysis of glycosyltransferase gene expression level The amount of glycosyltransferase gene expression was quantified in cancer stem cell cDNA using a quantitative PCR method. Regarding the quantification method, the method using a quantitative PCR array described in Non-Patent Document 4 was followed.
 がん幹細胞cDNAを鋳型として用いて、Eurogentec社製のqPCRQuickGoldStar Mastermix PlusをPCR酵素として用いた。 The cancer stem cell cDNA was used as a template and qPCRQuickGoldStar Mastermix Plus from Eurogentec was used as a PCR enzyme.
 なお、後述のように、SSA陽性がん幹細胞で顕著に発現が亢進していた遺伝子は3種あり、定量PCアレイに搭載されているこれらのPCRプライマー及びプローブは以下の通りである。 As described later, there are three types of genes whose expression was remarkably enhanced in SSA positive cancer stem cells, and these PCR primers and probes mounted on the quantitative PC array are as follows.
 ST6GALNAC1遺伝子転写産物特異的検出セット試薬(Fプライマー;5’-ggtgcccactggaggata-3’(配列番号×1)、Rプライマー;5’-gaagccataagcactcacctg-3’(配列番号×2)、TaqManプローブ;ctggcc(配列番号×3)。 ST6GALNAC1 gene transcript-specific detection set reagent (F primer; 5'-ggtgcccactggaggata-3 '(SEQ ID NO: 1), R primer; 5'-gaagccataagcactcacctg-3' (SEQ ID NO: 2), TaqMan probe: ctggcc (sequence) Number x 3).
 GCNT3遺伝子転写産物特異的検出セット試薬(Fプライマー;5’-atccctaagcaggagagaagc-3’(配列番号×4)、Rプライマー;5’-gtggagaccgagcacagg-3(配列番号×5)、TaqManプローブ;ctcctcca(配列番号×6)。 GCNT3 gene transcript-specific detection set reagent (F primer; 5'-atccctaagcaggagagaagc-3 '(SEQ ID NO: 4), R primer: 5'-gtggagaccgagcacagg-3 (SEQ ID NO: 5), TaqMan probe: ctcctcca (SEQ ID NO: × 6).
 MGAT5遺伝子転写産物特異的検出セット試薬(Fプライマー;5’-ggggatgctacagagaatcaa-3’(配列番号×7)、Rプライマー;5’-gggtggccacatcacttg-3(配列番号×8)、TaqManプローブ;cttctgcc(配列番号×9)。 MGAT5 gene transcript-specific detection set reagent (F primer; 5'-ggggatgctacagagaatcaa-3 '(SEQ ID NO: 7), R primer: 5'-gggtggccacatcacttg-3 (SEQ ID NO: 8), TaqMan probe: cttctgcc (SEQ ID NO: × 9).
 がん幹細胞cDNA試料溶液にDEPC Treated Water(和光純薬製)を加えて2mLとし、さらにPCR酵素(Eurogentec社製)2mLを加えたものをPCR反応液とした。 DEPC 幹 Treated Water (Wako Pure Chemical Industries) was added to the cancer stem cell cDNA sample solution to make 2 mL, and PCR enzyme (Eurogentec) 2 mL was used as the PCR reaction solution.
 遺伝子転写産物特異的検出セット試薬が配置してある定量PCRアレイ用測定プレートの各ウェルにPCR反応液7.5Lずつを文注した後に混和し、シール材で密封した後に遠心分離機を用いて1500rpmで反応ウェル内の反応液をスピンダウンしてからPCR反応測定装置(Roche社製 LighCycler480)にセットして定量PCRアレイ反応サイクルプログラムによって測定した。定量PCRアレイ反応サイクルプログラムは、50℃/2分、95℃/3分の後に、95℃/15秒、60℃/1分20秒を1サイクルとして55回繰返した。検出は測定装置付属のソフトウェアで各資料中の標的遺伝子転写産物に由来する蛍光強度の変化を測定した後に、2次微分極大法によって数値化を施した。 After 7.5 L of PCR reaction solution is poured into each well of the measurement plate for quantitative PCR array where the gene transcript-specific detection set reagent is placed, mix, seal with a sealant, and then use a centrifuge. The reaction solution in the reaction well was spun down at 1500 rpm and then set in a PCR reaction measuring device (LighCycler 480 manufactured by Roche) and measured by a quantitative PCR array reaction cycle program. The quantitative PCR array reaction cycle program was repeated 55 times, with 50 ° C./2 minutes and 95 ° C./3 minutes followed by 95 ° C./15 seconds and 60 ° C./1 minute 20 seconds. For the detection, the change in fluorescence intensity derived from the target gene transcript in each sample was measured with software attached to the measurement device, and then numericalization was performed by the second derivative maximum method.
 測定結果の数値は別途測定した標準試料をもって作成した検量線にあてはめることで、測定資料中の標的遺伝子転写産物のコピー数として算出した。 The numerical value of the measurement result was calculated as the copy number of the target gene transcript in the measurement data by applying it to a calibration curve prepared with a separately measured standard sample.
 SSA陽性がん幹細胞における糖転位酵素遺伝子の発現レベル
 SSA陽性がん幹細胞画分試料について測定した結果、3種類の糖転位酵素遺伝子(ST6GALNAC、GCNT3及び、MGAT5)で発現レベルの顕著な更新が認められた。発現レベルをトータルRNA1.88ナノグラム中に含まれる転写産物のコピー数として表したのが表1である。
Figure JPOXMLDOC01-appb-T000001
Expression level of glycosyltransferase gene in SSA-positive cancer stem cells As a result of measuring the SSA-positive cancer stem cell fraction sample, a marked update of the expression level was recognized in three types of glycosyltransferase genes (ST6GALNAC, GCNT3 and MGAT5) It was. Table 1 shows the expression level as the copy number of the transcript contained in 1.88 nanograms of total RNA.
Figure JPOXMLDOC01-appb-T000001
 これらの結果からSSA陽性がん幹細胞において、これらの遺伝子産物がSSAレクチンに結合し得る糖鎖の生合成を担っていることが示された。 These results indicate that these gene products are responsible for the biosynthesis of sugar chains that can bind to SSA lectins in SSA positive cancer stem cells.
 以上、添付図面を参照して本発明の好ましい実施形態を説明したが、本発明はかかる実施形態に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々の形態に変更可能である。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to such embodiments, and various forms are possible within the technical scope grasped from the description of the claims. Can be changed.

Claims (41)

  1.  細胞上の糖鎖構造の相違によってがん幹細胞を選別することを特徴とするがん幹細胞の単離方法。 A method for isolating cancer stem cells, which comprises selecting cancer stem cells based on the difference in sugar chain structure on the cells.
  2.  癌細胞の選別を行った後、当該選別した癌細胞について糖鎖構造に関する特徴付けを行い、細胞特性と糖鎖構造上の特徴を関連付けることにより、がん幹細胞を単離する為の分子決定を行うことを特徴とする請求項1記載のがん幹細胞の単離方法。 After selecting the cancer cells, characterize the sugar chain structure of the selected cancer cells and correlate the cell characteristics with the characteristics of the sugar chain structure to make a molecular determination for isolating cancer stem cells. The method for isolating cancer stem cells according to claim 1, wherein the method is performed.
  3.  癌細胞の選別を行った後、高造腫瘍能、高転移能、高薬剤耐性能の中のいずれか一つ以上の特徴を有する細胞群を選別し、当該選別した細胞群について糖鎖構造に関する特徴付けを行い、細胞特性と糖鎖構造上の特徴を関連付けることにより、がん幹細胞を単離する為の分子決定を行うことを特徴とする請求項1記載のがん幹細胞の単離方法。 After selecting cancer cells, a cell group having at least one of the characteristics of high tumorigenicity, high metastasis ability, and high drug resistance is selected, and the sugar chain structure of the selected cell group is selected. The method for isolating cancer stem cells according to claim 1, wherein molecular determination for isolating cancer stem cells is performed by characterizing and associating cell characteristics with features on the sugar chain structure.
  4.  前記高造腫瘍能、高転移能、高薬剤耐性能の中のいずれか一つ以上の特徴を有する細胞群の選別は、培養細胞実験及び/又は動物実験により行うことを特徴とする請求項3記載のがん幹細胞の単離方法。 4. The selection of a cell group having any one or more of the high tumorigenic potential, high metastatic potential, and high drug resistance is performed by a cultured cell experiment and / or an animal experiment. The method for isolating a cancer stem cell as described.
  5.  前記選別した細胞群についての糖鎖構造に関する特徴付けは糖鎖構造評価手段により行うことを特徴とする請求項3又は請求項4記載のがん幹細胞の単離方法。 The method for isolating cancer stem cells according to claim 3 or 4, wherein the characterization of the sugar chain structure of the selected cell group is performed by a sugar chain structure evaluation means.
  6.  前記糖鎖構造評価手段は、レクチンアレイ、MS、HPLC、ウエスタンブロッティング、電気泳動の中のいずれかの手法、又は、これらの中の複数種の組み合わせによるものであることを特徴とする請求項5記載のがん幹細胞の単離方法。 6. The sugar chain structure evaluation means is based on any one of a lectin array, MS, HPLC, Western blotting, electrophoresis, or a combination of plural kinds thereof. The method for isolating a cancer stem cell as described.
  7.  前記癌細胞の選別は、CDマーカー、又は、糖鎖の中のいずれか一種、又は、これらの中の複数種の組み合わせを用いて行うことを特徴とする請求項2~請求項6のいずれか一項記載のがん幹細胞の単離方法。 The cancer cell is selected using any one of a CD marker, a sugar chain, or a combination of a plurality of these among cancer markers. The method for isolating cancer stem cells according to one item.
  8.  前記癌細胞の選別は、抗CDマーカー抗体、又は、レクチン、抗糖鎖抗体の中のいずれか一種、又は、これらの中の複数種の組み合わせを用いて行うことを特徴とする請求項2~請求項6のいずれか一項記載のがん幹細胞の単離方法。 The selection of the cancer cells is performed using any one of an anti-CD marker antibody, a lectin, and an anti-sugar chain antibody, or a combination of a plurality of these. The method for isolating cancer stem cells according to claim 6.
  9.  前記癌細胞の選別は、抗CDマーカー抗体、又は、レクチン、抗糖鎖抗体の中のいずれか一種、又は、これらの中の複数種の組み合わせを用いたカラム、アフィニティビーズを用いて行うことを特徴とする請求項2~請求項6のいずれか一項記載のがん幹細胞の単離方法。 The selection of the cancer cells is performed using an anti-CD marker antibody, a lectin, an anti-sugar chain antibody, a column using a combination of a plurality of types, or affinity beads. The method for isolating cancer stem cells according to any one of claims 2 to 6, characterized in that:
  10.  前記レクチン及び、抗糖鎖抗体は、前記特徴付けが行われた糖鎖構造を認識するレクチン及び、抗糖鎖抗体であることを特徴とする請求項8又は9記載のがん幹細胞の単離方法。 10. The isolation of cancer stem cells according to claim 8 or 9, wherein the lectin and the anti-sugar chain antibody are a lectin that recognizes the characterized sugar chain structure and an anti-sugar chain antibody. Method.
  11.  前記抗糖鎖抗体が、天然の抗体、リコンビナント抗体、抗体の一部、アプタマーを含む人工抗体、ヌクレオチド、人工構造体のいずれかであることを特徴とする請求項10記載のがん幹細胞の単離方法 11. The cancer stem cell unit according to claim 10, wherein the anti-sugar chain antibody is any one of a natural antibody, a recombinant antibody, a part of the antibody, an artificial antibody including an aptamer, a nucleotide, and an artificial structure. Separation method
  12.  CDマーカーとしてCD133又はCD13あるいはこれらの組み合わせを用い、糖鎖としてα2,6シアル酸、又は、α2,3シアル酸あるいはこれらの組み合せを用いることを特徴とする請求項7記載のがん幹細胞の単離方法。 The cancer stem cell unit according to claim 7, wherein CD133 or CD13 or a combination thereof is used as a CD marker, and α2,6 sialic acid, α2,3 sialic acid or a combination thereof is used as a sugar chain. Separation method.
  13.  がん幹細胞の単離が、肝臓癌幹細胞におけるがん幹細胞の単離であることを特徴とする請求項12記載のがん幹細胞の単離方法。 The method for isolating cancer stem cells according to claim 12, wherein the isolation of cancer stem cells is isolation of cancer stem cells in liver cancer stem cells.
  14.  抗CDマーカー抗体として抗CD133抗体または抗CD13抗体あるいはこれらの組み合わせを用い、レクチンとしてα2,6シアル酸認識レクチン又はα2,3シアル酸認識レクチンあるいはこれらの組み合わせを用い、抗糖鎖抗体として抗α2,6シアル酸抗体または抗α2,3シアル酸抗体あるいはこれらの組み合わせを用いることを特徴とする請求項8~請求項11のいずれか一項記載のがん幹細胞の単離方法。 Anti-CD133 antibody or anti-CD13 antibody or a combination thereof is used as an anti-CD marker antibody, α2,6-sialic acid recognition lectin or α2,3-sialic acid recognition lectin or a combination thereof is used as a lectin, and anti-α2 is used as an anti-sugar chain antibody. The method for isolating cancer stem cells according to any one of claims 8 to 11, characterized by using a 1,6 sialic acid antibody, an anti-α2,3 sialic acid antibody, or a combination thereof.
  15.  がん幹細胞の単離が、肝臓癌幹細胞におけるがん幹細胞の単離であることを特徴とする請求項14記載のがん幹細胞の単離方法。 The method for isolating cancer stem cells according to claim 14, wherein the isolation of cancer stem cells is isolation of cancer stem cells in liver cancer stem cells.
  16.  前記α2,6シアル酸認識レクチンが、SNA、SSA、TJA-Iのいずれかであることを特徴とする請求項14又は15記載のがん幹細胞の単離方法。 The method for isolating cancer stem cells according to claim 14 or 15, wherein the α2,6-sialic acid recognizing lectin is one of SNA, SSA, and TJA-I.
  17.  前記α2,3シアル酸認識レクチンが、MAL-Iであることを特徴とする請求項14又は15記載のがん幹細胞の単離方法。 The method for isolating cancer stem cells according to claim 14 or 15, wherein the α2,3-sialic acid-recognizing lectin is MAL-I.
  18.  遺伝子発現レベルによる同定方法を用いてがん幹細胞の同定を行うことを特徴とするがん幹細胞の同定方法。 A method for identifying cancer stem cells, comprising identifying cancer stem cells using an identification method based on gene expression levels.
  19.  前記遺伝子の発現レベルをPCRにより増幅させた際のコピー数によって定量することを特徴とする請求項18記載のがん幹細胞の同定方法。 19. The method for identifying cancer stem cells according to claim 18, wherein the expression level of the gene is quantified based on the copy number when amplified by PCR.
  20.  前記遺伝子を糖転移酵素遺伝子とすることを特徴とする請求項18又は19記載のがん幹細胞の同定方法。 20. The method for identifying a cancer stem cell according to claim 18 or 19, wherein the gene is a glycosyltransferase gene.
  21.  前記糖転移酵素遺伝子が、ST6GALNAC1、GCNT3、MGAT5の中のいずれか一種、またはこれらの中の2種類以上の組み合わせであることを特徴とする請求項20記載のがん幹細胞の同定方法。 21. The method for identifying a cancer stem cell according to claim 20, wherein the glycosyltransferase gene is any one of ST6GALNAC1, GCNT3, and MGAT5, or a combination of two or more thereof.
  22.  がん幹細胞への目的物送達の対象として、CDマーカー及び糖鎖の両方を提示している細胞を用いることを特徴とするがん幹細胞の選別方法。 A method for selecting cancer stem cells, which uses cells presenting both a CD marker and a sugar chain as a target for delivery of an object to cancer stem cells.
  23.  DDS分子の表面に提示するターゲット用分子として、抗CD抗体及び糖鎖認識分子の両方を提示していることを特徴とするがん幹細胞の選別方法。 A screening method for cancer stem cells, wherein both an anti-CD antibody and a sugar chain recognition molecule are presented as target molecules to be presented on the surface of a DDS molecule.
  24.  前記CDマーカーがCD133、前記糖鎖がシアル酸であることを特徴とする請求項22記載のがん幹細胞の選別方法。 The method for selecting cancer stem cells according to claim 22, wherein the CD marker is CD133 and the sugar chain is sialic acid.
  25.  前記抗CD抗体が、抗CD133抗体であることを特徴とする請求項23記載のがん幹細胞の選別方法。 The method for selecting cancer stem cells according to claim 23, wherein the anti-CD antibody is an anti-CD133 antibody.
  26.  前記糖鎖認識分子がシアル酸認識分子であることを特徴とする請求項23記載のがん幹細胞の選別方法。 24. The method for selecting cancer stem cells according to claim 23, wherein the sugar chain recognition molecule is a sialic acid recognition molecule.
  27.  前記シアル酸認識分子が、SNA、SSA、 TJA-I、MAL-I、ACG、ABA、ACA、Jacalin、MAHのいずれかであることを特徴とする請求項26記載のがん幹細胞の選別方法。 27. The method for selecting cancer stem cells according to claim 26, wherein the sialic acid recognition molecule is any one of SNA, SSA, TJA-I, MAL-I, ACG, ABA, ACA, Jacalin, and MAH.
  28.  前記糖鎖認識分子がシアル酸認識抗体であることを特徴とする請求項23記載のがん幹細胞の選別方法。 24. The method for selecting cancer stem cells according to claim 23, wherein the sugar chain recognition molecule is a sialic acid recognition antibody.
  29.  前記抗CD抗体が、フルボディの抗体、1本鎖抗体、Fabフラグメント、部分抗体、キメラ抗体を含む人工抗体及び、アプタマー、mimic分子を含むことを特徴とする請求項23記載のがん幹細胞の選別方法。 24. The cancer stem cell according to claim 23, wherein the anti-CD antibody comprises a full-body antibody, a single chain antibody, a Fab fragment, a partial antibody, an artificial antibody including a chimeric antibody, an aptamer, and a mimic molecule. Sorting method.
  30.  前記抗CD抗体が、wild type の抗体及び、人工的に作られたものを含むことを特徴とする請求項23記載のがん幹細胞の選別方法。 24. The method for selecting cancer stem cells according to claim 23, wherein the anti-CD antibody includes a wild type antibody and an artificially produced antibody.
  31.  前記抗CD133抗体が、ペプチド及び、ヌクレオチドを対象とすることを特徴とする請求項25記載のがん幹細胞の選別方法。 26. The method for selecting cancer stem cells according to claim 25, wherein the anti-CD133 antibody targets peptides and nucleotides.
  32.  前記シアル酸認識分子がフルボディの抗体、1本鎖抗体、Fabフラグメント、部分抗体、キメラ抗体を含む人工抗体及び、アプタマー、mimic分子を含むことを特徴とする請求項26記載のがん幹細胞の選別方法。 27. The cancer stem cell according to claim 26, wherein the sialic acid recognition molecule comprises a full-body antibody, a single chain antibody, a Fab fragment, a partial antibody, an artificial antibody including a chimeric antibody, an aptamer, and a mimic molecule. Sorting method.
  33.  前記シアル酸認識分子が、wild type の抗体及び、人工的に作られたものを含むことを特徴とする請求項26記載のがん幹細胞の選別方法。 27. The method for selecting cancer stem cells according to claim 26, wherein the sialic acid recognition molecule includes a wild type antibody and an artificially produced one.
  34.  前記シアル酸認識分子が、ペプチド及び、ヌクレオチドを対象とすることを特徴とする請求項26記載のがん幹細胞の選別方法。 27. The method for selecting cancer stem cells according to claim 26, wherein the sialic acid recognition molecule targets peptides and nucleotides.
  35.  がん治療の対象を、CDマーカー及び糖鎖の両方を提示している細胞とすることを特徴とするがんの治療方法。 A cancer treatment method, characterized in that a cancer treatment target is a cell presenting both a CD marker and a sugar chain.
  36.  前記CDマーカーCD133で、前記糖鎖がシアル酸であることを特徴とする請求項35記載のがんの治療方法。 36. The method for treating cancer according to claim 35, wherein in the CD marker CD133, the sugar chain is sialic acid.
  37.  DDSで使用される分子に、抗がん剤、RNAi、あるいは、遺伝子発現を阻害する分子をのせてがん幹細胞群に送達することを特徴とするがんの治療方法。 A method for treating cancer, which comprises delivering an anticancer agent, RNAi, or a molecule that inhibits gene expression to a molecule used in DDS to a cancer stem cell group.
  38.  前記RNAiが、siRNA または、shRNAであるることを特徴とする請求項37記載のがんの治療方法。 The method for treating cancer according to claim 37, wherein the RNAi is siRNA or shRNA.
  39.  前記RNAi、あるいは、前記遺伝子発現を阻害する分子の阻害対象が、ST6GALNAC1、GCNT3 、MGAT5のいずれか、またはこれらの中の2種類以上の組み合わせであることを特徴とする請求項37記載のがんの治療方法。
    38. The cancer according to claim 37, wherein the RNAi or the inhibition target of the molecule that inhibits gene expression is ST6GALNAC1, GCNT3, MGAT5, or a combination of two or more of these. Treatment methods.
  40.  治療対象を、ST6GALNAC1、GCNT3、又は、MGAT5 の発現にかかわる転写因子を抑制する薬剤もしくは自然物質とすることを特徴とする請求項37記載のがんの治療方法。 38. The method for treating cancer according to claim 37, wherein the treatment target is a drug or a natural substance that suppresses a transcription factor involved in the expression of ST6GALNAC1, GCNT3, or MGAT5.
  41.  ST6GALNAC1、GCNT3、又は、MGAT5 の働きを阻害することを特徴とする請求項37記載のがんの治療方法。 38. The method for treating cancer according to claim 37, wherein the function of ST6GALNAC1, GCNT3, or MGAT5 is inhibited.
PCT/JP2011/071504 2010-09-21 2011-09-21 Method for isolating cancer stem cells WO2012039430A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-211216 2010-09-21
JP2010211216 2010-09-21
JP2011037621 2011-02-23
JP2011-037621 2011-02-23

Publications (1)

Publication Number Publication Date
WO2012039430A1 true WO2012039430A1 (en) 2012-03-29

Family

ID=45873914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071504 WO2012039430A1 (en) 2010-09-21 2011-09-21 Method for isolating cancer stem cells

Country Status (1)

Country Link
WO (1) WO2012039430A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006712A1 (en) * 2014-07-11 2016-01-14 国立研究開発法人産業技術総合研究所 Method for determining cell differentiation potential
CN108780090A (en) * 2015-12-02 2018-11-09 利摩日大学 The method for detaching cancer stem cell
CN115155485A (en) * 2021-05-28 2022-10-11 王孟阳 Synthesis and screening equipment for anti-cancer stem cell drug molecules and operation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089004A1 (en) * 2010-01-20 2011-07-28 Glycotope Gmbh Cancer stem cell markers and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089004A1 (en) * 2010-01-20 2011-07-28 Glycotope Gmbh Cancer stem cell markers and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
EIJI MIYOSHI ET AL.: "Tosa o Mochiita Kangan Kansaibo no Tanri to sono Seibutsugakuteki Tokusei", ACTA HEPATOLOGICA JAPONICA, vol. 52, no. SUPPL., 10 September 2011 (2011-09-10), pages A553 *
HARAGUCHI N ET AL.: "CD13 is a therapeutic target in human liver cancer stem cells.", J. CLIN. INVEST., vol. 120, 1 September 2010 (2010-09-01), pages 3326 - 3339, XP055107319, DOI: doi:10.1172/JCI42550 *
HE J ET AL.: "Identification of cell surface glycoprotein markers for glioblastoma-derived stem-like cells using a lectin microarray and LC-MS/MS approach.", J. PROTEOME RES., vol. 9, May 2010 (2010-05-01), pages 2565 - 2572 *
KEMPER K ET AL.: "The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.", CANCER RES., vol. 70, January 2010 (2010-01-01), pages 719 - 729, XP055222759, DOI: doi:10.1158/0008-5472.CAN-09-1820 *
TAO S-C ET AL.: "Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers.", GLYCOBIOLOGY, vol. 18, 2008, pages 761 - 769 *
ZHOU F ET AL.: "Alpha2,3-sialylation regulates the stability of stem cell marker CD133.", J. BIOCHEM., VERSION MVQ062VL, 15 June 2010 (2010-06-15) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006712A1 (en) * 2014-07-11 2016-01-14 国立研究開発法人産業技術総合研究所 Method for determining cell differentiation potential
JPWO2016006712A1 (en) * 2014-07-11 2017-06-01 国立研究開発法人産業技術総合研究所 Cell differentiation potential discrimination method
CN108780090A (en) * 2015-12-02 2018-11-09 利摩日大学 The method for detaching cancer stem cell
CN115155485A (en) * 2021-05-28 2022-10-11 王孟阳 Synthesis and screening equipment for anti-cancer stem cell drug molecules and operation method thereof

Similar Documents

Publication Publication Date Title
Nicolini et al. Prognostic and predictive biomarkers in breast cancer: Past, present and future
AU2011237669B2 (en) Circulating biomarkers for disease
AU2011291599B2 (en) Circulating biomarkers for disease
US20140220580A1 (en) Biomarker compositions and methods
US20160041153A1 (en) Biomarker compositions and markers
US20140141986A1 (en) Circulating biomarkers
AU2012294458A1 (en) Biomarker compositions and methods
WO2014193999A2 (en) Biomarker methods and compositions
AU2013229762A1 (en) Biomarker compositions and methods
Xu et al. SRSF1 regulates exosome microRNA enrichment in human cancer cells
Jacobson et al. Gene expression analysis using long-term preserved formalin-fixed and paraffin-embedded tissue of non-small cell lung cancer
EP2460005A1 (en) Methods of assessing a risk of cancer progression
AU2015268602A1 (en) Circulating biomarkers for disease
Choi et al. Epigenetic landscape change analysis during human EMT sheds light on a key EMT mediator TRIM29
WO2012039430A1 (en) Method for isolating cancer stem cells
Soltysova et al. Monosomy 3 influences epithelial-mesenchymal transition gene expression in uveal melanoma patients; consequences for liquid biopsy
US11001897B2 (en) Specific expression of half-tRNA in cancers
WO2010130825A2 (en) New targets for cancer therapy and/or diagnosis and new screening tools
KR101594735B1 (en) Composition for early diagnosis of obesity and uses thereof
KR102065594B1 (en) Biomarker for predicting resistance to anticancer agent
EP3371605A1 (en) Protein quantitation in multicellular tissue specimens
CN105734155A (en) Chondroblast-type osteosarcoma disease-causing gene and application thereof
KR101238196B1 (en) Composition for Diagnosis of Liver Metastasis of Colorectal Cancer and the Use Thereof
US20150011411A1 (en) Biomarkers of cancer
Zhuang et al. Proteomic characteristics reveal the signatures and the risks of T1 colorectal cancer metastasis to lymph nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP