WO2012039087A1 - Imaging element and imaging device - Google Patents

Imaging element and imaging device Download PDF

Info

Publication number
WO2012039087A1
WO2012039087A1 PCT/JP2011/003934 JP2011003934W WO2012039087A1 WO 2012039087 A1 WO2012039087 A1 WO 2012039087A1 JP 2011003934 W JP2011003934 W JP 2011003934W WO 2012039087 A1 WO2012039087 A1 WO 2012039087A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
photosensitive cell
polarization
unit
rotating
Prior art date
Application number
PCT/JP2011/003934
Other languages
French (fr)
Japanese (ja)
Inventor
シング ビラハム パル
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012039087A1 publication Critical patent/WO2012039087A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to an imaging device that can acquire polarization information and an imaging device including the imaging device.
  • Patent Document 1 discloses an image sensor in which fine polarizers are arranged at a pitch of about 100 ⁇ m, for example.
  • Patent Document 2 discloses an imaging apparatus having a mechanism for rotating a polarizing plate.
  • Patent Document 3 discloses an endoscope that acquires a polarization image by alternately using two polarizing plates having a polarization transmission axis orthogonal to each other.
  • Patent Document 2 there is a problem of pixel shift due to a large rotating polarizing plate, and resolution and SN ratio are lowered. Moreover, it is difficult to reduce the size of an apparatus for rotating the polarizing plate.
  • the present invention has been made in order to solve the above-described problems, and has as its main purpose an imaging that does not require a device for rotating or moving a large polarizing plate and can acquire polarization information from each pixel. It is to provide an element.
  • Another object of the present invention is to provide an imaging device that includes the imaging device described above and can output polarization information.
  • the imaging device of the present invention includes a plurality of polarizer units each including one polarizer or N polarizers (N is an integer of 2 or more) having different polarization transmission axis directions, and a plurality of photosensitive cells. And a photosensitive cell array arranged such that linearly polarized light transmitted through the polarizer is incident on each photosensitive cell, and each polarizer unit is rotated about the central axis of each polarizer unit. And a MEMS rotating element for rotating the polarization plane of linearly polarized light incident on each photosensitive cell.
  • each polarizer unit includes four polarizers having different polarization transmission axis directions, and each polarization transmission axis direction is different by 45 °.
  • the MEMS rotating element rotates each polarizer unit by rotating the polarizer unit by an angle that is a multiple of 45 ° in synchronization with a timing at which charge accumulation in the photosensitive cell array is reset.
  • the plane of polarization of linearly polarized light incident on the cell is changed.
  • the MEMS rotating element temporarily changes a polarization plane of linearly polarized light incident on each photosensitive cell by quiescing the polarizer unit during a period in which charge accumulation is performed in the photosensitive cell array. Fix it.
  • one polarizer faces one photosensitive cell during the period in which the charge accumulation is performed in the photosensitive cell array.
  • the MEMS rotating element includes a rotating unit that supports each polarizer unit, and a fixed unit that rotates the rotating unit by electrostatic force.
  • the imaging apparatus of the present invention includes a plurality of polarizer units each including one polarizer or N polarizers (N is an integer of 2 or more) having different polarization transmission axis directions, and a plurality of photosensitive cells. And a photosensitive cell array arranged such that linearly polarized light transmitted through the polarizer is incident on each photosensitive cell, and each polarizer unit is rotated about the central axis of each polarizer unit.
  • an imaging device including a MEMS rotating element that rotates a polarization plane of linearly polarized light incident on each photosensitive cell, a driving circuit that drives the MEMS rotating element, and imaging for forming an image on the imaging device And a lens.
  • each of a plurality of polarizer units each including one or several polarizers is rotated by a MEMS rotating element, a large apparatus for rotating or replacing a large polarizing plate is provided. It is unnecessary.
  • light having a different polarization main axis can be incident on each pixel, it is possible to obtain a polarized image with high resolution.
  • FIG. 1 shows schematic structure of the imaging part in embodiment of the imaging device by this invention.
  • A is a figure which shows typically the one part plane structure of the rotating polarizer array 160 in 1st Embodiment
  • (b) is a figure which shows the cross-sectional structure typically.
  • A) is a figure which shows typically the plane structure for 1 pixel of the rotating polarizer array 160
  • (b) is a figure which shows typically the cross section and the cross section of the photosensitive cell array 120 corresponding.
  • it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in an initial state, and photosensitive cell 12a, 12b, 12c, 12d.
  • a 1st example it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 2nd state, and photosensitive cell 12a, 12b, 12c, 12d.
  • a 1st example it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 3rd state, and photosensitive cell 12a, 12b, 12c, 12d.
  • a 1st example it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 4th state, and photosensitive cell 12a, 12b, 12c, 12d.
  • a 2nd example it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in an initial state, and photosensitive cell 12a, 12b, 12c, 12d.
  • a 2nd example it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 2nd state, and photosensitive cell 12a, 12b, 12c, 12d.
  • a 2nd example it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 3rd state, and photosensitive cell 12a, 12b, 12c, 12d.
  • FIG. 1 it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 4th state, and photosensitive cell 12a, 12b, 12c, 12d.
  • A is a figure which shows typically the plane structure for 4 pixels of the rotating polarizer array 160 in 2nd Embodiment
  • (b) is a figure which shows the cross section and the cross section of the corresponding photosensitive cell array 120 typically.
  • FIG. It is a figure which shows typically the plane structure for 36 pixels of the rotating polarizer array 160 in 2nd Embodiment.
  • (A) to (d) is a diagram showing the rotation of the polarizer unit 140 in the second embodiment.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention. It is a block diagram which shows an example of the main components of the signal processing part 200 in embodiment of this invention.
  • a graph showing light intensities (pixel values or luminances) I 1 to I 4 transmitted through four types of polarizers having polarization transmission axes ( ⁇ i 0 °, 45 °, 90 °, 135 °) having different directions. is there. It is a graph which shows the amplitude, phase, and average value of the fluctuation curve of polarization luminance.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging unit in an embodiment of an imaging apparatus according to the present invention.
  • the imaging unit includes an imaging element (image sensor) 10 and a photographing lens 20 for forming an image on the imaging surface of the imaging element 10.
  • the imaging element 10 includes a photosensitive cell array 120 in which a plurality of photosensitive cells (photoelectric conversion elements) are arranged along the imaging surface, a rotating polarizer array 160 that controls a polarization plane of light incident on each photosensitive cell, and the like. It has. Since each photosensitive cell corresponds to a pixel, the photosensitive cell array 120 may be referred to as a pixel array 120.
  • the photographic lens 20 is schematically described as a single lens in FIG. 1, but is usually an optical system in which a plurality of lenses are combined, and has a known configuration.
  • FIG. 2A schematically shows a part of the planar configuration of the rotating polarizer array 160
  • FIG. 2B shows a cross section thereof.
  • FIG. 2A for simplicity, only a region corresponding to the size of four pixels in the rotating polarizer array 160 is shown.
  • the actual rotating polarizer array 160 has a size that covers all the photosensitive cells (all pixels) included in the opposing photosensitive cell array 120.
  • FIG. 3A is a plan view of a region for one pixel in the rotating polarizer array 160
  • FIG. 3B schematically shows a cross section thereof and a cross section of one corresponding photosensitive cell 12. As shown in FIG. Show.
  • the rotating polarizing element 160 of the present embodiment includes a plurality of polarizer units 140 and a MEMS rotating element 16 that rotates each polarizer unit 140 around the central axis of each polarizer unit 140.
  • each polarizer unit 140 includes four polarizers 14 having different polarization transmission axis directions.
  • each polarizer unit 140 includes one polarizer 14. Contains.
  • the polarizer 14 covers one corresponding photosensitive cell 12, and linearly polarized light polarized in the direction of the polarization transmission axis of the polarizer 14 is incident on the photosensitive cell 12.
  • the MEMS rotating element 16 has a rotating portion 16b that supports each polarizer unit 140 and a fixing portion 16a that rotates the rotating portion 16b by electrostatic force. is doing.
  • the fixing unit 16a may be separated for each polarizer unit 140, or integrated with the fixing unit 16a of another polarizer unit 140 and continuously in one rotating polarizer array 160 as shown in FIG. You may do it.
  • the MEMS rotating element 16 can be manufactured by a micromachining technique using a known semiconductor manufacturing technique.
  • the fixed portion 16a and the rotating portion 16b can be formed by preparing a single crystal silicon substrate and performing fine processing by a thin film deposition process, a photolithography process, and an etching process.
  • the fixed portion 16a and the rotating portion 16b can be formed of, for example, a polycrystalline silicon thin film or a silicon dioxide film.
  • An example of a method for manufacturing such a MEMS rotating element 16 is disclosed in Non-Patent Document 1, for example.
  • the diameter of the rotating unit 16b can be determined according to the pixel size.
  • the diameter of the rotating unit 16b can be set to, for example, 14 ⁇ m.
  • the size of the polarizer 14 is limited by the rotating unit 16b.
  • the MEMS rotating element 16 includes electrodes 15a and 15b that generate an electrostatic force for rotating the rotating portion 16b, and wiring (not shown).
  • the rotating portion 16b rotates by a desired angle. Since the rotation unit 16b rotates together with the polarizer unit 140, the polarization transmission axis direction of the polarizer 14 included in the polarizer unit 140 can be rotated by a predetermined angle.
  • the movement of the rotating unit 16b can be controlled so as to rotate in a state where the polarization transmission axes of all the polarizers 14 are aligned in the same direction.
  • the present invention is not limited to such an example.
  • the directions of the polarization transmission axes of the individual polarizers 14 do not need to match.
  • Each polarizer 14 is preferably rotated by the same angle (for example, 45 °) by one rotation operation.
  • the imaging unit of FIG. 1 includes a MEMS driving circuit 40 that drives the MEMS rotating element 16 of the rotating polarizer array 160.
  • the MEMS drive circuit 40 may be incorporated in the image sensor 10 or may be mounted as another component.
  • the electrodes 15a and 15b in FIG. 3A are connected to the MEMS drive circuit 40 through the wiring described above.
  • each polarizer 14A, 14B, 14C, 14D in the drawing indicates the direction (main axis direction) of the polarization transmission axis of the polarizer.
  • the light transmitted through the polarizer 14 is linearly polarized light polarized in the direction of the polarization transmission axis of the polarizer 14.
  • 4A to 4D show four polarizers 14A, 14B, 14C, and 14D in which the directions of polarization transmission axes are aligned in the same direction.
  • the arrangement pitch of the photosensitive cells in the photosensitive cell array 120 matches the arrangement pitch of the polarizers 14 in the rotating polarizer array 160. These arrangement pitches are sometimes referred to as “pixel pitches”.
  • the actual photosensitive cell array 120 is disposed at a position to receive light transmitted through each polarizer 14 of the rotating polarizer array 160 as described above.
  • the photosensitive cell array 120 is composed of photosensitive cells 12 arranged in rows and columns.
  • FIG. 4A shows the relationship between the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D included in the rotating polarizer array 160 in the initial state and the photosensitive cells 12a, 12b, 12c, and 12d. ing.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is linearly polarized light that is polarized in the Y-axis direction, and is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively.
  • charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • the charge accumulation period is defined by the reciprocal of the signal reading frame rate (fps: frame per second).
  • FIG. 4B shows a state in which the polarizers 14A, 14B, 14C, and 14D are rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction rotated by 45 ° clockwise from the Y axis, and the photosensitive cells 12a, 12b, and 12c, respectively. , 12d.
  • the photosensitive cells 12a, 12b, 12c, and 12d While in the state of FIG. 4B, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • the rotation of the polarizers 14A, 14B, 14C, and 14D is performed in synchronization with the charge accumulation reset timing.
  • the time during which the polarizers 14A, 14B, 14C, and 14D are rotating is excluded from the charge accumulation period. For this reason, the polarization direction of light incident on each photosensitive cell does not change during the charge accumulation period. As a result, it is possible to obtain polarization information of light incident on the photosensitive cell based on the read pixel signal. Acquisition of polarization information in pixel units will be described in detail later.
  • FIG. 4C shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction (X-axis direction) rotated by 90 ° clockwise from the Y-axis, and each of the photosensitive cells. It enters 12a, 12b, 12c, 12d.
  • charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • FIG. 4D shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction rotated by 135 ° clockwise from the Y axis, and the photosensitive cells 12a, 12b, and 12c, respectively. , 12d.
  • charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, and return to the state shown in FIG. 4A.
  • each polarizer 14 returns from the state of FIG. 4A to the original state (the state of FIG. 4A) through the state of FIG. 4B, the state of FIG. 4C, and the state of FIG. 4D.
  • this periodic operation is repeated, light transmitted through a polarizer having a different polarization transmission axis is sequentially incident on each photosensitive cell during one period. Since the pixel signal is read out in synchronization with the rotational motion of the polarizer 14, polarization information can be acquired.
  • the polarization transmission axis direction is set to four directions.
  • pixel signals may be acquired in a state where the polarization transmission axis directions are different by 60 °.
  • the rotation angle of the polarizer 14 is not limited to 45 ° or 60 °. Any other angle can be set. Two types of pixel signals may be output in a state where the polarization transmission axis directions are different by 90 °. In this case, the polarizer 14 may repeat this operation with one cycle of the operation of rotating 90 ° clockwise and then rotating 90 ° counterclockwise. Although complete polarization information cannot be obtained, it is possible to detect polarization components whose polarization directions are orthogonal.
  • planar shapes of the polarizer 14 and the photosensitive cell 12 shown in FIGS. 4A to 4D are both circular.
  • the planar shapes of the polarizer 14 and the photosensitive cell (light receiving region) 12 are not limited to a circular shape.
  • the planar shape and size of the polarizer 14 and the photosensitive cell 12 are such that light transmitted through the polarizer 14 efficiently enters each photosensitive cell 12 and light that does not transmit through the corresponding polarizer 14 corresponds to each light. It is designed not to enter the sensing cell 12.
  • the planar shape of the photosensitive cell 12 does not have to be circular, and may be an ellipse or a polygon.
  • the planar shape of the polarizer 14 is not necessarily circular, and may be an ellipse or a polygon.
  • the planar shape of each polarizer 14 may be a square or an octagon.
  • the planar shape of the polarizer 14 preferably has a symmetrical shape with a rotation of (360 / N) degrees around the central axis.
  • the light sensing cell 12 may be covered with a microlens.
  • the photosensitive cell array 120 may be realized by a backside illuminated image sensor. When the photosensitive cell array 120 is realized by a normal surface irradiation type image sensor, a wiring (not shown) exists between the photosensitive cell 12 and the photosensitive cell 12.
  • FIGS. 5A to 5D Next, another example of the rotation operation of the polarizer 14 will be described with reference to FIGS. 5A to 5D.
  • the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D shown in the figure are different by 45 °, but the other points are the same as the examples shown in FIGS. 4A to 4D. Are the same.
  • FIG. 5A shows the relationship between the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D included in the rotating polarizer array 160 in the initial state and the photosensitive cells 12a, 12b, 12c, and 12d. ing.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is linearly polarized light that is polarized in different directions by 45 °, and is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively.
  • charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • four polarizers 14A, 14B, 14C, and 14D form one basic configuration. This basic configuration is two-dimensionally and periodically arranged in one rotating polarizer array 160. The four polarizers 14A, 14B, 14C, and 14D can rotate independently, but in the present embodiment, they rotate by the same angle in the same direction.
  • FIG. 5B shows a state in which the polarizers 14A, 14B, 14C, and 14D are rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction rotated by 45 ° clockwise from the polarization transmission axis direction shown in FIG. 5A.
  • the light enters the sensing cells 12a, 12b, 12c, and 12d.
  • the photosensitive cells 12a, 12b, 12c, and 12d While in the state of FIG. 5B, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • FIG. 5C shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively.
  • the photosensitive cells 12a, 12b, 12c, and 12d While in the state of FIG. 5C, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • FIG. 5D shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16.
  • the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively.
  • the photosensitive cells 12a, 12b, 12c, and 12d While in the state of FIG. 5D, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion.
  • the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
  • the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, and return to the state shown in FIG. 5A.
  • each polarizer 14 rotates by 45 °.
  • this periodic operation is repeated, light transmitted through four polarizers having different polarization transmission axes is sequentially incident on each photosensitive cell 12 during one period. Since pixel signals are read out in synchronization with the rotational movement of the polarizer 14, polarization information can be acquired.
  • the interval between the photosensitive cell array 120 and the rotating polarizer array 160 is 1 mm or less. In a more preferred embodiment, they are in contact.
  • one polarizer unit 140 includes one polarizer 14, but the present invention is not limited to such an example.
  • the number of the polarizers 14 included in one polarizer unit 140 may be N (N is an integer of 2 or more).
  • FIG. 6 is a plan view showing a planar configuration example of one polarizer unit 140 including four polarizers 14 having different polarization transmission axis directions.
  • FIG. It is a top view of the area
  • An arrow is described on each polarizer 14 in FIG. This arrow indicates the direction (main axis direction) of the polarization transmission axis of the polarizer.
  • the polarization transmission axis directions of the polarizers 14 included in one polarizer unit 140 are different by 45 °.
  • the MEMS rotating element 16 in this example also includes a rotating portion 16b that supports the polarizer unit 140 and a fixing portion 16a that rotates the rotating portion 16b by electrostatic force, as shown in FIG.
  • These configurations are basically the same as those shown in FIGS. 3A and 3B. The difference is that one rotating unit 16b supports four polarizers 14A, 14B, 14C, and 14D.
  • the rotation unit 16b rotates together with the polarizer unit 140, the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D included in the polarizer unit 140 are rotated by a predetermined angle. Can do.
  • the four polarizers 14A, 14B, 14C, 14D rotate about the center O of the polarizer unit 140, not the center of each.
  • FIG. 7 is a plan view showing nine polarizer units 140.
  • the polarizers 14A, 14B, 14C, and 14D in the individual polarizer units 140 have the same arrangement pattern.
  • the actual rotating polarizer array 160 includes a number of polarizer units 140.
  • the polarizer unit 140 when the polarizer unit 140 in the state shown in FIG. 8A is rotated clockwise by 90 °, the polarizer unit 140 is in the state shown in FIG. 8B.
  • the polarizer 14A in the state of FIG. 8A, it has a polarization transmission axis parallel to the Y-axis direction, but in the state shown in FIG. 8B, polarization transmission parallel to the X-axis direction. Has an axis. That is, when the polarizer unit rotates 90 °, the polarizer 14A rotates 90 ° around the rotation center of the polarizer unit 140 and rotates the polarization transmission axis direction by 90 °. The same applies to the other polarizer units 14B, 14C, and 14D included in the same polarizer unit 140.
  • the polarizer unit 140 when the polarizer unit 140 is rotated by 90 °, the polarization plane of the light incident on each light sensing cell 12 is rotated by 45 °.
  • the polarizer 14 itself covering each photosensitive cell 12 is sequentially changed by the rotation of the polarizer unit 140. That is, also in this embodiment, the polarization plane of the light incident on each photosensitive cell 12 can be rotated.
  • each photosensitive cell 12 when light polarized in a specific direction is incident, each photosensitive cell 12 generates and accumulates a charge corresponding to the amount of incident light by photoelectric conversion.
  • the charge accumulated in each of the photosensitive cells 12 is read out as a pixel signal. After the charge reading is completed, the accumulated charge is reset.
  • the rotation of the polarizer unit 140 is performed in synchronization with the timing at which the accumulated charge is reset. When charge accumulation is performed, the rotation of the polarizer unit 140 is stopped.
  • FIG. 9 shows an example of a configuration in which one polarizer unit 140 covers the photosensitive cells 12 having a larger number than the polarizers 14 included therein.
  • the polarizer 14A covers the photosensitive cells 12a, 12b, 12c, and 12d.
  • the polarizer 14B covers the photosensitive cells 12e, 12f, 12g, and 12h.
  • the polarizer 14C covers the photosensitive cells 12i, 12j, 12k, and 12l.
  • the polarizer 14D covers the photosensitive cells 12m, 12n, 12o, and 12p.
  • the polarizer unit 140 rotates 90 ° clockwise, for example, the polarization transmission axis direction of the polarizer 14A rotates 90 °, and the polarizer 14A moves to a position covering the photosensitive cells 12e, 12f, 12g, and 12h. .
  • the other polarizers 14B, 14C, and 14D move their positions while rotating the polarization transmission axis direction in the same manner as the polarizer 14A.
  • each polarizer 14 since the polarizer unit 140 is rotated by 90 °, the shape of each polarizer 14 does not have to be a circle, and may be a square as shown in FIG.
  • the number of photosensitive cells 12 covered by one polarizer 14 is not limited to four.
  • the number of photosensitive cells 12 covered by one polarizer 14 is preferably n ⁇ n.
  • FIG. 10 is a block diagram illustrating a schematic configuration of the imaging apparatus according to the present embodiment.
  • the imaging apparatus of the present embodiment includes an imaging unit 100, a signal processing unit 200 that performs various signal processing, an imaging display unit 300 that displays an image acquired by imaging, a recording medium 400 that records image data, and each unit And a system control unit 500 for controlling the system.
  • the imaging unit 100 includes an imaging element (image sensor) 10 having the rotating polarizer array 160 having each configuration described above, and a photographing lens 20 for forming an image on the imaging surface of the imaging element 10. is doing.
  • the photographic lens 20 in the present embodiment has a known configuration, and is actually a lens unit that includes a plurality of lenses.
  • the photographing lens 20 is driven by a mechanism (not shown), and necessary operations for optical zooming, automatic exposure (AE) and automatic focus (AF) are performed as necessary.
  • the imaging unit 100 includes an imaging element driving unit 30 and a MEMS driving circuit 40 that drive the imaging element 10.
  • the image sensor driving unit 30 is composed of, for example, a driver LSI.
  • the image sensor drive unit 30 drives the image sensor 10 to read an analog signal from the image sensor 10 and convert it into a digital signal.
  • the MEMS driving circuit 40 rotates the polarization transmission axis direction of the polarizer in a plane parallel to the imaging area by driving the MEMS rotating element 16 of the rotating polarizer array 160 described above.
  • the signal processing unit 200 in the present embodiment includes an image processing unit (image processor) 220, a memory 240, and an interface (IF) unit 260.
  • the signal processing unit 200 is connected to a display unit 300 such as a liquid crystal display panel and a recording medium 400 such as a memory card.
  • the image processing unit 220 performs various signal processes necessary for operations such as color correction, resolution change, automatic exposure, automatic focus, and data compression, and executes polarization information acquisition processing according to the present invention.
  • the image processing unit 220 is preferably realized by a combination of hardware such as a known digital signal processor (DSP) and software that executes image processing including polarization information processing according to the present invention.
  • DSP digital signal processor
  • the memory 240 is configured by a DRAM or the like. The memory 240 records the image data obtained from the imaging unit 100 and temporarily records the image data subjected to various image processing by the image processing unit 220. These image data are converted into analog signals and then displayed on the display unit 300 or recorded on the recording medium 400 via the interface unit 260 as digital signals.
  • a system control unit 500 including a central processing unit (CPU) (not shown) and a flash memory.
  • CPU central processing unit
  • the imaging apparatus of the present embodiment may include known components such as a viewfinder, a power source (battery), and a flashlight, but a description thereof is omitted because it is not particularly necessary for understanding the present invention.
  • FIG. 11 is a block diagram illustrating an example of main components of the signal processing unit 200 in the present embodiment.
  • polarization image information can be acquired from a subject and output as two types of polarization images (polarization degree image ⁇ and polarization phase image ⁇ ).
  • the signal output from the imaging unit 100 is sent to the image processing unit 220, processed by the image processing unit 220, and then stored in the polarization degree image frame memory 222 and the polarization phase image frame memory 224.
  • Polarization degree image frame memory 222 outputs polarization degree image ( ⁇ ) data
  • polarization phase image frame memory 224 outputs polarization phase image ( ⁇ ) data.
  • I i is the luminance observed when the rotation angle ⁇ of the polarization transmission axis is ⁇ i .
  • FIG. 12 shows luminances I 1 to I 4 corresponding to four samples ( ⁇ i , I i ) obtained from one pixel.
  • A, B, and C are unknown constants, and represent the amplitude, phase, and average value of the polarization luminance fluctuation curve, respectively.
  • polarization information means amplitude modulation degree (modulation degree) ⁇ and phase information ⁇ in a sine function curve indicating the dependence of luminance on the polarization principal axis angle.
  • the values ⁇ and ⁇ (0 ⁇ ⁇ ⁇ ⁇ ) are calculated by the following (formula 2) and (formula 3), respectively.
  • polarization information can be acquired from all pixels based on the pixel signal (pixel value) to be read even if the polarization transmission axis of the polarizer is changed by driving the MEMS rotating element 16. .
  • the effect of the present invention can also be obtained, for example, by adopting a configuration in which light sequentially transmitted through a polarizer in which the polarization transmission axis has two different directions enters each photosensitive cell.
  • a polarizer in which the polarization transmission axis has two different directions enters each photosensitive cell.
  • orthogonal polarization components can be detected, which is also useful in technical fields such as endoscopes.
  • the imaging device and imaging apparatus of the present invention can be applied to various fields of polarization imaging technology.
  • the imaging device and imaging apparatus of the present invention are useful as key devices for security, medical care, communication, and analysis.
  • Imaging unit (image sensor) DESCRIPTION OF SYMBOLS 12 Photosensitive cell 12a-12d Photosensitive cell 12e-12p Photosensitive cell 14 Polarizer 14A-14D Polarizer 15a Electrode 15b Electrode 16 MEMS rotating element 16a Fixed part 16b Rotating part 20 Shooting lens 30 Imaging element drive part 40 Drive circuit 100 Imaging unit 120 Photosensitive cell array 140 Polarizer unit 160 Rotating polarizer array 200 Signal processing unit 220 Image processing unit (image processor) 222 Polarization image frame memory 224 Polarization phase image frame memory 226 Luminance image frame memory 240 Memory 260 Interface (IF) section 300 Imaging display section 400 Recording medium 500 System control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

This imaging device comprises: multiple polarizer units (140) each of which comprises a single polarizer (14) or N pieces (wherein N represents an integer of 2 or more) of polarizers (14) having different polarization transmission axis direction from each other; a photosensor cell array (120) on which multiple photosensor cells (12) are arranged along the image plane and which is so adopted that linear polarized light that passes through the polarizers (14) can enter each of the photosensor cells (12); and an MEMS rotation element (16) which can rotate each of the polarizer units (140) about the center axis of each of the polarizer units (140) so as to cause the rotation of a polarization plane of the linear polarized light that enters each of the photosensor cells (12).

Description

撮像素子および撮像装置Imaging device and imaging apparatus
 本発明は、偏光情報を取得することができる撮像素子、および当該撮像素子を備える撮像装置に関する。 The present invention relates to an imaging device that can acquire polarization information and an imaging device including the imaging device.
 輝度画像だけでは得られない情報を取得できる偏光イメージングが注目されている。偏光イメージングを行うには、撮像素子の撮像面の前に偏光子または偏光板を配置する必要がある。特許文献1は、微細な偏光子をたとえば100μm程度のピッチで配列した撮像素子を開示している。特許文献2は、偏光板を回転させる機構を備えた撮像装置を開示している。特許文献3は、偏光透過軸が直交する関係にある2枚の偏光板を交互に用いることにより、偏光画像を取得する内視鏡を開示している。 Polarized imaging that can acquire information that cannot be obtained with luminance images alone has attracted attention. In order to perform polarization imaging, it is necessary to arrange a polarizer or a polarizing plate in front of the imaging surface of the imaging device. Patent Document 1 discloses an image sensor in which fine polarizers are arranged at a pitch of about 100 μm, for example. Patent Document 2 discloses an imaging apparatus having a mechanism for rotating a polarizing plate. Patent Document 3 discloses an endoscope that acquires a polarization image by alternately using two polarizing plates having a polarization transmission axis orthogonal to each other.
特開2007-86720号公報JP 2007-86720 A 米国特許出願公開第2007-79982号公報US Patent Application Publication No. 2007-79982 特開2003-47588号公報JP 2003-47588 A
 特許文献1に記載の従来技術によれば、偏光子が固定されており、画素ズレの問題が生じず、偏光板を回転させるための機構も不要である。しかし、個々の画素からは一定方向の偏光透過軸を透過した光しか入射しないため、偏光度や偏光位相角度などの偏光情報を獲得するには、複数の画素からの信号を用いる必要があり、解像度が低下する。 According to the prior art described in Patent Document 1, the polarizer is fixed, the problem of pixel displacement does not occur, and a mechanism for rotating the polarizing plate is unnecessary. However, since only light transmitted through the polarization transmission axis in a certain direction is incident from each pixel, it is necessary to use signals from a plurality of pixels in order to obtain polarization information such as the degree of polarization and the polarization phase angle. The resolution decreases.
 特許文献2に記載の従来技術によれば、大きな回転偏光板による画素ズレの問題があり、解像度やSN比が低下する。また、偏光板を回転させるための装置は小型化が困難である。 According to the conventional technique described in Patent Document 2, there is a problem of pixel shift due to a large rotating polarizing plate, and resolution and SN ratio are lowered. Moreover, it is difficult to reduce the size of an apparatus for rotating the polarizing plate.
 特許文献3に記載の従来技術によれば、偏光板の移動距離が大きく、偏光板の位置を変えるための装置の小型化が困難である。 According to the prior art described in Patent Document 3, the moving distance of the polarizing plate is large, and it is difficult to reduce the size of the apparatus for changing the position of the polarizing plate.
 本発明は、上記課題を解決するためになされたものであり、その主な目的は、大きな偏光板を回転または移動させるための装置が不要であり、かつ、各画素から偏光情報を取得できる撮像素子を提供することにある。 The present invention has been made in order to solve the above-described problems, and has as its main purpose an imaging that does not require a device for rotating or moving a large polarizing plate and can acquire polarization information from each pixel. It is to provide an element.
 本発明の他の目的は、上記の撮像素子を備え、偏光情報を出力することができる撮像装置を提供することにある。 Another object of the present invention is to provide an imaging device that includes the imaging device described above and can output polarization information.
 本発明の撮像素子は、各々が1つの偏光子または偏光透過軸方向の異なるN個(Nは2以上の整数)の偏光子を含む複数の偏光子ユニットと、複数の光感知セルが撮像面に沿って配列され、前記偏光子を透過した直線偏光が各光感知セルに入射するように配置された光感知セルアレイと、各偏光子ユニットの中心軸の周りに各偏光子ユニットを回転させることにより、各光感知セルに入射する直線偏光の偏光面を回転させるMEMS回転素子とを備える。 The imaging device of the present invention includes a plurality of polarizer units each including one polarizer or N polarizers (N is an integer of 2 or more) having different polarization transmission axis directions, and a plurality of photosensitive cells. And a photosensitive cell array arranged such that linearly polarized light transmitted through the polarizer is incident on each photosensitive cell, and each polarizer unit is rotated about the central axis of each polarizer unit. And a MEMS rotating element for rotating the polarization plane of linearly polarized light incident on each photosensitive cell.
 ある実施形態において、各偏光子ユニットは前記偏光透過軸方向の異なる4個の偏光子を含み、各偏光透過軸方向は45°ずつ異なっている。 In one embodiment, each polarizer unit includes four polarizers having different polarization transmission axis directions, and each polarization transmission axis direction is different by 45 °.
 ある実施形態において、前記MEMS回転素子は、前記光感知セルアレイでの電荷蓄積がリセットされるタイミングと同期して、前記偏光子ユニットを45°の倍数である角度だけ回転させることにより、各光感知セルに入射する直線偏光の偏光面を変化させる。 In one embodiment, the MEMS rotating element rotates each polarizer unit by rotating the polarizer unit by an angle that is a multiple of 45 ° in synchronization with a timing at which charge accumulation in the photosensitive cell array is reset. The plane of polarization of linearly polarized light incident on the cell is changed.
 ある実施形態において、前記MEMS回転素子は、前記光感知セルアレイで電荷蓄積が行われている期間、前記偏光子ユニットを静止させることによって各光感知セルに入射する直線偏光の偏光面を一時的に固定する。 In one embodiment, the MEMS rotating element temporarily changes a polarization plane of linearly polarized light incident on each photosensitive cell by quiescing the polarizer unit during a period in which charge accumulation is performed in the photosensitive cell array. Fix it.
 ある実施形態において、前記光感知セルアレイで前記電荷蓄積が行われる期間、1つの偏光子は1つの光感知セルに対向している。 In one embodiment, one polarizer faces one photosensitive cell during the period in which the charge accumulation is performed in the photosensitive cell array.
 ある実施形態において、前記MEMS回転素子は、各偏光子ユニットを支持する回転部と、静電力によって前記回転部を回転させる固定部とを有する。 In one embodiment, the MEMS rotating element includes a rotating unit that supports each polarizer unit, and a fixed unit that rotates the rotating unit by electrostatic force.
 本発明の撮像装置は、各々が1つの偏光子または偏光透過軸方向の異なるN個(Nは2以上の整数)の偏光子を含む複数の偏光子ユニットと、複数の光感知セルが撮像面に沿って配列され、前記偏光子を透過した直線偏光が各光感知セルに入射するように配置された光感知セルアレイと、各偏光子ユニットの中心軸の周りに各偏光子ユニットを回転させることにより、各光感知セルに入射する直線偏光の偏光面を回転させるMEMS回転素子とを備える撮像素子と、前記MEMS回転素子を駆動する駆動回路と、前記撮像素子上に像を形成するための撮影レンズとを備える。 The imaging apparatus of the present invention includes a plurality of polarizer units each including one polarizer or N polarizers (N is an integer of 2 or more) having different polarization transmission axis directions, and a plurality of photosensitive cells. And a photosensitive cell array arranged such that linearly polarized light transmitted through the polarizer is incident on each photosensitive cell, and each polarizer unit is rotated about the central axis of each polarizer unit. Thus, an imaging device including a MEMS rotating element that rotates a polarization plane of linearly polarized light incident on each photosensitive cell, a driving circuit that drives the MEMS rotating element, and imaging for forming an image on the imaging device And a lens.
 本発明によれば、各々が1つまたは数個の偏光子を含む複数の偏光子ユニットの各々をMEMS回転素子によって回転させるため、大きな偏光板を回転させたり、交替させるための大型の装置が不要である。そして、各画素に偏光主軸の異なる光を入射させることができるため、高い解像度の偏光画像を取得することが可能になる。 According to the present invention, since each of a plurality of polarizer units each including one or several polarizers is rotated by a MEMS rotating element, a large apparatus for rotating or replacing a large polarizing plate is provided. It is unnecessary. In addition, since light having a different polarization main axis can be incident on each pixel, it is possible to obtain a polarized image with high resolution.
本発明による撮像装置の実施形態における撮像部の概略構成を示す図である。It is a figure which shows schematic structure of the imaging part in embodiment of the imaging device by this invention. (a)は、第1の実施形態における回転偏光子アレイ160の一部の平面構成を模式的に示す図、(b)は、その断面構成を模式的に示す図である。(A) is a figure which shows typically the one part plane structure of the rotating polarizer array 160 in 1st Embodiment, (b) is a figure which shows the cross-sectional structure typically. (a)は、回転偏光子アレイ160の1画素分の平面構成を模式的に示す図、(b)は、その断面および対応する光感知セルアレイ120の断面を模式的に示す図である。(A) is a figure which shows typically the plane structure for 1 pixel of the rotating polarizer array 160, (b) is a figure which shows typically the cross section and the cross section of the photosensitive cell array 120 corresponding. 第1の例において、最初の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 1st example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in an initial state, and photosensitive cell 12a, 12b, 12c, 12d. 第1の例において、2番目の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 1st example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 2nd state, and photosensitive cell 12a, 12b, 12c, 12d. 第1の例において、3番目の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 1st example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 3rd state, and photosensitive cell 12a, 12b, 12c, 12d. 第1の例において、4番目の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 1st example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 4th state, and photosensitive cell 12a, 12b, 12c, 12d. 第2の例において、最初の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 2nd example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in an initial state, and photosensitive cell 12a, 12b, 12c, 12d. 第2の例において、2番目の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 2nd example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 2nd state, and photosensitive cell 12a, 12b, 12c, 12d. 第2の例において、3番目の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 2nd example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 3rd state, and photosensitive cell 12a, 12b, 12c, 12d. 第2の例において、4番目の状態にある偏光子14A、14B、14C、14Dと、光感知セル12a、12b、12c、12dとの関係を示す図である。In a 2nd example, it is a figure which shows the relationship between polarizer 14A, 14B, 14C, 14D in a 4th state, and photosensitive cell 12a, 12b, 12c, 12d. (a)は、第2の実施形態における回転偏光子アレイ160の4画素分の平面構成を模式的に示す図、(b)は、その断面および対応する光感知セルアレイ120の断面を模式的に示す図である。(A) is a figure which shows typically the plane structure for 4 pixels of the rotating polarizer array 160 in 2nd Embodiment, (b) is a figure which shows the cross section and the cross section of the corresponding photosensitive cell array 120 typically. FIG. 第2の実施形態における回転偏光子アレイ160の36画素分の平面構成を模式的に示す図である。It is a figure which shows typically the plane structure for 36 pixels of the rotating polarizer array 160 in 2nd Embodiment. (a)から(d)は、第2の実施形態における偏光子ユニット140の回転を示す図である。(A) to (d) is a diagram showing the rotation of the polarizer unit 140 in the second embodiment. 1つの偏光子ユニットと複数の光感知セルとの関係を示す平面図である。It is a top view which shows the relationship between one polarizer unit and several photosensitive cell. 本発明の実施形態における撮像装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention. 本発明の実施形態における信号処理部200の主要な構成要素の一例を示すブロック図である。It is a block diagram which shows an example of the main components of the signal processing part 200 in embodiment of this invention. 方向が異なる偏光透過軸(Ψi=0°、45°、90°、135°)を有する4種類の偏光子を透過した光の強さ(画素値または輝度)I1~I4を示すグラフである。A graph showing light intensities (pixel values or luminances) I 1 to I 4 transmitted through four types of polarizers having polarization transmission axes (ψi = 0 °, 45 °, 90 °, 135 °) having different directions. is there. 偏光輝度の変動カーブの振幅、位相、平均値を示すグラフである。It is a graph which shows the amplitude, phase, and average value of the fluctuation curve of polarization luminance.
 (実施形態1)
 まず、図1を参照する。図1は、本発明による撮像装置の実施形態における撮像部の概略構成を示す図である。
(Embodiment 1)
First, refer to FIG. FIG. 1 is a diagram illustrating a schematic configuration of an imaging unit in an embodiment of an imaging apparatus according to the present invention.
 この撮像部は、撮像素子(イメージセンサ)10と、撮像素子10の撮像面に像を形成するための撮影レンズ20とを有している。撮像素子10は、複数の光感知セル(光電変換素子)が撮像面に沿って配列された光感知セルアレイ120と、各光感知セルに入射する光の偏光面を制御する回転偏光子アレイ160とを備えている。個々の光感知セルは、画素に相当するため、光感知セルアレイ120は画素アレイ120と称しても良い。撮影レンズ20は、図1において単一レンズとして模式的に記載されているが、通常は、複数のレンズが組み合わせられた光学系であり、公知の構成を備えている。 The imaging unit includes an imaging element (image sensor) 10 and a photographing lens 20 for forming an image on the imaging surface of the imaging element 10. The imaging element 10 includes a photosensitive cell array 120 in which a plurality of photosensitive cells (photoelectric conversion elements) are arranged along the imaging surface, a rotating polarizer array 160 that controls a polarization plane of light incident on each photosensitive cell, and the like. It has. Since each photosensitive cell corresponds to a pixel, the photosensitive cell array 120 may be referred to as a pixel array 120. The photographic lens 20 is schematically described as a single lens in FIG. 1, but is usually an optical system in which a plurality of lenses are combined, and has a known configuration.
 次に、図2および図3を参照して、回転偏光子アレイ160の構成例を説明する。図2(a)は、回転偏光子アレイ160の平面構成の一部を模式的に示し、図2(b)は、その断面を示している。図2(a)には、簡単のため、回転偏光子アレイ160のうちの4画素分の大きさに相当する領域のみが示されている。実際の回転偏光子アレイ160は、対向する光感知セルアレイ120に含まれる全ての光感知セル(全画素)を覆う大きさを有している。図3(a)は、回転偏光子アレイ160のうちの1画素分の領域の平面図であり、図3(b)は、その断面および対応する1つの光感知セル12の断面を模式的に示している。 Next, a configuration example of the rotating polarizer array 160 will be described with reference to FIGS. 2 and 3. 2A schematically shows a part of the planar configuration of the rotating polarizer array 160, and FIG. 2B shows a cross section thereof. In FIG. 2A, for simplicity, only a region corresponding to the size of four pixels in the rotating polarizer array 160 is shown. The actual rotating polarizer array 160 has a size that covers all the photosensitive cells (all pixels) included in the opposing photosensitive cell array 120. FIG. 3A is a plan view of a region for one pixel in the rotating polarizer array 160, and FIG. 3B schematically shows a cross section thereof and a cross section of one corresponding photosensitive cell 12. As shown in FIG. Show.
 本実施形態の回転偏光素子160は、図2に示すように、複数の偏光子ユニット140と、各偏光子ユニット140の中心軸の周りに各偏光子ユニット140を回転させるMEMS回転素子16とを備えている。後述する第2の実施形態では、各偏光子ユニット140が偏光透過軸方向の異なる4個の偏光子14を含んでいるが、本実施形態では、各偏光子ユニット140が1つの偏光子14を含んでいる。偏光子14は、図3(b)に示されるように、対応する1つの光感知セル12を覆っており、偏光子14の偏光透過軸の方向に偏光した直線偏光を光感知セル12に入射させる。MEMS回転素子16は、図3(a)および図3(b)に示すように、各偏光子ユニット140を支持する回転部16bと、静電力によって回転部16bを回転させる固定部16aとを有している。固定部16aは、偏光子ユニット140ごとに分離されていてもよいし、図2に示すように、他の偏光子ユニット140の固定部16aと一体化され、1つの回転偏光子アレイ160において連続していても良い。MEMS回転素子16は、公知の半導体製造技術を利用したマイクロマシーニング技術によって製造され得る。単結晶シリコン基板を用意し、薄膜堆積工程、フォトリソグラフィ工程およびエッチング工程による微細加工を行うことにより、固定部16aおよび回転部16bを形成することができる。固定部16aおよび回転部16bは、例えば多結晶シリコン薄膜または二酸化ケイ素膜から形成され得る。このようなMEMS回転素子16の製造方法の一例は、例えば非特許文献1に開示されている。 As shown in FIG. 2, the rotating polarizing element 160 of the present embodiment includes a plurality of polarizer units 140 and a MEMS rotating element 16 that rotates each polarizer unit 140 around the central axis of each polarizer unit 140. I have. In the second embodiment to be described later, each polarizer unit 140 includes four polarizers 14 having different polarization transmission axis directions. However, in this embodiment, each polarizer unit 140 includes one polarizer 14. Contains. As shown in FIG. 3B, the polarizer 14 covers one corresponding photosensitive cell 12, and linearly polarized light polarized in the direction of the polarization transmission axis of the polarizer 14 is incident on the photosensitive cell 12. Let As shown in FIGS. 3A and 3B, the MEMS rotating element 16 has a rotating portion 16b that supports each polarizer unit 140 and a fixing portion 16a that rotates the rotating portion 16b by electrostatic force. is doing. The fixing unit 16a may be separated for each polarizer unit 140, or integrated with the fixing unit 16a of another polarizer unit 140 and continuously in one rotating polarizer array 160 as shown in FIG. You may do it. The MEMS rotating element 16 can be manufactured by a micromachining technique using a known semiconductor manufacturing technique. The fixed portion 16a and the rotating portion 16b can be formed by preparing a single crystal silicon substrate and performing fine processing by a thin film deposition process, a photolithography process, and an etching process. The fixed portion 16a and the rotating portion 16b can be formed of, for example, a polycrystalline silicon thin film or a silicon dioxide film. An example of a method for manufacturing such a MEMS rotating element 16 is disclosed in Non-Patent Document 1, for example.
 回転部16bの直径は、画素サイズに応じて決定され得る。画素サイズが例えば25μm×25μmの場合、回転部16bの直径は例えば14μmに設定され得る。偏光子14のサイズは回転部16bによって制限される。 The diameter of the rotating unit 16b can be determined according to the pixel size. When the pixel size is, for example, 25 μm × 25 μm, the diameter of the rotating unit 16b can be set to, for example, 14 μm. The size of the polarizer 14 is limited by the rotating unit 16b.
 MEMS回転素子16は、図3(a)に示すように、回転部16bを回転させるための静電力を発生させる電極15a、15bと不図示の配線とを備えている。配線に与えられる電位により、固定部16aの電極15aと回転部16bの電極15bとの間に静電力が発生すると、回転部16bが所望の角度だけ回転する。回転部16bは、偏光子ユニット140とともに回転するため、偏光子ユニット140が備える偏光子14の偏光透過軸方向を所定の角度だけ回転させることができる。 As shown in FIG. 3A, the MEMS rotating element 16 includes electrodes 15a and 15b that generate an electrostatic force for rotating the rotating portion 16b, and wiring (not shown). When an electrostatic force is generated between the electrode 15a of the fixed portion 16a and the electrode 15b of the rotating portion 16b due to the potential applied to the wiring, the rotating portion 16b rotates by a desired angle. Since the rotation unit 16b rotates together with the polarizer unit 140, the polarization transmission axis direction of the polarizer 14 included in the polarizer unit 140 can be rotated by a predetermined angle.
 ある好ましい実施形態では、全ての偏光子14の偏光透過軸が同一の方向に揃った状態で回転するように回転部16bの動きが制御され得る。しかし、本発明は、このような例に限定されない。個々の偏光子14の偏光透過軸の方向は、一致している必要は無い。各偏光子14は、1回の回転動作によって同一の角度(例えば45°)だけ回転することが好ましい。 In a preferred embodiment, the movement of the rotating unit 16b can be controlled so as to rotate in a state where the polarization transmission axes of all the polarizers 14 are aligned in the same direction. However, the present invention is not limited to such an example. The directions of the polarization transmission axes of the individual polarizers 14 do not need to match. Each polarizer 14 is preferably rotated by the same angle (for example, 45 °) by one rotation operation.
 再び図1を参照する。図1の撮像部は、回転偏光子アレイ160のMEMS回転素子16を駆動するMEMS駆動回路40を備えている。MEMS駆動回路40は、撮像素子10に組み込まれていても良いし、他の部品として搭載されていてもよい。図3(a)の電極15a、15bは、上述した配線を介してMEMS駆動回路40に接続されている。 Refer to FIG. 1 again. The imaging unit of FIG. 1 includes a MEMS driving circuit 40 that drives the MEMS rotating element 16 of the rotating polarizer array 160. The MEMS drive circuit 40 may be incorporated in the image sensor 10 or may be mounted as another component. The electrodes 15a and 15b in FIG. 3A are connected to the MEMS drive circuit 40 through the wiring described above.
 次に、図4Aから図4Dを参照して、偏光子14の回転動作を説明する。本明細書では、4個の画素に対応する4個の偏光子14を区別するため、参照符号の最後にA、B、C、Dの文字を付記している。同様に、4個の画素に対応する4個の光感知セル12を区別するため、参照符号の最後にa、b、c、dの文字を付記している。 Next, the rotation operation of the polarizer 14 will be described with reference to FIGS. 4A to 4D. In this specification, in order to distinguish the four polarizers 14 corresponding to the four pixels, the letters A, B, C, and D are appended to the end of the reference numerals. Similarly, in order to distinguish the four photosensitive cells 12 corresponding to the four pixels, letters a, b, c and d are appended to the end of the reference numerals.
 図面の各偏光子14A、14B、14C、14D上には、矢印が記載されている。この矢印は、偏光子の偏光透過軸の方向(主軸方向)を示している。偏光子14に入射した光のうち、電場ベクトルの振動方向が偏光透過軸に一致する光は、その偏光子を透過することができる。偏光子14を透過した光は、その偏光子14が有する偏光透過軸の方向に偏光した直線偏光である。図4Aから図4Dには、偏光透過軸方向が同一の方向に揃った4個の偏光子14A、14B、14C、14Dが図示されている。 An arrow is described on each polarizer 14A, 14B, 14C, 14D in the drawing. This arrow indicates the direction (main axis direction) of the polarization transmission axis of the polarizer. Of the light incident on the polarizer 14, light in which the vibration direction of the electric field vector coincides with the polarization transmission axis can pass through the polarizer. The light transmitted through the polarizer 14 is linearly polarized light polarized in the direction of the polarization transmission axis of the polarizer 14. 4A to 4D show four polarizers 14A, 14B, 14C, and 14D in which the directions of polarization transmission axes are aligned in the same direction.
 図4Aから図4Dには、簡単のため、2行×2列=4個の光感知セル12a、12b、12c、12dが図示されているが、現実の光感知セルアレイ120では、たとえば100万を超える数の光感知セルが配列される。光感知セルアレイ120における光感知セルの配列ピッチは、回転偏光子アレイ160における偏光子14の配列ピッチと一致している。これらの配列ピッチを「画素ピッチ」と称する場合がある。実際の光感知セルアレイ120は、上述したように回転偏光子アレイ160の各偏光子14を透過した光を受ける位置に配置される。光感知セルアレイ120は、行および列上に配列された光感知セル12から構成されている。 In FIG. 4A to FIG. 4D, 2 rows × 2 columns = 4 photosensitive cells 12a, 12b, 12c, and 12d are shown for simplicity, but in an actual photosensitive cell array 120, for example, 1 million is shown. A greater number of photosensitive cells are arranged. The arrangement pitch of the photosensitive cells in the photosensitive cell array 120 matches the arrangement pitch of the polarizers 14 in the rotating polarizer array 160. These arrangement pitches are sometimes referred to as “pixel pitches”. The actual photosensitive cell array 120 is disposed at a position to receive light transmitted through each polarizer 14 of the rotating polarizer array 160 as described above. The photosensitive cell array 120 is composed of photosensitive cells 12 arranged in rows and columns.
 図4Aは、最初の状態にある回転偏光子アレイ160に含まれる4つの偏光子14A、14B、14C、14Dの偏光透過軸方向と、光感知セル12a、12b、12c、12dとの関係を示している。4個の偏光子14A、14B、14C、14Dを透過した光は、いずれも、Y軸方向に偏光した直線偏光であり、それぞれ、光感知セル12a、12b、12c、12dに入射する。このとき、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。一般に、電荷蓄積期間は、信号読み出しのフレームレート(fps:フレーム毎秒)の逆数によって規定される。 FIG. 4A shows the relationship between the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D included in the rotating polarizer array 160 in the initial state and the photosensitive cells 12a, 12b, 12c, and 12d. ing. The light transmitted through the four polarizers 14A, 14B, 14C, and 14D is linearly polarized light that is polarized in the Y-axis direction, and is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively. At this time, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset. In general, the charge accumulation period is defined by the reciprocal of the signal reading frame rate (fps: frame per second).
 次に、図4Bを参照する。 Next, refer to FIG. 4B.
 図4Bは、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dがそれぞれ45°だけ回転した状態を示している。この状態では、4個の偏光子14A、14B、14C、14Dを透過した光は、Y軸から時計回りに45°だけ回転した方向に偏光しており、それぞれ、光感知セル12a、12b、12c、12dに入射する。図4Bの状態にある間に、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。 FIG. 4B shows a state in which the polarizers 14A, 14B, 14C, and 14D are rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively. In this state, the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction rotated by 45 ° clockwise from the Y axis, and the photosensitive cells 12a, 12b, and 12c, respectively. , 12d. While in the state of FIG. 4B, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
 偏光子14A、14B、14C、14Dの回転は、電荷蓄積のリセットのタイミングに同期して行われる。偏光子14A、14B、14C、14Dが回転している間の時間は、電荷蓄積期間から除外される。このため、各々の光感知セルに入射する光の偏光方向は、電荷蓄積期間の途中では変化しない。その結果、読み出される画素信号に基づいて、その光感知セルに入射する光の偏光情報を得ることが可能になる。画素単位での偏光情報の取得については、後に詳しく説明する。 The rotation of the polarizers 14A, 14B, 14C, and 14D is performed in synchronization with the charge accumulation reset timing. The time during which the polarizers 14A, 14B, 14C, and 14D are rotating is excluded from the charge accumulation period. For this reason, the polarization direction of light incident on each photosensitive cell does not change during the charge accumulation period. As a result, it is possible to obtain polarization information of light incident on the photosensitive cell based on the read pixel signal. Acquisition of polarization information in pixel units will be described in detail later.
 次に、図4Cを参照する。 Next, refer to FIG. 4C.
 図4Cは、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dがそれぞれ更に45°だけ回転した状態を示している。この状態では、4個の偏光子14A、14B、14C、14Dを透過した光は、Y軸から時計回りに90°だけ回転した方向(X軸方向)に偏光しており、それぞれ、光感知セル12a、12b、12c、12dに入射する。図4Cの状態にある間に、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。 FIG. 4C shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively. In this state, the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction (X-axis direction) rotated by 90 ° clockwise from the Y-axis, and each of the photosensitive cells. It enters 12a, 12b, 12c, 12d. While in the state of FIG. 4C, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
 次に、図4Dを参照する。 Next, refer to FIG. 4D.
 図4Dは、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dがそれぞれ更に45°だけ回転した状態を示している。この状態では、4個の偏光子14A、14B、14C、14Dを透過した光は、Y軸から時計回りに135°だけ回転した方向に偏光しており、それぞれ、光感知セル12a、12b、12c、12dに入射する。図4Dの状態にある間に、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。 FIG. 4D shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively. In this state, the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction rotated by 135 ° clockwise from the Y axis, and the photosensitive cells 12a, 12b, and 12c, respectively. , 12d. While in the state of FIG. 4D, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
 その後、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dは、それぞれ、更に45°だけ回転し、図4Aに示す状態に戻る。 Thereafter, the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, and return to the state shown in FIG. 4A.
 このように本実施形態では、各偏光子14が、図4Aの状態から、図4Bの状態、図4Cの状態および図4Dの状態を経て、元の状態(図4Aの状態)に戻る。この周期的な動作が繰り返されると、各光感知セルには、1周期の間において、偏光透過軸が異なる偏光子を透過してきた光が順次入射することになる。画素信号の読み出しが偏光子14の回転運動と同期して行われるため、偏光情報を取得することが可能になる。 Thus, in this embodiment, each polarizer 14 returns from the state of FIG. 4A to the original state (the state of FIG. 4A) through the state of FIG. 4B, the state of FIG. 4C, and the state of FIG. 4D. When this periodic operation is repeated, light transmitted through a polarizer having a different polarization transmission axis is sequentially incident on each photosensitive cell during one period. Since the pixel signal is read out in synchronization with the rotational motion of the polarizer 14, polarization information can be acquired.
 偏光情報の取得を行う場合、偏光子14が180°回転する間に、偏光透過軸が少なくとも3つの異なる方向を向いた状態で電荷を蓄積し、少なくとも3つの光電変換信号を順次出力させることが好ましい。上記の例では、偏光透過軸方向を4方向に設定しているが、例えば3方向に設定する場合は偏光透過軸方向が60°ずつ異なる状態で画素信号を取得すればよい。 When acquiring polarization information, while the polarizer 14 rotates 180 °, charges are accumulated with the polarization transmission axis facing at least three different directions, and at least three photoelectric conversion signals are sequentially output. preferable. In the above example, the polarization transmission axis direction is set to four directions. However, for example, when the polarization transmission axis direction is set to three directions, pixel signals may be acquired in a state where the polarization transmission axis directions are different by 60 °.
 偏光子14の回転角度は45°または60°に限定されない。他の任意の角度に設定し得る。偏光透過軸方向が90°異なる状態で2種類の画素信号を出力するようにしてもよい。その場合、偏光子14は、時計回りに90°回転した後、反時計回りに90°回転する動作を1周期として、この動作を繰り返せばよい。完全な偏光情報は得られないが、偏光方向が直交する偏光成分を検知することが可能になる。 The rotation angle of the polarizer 14 is not limited to 45 ° or 60 °. Any other angle can be set. Two types of pixel signals may be output in a state where the polarization transmission axis directions are different by 90 °. In this case, the polarizer 14 may repeat this operation with one cycle of the operation of rotating 90 ° clockwise and then rotating 90 ° counterclockwise. Although complete polarization information cannot be obtained, it is possible to detect polarization components whose polarization directions are orthogonal.
 図4Aから図4Dに示す偏光子14および光感知セル12の平面形状は、いずれも円形である。しかし、偏光子14および光感知セル(受光領域)12の平面形状は、円形に限定されない。偏光子14および光感知セル12の平面形状およびサイズは、偏光子14を透過した光が効率よく各光感知セル12に入射し、かつ、対応する偏光子14を透過していない光が各光感知セル12に入射しないように設計される。 The planar shapes of the polarizer 14 and the photosensitive cell 12 shown in FIGS. 4A to 4D are both circular. However, the planar shapes of the polarizer 14 and the photosensitive cell (light receiving region) 12 are not limited to a circular shape. The planar shape and size of the polarizer 14 and the photosensitive cell 12 are such that light transmitted through the polarizer 14 efficiently enters each photosensitive cell 12 and light that does not transmit through the corresponding polarizer 14 corresponds to each light. It is designed not to enter the sensing cell 12.
 光感知セル12の全体が偏光子14によって常に覆われる限り、光感知セル12の平面形状は円形である必要はなく、楕円や多角形であっても良い。また、偏光子14の平面形状も円形である必要はなく、楕円や多角形であっても良い。たとえば、各偏光子14の平面形状は正方形や8角形であってもよい。一般に、回転により、偏光透過軸がN個の異なる方向を向くとき、偏光子14の平面形状は、中心軸の回りに(360/N)度の回転で対称な形状を有することが好ましい。 As long as the entire photosensitive cell 12 is always covered by the polarizer 14, the planar shape of the photosensitive cell 12 does not have to be circular, and may be an ellipse or a polygon. Further, the planar shape of the polarizer 14 is not necessarily circular, and may be an ellipse or a polygon. For example, the planar shape of each polarizer 14 may be a square or an octagon. In general, when the polarization transmission axis faces N different directions due to rotation, the planar shape of the polarizer 14 preferably has a symmetrical shape with a rotation of (360 / N) degrees around the central axis.
 光感知セル12は、マイクロレンズによって覆われていても良い。光感知セルアレイ120は、裏面照射型のイメージセンサによって実現されていても良い。光感知セルアレイ120が通常の表面照射型のイメージセンサによって実現されている場合、光感知セル12と光感知セル12との間には不図示の配線が存在する。 The light sensing cell 12 may be covered with a microlens. The photosensitive cell array 120 may be realized by a backside illuminated image sensor. When the photosensitive cell array 120 is realized by a normal surface irradiation type image sensor, a wiring (not shown) exists between the photosensitive cell 12 and the photosensitive cell 12.
 次に、図5Aから図5Dを参照して、偏光子14の回転動作の他の例を説明する。この例では、図示される4個の偏光子14A、14B、14C、14Dの偏光透過軸方向が45°ずつ異なっているが、その他の点は、図4Aから図4Dに示されている例と同一である。 Next, another example of the rotation operation of the polarizer 14 will be described with reference to FIGS. 5A to 5D. In this example, the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D shown in the figure are different by 45 °, but the other points are the same as the examples shown in FIGS. 4A to 4D. Are the same.
 まず、図5Aを参照する。 First, refer to FIG. 5A.
 図5Aは、最初の状態にある回転偏光子アレイ160に含まれる4つの偏光子14A、14B、14C、14Dの偏光透過軸方向と、光感知セル12a、12b、12c、12dとの関係を示している。4個の偏光子14A、14B、14C、14Dを透過した光は、いずれも、45°ずつ異なる方向に偏光した直線偏光であり、それぞれ、光感知セル12a、12b、12c、12dに入射する。このとき、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。この例では、4個の偏光子14A、14B、14C、14Dが1つの基本構成を形成している。この基本構成が1つの回転偏光子アレイ160の中で2次元的に周期的に配列されている。4個の偏光子14A、14B、14C、14Dは、それぞれ、独立して回転することができるが、本実施形態では、同一の方向に同一の角度だけ回転する。 FIG. 5A shows the relationship between the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D included in the rotating polarizer array 160 in the initial state and the photosensitive cells 12a, 12b, 12c, and 12d. ing. The light transmitted through the four polarizers 14A, 14B, 14C, and 14D is linearly polarized light that is polarized in different directions by 45 °, and is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively. At this time, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset. In this example, four polarizers 14A, 14B, 14C, and 14D form one basic configuration. This basic configuration is two-dimensionally and periodically arranged in one rotating polarizer array 160. The four polarizers 14A, 14B, 14C, and 14D can rotate independently, but in the present embodiment, they rotate by the same angle in the same direction.
 次に、図5Bを参照する。 Next, refer to FIG. 5B.
 図5Bは、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dがそれぞれ45°だけ回転した状態を示している。この状態では、4個の偏光子14A、14B、14C、14Dを透過した光は、図5Aに示される偏光透過軸方向から時計回りに45°だけ回転した方向に偏光しており、それぞれ、光感知セル12a、12b、12c、12dに入射する。図5Bの状態にある間に、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。 FIG. 5B shows a state in which the polarizers 14A, 14B, 14C, and 14D are rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively. In this state, the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is polarized in a direction rotated by 45 ° clockwise from the polarization transmission axis direction shown in FIG. 5A. The light enters the sensing cells 12a, 12b, 12c, and 12d. While in the state of FIG. 5B, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
 次に、図5Cを参照する。 Next, refer to FIG. 5C.
 図5Cは、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dがそれぞれ更に45°だけ回転した状態を示している。この状態で、4個の偏光子14A、14B、14C、14Dを透過した光は、それぞれ、光感知セル12a、12b、12c、12dに入射する。図5Cの状態にある間に、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。 FIG. 5C shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, respectively. In this state, the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively. While in the state of FIG. 5C, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
 次に、図5Dを参照する。 Next, refer to FIG. 5D.
 図5Dは、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dがそれぞれ更に45°だけ回転した状態を示している。この状態で、4個の偏光子14A、14B、14C、14Dを透過した光は、それぞれ、光感知セル12a、12b、12c、12dに入射する。図5Dの状態にある間に、光感知セル12a、12b、12c、12dでは、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12a、12b、12c、12dの各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。 FIG. 5D shows a state in which the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16. In this state, the light transmitted through the four polarizers 14A, 14B, 14C, and 14D is incident on the photosensitive cells 12a, 12b, 12c, and 12d, respectively. While in the state of FIG. 5D, in the photosensitive cells 12a, 12b, 12c, and 12d, charges corresponding to the amount of incident light are generated and accumulated by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charges accumulated in each of the photosensitive cells 12a, 12b, 12c, and 12d are read out as pixel signals. After the charge reading is completed, the accumulated charge is reset.
 その後、個々のMEMS回転素子16の働きにより、偏光子14A、14B、14C、14Dは、それぞれ、更に45°だけ回転し、図5Aに示す状態に戻る。 Thereafter, the polarizers 14A, 14B, 14C, and 14D are further rotated by 45 ° by the action of the individual MEMS rotating elements 16, and return to the state shown in FIG. 5A.
 このような例でも、各偏光子14は45°ずつ回転する。この周期的な動作が繰り返されるとき、各光感知セル12には、1周期の間において、偏光透過軸が異なる4つの偏光子を透過してきた光が順次入射することになる。画素信号の読み出しが、偏光子14の回転運動と同期して行われるため、偏光情報を取得することが可能になる。 Even in such an example, each polarizer 14 rotates by 45 °. When this periodic operation is repeated, light transmitted through four polarizers having different polarization transmission axes is sequentially incident on each photosensitive cell 12 during one period. Since pixel signals are read out in synchronization with the rotational movement of the polarizer 14, polarization information can be acquired.
 個々の光感知セル12に対応する偏光子14を透過した光のみを入射させるためには、光感知セルアレイ120と回転偏光子アレイ160との間隔を1mm以下に設定することが好ましい。より好ましい実施形態では、これらは接触している。 In order to allow only light transmitted through the polarizer 14 corresponding to each photosensitive cell 12 to enter, it is preferable to set the interval between the photosensitive cell array 120 and the rotating polarizer array 160 to 1 mm or less. In a more preferred embodiment, they are in contact.
 (実施形態2)
 上記の実施形態では、1つの偏光子ユニット140に含まれる偏光子14は1個であるが、本発明は、このような例に限定されない。1つの偏光子ユニット140に含まれる偏光子14はN個(Nは2以上の整数)であってもよい。
(Embodiment 2)
In the above embodiment, one polarizer unit 140 includes one polarizer 14, but the present invention is not limited to such an example. The number of the polarizers 14 included in one polarizer unit 140 may be N (N is an integer of 2 or more).
 図6は、偏光透過軸方向の異なる4個の偏光子14を含む1つの偏光子ユニット140の平面構成例を示す平面図であり、図6(a)は、回転偏光子アレイ160のうちの4画素分の領域の平面図であり、図6(b)は、その断面および対応する光感知セルアレイ120の断面を模式的に示している。図6(a)の各偏光子14上には、矢印が記載されている。この矢印は、偏光子の偏光透過軸の方向(主軸方向)を示している。この例では、1つの偏光子ユニット140に含まれる偏光子14の偏光透過軸方向は45°ずつ異なっている。 FIG. 6 is a plan view showing a planar configuration example of one polarizer unit 140 including four polarizers 14 having different polarization transmission axis directions. FIG. It is a top view of the area | region for 4 pixels, FIG.6 (b) has shown typically the cross section and the cross section of the photosensitive cell array 120 corresponding. An arrow is described on each polarizer 14 in FIG. This arrow indicates the direction (main axis direction) of the polarization transmission axis of the polarizer. In this example, the polarization transmission axis directions of the polarizers 14 included in one polarizer unit 140 are different by 45 °.
 この例におけるMEMS回転素子16も、図6(a)に示すように、偏光子ユニット140を支持する回転部16bと、静電力によって回転部16bを回転させる固定部16aとを有している。これらの構成は、図3(a)、(b)に示される構成と基本的には同一である。異なる点は、1つの回転部16bが4つの偏光子14A、14B、14C、14Dを支持していることにある。 The MEMS rotating element 16 in this example also includes a rotating portion 16b that supports the polarizer unit 140 and a fixing portion 16a that rotates the rotating portion 16b by electrostatic force, as shown in FIG. These configurations are basically the same as those shown in FIGS. 3A and 3B. The difference is that one rotating unit 16b supports four polarizers 14A, 14B, 14C, and 14D.
 前述のように、回転部16bは、偏光子ユニット140とともに回転するため、偏光子ユニット140が備える4個の偏光子14A、14B、14C、14Dの偏光透過軸方向を所定の角度だけ回転させることができる。4個の偏光子14A、14B、14C、14Dは、各々の中心ではなく、偏光子ユニット140の中心Oの周りに回転する。 As described above, since the rotation unit 16b rotates together with the polarizer unit 140, the polarization transmission axis directions of the four polarizers 14A, 14B, 14C, and 14D included in the polarizer unit 140 are rotated by a predetermined angle. Can do. The four polarizers 14A, 14B, 14C, 14D rotate about the center O of the polarizer unit 140, not the center of each.
 次に、図7および図8を参照しながら、偏光子ユニット140の回転動作を説明する。 Next, the rotation operation of the polarizer unit 140 will be described with reference to FIGS.
 図7は、9個の偏光子ユニット140を示す平面図である。9個の偏光子ユニット140は、全体として、6行×6列=36個の光感知セルをカバーする。図7の例では、個々の偏光子ユニット140における偏光子14A、14B、14C、14Dは、同じ配列パターンを有している。現実の回転偏光子アレイ160は、多数の偏光子ユニット140を含んでいる。 FIG. 7 is a plan view showing nine polarizer units 140. The nine polarizer units 140 cover a total of 6 rows × 6 columns = 36 photosensitive cells. In the example of FIG. 7, the polarizers 14A, 14B, 14C, and 14D in the individual polarizer units 140 have the same arrangement pattern. The actual rotating polarizer array 160 includes a number of polarizer units 140.
 次に、図8を参照しながら、1つの偏光子ユニット140の回転動作の一例を説明する。 Next, an example of the rotation operation of one polarizer unit 140 will be described with reference to FIG.
 まず、図8(a)に示す状態にある偏光子ユニット140を90°だけ時計回り方向に回転させると、偏光子ユニット140は図8(b)に示す状態になる。例えば偏光子14Aに着目すると、図8(a)の状態ではY軸方向に平行な偏光透過軸を有しているが、図8(b)に示す状態では、X軸方向に平行な偏光透過軸を有している。すなわち、偏光子ユニットが90°回転すると、偏光子14Aは、偏光子ユニット140の回転中心の周りに90°回転するとともに、その偏光透過軸方向を90°回転させる。同じ偏光子ユニット140に含まれる他の偏光子ユニット14B、14C、14Dも同様である。 First, when the polarizer unit 140 in the state shown in FIG. 8A is rotated clockwise by 90 °, the polarizer unit 140 is in the state shown in FIG. 8B. For example, paying attention to the polarizer 14A, in the state of FIG. 8A, it has a polarization transmission axis parallel to the Y-axis direction, but in the state shown in FIG. 8B, polarization transmission parallel to the X-axis direction. Has an axis. That is, when the polarizer unit rotates 90 °, the polarizer 14A rotates 90 ° around the rotation center of the polarizer unit 140 and rotates the polarization transmission axis direction by 90 °. The same applies to the other polarizer units 14B, 14C, and 14D included in the same polarizer unit 140.
 図8(b)の状態で偏光子14Aによって覆われる光感知セルは、図8(a)の状態では、偏光子14Bによって覆われていた。このため、この光感知セルには、図8(a)の状態ではY軸方向から時計回りに45°だけ回転した方向に偏光した光が入射するが、図8(b)の状態ではX軸方向に偏光した光が入射することになる。偏光子ユニット140が時計回りに90°だけ回転したとき、1つの光感知セル12に入射する光の偏光方向は45°だけ回転していることに注意されたい。同様のことは、この偏光ユニット140に覆われる4つの光感知セル12の全てについて成立する。 In the state of FIG. 8B, the photosensitive cell covered with the polarizer 14A was covered with the polarizer 14B in the state of FIG. 8A. For this reason, in this state shown in FIG. 8A, light that is polarized in a direction rotated by 45 ° clockwise from the Y-axis direction is incident on this photosensitive cell. However, in the state shown in FIG. Light polarized in the direction will be incident. Note that when the polarizer unit 140 is rotated 90 ° clockwise, the polarization direction of light incident on one photosensitive cell 12 is rotated 45 °. The same is true for all four photosensitive cells 12 covered by the polarization unit 140.
 次に、偏光子ユニット140が時計回りに更に90°回転すると、図8(c)に示される状態に遷移する。偏光子ユニット140が時計回りに更に90°回転すると、図8(d)に示される状態に遷移する。偏光子ユニット140が時計回りに更に90°回転すると、図8(a)に示される状態に復帰する。 Next, when the polarizer unit 140 further rotates 90 ° clockwise, the state changes to the state shown in FIG. When the polarizer unit 140 further rotates 90 ° in the clockwise direction, the state transitions to the state shown in FIG. When the polarizer unit 140 further rotates 90 ° in the clockwise direction, it returns to the state shown in FIG.
 このように偏光子ユニット140が90°ずつ回転することにより、個々の光感知セル12に入射する光の偏光面は、45°ずつ回転することになる。本実施形態では、前述の実施形態とは異なり、各光感知セル12を覆う偏光子14自体が偏光子ユニット140の回転によって順次変化することになる。すなわち、本実施形態によっても、各光感知セル12に入射する光の偏光面を回転させることができる。 In this way, when the polarizer unit 140 is rotated by 90 °, the polarization plane of the light incident on each light sensing cell 12 is rotated by 45 °. In the present embodiment, unlike the above-described embodiment, the polarizer 14 itself covering each photosensitive cell 12 is sequentially changed by the rotation of the polarizer unit 140. That is, also in this embodiment, the polarization plane of the light incident on each photosensitive cell 12 can be rotated.
 図4Aから5Dを参照しながら説明したように、特定の方向に偏光した光が入射するとき、各光感知セル12では、光電変換により、入射光量に応じた電荷が生成され、蓄積される。所定の電荷蓄積期間が経過したとき、光感知セル12の各々で蓄積された電荷が画素信号として読み出される。電荷の読み出しが完了した後、蓄積電荷はリセットされる。偏光子ユニット140の回転は、蓄積電荷がリセットされるタイミングと同期して行われる。電荷蓄積がなされているとき、偏光子ユニット140の回転は停止している。 As described with reference to FIGS. 4A to 5D, when light polarized in a specific direction is incident, each photosensitive cell 12 generates and accumulates a charge corresponding to the amount of incident light by photoelectric conversion. When a predetermined charge accumulation period has elapsed, the charge accumulated in each of the photosensitive cells 12 is read out as a pixel signal. After the charge reading is completed, the accumulated charge is reset. The rotation of the polarizer unit 140 is performed in synchronization with the timing at which the accumulated charge is reset. When charge accumulation is performed, the rotation of the polarizer unit 140 is stopped.
 図9は、1つの偏光子ユニット140が、その中に含まれる偏光子14よりも個数が多い光感知セル12を覆う構成の一例を示している。図9に示されている状態では、偏光子14Aが光感知セル12a、12b、12c、12dを覆っている。同様、偏光子14Bは光感知セル12e、12f、12g、12hを覆っている。偏光子14Cは光感知セル12i、12j、12k、12lを覆っている。偏光子14Dは光感知セル12m、12n、12o、12pを覆っている。 FIG. 9 shows an example of a configuration in which one polarizer unit 140 covers the photosensitive cells 12 having a larger number than the polarizers 14 included therein. In the state shown in FIG. 9, the polarizer 14A covers the photosensitive cells 12a, 12b, 12c, and 12d. Similarly, the polarizer 14B covers the photosensitive cells 12e, 12f, 12g, and 12h. The polarizer 14C covers the photosensitive cells 12i, 12j, 12k, and 12l. The polarizer 14D covers the photosensitive cells 12m, 12n, 12o, and 12p.
 偏光子ユニット140が時計回りに90°回転すると、例えば偏光子14Aの偏光透過軸方向は90°回転し、かつ、偏光子14Aは光感知セル12e、12f、12g、12hを覆う位置に移動する。他の偏光子14B、14C、14Dも、偏光子14Aと同様に偏光透過軸方向を回転させながら、位置を移動させる。 When the polarizer unit 140 rotates 90 ° clockwise, for example, the polarization transmission axis direction of the polarizer 14A rotates 90 °, and the polarizer 14A moves to a position covering the photosensitive cells 12e, 12f, 12g, and 12h. . The other polarizers 14B, 14C, and 14D move their positions while rotating the polarization transmission axis direction in the same manner as the polarizer 14A.
 本実施形態では、偏光子ユニット140を90°ずつ回転させるため、各偏光子14の形状は、円である必要は無く、図9に示すように正方形であっても良い。1つの偏光子14が覆う光感知セル12の個数は、4個に限定されない。1つの偏光子14によって覆われる光感知セル12の個数は、n×nであることが好ましい。ここで、nは2以上の整数である。なお、n=1の場合は、実施形態1に相当する。 In this embodiment, since the polarizer unit 140 is rotated by 90 °, the shape of each polarizer 14 does not have to be a circle, and may be a square as shown in FIG. The number of photosensitive cells 12 covered by one polarizer 14 is not limited to four. The number of photosensitive cells 12 covered by one polarizer 14 is preferably n × n. Here, n is an integer of 2 or more. Note that n = 1 corresponds to the first embodiment.
<撮像装置>
 以下、本実施形態における撮像装置の構成を説明する。
<Imaging device>
Hereinafter, the configuration of the imaging apparatus according to the present embodiment will be described.
 図10は、本実施形態における撮像装置の概略構成を示すブロック図である。 FIG. 10 is a block diagram illustrating a schematic configuration of the imaging apparatus according to the present embodiment.
 本実施形態の撮像装置は、撮像部100と、各種信号処理を行う信号処理部200と、撮像によって取得した画像を表示する撮像表示部300と、画像のデータを記録する記録媒体400と、各部を制御するシステム制御部500とを備える。 The imaging apparatus of the present embodiment includes an imaging unit 100, a signal processing unit 200 that performs various signal processing, an imaging display unit 300 that displays an image acquired by imaging, a recording medium 400 that records image data, and each unit And a system control unit 500 for controlling the system.
 本実施形態における撮像部100は、上述した各構成の回転偏光子アレイ160を有する撮像素子(イメージセンサ)10と、撮像素子10の撮像面上に像を形成するための撮影レンズ20とを有している。本実施形態における撮影レンズ20は、公知の構成を有しており、現実には複数のレンズから構成されたレンズユニットである。撮影レンズ20は、不図示の機構によって駆動され、必要に応じて、光学ズーミング、自動露光(AE:Auto Exposure),自動焦点(AF:Auto Focus)に必要な動作が実行される。 The imaging unit 100 according to the present embodiment includes an imaging element (image sensor) 10 having the rotating polarizer array 160 having each configuration described above, and a photographing lens 20 for forming an image on the imaging surface of the imaging element 10. is doing. The photographic lens 20 in the present embodiment has a known configuration, and is actually a lens unit that includes a plurality of lenses. The photographing lens 20 is driven by a mechanism (not shown), and necessary operations for optical zooming, automatic exposure (AE) and automatic focus (AF) are performed as necessary.
 更に、撮像部100は、撮像素子10を駆動する撮像素子駆動部30およびMEMS駆動回路40を備えている。撮像素子駆動部30は、たとえばドライバLSIから構成されている。撮像素子駆動部30は、撮像素子10を駆動することにより、撮像素子10からアナログ信号を読み出してデジタル信号に変換する。MEMS駆動回路40は、前述の回転偏光子アレイ160のMEMS回転素子16を駆動することにより、偏光子の偏光透過軸方向を撮像エリアに平行な面内で回転させる。 Furthermore, the imaging unit 100 includes an imaging element driving unit 30 and a MEMS driving circuit 40 that drive the imaging element 10. The image sensor driving unit 30 is composed of, for example, a driver LSI. The image sensor drive unit 30 drives the image sensor 10 to read an analog signal from the image sensor 10 and convert it into a digital signal. The MEMS driving circuit 40 rotates the polarization transmission axis direction of the polarizer in a plane parallel to the imaging area by driving the MEMS rotating element 16 of the rotating polarizer array 160 described above.
 本実施形態における信号処理部200は、画像処理部(イメージプロセッサ)220、メモリ240、インターフェース(IF)部260を備えている。信号処理部200は、液晶表示パネルなどの表示部300、および、メモリカードなどの記録媒体400に接続されている。 The signal processing unit 200 in the present embodiment includes an image processing unit (image processor) 220, a memory 240, and an interface (IF) unit 260. The signal processing unit 200 is connected to a display unit 300 such as a liquid crystal display panel and a recording medium 400 such as a memory card.
 画像処理部220は、色調補正、解像度変更、自動露光,自動焦点、データ圧縮などの動作に必要な各種信号処理を行うほか、本発明による偏光情報の取得処理を実行する。画像処理部220は、公知のデジタル信号処理プロセッサ(DSP)などハードウェアと、本発明に係る偏光情報処理を含む画像処理を実行するソフトウェアとの組合せによって好適に実現される。メモリ240は、DRAMなどによって構成される。このメモリ240は、撮像部100から得られた画像データを記録するとともに、画像処理部220によって各種の画像処理を受けた画像データを一時的に記録する。これらの画像データは、アナログ信号に変換された後、表示部300によって表示されたり、デジタル信号のままインターフェース部260を介して記録媒体400に記録される。 The image processing unit 220 performs various signal processes necessary for operations such as color correction, resolution change, automatic exposure, automatic focus, and data compression, and executes polarization information acquisition processing according to the present invention. The image processing unit 220 is preferably realized by a combination of hardware such as a known digital signal processor (DSP) and software that executes image processing including polarization information processing according to the present invention. The memory 240 is configured by a DRAM or the like. The memory 240 records the image data obtained from the imaging unit 100 and temporarily records the image data subjected to various image processing by the image processing unit 220. These image data are converted into analog signals and then displayed on the display unit 300 or recorded on the recording medium 400 via the interface unit 260 as digital signals.
 上記の構成要素は、不図示の中央演算処理ユニット(CPU)およびフラッシュメモリを含むシステム制御部500によって制御される。なお、本実施形態の撮像装置は、ビューファインダ、電源(電池)、フラッシュライトなどの公知の構成要素を備え得るが、それらの説明は本発明の理解に特に必要でないため省略する。 The above-described components are controlled by a system control unit 500 including a central processing unit (CPU) (not shown) and a flash memory. Note that the imaging apparatus of the present embodiment may include known components such as a viewfinder, a power source (battery), and a flashlight, but a description thereof is omitted because it is not particularly necessary for understanding the present invention.
 図11は、本実施形態における信号処理部200の主要な構成要素の一例を示すブロック図である。本実施形態では、被写体から偏光画像情報を取得し、2種類の偏光画像(偏光度画像ρおよび偏光位相画像φ)として出力することができる。 FIG. 11 is a block diagram illustrating an example of main components of the signal processing unit 200 in the present embodiment. In this embodiment, polarization image information can be acquired from a subject and output as two types of polarization images (polarization degree image ρ and polarization phase image φ).
 撮像部100から出力された信号は、画像処理部220に送られ、画像処理部220で処理された後、偏光度画像フレームメモリ222および偏光位相画像フレームメモリ224に格納される。偏光度画像フレームメモリ222からは偏光度画像(ρ)のデータが出力され、偏光位相画像フレームメモリ224から偏光位相画像(φ)のデータが出力される。 The signal output from the imaging unit 100 is sent to the image processing unit 220, processed by the image processing unit 220, and then stored in the polarization degree image frame memory 222 and the polarization phase image frame memory 224. Polarization degree image frame memory 222 outputs polarization degree image (ρ) data, and polarization phase image frame memory 224 outputs polarization phase image (φ) data.
 <偏光情報>
 図12は、偏光透過軸が異なる4つの方向(Ψi=0°、45°、90°、135°)を向いた偏光子を透過した光の強さ(画素値または輝度)I1~I4を示している。ここで、偏光透過軸の回転角ψがψiのときに観測される輝度をIiとする。ただし、「i」は、1以上N以下の整数、「N」はサンプル数とする。本実施形態では、N=4であるため、i=1、2、3、4となる。図12には、1つの画素から得られる4個のサンプル(ψi、Ii)に対応する輝度I1~I4が示されている。偏光透過軸の角度Ψiと輝度Iiとの関係は、周期=π(180°)の正弦関数によって表現される。周期が固定された正弦関数が有する未知数は、振幅、位相、および平均値の3種しかなく、異なる角度Ψにおける少なくとも3つの輝度Iiの観測により、1本の正弦関数カーブが完全に決定される。
<Polarization information>
FIG. 12 shows the intensity (pixel value or luminance) I 1 to I 4 of light transmitted through a polarizer directed in four directions (Ψi = 0 °, 45 °, 90 °, 135 °) having different polarization transmission axes. Is shown. Here, I i is the luminance observed when the rotation angle ψ of the polarization transmission axis is ψ i . However, “i” is an integer from 1 to N, and “N” is the number of samples. In this embodiment, since N = 4, i = 1, 2, 3, and 4. FIG. 12 shows luminances I 1 to I 4 corresponding to four samples (ψ i , I i ) obtained from one pixel. The relationship between the polarization transmission axis angle ψi and the luminance I i is expressed by a sine function with a period = π (180 °). There are only three unknowns in the sine function with a fixed period: amplitude, phase, and average. By observing at least three luminances I i at different angles Ψ, one sine function curve is completely determined. The
 偏光子単位の偏光主軸の角ψに対する観測輝度は、以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
ここで図13に示すようにA、B、Cは未知定数であり、それぞれ、偏光輝度の変動カーブの振幅、位相、平均値を表現している。
The observed luminance with respect to the angle ψ of the polarization main axis of the polarizer unit is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Here, as shown in FIG. 13, A, B, and C are unknown constants, and represent the amplitude, phase, and average value of the polarization luminance fluctuation curve, respectively.
 なお、本明細書における「偏光情報」とは、輝度の偏光主軸角度に対する依存性を示す正弦関数カーブにおける振幅変調度(変調度)ρおよび位相情報φを意味する。以上の処理により、画素ごとに正弦関数のA、B、Cの3パラメータが確定すると、各画素における偏光度ρを示す偏光度画像と各画素における偏光位相φを示す偏光位相画像が求められる。偏光度ρは、該当画素の光が偏光している程度を表し、偏光位相φは、正弦関数の最大値をとる角度位置を表す。なお、偏光主軸の角度は、0°と180°(π)は同一である。 In the present specification, “polarization information” means amplitude modulation degree (modulation degree) ρ and phase information φ in a sine function curve indicating the dependence of luminance on the polarization principal axis angle. When the three parameters A, B, and C of the sine function are determined for each pixel by the above processing, a polarization degree image indicating the polarization degree ρ in each pixel and a polarization phase image indicating the polarization phase φ in each pixel are obtained. The degree of polarization ρ represents the degree to which the light of the corresponding pixel is polarized, and the polarization phase φ represents the angular position that takes the maximum value of the sine function. The angle of the polarization main axis is the same between 0 ° and 180 ° (π).
 値ρ、φ(0≦φ≦π)は、それぞれ、以下の(式2)および(式3)によって算出される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
The values ρ and φ (0 ≦ φ ≦ π) are calculated by the following (formula 2) and (formula 3), respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 こうして、本実施形態では、MEMS回転素子16を駆動することによって偏光子の偏光透過軸を変化させても読み出す画素信号(画素値)に基づいて、すべての画素から偏光情報を取得することができる。 Thus, in the present embodiment, polarization information can be acquired from all pixels based on the pixel signal (pixel value) to be read even if the polarization transmission axis of the polarizer is changed by driving the MEMS rotating element 16. .
 本発明の効果は、たとえば、偏光透過軸が2つの異なる方向を有する状態の偏光子を順次透過した光を各光感知セルに入射する構成を採用しても得ることが可能である。この場合、図13に示すような輝度の変動カーブを決定する3つのパラメータを特定することはできない。しかし、たとえば、直交する偏光成分を検出することが可能であり、これも内視鏡などの技術分野で有益である。 The effect of the present invention can also be obtained, for example, by adopting a configuration in which light sequentially transmitted through a polarizer in which the polarization transmission axis has two different directions enters each photosensitive cell. In this case, it is not possible to specify three parameters for determining a luminance variation curve as shown in FIG. However, for example, orthogonal polarization components can be detected, which is also useful in technical fields such as endoscopes.
 本発明の撮像素子、撮像装置は、偏光イメージング技術の種々の分野に応用され得る。たとえば、本発明の撮像素子および撮像装置は、セキュリティ、医療、通信、分析のためのキーデバイスとして有用である。 The imaging device and imaging apparatus of the present invention can be applied to various fields of polarization imaging technology. For example, the imaging device and imaging apparatus of the present invention are useful as key devices for security, medical care, communication, and analysis.
  10  撮像素子(イメージセンサ)
  12  光感知セル
  12a~12d  光感知セル
  12e~12p  光感知セル
  14  偏光子
  14A~14D  偏光子
  15a 電極
  15b 電極
  16  MEMS回転素子
  16a 固定部
  16b 回転部
  20  撮影レンズ
  30  撮像素子駆動部
  40  駆動回路
 100  撮像部
 120  光感知セルアレイ
 140  偏光子ユニット
 160  回転偏光子アレイ
 200  信号処理部
 220  画像処理部(イメージプロセッサ)
 222  偏光度画像フレームメモリ
 224  偏光位相画像フレームメモリ
 226  輝度画像フレームメモリ
 240  メモリ
 260  インターフェース(IF)部
 300  撮像表示部
 400  記録媒体
 500  システム制御部
10 Image sensor (image sensor)
DESCRIPTION OF SYMBOLS 12 Photosensitive cell 12a-12d Photosensitive cell 12e-12p Photosensitive cell 14 Polarizer 14A-14D Polarizer 15a Electrode 15b Electrode 16 MEMS rotating element 16a Fixed part 16b Rotating part 20 Shooting lens 30 Imaging element drive part 40 Drive circuit 100 Imaging unit 120 Photosensitive cell array 140 Polarizer unit 160 Rotating polarizer array 200 Signal processing unit 220 Image processing unit (image processor)
222 Polarization image frame memory 224 Polarization phase image frame memory 226 Luminance image frame memory 240 Memory 260 Interface (IF) section 300 Imaging display section 400 Recording medium 500 System control section

Claims (7)

  1.  各々が1つの偏光子または偏光透過軸方向の異なるN個(Nは2以上の整数)の偏光子を含む複数の偏光子ユニットと、
     複数の光感知セルが撮像面に沿って配列され、前記偏光子を透過した直線偏光が各光感知セルに入射するように配置された光感知セルアレイと、
     各偏光子ユニットの中心軸の周りに各偏光子ユニットを回転させることにより、各光感知セルに入射する直線偏光の偏光面を回転させるMEMS回転素子と、
    を備える撮像素子。
    A plurality of polarizer units each including one polarizer or N polarizers (N is an integer of 2 or more) having different polarization transmission axis directions;
    A photosensitive cell array in which a plurality of photosensitive cells are arranged along the imaging surface and linearly polarized light transmitted through the polarizer is incident on each photosensitive cell;
    A MEMS rotating element that rotates the plane of polarization of linearly polarized light incident on each photosensitive cell by rotating each polarizer unit around the central axis of each polarizer unit;
    An imaging device comprising:
  2.  各偏光子ユニットは前記偏光透過軸方向の異なる4個の偏光子を含み、各偏光透過軸方向は45°ずつ異なっている、請求項1に記載の撮像素子。 The imaging device according to claim 1, wherein each polarizer unit includes four polarizers having different polarization transmission axis directions, and each polarization transmission axis direction is different by 45 °.
  3.  前記MEMS回転素子は、前記光感知セルアレイでの電荷蓄積がリセットされるタイミングと同期して、前記偏光子ユニットを45°の倍数である角度だけ回転させることにより、各光感知セルに入射する直線偏光の偏光面を変化させる、請求項1または2に記載の撮像素子。 The MEMS rotating element is configured to rotate the polarizer unit by an angle that is a multiple of 45 ° in synchronization with a timing at which charge accumulation in the photosensitive cell array is reset. The imaging device according to claim 1, wherein a polarization plane of polarized light is changed.
  4.  前記MEMS回転素子は、前記光感知セルアレイで電荷蓄積が行われている期間、前記偏光子ユニットを静止させることによって各光感知セルに入射する直線偏光の偏光面を一時的に固定する、請求項1から3のいずれかに記載の撮像素子。 The MEMS rotating element temporarily fixes a polarization plane of linearly polarized light incident on each photosensitive cell by quiescing the polarizer unit during a period in which charge accumulation is performed in the photosensitive cell array. The imaging device according to any one of 1 to 3.
  5.  前記光感知セルアレイで前記電荷蓄積が行われる期間、1つの偏光子は1つの光感知セルに対向している、請求項1から4のいずれかに記載の撮像素子。 The imaging device according to any one of claims 1 to 4, wherein one polarizer faces one photosensitive cell during a period in which the charge accumulation is performed in the photosensitive cell array.
  6.  前記MEMS回転素子は、各偏光子ユニットを支持する回転部と、静電力によって前記回転部を回転させる固定部とを有する、請求項1から5のいずれかに記載の撮像素子。 The imaging element according to claim 1, wherein the MEMS rotating element includes a rotating part that supports each polarizer unit and a fixing part that rotates the rotating part by electrostatic force.
  7.  各々が1つの偏光子または偏光透過軸方向の異なるN個(Nは2以上の整数)の偏光子を含む複数の偏光子ユニットと、複数の光感知セルが撮像面に沿って配列され、前記偏光子を透過した直線偏光が各光感知セルに入射するように配置された光感知セルアレイと、各偏光子ユニットの中心軸の周りに各偏光子ユニットを回転させることにより、各光感知セルに入射する直線偏光の偏光面を回転させるMEMS回転素子とを備える撮像素子と、
     前記MEMS回転素子を駆動する駆動回路と、
     前記撮像素子上に像を形成するための撮影レンズと、
    を備える撮像装置。
    A plurality of polarizer units each including one polarizer or N polarizers (N is an integer of 2 or more) having different polarization transmission axis directions, and a plurality of photosensitive cells are arranged along the imaging surface, A photosensitive cell array arranged so that linearly polarized light transmitted through the polarizer enters each photosensitive cell, and by rotating each polarizer unit around the central axis of each polarizer unit, An imaging device comprising a MEMS rotating element that rotates a polarization plane of incident linearly polarized light;
    A drive circuit for driving the MEMS rotating element;
    A photographic lens for forming an image on the image sensor;
    An imaging apparatus comprising:
PCT/JP2011/003934 2010-09-24 2011-07-08 Imaging element and imaging device WO2012039087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010213652 2010-09-24
JP2010-213652 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039087A1 true WO2012039087A1 (en) 2012-03-29

Family

ID=45873593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003934 WO2012039087A1 (en) 2010-09-24 2011-07-08 Imaging element and imaging device

Country Status (1)

Country Link
WO (1) WO2012039087A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014020791A1 (en) * 2012-08-02 2016-07-21 パナソニックIpマネジメント株式会社 Polarized color imaging device
US20200185436A1 (en) * 2016-08-18 2020-06-11 Sony Corporation Imaging apparatus and imaging method
TWI704391B (en) * 2019-11-27 2020-09-11 國立中央大學 Reflective electronic display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099589A1 (en) * 2007-02-13 2008-08-21 Panasonic Corporation Image processing system, method, device and image format
JP2008209162A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Range image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099589A1 (en) * 2007-02-13 2008-08-21 Panasonic Corporation Image processing system, method, device and image format
JP2008209162A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Range image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014020791A1 (en) * 2012-08-02 2016-07-21 パナソニックIpマネジメント株式会社 Polarized color imaging device
US20200185436A1 (en) * 2016-08-18 2020-06-11 Sony Corporation Imaging apparatus and imaging method
US11056518B2 (en) * 2016-08-18 2021-07-06 Sony Corporation Imaging apparatus and imaging method
TWI704391B (en) * 2019-11-27 2020-09-11 國立中央大學 Reflective electronic display device

Similar Documents

Publication Publication Date Title
JP4932978B2 (en) Imaging device and imaging apparatus
JP5468676B2 (en) Image capture device and method
US5616912A (en) Three dimensional imaging apparatus, camera, and microscope using discrete shutter control to produce parallax for obtaining three dimensional images
JP6879919B2 (en) Manufacturing method of solid-state image sensor, electronic device, and solid-state image sensor
US8077372B2 (en) Micro-electromechanical microshutter array
JP5000395B2 (en) Imaging display method and imaging display device
US20130076919A1 (en) Optical image stabilization using tangentially actuated mems devices
US20120019736A1 (en) Imaging device
JP2007201915A (en) Planar camera unit
US9781311B2 (en) Liquid crystal optical device, solid state imaging device, portable information terminal, and display device
US11012635B2 (en) Optical device including pinhole array aperture and related methods
WO2012039087A1 (en) Imaging element and imaging device
JP5254323B2 (en) Optical strain measurement device
CN113257846A (en) Image sensor and electronic device including the same
JP5347722B2 (en) Optical filter and image photographing apparatus
JP2009139356A (en) Polarized light measuring device
KR20140061234A (en) Image generating apparatus and method for generating imgae
WO2019176209A1 (en) Solid-state imaging device
US9148558B2 (en) Camera module having first and second imaging optical system controlled in relation to imaging modes and imaging method
AU2013297884B2 (en) Mask
JP6730881B2 (en) Imaging unit and imaging device
JP2013242480A (en) Color polarization imaging element and imaging apparatus
JP2013106217A (en) Depth estimating/imaging apparatus
JP4767531B2 (en) Image shake correction apparatus and imaging apparatus
JPH04115786A (en) Image shift type image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP