JP2007201915A - Planar camera unit - Google Patents

Planar camera unit Download PDF

Info

Publication number
JP2007201915A
JP2007201915A JP2006019326A JP2006019326A JP2007201915A JP 2007201915 A JP2007201915 A JP 2007201915A JP 2006019326 A JP2006019326 A JP 2006019326A JP 2006019326 A JP2006019326 A JP 2006019326A JP 2007201915 A JP2007201915 A JP 2007201915A
Authority
JP
Japan
Prior art keywords
microlens
mirror
light
camera unit
movable mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006019326A
Other languages
Japanese (ja)
Inventor
Masashi Hiromoto
昌史 廣本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2006019326A priority Critical patent/JP2007201915A/en
Publication of JP2007201915A publication Critical patent/JP2007201915A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely-thin-planar camera unit. <P>SOLUTION: The planar camera unit is constituted by arranging, in a planar manner and in the vertical and lateral directions, a plurality of microlens cells MC which comprise a microlens 11; an upper electrode used as a spring 12 and a lower electrode which move the microlens 11 toward an incident-light direction in response to an external control signal; a movable mirror 22a for reflecting light, that has passed through the microlens 11; a DVD module 22 for controlling an angle of the movable mirror 22a in response to an external pulse signal; a fixed mirror 23 for further reflecting the light reflected by the movable mirror 22a; and an image sensor 14 for receiving the light from the fixed mirror 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、極めて薄く構成することができる平面カメラユニットに関する。   The present invention relates to a planar camera unit that can be configured to be extremely thin.

一般に、ディジタルカメラは、図8に示すように、鏡胴1の内部にレンズ2と絞り3とイメージセンサモジュール4とが設けられ、レンズ2を通した光の像を絞り3を介してイメージセンサモジュール4において結像し、イメージセンサモジュール4から出力される電気信号をディジタルデータに変換してメモリに記憶させるようになっている。
なお、従来のディジタルカメラに関する文献として特許文献1が知られている。
特開平08-265783号公報
In general, as shown in FIG. 8, a digital camera is provided with a lens 2, a diaphragm 3, and an image sensor module 4 inside a lens barrel 1, and an image of light passing through the lens 2 is imaged through the diaphragm 3. An image is formed in the module 4 and an electric signal output from the image sensor module 4 is converted into digital data and stored in a memory.
Patent Document 1 is known as a document related to a conventional digital camera.
Japanese Unexamined Patent Publication No. 08-265783

ところで、上述した従来のディジタルカメラは、光をレンズ2で受けてからイメージセンサモジュール4に結像するまでの光学的空間が必要であり、このため、厚さが数cm〜10cmにもなってしまい、薄くできない欠点があった。
本発明は上記事情を考慮してなされたもので、その目的は、厚さが極めて薄い平面カメラユニットを提供することにある。
By the way, the above-described conventional digital camera requires an optical space from receiving light by the lens 2 to forming an image on the image sensor module 4, and therefore, the thickness becomes several cm to 10 cm. Therefore, there was a defect that could not be made thin.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flat camera unit having a very small thickness.

この発明は上記の課題を解決するためになされたもので、請求項1に記載の発明は、マイクロレンズと、前記マイクロレンズを外部からの制御信号に応じて入射光方向に移動させる移動手段と、前記マイクロレンズを通した光を反射させる可動ミラーと、前記可動ミラーの角度を外部からのパルス信号に応じて制御するミラー駆動モジュールと、前記可動ミラーによって反射された光を反射させる固定ミラーと、前記固定ミラーからの光を受けるイメージセンサとからなるマイクロレンズセルを複数平面状に配置したことを特徴とする平面カメラユニットである。   The present invention has been made to solve the above-described problems. The invention according to claim 1 is a microlens, and a moving means for moving the microlens in the direction of incident light according to a control signal from the outside. A movable mirror that reflects the light that has passed through the microlens, a mirror drive module that controls the angle of the movable mirror according to a pulse signal from the outside, and a fixed mirror that reflects the light reflected by the movable mirror, The planar camera unit is characterized in that a plurality of microlens cells including an image sensor that receives light from the fixed mirror are arranged in a plane.

請求項2に記載の発明は、マイクロレンズと、前記マイクロレンズを外部からの制御信号に応じて入射光方向に移動させる移動手段と、前記マイクロレンズを通した光を反射させる固定ミラーと、前記固定ミラーによって反射された光を反射させる可動ミラーと、前記可動ミラーの角度を外部からのパルス信号に応じて制御するミラー駆動モジュールと、前記可動ミラーからの光を受けるイメージセンサとからなるマイクロレンズセルを複数平面状に配置したことを特徴とする平面カメラユニットである。   The invention according to claim 2 is a microlens, a moving means for moving the microlens in the direction of incident light according to a control signal from the outside, a fixed mirror for reflecting light that has passed through the microlens, A microlens comprising a movable mirror that reflects light reflected by a fixed mirror, a mirror drive module that controls the angle of the movable mirror in accordance with an external pulse signal, and an image sensor that receives light from the movable mirror A planar camera unit having a plurality of cells arranged in a plane.

請求項3に記載の発明は、請求項1または請求項2に記載の平面カメラユニットにおいて、前記移動手段は、前記マイクロレンズを保持する第1の電極と、前記第1の電極に対向配置され、外部からの電気信号を受けて前記第1の電極との間で静電気力を作用させる第2の電極とからなることを特徴とする。   According to a third aspect of the present invention, in the planar camera unit according to the first or second aspect, the moving means is disposed opposite to the first electrode that holds the microlens and the first electrode. And a second electrode for receiving an electric signal from the outside and applying an electrostatic force to the first electrode.

この発明によれば、厚さが極めて薄い平面カメラを作成することができる効果がある。   According to the present invention, there is an effect that a flat camera having a very thin thickness can be created.

以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の第1の実施の形態による平面カメラユニットの構成要素であるマイクロレンズセルMCを示す断面図、図2は同マイクロレンズセルMCにおけるレンズユニットLUの構成を示す断面図である。図2において、11はマイクロレンズ、12はマイクロレンズ11を上下方向へ移動させる上部電極兼バネ、13は上部電極兼バネ12に対抗配置された下部電極、14はCMOSイメージセンサである。これらの各構成要素は基板15上に配置されて1つのレンズユニットLUが構成されている。また、基板15には、マイクロレンズ11に対抗する位置に光取り用の孔16が形成されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a microlens cell MC that is a component of a planar camera unit according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a configuration of a lens unit LU in the microlens cell MC. . In FIG. 2, 11 is a microlens, 12 is an upper electrode / spring that moves the microlens 11 in the vertical direction, 13 is a lower electrode disposed opposite to the upper electrode / spring 12, and 14 is a CMOS image sensor. Each of these components is arranged on the substrate 15 to constitute one lens unit LU. The substrate 15 has a light capturing hole 16 at a position facing the microlens 11.

また、図1において、21は基板であり、この基板21上にDMD(Digital Micromirror Device)モジュール22が取り付けられている。DMDモジュールは可動ミラー22aを有し、モジュールへ加えるパルス信号の”1”/”0”に応じてミラー22aの角度が±12度の範囲で変化する。また、DMDモジュール22の側方の基板21上には固定ミラー23が配置されている。そして、可動ミラー22aに対向する位置にマイクロレンズ11が位置し、固定ミラー23に対向する位置にCMOSイメージセンサ14が位置するように上述したレンズユニットLUが配置され、基板21に側板24を介して固定される。   In FIG. 1, reference numeral 21 denotes a substrate, and a DMD (Digital Micromirror Device) module 22 is mounted on the substrate 21. The DMD module has a movable mirror 22a, and the angle of the mirror 22a changes in a range of ± 12 degrees according to “1” / “0” of a pulse signal applied to the module. A fixed mirror 23 is disposed on the substrate 21 on the side of the DMD module 22. The above-described lens unit LU is arranged so that the microlens 11 is positioned at a position facing the movable mirror 22a and the CMOS image sensor 14 is positioned at a position facing the fixed mirror 23, and the substrate 21 is interposed via the side plate 24. Fixed.

そして、被写体からの光はレンズユニットLUの孔16から入射され、マイクロレンズ11を通して可動ミラー22aによって反射され、固定ミラー23に達し、この固定ミラー23によって反射され、CMOSイメージセンサ14に到達する。この場合、上部電極兼バネ12および下部電極13間に加える電圧変化させると、上部電極兼バネ12と下部電極13との間に働く静電気力が変化し、上部電極兼バネ12に取り付けたマイクロレンズ11が移動する。これにより、マイクロレンズ11の焦点距離を変化させることができる。また、DMDモジュールへ加えるパルス信号のパルス幅を制御することによって、単位時間当たりCMOSイメージセンサ14へ到達する光の光量を変化させることができ、これによって絞りと同じ機能を行うことができる。   Then, light from the subject enters through the hole 16 of the lens unit LU, is reflected by the movable mirror 22a through the microlens 11, reaches the fixed mirror 23, is reflected by the fixed mirror 23, and reaches the CMOS image sensor 14. In this case, when the voltage applied between the upper electrode / spring 12 and the lower electrode 13 is changed, the electrostatic force acting between the upper electrode / spring 12 and the lower electrode 13 changes, and the microlens attached to the upper electrode / spring 12 is changed. 11 moves. Thereby, the focal length of the microlens 11 can be changed. In addition, by controlling the pulse width of the pulse signal applied to the DMD module, the amount of light reaching the CMOS image sensor 14 per unit time can be changed, thereby performing the same function as the aperture.

図3は平面カメラユニットCおよびその制御回路の構成を示すブロック図である。平面カメラユニットCは、上述したマイクロレンズセルMCが多数、縦、横方向に連続して平面状に配置されたものである。そして、各マイクロレンズセルMCはそれぞれ1画素に対応し、それぞれの孔16には、図4に示すように、RGM(レッド、グリーン、ブルー)のカラーフィルタが配置されている。   FIG. 3 is a block diagram showing the configuration of the planar camera unit C and its control circuit. The planar camera unit C is a unit in which a large number of the above-described microlens cells MC are arranged in a plane continuously in the vertical and horizontal directions. Each microlens cell MC corresponds to one pixel, and an RGM (red, green, blue) color filter is disposed in each hole 16 as shown in FIG.

なお、1つのマイクロレンズセルMCを4画素に対応させてもよい。この場合、孔16に配置されるカラーフィルタは、図5に示すように、RGBの各色を含むフィルタとなり、また、RGB単位での絞り制御はできなくなる。   Note that one microlens cell MC may correspond to four pixels. In this case, as shown in FIG. 5, the color filter disposed in the hole 16 is a filter including each color of RGB, and aperture control in RGB units cannot be performed.

レンズ制御回路31は各マイクロレンズセルMCの上部電極兼バネ12および下部電極13間へ加える電圧を制御することにより、各マイクロレンズ11毎に個別に焦点を合わせる。絞り制御回路32は、各マイクロレンズセルMCのDMDモジュール22へ加えるパルス信号のパルス幅を個別に制御することによって、各マイクロレンズセルMCの絞り制御を行う。画像データ読み出し回路33は、各マイクロレンズセルMCのCMOSイメージセンサ14の出力を順次読み出し、ディジタルデータに変換して出力する。   The lens control circuit 31 controls the voltage applied between the upper electrode / spring 12 and the lower electrode 13 of each microlens cell MC, thereby focusing on each microlens 11 individually. The aperture control circuit 32 controls the aperture of each microlens cell MC by individually controlling the pulse width of the pulse signal applied to the DMD module 22 of each microlens cell MC. The image data reading circuit 33 sequentially reads the output of the CMOS image sensor 14 of each microlens cell MC, converts it into digital data, and outputs it.

図6はこの発明の第2の実施の形態による平面カメラユニットの構成要素であるマイクロレンズセルMCaを示す断面図、図7は同マイクロレンズセルMCaにおけるレンズユニットLUaの構成を示す断面図である。この実施形態は、図2に示すレンズユニットLUのCMOSイメージセンサ14に代えて、図7に示すように、基板15上に可動ミラー22aを有するDMDモジュール22が取り付けられている。また、図6に示すように、基板21上には、図1におけるDMDモジュール22に代えて固定ミラー23が取り付けられ、また、図1の固定ミラー23に代えて、CMOSイメージセンサ14が取り付けられている。   FIG. 6 is a cross-sectional view showing a microlens cell MCa that is a component of a flat camera unit according to the second embodiment of the present invention, and FIG. 7 is a cross-sectional view showing the structure of the lens unit LUa in the microlens cell MCa. . In this embodiment, instead of the CMOS image sensor 14 of the lens unit LU shown in FIG. 2, a DMD module 22 having a movable mirror 22a is attached on a substrate 15, as shown in FIG. As shown in FIG. 6, a fixed mirror 23 is attached on the substrate 21 in place of the DMD module 22 in FIG. 1, and a CMOS image sensor 14 is attached in place of the fixed mirror 23 in FIG. ing.

そして、固定ミラー23に対向する位置にマイクロレンズ11が位置し、CMOSイメージセンサ14に対向する位置にDMDモジュール22が位置するように上述したレンズユニットLUaが配置され、基板21に側板24を介して固定されている。この実施形態においては、被写体からの光がマイクロレンズ11を通り、固定ミラー23で反射され、可動ミラー22aで反射されてCMOSイメージセンサ14に入射する。
なお、レンズユニットLUの基板15にマイクロレンズと固定ミラーを取り付け、マイクロレンズセルMCの基板21上にDMDモジュールとCMOSイメージセンサを設けてもよい。
The lens unit LUa described above is arranged so that the microlens 11 is located at a position facing the fixed mirror 23 and the DMD module 22 is located at a position facing the CMOS image sensor 14. Is fixed. In this embodiment, light from the subject passes through the microlens 11, is reflected by the fixed mirror 23, is reflected by the movable mirror 22 a, and enters the CMOS image sensor 14.
A microlens and a fixed mirror may be attached to the substrate 15 of the lens unit LU, and a DMD module and a CMOS image sensor may be provided on the substrate 21 of the microlens cell MC.

上述した第1、第2の実施形態によれば、外部からの制御信号によりマイクロレンズセル単位(画素単位)でピント調整が可能である。
また、DMDモジュールは、外部からの制御信号によりマイクロレンズセル単位で制御可能であり、マイクロレンズセル単位で光量調整が可能である。また、通常のレンズのように、口径を小さくして光量を調整する方法でないため、被写界深度が深くなることはない。
According to the first and second embodiments described above, focus adjustment can be performed in units of microlens cells (pixel units) by an external control signal.
The DMD module can be controlled in units of microlens cells by an external control signal, and the light amount can be adjusted in units of microlens cells. Further, since it is not a method of adjusting the light amount by reducing the aperture as in a normal lens, the depth of field does not increase.

また、レンズ制御回路31および絞り制御回路32によって、平面状に配置された全てのマイクロレンズセルMCの焦点と絞りを同一に制御すれば、通常のカメラと同じ使い方が可能である。また、セル別に焦点を変えることで、画面全体でピント合わせをすることが可能である。   Further, if the focal point and the diaphragm of all the microlens cells MC arranged in a plane are controlled by the lens control circuit 31 and the diaphragm control circuit 32 in the same manner, the same usage as a normal camera is possible. In addition, it is possible to focus on the entire screen by changing the focus for each cell.

また、マイクロレンズセルを2×2素子単位で構成した場合、1画素単位で絞りを調整可能なため、同一画面内に明るい場所と暗い場所が混在するような条件で、全体が暗くなりすぎたり、白くハレーションを起こしたりすることがなくなる。撮像素子全体としてのダイナミックレンジを広くすることが可能である。
また、マイクロレンズセルを1素子単位とした場合、セル別に絞りを変えることで、RGB個別に感度を変えることができる。
また、上記実施形態はマイクロレンズ11を用いているが、このマイクロレンズなしでもカメラを構成することが可能である。この場合、いわゆるピンホールカメラと同一原理で撮像が可能となる。
In addition, when the microlens cell is configured in units of 2 × 2 elements, the diaphragm can be adjusted in units of one pixel, so that the entire screen becomes too dark under the condition that a bright place and a dark place are mixed in the same screen. , No white halation. It is possible to widen the dynamic range of the entire image sensor.
Further, when the microlens cell is set as one element unit, the sensitivity can be changed for each RGB by changing the diaphragm for each cell.
Moreover, although the said embodiment uses the microlens 11, it is possible to comprise a camera without this microlens. In this case, imaging can be performed on the same principle as a so-called pinhole camera.

この発明は、薄型カメラに用いて好適である。   The present invention is suitable for use in a thin camera.

この発明の第1の実施形態による平面カメラユニットの構成要素であるマイクロレンズセルMCの構成を示す断面図である。It is sectional drawing which shows the structure of the micro lens cell MC which is a component of the planar camera unit by 1st Embodiment of this invention. 同マイクロレンズセルにおけるレンズユニットLUの構成を示す断面図である。It is sectional drawing which shows the structure of the lens unit LU in the microlens cell. この発明の一実施形態による平面カメラユニットCおよびその制御回路の構成を示すブロック図である。It is a block diagram which shows the structure of the planar camera unit C by one Embodiment of this invention, and its control circuit. 平面カメラユニットCに取り付けられるフィルタの構成例を示す図である。4 is a diagram illustrating a configuration example of a filter attached to the planar camera unit C. FIG. フィルタの他の構成例を示す図である。It is a figure which shows the other structural example of a filter. この発明の第2の実施形態による平面カメラユニットの構成要素であるマイクロレンズセルMCaの構成を示す断面図である。It is sectional drawing which shows the structure of the micro lens cell MCa which is a component of the planar camera unit by 2nd Embodiment of this invention. 同マイクロレンズセルにおけるレンズユニットLUaの構成を示す断面図である。It is sectional drawing which shows the structure of the lens unit LUa in the micro lens cell. 従来のディジタルカメラの構成例を示す断面図である。It is sectional drawing which shows the structural example of the conventional digital camera.

符号の説明Explanation of symbols

11…マイクロレンズ、12…上部電極兼バネ、13…下部電極、14…CMOSイメージセンサ、15、21…基板、22…DMDモジュール、22a…DMD可動ミラー、23…固定ミラー、24…側板、C…平面カメラユニット、LU、LUa…レンズユニット、MC、MCa…マイクロレンズセル。 DESCRIPTION OF SYMBOLS 11 ... Micro lens, 12 ... Upper electrode and spring, 13 ... Lower electrode, 14 ... CMOS image sensor, 15, 21 ... Substrate, 22 ... DMD module, 22a ... DMD movable mirror, 23 ... Fixed mirror, 24 ... Side plate, C ... Planar camera unit, LU, LUa ... Lens unit, MC, MCa ... Microlens cell.

Claims (3)

マイクロレンズと、
前記マイクロレンズを外部からの制御信号に応じて入射光方向に移動させる移動手段と、
前記マイクロレンズを通した光を反射させる可動ミラーと、
前記可動ミラーの角度を外部からのパルス信号に応じて制御するミラー駆動モジュールと、
前記可動ミラーによって反射された光を反射させる固定ミラーと、
前記固定ミラーからの光を受けるイメージセンサと、
からなるマイクロレンズセルを複数平面状に配置したことを特徴とする平面カメラユニット。
A microlens,
Moving means for moving the microlens in the direction of incident light in accordance with an external control signal;
A movable mirror that reflects light passing through the microlens;
A mirror driving module for controlling the angle of the movable mirror according to a pulse signal from the outside;
A fixed mirror that reflects the light reflected by the movable mirror;
An image sensor that receives light from the fixed mirror;
A planar camera unit comprising a plurality of microlens cells arranged in a plane.
マイクロレンズと、
前記マイクロレンズを外部からの制御信号に応じて入射光方向に移動させる移動手段と、
前記マイクロレンズを通した光を反射させる固定ミラーと、
前記固定ミラーによって反射された光を反射させる可動ミラーと、
前記可動ミラーの角度を外部からのパルス信号に応じて制御するミラー駆動モジュールと、
前記可動ミラーからの光を受けるイメージセンサと、
からなるマイクロレンズセルを複数平面状に配置したことを特徴とする平面カメラユニット。
A microlens,
Moving means for moving the microlens in the direction of incident light in accordance with an external control signal;
A fixed mirror that reflects light that has passed through the microlens;
A movable mirror that reflects the light reflected by the fixed mirror;
A mirror driving module for controlling the angle of the movable mirror according to a pulse signal from the outside;
An image sensor for receiving light from the movable mirror;
A planar camera unit comprising a plurality of microlens cells arranged in a plane.
前記移動手段は、前記マイクロレンズを保持する第1の電極と、前記第1の電極に対向配置され、外部からの電気信号を受けて前記第1の電極との間で静電気力を作用させる第2の電極とからなることを特徴とする請求項1または請求項2に記載の平面カメラユニット。   The moving means is a first electrode that holds the microlens and a first electrode that is opposed to the first electrode and receives an electric signal from the outside to apply an electrostatic force between the first electrode and the first electrode. The planar camera unit according to claim 1 or 2, comprising two electrodes.
JP2006019326A 2006-01-27 2006-01-27 Planar camera unit Withdrawn JP2007201915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019326A JP2007201915A (en) 2006-01-27 2006-01-27 Planar camera unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019326A JP2007201915A (en) 2006-01-27 2006-01-27 Planar camera unit

Publications (1)

Publication Number Publication Date
JP2007201915A true JP2007201915A (en) 2007-08-09

Family

ID=38456034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019326A Withdrawn JP2007201915A (en) 2006-01-27 2006-01-27 Planar camera unit

Country Status (1)

Country Link
JP (1) JP2007201915A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058150A1 (en) * 2013-10-18 2015-04-23 The Lightco Inc. Methods and apparatus relating to a camera including multiple optical chains
WO2015066571A1 (en) * 2013-11-01 2015-05-07 The Lightco Inc. Methods and apparatus relating to image stabilization
JP2015181213A (en) * 2014-03-05 2015-10-15 ソニー株式会社 Imaging apparatus
US9197816B2 (en) 2013-10-18 2015-11-24 The Lightco Inc. Zoom related methods and apparatus
US9270876B2 (en) 2013-01-05 2016-02-23 The Lightco Inc. Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times
US9423588B2 (en) 2013-10-18 2016-08-23 The Lightco Inc. Methods and apparatus for supporting zoom operations
US9426365B2 (en) 2013-11-01 2016-08-23 The Lightco Inc. Image stabilization related methods and apparatus
US9462170B2 (en) 2014-02-21 2016-10-04 The Lightco Inc. Lighting methods and apparatus
US9467627B2 (en) 2013-10-26 2016-10-11 The Lightco Inc. Methods and apparatus for use with multiple optical chains
US9544503B2 (en) 2014-12-30 2017-01-10 Light Labs Inc. Exposure control methods and apparatus
US9554031B2 (en) 2013-12-31 2017-01-24 Light Labs Inc. Camera focusing related methods and apparatus
US9736365B2 (en) 2013-10-26 2017-08-15 Light Labs Inc. Zoom related methods and apparatus
US9749549B2 (en) 2015-10-06 2017-08-29 Light Labs Inc. Methods and apparatus for facilitating selective blurring of one or more image portions
US9824427B2 (en) 2015-04-15 2017-11-21 Light Labs Inc. Methods and apparatus for generating a sharp image
US9857584B2 (en) 2015-04-17 2018-01-02 Light Labs Inc. Camera device methods, apparatus and components
US9912864B2 (en) 2014-10-17 2018-03-06 Light Labs Inc. Methods and apparatus for using a camera device to support multiple modes of operation
US9930233B2 (en) 2015-04-22 2018-03-27 Light Labs Inc. Filter mounting methods and apparatus and related camera apparatus
US9948832B2 (en) 2016-06-22 2018-04-17 Light Labs Inc. Methods and apparatus for synchronized image capture in a device including optical chains with different orientations
US9967535B2 (en) 2015-04-17 2018-05-08 Light Labs Inc. Methods and apparatus for reducing noise in images
US9979878B2 (en) 2014-02-21 2018-05-22 Light Labs Inc. Intuitive camera user interface methods and apparatus
US9998638B2 (en) 2014-12-17 2018-06-12 Light Labs Inc. Methods and apparatus for implementing and using camera devices
US10003738B2 (en) 2015-12-18 2018-06-19 Light Labs Inc. Methods and apparatus for detecting and/or indicating a blocked sensor or camera module
US10075651B2 (en) 2015-04-17 2018-09-11 Light Labs Inc. Methods and apparatus for capturing images using multiple camera modules in an efficient manner
US10091447B2 (en) 2015-04-17 2018-10-02 Light Labs Inc. Methods and apparatus for synchronizing readout of multiple image sensors
US10110794B2 (en) 2014-07-09 2018-10-23 Light Labs Inc. Camera device including multiple optical chains and related methods
US10129483B2 (en) 2015-06-23 2018-11-13 Light Labs Inc. Methods and apparatus for implementing zoom using one or more moveable camera modules
US10191356B2 (en) 2014-07-04 2019-01-29 Light Labs Inc. Methods and apparatus relating to detection and/or indicating a dirty lens condition
US10225445B2 (en) 2015-12-18 2019-03-05 Light Labs Inc. Methods and apparatus for providing a camera lens or viewing point indicator
US10306218B2 (en) 2016-03-22 2019-05-28 Light Labs Inc. Camera calibration apparatus and methods
US10365480B2 (en) 2015-08-27 2019-07-30 Light Labs Inc. Methods and apparatus for implementing and/or using camera devices with one or more light redirection devices
US10491806B2 (en) 2015-08-03 2019-11-26 Light Labs Inc. Camera device control related methods and apparatus

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9568713B2 (en) 2013-01-05 2017-02-14 Light Labs Inc. Methods and apparatus for using multiple optical chains in parallel to support separate color-capture
US9547160B2 (en) 2013-01-05 2017-01-17 Light Labs Inc. Methods and apparatus for capturing and/or processing images
US9671595B2 (en) 2013-01-05 2017-06-06 Light Labs Inc. Methods and apparatus for using multiple optical chains in paralell
US9690079B2 (en) 2013-01-05 2017-06-27 Light Labs Inc. Camera methods and apparatus using optical chain modules which alter the direction of received light
US9270876B2 (en) 2013-01-05 2016-02-23 The Lightco Inc. Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times
US9282228B2 (en) 2013-01-05 2016-03-08 The Lightco Inc. Camera methods and apparatus using optical chain modules which alter the direction of received light
US9451171B2 (en) 2013-10-18 2016-09-20 The Lightco Inc. Zoom related methods and apparatus
US9544501B2 (en) 2013-10-18 2017-01-10 Light Labs Inc. Methods and apparatus for implementing and/or using a camera device
US9423588B2 (en) 2013-10-18 2016-08-23 The Lightco Inc. Methods and apparatus for supporting zoom operations
US9749511B2 (en) 2013-10-18 2017-08-29 Light Labs Inc. Methods and apparatus relating to a camera including multiple optical chains
US9325906B2 (en) 2013-10-18 2016-04-26 The Lightco Inc. Methods and apparatus relating to a thin camera device
US9197816B2 (en) 2013-10-18 2015-11-24 The Lightco Inc. Zoom related methods and apparatus
WO2015058150A1 (en) * 2013-10-18 2015-04-23 The Lightco Inc. Methods and apparatus relating to a camera including multiple optical chains
US9374514B2 (en) 2013-10-18 2016-06-21 The Lightco Inc. Methods and apparatus relating to a camera including multiple optical chains
US9851527B2 (en) 2013-10-18 2017-12-26 Light Labs Inc. Methods and apparatus for capturing and/or combining images
US9549127B2 (en) 2013-10-18 2017-01-17 Light Labs Inc. Image capture control methods and apparatus
US10120159B2 (en) 2013-10-18 2018-11-06 Light Labs Inc. Methods and apparatus for supporting zoom operations
US9551854B2 (en) 2013-10-18 2017-01-24 Light Labs Inc. Methods and apparatus for controlling sensors to capture images in a synchronized manner
US9578252B2 (en) 2013-10-18 2017-02-21 Light Labs Inc. Methods and apparatus for capturing images using optical chains and/or for using captured images
US9557520B2 (en) 2013-10-18 2017-01-31 Light Labs Inc. Synchronized image capture methods and apparatus
US9557519B2 (en) 2013-10-18 2017-01-31 Light Labs Inc. Methods and apparatus for implementing a camera device supporting a number of different focal lengths
US9563033B2 (en) 2013-10-18 2017-02-07 Light Labs Inc. Methods and apparatus for capturing images and/or for using captured images
US9467627B2 (en) 2013-10-26 2016-10-11 The Lightco Inc. Methods and apparatus for use with multiple optical chains
US9736365B2 (en) 2013-10-26 2017-08-15 Light Labs Inc. Zoom related methods and apparatus
WO2015066571A1 (en) * 2013-11-01 2015-05-07 The Lightco Inc. Methods and apparatus relating to image stabilization
US9686471B2 (en) 2013-11-01 2017-06-20 Light Labs Inc. Methods and apparatus relating to image stabilization
US9426365B2 (en) 2013-11-01 2016-08-23 The Lightco Inc. Image stabilization related methods and apparatus
US9554031B2 (en) 2013-12-31 2017-01-24 Light Labs Inc. Camera focusing related methods and apparatus
US9462170B2 (en) 2014-02-21 2016-10-04 The Lightco Inc. Lighting methods and apparatus
US9979878B2 (en) 2014-02-21 2018-05-22 Light Labs Inc. Intuitive camera user interface methods and apparatus
JP2015181213A (en) * 2014-03-05 2015-10-15 ソニー株式会社 Imaging apparatus
US10191356B2 (en) 2014-07-04 2019-01-29 Light Labs Inc. Methods and apparatus relating to detection and/or indicating a dirty lens condition
US10110794B2 (en) 2014-07-09 2018-10-23 Light Labs Inc. Camera device including multiple optical chains and related methods
US9912864B2 (en) 2014-10-17 2018-03-06 Light Labs Inc. Methods and apparatus for using a camera device to support multiple modes of operation
US9912865B2 (en) 2014-10-17 2018-03-06 Light Labs Inc. Methods and apparatus for supporting burst modes of camera operation
US9998638B2 (en) 2014-12-17 2018-06-12 Light Labs Inc. Methods and apparatus for implementing and using camera devices
US9544503B2 (en) 2014-12-30 2017-01-10 Light Labs Inc. Exposure control methods and apparatus
US9824427B2 (en) 2015-04-15 2017-11-21 Light Labs Inc. Methods and apparatus for generating a sharp image
US9857584B2 (en) 2015-04-17 2018-01-02 Light Labs Inc. Camera device methods, apparatus and components
US10075651B2 (en) 2015-04-17 2018-09-11 Light Labs Inc. Methods and apparatus for capturing images using multiple camera modules in an efficient manner
US10091447B2 (en) 2015-04-17 2018-10-02 Light Labs Inc. Methods and apparatus for synchronizing readout of multiple image sensors
US9967535B2 (en) 2015-04-17 2018-05-08 Light Labs Inc. Methods and apparatus for reducing noise in images
US9930233B2 (en) 2015-04-22 2018-03-27 Light Labs Inc. Filter mounting methods and apparatus and related camera apparatus
US10129483B2 (en) 2015-06-23 2018-11-13 Light Labs Inc. Methods and apparatus for implementing zoom using one or more moveable camera modules
US10491806B2 (en) 2015-08-03 2019-11-26 Light Labs Inc. Camera device control related methods and apparatus
US10365480B2 (en) 2015-08-27 2019-07-30 Light Labs Inc. Methods and apparatus for implementing and/or using camera devices with one or more light redirection devices
US9749549B2 (en) 2015-10-06 2017-08-29 Light Labs Inc. Methods and apparatus for facilitating selective blurring of one or more image portions
US10003738B2 (en) 2015-12-18 2018-06-19 Light Labs Inc. Methods and apparatus for detecting and/or indicating a blocked sensor or camera module
US10225445B2 (en) 2015-12-18 2019-03-05 Light Labs Inc. Methods and apparatus for providing a camera lens or viewing point indicator
US10306218B2 (en) 2016-03-22 2019-05-28 Light Labs Inc. Camera calibration apparatus and methods
US9948832B2 (en) 2016-06-22 2018-04-17 Light Labs Inc. Methods and apparatus for synchronized image capture in a device including optical chains with different orientations

Similar Documents

Publication Publication Date Title
JP2007201915A (en) Planar camera unit
TWI495335B (en) Lens module and method of operating the same
JP4797606B2 (en) Imaging device
US11282882B2 (en) Focus detecting device and electronic device
JP6016396B2 (en) Imaging device and imaging apparatus
US7355154B2 (en) Image sensing apparatus with movable light flux splitter and control method thereof
JP2006126652A (en) Imaging apparatus
US8957980B2 (en) Image pickup apparatus
JP2014165778A (en) Solid state image sensor, imaging device and focus detector
US20140071317A1 (en) Image pickup apparatus
US20180059361A1 (en) Image sensing unit and image capturing apparatus
US20080231971A1 (en) 3-Dimensional Image Detector
KR20060060224A (en) Image pick-up module comprising an optical device
TWI693833B (en) Method and apparatus for high-resolution digital photography based on multiple image sensor frames
JP2002320236A (en) Imaging apparatus
JP2008219346A (en) Imaging element, imaging apparatus and driving method of imaging element
JP2016048282A (en) Imaging apparatus
JP2018046563A (en) Imaging element
US20170085779A1 (en) Imaging control apparatus, imaging apparatus, and imaging control method
WO2021166834A1 (en) Imaging device, and imaging method
JP6232108B2 (en) Imaging device and imaging apparatus
JP2007187806A (en) Imaging apparatus
JP6083120B2 (en) Electronic camera
JP2012237831A (en) Imaging apparatus
JP2006246154A (en) Imaging device and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090128