WO2012037751A1 - 控制通信范围的快速接入近距无线通信系统和方法 - Google Patents

控制通信范围的快速接入近距无线通信系统和方法 Download PDF

Info

Publication number
WO2012037751A1
WO2012037751A1 PCT/CN2010/079458 CN2010079458W WO2012037751A1 WO 2012037751 A1 WO2012037751 A1 WO 2012037751A1 CN 2010079458 W CN2010079458 W CN 2010079458W WO 2012037751 A1 WO2012037751 A1 WO 2012037751A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
wireless communication
reference signal
distance
main module
Prior art date
Application number
PCT/CN2010/079458
Other languages
English (en)
French (fr)
Inventor
余运波
朱杉
Original Assignee
国民技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国民技术股份有限公司 filed Critical 国民技术股份有限公司
Publication of WO2012037751A1 publication Critical patent/WO2012037751A1/zh
Priority to US13/846,914 priority Critical patent/US20130217334A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves

Definitions

  • the present invention relates to the field of communications, and in particular, to a system and method for quickly accessing efficient close-range wireless communication with controllable communication range. Background technique
  • Wi_Fi IEEE802. l la/b/g/n standard
  • Bluetooth IEEE 802. 15. 4 standard
  • UWB Ultra tra Wideband, ultra-wideband wireless transmission
  • These high-speed wireless communication enables information exchange and function sharing between computers or mobile devices, and users can implement streaming file transfer, address book exchange, and shared access to the Internet operation in these mobile devices.
  • RFID radio frequency tag systems are classified by frequency, 13.56MHz, 800-90 ⁇ Hz, 2. 4GHz, etc., of which 13.56M tags read and write distance is less than 10cm, while the other two can reach several meters.
  • 13.56M tags read and write distance is less than 10cm, while the other two can reach several meters.
  • the communication rate is too low and the communication distance cannot be controlled flexibly.
  • the tag side adopts a passive method, which requires high power of the reader, and is not easy to integrate in portable mobile electronic devices. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a system, a tool and a method for quickly accessing high-efficiency short-range wireless communication with controllable communication range, so that various devices with high-speed wireless communication functions do not need to rely on complicated access procedures. , cumbersome settings and inefficient data exchange protocol overhead for fast access and efficient communication over a specific distance.
  • a fast access short-range wireless communication system for controlling a communication range, comprising at least one main module and at least one slave module; the main module is configured to send a first distance reference signal; and the slave module is configured according to the received A distance reference signal determines whether the distance between the main module and the slave module satisfies a preset range. If yes, the master module and the slave module quickly establish a wireless communication connection and perform data exchange according to a preset protocol.
  • the fast access short-range wireless communication system for controlling communication range in the present invention has the beneficial effects that: the system realizes instant, fast and efficient wireless communication and data exchange within a preset distance range; using communication distance information as By connecting the necessary conditions, the accessed slave device can meet the specified communication distance condition, and can establish wireless communication and exchange data between the master module and the slave module in an instant, fast and efficient manner, thereby greatly simplifying the current Wi-Fi.
  • Existing communication technologies such as Bluetooth require pre-configuration between master and slave devices, as well as addressing, handshake authentication, and complex switching protocol overhead required in existing communication technologies, providing instant data exchange between electronic devices. Great convenience.
  • the rate at which the main module and the slave module quickly establish a wireless communication connection according to a preset protocol and exchange data is higher than a rate at which the main module transmits the first distance reference signal.
  • the advantageous effect of using the above further solution is to realize the use of a low-speed transmission channel to establish a high-speed data transmission channel in the form of distance judgment.
  • the first distance reference signal includes main module information and communication distance information;
  • the main module includes: a reference unit, a first wireless communication unit, and the control unit and the first wireless a master module control unit that operates the communication unit;
  • the slave module includes: a measurement unit, a second wireless communication unit, and a slave module control unit that controls operation of the measurement unit and the second wireless communication unit;
  • the measuring unit transmits a first distance reference signal;
  • the determining unit determines whether the distance between the main module and the slave module satisfies a preset range according to the first distance reference signal received from the reference unit, and if the first distance is satisfied
  • the main module information contained in the reference signal is transmitted to the slave module control unit; after the slave module control unit receives the master module information, the first wireless communication unit and the second wireless communication unit quickly establish a master module according to a preset protocol. Wireless communication between modules and data exchange.
  • the first distance reference signal contains the main module information and the communication distance information to facilitate the determination of the main module from the module and the distance determination; the main module and the slave module are respectively in the main module control unit and the slave module.
  • Controlling, by the control unit, using the reference unit and the measuring unit to implement transmission and distance confirmation of the first distance reference signal, and after receiving the main module information from the module control unit, the first wireless communication unit and the second The wireless communication unit quickly establishes a wireless communication connection between the main module and the slave module according to a preset protocol, and performs data exchange, and the access process between the entire slave module and the main module is only required to determine the communication distance.
  • the pre-configuration of the main module and the slave module is completed.
  • the reference unit includes a first microcontroller, a first encoding circuit, a first driving circuit, and a first magnetic field emission line sequentially connected in series;
  • the first microcontroller is configured to control the first encoding circuit and the first a driving circuit;
  • the first encoding circuit is configured to perform bit-by-bit encoding on the wireless data frame of the main module information, and transmit the data to the first driving circuit;
  • the first driving circuit is configured to drive the first magnetic field transmitting line ;
  • the first magnetic field emission line ⁇ is configured to generate a first distance reference signal containing information of the main module and transmit in the form of a magnetic signal;
  • the measuring unit includes a first magnetic induction circuit, a first amplification circuit, a first threshold determination and demodulation circuit, and a second microcontroller connected in series;
  • the first magnetic induction circuit is configured to inductively receive the first form in the form of a magnetic signal
  • the distance reference signal is converted into an electrical signal form and transmitted to the first amplifying circuit;
  • the first amplifying circuit is configured to amplify and transmit the first distance reference signal to the first threshold determining and demodulating circuit;
  • the first threshold determining and demodulating circuit is configured to determine whether the first distance reference signal reaches a preset threshold, and if the preset threshold is reached, transmitting the main module information in the first distance reference signal to the second micro control
  • the second microcontroller is configured to control the first magnetic induction circuit, the first amplification circuit, and the first threshold determination and demodulation circuit, and transmit the received main module information Send to the slave module control unit.
  • the above further solution provides a specific scheme for determining the distance by using the distance reference magnetic signal.
  • the preset distance threshold value from the module can directly reflect the main module and the slave module. The communication distance between them makes it easy to judge the distance from the module.
  • the reference unit further includes a first modulation circuit disposed between the first encoding circuit and the first driving circuit, and the first modulation circuit is configured to modulate the main module information encoded by the first encoding circuit, And transmitted to the first driving circuit.
  • the advantage of using the above further solution is that the first distance reference signal can be better received by the module by modulation, avoiding the first distance reference signal being lost during transmission and causing the first distance between the master module and the slave module.
  • the reference signal is not sent smoothly.
  • the determining unit further includes a second encoding circuit, a second driving circuit, and a second magnetic field emission line;
  • the second microcontroller, the second encoding circuit, the second driving circuit, and the second magnetic field emission line are smooth a second serial controller;
  • the second microcontroller is configured to control the second encoding circuit and the second driving circuit;
  • the second encoding circuit is configured to perform bit-by-bit encoding on the wireless data frame of the slave module information, and transmit the data to the second driving circuit
  • the second driving circuit is configured to drive the second magnetic field emission line ;
  • the second magnetic field emission line is used to generate a second distance reference signal containing the slave module information and transmit in the form of a magnetic signal;
  • the reference unit further includes a second magnetic induction circuit, a second amplification circuit, and a second threshold determination and demodulation circuit, the second magnetic induction circuit, the second amplification circuit, the second threshold determination and demodulation circuit, and the first micro control
  • the second magnetic induction circuit is configured to inductively receive a second distance reference signal in the form of a magnetic signal and convert it into an electrical signal form, and transmit the same to the second amplifying circuit;
  • the second amplifying circuit is configured to The second distance reference signal is amplified and transmitted to the second threshold determination and demodulation circuit;
  • the second threshold determination and demodulation circuit is configured to determine whether the second distance reference signal reaches a preset threshold, if the preset is reached
  • the threshold value transmits the slave module information in the second distance reference signal to the first microcontroller;
  • the first microcontroller is configured to control the second magnetic induction circuit, the second amplification circuit, and the second threshold determination and demodulation circuit And transmitting the received slave module information to the main module control unit
  • the master module in the fast access short-range wireless communication system of the control communication range of the present invention transmits the first distance reference signal to the slave module, and the slave module can also At the same time, the second distance reference signal is sent to the main module to realize bidirectional communication and bidirectional judgment of the distance reference magnetic signal between the reference unit and the measuring unit.
  • the determining unit further includes a second modulation circuit disposed between the second encoding circuit and the second driving circuit; the second modulation circuit is configured to modulate the slave module information encoded by the second encoding circuit, and Transfer to the second drive circuit.
  • the first distance reference signal is a low frequency magnetic signal.
  • the advantage of using the above further solution is that with the magnetic signal, the communication distance can be calculated using the magnetic induction physical quantity.
  • the magnetic induction intensity is attenuated by R- 3 with the communication distance R, and the attenuation of the low-frequency magnetic signal when penetrating different objects is small, the anti-interference ability is strong, and the robustness of the magnetic communication is good, so that the first distance between the main module and the slave module The security of the reference signal transmission is high.
  • the frequency of the low frequency magnetic signal is 500 ⁇ , 1 ⁇ , 1.5 kHz, 2 kHz, 2. 5 kHz, 3 kHz, 4 kHz, 5 kHz, 10 kHz, 20 kHz, 30 kHz, or 1 Hz.
  • the second distance reference signal is a low frequency magnetic signal.
  • the frequency of the low frequency magnetic signal is 500 ⁇ , 1 ⁇ , 1.5 kHz, 2 kHz, 2. 5 kHz, 3 kHz, 4 kHz, 5 kHz, 10 kHz, 20 kHz, 30 kHz, or 1 Hz.
  • the reference unit includes at least three ultrasonic transmitters and at least one modulation and start control device, wherein the modulation and start control devices are respectively connected to the ultrasonic transmitter; the modulation and start control device is configured to modulate the main module information Forming a first distance reference signal and simultaneously activating the at least three ultrasonic transmitters; the at least three ultrasonic transmitters for respectively transmitting first distance reference signals in the form of ultrasonic waves of different frequencies; the determining unit comprising at least three An ultrasonic receiver and at least one demodulation and time comparison device, the ultrasonic receivers being respectively coupled to the demodulation and time comparison device; the at least three ultrasonic receivers for simultaneously receiving the at least three ultrasonic transmitters respectively a first distance reference signal of different ultrasonic frequencies, and transmitting the first distance reference signal to a demodulation and time comparison device; the demodulation and time comparison means for respectively demodulating a first distance reference of different ultrasonic frequencies Signal, and according to the different ultrasonic frequencies Arrival time difference from the reference signal measuring unit
  • the above further solution provides a specific scheme for determining the distance using the first distance reference signal in the form of an ultrasonic wave.
  • the time physical quantity of the ultrasonic signal can be used Calculate the communication distance.
  • Ultrasonic propagation is slow, and the distance of ultrasonic communication can be calculated by comparing the time difference between transmission and reception.
  • Simultaneously transmitting ultrasonic signals of different frequencies by using at least three ultrasonic transmitters, and modulating the main module information into ultrasonic waves by means of 00K or FSK, and receiving at least three ultrasonic signals from the modules, respectively, by comparing at least three ultrasonic waves.
  • the time difference calculates the communication distance between the master module and the slave module.
  • the reference unit includes three ultrasonic transmitters and a modulation and start control device; the measurement unit includes three ultrasonic receivers and one demodulation and time comparison device.
  • the advantage of using the above further solution is that the number of ultrasonic transmitters, modulation and activation devices, ultrasonic receivers, and demodulation and time comparison devices used is minimal and that the communication distance between the master module and the slave module can be calculated.
  • the first distance reference signal is an ultrasonic signal.
  • the beneficial effect of adopting the above further solution is that precise communication distance control can be realized, the communication control range can reach several meters or more, and the communication can be precisely controlled within a range of 1 meter, 0.5 meters or even 10 cm, using ultrasonic waves.
  • the solution can adapt to the real-time, high-speed exchange of data between electronic devices on the desktop, and can also adapt to real-time, high-speed data exchange between vehicles, between vehicles and gates, and ultrasonic waves with the first wireless communication unit and The mutual interference between the communication signals between the second wireless communication units is smaller.
  • first wireless communication unit and the second wireless communication unit are a Wi-Fi module, a Bluetooth module, or a UWB module.
  • the frequency band of wireless communication between the first wireless communication unit and the second wireless communication unit is 433 ⁇ , 900 ⁇ , 2. 4 GHz, 5. 8 GHz or 60 GHz.
  • the slave module After the slave module determines, according to the received first distance reference signal, that the distance between the master module and the slave module meets the preset range, the slave module first sends a determination signal to the master module, and the master module stops transmitting according to the received determination signal.
  • the first distance reference signal, the main module and the slave module quickly establish a wireless communication connection according to a preset protocol and perform data exchange.
  • the slave module determines that the distance between the master module and the slave module meets the preset range according to the received first distance reference signal, the slave module stops receiving the first distance reference signal first, The module and the slave module quickly establish a wireless communication connection and exchange data according to a preset protocol.
  • the advantageous effect of adopting the above further solution is that the transmission of the first distance reference signal is cut off after the distance judgment between the main module and the slave module is established and the wireless communication connection is established and data exchange is performed, thereby preventing signals from interfering with each other and improving transmission efficiency. And measurement accuracy, the device structure is easy to operate, and saves system resources.
  • main module and the slave module are respectively disposed in different hosts.
  • the advantage of adopting the above further solution is that an instant, fast and efficient communication connection is established between the hosts, and when the distance between the two hosts meets the range specified by the mutual communication, the connection can be automatically performed and performed.
  • Intercommunication greatly simplifying the pre-configuration between hosts required by existing short-range communication technologies such as Wi-Fi and Bluetooth, as well as the addressing, handshake authentication, and complex exchange protocol overhead required in existing communication technologies. .
  • the host is a smart terminal and/or a smart vehicle.
  • the smart terminal is a desktop computer, a notebook computer, a tablet computer, a palmtop computer, a mobile phone, a digital camera, a digital video camera, an electronic reader, an audio and video playback device, or a digital photo frame;
  • the smart vehicle is a smart car or has a A car, train, plane or ship that provides data interaction.
  • the fast access short-range wireless communication system for controlling the communication range of the present invention can be applied to various devices, such as communication between a mobile phone and a mobile phone, communication between a digital camera and a digital photo frame, Communication between various types of intelligent terminals between computers and mobile phones, between computers and e-readers, and such as communication terminals and smart cars, or communication terminals and vehicles such as cars, trains, airplanes or ships that provide data services. Inter-communication to meet people's growing information needs, enabling people to interact with other smart terminals and/or vehicles with data services anytime and anywhere, making it easier and faster for people to access data information.
  • the main module sends the first distance reference signal and the main module and the slave module establish a wireless communication connection according to a preset protocol and perform data exchange at different times.
  • the above-mentioned further solution has the beneficial effects of preventing signals from interfering with each other, improving transmission efficiency and measurement accuracy, and the device structure is easy to operate, and system resources can be saved.
  • the sending, by the main module, the first distance reference signal is performed before the main module and the slave module quickly establish a wireless communication connection according to a preset protocol and perform data exchange.
  • the main module intermittently transmits a first distance reference signal, and the master module and the slave module perform fast data exchange between the transmitting the first distance reference signals.
  • the above-mentioned further solution has the beneficial effects of preventing signals from interfering with each other, improving transmission efficiency and measurement accuracy, and the device structure is easy to operate, and system resources can be saved.
  • the invention provides a fast access short-range wireless communication method for controlling communication range, comprising the following steps:
  • Step A The main module sends a distance reference signal, and the slave module receives the distance reference signal, and performs step B;
  • Step B judging whether the distance between the slave module and the master module meets the preset range, if yes, step C is performed, otherwise step A is performed;
  • Step C Establish wireless communication between the master module and the slave module for data exchange.
  • the distance reference signal includes main module information and communication distance information
  • the step A includes:
  • Step A1 The main module converts the main module information into a distance reference signal in the form of a low frequency magnetic signal, and transmits the low frequency magnetic signal, and performs step A2;
  • Step A2 The slave module receives the low frequency magnetic signal and converts it into an electrical signal, and performs steps
  • the step B includes:
  • Step B1 The slave module determines the master module according to the main module information included in the electrical signal;
  • Step B2 the slave module determines the threshold value of the electrical signal, and if the voltage value of the electrical signal is greater than or equal to the preset threshold, the step is performed.
  • C otherwise perform step A1.
  • the distance reference signal contains the main module information and the communication distance information to facilitate the determination and distance determination of the main module from the module; the transmission of the distance reference signal and the distance determination using the magnetic signal are realized.
  • the distance reference signal includes main module information and communication distance information; and the step A includes:
  • Step A1 ' the main module converts the main module information into distance reference signals in the form of ultrasonic signals of at least three different frequencies, and simultaneously transmits the ultrasonic signals of the at least three different frequencies, and performs step A2';
  • Step A2' the slave module receives the ultrasonic signals of the at least three different frequencies, and records the time difference of the ultrasonic signals of different frequencies reaching the slave module, and performs step B;
  • the step B includes:
  • Step B1 ' the slave module demodulates the ultrasonic signal, and obtains the main module information, and determines the main module according to the main module information;
  • Step B2' the slave module calculates the distance between the module and the main module according to the time difference of the ultrasonic signals from the at least three different frequencies, and determines whether the distance between the master module and the slave module satisfies the preset range, if the Then perform step C, otherwise perform step ⁇ .
  • the distance reference signal includes main module information and communication distance information; and the step C includes:
  • Step C1 The slave module returns the determined connection information of the slave device to the master module by using the second wireless communication unit according to the received master module information.
  • Step C2 The main module receives the determined connection information through the first wireless communication unit, and establishes wireless communication between the main module and the slave module through the first wireless communication unit and the second wireless communication unit.
  • connection confirmation between the master module and the slave module is realized, and wireless communication is started.
  • the determining connection information includes the main module information.
  • the master module information may be used to determine that the slave module is the receiving master.
  • the module issues a distance reference signal and determines the slave module within the preset communication distance, thereby determining the uniqueness of the slave module, so that the slave module is not spoofed, and the security of wireless communication between the master module and the slave module is ensured.
  • the distance reference signal includes main module information and communication distance information
  • the step C includes:
  • Step C1 ' the slave module returns the determined connection information of the slave device to the master module by using the second wireless communication unit according to the received master module information;
  • Step C2' the main module receives the determined connection information through the first wireless communication unit, and stops transmitting the distance reference signal;
  • Step C3' wireless communication between the master module and the slave module is established by the first wireless communication unit and the second wireless communication unit.
  • the determining connection information includes the main module information.
  • the distance reference signal includes main module information and communication distance information
  • the step C includes:
  • Step C1 ' ' the slave module stops receiving the distance reference signal
  • Step C2 ' ' the slave module returns the determined connection information of the slave device to the master module by using the second wireless communication unit according to the received master module information;
  • Step C3 ' ' The main module receives the determined connection information through the first wireless communication unit, and establishes wireless communication between the main module and the slave module through the first wireless communication unit and the second wireless communication unit.
  • the determining connection information includes the main module information.
  • the advantageous effect of adopting the above further solution is to stop the transmission or reception of the distance reference signal between the main module and the slave module after the distance judgment between the main module and the slave module and before establishing the wireless communication connection and data exchange, to stop The distance is judged to prevent signals from interfering with each other, improving transmission efficiency and measurement accuracy, and the device structure is easy to operate, and system resources can be saved.
  • the main module sends the distance reference signal and the main module and the slave module establish a wireless communication connection according to a preset protocol and perform data exchange at different times.
  • the above-mentioned further solution has the beneficial effects of preventing signals from interfering with each other, improving transmission efficiency and measurement accuracy, and the device structure is easy to operate, and system resources can be saved.
  • the main module sends a distance reference signal prior to the main module and the slave module according to the pre Set up a protocol to quickly establish a wireless communication connection and exchange data.
  • the above-mentioned further solution has the beneficial effects of preventing signals from interfering with each other, improving transmission efficiency and measurement accuracy, and the device structure is easy to operate, and system resources can be saved.
  • the main module intermittently transmits a distance reference signal, and the main module and the slave module perform fast data exchange between the transmission distance reference signals.
  • the above-mentioned further solution has the beneficial effects of preventing signals from interfering with each other, improving transmission efficiency and measurement accuracy, and the device structure is easy to operate, and system resources can be saved.
  • FIG. 1 is a schematic structural view of a fast access short-range wireless communication system for controlling a communication range in the present invention
  • FIG. 2 is a schematic diagram of a one-way communication between a reference unit and a measuring unit of a magnetic signal embodiment in a fast access short-range wireless communication system for controlling communication range in the present invention
  • FIG. 3 is a schematic diagram of a two-way communication between a reference unit and a measuring unit of a magnetic signal embodiment in a fast access short-range wireless communication system for controlling communication range in the present invention
  • FIG. 4 is a diagram showing a communication structure between a reference unit and a measuring unit of an embodiment of a fast access short-range wireless communication system for controlling a communication range in the present invention
  • FIG. 5 is a flowchart of a method for quickly accessing a short-range wireless communication for controlling a communication range according to the present invention
  • FIG. 6 is a schematic diagram of an embodiment of a data exchange process for a fast access short-range wireless communication method for controlling a communication range according to the present invention
  • FIG. 7 is a flow chart of a method for using a magnetic signal communication for a fast access short-range wireless communication method for controlling a communication range according to the present invention
  • FIG. 8 is a flow chart of a method for using a ultrasonic signal communication for a fast access short-range wireless communication method for controlling a communication range in the present invention
  • FIG. 9 is a first flowchart of establishing a communication connection between a main module and a slave module in a fast access short-range wireless communication method for controlling communication range according to the present invention
  • FIG. 10 is a second flowchart of establishing a communication connection between a main module and a slave module in a fast access short-range wireless communication method for controlling communication range according to the present invention
  • FIG. 11 is a third flowchart of establishing a communication connection between a master module and a slave module in a fast access short-range wireless communication method for controlling communication range according to the present invention.
  • the list of parts represented by each label is as follows:
  • Main module 2. Slave module, 101, main module control unit, 102, reference unit, 103, first wireless communication unit, 201, slave module control unit, 202, measurement unit, 203, second wireless communication unit, 1021, a first microcontroller, 1022, a forward sending unit, a 2021, a second microcontroller, a 2202, a forward receiving determining unit, a 10221, a first encoding circuit, a 10222, a first driving circuit, a 10223, a first magnetic field Transmit line ⁇ , 10224, first modulation circuit, 20221, first magnetic induction circuit, 20222, first amplification circuit, 20223, first threshold determination and demodulation circuit, 2023, reverse transmission unit, 1023, reverse reception determination unit , 20231, second encoding circuit, 20232, second driving circuit, 20233, second magnetic field emission line 20, 20234, second modulation circuit, 10231, second magnetic induction circuit, 10232, second amplification circuit, 10233, second threshold Ju
  • FIG. 1 is a block diagram showing the structure of a fast access short-range wireless communication system for controlling communication range in the present invention.
  • the system includes a main module 1 and a slave module 2; wherein, the main module 1 is configured to transmit a first distance reference signal containing main module information and communication distance information; and the slave module 2 determines the main module 1 according to the received first distance reference signal. Whether the distance from the module 2 satisfies the preset range, if satisfied, the main module 1 and the slave module 2 quickly establish a wireless communication connection and exchange data according to a preset protocol. The rate at which the main module 1 and the slave module 2 quickly establish a wireless communication connection according to a preset protocol and exchange data is higher than the rate at which the main module 1 transmits the first distance reference signal.
  • the main module 1 includes a reference unit 102, a first wireless communication unit 103, and a main control unit 101 that controls the reference unit 102 and the first wireless communication unit 103;
  • the slave module 2 includes a measurement unit 202, The second wireless communication unit 203 and the slave module control unit 201 that controls the measurement unit 202 and the second wireless communication unit 203 operate.
  • a two-way high speed wireless communication channel exists between a wireless communication unit 103 and a second wireless communication unit 203.
  • the reference unit 102 is configured to transmit the first distance reference signal to the measuring unit 202 through the forward communication channel; the determining unit 202 may also be configured to transmit the second distance reference signal to the reference unit 102 through the reverse communication channel as needed.
  • the determining unit 202 is configured to receive the first distance reference signal sent by the reference unit 102, determine whether the distance between the main module 1 and the slave module 2 meets a preset range; if satisfied, the main module information included in the first distance reference signal Transmitted to the slave module control unit 201; after receiving the master module information from the module control unit 201, the first wireless communication unit 103 and the second wireless communication unit 203 are quickly established between the master module 1 and the slave module 2 according to a preset protocol. Wireless communication connection and data exchange.
  • the determining unit 202 and the reference unit 102 may also have the functions of the above-mentioned reference unit 102 and the measuring unit 202, respectively, and the measuring unit 202 may transmit the second distance reference signal to the reference unit 102 through the reverse communication channel;
  • the landlord module control unit 101 and the slave module control unit 201 may have control functions of each other to implement distance measurement between the master module 1 and the slave module 102.
  • the first wireless communication unit 103 and the second wireless communication unit 203 perform wireless communication under the control of the main module control unit 101 and the slave module control unit 201, respectively.
  • the first wireless communication unit 103 and the second wireless communication unit 203 may adopt a Wi-F i module of 2.4 GHz band, a Bluetooth module or a UWB module to implement high-speed wireless communication and data exchange between them; Other frequencies can be used, such as 433MHz, 90 ⁇ Hz, 5. 8GHz and 60GHz.
  • the high-speed wireless communication unit access parameter between the first wireless communication unit 103 and the second wireless communication unit 203 mainly includes an access channel, an SS ID (service set identifier) of the main module 1, a physical address of the main module 1, and a key. Or a certificate, etc. These parameters are mainly issued by the reference unit 102 in the main module 1, and are received by the measuring unit 202 in the slave module 2 within the agreed range (e.g., 1 meter). From module 2, these parameters are parsed, and related parameters are set to be connected with the main module 1. After the connection, mutual authentication is performed by using a key or a certificate to determine whether to perform subsequent data exchange.
  • SS ID service set identifier
  • the communication between the reference unit 102 and the measuring unit 202 may be a magnetic signal communication method, an ultrasonic signal communication method, or the like, as needed.
  • the communication between the reference unit 102 and the measurement unit 202 will be described below by taking the magnetic signal communication method and the ultrasonic signal communication method as an example.
  • the reference unit 102 is a magnetic signal reference unit, and the measurement unit 202 is a magnetic signal.
  • the measurement unit, the first distance reference signal transmitted by the reference unit 102 to the measurement unit 202 is in the form of a magnetic signal.
  • the reference unit 102 includes a first microcontroller 1021, a first encoding circuit 10221, a first driving circuit 10222, and a first magnetic field transmitting line 10223 in series; wherein the first microcontroller 1021 is configured to control the first encoding
  • the circuit 10221 and the first driving circuit 10222; the first encoding circuit 10221, the first driving circuit 10222, and the first magnetic field emission line 10223 constitute a forward transmitting unit 1022 for transmitting a first distance reference signal in the form of a magnetic signal.
  • the measuring unit 202 includes a first magnetic induction circuit 20221, a first amplification circuit 20222, a first threshold determination and demodulation circuit 20223, and a second microcontroller 2021 connected in series; wherein the second microcontroller 2021 is configured to control the first magnetic induction
  • the circuit 20221, the first amplifying circuit 20222, the first threshold determining and demodulating circuit 20223, the first magnetic sensing circuit 20221, the first amplifying circuit 20222, and the first threshold determining and demodulating circuit 20223 constitute a forward receiving determining unit 2022.
  • the forward reception determining unit 2022 is configured to receive the magnetic signal and determine whether the distance between the main module 1 and the slave module 2 satisfies a preset range, and if yes, transmit the main module information contained in the first distance reference signal to the second micro
  • the controller 2021, the second microcontroller 2021 transmits the main module information to the slave module control unit 201.
  • the first encoding circuit 10221 in the forward sending unit 1022 is configured to perform bit-by-bit encoding on the wireless data frame of the main module information, and transmit the data to the first driving circuit 10222.
  • the first driving circuit 10222 is configured to use the first magnetic field.
  • the emission line 10223 is driven to generate a low frequency alternating magnetic field; the first magnetic field emission line 10223 is for generating a first distance reference signal containing the main module information and transmitting it to the slave module 2 as a magnetic signal.
  • the first magnetic induction circuit 20221 in the forward reception determining unit 2022 is configured to inductively receive the first distance reference signal in the form of a magnetic signal transmitted by the main module 1 and convert it into an electrical signal form; the first amplifying circuit 20222 is configured to convert the electrical signal Forming the first distance reference signal for amplification; the first threshold determining and demodulating circuit 20223 is configured to determine whether the first distance reference signal in the form of the electrical signal reaches a preset threshold (eg, a threshold voltage value), and if so, is first The main module information in the distance reference signal is transmitted to the second microcontroller 2021.
  • a preset threshold eg, a threshold voltage value
  • the forward transmitting unit 1022 may further provide a first modulating circuit 10224 between the first encoding circuit 10221 and the first driving circuit 10222 for modulating the main module information encoded by the first encoding circuit 10221 and transmitting the same.
  • the first drive circuit 10222 is provided.
  • the measuring unit 202 further includes a second encoding circuit 20231, a second driving circuit 20232, and a second magnetic field emission line 2023; the second controller 2021, the second encoding circuit 20231, the second driving circuit 20232, and the second magnetic field emission line ⁇ 20233 is connected in series; the second controller 2021 is configured to control the second encoding circuit 20231 and the second driving circuit 20232; the second encoding circuit 20231, the second driving circuit 20232, and the second magnetic field emission line 23320233 are configured to be used for transmitting
  • An inverse transmitting unit 2023 that includes a second distance reference signal in the form of a magnetic signal from the module information and the slave communication distance information.
  • the reference unit 102 further includes a second magnetic induction circuit 10231, a second amplification circuit 10232, and a second threshold determination and demodulation circuit 10233; a second magnetic induction circuit 10231, a second amplification circuit 10232, a second threshold determination and demodulation circuit 10233 and the first microcontroller 1021 are sequentially connected in series; the first microcontroller 1021 is configured to control the second magnetic induction circuit 10231, the second amplification circuit 10232, and the second threshold determination and demodulation circuit 10233; the second magnetic induction circuit 10231,
  • the second amplifying circuit 10232 and the second threshold determining and demodulating circuit 10233 constitute a reverse reception judging unit 1023.
  • the reverse reception judging unit 1023 is configured to receive the second distance reference signal in the form of a magnetic signal and determine whether the distance between the slave module 2 and the main module 1 satisfies a preset range, and if so, the slave contained in the second distance reference signal
  • the module information is transmitted to the first microcontroller 1021; the first microcontroller 1021 transmits the module information to the main module control unit 101; after receiving the slave module information, the main module control unit 101 passes the first wireless communication unit 103 and the
  • the second wireless communication unit 203 quickly establishes a wireless communication connection between the main module 1 and the slave module 2 according to a preset protocol and performs data exchange.
  • the second encoding circuit 20231 in the reverse transmitting unit 2023 is configured to perform bit-by-bit encoding on the wireless data frame of the main module information, and transmit the data to the second driving circuit 20232.
  • the second driving circuit 20232 For driving the second magnetic field emission line 23320233 to generate a second low frequency alternating magnetic field; the second magnetic field emission line 23320233 is for generating a second distance reference signal containing the slave module information and transmitting the magnetic signal to the main module 1.
  • the second magnetic induction circuit 10231 in the reverse reception determining unit 1023 is configured to inductively receive and convert the second distance reference signal in the form of a magnetic signal transmitted from the module 2 into an electrical signal form; the second amplifying circuit 10232 is configured to convert the electrical signal The second distance reference signal of the form is amplified; the second threshold determination and demodulation circuit 10233 is configured to determine whether the second distance reference signal of the electrical signal form reaches a preset threshold, and if so, the second distance reference signal The slave module information is transmitted to the first microcontroller 1021.
  • the reverse transmitting unit 2023 may further provide a second modulation circuit 20234 between the second encoding circuit 20231 and the second driving circuit 20232 for modulating the slave module information encoded by the second encoding circuit 20231, and transmitting the same to the module information.
  • the second drive circuit 20232 may further provide a second modulation circuit 20234 between the second encoding circuit 20231 and the second driving circuit 20232 for modulating the slave module information encoded by the second encoding circuit 20231, and transmitting the same to the module information.
  • the second drive circuit 20232 may further provide a second modulation circuit 20234 between the second encoding circuit 20231 and the second driving circuit 20232 for modulating the slave module information encoded by the second encoding circuit 20231, and transmitting the same to the module information.
  • the magnetic induction circuit is composed of a PCB (Pin in ed C i rcui t Board), an enameled wire ⁇ , a Hall device or other circuit components capable of sensing a magnetic field change; And the demodulation circuit judges the magnetic detection voltage signal according to a preset distance threshold, does not reach the threshold and does not demodulate and does not allow communication, and demodulates the signal when the threshold is reached, and the demodulated signal is sent to the second microcontroller.
  • PCB Pein in ed C i rcui t Board
  • an enameled wire ⁇ a Hall device or other circuit components capable of sensing a magnetic field change
  • the demodulation circuit judges the magnetic detection voltage signal according to a preset distance threshold, does not reach the threshold and does not demodulate and does not allow communication, and demodulates the signal when the threshold is reached, and the demodulated signal is sent to the second microcontroller.
  • the reference unit 102 and the measuring unit 202 can adopt a low frequency magnetic induction communication circuit, and the corresponding frequency points can be selected from 500 ⁇ , 1 ⁇ , 1.5 kHz, 2 kHz, 2. 5 kHz, 3 kHz, 4 kHz, 5 kHz, 10 kHz, 20KHz, 30KHz or 1 ⁇ Hz, using the characteristics of low-frequency alternating magnetic field penetration performance to control the communication within the specified distance range.
  • the circuit of the forward reception judging unit 2022 can usually be constituted by a PCB coil, an enameled wire coil or a Hall device, a giant magnetoresistance, a magnetic induction switch, or the like. This circuit is not limited to these components. In principle, any sensor that converts a change in the magnetic field into an electrical signal can be used in the module, the only restriction being that it can be placed in the device in which the unit is used.
  • the controllable communication distance range is realized by using the low frequency alternating magnetic field
  • the high speed wireless communication channel is used in combination with the reference unit 102 and the measuring unit 202 to realize reliable and fast connection of the main module 1 and the slave module 2, and the first
  • the high speed wireless communication channel between the wireless communication unit 103 and the second wireless communication unit 203 enables high speed data communication between the master module 1 and the slave module 2. It has the following characteristics: 1.
  • the reference unit 102 of the main module 1 transmits a low frequency alternating magnetic field signal, and the slave module 2 only needs to receive the magnetic field signal, so that the receiving line or other receiving circuit can be miniaturized enough to satisfy the implanted slave module.
  • the second wireless communication unit 203 simultaneously placed in the mobile device can be a high-speed wireless communication unit (Wi-F i, Bluetooth) to realize two-way high-speed communication.
  • Wi-F i, Bluetooth high-speed wireless communication unit
  • the system works below the frequency point.
  • Distance range control is more accurate.
  • the system does not work above these frequencies. It is absolutely impossible, the possible effect is that the accuracy range of the distance control is reduced, and it is only an extended application of performance change.
  • the system realizes the distance determination by setting a preset threshold value, that is, the main module transmits the low frequency magnetic signal according to the preset transmission parameter, and receives the low frequency signal from the module 2 and converts it into an electrical signal, and presets
  • the threshold value is determined to determine whether a predetermined effective distance interval is entered between the module 2 and the main module 1. This threshold is the same for all slave modules 2 and does not need to be modified for different slave modules 2 (so-called calibration).
  • the first modulation circuit 10224 or the second modulation circuit 20234 can adopt multiple modulation modes:
  • Carrier modulation mode modulation the baseband signal generated by the first coding circuit 10221 or the second coding circuit 20231 is modulated by the first modulation circuit 10224 or the second modulation circuit 20234, and the carrier may be a sine wave, a square wave, a triangular wave, or the like.
  • the modulation can be switched frequency shift keying (00K), phase shift keying, frequency shift keying (FSK), etc., and the modulated signal is loaded to the first magnetic field emission line through the first driving circuit 10222 or the second driving circuit 20232. 10223 or a second magnetic field emission line ⁇ 20233;
  • Carrierless direct baseband transmission The baseband signal generated by the first encoding circuit 10221 or the second encoding circuit 20231 is directly loaded to the first magnetic field emission line 10223 or the second magnetic field through the first driving circuit 10222 or the second driving circuit 20232.
  • the first encoding circuit 10221 or the second encoding circuit 20231 can adopt various encoding methods:
  • Bit 1 is encoded as two symbols 01 and bit 0 is encoded as 10.
  • the low frequency modulation signal should keep the average value stable.
  • the encoded sequence does not contain a DC component, and any encoding method with an average DC component of zero after encoding can be used in the preferred embodiment.
  • the first magnetic field emission line 223 10223 or the second magnetic field ray ⁇ 20233 may be an enameled wire ⁇ or a PCB ⁇ .
  • the number of turns of the first magnetic field emission line ⁇ 10223 or the second magnetic field emission line ⁇ 20233 may be greater than 10 ⁇ , and preferably, the number of turns is 50 to 500 ⁇ .
  • the first magnetic field emission line 223 10223 or the second magnetic field emission line ⁇ 20233 is filled with a ferrite core or a core.
  • the cross section of the area surrounded by the first magnetic field emission line 223 10223 or the second magnetic field emission line 233 20233 includes at least a circular area of 3 cm in diameter or a square area of 3 cm X 3 cm.
  • the reference unit 102 includes a modulation and start control device 1023, a first ultrasonic transmitter 1024, a second ultrasonic transmitter 1025, and a third ultrasonic transmitter 1026.
  • the modulation and activation control device 1023 respectively Connected to the first ultrasonic transmitter 1024, the second ultrasonic transmitter 1025, and the third ultrasonic transmitter 1026; wherein the modulation and activation control device 1023 is configured to modulate the main module information to the first distance reference signal, and simultaneously activate the first
  • the ultrasonic transmitter 1024, the second ultrasonic transmitter 1025, and the third ultrasonic transmitter 1026 transmit a distance-based signal in the form of ultrasonic waves; the first ultrasonic transmitter 1024, the second ultrasonic transmitter 1025, and the third ultrasonic transmitter 1026 are used to respectively Send ultrasonic signals of different frequencies.
  • the measuring unit 202 includes demodulation and time comparing means 2023, a first ultrasonic receiver 2024, a second ultrasonic receiver 2025 and a third ultrasonic receiver 2026; the demodulation and time comparing means 2023 respectively and the first ultrasonic receiver 2024,
  • the second ultrasonic receiver 2025 is connected to the third ultrasonic receiver 2026; wherein, the first ultrasonic receiver 2024, the second ultrasonic receiver 2025, and the third ultrasonic receiver 2026 are configured to simultaneously receive the first ultrasonic transmitter 1024, the second, respectively.
  • the ultrasonic signals of different frequencies transmitted by the ultrasonic transmitter 1025 and the third ultrasonic transmitter 1026 transmit the received ultrasonic signals of different frequencies to the demodulation and time comparing means 2023; the demodulation and time comparing means 2023 are used for respectively Demodulating the ultrasonic signals of different frequencies, and determining whether the distance between the main module 1 and the slave module 2 satisfies a preset range according to the time difference of the ultrasonic signals of different frequencies reaching the measuring unit 202, and if yes, the first distance reference signal is included
  • the main module information is transmitted to the slave module control unit 201.
  • the modulation and start control device 1023 can use the 00K mode to send the main module information.
  • Modulating to the first distance reference signal in the form of ultrasonic waves; the first ultrasonic receiver 2024, the second ultrasonic receiver 2025, and the third ultrasonic receiver 2026 can only receive the first ultrasonic transmitter 1 024 and the second ultrasonic transmitter 1 respectively 025 and the third ultrasonic transmitter 1 026 respectively transmit first distance reference signals of different ultrasonic frequencies; for example, the first ultrasonic receiver 2024 can only receive the signal of the first ultrasonic transmitter 1 024, and the second ultrasonic receiver 2025 can only Receiving the signal of the second ultrasonic transmitter 1 025, the third ultrasonic receiver 2026 can only receive the third ultrasonic transmitter 1 026.
  • the reference unit 102 can use multiple modulation and start control devices and three or more ultrasonic transmitters, and the corresponding measurement unit 202 can also adopt multiple demodulation and time comparison devices and three or more ultrasonic receiving devices.
  • the optimization scheme is a modulation and start control device, three acoustic wave transmitters, one demodulation and time comparison device and three ultrasonic receivers used in the embodiment.
  • the main module 1 transmits the main module information to the slave module 2 through the low frequency magnetic signal or the ultrasonic signal, and the bidirectional high speed wireless communication of the slave module 2 through the second wireless communication unit 203 and the first wireless communication unit 103
  • the channel returns the main module information to the main module 1.
  • the main module 1 realizes the unique binding between the module 2 and the main module 1 by recognizing the correctness of the returned main module information. After the binding, the two-way high-speed large-volume communication between the main module 1 and the slave module 2 is completed by the two-way high-speed wireless communication channel between the first wireless communication unit 103 and the second wireless communication unit 203.
  • the transmission of the first distance reference signal and the rapid establishment of the wireless communication connection and data exchange may not be performed at the same time.
  • the first distance reference signal is transmitted before the fast establishment of the wireless communication connection and data exchange is performed; or the main module 1 intermittently transmits the first distance reference signal, and the main module 1 and the slave module 2 transmit the first distance reference Fast data exchange between signals.
  • the main module 1 and the slave module 2 can disconnect the transmission of the first distance reference signal therebetween to prevent signals from interfering with each other, thereby improving transmission efficiency and measurement accuracy.
  • the structure is easy to operate and saves system resources. Specifically, the following two methods can be adopted:
  • the slave module first stops receiving the first distance reference signal, and the master module 1 and the slave module 2 quickly establish a wireless communication connection according to a preset protocol and perform data exchange.
  • the main module 1 and the slave module 2 in the fast access short-range wireless communication system for controlling the communication range described above can be respectively disposed in different hosts.
  • the main module information can also be the host information, so that the fast communication of the control communication range between the hosts can be realized.
  • the host includes, but is not limited to, a smart terminal and/or a smart vehicle or the like.
  • smart terminals include desktop computers, notebook computers, tablets, PDAs, mobile phones, digital cameras, digital video cameras, electronic readers, audio and video playback devices, and digital photo frames;
  • smart vehicles include smart cars or with data provided Interactive vehicles such as cars, trains, airplanes or ships.
  • the invention provides a fast access short-range wireless communication method for controlling communication range, as shown in FIG. 5 and FIG. 6, which includes:
  • Step A The main module sends a distance reference signal containing the main module information and the communication distance information, the slave module receives the distance reference signal, and performs step B;
  • Step B judging whether the distance between the slave module and the master module meets the preset range, if yes, step C is performed, otherwise step A is performed;
  • Step C Establish wireless communication between the master module and the slave module for data exchange.
  • the fast communication of the control communication range between the main module and the slave module can be realized, and the fast communication of the control communication range can be obtained between the two hosts respectively having the main module and the slave module.
  • Short-range wireless communication is a short-range wireless communication.
  • Step A1 The main module modulates the main module information to a distance reference signal in the form of a low frequency magnetic signal, and transmits the low frequency magnetic signal;
  • Step A2 The slave module receives the low frequency magnetic signal and converts it into an electrical signal, and performs steps
  • Step B1 The slave module determines the master module according to the main module information included in the electrical signal;
  • Step B2 the slave module determines the threshold value of the electrical signal, if the voltage value of the electrical signal is greater than or equal to Step C is performed for the preset threshold, otherwise step A1 is performed.
  • Step A1 and step A2 are sub-steps of step A, and step B1 and step B2 are sub-steps of step B.
  • Step A1 ' the main module modulates the main module information to a distance reference signal in the form of ultrasonic signals of at least three different frequencies, and simultaneously transmits the ultrasonic signals of the at least three different frequencies;
  • Step A2' the slave module receives the ultrasonic signals of the at least three different frequencies, and records the time difference of the ultrasonic signals of different frequencies reaching the slave module, and performs step B;
  • Step B1 ' the slave module demodulates the ultrasonic signal, and obtains the main module information, and determines the main module according to the main module information;
  • Step B2' the slave module calculates the distance between the module and the main module according to the time difference of the ultrasonic signals from the at least three different frequencies, and determines whether the distance between the master module and the slave module satisfies the preset range, if the Then perform step C, otherwise perform step ⁇ .
  • step ⁇ and step A2 ' are sub-steps of step A
  • step ⁇ and step B2' are sub-steps of step B.
  • step C can also be refined into:
  • Step C1 The slave module returns the determined connection information of the slave device to the master module by using the second wireless communication unit according to the received master module information.
  • Step C2 The main module receives the determined connection information through the first wireless communication unit, and establishes wireless communication between the main module and the slave module through the first wireless communication unit and the second wireless communication unit.
  • determining that the connection information includes the main module information.
  • a unique connection relationship can be determined between the main module and the slave module, preventing other devices from impersonating the data exchange between the module and the main module, thereby ensuring fast access to the near-field wireless communication of the control communication range of the present invention.
  • the tool is secure for wireless communication.
  • the transmission of the wireless distance reference signal and the rapid establishment of the wireless communication connection and data exchange may not be performed at the same time.
  • the transmission of the distance reference signal can be performed prior to establishing a high-speed wireless communication connection between the master module and the slave module and performing data exchange.
  • the main mode The block may intermittently transmit a distance reference signal, and the master module and the slave module perform fast data exchange between the transmission distance reference signals.
  • the transmission of the distance reference signal is first turned off between the master module and the slave module, and then a high-speed wireless communication connection between the master module and the slave module is established and data exchange is performed.
  • step C may be composed of the following steps, as shown in FIG. 10:
  • Step C1 ' the slave module returns the determined connection information of the slave device to the master module by using the second wireless communication unit according to the received master module information;
  • Step C2' the main module receives the determined connection information through the first wireless communication unit, and stops transmitting the distance reference signal;
  • Step C3' Wireless communication between the master module and the slave module is established by the first wireless communication unit and the second wireless communication unit.
  • Step C may also be composed of the following steps, as shown in FIG. 1 1 , to realize the transmission of the distance reference signal at different times and establish a high-speed wireless communication connection and exchange data:
  • Step C1 ' ' the slave module stops receiving the distance reference signal
  • Step C2 ' ' the slave module returns the determined connection information of the slave device to the master module by using the second wireless communication unit according to the received master module information;
  • Step C3 ' ' The main module receives the determined connection information through the first wireless communication unit, and establishes wireless communication between the main module and the slave module through the first wireless communication unit and the second wireless communication unit.
  • connection information includes the main module information.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种通信范围可控的快速接入高效近距无线通信的系统和方法。所述系统包括至少一个主模块和至少一个从模块,其中主模块用于发送含有主模块信息和通信距离信息的距离基准信号,从模块根据接收到的所述距离基准信号判断主模块和从模块间的距离是否满足预设范围,如果满足则主模块和从模块根据预设协议快速建立无线通信连接并进行数据交换。基准单元和测定单元之间采用了低频的磁信号或者超声波信号进行通信,以满足近距离接入的要求。本发明的系统和方法实现了特定距离范围内的即时、快速、高效的无线数据交换。

Description

说 明 书 控制通信范围的快速接入近距无线通信系统和方法 技术领域
本发明涉及通信领域,尤其涉及一种通信范围可控的快速接入高效近距 无线通信的系统和方法。 背景技术
目前的计算机或者移动设备上已经大量使用了高速无线传输进行数据 交换, 比较普遍使用的是 Wi_Fi ( IEEE802. l la/b/g/n标准)、 蓝牙、 Zigbee ( IEEE 802. 15. 4标准)、 UWB ( Ul tra Wideband, 超宽带无线传输)等技术。 这些高速无线通信使得计算机间或者移动设备间可以进行信息交换和功能 共享等, 用户可以在这些移动设备中实现流媒体文件传输、 通信录交换、 共 享访问英特网操作。 这些技术针对的都是长时间、 多个用户、 较远距离范围 ( 10米以上)的数据交换应用; 在使用该技术时, 用户都需要进行较为复杂 的配置, 如初次使用需要繁瑣的设置、 再次使用需要花费一段时间等待寻找 主机并连接等。 此外, 这些技术由于要考虑多个用户同时工作以及射频信号 质量不好等因素, 其在通信过程中一般都定义了复杂的链路管理协议, 这些 协议开销导致无线信道利用率不高。
当前, 随着移动电子设备的多样化以及广泛使用, 在两台设备之间即时 共享数据的应用需求越来越强烈。通常共享数据的两台设备之间的距离很近 (如 1米以内 ), 但要求数据交换非常快捷、 及时以及高效, 例如从设备进 入主设备设定范围自动连接并传输数据, 移出设定范围则自动切断连接等。 而现有的通信技术均不能满足这种近距离范围内用户即时、 快速、 高效地交 换数据的要求。
现有技术中, 能够在限定范围内进行无线通信系统主要有 RFID射频标 签系统。 RFID射频标签按频率分类分别有 13. 56MHz、 800-90幌 Hz、 2. 4GHz 等, 其中 13. 56M标签读写距离小于 10厘米, 而其它两种则可以到达几米。 而这些 RFID 系统均存在两个问题: 通信速率过低以及通信距离无法灵活控 制; 且标签侧均采取无源的方式, 对读卡器的发射功率要求很高, 不容易集 成在轻便的移动电子设备中。 发明内容
本发明所要解决的技术问题是提供一种通讯范围可控的快速接入高效 近距无线通信的系统、 工具和方法, 使得各种具有高速无线通信功能的设备 间不需要依靠复杂的接入过程、 繁瑣的设置以及低效的数据交换协议开销, 即可在特定距离范围内的快速接入和高效通讯。
本发明解决上述技术问题的技术方案如下:
一种控制通信范围的快速接入近距无线通信系统, 包括至少一个主模块 和至少一个从模块; 所述主模块用于发送第一距离基准信号; 所述从模块根 据接收到的所述第一距离基准信号判断主模块和从模块间的距离是否满足 预设范围,如果满足则所述主模块和从模块根据预设协议快速建立无线通信 连接并进行数据交换。
本发明中的控制通信范围的快速接入近距无线通信系统, 其有益效果在 于: 所述系统实现了预设距离范围内的即时、 快速、 高效的无线通信和数据 交换; 利用通信距离信息作为接入必要条件, 使得接入的从设备满足规定的 通信距离条件即可即时、 快速、 高效地建立主模块和从模块之间的无线通信 并进行数据交换, 从而可以大大筒化当前 Wi-Fi、 蓝牙等现有通信技术所需 要主从设备之间的预先配置, 以及现有通信技术中需要的寻址、 握手认证、 复杂的交换协议开销等问题, 为电子设备之间即时数据交换提供了极大便 利。
对于上述控制通信范围的快速接入近距无线通信系统的技术方案,还可 以做如下进一步改进。
进一步,所述主模块和从模块之间根据预设协议快速建立无线通信连接 并进行数据交换的速率高于所述主模块发送第一距离基准信号的速率。
采用上述进一步方案的有益效果是, 实现了利用低速传输通道采用距离 判断的形式建立高速数据传输通道。
进一步, 所述第一距离基准信号含有主模块信息和通信距离信息; 所述 主模块包括: 基准单元、 第一无线通信单元和控制所述基准单元及第一无线 通信单元工作的主模块控制单元; 所述从模块包括: 测定单元、 第二无线通 信单元和控制所述测定单元及第二无线通信单元工作的从模块控制单元; 所 述基准单元用于向所述测定单元发送第一距离基准信号; 所述测定单元根据 从所述基准单元接收到的第一距离基准信号判断主模块和从模块间的距离 是否满足预设范围,如果满足则将第一距离基准信号中含有的主模块信息传 送给从模块控制单元; 所述从模块控制单元接收到主模块信息后, 通过第一 无线通信单元和第二无线通信单元根据预设协议快速建立起主模块和从模 块之间的无线通信连接并进行数据交换。
采用上述进一步方案的有益效果是, 第一距离基准信号含有主模块信息 和通信距离信息便于从模块对主模块的确定和距离判断; 主模块和从模块之 间分别在主模块控制单元和从模块控制单元的控制下, 利用所述基准单元和 测定单元实现所述第一距离基准信号的传输和距离确认, 当从模块控制单元 接收到主模块信息后即可通过第一无线通信单元和第二无线通信单元根据 预设协议快速建立起主模块和从模块之间的无线通信连接并进行数据交换, 整个从模块和主模块间的接入过程筒单, 仅需要对通信距离的确定, 极大的 筒化了主模块和从模块的预先配置。
进一步, 所述基准单元包括顺次串联的第一微控制器、 第一编码电路、 第一驱动电路和第一磁场发射线圏; 所述第一微控制器用于控制第一编码电 路和第一驱动电路; 所述第一编码电路用于对主模块信息的无线数据帧进行 逐比特编码, 并传送给第一驱动电路; 所述第一驱动电路用于对第一磁场发 射线圏进行驱动; 所述第一磁场发射线圏用于产生含有主模块信息的第一距 离基准信号并以磁信号形式进行发送;
所述测定单元包括顺次串联的第一磁感应电路、 第一放大电路、 第一门 限判断及解调电路和第二微控制器; 所述第一磁感应电路用于感应接收磁信 号形式的第一距离基准信号并将其转换成电信号形式, 并传送给第一放大电 路; 所述第一放大电路用于将第一距离基准信号进行放大并传送给第一门限 判断及解调电路; 所述第一门限判断及解调电路用于判断第一距离基准信号 是否达到预设门限值,如果达到了预设门限值则将第一距离基准信号中的主 模块信息传送给第二微控制器; 所述第二微控制器用于控制第一磁感应电 路、 第一放大电路和第一门限判断及解调电路, 并将接收到的主模块信息传 送给所述从模块控制单元。
上述进一步方案提供了一种采用距离基准磁信号进行距离判断的具体 方案, 通过预先设定好的磁信号的发射功率, 使得从模块当中预设的距离门 限值可以直接反应主模块和从模块之间的通信距离,从而便于从模块进行距 离判断。
进一步,所述基准单元还包括设置于第一编码电路和第一驱动电路之间 的第一调制电路; 所述第一调制电路, 用于对第一编码电路编码后的主模块 信息进行调制, 并传送给第一驱动电路。
采用上述进一步方案的有益效果是,通过调制使得第一距离基准信号可 以更好的被从模块所接收,避免第一距离基准信号在传输时丟失而造成主模 块和从模块之间的第一距离基准信号发送不畅。
进一步, 所述测定单元还包括第二编码电路、 第二驱动电路和第二磁场 发射线圏; 所述第二微控制器、 第二编码电路、 第二驱动电路和第二磁场发 射线圏顺次串联; 所述第二微控制器用于控制第二编码电路和第二驱动电 路; 所述第二编码电路用于对从模块信息的无线数据帧进行逐比特编码, 并 传送给第二驱动电路; 所述第二驱动电路用于对第二磁场发射线圏进行驱 动; 所述第二磁场发射线圏用于产生含有从模块信息的第二距离基准信号并 以磁信号形式进行发送;
所述基准单元还包括第二磁感应电路、第二放大电路和第二门限判断及 解调电路, 所述第二磁感应电路、 第二放大电路、 第二门限判断及解调电路 和第一微控制器顺次串联; 所述第二磁感应电路用于感应接收磁信号形式的 第二距离基准信号并将其转换成电信号形式, 并传送给第二放大电路; 所述 第二放大电路用于将第二距离基准信号进行放大并传送给第二门限判断及 解调电路; 所述第二门限判断及解调电路用于判断第二距离基准信号是否达 到预设门限值,如果达到了预设门限值则将第二距离基准信号中的从模块信 息传送给第一微控制器; 所述第一微控制器用于控制第二磁感应电路、 第二 放大电路和第二门限判断及解调电路, 并将接收到的从模块信息传送给所述 主模块控制单元。
采用上述进一步方案,在本发明的控制通信范围的快速接入近距无线通 信系统中的主模块向从模块发送第一距离基准信号的基础上,从模块也可以 同时向主模块发送第二距离基准信号从而实现基准单元与测定单元之间的 距离基准磁信号的双向通信和双向判断。
进一步,所述测定单元还包括设置于第二编码电路和第二驱动电路之间 的第二调制电路; 所述第二调制电路用于对第二编码电路编码后的从模块信 息进行调制, 并传送给第二驱动电路。
进一步, 所述第一距离基准信号为低频磁信号。
采用上述进一步方案的有益效果是, 采用磁信号, 可以使用磁感应强度 物理量计算通信距离。 磁感应强度随通信距离 R呈 R— 3衰减, 且采用低频磁 信号穿透不同物体时的衰减小, 抗干扰能力强, 磁通信的鲁棒性好, 使得主 模块和从模块之间第一距离基准信号发送的安全性高。
进一步,所述低频磁信号的频率为 5 00Ηζ、 1ΚΗζ、 1. 5KHz、 2KHz、 2. 5KHz、 3KHz、 4KHz、 5KHz、 1 0KHz、 20KHz、 30KHz或者 1幌 Hz。
进一步, 所述第二距离基准信号为低频磁信号。
进一步,所述低频磁信号的频率为 5 00Ηζ、 1ΚΗζ、 1. 5KHz、 2KHz、 2. 5KHz、 3KHz、 4KHz、 5KHz、 1 0KHz、 20KHz、 30KHz或者 1幌 Hz。
进一步,所述基准单元包括至少三个超声波发送器和至少一个调制及启 动控制装置, 所述调制及启动控制装置分别与超声波发送器连接; 所述调制 及启动控制装置用于将主模块信息调制成第一距离基准信号, 并同时启动所 述至少三个超声波发送器; 所述至少三个超声波发送器用于分别发送不同频 率的超声波形式的第一距离基准信号; 所述测定单元包括至少三个超声波接 收器和至少一个解调及时间比较装置,所述超声波接收器分别与解调及时间 比较装置连接; 所述至少三个超声波接收器用于同时分别接收所述至少三个 超声波发送器所发送的不同超声波频率的第一距离基准信号, 并将所述第一 距离基准信号传送给解调及时间比较装置; 所述解调及时间比较装置用于分 别解调不同超声波频率的第一距离基准信号, 并根据不同超声波频率的第一 距离基准信号到达所述测定单元的时间差判断主模块和从模块间的距离是 否满足预设范围,如果满足则将第一距离基准信号中含有的主模块信息传送 给从模块控制单元。
上述进一步方案提供了一种采用超声波形式的第一距离基准信号进行 距离判断的具体方案。 采用超声波信号, 可以使用超声波信号的时间物理量 计算通信距离。 超声波传播的速度较慢, 通过比较发送和接收的时间差可以 计算出超声波通信的距离。采用至少三个超声波发送器同时发送不同频率的 超声波信号, 并把主模块信息通过 00K或 FSK等方式调制到超声波中, 从模 块中分别接收至少三个超声波信号,通过比较至少三个超声波到达的时间差 就可计算出主模块和从模块之间的通信距离。
进一步,所述基准单元包括三个超声波发送器和一个调制及启动控制装 置; 所述测定单元包括三个超声波接收器和一个解调及时间比较装置。
采用上述进一步方案的有益效果是, 使用的超声波发送器、 调制及启动 装置、超声波接收器和解调及时间比较装置数量最少并保证能够计算出主模 块和从模块之间通信距离。
进一步, 所述第一距离基准信号为超声波信号。
采用上述进一步方案的有益效果是, 可以实现精确的通信距离控制, 通 信可控制范围可以达到几米甚至更远,也可以在 1米、 0. 5米甚至 10厘米范 围内精确控制通信等,采用超声波方案既可以适应桌面上电子设备之间相互 即时、 高速交换数据, 也可以适应车辆之间、 车辆与闸机之间等应用情况下 的即时、 高速数据交换, 并且超声波与第一无线通信单元和第二无线通信单 元之间的通信信号之间相互干扰更小。
进一步, 所述第一无线通信单元与第二无线通信单元为 Wi-Fi模块、 蓝 牙模块或者 UWB模块。
采用上述进一步方案的有益效果是,主模块和从模块之间进行数据交换 和通信可使用多种形式, 满足多种形式通信需求。
进一步,所述第一无线通信单元与第二无线通信单元之间无线通信频段 为 433ΜΗζ、 900ΜΗζ、 2. 4GHz、 5. 8GHz或者 60GHz。
采用上述进一步方案的有益效果是, 实现高速通讯和数据交换。
进一步,所述从模块根据接收到的第一距离基准信号判断主模块和从模 块间的距离满足预设范围后, 从模块先向主模块发送确定信号, 主模块根据 接收到的确定信号停止发送所述第一距离基准信号, 主模块和从模块再根据 预设协议快速建立无线通信连接并进行数据交换。
进一步,所述从模块根据接收到的第一距离基准信号判断主模块和从模 块间的距离满足预设范围后, 从模块先停止接收所述第一距离基准信号, 主 模块和从模块再根据预设协议快速建立无线通信连接并进行数据交换。
采用上述进一步方案的有益效果是,在主模块和从模块之间进行距离判 断之后和建立无线通信连接并进行数据交换之前,切断第一距离基准信号的 发送, 从而防止信号互相干扰, 提高传输效率和测量精度, 设备结构筒单易 操作, 并且可节省系统资源。
进一步, 所述主模块和从模块分别设置于不同的主机中。
采用上述进一步方案的有益效果是, 使得主机之间建立起一种即时、 快 速、 高效的通信连接, 当两台主机相互之间的距离满足互相通信所规定的范 围, 则可以自动进行连接并进行相互通信, 大大筒化当前 Wi-Fi、 蓝牙等现 有短距离通信技术所需要的主机之间的预先配置, 以及现有通信技术中需要 的寻址、 握手认证、 复杂的交换协议开销等问题。
进一步, 所述主机为智能终端和 /或智能交通工具。
进一步, 所述智能终端为台式电脑、笔记本电脑、平板电脑、 掌上电脑、 手机、数码相机、数码摄像机、 电子阅读器、音视频播放装置或者数码相框; 所述智能交通工具为智能汽车或者带有提供数据交互功能的汽车、 火车、 飞 机或者轮船。
采用上述进一步方案的有益效果是,本发明的控制通信范围的快速接入 近距无线通信系统可以应用于多种设备, 如手机和手机之间的通信, 数码相 机与数码相框之间的通信, 电脑与手机之间、 电脑与电子阅读器之间等各类 智能终端之间的通信, 以及如通信终端与智能汽车, 或者通信终端与提供数 据服务的汽车、 火车、 飞机或者轮船等交通工具之间的通信, 从而满足人们 日益增长的信息需求, 使得人们随时随地可以与周围的其它智能终端和 /或 带有提供数据服务的交通工具进行交互,使得人们可以更加方便快捷的获取 数据信息。
进一步,所述主模块发送第一距离基准信号及所述主模块和从模块根据 预设协议快速建立无线通信连接并进行数据交换不同时进行。
采用上述进一步方案的有益效果是, 防止信号互相干扰, 提高传输效率 和测量精度, 设备结构筒单易操作, 并且可节省系统资源。
进一步,所述主模块发送第一距离基准信号先于所述主模块和从模块根 据预设协议快速建立无线通信连接并进行数据交换进行。 采用上述进一步方案的有益效果是, 防止信号互相干扰, 提高传输效率 和测量精度, 设备结构筒单易操作, 并且可节省系统资源。
进一步, 所述主模块间断地发送第一距离基准信号, 所述主模块和从模 块在所述发送第一距离基准信号之间进行快速数据交换。
采用上述进一步方案的有益效果是, 防止信号互相干扰, 提高传输效率 和测量精度, 设备结构筒单易操作, 并且可节省系统资源。
本发明提供的一种控制通信范围的快速接入近距无线通信方法, 包括如 下步骤:
步骤 A: 主模块发送距离基准信号, 从模块对所述距离基准信号进行接 收, 并执行步骤 B;
步骤 B:判断从模块和主模块之间的距离是否满足预设范围,如果为 "是" 则执行步骤 C , 否则执行步骤 A;
步骤 C: 主模块与从模块之间建立无线通信, 进行数据交换。
采用如上所述的控制通信范围的快速接入近距无线通信方法, 实现了主 模块和从模块之间在预设距离范围内的即时、 快速、 高效的无线数据交换, 从而实现了带有主模块和从模块的主机之间在预设距离范围内的即时、 快 速、 高效的无线数据交换, 大大筒化了当前 Wi-F i、 蓝牙等现有短距离通信 技术所需要主从设备之间的预先配置, 以及现有通信技术中需要的寻址、 握 手认证、 复杂的交换协议开销等问题, 为电子设备之间即时数据交换提供了 极大便利。
进一步, 所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 A包括:
步骤 A1 :所述主模块将主模块信息转换成低频磁信号形式的距离基准信 号, 并发送所述低频磁信号, 并执行步骤 A2 ;
步骤 A2 : 所述从模块接收低频磁信号并将其转换成电信号,并执行步骤
B;
所述步骤 B包括:
步骤 B1 : 从模块根据电信号中所含的主模块信息确定主模块; 步骤 B2 :从模块对电信号进行门限值判断,若电信号的电压值大于等于 预设的门限值则执行步骤 C , 否则执行步骤 A1。 采用上述进一步方案的有益效果是,距离基准信号含有主模块信息和通 信距离信息便于从模块对主模块的确定和距离判断; 实现了采用磁信号进行 距离基准信号的传输以及距离判断。
进一步, 所述距离基准信号含有主模块信息和通信距离信息; 所述步骤 A包括:
步骤 A1 ' :所述主模块将主模块信息转换成至少三种不同频率的超声波 信号形式的距离基准信号, 并同时发送所述至少三种不同频率的超声波信 号, 并执行步骤 A2 ' ;
步骤 A2 ' : 所述从模块接收所述至少三个不同频率的超声波信号,并记 录不同频率的超声波信号到达从模块的时间差, 并执行步骤 B;
所述步骤 B包括:
步骤 B1 ' : 所述从模块将超声波信号进行解调, 并获得主模块信息, 根 据所述主模块信息确定主模块;
步骤 B2 ' :所述从模块根据至少三个不同频率的超声波信号到达从模块 的时间差计算从模块与主模块之间的距离并判断主模块和从模块间的距离 是否满足预设范围, 若满足则执行步骤 C , 否则执行步骤 Α 。
采用上述进一步方案的有益效果是, 实现了采用超声波信号进行距离基 准信号的传输以及距离判断。
进一步, 所述距离基准信号含有主模块信息和通信距离信息; 所述步骤 C包括:
步骤 C1 :所述从模块根据所收到的主模块信息通过第二无线通信单元向 主模块回传从设备的确定连接信息;
步骤 C2 : 所述主模块通过第一无线通信单元接收所述确定连接信息, 并 通过第一无线通信单元和第二无线通信单元建立主模块与从模块之间的无 线通信。
采用上述进一步方案的有益效果是, 实现了主模块和从模块之间的连接 确认, 并开始进行无线通信。
进一步, 所述确定连接信息中包含所述主模块信息。
采用上述进一步方案的有益效果是, 当所属主模块收到包含有所述主模 块信息的确定连接信息时, 可以通过所述主模块信息来确定从模块为收到主 模块发出距离基准信号并确定是在预设通信距离内的从模块,从而确定从模 块的唯一性, 使得从模块不被假冒, 并保证主模块与从模块之间无线通信的 安全。
进一步, 所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 C包括:
步骤 C1 ' :所述从模块根据所收到的主模块信息通过第二无线通信单元 向主模块回传从设备的确定连接信息;
步骤 C2 ' : 所述主模块通过第一无线通信单元接收所述确定连接信息, 并停止发送距离基准信号;
步骤 C3 ' :通过第一无线通信单元和第二无线通信单元建立主模块与从 模块之间的无线通信。
其中, 所述确定连接信息中包含所述主模块信息。
进一步, 所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 C包括:
步骤 C1 ' ' : 所述从模块停止接收距离基准信号;
步骤 C2 ' ' :所述从模块根据所收到的主模块信息通过第二无线通信单 元向主模块回传从设备的确定连接信息;
步骤 C3 ' ' : 所述主模块通过第一无线通信单元接收所述确定连接信 息, 并通过第一无线通信单元和第二无线通信单元建立主模块与从模块之间 的无线通信。
其中, 所述确定连接信息中包含所述主模块信息。
采用上述进一步方案的有益效果是,在主模块和从模块之间进行距离判 断之后和建立无线通信连接并进行数据交换之前,停止主模块和从模块之间 距离基准信号的发送或接收, 以停止的距离判断, 从而防止信号互相干扰, 提高传输效率和测量精度, 设备结构筒单易操作, 并且可节省系统资源。
进一步,所述主模块发送距离基准信号及所述主模块和从模块根据预设 协议快速建立无线通信连接并进行数据交换不同时进行。
采用上述进一步方案的有益效果是, 防止信号互相干扰, 提高传输效率 和测量精度, 设备结构筒单易操作, 并且可节省系统资源。
进一步,所述主模块发送距离基准信号先于所述主模块和从模块根据预 设协议快速建立无线通信连接并进行数据交换进行。
采用上述进一步方案的有益效果是, 防止信号互相干扰, 提高传输效率 和测量精度, 设备结构筒单易操作, 并且可节省系统资源。
进一步, 所述主模块间断地发送距离基准信号, 所述主模块和从模块在 所述发送距离基准信号之间进行快速数据交换。
采用上述进一步方案的有益效果是, 防止信号互相干扰, 提高传输效率 和测量精度, 设备结构筒单易操作, 并且可节省系统资源。 附图说明
图 1为本发明中控制通信范围的快速接入近距无线通信系统的结构示意 图;
图 2为本发明中控制通信范围的快速接入近距无线通信系统采用磁信号 实施例的基准单元和测定单元之间单向通信结构图;
图 3为本发明中控制通信范围的快速接入近距无线通信系统采用磁信号 实施例的基准单元和测定单元之间双向通信结构图;
图 4为本发明中控制通信范围的快速接入近距无线通信系统采用超声波 信号实施例的基准单元和测定单元之间的通信结构图;
图 5为本发明中控制通信范围的快速接入近距无线通信方法的流程图; 图 6为本发明中控制通信范围的快速接入近距无线通信方法的数据交换 过程的一种实施方式示意图;
图 7为本发明中控制通信范围的快速接入近距无线通信方法采用磁信号 通信方式的流程图;
图 8为本发明中控制通信范围的快速接入近距无线通信方法采用超声波 信号通信方式的流程图;
图 9为本发明的控制通信范围的快速接入近距无线通信方法中主模块和 从模块之间建立通信连接的第一流程图;
图 10为本发明的控制通信范围的快速接入近距无线通信方法中主模块 和从模块之间建立通信连接的第二流程图;
图 11 为本发明的控制通信范围的快速接入近距无线通信方法中主模块 和从模块之间建立通信连接的第三流程图。 附图中, 各标号所代表的部件列表如下:
1、 主模块, 2、 从模块, 101、 主模块控制单元, 102、 基准单元, 103、 第一无线通信单元, 201、 从模块控制单元, 202、 测定单元, 203、 第二无 线通信单元, 1021、 第一微控制器, 1022、 正向发送单元, 2021、 第二微控 制器, 2022、 正向接收判断单元, 10221、 第一编码电路, 10222、 第一驱动 电路, 10223、 第一磁场发射线圏, 10224、 第一调制电路, 20221、 第一磁 感应电路, 20222、 第一放大电路, 20223、 第一门限判断及解调电路, 2023、 反向发送单元, 1023、 反向接收判断单元, 20231、 第二编码电路, 20232、 第二驱动电路, 20233、 第二磁场发射线圏, 20234、 第二调制电路, 10231、 第二磁感应电路, 10232、 第二放大电路, 10233、 第二门限判断及解调电路, 1023、 调制及启动控制装置, 1024、 第一超声波发送器, 1025、 第二超声波 发送器, 1026、 第三超声波发送器, 2023、 解调及时间比较装置, 2024、 第 一超声波接收器, 2025、 第二超声波接收器, 2026、 第三超声波接收器 具体实施方式
以下结合附图对本发明的原理和特征进行描述, 所举实施例只用于解释 本发明, 并非用于限定本发明的范围。
图 1为本发明中控制通信范围的快速接入近距无线通信系统的结构示意 图。 该系统包括主模块 1和从模块 2; 其中, 主模块 1用于发送含有主模块 信息和通信距离信息的第一距离基准信号; 从模块 2根据接收到的第一距离 基准信号判断主模块 1和从模块 2间的距离是否满足预设范围,如果满足则 主模块 1和从模块 2根据预设协议快速建立无线通信连接并进行数据交换。 其中,主模块 1和从模块 2之间根据预设协议快速建立无线通信连接并进行 数据交换的速率高于主模块 1发送第一距离基准信号的速率。
如图 1所示, 主模块 1包括基准单元 102、 第一无线通信单元 103、 和 控制基准单元 102及第一无线通信单元 103工作的主模块控制单元 101 ; 从 模块 2包括测定单元 202、 第二无线通信单元 203、 和控制测定单元 202及 第二无线通信单元 203工作的从模块控制单元 201。 其中, 基准单元 102和 测定单元 202之间存在从基准单元 102到测定单元 202的正向通信通道,根 据需要也可以存在从测定单元 202到基准单元 102方向的反向通信信道; 第 一无线通信单元 103和第二无线通信单元 203之间存在双向高速无线通信信 道。基准单元 102用于向测定单元 202通过正向通信通道发送第一距离基准 信号;根据需要测定单元 202也可以用于向基准单元 102通过反向通信通道 发送第二距离基准信号。 测定单元 202用于接收基准单元 102发送的第一距 离基准信号, 判断主模块 1和从模块 2之间的距离是否满足预设范围; 如果 满足则将第一距离基准信号中含有的主模块信息传送给从模块控制单元 201 ;从模块控制单元 201接收到主模块信息后,通过第一无线通信单元 103 和第二无线通信单元 203根据预设协议快速建立起主模块 1和从模块 2之间 的无线通信连接并进行数据交换。 当然, 根据需要, 测定单元 202和基准单 元 102也可以分别具有上述基准单元 1 02和测定单元 202的功能, 并且测定 单元 202可以通过反向通信通道向基准单元 102发送第二距离基准信号; 相 应地主模块控制单元 101和从模块控制单元 201可以具有彼此的控制功能以 实现主模块 1和从模块 102之间的距离测定。 第一无线通信单元 103和第二 无线通信单元 203分别在主模块控制单元 101和从模块控制单元 201的控制 下进行无线通信。
本发明中, 第一无线通信单元 103 和第二无线通信单元 203 可采用 2. 4GHz频段的 Wi-F i模块、蓝牙模块或者 UWB模块, 以实现他们之间的高速 无线通讯和数据交换; 也可以采用其它频点, 例如 433MHz , 90幌 Hz , 5. 8GHz 以及 60GHz等。
第一无线通信单元 103和第二无线通信单元 203之间的高速无线通信单 元接入参数主要包括接入信道、 主模块 1的 SS ID (服务集标识)、 主模块 1 的物理地址、 密钥或证书等。 这些参数主要由主模块 1中的基准单元 102发 出, 由从模块 2中测定单元 202在约定范围内 (如 1米)接收。 从模块 2解 析这些参数, 并设置相关参数与主模块 1进行连接; 连接后通过密钥或证书 进行相互认证确定是否进行后续数据交换。
根据需要,基准单元 102和测定单元 202之间的通信可以采用磁信号通 信方式、 超声波信号通信方式等。 以下所述分别以磁信号通信方式和超声波 信号通信方式为例对基准单元 102和测定单元 202之间的通信进行说明。
磁信号通信实施例
如图 2所示, 基准单元 102为磁信号基准单元, 测定单元 202为磁信号 测定单元,基准单元 102向测定单元 202发送的第一距离基准信号为磁信号 形式。 其中,基准单元 102包括顺次串联的第一微控制器 1021、 第一编码电 路 10221、 第一驱动电路 10222和第一磁场发射线圏 10223; 其中第一微控 制器 1021用于控制第一编码电路 10221和第一驱动电路 10222;第一编码电 路 10221、 第一驱动电路 10222和第一磁场发射线圏 10223组成了用于发送 磁信号形式的第一距离基准信号的正向发送单元 1022。测定单元 202包括顺 次串联的第一磁感应电路 20221、 第一放大电路 20222、 第一门限判断及解 调电路 20223和第二微控制器 2021 ; 其中第二微控制器 2021用于控制第一 磁感应电路 20221、 第一放大电路 20222、 第一门限判断及解调电路 20223; 第一磁感应电路 20221、 第一放大电路 20222、 第一门限判断及解调电路 20223组成了正向接收判断单元 2022。 正向接收判断单元 2022用于接收磁 信号并判断主模块 1和从模块 2之间的距离是否满足预设范围,如果满足则 将第一距离基准信号中含有的主模块信息传送给第二微控制器 2021 ,第二微 控制器 2021将主模块信息传送给从模块控制单元 201。
具体地, 正向发送单元 1022 中的第一编码电路 10221用于对主模块信 息的无线数据帧进行逐比特编码, 并传送给第一驱动电路 10222; 第一驱动 电路 10222用于对第一磁场发射线圏 10223进行驱动,以产生低频交变磁场; 第一磁场发射线圏 10223用于产生含有主模块信息的第一距离基准信号并以 磁信号形式发送给从模块 2。
正向接收判断单元 2022中的第一磁感应电路 20221用于感应接收主模 块 1发送的磁信号形式的第一距离基准信号并将其转换成电信号形式; 第一 放大电路 20222用于将电信号形式的第一距离基准信号进行放大; 第一门限 判断及解调电路 20223用于判断电信号形式第一距离基准信号是否达到预设 门限值(例如门限电压值), 如果达到则将第一距离基准信号中的主模块信 息传送给第二微控制器 2021。
根据需要, 正向发送单元 1022还可在第一编码电路 10221和第一驱动 电路 10222之间设置第一调制电路 10224 , 用于对第一编码电路 10221编码 后的主模块信息进行调制, 并传送给第一驱动电路 10222。
根据需要, 可在图 2所示的基准单元 102和测定单元 202之间单向通信 的基础上进行扩充, 以实现基准单元 102和测定单元 202之间的双向通信, 其结构如图 3所示。 测定单元 202还包括第二编码电路 20231、 第二驱动电 路 20232和第二磁场发射线圏 20233; 所述第二 控制器 2021、 第二编码电 路 20231、 第二驱动电路 20232和第二磁场发射线圏 20233顺次串联; 第二 控制器 2021用于控制第二编码电路 20231和第二驱动电路 20232;第二编 码电路 20231、 第二驱动电路 20232和第二磁场发射线圏 20233组成了用于 发送含有从模块信息和从模块通信距离信息的磁信号形式的第二距离基准 信号的反向发送单元 2023。 对应地, 基准单元 102还包括第二磁感应电路 10231、第二放大电路 10232和第二门限判断及解调电路 10233; 第二磁感应 电路 10231、 第二放大电路 10232、 第二门限判断及解调电路 10233和第一 微控制器 1021 顺次串联; 第一微控制器 1021 用于控制第二磁感应电路 10231、第二放大电路 10232和第二门限判断及解调电路 10233; 第二磁感应 电路 10231、 第二放大电路 10232和第二门限判断及解调电路 10233组成了 反向接收判断单元 1023。 反向接收判断单元 1023用于接收磁信号形式的第 二距离基准信号并判断从模块 2和主模块 1之间的距离是否满足预设范围, 如果满足则将第二距离基准信号中含有的从模块信息传送给第一微控制器 1021 ; 第一微控制器 1021将从模块信息传送给主模块控制单元 101 ; 主模块 控制单元 101接收到从模块信息后,通过第一无线通信单元 103和第二无线 通信单元 203根据预设协议快速建立起主模块 1和从模块 2之间的无线通信 连接并进行数据交换。
具体地, 如图 3所示, 反向发送单元 2023中的第二编码电路 20231用 于对主模块信息的无线数据帧进行逐比特编码, 并传送给第二驱动电路 20232; 第二驱动电路 20232用于对第二磁场发射线圏 20233进行驱动, 产 生第二低频交变磁场; 第二磁场发射线圏 20233用于产生含有从模块信息的 第二距离基准信号并以磁信号形式发送给主模块 1。
反向接收判断单元 1023中的第二磁感应电路 10231用于感应接收从模 块 2发送的磁信号形式的第二距离基准信号并将其转换成电信号形式; 第二 放大电路 10232用于将电信号形式的第二距离基准信号进行放大; 第二门限 判断及解调电路 10233用于判断电信号形式第二距离基准信号是否达到预设 门限值,如果达到了则将第二距离基准信号中的从模块信息传送给第一微控 制器 1021。 根据需要, 反向发送单元 2023还可在第二编码电路 20231和第二驱动 电路 20232之间设置第二调制电路 20234用于对第二编码电路 20231编码后 的从模块信息进行调制, 并传送给第二驱动电路 20232。
本磁信号通信实施例中, 磁感应电路由 PCB ( Pr int ed C i rcui t Board , 印制电路板)线圏、 漆包线线圏、 霍尔器件或其它能感应磁场变化的电路元 件构成; 门限判断及解调电路对磁检测电压信号按照预设的距离门限判断, 未达到门限不解调也不允许通信, 达到门限时对信号进行解调, 解调后的信 号送给第二微控制器。
本磁信号通信实施例中,基准单元 102和测定单元 202可采用低频磁感 应通信电路,其相应频点可选择 500Ηζ、 1ΚΗζ、 1. 5KHz、 2KHz、 2. 5KHz、 3KHz、 4KHz、 5KHz、 10KHz、 20KHz、 30KHz或者 1幌 Hz , 利用低频交变磁场穿透性 能好的特点进行规定距离范围内的可控通信。
正向接收判断单元 2022的电路通常可以采用 PCB线圏、 漆包线线圏或 霍尔器件、 巨磁阻、 磁感应开关等构成。 该电路并不仅限于用这几种元件。 原则上任何能将磁场变化转变为电信号的传感器都可以用于该模块,唯一限 制是可置入使用该单元的设备中。
本磁信号通信实施例中, 利用低频交变磁场实现可控通信距离范围, 利 用高速无线通信通道结合基准单元 102和测定单元 202实现主模块 1和从模 块 2的可靠快速连接, 同时利用第一无线通信单元 103和第二无线通信单元 203之间的高速无线通信通道实现主模块 1和从模块 2之间高速的数据通讯。 其具有如下特点: 1、 主模块 1的基准单元 102发射低频交变磁场信号, 从 模块 2只需接收该磁场信号, 因此可以将接收线圏或其它接收电路小型化, 足以满足植入从模块 2 的移动设备小巧的要求; 2、 由于接收信号较弱, 植 入从模块 2的移动设备内需要增加放大电路。 另外移动设备中同时置入的第 二无线通信单元 203可为高速无线通信单元( Wi-F i、 蓝牙)从而实现双向 高速通讯。 如前所述, 主模块 1上的基准单元 1 02和从模块 2上的测定单元 202电路的天线很小, 可以轻易的集成到移动设备上。
依照本实施例所选定的频点 ( 500Ηζ、 1ΚΗζ、 1. 5KHz、 2KHz、 2. 5KHz、 3KHz、 4KHz、 5KHz、 1 0KHz、 20KHz、 30KHz或者 1幌 Hz ), 系统在该频点以下 工作距离范围控制较为准确。 作为一种扩展, 系统工作在这些频点以上也不 是绝对不行, 可能的效果是距离控制的精度范围降低, 只是一种性能改变的 延伸应用。
本实施方式中, 系统通过预先设定好的门限值来实现距离判断, 即主模 块按照预设的发射参数发射低频磁信号,从模块 2接收该低频信号并转换为 电信号,通过预先设定的门限值来判断从模块 2与主模块 1之间是否进入预 先设定的有效距离区间。 该门限值对所有的从模块 2均相同, 无需针对不同 的从模块 2进行修改(即所谓校准)。
本实施例中,第一调制电路 10224或者第二调制电路 20234可以采用多 种调制方式:
1 ) 载波调制方式调制:第一编码电路 10221或者第二编码电路 20231 产生的基带信号通过第一调制电路 10224 或者第二调制电路 20234 对载波进行调制, 载波可以为正弦波、 方波及三角波等, 调制可以采用开关频移键控(00K )、 相移键控、 频移键控 ( FSK ) 等, 调制后的信号通过第一驱动电路 10222 或者第二驱动电路 20232 加载到第一磁场发射线圏 10223 或者第二磁场发射线圏 20233上;
2 ) 无载波直接基带发射: 第一编码电路 10221 或者第二编码电路 20231产生的基带信号, 通过第一驱动电路 10222或者第二驱动 电路 20232直接加载到第一磁场发射线圏 10223或者第二磁场发 射线圏 20233上;
3 ) 其它调制方式: 由于本发明系统采用门限值判断的方式进行距离 控制, 因此调制方式不宜采用幅度调制, 凡是发送过程中能够保 持从模块 2 内检测信号幅度基本恒定的调制方式均可以用于本发 明的系统;
第一编码电路 10221或者第二编码电路 20231可以采用多种编码方式:
1 ) 曼彻斯特编码: 比特 1编码为两个符号 01 , 比特 0编码为 10。
2 ) 差分曼彻斯特编码: 有两种比特符号序列: 01及 10 , 比特 1编码 为与上一符号序列不同, 比特 0则相同, 或者反过来编码亦可。
3 ) 其它编码方式: 由于本发明系统采用门限判断的方式进行距离控 制, 因此低频调制信号应当保持均值稳定。 在一个优选实施例中, 编码后的序列不含有直流分量, 凡是编码后平均直流分量为零的 编码方式均可以用于本优选实施例。
在上述具体实现电路中,第一磁场发射线圏 10223或者第二磁场发 射线圏 20233可以为漆包线线圏或 PCB线圏。 第一磁场发射线圏 10223 或者第二磁场发射线圏 20233的匝数可以大于 10圏, 优选地, 匝数为 50 ~ 500圏。 优选地, 第一磁场发射线圏 10223或者第二磁场发射线圏 20233 内填塞有铁氧体磁芯或铁芯。 优选地, 第一磁场发射线圏 10223 或者第二磁场发射线圏 20233所包围面积的截面至少包含直径 3cm的圓 形区域或者 3cm X 3cm的方形区域。
超声波信号通信实施例
如图 4所示,本实施例中,基准单元 102包括调制及启动控制装置 1023、 第一超声波发送器 1024、第二超声波发送器 1025和第三超声波发送器 1026 , 调制及启动控制装置 1023分别与第一超声波发送器 1024、 第二超声波发送 器 1025和第三超声波发送器 1026连接; 其中, 调制及启动控制装置 1023 用于将主模块信息调制到第一距离基准信号, 并同时启动第一超声波发送器 1024、第二超声波发送器 1025和第三超声波发送器 1026以发送超声波形式 的距离基信号; 第一超声波发送器 1024、 第二超声波发送器 1025和第三超 声波发送器 1026用于分别发送不同频率的超声波信号。 测定单元 202包括 解调及时间比较装置 2023、第一超声波接收器 2024、第二超声波接收器 2025 和第三超声波接收器 2026; 解调及时间比较装置 2023分别与第一超声波接 收器 2024、 第二超声波接收器 2025和第三超声波接收器 2026连接; 其中, 第一超声波接收器 2024、第二超声波接收器 2025和第三超声波接收器 2026 用于同时分别接收第一超声波发送器 1024、 第二超声波发送器 1025和第三 超声波发送器 1026所发送的不同频率的超声波信号, 并将接收到的不同频 率的超声波信号传送给解调及时间比较装置 2023;解调及时间比较装置 2023 用于分别解调不同频率的超声波信号, 并根据不同频率的超声波信号到达测 定单元 202的时间差判断主模块 1和从模块 2之间的距离是否满足预设范围, 如果满足则将第一距离基准信号中含有的主模块信息传送给从模块控制单 元 201。
本实施例中, 调制及启动控制装置 1023可通过 00K方式将主模块信息 调制到超声波形式的第一距离基准信号; 第一超声波接收器 2024、第二超声 波接收器 2025和第三超声波接收器 2026只能分别对应接收第一超声波发送 器 1 024、第二超声波发送器 1 025和第三超声波发送器 1 026分别发送的不同 超声波频率的第一距离基准信号; 例如第一超声波接收器 2024只能接收第 一超声波发送器 1 024的信号, 第二超声波接收器 2025只能接收第二超声波 发送器 1 025 的信号, 第三超声波接收器 2026 只能接收第三超声波发送器 1 026。
本实施例中,基准单元 1 02可以采用多个调制及启动控制装置及三个以 上的超声波发送器,对应的测定单元 202也可以采用多个解调及时间比较装 置及三个以上的超声波接收器,但最优化方案为本实施例中所采用的一个调 制及启动控制装置、 三个声波发送器、 一个解调及时间比较装置和三个超声 波接收器。
在本发明的系统中, 主模块 1通过低频磁信号或者超声波信号将主模块 信息传给从模块 2 , 从模块 2通过第二无线通信单元 203和第一无线通信单 元 1 03的双向高速无线通信信道将主模块信息回传给主模块 1 , 主模块 1通 过识别回传的主模块信息的正确性,进而实现了从模块 2与主模块 1之间的 唯一绑定。绑定之后通过第一无线通信单元 1 03和第二无线通信单元 203之 间的双向高速无线通信信道来完成主模块 1和从模块 2之间的双向的高速大 数据量的通讯。
作为一种实施例, 第一距离基准信号的发送和快速建立无线通信连接并 进行数据交换可以不同时进行。 比如, 第一距离基准信号的发送先于快速建 立无线通信连接并进行数据交换进行; 或者主模块 1间断地发送第一距离基 准信号, 主模块 1和从模块 2在所述发送第一距离基准信号之间进行快速数 据交换。 在上述控制通信范围的快速接入近距无线通信系统中, 当从模块 2 根据接收到的第一距离基准信号判断主模块 1和从模块 2之间的距离满足预 设范围之后,和主模块 1根据预设协议快速建立无线通信连接并进行数据交 换之前, 主模块 1和从模块 2可以断开其间的第一距离基准信号的发送, 以 防止信号互相干扰, 提高传输效率和测量精度, 设备结构筒单易操作, 节省 系统资源。 具体地可以通过如下两种方式:
1 )从模块 2向主模块 1发送确定信号, 主模块 1根据接收到的确定信 号停止发送第一距离基准信号, 主模块 1和从模块 2再根据预设协议快速建 立无线通信连接并进行数据交换;
2 )从模块先停止接收所述第一距离基准信号, 主模块 1和从模块 2再 根据预设协议快速建立无线通信连接并进行数据交换。
上述控制通信范围的快速接入近距无线通信系统中的主模块 1和从模块 2可以分别设置于不同的主机中。 这样, 主模块信息也可以为主机信息, 从 而可以实现主机之间的控制通信范围的快速接入近距无线通信。
所述主机包括但不限于智能终端和 /或智能交通工具等。 其中, 智能终 端包括台式电脑、 笔记本电脑、 平板电脑、 掌上电脑、 手机、 数码相机、 数 码摄像机、 电子阅读器、 音视频播放装置以及数码相框等产品; 智能交通工 具包括智能汽车或者带有提供数据交互功能的汽车、 火车、 飞机或者轮船等 其它交通工具。
本发明同时提供的一种控制通信范围的快速接入近距无线通信方法,如 图 5、 图 6所示, 包括:
步骤 A: 主模块发送含有主模块信息和通信距离信息的距离基准信号, 从模块对所述距离基准信号进行接收, 并执行步骤 B;
步骤 B: 判断从模块和主模块之间的距离是否满足预设范围, 如果为 "是" 则执行步骤 C , 否则执行步骤 A;
步骤 C: 主模块与从模块之间建立无线通信, 进行数据交换。
通过上述方法可以实现主模块与从模块之间的控制通信范围的快速接 入近距无线通信, 进而使得设分别置有主模块和从模块的两个主机之间获得 控制通信范围的快速接入近距无线通信。
若主模块与从模块之间采用磁信号通信实施例的方式, 则上述方法中可 以采用如下步骤, 如图 7所示:
步骤 A1 :所述主模块将主模块信息调制到低频磁信号形式的距离基准信 号, 并发送所述低频磁信号;
步骤 A2 : 所述从模块接收低频磁信号并将其转换成电信号, 并执行步骤
B;
步骤 B1 : 从模块根据电信号中所含的主模块信息确定主模块; 步骤 B2 :从模块对电信号进行门限值判断,若电信号的电压值大于等于 预设的门限值则执行步骤 C , 否则执行步骤 A1。
其中, 步骤 A1和步骤 A2为步骤 A的子步骤, 步骤 B1和步骤 B2为步骤 B的子步骤。
若主模块与从模块之间采用超声波信号通信实施例的方式, 则上述方法 中可以采用如下步骤, 如图 8所示:
步骤 A1 ' :所述主模块将主模块信息调制到至少三种不同频率的超声波 信号形式的距离基准信号, 并同时发送所述至少三种不同频率的超声波信 号;
步骤 A2 ' : 所述从模块接收所述至少三个不同频率的超声波信号,并记 录不同频率的超声波信号到达从模块的时间差, 并执行步骤 B;
步骤 B1 ' : 所述从模块将超声波信号进行解调, 并获得主模块信息, 根 据所述主模块信息确定主模块;
步骤 B2 ' :所述从模块根据至少三个不同频率的超声波信号到达从模块 的时间差计算从模块与主模块之间的距离并判断主模块和从模块间的距离 是否满足预设范围, 若满足则执行步骤 C , 否则执行步骤 Α 。
其中, 步骤 Α 和步骤 A2 ' 为步骤 A的子步骤, 步骤 Β 和步骤 B2 ' 为步骤 B的子步骤。
上述方法中, 如图 9所示, 步骤 C还可细化为:
步骤 C1 :所述从模块根据所收到的主模块信息通过第二无线通信单元向 主模块回传从设备的确定连接信息;
步骤 C2 : 所述主模块通过第一无线通信单元接收所述确定连接信息, 并 通过第一无线通信单元和第二无线通信单元建立主模块与从模块之间的无 线通信。
其中, 确定连接信息中包含所述主模块信息。 这样, 便可以在主模块和 从模块之间确定唯一的连接关系, 防止其它设备冒充从模块与主模块之间进 行数据交换,进而保证了本发明的控制通信范围的快速接入近距无线通信工 具进行无线通信的安全。
作为一种实施例,无线距离基准信号的发送和快速建立无线通信连接并 进行数据交换可以不同时进行。 例如, 距离基准信号的发送可以先于主模块 和从模块之间建立高速的无线通信连接并进行数据交换进行。或者所述主模 块可以间断地发送距离基准信号, 所述主模块和从模块在所述发送距离基准 信号之间进行快速数据交换。 当从模块判断满足预设距离范围后, 主模块和 从模块之间先关闭距离基准信号的发送,再建立主模块和从模块之间的高速 的无线通信连接并进行数据交换。 具体的, 步骤 C可由下述步骤组成, 如图 1 0所示:
步骤 C1 ' :所述从模块根据所收到的主模块信息通过第二无线通信单元 向主模块回传从设备的确定连接信息;
步骤 C2 ' : 所述主模块通过第一无线通信单元接收所述确定连接信息, 并停止发送距离基准信号;
步骤 C 3 ' :通过第一无线通信单元和第二无线通信单元建立主模块与从 模块之间的无线通信。
步骤 C还可由下述步骤组成, 如图 1 1所示, 以实现不同时进行距离基 准信号的发送和建立高速无线通信连接并进行数据交换:
步骤 C1 ' ' : 所述从模块停止接收距离基准信号;
步骤 C2 ' ' :所述从模块根据所收到的主模块信息通过第二无线通信单 元向主模块回传从设备的确定连接信息;
步骤 C 3 ' ' : 所述主模块通过第一无线通信单元接收所述确定连接信 息, 并通过第一无线通信单元和第二无线通信单元建立主模块与从模块之间 的无线通信。
上述两种步骤 C的细化方案中, 确定连接信息中包含所述主模块信息。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明 的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权 利 要 求 书
1. 一种控制通信范围的快速接入近距无线通信系统, 其特征在于: 包 括至少一个主模块和至少一个从模块; 所述主模块用于发送第一距离基准信 号; 所述从模块根据接收到的所述第一距离基准信号判断主模块和从模块间 的距离是否满足预设范围,如果满足则所述主模块和从模块根据预设协议快 速建立无线通信连接并进行数据交换。
2. 根据权利要求 1所述的系统, 其特征在于: 所述主模块和从模块之 间根据预设协议快速建立无线通信连接并进行数据交换的速率高于所述主 模块发送第一距离基准信号的速率。
3. 根据权利要求 2所述的系统, 其特征在于:
所述第一距离基准信号含有主模块信息和通信距离信息;
所述主模块包括: 基准单元、 第一无线通信单元和控制所述基准单元及 第一无线通信单元工作的主模块控制单元;
所述从模块包括: 测定单元、 第二无线通信单元和控制所述测定单元及 第二无线通信单元工作的从模块控制单元;
所述基准单元用于向所述测定单元发送第一距离基准信号;
所述测定单元根据从所述基准单元接收到的第一距离基准信号判断主 模块和从模块间的距离是否满足预设范围,如果满足则将第一距离基准信号 中含有的主模块信息传送给从模块控制单元;
所述从模块控制单元接收到主模块信息后,通过第一无线通信单元和第 二无线通信单元根据预设协议快速建立起主模块和从模块之间的无线通信 连接并进行数据交换。
4. 根据权利要求 3所述的系统, 其特征在于:
所述基准单元包括顺次串联的第一微控制器、 第一编码电路、 第一驱动 电路和第一磁场发射线圏; 所述第一微控制器用于控制第一编码电路和第一 驱动电路; 所述第一编码电路用于对主模块信息的无线数据帧进行逐比特编 码, 并传送给第一驱动电路; 所述第一驱动电路用于对第一磁场发射线圏进 行驱动; 所述第一磁场发射线圏用于产生含有主模块信息的第一距离基准信 号并以磁信号形式进行发送; 所述测定单元包括顺次串联的第一磁感应电路、 第一放大电路、 第一门 限判断及解调电路和第二微控制器; 所述第一磁感应电路用于感应接收磁信 号形式的第一距离基准信号并将其转换成电信号形式并传送给第一放大电 路; 所述第一放大电路用于将第一距离基准信号进行放大并传送给第一门限 判断及解调电路; 所述第一门限判断及解调电路用于判断第一距离基准信号 是否达到预设门限值,如果达到了预设门限值则将第一距离基准信号中的主 模块信息传送给第二微控制器; 所述第二微控制器用于控制第一磁感应电 路、 第一放大电路和第一门限判断及解调电路, 并将接收到的主模块信息传 送给所述从模块控制单元。
5. 根据权利要求 4所述的系统, 其特征在于:
所述基准单元还包括设置于第一编码电路和第一驱动电路之间的第一 调制电路; 所述第一调制电路, 用于对第一编码电路编码后的主模块信息进 行调制, 并传送给第一驱动电路。
6. 根据权利要求 4或 5所述的系统, 其特征在于:
所述测定单元还包括第二编码电路、 第二驱动电路和第二磁场发射线 圏; 所述第二微控制器、 第二编码电路、 第二驱动电路和第二磁场发射线圏 顺次串联; 所述第二微控制器用于控制第二编码电路和第二驱动电路; 所述 第二编码电路用于对从模块信息的无线数据帧进行逐比特编码, 并传送给第 二驱动电路; 所述第二驱动电路用于对第二磁场发射线圏进行驱动; 所述第 二磁场发射线圏用于产生含有从模块信息的第二距离基准信号并以磁信号 形式进行发送;
所述基准单元还包括第二磁感应电路、第二放大电路和第二门限判断及 解调电路, 所述第二磁感应电路、 第二放大电路、 第二门限判断及解调电路 和第一微控制器顺次串联; 所述第二磁感应电路用于感应接收磁信号形式的 第二距离基准信号并将其转换成电信号形式, 并传送给第二放大电路; 所述 第二放大电路用于将第二距离基准信号进行放大并传送给第二门限判断及 解调电路; 所述第二门限判断及解调电路用于判断第二距离基准信号是否达 到预设门限值,如果达到了预设门限值则将第二距离基准信号中的从模块信 息传送给第一微控制器; 所述第一微控制器用于控制第二磁感应电路、 第二 放大电路和第二门限判断及解调电路, 并将接收到的从模块信息传送给所述 主模块控制单元。
7. 根据权利要求 6所述的系统, 其特征在于:
所述测定单元还包括设置于第二编码电路和第二驱动电路之间的第二 调制电路; 所述第二调制电路用于对第二编码电路编码后的从模块信息进行 调制, 并传送给第二驱动电路。
8. 根据权利要求 1至 5任一项所述的系统, 其特征在于: 所述第一距 离基准信号为低频磁信号。
9. 根据权利要求 8所述的系统, 其特征在于: 所述低频磁信号的频率 为 500Hz , 1ΚΗζ、 1 · 5ΚΗζ、 2ΚΗζ、 2· 5ΚΗζ、 3ΚΗζ、 4ΚΗζ、 5ΚΗζ、 1 0ΚΗζ、 20ΚΗζ、 30ΚΗζ或者 1幌 Ηζ。
1 0.根据权利要求 6所述的系统, 其特征在于: 所述第二距离基准信号 为低频磁信号。
1 1.根据权利要求 1 0所述的系统, 其特征在于: 所述低频磁信号的频率 为 500Hz , 1ΚΗζ、 1 · 5ΚΗζ、 2ΚΗζ、 2· 5ΚΗζ、 3ΚΗζ、 4ΚΗζ、 5ΚΗζ、 1 0ΚΗζ、 20ΚΗζ、 30ΚΗζ或者 1幌 Ηζ。
12.根据权利要求 3所述的系统, 其特征在于:
所述基准单元包括至少三个超声波发送器和至少一个调制及启动控制 装置, 所述调制及启动控制装置分别与超声波发送器连接; 所述调制及启动 控制装置用于将主模块信息调制成第一距离基准信号, 并同时启动所述至少 三个超声波发送器; 所述至少三个超声波发送器用于分别发送不同频率的超 声波形式的第一距离基准信号;
所述测定单元包括至少三个超声波接收器和至少一个解调及时间比较 装置, 所述超声波接收器分别与解调及时间比较装置连接;
所述至少三个超声波接收器用于同时分别接收所述至少三个超声波发 送器所发送的不同超声波频率的第一距离基准信号, 并将所述第一距离基准 信号传送给解调及时间比较装置;
所述解调及时间比较装置用于分别解调不同超声波频率的第一距离基 准信号, 并根据不同超声波频率的第一距离基准信号到达所述测定单元的时 间差判断主模块和从模块间的距离是否满足预设范围,如果满足则将第一距 离基准信号中含有的主模块信息传送给从模块控制单元。
1 3.根据权利要求 12所述的系统, 其特征在于: 所述基准单元包括三个 超声波发送器和一个调制及启动控制装置; 所述测定单元包括三个超声波接 收器和一个解调及时间比较装置。
14.根据权利要求 1至 3任一项所述的系统, 其特征在于: 所述第一距 离基准信号为超声波信号。
15.根据权利要求 3至 5、 1 2或 1 3任一项所述的系统, 其特征在于: 所 述第一无线通信单元与第二无线通信单元为 Wi-F i模块、 蓝牙模块或者 UWB 模块。
16.根据权利要求 3至 5、 1 2或 1 3任一项所述的系统, 其特征在于: 所 述第一无线通信单元与第二无线通信单元之间无线通信频段为 433MHz、 900MHz、 2. 4GHz、 5. 8GHz或者 60GHz。
17.根据权利要求 1至 5、 1 2或 1 3任一项所述的系统, 其特征在于: 所 述从模块根据接收到的第一距离基准信号判断主模块和从模块间的距离满 足预设范围后, 从模块先向主模块发送确定信号, 主模块根据接收到的确定 信号停止发送所述第一距离基准信号,主模块和从模块再根据预设协议快速 建立无线通信连接并进行数据交换。
18.根据权利要求 1至 5、 1 2或 1 3任一项所述的系统, 其特征在于: 所 述从模块根据接收到的第一距离基准信号判断主模块和从模块间的距离满 足预设范围后, 从模块先停止接收所述第一距离基准信号, 主模块和从模块 再根据预设协议快速建立无线通信连接并进行数据交换。
19.根据权利要求 1至 5、 1 2或 1 3任一项所述的系统, 其特征在于: 所 述主模块和从模块分别设置于不同的主机中。
20.根据权利要求 1 9 所述的控制通信范围的快速接入近距无线通信工 具, 其特征在于: 所述主机为智能终端和 /或智能交通工具。
21.根据权利要求 20 所述的控制通信范围的快速接入近距无线通信工 具, 其特征在于: 所述智能终端为台式电脑、 笔记本电脑、 平板电脑、 掌上 电脑、 手机、 数码相机、 数码摄像机、 电子阅读器、 音视频播放装置或者数 码相框; 所述智能交通工具为智能汽车或者带有提供数据交互功能的汽车、 火车、 飞机或者轮船。
22.根据权利要求 1至 5、 1 2或 1 3任一项所述的系统, 其特征在于: 所 述主模块发送第一距离基准信号及所述主模块和从模块根据预设协议快速 建立无线通信连接并进行数据交换不同时进行。
23.根据权利要求 22所述的系统, 其特征在于: 所述主模块发送第一距 离基准信号先于所述主模块和从模块根据预设协议快速建立无线通信连接 并进行数据交换进行。
24.根据权利要求 22所述的系统, 其特征在于: 所述主模块间断地发送 第一距离基准信号, 所述主模块和从模块在所述发送第一距离基准信号之间 进行快速数据交换。
25.一种控制通信范围的快速接入近距无线通信方法, 包括如下步骤: 步骤 A: 主模块发送距离基准信号, 从模块对所述距离基准信号进行接 收, 并执行步骤 B;
步骤 B:判断从模块和主模块之间的距离是否满足预设范围,如果为 "是" 则执行步骤 C, 否则执行步骤 A;
步骤 C: 主模块与从模块之间建立无线通信, 进行数据交换。
26.根据权利要求 25所述的方法, 其特征在于:
所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 A包括:
步骤 A1 :所述主模块将主模块信息转换成低频磁信号形式的距离基准信 号, 并发送所述低频磁信号, 并执行步骤 A2 ;
步骤 A2: 所述从模块接收低频磁信号并将其转换成电信号,并执行步骤
B;
所述步骤 B包括:
步骤 B1 : 从模块根据电信号中所含的主模块信息确定主模块; 步骤 B2:从模块对电信号进行门限值判断,若电信号大于等于预设的门 限值则执行步骤 C, 否则执行步骤 Al。
27.根据权利要求 25所述的方法, 其特征在于:
所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 A包括:
步骤 A1 ' :所述主模块将主模块信息转换成至少三种不同频率的超声波 信号形式的距离基准信号, 并同时发送所述至少三种不同频率的超声波信 号, 并执行步骤 A2 ' ;
步骤 A2 ' : 所述从模块接收所述至少三个不同频率的超声波信号,并记 录不同频率的超声波信号到达从模块的时间差, 并执行步骤 B;
所述步骤 B包括:
步骤 B1 ' : 所述从模块将超声波信号进行解调, 并获得主模块信息, 根 据所述主模块信息确定主模块;
步骤 B2 ' :所述从模块根据至少三个不同频率的超声波信号到达从模块 的时间差计算从模块与主模块之间的距离并判断主模块和从模块间的距离 是否满足预设范围, 若满足则执行步骤 C, 否则执行步骤 Α 。
28.根据权利要求 25至 27任一项所述的方法, 其特征在于:
所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 C包括:
步骤 C1 :所述从模块根据所收到的主模块信息通过第二无线通信单元向 主模块回传从设备的确定连接信息;
步骤 C2: 所述主模块通过第一无线通信单元接收所述确定连接信息, 并 通过第一无线通信单元和第二无线通信单元建立主模块与从模块之间的无 线通信。
29.根据权利要求 28所述的方法, 其特征在于: 所述确定连接信息中包 含所述主模块信息。
30.根据权利要求 25至 27任一项所述的方法, 其特征在于:
所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 C包括:
步骤 C1 ' :所述从模块根据所收到的主模块信息通过第二无线通信单元 向主模块回传从设备的确定连接信息;
步骤 C2 ' : 所述主模块通过第一无线通信单元接收所述确定连接信息, 并停止发送距离基准信号;
步骤 C3 ' :通过第一无线通信单元和第二无线通信单元建立主模块与从 模块之间的无线通信。
31.根据权利要求 30所述的方法, 其特征在于: 所述确定连接信息中包 含所述主模块信息。
32.根据权利要求 25至 27任一项所述的方法, 其特征在于:
所述距离基准信号含有主模块信息和通信距离信息;
所述步骤 C包括:
步骤 C1 ' ' : 所述从模块停止接收距离基准信号;
步骤 C2 ' ' :所述从模块根据所收到的主模块信息通过第二无线通信单 元向主模块回传从设备的确定连接信息;
步骤 C3 ' ' : 所述主模块通过第一无线通信单元接收所述确定连接信 息, 并通过第一无线通信单元和第二无线通信单元建立主模块与从模块之间 的无线通信。
33.根据权利要求 32所述的方法, 其特征在于: 所述确定连接信息中包 含所述主模块信息。
34.根据权利要求 25至 27任一项所述的方法, 其特征在于: 所述主模 块发送距离基准信号及所述主模块和从模块根据预设协议快速建立无线通 信连接并进行数据交换不同时进行。
35.根据权利要求 34所述的方法, 其特征在于: 所述主模块发送距离基 准信号先于所述主模块和从模块根据预设协议快速建立无线通信连接并进 行数据交换进行。
36.根据权利要求 34所述的方法, 其特征在于: 所述主模块间断地发送 距离基准信号, 所述主模块和从模块在所述发送距离基准信号之间进行快速 数据交换。
PCT/CN2010/079458 2010-09-21 2010-12-06 控制通信范围的快速接入近距无线通信系统和方法 WO2012037751A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/846,914 US20130217334A1 (en) 2010-09-21 2013-03-18 Fast access short-range communication system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010288016.9A CN102412869B (zh) 2010-09-21 2010-09-21 控制通信范围的快速接入近距无线通信系统和方法
CN201010288016.9 2010-09-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079461 Continuation WO2012037752A1 (zh) 2010-09-21 2010-12-06 用于控制通信范围的快速接入近距无线通信模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/846,914 Continuation US20130217334A1 (en) 2010-09-21 2013-03-18 Fast access short-range communication system and method

Publications (1)

Publication Number Publication Date
WO2012037751A1 true WO2012037751A1 (zh) 2012-03-29

Family

ID=45873400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079458 WO2012037751A1 (zh) 2010-09-21 2010-12-06 控制通信范围的快速接入近距无线通信系统和方法

Country Status (2)

Country Link
CN (1) CN102412869B (zh)
WO (1) WO2012037751A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315182A (zh) * 2023-04-03 2023-06-23 广州小鹏汽车科技有限公司 电池管理系统以及电池包

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595448A (zh) * 2013-10-31 2014-02-19 宇龙计算机通信科技(深圳)有限公司 蓝牙配对方法及装置
CN103634735A (zh) * 2013-11-16 2014-03-12 周胜 由声波通信和无线通信联合组成的近场通信系统和通信方法
CN103607784B (zh) * 2013-12-10 2017-02-15 上海市共进通信技术有限公司 基于无线路由器和磁场感应实现wifi连接的系统及方法
CN104735024A (zh) * 2013-12-18 2015-06-24 国民技术股份有限公司 电子设备间的网络连接方法、电子设备及电子设备系统
CN104260092B (zh) * 2014-07-08 2015-12-30 大连理工大学 一种自动跟踪机器人控制装置及自动跟踪机器人
CN105338165A (zh) * 2014-08-07 2016-02-17 国民技术股份有限公司 一种终端及无线通信方法
CN105739953B (zh) * 2014-12-08 2019-07-26 联想(北京)有限公司 一种信息处理方法及电子设备
CN104506211A (zh) * 2014-12-30 2015-04-08 李俊涛 一种基于移动终端的磁通信配对通信方法及系统
CN104716996A (zh) * 2015-03-20 2015-06-17 青岛海信电器股份有限公司 一种无线信号传输设备、方法及系统
CN107395291B (zh) * 2017-07-20 2020-11-06 向祖跃 一种可穿透电话系统的低频声波通信方法及其系统
CN107948958A (zh) * 2017-11-16 2018-04-20 中科创达软件股份有限公司 一种基于ble传递信息的方法、装置及中央设备
CN110022003A (zh) * 2018-01-10 2019-07-16 上海擎朗智能科技有限公司 一种双向无线通信的非接触供电系统
CN110350944B (zh) * 2018-09-28 2023-09-15 深圳市速腾聚创科技有限公司 无线通讯装置及无线通讯方法
CN110576884B (zh) * 2019-09-05 2021-09-28 阿纳克斯(苏州)轨道系统有限公司 一种用于轨道交通的车辆rs485级联通讯方法
CN110995363B (zh) * 2019-12-09 2021-12-21 威海市天罡仪表股份有限公司 一种模块间近距离的高速半双工超声波通讯装置
CN111181604A (zh) * 2019-12-31 2020-05-19 上海阪辉新能源科技有限公司 近场通信方法/传感器及地面端设备和移动端设备
CN112714505A (zh) * 2020-12-25 2021-04-27 上海东普信息科技有限公司 无人机与载物箱的无线通信方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334470A (zh) * 2008-07-29 2008-12-31 深圳市中兴集成电路设计有限责任公司 一种控制移动终端射频通信距离的系统和方法
CN101354739A (zh) * 2008-08-25 2009-01-28 深圳市中兴集成电路设计有限责任公司 借助标签识别控制射频sim卡通信距离的方法及通信系统
CN101763496A (zh) * 2008-12-24 2010-06-30 国民技术股份有限公司 用于移动通信终端的射频读卡器
CN101888277A (zh) * 2010-06-17 2010-11-17 深圳市江波龙电子有限公司 智能扩展卡和基于rssi的近距离通信控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2616914Y (zh) * 2003-04-03 2004-05-19 倪明旺 汽车车距预警装置
US7706432B2 (en) * 2005-08-18 2010-04-27 Sony Corporation Data transfer system, wireless communication device, wireless communication method, and computer program
JP2007158447A (ja) * 2005-11-30 2007-06-21 Canon Inc 無線通信装置
CN101726743A (zh) * 2010-01-06 2010-06-09 南京信息工程大学 车辆主动防撞定位导航装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334470A (zh) * 2008-07-29 2008-12-31 深圳市中兴集成电路设计有限责任公司 一种控制移动终端射频通信距离的系统和方法
CN101354739A (zh) * 2008-08-25 2009-01-28 深圳市中兴集成电路设计有限责任公司 借助标签识别控制射频sim卡通信距离的方法及通信系统
CN101763496A (zh) * 2008-12-24 2010-06-30 国民技术股份有限公司 用于移动通信终端的射频读卡器
CN101888277A (zh) * 2010-06-17 2010-11-17 深圳市江波龙电子有限公司 智能扩展卡和基于rssi的近距离通信控制系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315182A (zh) * 2023-04-03 2023-06-23 广州小鹏汽车科技有限公司 电池管理系统以及电池包

Also Published As

Publication number Publication date
CN102412869B (zh) 2014-05-28
CN102412869A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
WO2012037751A1 (zh) 控制通信范围的快速接入近距无线通信系统和方法
US20130217334A1 (en) Fast access short-range communication system and method
US9042817B2 (en) Method and system to automatically establish NFC link between NFC enabled electronic devices based on proximate distance
US20120045989A1 (en) Device discovery in near-field communication
JP5414059B2 (ja) 無線通信方法およびシステムならびにその無線通信装置
CN108696925A (zh) 无线通信方法以及无线通信装置
CN102768725B (zh) 一种射频装置和通信方法
CN102571654B (zh) 一种多载波频率自适应电力线通信系统及方法
KR20060039927A (ko) 무선 통신 시스템 및 무선 통신 장치
CN112913109B (zh) 用于在无线功率传输系统中发送或接收数据的设备和方法
WO2012037752A1 (zh) 用于控制通信范围的快速接入近距无线通信模块
CN109586768B (zh) 基于磁传感器的近场通讯方法
CN103209009B (zh) 一种采用nfc配对的服务器无线输入设备及其工作方法
JP4609550B2 (ja) 通信装置、通信システム、通信方法及びプログラム
JP2017063405A (ja) 標準準拠無線信号を修正するデータ送信機
CN202197407U (zh) 一种广播射频接入信息的系统
CN103187984A (zh) 一种移动终端、移动终端系统及移动终端信号传输方法
US20220279324A1 (en) Wireless Communication Devices, Corresponding Methods and Computer Programs, Mobile Device and Vehicle
CN103685044A (zh) 移动路由器
WO2013166973A1 (zh) 基于Android系统实现红外遥控的方法以及装置
CN104660536A (zh) 一种有源标签直接发送副载波的调制系统
CN203289577U (zh) 一种实现近距离无线收发系统的视音频记录仪
CN105827761A (zh) 基于手机的超高频射频识别装置及控制方法、装置
CN203243326U (zh) 无线级联音响及系统
CN202872770U (zh) 音频数据传输装置及系统、音频设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC OF 140813

122 Ep: pct application non-entry in european phase

Ref document number: 10857464

Country of ref document: EP

Kind code of ref document: A1