WO2012036500A9 - Novel electrode active material and lithium secondary battery comprising same - Google Patents

Novel electrode active material and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2012036500A9
WO2012036500A9 PCT/KR2011/006845 KR2011006845W WO2012036500A9 WO 2012036500 A9 WO2012036500 A9 WO 2012036500A9 KR 2011006845 W KR2011006845 W KR 2011006845W WO 2012036500 A9 WO2012036500 A9 WO 2012036500A9
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
lithium
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2011/006845
Other languages
French (fr)
Korean (ko)
Other versions
WO2012036500A3 (en
WO2012036500A2 (en
Inventor
최영선
홍승태
김수진
정영화
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201180035721.0A priority Critical patent/CN103109400B/en
Priority to JP2013529067A priority patent/JP5735111B2/en
Priority to EP11825460.6A priority patent/EP2584631B8/en
Publication of WO2012036500A2 publication Critical patent/WO2012036500A2/en
Publication of WO2012036500A3 publication Critical patent/WO2012036500A3/en
Publication of WO2012036500A9 publication Critical patent/WO2012036500A9/en
Priority to US13/741,419 priority patent/US9017874B2/en
Priority to US14/671,747 priority patent/US9799882B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a novel electrode active material and a lithium secondary battery comprising the same, and more particularly, there is little structural change in the repeated detachment and insertion of Li cations during charging and discharging, and a novel structural failure does not occur during overcharging.
  • An electrode active material having a structure and a lithium secondary battery including the same.
  • lithium secondary batteries used in electric vehicles have high energy density and high power output in a short time, and must be used for more than 10 years under severe conditions in which charging and discharging by a large current is repeated in a short time. It is inevitably required to have superior safety and long life characteristics than small lithium secondary batteries.
  • Lithium secondary batteries used in large-capacity power storage devices have to have high energy density and efficiency and have a long lifespan.
  • fire and explosion accidents are linked to large-scale accidents when the system malfunctions due to high performance and large capacity, thereby ensuring safety and reliability. Is a particularly important task.
  • the conventional lithium ion secondary battery uses a lithium cobalt composite oxide having a layered structure for the positive electrode and a graphite-based material for the negative electrode, but in the case of lithium cobalt composite oxide, cobalt is a main component Is very expensive and is not suitable for electric vehicles or large capacity power storage devices in terms of safety.
  • Korean Patent Application Publication No. 2004-0092245 discloses a composition formula Li. 1 + x [Ni ( 1/2 + a ) Mn ( 3 / 2-2a Mo a ] O 4 After preparing a spherical precursor powder having a particle size of 1 to 5 ⁇ m having a particle size of (0 ⁇ x ⁇ 0.1, 0 ⁇ a ⁇ 0.1), it was calcined at 700 ° C. to 1,100 ° C. to start a 5 V class positive electrode active material for a spinel structure lithium secondary battery. Doing.
  • Li p N x M y O z F a (Wherein N is at least one element selected from the group consisting of Co, Mn and Ni, and M is at least one kind selected from the group consisting of transition metal elements other than N, Al, Sn and alkaline earth metal elements) Element, wherein 0.9 ⁇ p ⁇ 1.3, 0.9 ⁇ x ⁇ 2.0, 0 ⁇ y ⁇ 0.1, 1.9 ⁇ z ⁇ 4.2, 0 ⁇ a ⁇ 0.05), the positive electrode active material of the lithium ion secondary battery having a perovskite structure Surface modified lithium-containing composite oxides are disclosed. However, they are lithium ions (Li + There is still a disadvantage in that there is a limit in securing structural safety due to repeated detachment and insertion of the c).
  • an object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application developed a lithium transition metal oxide for an electrode active material having a new composition and crystal structure. There was almost no change and structural collapse did not occur even during overcharging, and it was confirmed that the risk of ignition and explosion of the lithium secondary battery was significantly reduced, and thus the present invention was completed.
  • an object of the present invention is to provide an electrode active material having a structure in which lithium ions are firmly bonded to a centrally bonded oxide and do not interfere with detachment and insertion of lithium ions during charge and discharge.
  • the electrode active material for a lithium secondary battery according to the present invention for achieving the above object is characterized in that it comprises at least one compound selected from the formula (1).
  • M is a metal cation having an oxidation number of +2 to +4;
  • A is a -1 or -divalent anion.
  • the compound may be used for a positive electrode or a negative electrode of a lithium secondary battery, but is preferably used as a positive electrode active material in order to solve the problems.
  • the compound of Chemical Formula 1 is a bond between molybdenum (Mo)-molybdenum '(Mo') and oxygen (O)-in a direction in which Mo 4 O 6 is stacked and penetrated into the ground (paper surface). It has a structure in which an infinite chain between molybdenum (Mo) and oxygen (O) is formed. The infinite chains are arranged parallel to another infinite chain and are cross-linked with an oxygen (O) bridge to form an open channel where lithium ions are located.
  • the 'tunnel structure' means a hollow structure that can be easily ion exchanged and inserted.
  • the structure of the oxide remains stable regardless of the movement of lithium ions, which is completely different from the lithium transition metal oxides having a layered structure such as LiCoO 2 and LiNiO 2 .
  • the overcharge state refers to a state in which lithium ions are excessively released from the positive electrode active material during charging.
  • the overcharge state battery is a high temperature when O 2 is taking place the reaction in which the glass ( ⁇ ) in the crystal in the temperature of the battery because it is determined collapsed by the reaction heat generated is more elevated, so that O 2 is again A vicious cycle is released.
  • the compound of the formula (1) constituting the electrode active material of the present invention structural collapse does not occur even in the state of charge corresponding to the overcharge state in the conventional positive electrode active material. Therefore, electric vehicles or large-capacity power storage devices that require high energy density and efficiency, have a long life, and require a fairly high level of safety and reliability against fire or explosion when a system malfunctions due to high performance and capacity. It is suitable for use in lithium secondary batteries.
  • the x value may be determined within a range of 0 ⁇ x ⁇ 2, and more preferably in a range of 0 ⁇ x ⁇ 1.
  • Li x Mo 4-y M y O 6-z A z is prepared by replacing In or Na with Li in InMo 4-y M y O 6-z A z or NaMo 4-y M y O 6-z A z do.
  • InMo 4-y M y O 6-z A z or NaMo 4-y M y O 6-z A z , In and Na are located in the center of the hole, but Li is smaller in size and may also be present in other locations in the hole. .
  • x 2 can be thermodynamically determined through computational chemistry, and the distance between Li-O is 2.0 kW, which is a reliable level.
  • the range where x is 1 or less is preferable because Li is located at the center of the hole, which is a position where diffusion is likely to occur, rather than being at a position where thermodynamic stabilization is performed.
  • LiCoO 2 having a layered structure that is commonly used as a positive electrode active material
  • the lithium ions of the positive electrode move to the negative electrode during charging, the LiCoO 2 structure is collapsed.
  • the layered structure capable of reversible insertion and desorption of lithium ions CoO 2 may not be present.
  • the compound of the present invention maintains a stable tunnel structure even in Mo 4-y M y O 6-z A z where lithium ions are not present at all, there is no structural change of oxide regardless of the movement of lithium ions.
  • the structural collapse does not occur even in the previous state, that is, the overcharge state in the conventional cathode active material.
  • LiMo 4-y M y O 6-z A z is a state in which lithium ions are filled in crystal structure.
  • the transition metal (M) is preferably at least one selected from the group consisting of W, Nb, V, Al, Mg, Ti, Co, Ni and Mn, in this case, the preferred amount of substitution may be 0 ⁇ y ⁇ 0.5 have.
  • the oxygen ion in the formula (1) can be substituted with an anion (A) of the oxidation number -1 or -divalent in a predetermined range
  • the anion (A) is preferably F, Cl, Br, I, etc. It may be one or more selected from the group consisting of halogen, S and N.
  • Method for producing the compound of Formula 1 is not particularly limited, one example will be described below.
  • M'Mo 4 O 6 was synthesized for 3 to 5 days at a temperature of 850 to 950 ° C. using a metal (M ′), molybdenum (Mo), and molybdenum oxide (MoO x ) satisfying the stoichiometric ratio.
  • M ′ metal
  • Mo molybdenum
  • MoO x molybdenum oxide
  • the result obtained above may be prepared by reacting lithium iodide (LiI) with Li for 10 to 14 hours at a temperature of 400 to 500 ° C.
  • the reason why the molybdenum oxide (MoO x ) and molybdenum (Mo) are simultaneously added is to match the oxidation number of Mo.
  • the electrode active material Li x Mo 4 O 6 (0 ⁇ x ⁇ 2) when Mo is replaced with a transition metal (M) or oxygen (O) is substituted with a halogen or the like, the compound is added before the high temperature reaction. Can be prepared.
  • lithium iron phosphate when the electrode active material of the present invention is used for the positive electrode, in addition to the compound of Formula 1, other lithium-containing transition metal oxide, lithium iron phosphate may be further included.
  • the compound of Formula 1 may preferably be 50% by weight or more based on the total weight of the positive electrode active material.
  • the present invention also provides an electrode for a lithium secondary battery in which the electrode active material as described above is applied to a current collector. Looking at the specific manufacturing method of the positive electrode of the electrode including the electrode active material according to the present invention as follows.
  • a paste is prepared by adding and stirring the electrode active material of the present invention, and a binder and a conductive agent in an amount of 1 to 20% by weight with respect to the electrode active material, respectively, and then applying it to a metal plate for current collector and compressing the paste. After drying, a laminate electrode can be prepared.
  • the positive electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), cellulose, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose Roses, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers, and the like. .
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • Specific examples of commercially available conducting agents include acetylene black Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, EC series (Armak Company), Vulcan XC-72 (Cabot Company), and Super P (Timcal).
  • a filler may be optionally added as a component that suppresses the expansion of the positive electrode.
  • a filler is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • isopropyl alcohol N-methylpyrrolidone (NMP), acetone, and the like may be typically used.
  • the method of evenly applying the paste of the electrode material to the metal material can be selected from known methods or performed by a new suitable method in consideration of the properties of the material. For example, it is preferable to disperse the paste onto the current collector and then to disperse the paste uniformly using a doctor blade or the like. In some cases, a method of distributing and dispersing in one process may be used. In addition, a method such as die casting, comma coating, screen printing, or the like may be used, or the current collector may be formed on a separate substrate and then pressed or laminated. It can also be bonded with.
  • Drying of the paste applied on the metal plate is preferably dried for 1 to 3 days in a vacuum oven at 50 to 200 °C.
  • the present invention provides a lithium secondary battery comprising an electrode assembly and a lithium salt-containing non-aqueous electrolyte facing the negative electrode with the positive electrode interposed therebetween.
  • the negative electrode may be manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally further include components such as a conductive agent, a binder, and a filler as described above.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Metal oxides such as Bi 2 O 5 ;
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheet or nonwoven fabric made of glass fiber or polyethylene; Kraft paper or the like is used.
  • Typical examples currently on the market include Celgard series (Celgard R 2400, 2300 (manufactured by Hoechest Celanese Corp.), polypropylene separator (manufactured by Ube Industries Ltd. or Pall RAI), polyethylene series (Tonen or Entek), etc.).
  • a gel polymer electrolyte may be coated on the separator to increase battery stability.
  • Representative examples of such gel polymers include polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, and the like.
  • the solid electrolyte may also serve as a separator.
  • the said lithium salt containing non-aqueous electrolyte consists of a nonaqueous electrolyte and lithium.
  • a nonaqueous electrolyte a nonaqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • non-aqueous electrolyte N-methyl- 2-pyrrolidinone, a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, for example , Gamma-butylo lactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxolon Aprotic organic solvents such as derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazo
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4 phenyl lithium borate, imide and the like can be used.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and in order to improve high temperature storage characteristics, a carbon dioxide gas may be further included, and fluoro-ethylene carbonate), propene sultone (PRS), and fluoro-propylene carbonate (FPC).
  • the secondary battery according to the present invention has excellent life characteristics and safety, as can be seen in the following examples, experimental examples, and the like, and therefore, the secondary battery may be preferably used as a component battery of a medium and large battery module. Accordingly, the present invention also provides a medium-large battery module including the secondary battery as a unit cell.
  • Such medium and large battery modules can be preferably applied to a power source that requires high output and large capacity, such as an electric vehicle and a hybrid electric vehicle, and can be applied to a large capacity power storage device in which stability and reliability according to high output and large capacity are important. .
  • MoO 3 and Mo were put in a silica tube at a stoichiometric ratio and sealed under vacuum.
  • the tube was synthesized in an electric furnace at a temperature of 895 ° C. for 4 days, and the synthesis product and lithium iodide (LiI) were put back into a silica tube and sealed in a vacuum state, and reacted at a temperature of 460 ° C. for 12 hours to form lithium molybdenum.
  • Oxides were prepared.
  • the lithium molybdenum oxide as a positive electrode active material, KS 6 as a conductive agent and KF 1100 as a binder were mixed in an 8: 1: 1 ratio (weight ratio), stirred with a solvent of NMP, and then coated on an aluminum foil as a metal current collector. . This was dried in a vacuum oven at 120 ° C. for 2 hours or more to prepare a positive electrode.
  • the anode, the porous separator of Li metal, and polypropylene as the cathode and LiPF of 1 M 6 A coin-type battery was manufactured using an electrolyte solution of an ethylene carbonate (EC) and dimethyl carbonate (DMC) solution having a salt ratio of 1: 1.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a cathode active material was manufactured using LiCoO 2 instead of lithium molybdenum oxide.
  • Example 1 The lithium secondary batteries manufactured in Example 1 and Comparative Example 1 were measured for life characteristics while charging and discharging in a 2.0 to 4.2V region. The results are shown in Table 1 below.
  • the compound according to the present invention although the capacity itself is less than LiCoO 2 , when using it as a positive electrode active material, it can be seen that the actual capacity almost comparable to the theoretical capacity, and the average voltage It is very high as 3.4V.
  • X-ray diffraction was performed on the lithium molybdenum oxide prepared in Example 1.
  • XRD data were obtained at room temperature using a Bragg-Brentano diffractometer (Bruker-AXS D4 Endeavor) equipped with a Cu X-ray tube and Lynxeye detector in an angle range of 10 ° ⁇ 2 ⁇ 70 ° in 0.025 ° increments. .
  • Such X-ray diffraction data was performed Rietveld refinement using the TOPAS program, the results are shown in FIG.
  • Example 1 the reaction was reacted with LiI at 460 ° C. for 12 hours, and the reaction was repeated continuously. At this time, the Li content in the synthesized material was measured by ICP-AES (Perkin-Elmer). As a result, it was confirmed that Li is substituted up to 1.72 compared to Mo. When calculated to the state that Li is 2 compared to Mo through the calculation chemistry, Li-O distance is 2.0 ⁇ reliable level, Figure 3 is a schematic of the crystal structure of the state.
  • Example 1 The coin cells prepared in Example 1 were evaluated for electrical properties of the positive electrode active material using an electrochemical analyzer (VSP, Bio-Logic-Science Instruments). Using cyclic voltammetry (CV), experiments were performed at a rate of 0.5 mV / s in the 2.0 to 4.0V range. This result is shown in FIG.
  • VSP electrochemical analyzer
  • CV cyclic voltammetry
  • Li ions are reversibly inserted and desorbed into the lithium molybdenum oxide according to the present invention.
  • Example 1 The coin cells prepared in Example 1 were evaluated for the positive electrode active material electrical characteristics using an electrochemical analyzer (VSP, Bio-Logic-Science Instruments). In the charge-discharge mode (charge-discharge mode) was experimented in the 2.0 ⁇ 4.2V region, the results are shown in FIG.
  • the capacity of the secondary battery using lithium molybdenum oxide according to the present invention as the cathode active material is 55 mAh / g, which is about 98% of the theoretical capacity, and the average voltage is 3.4V.
  • the charge and discharge graph has a linearity, the SOC state can be easily confirmed through OCV.
  • the lithium secondary battery using the electrode active material according to the present invention has almost no structural change in oxide even after repeated charging and discharging, and there is no structural collapse during overcharging, thereby ensuring safety, thereby ensuring a safety power source or a large-capacity power storage device of an electric vehicle. There is an effect that can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to an electrode active material for a lithium secondary battery, comprising one or more compounds selected from the following chemical formula 1, and to a lithium ion battery comprising the electrode active material. Formula 1: LixMo4-yMyO6-zAz (1), where 0≤x≤2, 0≤y≤0.5, 0≤z≤0.5, and M is a metal or transition metal cation having an oxidation number of +2 to +4, and A is a negative monovalent or negative divalent anion.

Description

신규한 전극 활물질 및 이를 포함하는 리튬 이차전지 Novel electrode active material and lithium secondary battery comprising same
본 발명은 신규한 전극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로, 더욱 상세하게는 충방전 시 반복적인 Li 양이온의 탈리와 삽입에도 구조적인 변화가 거의 없고 과충전 시에도 구조적 붕괴가 일어나지 않는 신규한 구조의 전극 활물질과 이를 포함하는 리튬 이차전지에 대한 것이다. The present invention relates to a novel electrode active material and a lithium secondary battery comprising the same, and more particularly, there is little structural change in the repeated detachment and insertion of Li cations during charging and discharging, and a novel structural failure does not occur during overcharging. An electrode active material having a structure and a lithium secondary battery including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 최근에는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로서 이차전지의 사용이 실현화되고 있다. 그에 따라 다양한 요구에 부응할 수 있는 이차전지에 대해 많은 연구가 행해지고 있고, 특히, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지에 대한 수요가 높다. As the development and demand for mobile devices increases, the demand for secondary batteries as energy sources is increasing rapidly. Recently, the use of secondary batteries as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs) has been realized. It is becoming. Accordingly, many studies have been conducted on secondary batteries capable of meeting various needs, and in particular, there is a high demand for lithium secondary batteries having high energy density, high discharge voltage, and output stability.
특히, 전기자동차에 사용되는 리튬 이차전지는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성과 더불어, 대전류에 의한 충방전이 단시간에 반복되는 가혹한 조건 하에서 10년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차전지보다 월등히 우수한 안전성 및 장기 수명 특성이 필연적으로 요구된다. In particular, lithium secondary batteries used in electric vehicles have high energy density and high power output in a short time, and must be used for more than 10 years under severe conditions in which charging and discharging by a large current is repeated in a short time. It is inevitably required to have superior safety and long life characteristics than small lithium secondary batteries.
또한, 최근에는 사용하지 않는 전력을 물리적 또는 화학적 에너지로 바꾸어 저장해 두었다가 필요한 때 전기에너지로 사용할 수 있게 하는 전력저장 장치에 리튬 이차전지를 사용하기 위한 연구가 활발히 진행되고 있다. In recent years, research has been actively conducted to use a lithium secondary battery in a power storage device that converts unused power into physical or chemical energy and stores it as an electric energy when needed.
대용량 전력저장 장치에 사용되는 리튬 이차전지는 높은 에너지 밀도와 효율을 갖고 수명이 길어야 함은 물론, 고성능화 및 대용량화에 따른 시스템의 오작동 시 발화나 폭발사고는 대형사고로 연계되므로, 안전성과 신뢰성을 확보하는 것이 특히 중요한 과제이다. Lithium secondary batteries used in large-capacity power storage devices have to have high energy density and efficiency and have a long lifespan.In addition, fire and explosion accidents are linked to large-scale accidents when the system malfunctions due to high performance and large capacity, thereby ensuring safety and reliability. Is a particularly important task.
이와 관련하여, 종래의 리튬 이온 이차전지는 양극에 층상 구조(layered structure)의 리튬 코발트 복합산화물을 사용하고 음극에 흑연계 재료를 사용하는 것이 일반적이지만, 리튬 코발트 복합산화물의 경우, 주 구성원소인 코발트가 매우 고가이고 안전성 측면에서 전기자동차용 또는 대용량의 전력저장 장치용으로 적합하지 못하다. In this regard, the conventional lithium ion secondary battery uses a lithium cobalt composite oxide having a layered structure for the positive electrode and a graphite-based material for the negative electrode, but in the case of lithium cobalt composite oxide, cobalt is a main component Is very expensive and is not suitable for electric vehicles or large capacity power storage devices in terms of safety.
또한, 리튬 망간 복합산화물의 경우, 고온 및 대전류 충방전 시 전해액의 영향에 의해 망간이 전해액으로 용출되어 전지 특성을 퇴화시키는 문제가 있고, 리튬 코발트 복합산화물이나 리튬 니켈 복합산화물에 비하여 단위 중량당 용량이 작아 중량당 용량의 증가에 한계가 있다. 따라서, 기타 원소들을 포함하는 활물질에 대해 많은 연구가 행해지고 있다. In addition, in the case of lithium manganese composite oxide, there is a problem in that manganese is eluted into the electrolyte due to the influence of the electrolyte during high temperature and high current charge and discharge, thereby degrading battery characteristics, and the capacity per unit weight compared to lithium cobalt composite oxide or lithium nickel composite oxide. This is small and there is a limit to the increase in capacity per weight. Therefore, much research has been conducted on active materials containing other elements.
예를 들어, 한국 특허출원공개 제2004-0092245호는 조성식 Li1+x[Ni(1/2+a)Mn(3/2-2a)Moa]O4 (0≤x≤0.1, 0≤a≤0.1)인 입자크기 1 ~ 5 ㎛의 구형의 전구체 파우더를 제조한 후, 700℃ ~ 1,100℃로 하소시켜 스피넬 구조의 리튬 이차전지용 5V급 양극 활물질을 개시하고 있다. 또한, 한국 특허출원공개 제2010-0032395호는 LipNxMyOzFa (단, N은, Co, Mn 및 Ni 로 이루어지는 군에서 선택되는 적어도 1 종의 원소이고, M은, N 이외의 전이금속 원소, Al, Sn 및 알칼리 토금속 원소로 이루어지는 군에서 선택되는 적어도 1종의 원소이며, 0.9 ≤ p ≤ 1.3, 0.9 ≤ x ≤ 2.0, 0 ≤ y ≤ 0.1, 1.9 ≤ z ≤ 4.2, 0 ≤ a ≤ 0.05 임)으로 나타내는 페로브스카이트 구조의 리튬 이온 이차전지의 양극 활물질용 표면 수식 리튬 함유 복합 산화물을 개시하고 있다. 그러나, 이들은 리튬 이온(Li+)의 반복적인 탈리와 삽입으로 인한 구조적 안전성을 확보하기에 한계가 있다는 단점을 여전히 가지고 있다.  For example, Korean Patent Application Publication No. 2004-0092245 discloses a composition formula Li.1 + x[Ni (1/2 + a) Mn (3 / 2-2aMoa] O4After preparing a spherical precursor powder having a particle size of 1 to 5 μm having a particle size of (0 ≦ x ≦ 0.1, 0 ≦ a ≦ 0.1), it was calcined at 700 ° C. to 1,100 ° C. to start a 5 V class positive electrode active material for a spinel structure lithium secondary battery. Doing. In addition, Korean Patent Application Publication No. 2010-0032395 discloses LipNxMyOzFa (Wherein N is at least one element selected from the group consisting of Co, Mn and Ni, and M is at least one kind selected from the group consisting of transition metal elements other than N, Al, Sn and alkaline earth metal elements) Element, wherein 0.9 ≤ p ≤ 1.3, 0.9 ≤ x ≤ 2.0, 0 ≤ y ≤ 0.1, 1.9 ≤ z ≤ 4.2, 0 ≤ a ≤ 0.05), the positive electrode active material of the lithium ion secondary battery having a perovskite structure Surface modified lithium-containing composite oxides are disclosed. However, they are lithium ions (Li+There is still a disadvantage in that there is a limit in securing structural safety due to repeated detachment and insertion of the c).
그 외에도 양극 활물질의 안전성을 확보하기 위한 연구가 계속되고 있으나, 현재까지 중대형의 리튬 이차전지의 안전성을 신뢰할 만한 수준의 양극 활물질 및 이를 포함하는 리튬 이차전지의 구성은 아직 제안되지 못하고 있다.  In addition, researches to secure the safety of the positive electrode active material are continuing, but until now, the composition of a positive electrode active material and a lithium secondary battery including the same that have a reliable level of safety of medium and large lithium secondary batteries have not been proposed.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다. Accordingly, an object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 새로운 조성과 결정 구조의 전극 활물질용 리튬 전이금속 산화물을 개발하였고, 이러한 화합물은 충방전 시 반복적인 Li 이온의 탈리와 삽입에도 구조적인 변화가 거의 없고 과충전 시에도 구조적 붕괴가 일어나지 않아, 리튬 이차전지의 발화 및 폭발의 위험성이 현저히 감소함을 확인하고, 본 발명을 완성하기에 이르렀다.  After in-depth research and various experiments, the inventors of the present application developed a lithium transition metal oxide for an electrode active material having a new composition and crystal structure. There was almost no change and structural collapse did not occur even during overcharging, and it was confirmed that the risk of ignition and explosion of the lithium secondary battery was significantly reduced, and thus the present invention was completed.
구체적으로 본 발명은 견고하게 결합된 산화물의 중앙부에 리튬 이온이 위치하고 충방전 시 상기 리튬 이온의 탈리 및 삽입에 아무런 간섭이 되지 않는 구조를 갖는 전극 활물질을 제공하는 것을 목적으로 한다.  Specifically, an object of the present invention is to provide an electrode active material having a structure in which lithium ions are firmly bonded to a centrally bonded oxide and do not interfere with detachment and insertion of lithium ions during charge and discharge.
따라서, 상기 목적을 달성하기 위한 본 발명에 따른 리튬 이차전지용 전극 활물질은 하기 화학식 1에서 선택되는 하나 이상의 화합물을 포함하는 것을 특징으로 한다.  Therefore, the electrode active material for a lithium secondary battery according to the present invention for achieving the above object is characterized in that it comprises at least one compound selected from the formula (1).
LixMo4-yMyO6-zAz (1)Li x Mo 4-y M y O 6-z A z (1)
상기 식에서,  Where
0≤x≤2; 0 ≦ x ≦ 2;
0≤y≤0.5; 0 ≦ y ≦ 0.5;
0≤z≤0.5; 0 ≦ z ≦ 0.5;
M은 +2 내지 +4의 산화수를 가진 금속 양이온이고; M is a metal cation having an oxidation number of +2 to +4;
A는 -1 또는 -2가의 음이온이다.  A is a -1 or -divalent anion.
상기 화합물은 리튬 이차전지의 양극 또는 음극에 사용될 수 있으나, 상기 문제점들을 해결하기 위하여 양극 활물질로 사용되는 것이 바람직하다. The compound may be used for a positive electrode or a negative electrode of a lithium secondary battery, but is preferably used as a positive electrode active material in order to solve the problems.
상기 화학식 1의 화합물과 관련하여, 도 1에는 그것의 결정 구조가 모식적으로 도시되어 있다.  In relation to the compound of Formula 1, its crystal structure is schematically illustrated in FIG. 1.
도 1을 참조하면, 상기 화학식 1의 화합물은 Mo4O6가 적층되어 지면(종이면)으로 뚫고 들어가는 방향으로 연속적으로 몰리브덴(Mo) - 몰리브덴'(Mo')간의 결합과 산소(O) - 몰리브덴(Mo) - 산소(O) 간의 무한(infinite) 체인이 형성된 구조를 갖는다. 상기 무한 체인은 또 다른 무한 체인에 대하여 평행하게 배열되고, 리튬 이온이 위치할 개방된 채널을 형성하기 위해 산소(O) 브릿지(bridge)로 가교(cross-linked)되어 있다. Referring to FIG. 1, the compound of Chemical Formula 1 is a bond between molybdenum (Mo)-molybdenum '(Mo') and oxygen (O)-in a direction in which Mo 4 O 6 is stacked and penetrated into the ground (paper surface). It has a structure in which an infinite chain between molybdenum (Mo) and oxygen (O) is formed. The infinite chains are arranged parallel to another infinite chain and are cross-linked with an oxygen (O) bridge to form an open channel where lithium ions are located.
즉, Mo - Mo' 간의 결합 및 O - Mo - O 간의 결합으로 상호 견고하게 결합된 터널 구조의 산화물의 중앙에 리튬 이온이 위치하므로 충방전 시 상기 리튬 이온의 탈리 및 삽입에 전반적으로 간섭이 없다. 여기서, '터널 구조'란 용이하게 이온 교환 및 삽입이 이루어질 수 있는 중공 구조를 의미한다. That is, since lithium ions are positioned in the center of the oxide of the tunnel structure that is firmly bonded to each other by the bond between Mo-Mo 'and O-Mo-O, there is no overall interference on the detachment and insertion of the lithium ions during charge and discharge. . Here, the 'tunnel structure' means a hollow structure that can be easily ion exchanged and inserted.
따라서, 반복적인 충방전 시에도 리튬 이온의 이동에 관계없이 산화물의 구조에 변화가 없어 안정적이며, 이는 LiCoO2, LiNiO2 등과 같은 층상구조의 리튬 전이금속 산화물과는 전혀 다른 특성이다.Therefore, even after repeated charging and discharging, the structure of the oxide remains stable regardless of the movement of lithium ions, which is completely different from the lithium transition metal oxides having a layered structure such as LiCoO 2 and LiNiO 2 .
한편, 과충전 상태는 충전 시 양극 활물질로부터 리튬 이온이 과잉으로 빠져 나온 상태를 의미한다. 이러한 과충전 상태에서 전지가 고온이면 O2가 결정에서 유리(遊離)되는 반응이 일어나고, 상기 반응에 의해 결정이 붕괴되어 열이 발생하기 때문에 전지의 온도는 더욱 상승하게 되며, 이에 따라 O2가 다시 유리되는 악순환이 일어난다.Meanwhile, the overcharge state refers to a state in which lithium ions are excessively released from the positive electrode active material during charging. The overcharge state battery is a high temperature when O 2 is taking place the reaction in which the glass (遊離) in the crystal in the temperature of the battery because it is determined collapsed by the reaction heat generated is more elevated, so that O 2 is again A vicious cycle is released.
반면에, 본 발명의 전극 활물질을 구성하는 화학식 1의 화합물은, 종래의 양극 활물질에서 과충전 상태에 대응하는 충전 상태에도 구조적 붕괴가 일어나지 않는다. 따라서, 높은 에너지 밀도와 효율을 갖고 수명이 길어야 함은 물론, 고성능화 및 대용량화에 따른 시스템의 오작동 시 발화나 폭발 사고에 대비하여 상당히 높은 수준의 안전성과 신뢰성이 요구되는 전기자동차용 또는 대용량 전력저장 장치용 리튬 이차전지에 사용되기에 적합하다.  On the other hand, the compound of the formula (1) constituting the electrode active material of the present invention, structural collapse does not occur even in the state of charge corresponding to the overcharge state in the conventional positive electrode active material. Therefore, electric vehicles or large-capacity power storage devices that require high energy density and efficiency, have a long life, and require a fairly high level of safety and reliability against fire or explosion when a system malfunctions due to high performance and capacity. It is suitable for use in lithium secondary batteries.
이와 관련하여 상기 화학식 1를 참조하여 설명하면, x 값은 0≤x≤2의 범위 내에서 결정되고, 더욱 바람직하게는 0≤x≤1의 범위일 수 있다. In this regard, referring to Formula 1, the x value may be determined within a range of 0 ≦ x ≦ 2, and more preferably in a range of 0 ≦ x ≦ 1.
LixMo4-yMyO6-zAz는 InMo4-yMyO6-zAz 또는 NaMo4-yMyO6-zAz에서 In 또는 Na를 Li으로 치환하여 제조된다. InMo4-yMyO6-zAz 또는 NaMo4-yMyO6-zAz에서는 In과 Na이 홀의 중앙에 위치하나 Li은 이들에 비해 크기가 작아서 홀의 다른 위치에도 존재할 수 있다. 제조 과정에서 LiI와 섞어서 460℃로 12시간 이상 열을 가함으로써 열역학적으로 안정한 위치에 존재할 수 있으며, 원소 분석 시 x=1.72까지 치환되는 것을 확인하였다. 또한, 계산화학을 통해 열역학적으로 x=2까지 가능한 것을 확인하였으며, 이 때 Li-O간의 거리는 2.0Å으로서 신뢰할만한 수준이다. 그러나 전기화학적으로 삽입/탈리 시에는 Li이 열역학적으로 안정화되는 위치에 놓이기 보다는 diffusion이 되기 쉬운 위치인 홀 중앙에 위치하므로 x가 1 이하인 범위가 바람직하다.Li x Mo 4-y M y O 6-z A z is prepared by replacing In or Na with Li in InMo 4-y M y O 6-z A z or NaMo 4-y M y O 6-z A z do. InMo 4-y M y O 6-z A z or NaMo 4-y M y O 6-z A z , In and Na are located in the center of the hole, but Li is smaller in size and may also be present in other locations in the hole. . Mixing with LiI during the manufacturing process may be present in a thermodynamically stable position by applying heat at 460 ℃ for more than 12 hours, it was confirmed that the element was replaced by x = 1.72 in the analysis. In addition, it was confirmed that x = 2 can be thermodynamically determined through computational chemistry, and the distance between Li-O is 2.0 kW, which is a reliable level. However, in the case of insertion / detachment electrochemically, the range where x is 1 or less is preferable because Li is located at the center of the hole, which is a position where diffusion is likely to occur, rather than being at a position where thermodynamic stabilization is performed.
x=0인 경우에는 Mo4-yMyO6-zAz로 양극에 리튬 이온이 존재하지 않는 형태가 된다. 이러한 만충전 상태는 종래의 양극 활물질에서 과충전 상태에 대응한다. In the case of x = 0, it is Mo 4-y M y O 6-z A z in which lithium ions are not present in the positive electrode. This full charge state corresponds to an overcharge state in a conventional positive electrode active material.
일반적으로 양극 활물질로 많이 사용되는 층상 구조의 LiCoO2의 경우에는, 충전 시 양극의 리튬 이온이 음극으로 모두 이동하면 LiCoO2의 구조가 붕괴되므로, 리튬 이온의 가역적인 삽입과 탈리가 가능한 층상 구조의 CoO2가 존재할 수 없다.In the case of LiCoO 2 having a layered structure that is commonly used as a positive electrode active material, when the lithium ions of the positive electrode move to the negative electrode during charging, the LiCoO 2 structure is collapsed. Thus, the layered structure capable of reversible insertion and desorption of lithium ions CoO 2 may not be present.
반면에, 본 발명의 화합물은 리튬 이온이 전혀 존재하지 않는 Mo4-yMyO6-zAz에서도 안정적인 터널 구조가 유지되므로, 리튬 이온의 이동에 관계없이 산화물의 구조적 변화가 없어서, 만충전 상태, 즉, 종래 양극 활물질에서의 과충전 상태에도 구조적 붕괴가 일어나지 않는다.On the other hand, since the compound of the present invention maintains a stable tunnel structure even in Mo 4-y M y O 6-z A z where lithium ions are not present at all, there is no structural change of oxide regardless of the movement of lithium ions. The structural collapse does not occur even in the previous state, that is, the overcharge state in the conventional cathode active material.
한편, x=1인 경우는 LiMo4-yMyO6-zAz로서 결정 구조적으로 리튬 이온이 채워진 상태이다. 리튬 이차전지는 양극의 리튬 이온이 음극으로 이동하면서 충전되고 음극의 리튬 이온이 양극으로 이동하면서 방전되므로, x=1인 경우는 상당 부분 방전 상태를 의미한다.On the other hand, when x = 1, LiMo 4-y M y O 6-z A z is a state in which lithium ions are filled in crystal structure. In the lithium secondary battery, since lithium ions of the positive electrode are charged while moving to the negative electrode, and lithium ions of the negative electrode are discharged while moving to the positive electrode, x = 1 means a substantial portion of the discharge state.
따라서, 이 경우에 다량의 리튬 이온이 모두 음극으로 이동할 수 있으므로 높은 충전 효율을 발휘할 수 있다. Therefore, in this case, since a large amount of lithium ions can all move to the cathode, high charging efficiency can be exhibited.
또한, 상기 화학식 1에서 Mo의 일부는 +2가 내지 +4가 산화수의 다른 금속(M) 원소로 치환될 수 있다. 따라서, 화학식 1은 y=0인 경우에 LixMo4O6-zAz로 표현될 수 있고, y=0.5인 경우에 LixMo3.5M0.5O6-zAz로 표현될 수 있다. In addition, a part of Mo in Chemical Formula 1 may be substituted with another metal (M) element of + 2-valent to + 4-valent oxidation number. Therefore, Formula 1 may be represented by Li x Mo 4 O 6-z A z when y = 0, and may be represented by Li x Mo 3.5 M 0.5 O 6-z A z when y = 0.5. .
상기 전이금속(M)은 바람직하게는 W, Nb, V, Al, Mg, Ti, Co, Ni 및 Mn으로 이루어진 군에서 선택되는 하나 이상이며, 이 경우, 바람직한 치환량은 0<y≤0.5일 수 있다. The transition metal (M) is preferably at least one selected from the group consisting of W, Nb, V, Al, Mg, Ti, Co, Ni and Mn, in this case, the preferred amount of substitution may be 0 <y ≤ 0.5 have.
또한, 상기 화학식 1에서 산소이온은 소정의 범위에서 산화수 -1가 또는 -2가의 음이온(A)로 치환될 수 있는 바, 상기 음이온(A)은 바람직하게는 F, Cl, Br, I 등과 같은 할로겐, S 및 N으로 이루어진 군에서 선택되는 하나 이상인 것일 수 있다. 이러한 음이온들의 치환에 의해 전이금속과의 결합력이 우수해지고 화합물의 구조 전이가 방지되기 때문에, 전지의 수명을 향상시킬 수 있다. 반면에, 음이온(A)의 치환량이 너무 많으면(z>0.5), 산화물이 안정적인 터널구조를 유지하지 못하여 오히려 수명 특성이 저하되므로 바람직하지 않다.  In addition, the oxygen ion in the formula (1) can be substituted with an anion (A) of the oxidation number -1 or -divalent in a predetermined range, the anion (A) is preferably F, Cl, Br, I, etc. It may be one or more selected from the group consisting of halogen, S and N. By the substitution of these anions, the bonding strength with the transition metal is excellent and the structural transition of the compound is prevented, so that the life of the battery can be improved. On the other hand, if the amount of substitution of the anion (A) is too large (z> 0.5), it is not preferable because the oxide does not maintain a stable tunnel structure and the lifespan characteristics are lowered.
상기 화학식 1의 화합물의 제조방법은 특별히 한정되는 것은 아니며, 이하에서 하나의 예를 설명한다.  Method for producing the compound of Formula 1 is not particularly limited, one example will be described below.
우선, 화학양론적 비율을 만족하는 금속(M')과 몰리브덴(Mo) 및 몰리브덴 산화물(MoOx)을 이용하여 850 ~ 950℃의 온도 하에서 3일 내지 5일간 M'Mo4O6을 합성하고, 상기에서 얻어진 결과물을 요오드화 리튬(LiI)과 400 ~ 500℃의 온도 하에서 10 시간 내지 14 시간 동안 반응시켜 상기 금속(M')을 Li으로 치환하는 과정으로 제조될 수 있다. First, M'Mo 4 O 6 was synthesized for 3 to 5 days at a temperature of 850 to 950 ° C. using a metal (M ′), molybdenum (Mo), and molybdenum oxide (MoO x ) satisfying the stoichiometric ratio. The result obtained above may be prepared by reacting lithium iodide (LiI) with Li for 10 to 14 hours at a temperature of 400 to 500 ° C.
상기 방법에서, 금속(M')은 예를 들어 나트륨(Na) 또는 인듐(In)일 수 있고, 몰리브덴 산화물(MoOx)은 x 값이 x=2인 MoO2 또는 x=3인 MoO3일 수 있다. 몰리브덴 산화물(MoOx)과 몰리브덴(Mo)를 동시에 투입하는 이유는 Mo의 산화수를 맞추기 위함이다. In this method, the metal (M ′) can be for example sodium (Na) or indium (In), and the molybdenum oxide (MoO x ) is a MoO 2 having an x value of x = 2 or a MoO 3 having x = 3. Can be. The reason why the molybdenum oxide (MoO x ) and molybdenum (Mo) are simultaneously added is to match the oxidation number of Mo.
상기 전극 활물질 LixMo4O6 (0≤x≤2)에서 Mo를 전이금속(M)으로 치환하거나 산소(O)를 할로겐 등으로 치환하는 경우에는, 그에 따른 화합물을 고온 반응 이전에 추가하여 제조될 수 있다.In the electrode active material Li x Mo 4 O 6 (0 ≦ x ≦ 2), when Mo is replaced with a transition metal (M) or oxygen (O) is substituted with a halogen or the like, the compound is added before the high temperature reaction. Can be prepared.
경우에 따라서는, 본 발명의 전극 활물질이 양극에 사용되는 경우, 상기 화학식 1의 화합물 이외에, 기타 리튬 함유 전이금속 산화물, 리튬 철 인산화물 등이 추가로 포함될 수도 있다. In some cases, when the electrode active material of the present invention is used for the positive electrode, in addition to the compound of Formula 1, other lithium-containing transition metal oxide, lithium iron phosphate may be further included.
상기 기타 리튬 함유 전이금속 산화물의 예로는, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+yMn2-yO4 (여기서, y 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-yMyO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.Examples of the other lithium-containing transition metal oxides include layered compounds such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), or compounds substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + y Mn 2-y O 4 (where y is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2, and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site-type lithium nickel oxide represented by the formula LiNi 1-y M y O 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and y = 0.01 to 0.3; Formula LiMn 2-y M y O 2 , wherein M = Co, Ni, Fe, Cr, Zn or Ta and y = 0.01 to 0.1, or Li 2 Mn 3 MO 8 , where M = Fe, Co, Lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like, but are not limited to these.
상기 리튬 철 인산화물의 예로는, 올리빈 결정 구조의 Li1+aFe1-xMx(PO4-b)Xb (여기서, M = Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 중에서 선택된 1종 이상이고, X = F, S 및 N 중에서 선택된 1종 이상이며, -0.5≤a≤+0.5, 0≤x≤0.5, 0≤b≤0.1) 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. Examples of the lithium iron phosphate include Li 1 + a Fe 1-x M x (PO 4-b ) X b having an olivine crystal structure, wherein M = Al, Mg, Ni, Co, Mn, Ti, Ga At least one selected from among Cu, V, Nb, Zr, Ce, In, Zn, and Y, and at least one selected from X = F, S, and N, -0.5≤a≤ + 0.5, and 0≤x≤0.5 , 0 ≦ b ≦ 0.1) and the like, but are not limited thereto.
이 경우, 화학식 1의 화합물은 바람직하게는 양극 활물질 전체 중량을 기준으로 50 중량% 이상일 수 있다.  In this case, the compound of Formula 1 may preferably be 50% by weight or more based on the total weight of the positive electrode active material.
본 발명은 또한 상기와 같은 전극 활물질이 집전체에 도포되어 있는 리튬 이차전지용 전극을 제공한다. 본 발명에 따른 전극 활물질을 포함하는 전극 중 양극의 구체적인 제조방법을 예시적으로 살펴보면 다음과 같다. The present invention also provides an electrode for a lithium secondary battery in which the electrode active material as described above is applied to a current collector. Looking at the specific manufacturing method of the positive electrode of the electrode including the electrode active material according to the present invention as follows.
우선, 본 발명의 전극 활물질과, 상기 전극 활물질에 대해 바인더 및 도전제를 각각 1 내지 20 중량%의 함량으로 분산액에 첨가 및 교반하여 페이스트를 제조한 후, 이를 집전체용 금속판에 도포하고 압축한 뒤 건조하여 라미네이트 형상의 전극을 제조할 수 있다. First, a paste is prepared by adding and stirring the electrode active material of the present invention, and a binder and a conductive agent in an amount of 1 to 20% by weight with respect to the electrode active material, respectively, and then applying it to a metal plate for current collector and compressing the paste. After drying, a laminate electrode can be prepared.
상기 양극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.  The positive electrode current collector is generally made to a thickness of 3 μm to 500 μm. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used. The current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 바인더의 예로는, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴플루오라이드(PVdF), 셀룰로오즈, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), cellulose, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose Roses, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers, and the like. .
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전제의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다. The conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Specific examples of commercially available conducting agents include acetylene black Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, EC series (Armak Company), Vulcan XC-72 (Cabot Company), and Super P (Timcal).
경우에 따라서는, 양극의 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다. In some cases, a filler may be optionally added as a component that suppresses the expansion of the positive electrode. Such a filler is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples of the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
상기 분산액으로는 대표적으로 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등이 사용될 수 있다. As the dispersion, isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like may be typically used.
전극 재료의 페이스트를 금속 재료에 고르게 도포하는 방법은 재료의 특성 등을 감안하여 공지 방법 중에서 선택하거나 새로운 적절한 방법으로 행할 수 있다. 예를 들어, 페이스트를 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시키는 것이 바람직하다. 경우에 따라서는, 분배와 분산 과정을 하나의 공정으로 실행하는 방법을 사용할 수도 있다. 이 밖에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 택할 수도 있으며, 또는 별도의 기재(substrate) 위에 성형한 후 프레싱 또는 라미네이션 방법에 의해 집전체와 접합시킬 수도 있다.  The method of evenly applying the paste of the electrode material to the metal material can be selected from known methods or performed by a new suitable method in consideration of the properties of the material. For example, it is preferable to disperse the paste onto the current collector and then to disperse the paste uniformly using a doctor blade or the like. In some cases, a method of distributing and dispersing in one process may be used. In addition, a method such as die casting, comma coating, screen printing, or the like may be used, or the current collector may be formed on a separate substrate and then pressed or laminated. It can also be bonded with.
금속판 위에 도포된 페이스트의 건조는 50 내지 200℃의 진공오븐에서 1 내지 3일 동안 건조시키는 것이 바람직하다.  Drying of the paste applied on the metal plate is preferably dried for 1 to 3 days in a vacuum oven at 50 to 200 ℃.
또한, 본 발명은 상기 양극이 분리막을 사이에 두고 음극과 대면하고 있는 전극조립체와 리튬염 함유 비수계 전해질을 포함하는 것으로 구성된 리튬 이차전지를 제공한다. In another aspect, the present invention provides a lithium secondary battery comprising an electrode assembly and a lithium salt-containing non-aqueous electrolyte facing the negative electrode with the positive electrode interposed therebetween.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 도전제, 바인더 및 충진제 등의 성분들이 선택적으로 더 포함될 수도 있다. For example, the negative electrode may be manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally further include components such as a conductive agent, a binder, and a filler as described above.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다. The negative electrode current collector is generally made to a thickness of 3 to 500 ㎛. Such a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.The negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포; 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열(CelgardR 2400, 2300(Hoechest Celanese Corp. 제품), 폴리프로필렌 분리막(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열(Tonen 또는 Entek) 등이 있다.The separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally from 0.01 to 10 ㎛ ㎛, thickness is generally 5 ~ 300 ㎛. As such a separator, for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheet or nonwoven fabric made of glass fiber or polyethylene; Kraft paper or the like is used. Typical examples currently on the market include Celgard series (Celgard R 2400, 2300 (manufactured by Hoechest Celanese Corp.), polypropylene separator (manufactured by Ube Industries Ltd. or Pall RAI), polyethylene series (Tonen or Entek), etc.).
경우에 따라서, 상기 분리막 위에는 전지의 안정성을 높이기 위하여 겔 폴리머 전해질이 코팅될 수 있다. 이러한 겔 폴리머의 대표적인 예로는 폴리에틸렌옥사이드, 폴리비닐리덴플루라이드, 폴리아크릴로나이트릴 등을 들 수 있다. In some cases, a gel polymer electrolyte may be coated on the separator to increase battery stability. Representative examples of such gel polymers include polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, and the like.
전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
상기 리튬염 함유 비수계 전해질은, 비수 전해질과 리튬으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다. The said lithium salt containing non-aqueous electrolyte consists of a nonaqueous electrolyte and lithium. As the nonaqueous electrolyte, a nonaqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 에틸메틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다. As said non-aqueous electrolyte, N-methyl- 2-pyrrolidinone, a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, for example , Gamma-butylo lactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolon, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxolon Aprotic organic solvents such as derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used. Can be.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다. Examples of the organic solid electrolyte include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4 phenyl lithium borate, imide and the like can be used.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(fluoro-ethylene carbonate), PRS(propene sultone), FPC(fluoro-propylene carbonate) 등을 더 포함시킬 수 있다. In addition, in the electrolyte solution, for the purpose of improving the charge and discharge characteristics, flame retardancy, etc., for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. . In some cases, in order to impart nonflammability, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and in order to improve high temperature storage characteristics, a carbon dioxide gas may be further included, and fluoro-ethylene carbonate), propene sultone (PRS), and fluoro-propylene carbonate (FPC).
본 발명에 따른 이차전지는 이후 설명하는 실시예, 실험예 등에서도 확인할 수 있는 바와 같이, 우수한 수명 특성과 안전성을 겸비하고 있으므로, 특히 중대형 전지모듈의 구성 전지로서 바람직하게 사용될 수 있다. 따라서, 본 발명은 또한 상기와 같은 이차전지를 단위전지로 포함하는 중대형 전지모듈을 제공한다.  The secondary battery according to the present invention has excellent life characteristics and safety, as can be seen in the following examples, experimental examples, and the like, and therefore, the secondary battery may be preferably used as a component battery of a medium and large battery module. Accordingly, the present invention also provides a medium-large battery module including the secondary battery as a unit cell.
이러한 중대형 전지모듈은 전기자동차, 하이브리드 전기자동차 등과 같이 고출력, 대용량이 요구되는 동력원에 바람직하게 적용될 수 있음은 물론, 고출력, 대용량에 따른 안정성 및 신뢰성의 확보가 중요한 대용량의 전력저장 장치에 적용될 수 있다.  Such medium and large battery modules can be preferably applied to a power source that requires high output and large capacity, such as an electric vehicle and a hybrid electric vehicle, and can be applied to a large capacity power storage device in which stability and reliability according to high output and large capacity are important. .
중대형 전지모듈의 구성 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 그에 대한 설명을 명세서에서는 생략한다. Since the construction of the medium-large battery module and its manufacturing method are well known in the art, a description thereof will be omitted.
도 1은 LiMo4O6 결정구조의 도식이다;1 is a schematic of a LiMo 4 O 6 crystal structure;
도 2는 실험예 2에 따른 결과를 보여주는 그래프이다; 2 is a graph showing the results according to Experimental Example 2;
도 3은 실험예 3에 따른 결과를 보여주는 그래프이다; 3 is a graph showing the results according to Experimental Example 3;
도 4는 실험예 4에 따른 결과를 보여주는 그래프이다; 4 is a graph showing the results according to Experimental Example 4;
도 5는 실험예 5에 따른 결과를 보여주는 그래프이다.  5 is a graph showing the results according to Experimental Example 5.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are provided to illustrate the present invention, and the scope of the present invention is not limited thereto.
<실시예 1><Example 1>
In, MoO3 및 Mo을 화학양론적 비율을 맞추어 실리카 튜브에 넣어 진공상태에서 실링하였다. 이 튜브를 전기로에서 895℃의 온도로 4일 동안 합성하고, 상기 합성 결과물과 요오드화 리튬(LiI)를 다시 실리카 튜브에 넣어 진공상태에서 실링한 후, 460℃의 온도로 12 시간 동안 반응시켜 리튬 몰리브덴 산화물을 제조하였다.In, MoO 3 and Mo were put in a silica tube at a stoichiometric ratio and sealed under vacuum. The tube was synthesized in an electric furnace at a temperature of 895 ° C. for 4 days, and the synthesis product and lithium iodide (LiI) were put back into a silica tube and sealed in a vacuum state, and reacted at a temperature of 460 ° C. for 12 hours to form lithium molybdenum. Oxides were prepared.
양극 활물질로서 상기 리튬 몰리브덴 산화물과 도전제로서 KS 6 및 바인더로서 KF 1100을 8 : 1 : 1 비율(중량비)로 혼합하여, 용매인 NMP와 함께 교반한 후, 금속 집전체인 알루미늄 호일에 코팅하였다. 이를 120℃의 진공오븐에서 2 시간 이상 건조하여 양극을 제조하였다. The lithium molybdenum oxide as a positive electrode active material, KS 6 as a conductive agent and KF 1100 as a binder were mixed in an 8: 1: 1 ratio (weight ratio), stirred with a solvent of NMP, and then coated on an aluminum foil as a metal current collector. . This was dried in a vacuum oven at 120 ° C. for 2 hours or more to prepare a positive electrode.
상기 양극과, 음극으로 Li 금속, 및 폴리프로필렌의 다공성 분리막 및 1 M의 LiPF6 염이 녹아있는 부피비 1 : 1의 에틸렌카보네이트(EC)와 다이메틸카보네이트(DMC) 용액을 전해액을 사용하여 코인형 전지를 제작하였다.  The anode, the porous separator of Li metal, and polypropylene as the cathode and LiPF of 1 M6A coin-type battery was manufactured using an electrolyte solution of an ethylene carbonate (EC) and dimethyl carbonate (DMC) solution having a salt ratio of 1: 1.
<비교예 1>Comparative Example 1
리튬 몰리브덴 산화물 대신에 LiCoO2를 사용하여 양극 활물질을 제조하였다는 점을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 제작하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that a cathode active material was manufactured using LiCoO 2 instead of lithium molybdenum oxide.
<실험예 1>Experimental Example 1
상기 실시예 1과 비교예 1에서 각각 제작된 리튬 이차전지들을 2.0 내지 4.2V 영역에서 충방전을 진행하면서 수명 특성을 측정하였다. 그 결과를 하기 표 1에 나타내었다. The lithium secondary batteries manufactured in Example 1 and Comparative Example 1 were measured for life characteristics while charging and discharging in a 2.0 to 4.2V region. The results are shown in Table 1 below.
[표 1]TABLE 1
Figure PCTKR2011006845-appb-I000001
Figure PCTKR2011006845-appb-I000001
상기 표 1에서 보는 바와 같이, 본 발명에 따른 화합물은 비록 용량 자체는 LiCoO2 보다 적지만, 이를 양극 활물질로 사용하는 경우, 이론 용량에 거의 필적하는 용량을 실제 나타냄을 확인할 수 있고, 평균 전압도 3.4V로서 매우 높음을 알 수 있다.As shown in Table 1, the compound according to the present invention, although the capacity itself is less than LiCoO 2 , when using it as a positive electrode active material, it can be seen that the actual capacity almost comparable to the theoretical capacity, and the average voltage It is very high as 3.4V.
<실험예 2>Experimental Example 2
실시예 1에서 제조된 리튬 몰리브덴 산화물에 대해 X-ray 회절(XRD)를 수행하였다. X-ray diffraction (XRD) was performed on the lithium molybdenum oxide prepared in Example 1.
XRD 데이터는 0.025°씩 증가하는 조건으로 10°≤2θ≤70°의 각도 범위에서 Cu X-ray tube와 Lynxeye 검출기가 구비된 Bragg-Brentano diffractometer (Bruker-AXS D4 Endeavor)를 사용하여 상온에서 수득하였다. 그러한 X-ray 회절 데이터를 TOPAS 프로그램을 사용하여 Rietveld refinement 수행하였고, 그 결과를 도 2에 나타내었다. XRD data were obtained at room temperature using a Bragg-Brentano diffractometer (Bruker-AXS D4 Endeavor) equipped with a Cu X-ray tube and Lynxeye detector in an angle range of 10 ° ≤2θ≤70 ° in 0.025 ° increments. . Such X-ray diffraction data was performed Rietveld refinement using the TOPAS program, the results are shown in FIG.
도 2의 특징적인 피크들에서 리튬 몰리브덴 산화물이 제조된 것을 확인할 수 있다.  It can be seen from the characteristic peaks of FIG. 2 that lithium molybdenum oxide was produced.
<실험예 3>Experimental Example 3
실시예 1에서 LiI와 460℃에서 12시간 반응시키고, 이 반응을 연속적으로 반복하였다. 이 때 합성된 물질에서의 Li 함량을 ICP-AES(Perkin-Elmer)로 측정하였다. 그 결과 Li은 Mo 대비 1.72까지 치환되는 것을 확인하였다. 계산화학을 통해 열역학적으로 Li이 Mo 대비 2인 상태까지 계산하였을 때, Li-O 거리는 2.0Å으로 신뢰할만한 수준이며, 도 3은 상기 상태의 결정구조를 도식화한 것이다. In Example 1, the reaction was reacted with LiI at 460 ° C. for 12 hours, and the reaction was repeated continuously. At this time, the Li content in the synthesized material was measured by ICP-AES (Perkin-Elmer). As a result, it was confirmed that Li is substituted up to 1.72 compared to Mo. When calculated to the state that Li is 2 compared to Mo through the calculation chemistry, Li-O distance is 2.0 Å reliable level, Figure 3 is a schematic of the crystal structure of the state.
<실험예 4>Experimental Example 4
실시예 1에서 제조된 코인 전지들에 대해 전기화학 분석장치(VSP, Bio-Logic-Science Instruments)를 사용하여 양극 활물질의 전기적 특성을 평가하였다. 순환전압전류법(CV)을 이용하여 2.0~4.0V 영역에서 0.5 mV/s 주사 속도로 실험하였다. 이 결과를 도 4에 나타내었다.  The coin cells prepared in Example 1 were evaluated for electrical properties of the positive electrode active material using an electrochemical analyzer (VSP, Bio-Logic-Science Instruments). Using cyclic voltammetry (CV), experiments were performed at a rate of 0.5 mV / s in the 2.0 to 4.0V range. This result is shown in FIG.
도 4에서 보는 바와 같이, 본 발명에 따른 리튬 몰리브덴 산화물에 가역적으로 Li 이온이 삽입 및 탈리되고 있음을 확인할 수 있다.  As shown in FIG. 4, it can be seen that Li ions are reversibly inserted and desorbed into the lithium molybdenum oxide according to the present invention.
<실험예 5> Experimental Example 5
실시예 1에서 제조된 코인 전지들에 대해 전기화학 분석장치(VSP, Bio-Logic-Science Instruments)를 사용하여 양극 활물질 전기적 특성을 평가하였다. 충방전 모드(charge-discharge mode)로 2.0~4.2V 영역에서 실험하였고, 그 결과를 도 5에 나타내었다.  The coin cells prepared in Example 1 were evaluated for the positive electrode active material electrical characteristics using an electrochemical analyzer (VSP, Bio-Logic-Science Instruments). In the charge-discharge mode (charge-discharge mode) was experimented in the 2.0 ~ 4.2V region, the results are shown in FIG.
도 5에서 보는 바와 같이, 본 발명에 따른 리튬 몰리브덴 산화물을 양극 활물질로 사용한 이차전지의 용량은 이론용량의 98% 가량인 55 mAh/g이며, 평균전압은 3.4V인 것을 알 수 있다. 또한 충방전 그래프가 선형성을 가짐으로 인해 SOC 상태를 OCV를 통해 쉽게 확인할 수 있다.  As shown in FIG. 5, the capacity of the secondary battery using lithium molybdenum oxide according to the present invention as the cathode active material is 55 mAh / g, which is about 98% of the theoretical capacity, and the average voltage is 3.4V. In addition, since the charge and discharge graph has a linearity, the SOC state can be easily confirmed through OCV.
이상의 설명과 같이 본 발명에 따른 전극 활물질을 사용한 리튬 이차전지는 반복적인 충방전에도 산화물의 구조적 변화가 거의 없고 과충전 시 구조붕괴가 없으므로 안전성을 확보할 수 있어 전기자동차의 동력원 또는 대용량의 전력저장 장치 등에 사용할 수 있는 효과가 있다. As described above, the lithium secondary battery using the electrode active material according to the present invention has almost no structural change in oxide even after repeated charging and discharging, and there is no structural collapse during overcharging, thereby ensuring safety, thereby ensuring a safety power source or a large-capacity power storage device of an electric vehicle. There is an effect that can be used.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the scope of the present invention based on the above contents.

Claims (9)

  1. 하기 화학식 1에서 선택되는 하나 이상의 화합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 전극 활물질: An electrode active material for a lithium secondary battery comprising at least one compound selected from Chemical Formula 1 below:
    LixMo4-yMyO6-zAz (1)Li x Mo 4-y M y O 6-z A z (1)
    상기 식에서,  Where
    0≤x≤2; 0 ≦ x ≦ 2;
    0≤y≤0.5; 0 ≦ y ≦ 0.5;
    0≤z≤0.5; 0 ≦ z ≦ 0.5;
    M은 +2 내지 +4가 산화수를 가지는 금속 양이온이고; M is a metal cation in which +2 to +4 have oxidation numbers;
    A는 -1 또는 -2가의 음이온이다.  A is a -1 or -divalent anion.
  2. 제 1 항에 있어서, 상기 전극은 양극인 것을 특징으로 하는 전극 활물질. The electrode active material according to claim 1, wherein the electrode is a positive electrode.
  3. 제 1 항에 있어서, 상기 x의 범위는 0≤x≤1인 것을 특징으로 하는 리튬 이차전지용 전극 활물질.  The electrode active material of claim 1, wherein x is in a range of 0 ≦ x ≦ 1.
  4. 제 1 항에 있어서, 상기 M은 W, Nb, V, Al, Mg, Ti, Co, Ni 및 Mn으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 리튬 이차전지용 전극 활물질. The electrode active material of claim 1, wherein M is at least one selected from the group consisting of W, Nb, V, Al, Mg, Ti, Co, Ni, and Mn.
  5. 제 1 항에 있어서, 상기 A은 할로겐, S 및 N으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 리튬 이차전지용 전극 활물질. The electrode active material of claim 1, wherein A is at least one selected from the group consisting of halogen, S, and N.
  6. 제 1 항에 따른 전극 활물질이 집전체에 도포되어 있는 것을 특징으로 하는 리튬 이차전지용 전극.  The electrode active material of Claim 1 is apply | coated to the electrical power collector, The lithium secondary battery electrode characterized by the above-mentioned.
  7. 제 6 항에 따른 전극을 포함하는 것을 특징으로 하는 리튬 이차전지.  A lithium secondary battery comprising the electrode according to claim 6.
  8. 제 7 항에 따른 리튬 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈. A battery module comprising the lithium secondary battery according to claim 7 as a unit cell.
  9. 제 8 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전력저장 장치.  Power storage device comprising a battery module according to claim 8.
PCT/KR2011/006845 2010-09-16 2011-09-16 Novel electrode active material and lithium secondary battery comprising same WO2012036500A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180035721.0A CN103109400B (en) 2010-09-16 2011-09-16 Novel electrode active material and the lithium secondary battery comprising described novel electrode active material
JP2013529067A JP5735111B2 (en) 2010-09-16 2011-09-16 Novel electrode active material and lithium secondary battery including the same
EP11825460.6A EP2584631B8 (en) 2010-09-16 2011-09-16 Novel electrode active material and lithium secondary battery comprising same
US13/741,419 US9017874B2 (en) 2010-09-16 2013-01-15 Electrode active material and lithium secondary battery comprising the same
US14/671,747 US9799882B2 (en) 2010-09-16 2015-03-27 Electrode active material and lithium secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100090865 2010-09-16
KR10-2010-0090865 2010-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/741,419 Continuation US9017874B2 (en) 2010-09-16 2013-01-15 Electrode active material and lithium secondary battery comprising the same

Publications (3)

Publication Number Publication Date
WO2012036500A2 WO2012036500A2 (en) 2012-03-22
WO2012036500A3 WO2012036500A3 (en) 2012-05-31
WO2012036500A9 true WO2012036500A9 (en) 2012-06-28

Family

ID=45832120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006845 WO2012036500A2 (en) 2010-09-16 2011-09-16 Novel electrode active material and lithium secondary battery comprising same

Country Status (6)

Country Link
US (2) US9017874B2 (en)
EP (1) EP2584631B8 (en)
JP (1) JP5735111B2 (en)
KR (1) KR101350230B1 (en)
CN (1) CN103109400B (en)
WO (1) WO2012036500A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979012B2 (en) * 2013-09-02 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
EP3203548B1 (en) * 2014-09-29 2019-01-23 LG Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery
KR102174720B1 (en) * 2017-11-23 2020-11-05 주식회사 에코프로비엠 Lithium metal complex oxide and manufacturing method of the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638769A (en) * 1979-09-04 1981-04-14 Matsushita Electric Ind Co Ltd Organic-electrolyte battery
JPS5657259A (en) * 1979-10-16 1981-05-19 Sanyo Electric Co Ltd Nonaqueous-electrolyte battery
JP3768046B2 (en) * 1998-12-25 2006-04-19 三洋電機株式会社 Lithium secondary battery
JP3670875B2 (en) * 1999-02-09 2005-07-13 三洋電機株式会社 Lithium secondary battery
US20030073003A1 (en) * 2001-10-09 2003-04-17 Jeremy Barker Molybdenum oxide based cathode active materials
KR100557241B1 (en) * 2003-04-25 2006-03-15 학교법인 한양학원 5? spinel complex-oxide prepared by ultrasonic spray pyrolysis methode, method for preparing the same, and lithium secondary batteries using the same
JP2004363015A (en) * 2003-06-06 2004-12-24 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2005251716A (en) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20070008110A (en) * 2005-07-13 2007-01-17 주식회사 엘지화학 Lithium molybdenum composite oxides and lithium secondary battery comprising the same as cathode active material
US8535829B2 (en) * 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US20090004563A1 (en) * 2007-06-28 2009-01-01 Zhimin Zhong Substituted lithium titanate spinel compound with improved electron conductivity and methods of making the same
WO2009031619A1 (en) * 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
US9172086B2 (en) * 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
KR101578706B1 (en) * 2008-12-05 2015-12-18 삼성에스디아이 주식회사 Cathode and lithium battery using same
JP2010027629A (en) * 2009-11-04 2010-02-04 Nippon Chem Ind Co Ltd Nonaqueous electrolyte battery
KR101264337B1 (en) * 2010-08-13 2013-05-14 삼성에스디아이 주식회사 Positive active material and lithium battery using it

Also Published As

Publication number Publication date
CN103109400B (en) 2016-01-20
US9799882B2 (en) 2017-10-24
US20130130105A1 (en) 2013-05-23
WO2012036500A3 (en) 2012-05-31
US9017874B2 (en) 2015-04-28
EP2584631B8 (en) 2018-12-26
KR20120029362A (en) 2012-03-26
KR101350230B1 (en) 2014-01-14
JP2013542557A (en) 2013-11-21
EP2584631B1 (en) 2018-08-22
WO2012036500A2 (en) 2012-03-22
EP2584631A4 (en) 2016-01-06
CN103109400A (en) 2013-05-15
EP2584631A2 (en) 2013-04-24
JP5735111B2 (en) 2015-06-17
US20150280233A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
WO2016148383A1 (en) Electrode with multilayer structure and lithium secondary battery having same
WO2015016482A1 (en) Method for pre-lithiating anode electrode
WO2015016563A1 (en) Electrode including coating layer for preventing reaction with electrolyte
WO2012144785A2 (en) Positive electrode active material, and lithium secondary battery comprising same
WO2012161476A2 (en) High energy density lithium secondary battery having enhanced energy density characteristic
WO2015016548A1 (en) Cathode mix for secondary battery having irreversible additive
WO2013009078A9 (en) High-energy lithium secondary battery having improved energy density characteristics
WO2014010854A1 (en) High voltage anode active material and lithium secondary battery including same
WO2012161479A2 (en) High output lithium secondary battery having enhanced output density characteristic
WO2014073833A1 (en) Cathode active material for secondary battery and secondary battery comprising same
WO2011084003A2 (en) Cathode active material containing lithium manganese oxide that exhibits excellent charge-discharge characteristics in 4v and 3v regions
WO2013109038A1 (en) Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
WO2011065651A2 (en) Anode made by a combination of two components, and lithium secondary battery using same
WO2013157856A1 (en) Electrode having multi-layer structure and manufacturing method therefor
WO2015016506A1 (en) Electrode active material having improved energy density and lithium secondary battery including same
WO2013157855A1 (en) Electrolyte for secondary battery and lithium secondary battery including same
WO2015141997A1 (en) Positive electrode active material and lithium secondary battery comprising same
WO2015026121A1 (en) Lithium cobalt-based complex oxide having good lifespan properties, and secondary battery anode active material including same
WO2012161482A2 (en) High energy density lithium secondary battery having enhanced energy density characteristic
WO2013157857A1 (en) Electrolyte for secondary battery and lithium secondary battery including same
WO2014081237A1 (en) Lithium secondary battery
WO2012161477A2 (en) High output lithium secondary battery having enhanced output density characteristic
WO2014081221A1 (en) Lithium secondary battery
WO2013002513A2 (en) Positive electrode active material for a secondary battery having improved rate characteristics
WO2011136550A2 (en) Cathode active material and lithium secondary battery using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180035721.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825460

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011825460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013529067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE