WO2012036161A1 - Light control plate unit, planar light source device, and transmissive image display device - Google Patents

Light control plate unit, planar light source device, and transmissive image display device Download PDF

Info

Publication number
WO2012036161A1
WO2012036161A1 PCT/JP2011/070876 JP2011070876W WO2012036161A1 WO 2012036161 A1 WO2012036161 A1 WO 2012036161A1 JP 2011070876 W JP2011070876 W JP 2011070876W WO 2012036161 A1 WO2012036161 A1 WO 2012036161A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light control
control plate
axis
convex portion
Prior art date
Application number
PCT/JP2011/070876
Other languages
French (fr)
Japanese (ja)
Inventor
寛史 太田
川口 裕次郎
武志 川上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012036161A1 publication Critical patent/WO2012036161A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a light control plate unit, a surface light source device, and a transmissive image display device.
  • a direct type image display device 40 which is an example of a transmission type image display device, for example, as shown in FIG. 12, a device in which a light source 43 is arranged on the back side of the transmission type image display unit 10 is widely used.
  • the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11.
  • the light source 43 a plurality of linear light sources such as a straight tube type cold cathode ray tube are arranged in parallel with each other.
  • the direct image display device 40 can uniformly illuminate the transmissive image display unit 10 by uniformly dispersing light from the light source 43, and for this reason, between the light source 43 and the transmissive image display unit 10.
  • a light control plate 42 such as a single light diffusing plate having a function of changing the direction of light incident from the light source 43 side and emitting it from the opposite transmissive image display unit 10 side is used. (For example, see Patent Document 1: JP-A-7-198913). Since the light output from the light source 43 is emitted as planar light by the light control plate 42, the light source 43 and the light control plate 42 constitute a surface light source device 41.
  • the light emitting diode is usually a point light source, and is used by arranging it in a discrete manner.
  • the light control plate of the conventional surface light source device is used in a direct type image display device in combination with a point light source such as a light emitting diode, the light from the point light source may be sufficiently uniform.
  • the image displayed by the transmissive image display unit has a problem that the brightness differs between the vicinity of the point light source and the position away from the point light source.
  • an object of the present invention is to provide a surface light source device, a light control plate unit, and a transmissive image display device capable of sufficiently uniformly dispersing light from a point light source.
  • the surface light source device includes a plurality of point light sources and a light control plate unit provided on the plurality of point light sources.
  • the point light source included in the surface light source device according to the present invention has a light distribution characteristic having a maximum emission light intensity I max in a range of light emission angles of 70 ° to 80 °, and (A) the emission angle is 0.
  • the emitted light intensity I 0 in the case of ° is 0.12 ⁇ I max ⁇ I 0 ⁇ 0.20 ⁇ I max
  • the emission angle at which the emission light intensity is (I 0 + I max ) / 2 is 60 ° or more and 70 ° or less, and (C) the emission light intensity is (I 0 + I max ) / 4.
  • the light distribution characteristic is such that the emission angle becomes 47.5 ° or more and 57.5 ° or less.
  • the light control plate unit included in the surface light source device according to the present invention can emit light incident from the first surface from the second surface located on the side opposite to the first surface, and
  • the first to third light control plates each having a plurality of convex portions extending in the direction and arranged in parallel in a direction substantially orthogonal to the one direction are provided on the second surface.
  • the thickness of the first light control plate, the second light control plate, and the third light control plate is such that the third light control plate is positioned above the second light control plate.
  • the first surface of the third light control plate is located on the second surface side of the second light control plate, and
  • the second light control plate is provided on the second surface side of the second light control plate.
  • the extending direction of the convex portion of the first light control plate is substantially parallel to the extending direction of the convex portion of the third light control plate, and (G) the extending direction of the convex portion of the first light control plate. And the extending direction of the convex portion of the second or third light control plate are substantially orthogonal to each other.
  • an axis passing through both ends in a cross section perpendicular to the extending direction of each of the convex portions of the first to third light control plates is defined as a u axis, and the center between the both ends on the u axis is defined as the u axis.
  • each convex portion of the control plate is represented by v (u) satisfying the following formula (1) when ⁇ 0.475 w a ⁇ u ⁇ 0.475 w a .
  • h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is ⁇ 1.00 or more and is a constant satisfying 0.25 or less.
  • h a is, 0.32 W a more 0.97W a
  • k a is a constant satisfying ⁇ 1.00 and 0.75.
  • the second light control plate converts light from the point light source having the above-described light distribution characteristics into linear light with uniform luminance. Can be converted to Similarly, since the convex portions of the second and third light control plates have the above-described cross-sectional shape, the second and third light control plates are arranged on the point light source. When the extending directions of the convex portions of the light control plate are arranged substantially in parallel, the light from the point light source can be converted into linear light with uniform luminance.
  • the extending direction of the convex portion of the first light control plate and the extending direction of the convex portion of the second or third light control plate are substantially orthogonal to each other.
  • a first light control plate and a set of second and third light control plates are arranged.
  • the light of the point light source incident on the light control plate unit has a uniform luminance in a direction substantially orthogonal to each other by the first light control plate and the set of the second and third light control plates. Converted to linear light.
  • the surface light source device emits the light from the point light source as planar light that is uniformly dispersed and has high luminance uniformity on the surface perpendicular to the plate thickness direction. Is possible.
  • the first surface of each of the first to third light control plates can be substantially flat.
  • a transmissive image display device includes a plurality of point light sources, a light control plate unit provided on the plurality of point light sources, and provided on the light control plate unit, and is emitted from the light control plate unit.
  • a transmissive image display unit that displays an image by being irradiated with the emitted light.
  • the point light source included in the transmissive image display device according to the present invention has a light distribution characteristic in which the light emission angle has a maximum emission light intensity I max in a range of 70 ° to 80 °, and (a) the emission angle.
  • the emitted light intensity I 0 when is 0 ° is 0.12 ⁇ I max ⁇ I 0 ⁇ 0.20 ⁇ I max
  • the emission angle at which the emission light intensity is (I 0 + I max ) / 2 is 60 ° or more and 70 ° or less, and (c) the emission light intensity is (I 0 + I max ) / 4.
  • the light distribution characteristic is such that the emission angle becomes 47.5 ° or more and 57.5 ° or less.
  • the light control plate unit included in the transmissive image display device can emit light incident from the first surface from the second surface located on the opposite side of the first surface, and
  • the first to third light control plates each having a plurality of convex portions extending in one direction and arranged in parallel in a direction substantially orthogonal to the one direction are provided on the second surface.
  • the thickness of the first light control plate, the second light control plate, and the third light control plate is such that the third light control plate is positioned above the second light control plate.
  • the first surface of the third light control plate is located on the second surface side of the second light control plate, and (f) the second light control plate.
  • the extending direction of the convex portion of the first light control plate is substantially parallel to the extending direction of the convex portion of the third light control plate, and (g) the extending direction of the convex portion of the first light control plate. And the extending direction of the convex portion of the second or third light control plate are substantially orthogonal to each other.
  • an axis passing through both ends in a cross section perpendicular to the extending direction of each of the convex portions of the first to third light control plates is defined as a u axis, and the center between the both ends on the u axis is defined as the u axis.
  • each convex portion of the control plate is represented by v (u) that satisfies the following expression (3) when ⁇ 0.475 w a ⁇ u ⁇ 0.475 w a .
  • h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is ⁇ 1.00 or more and is a constant satisfying 0.25 or less.
  • h a is, 0.32 W a more 0.97W a (K a is a constant satisfying ⁇ 1.00 and 0.75)
  • the second light control plate converts light from the point light source having the above-described light distribution characteristics into linear light with uniform luminance. Can be converted to Similarly, since the convex portions of the second and third light control plates have the above-described cross-sectional shape, the second and third light control plates are arranged on the point light source. When the extending directions of the convex portions of the light control plate are arranged substantially in parallel, the light from the point light source can be converted into linear light with uniform luminance.
  • the extending direction of the convex portion of the first light control plate is substantially orthogonal to the extending direction of the convex portion of the second or third light control plate.
  • a first light control plate and a set of second and third light control plates are arranged.
  • the light of the point light source incident on the light control plate unit has a uniform luminance in a direction substantially orthogonal to each other by the first light control plate and the set of the second and third light control plates. Converted to linear light.
  • the light control plate unit disperses the light from the point light source uniformly and emits it as planar light that is planar light and has high luminance uniformity on the surface orthogonal to the plate thickness direction. It is possible.
  • the light control plate unit can emit light incident from the first surface from the second surface located on the opposite side of the first surface, and extends in one direction.
  • the first light control plate, the second light control plate, and the second light control plate have a plurality of convex portions arranged in parallel in a direction substantially orthogonal to one direction.
  • the light control plate and the third light control plate are provided in the plate thickness direction so that the third light control plate is located above the second light control plate.
  • 1 surface is located on the second surface side of the second light control plate, the extending direction of the convex portion of the second light control plate and the extension of the convex portion of the third light control plate.
  • the extending direction of the convex portion included in the first light control plate is substantially orthogonal to the extending direction of the convex portion included in the second or third light control plate.
  • Have first to third light control plate In the cross section orthogonal to the extending direction of each of the convex portions, an axis passing through both ends is defined as a u axis, and an axis passing through the center between the both ends on the u axis and orthogonal to the u axis is defined as a v axis.
  • h a is, 0.32 W a more 0.97W a is a constant that satisfies the following, k a is a constant satisfying -1.00 or more and 0.75 or less.
  • k a is a constant satisfying -1.00 or more and 0.75 or less.
  • each of the first and second light control plates of the light control plate unit has a plurality of convex portions formed on the second surface. Since the convex portion of each of the first and second light control plates has a cross-sectional shape represented by v (u) that satisfies the above formula (5), the first and second light control plates are The light from the point light source having the light distribution characteristics described above can be converted into light that is linear light and has substantially uniform brightness in the extending direction.
  • the light control board unit which concerns on this invention, it arrange
  • a surface light source device a light control plate unit, and a transmissive image display device that can sufficiently uniformly disperse light from a point light source.
  • FIG. 6 is a view for explaining a cross-sectional shape of a convex portion included in the second and third light control plates of the light control plate unit shown in FIG. 5. It is drawing for demonstrating the conditions which the cross-sectional shape of the convex part which the 2nd and 3rd light control board of the light control board unit shown in FIG. 5 has satisfies. It is a perspective view which shows other embodiment of a light-control board unit. It is a perspective view which shows other embodiment of a light-control board unit. It is sectional drawing which shows typically the structure of the conventional transmissive image display apparatus.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention.
  • FIG. 1 shows the transmissive image display device 1 in an exploded manner.
  • the transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 disposed on the back side of the transmissive image display unit 10 in FIG.
  • the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a z direction (plate thickness direction), which is two directions orthogonal to the z direction and orthogonal to each other. Two directions are referred to as an x direction and a y direction.
  • the transmissive image display unit 10 examples include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11.
  • the transmissive image display device 1 is a liquid crystal display device (or a liquid crystal television).
  • the liquid crystal cell 11 and the polarizing plates 12 and 13 those used in the transmissive image display device 1 such as a conventional liquid crystal display device can be used.
  • the liquid crystal cell 11 include known liquid crystal cells such as TFT type and STN type.
  • the surface light source device 20 is a so-called direct type surface light source device.
  • the surface light source device 20 includes a light diffusing plate unit (light control plate unit) 21A and a plurality of point light sources 22 arranged on the back side in FIG.
  • Light diffusing plate unit 21A includes a first light diffusing plate 30 1, a second light diffusion plate 30 2 and the third light diffusing plate 30 3 arranged in this order in the thickness direction (z-direction).
  • the first to third light diffusing plates 30 1 to 30 3 constituting the light diffusing plate unit 21A have substantially the same shape in plan view (the shape seen from the z direction), and are usually rectangular.
  • the planar view shape of the first to third light diffusion plates 30 1 to 30 3 in other words, the size of the planar view shape of the light diffusion plate unit 21 A matches the target screen size of the transmissive image display device 1. Usually, it is 250 mm ⁇ 440 mm or more, preferably 1020 mm ⁇ 1800 mm or less.
  • the shape of the first to third light diffusion plates 30 1 to 30 3 in plan view is not limited to a rectangle but may be a square, but in the following, it will be described as a rectangle unless otherwise specified.
  • FIG. 2 is a drawing showing an example of the arrangement relationship of a plurality of point light sources.
  • the plurality of point light sources 22 can be arranged at equal intervals L x in the x direction and at equal intervals L y in the y direction.
  • the interval Lx in the x direction is larger than the interval Ly in the y direction, but the interval Ly may be larger than the interval Lx, or the interval Lx and the interval Ly may be the same.
  • the interval Lx and the interval Ly can be the distance between the light emitting portions of the point light source 22, and are usually 10 mm to 150 mm.
  • the plurality of point light sources 22 may be arranged in a staggered pattern shown in FIG. Since FIG. 3 can be regarded as a modification of the case of FIG. 2, the distance between the point light sources 22 in the x direction and the y direction can be the same as in the case of FIG. This will be specifically described.
  • the rectangular lattice shown in FIG. 2 can be regarded as a plurality of point light source arrays composed of a plurality of point light sources 22 arranged in the x direction arranged in parallel in the y direction.
  • the staggered arrangement in FIG. 3 is such that adjacent point light source arrays out of a plurality of point light source arrays arranged in the y direction are arranged with a half cycle shift in the x direction. Therefore, also in the arrangement shown in FIG. 3, the interval Ly in the y direction can be the same as the case shown in FIG. 2, that is, the interval between the point light source arrays arranged in parallel in the y direction.
  • the adjacent point light source arrays out of the point light source arrays arranged in parallel in the y direction are shifted by a half cycle in the x direction.
  • the x direction and the y direction are opposite. There may be.
  • FIG. 4 is a diagram showing an example of a light distribution of a point light source included in the surface light source device.
  • the horizontal axis of FIG. 4 indicates the outgoing angle ⁇ (°), and the vertical axis indicates the normalized outgoing light intensity normalized by the maximum outgoing light intensity.
  • the point light source 22 is a so-called side emitting light source, and an example of the point light source 22 is a light emitting diode.
  • the point light source 22 has a light distribution characteristic (directional characteristic) that satisfies the following conditions.
  • the outgoing angle ⁇ 1 (hereinafter referred to as peak angle ⁇ 1 ) of the maximum outgoing light intensity I max where the outgoing light intensity is maximum is in the range of 70 ° to 80 °.
  • the intensity of emitted light increases substantially monotonically from the front direction (emitted angle ⁇ is 0 °) to the peak angle ⁇ 1 .
  • I 0 is 0.12 ⁇ I max ⁇ I 0 ⁇ 0.20 ⁇ I max Meet.
  • the outgoing angle ⁇ 2 at which the outgoing light intensity is (I max + I 0 ) / 2 is in the range of 60 ° to 70 °.
  • the outgoing angle ⁇ 3 at which the outgoing light intensity is (I max + I 0 ) / 4 is in the range of 47.5 ° to 57.5 °.
  • FIG. 5 is a perspective view for illustrating a configuration of a light diffusion plate unit (light control plate unit).
  • first to third light diffusion plates 30 1 , 30 2 , 30 3 constituting the light diffusion plate unit 21A will be described.
  • first to third light diffusing plate 30 1-30 3 as described later, the second to the first upper light diffusion plate 30 1
  • the third light diffusing plates 30 2 and 30 3 may be provided so that two adjacent plates contact each other.
  • the first light diffusion plate 30 1, 1 a substantially planar lower surface (first surface of the first light control plate) 31, the outer convex portion is convex (second light diffusion plate 30 2 side) it is a (first convex portion of the light control plate) 33 1 is formed with a plurality of upper surface (second surface of the first light control plate) 32 1 and the plate-like body having a.
  • the first light diffusion plate 30 1 is, for example, a light diffusion plate for dispersing the light by the difference of the emission position of the light from the convex portion 33 1.
  • the first light diffusion plate 30 since the deflecting direction of light emission by emitting position of light from the convex portion 33 1, deflecting plate both the shape to adjust the deflection of the light is applied I can say that.
  • plate although referred to as “plate”, it may be in the form of a sheet or film depending on the thickness.
  • Convex portion 33 1 extends substantially parallel to the Y1 direction in the y-direction (first direction of the first light control plate), first in the X1 direction (the first light control plate which is substantially perpendicular to the Y1 direction 2 direction).
  • the X1 direction and the Y1 direction are preferably parallel to the x direction and the y direction, respectively, but may be shifted by about ⁇ 10 ° due to, for example, a manufacturing error.
  • the cross-sectional shape of the plurality of convex portions 33 1 is substantially the same between the convex portions 33 1 . Further, in the extending direction of the convex portion 33 1, the cross-sectional shape is substantially uniform.
  • the ends 33a 1 and 33a 1 of the two adjacent convex portions 33 1 and 33 1 are at the same position in the X1 direction.
  • First thickness d1 of the light diffusion plate 30 1 is a z-direction distance between the top portion 33b 1 of the lower surface 31 1 and the convex portion 33 1, typically a 0.1 mm ⁇ 5 mm.
  • the second light diffusion plate 30 2 is substantially the (first surface of the second light control plate) 31 2 flat lower surface, an outer convex portion is (third light diffuser 30 3 side) in a convex is a (second convex portion of the light control plate) 33 2 is formed with a plurality of upper surface (second second surface of the light control plate) 32 2 and the plate-like body having a.
  • the second light diffusion plate 30 for example, a light diffusion plate for dispersing the light by the difference of the emission position of the light from the convex portion 33 1.
  • the second light diffusion plate 30 since the deflecting direction of light emission by emitting position of light from the convex portion 33 2, deflecting plate both the shape to adjust the deflection of the light is applied I can say that.
  • plate although referred to as “plate”, it may be in the form of a sheet or film depending on the thickness.
  • Convex portion 33 2 extend in substantially parallel direction X2 in the x-direction (first direction of the second light control plate), first in the Y2 direction (the second light control plate substantially orthogonal to the X2 direction 2 direction).
  • X2 direction and the Y2 direction is parallel to the x and y directions, respectively, but as in the case of the first light diffuser 30 1, for example due to a manufacturing error or the like may be offset about ⁇ 10 °.
  • Cross-sectional shape of the plurality of convex portions 33 2 is substantially same in the convex portion 33 2. Further, in the extending direction of the convex portion 33 2, the cross-sectional shape is substantially uniform. End 33a 2 of two adjacent convex portions 33 2, 33 2 are in the same position in the Y2 direction.
  • the second thickness d2 of the light diffusion plate 30 2 is a z-direction distance between the top portion 33b 2 of the lower surface 31 2 and the convex portion 33 2, typically a 0.1 mm ⁇ 5 mm.
  • plate it may be in the form of a sheet or film depending on the thickness.
  • Convex portion 33 3 extends substantially parallel to the direction X3 in the x-direction (first direction of the third light control plate), first of Y3 direction (third light control plate substantially perpendicular to the direction X3 2 direction). It is preferred X3 direction and Y3 direction is parallel to the x and y directions, respectively, but as in the case of the first light diffuser 30 1, for example due to a manufacturing error or the like may be offset about ⁇ 10 °.
  • Cross-sectional shape of the plurality of convex portions 33 3 are substantially same in the convex portion 33 3. Further, in the extending direction of the convex portion 33 3, the cross-sectional shape is substantially uniform.
  • the ends 33a 3 and 33a 3 of the two adjacent convex portions 33 3 and 33 3 are at the same position in the Y3 direction.
  • Third thickness d3 of the light diffusion plate 30 3 are the z-direction distance between the lower surface 313 and the convex portion 33 3 of the top 33b 3, usually a 0.1 mm ⁇ 5 mm.
  • Convex portion 33 1 when placing the first light diffusing plate 30 1 on the point light source 22 having a light distribution characteristic which has been described with use of FIG. 4, the light from the point light source 22, luminance Has a cross-sectional shape that can be converted into substantially uniform linear light.
  • the cross-sectional shape of the convex portion 33 1 will be described with reference to FIG.
  • U I axis direction with respect to the convex portion 33 1 corresponds to the X1 direction
  • v I axis (v-axis) direction corresponds to the z-direction.
  • the cross-sectional shape of the convex portion 33 1 has both ends 33a 1 and 33a 1 on the u I axis.
  • Convex portion 33 1 of the contour line is represented by v I (u I) that satisfies the following expression (7).
  • w Ia is the length of the convex portion 33 1 of u I axis.
  • h Ia corresponds to the maximum height between two ends 33a 1, 33a 1 of the convex portion 33 1, h Ia is a constant satisfying the following 0.40 W Ia or 1.60 W Ia.
  • h Ia is a constant that satisfies h Ia / w Ia from 0.40 to 1.60.
  • k Ia is a constant satisfying ⁇ 1.00 or more and 0.25 or less.
  • Figure 6 illustrates a predetermined factor only stretch shape equation v I0 (u I) within a range satisfying (7) in the v I direction as an example of the cross-sectional shape of the convex portion 33 1.
  • the convex portion 33 1 has a symmetrical contour relative to v I axis.
  • the sectional shape of the convex portion 33 as shown in FIG.
  • the cross-sectional shape of the convex portion 33 1 is to be represented by v I (u I) satisfying the equation (7).
  • the cross-sectional shape of the convex portion 33 1 in -0.475w Ia ⁇ u I ⁇ 0.475w Ia need only be represented by the formula (7) satisfies the v I (u I).
  • the range of h Ia / w Ia and k Ia only needs to satisfy the above-described range.
  • the distance between two adjacent point light sources 22 is L, and the light diffusing plate from the light emitting part of the point light source 22 is used.
  • h Ia / preferable for L / D is D, h Ia / preferable for L / D.
  • the ranges of w Ia and k Ia are as shown in Table 1 below.
  • L described in Table 1 is Lx for contour shape of the convex portion 33 1.
  • the convex portions 33 2 and 33 3 are provided with the second and third light control plates 30 2 and 30 3 in this order on the point light source 22 having the light distribution characteristics described with reference to FIG.
  • the shape portions 33 2 and 33 3 When the shape portions 33 2 and 33 3 are arranged with their extending directions substantially parallel, they have a cross-sectional shape that can convert light from the point light source 22 into linear light having substantially uniform luminance.
  • the cross-sectional shapes of the convex portions 33 2 and 33 3 will be described with reference to FIG.
  • the convex portions 33 2 and 33 3 will be referred to as convex portions 33 i (i is 2 or 3) unless otherwise specified.
  • the u II v II coordinate system is set with the direction orthogonal to the extending direction of the convex portion 33 i as the u II axis (u axis).
  • v II axis corresponding to the convex portion 33 2 and the convex portion 33 3 (v-axis) direction both correspond to the z-direction.
  • the cross-sectional shape of the convex portion 33 i has both ends 33 a i and 33 a i on the u II axis.
  • the contour line of the convex portion 33 i is represented by v II (u II ) that satisfies the following formula (9).
  • w IIa is the length of the convex portion 33 i in the u II axis direction.
  • h IIa corresponds to the maximum height between the two ends 33a i, 33a i of the convex portion 33 i, h IIa is a constant satisfying the following 0.32 W IIa or 0.97w IIa.
  • h IIa is a constant that satisfies h IIa / w IIa from 0.32 to 0.97.
  • k IIa is a constant satisfying ⁇ 1.00 or more and 0.75 or less.
  • Width w IIa of the convex portion 33 i since formation of the convex portion 33 i is easy, usually 40 ⁇ m or more, preferably 250 ⁇ m or more, the pattern caused by the convex portion 33 i is visible to the naked eye Since it is difficult, it is usually 800 ⁇ m or less, preferably 450 ⁇ m or less.
  • FIG. 8 illustrates a shape in which v II0 (u II ) is expanded and contracted by a predetermined multiple in the v II direction within the range satisfying Expression (9) as an example of the cross-sectional shape of the convex portion 33 i .
  • the convex portion 33 i has a symmetrical contour relative v II axis.
  • the cross-sectional shape of the convex portion 33 i is represented by v II (u II ) that satisfies the formula (9).
  • the cross-sectional shape of the convex portion 33 i in -0.475w IIa ⁇ u II ⁇ 0.475w IIa need only be represented by the formula (9) satisfies the v II (u II).
  • the range of h IIa / w IIa and k IIa only needs to satisfy the above-described range.
  • the distance between two adjacent point light sources 22 is L, and the light diffusing plate from the light emitting portion of the point light source 22 is used.
  • the distance to the surface of the unit 21A on the point light source 22 side is D
  • the ranges of w IIa and k IIa are shown in Table 2.
  • L shown in Table 2 is Ly for the contour shape of the convex portions 33 2 and 33 3 .
  • Convex portion 33 2 of the second and third light diffusion plate 30 2 and 30 3, 33 3 w IIa, h IIa, k IIa is preferably the same between the respective convex portions 33 2, 33 3 But it can be different. That is, it is preferable that the cross-sectional shapes of the convex portions 33 2 and 33 3 included in each of the second and third light diffusion plates 30 2 and 30 3 are the same cross-sectional shape. Different cross-sectional shapes may be used as long as the contour lines of the cross-sectional shapes of 33 2 and 33 3 satisfy the above formula (9).
  • the first to third light diffusion plates 30 1 to 30 3 may be single-layer plates made of a single transparent material, or may have a multilayer structure in which layers made of different transparent materials are laminated. A multilayer board may be sufficient.
  • the first to third light diffusion plates 30 1 to 30 3 are multilayer plates, one or both sides of the first to third light diffusion plates 30 1 to 30 3 are usually 10 ⁇ m to 200 ⁇ m, preferably 20 ⁇ m to It is preferable to use a structure in which a skin layer having a thickness of 100 ⁇ m is formed, and a transparent resin material constituting the skin layer to which an ultraviolet absorber is added is used.
  • the first to third light diffusion plates 30 1 to 30 3 By adopting such a configuration, it is possible to prevent the first to third light diffusion plates 30 1 to 30 3 from being deteriorated by the point light source 22 and ultraviolet rays that may be included in light from the outside.
  • a light source 22 having a relatively large proportion of ultraviolet rays it is preferable to form a skin layer on the lower surfaces 31 1 to 31 3 , since deterioration due to ultraviolet rays can be prevented.
  • the upper surface 32 1 that the ⁇ 32 3 not formed skin layer is further preferred in terms of cost.
  • the content thereof is usually 0.5% by mass to 5% by mass, preferably 1% by mass to 2%, based on the transparent resin material. 0.5% by mass.
  • the surface on the point light source 22 side can be a surface having light diffusibility in order to reduce moire.
  • the surface on the point light source 22 side may be configured as described above with a skin layer containing fine particles called a matting agent, or the surface on the point light source 22 side may be embossed or blasted.
  • the mat layer may be formed by applying a coating solution containing a matting agent and a binder.
  • the first to third light diffusion plates 30 1 to 30 3 may be coated with an antistatic agent on one side or both sides.
  • an antistatic agent By applying an antistatic agent, dust adhesion due to static electricity can be prevented, and a decrease in light transmittance due to dust adhesion can be prevented.
  • the first to third light diffusion plates 30 1 to 30 3 are made of a transparent material.
  • the refractive index of the transparent material is usually 1.46 to 1.62.
  • transparent materials include transparent resin materials and transparent glass materials.
  • transparent resin materials include polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index: 1.59), AS resin (acrylonitrile-styrene copolymer resin) (refractive index: 1.56 to 1.59), acrylic ultraviolet curable resin ( A refractive index of 1.46 to 1.58) is exemplified, and a polystyrene resin is preferable in terms of cost and low moisture absorption.
  • additives such as an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, a flame retardant, and a lubricant can be added to the transparent resin material. These additives can be used alone or in combination of two or more.
  • UV absorbers examples include benzotriazole UV absorbers, benzophenone meter UV absorbers, cyanoacrylate UV absorbers, malonic ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. Preferred are benzotriazole ultraviolet absorbers and triazine ultraviolet absorbers.
  • the transparent resin material is usually used without adding a light diffusing agent as an additive, but may be added with a light diffusing agent as long as it is a slight amount that does not impair the object of the present invention.
  • a powder having a refractive index different from that of the above-described transparent material mainly constituting the first to third light diffusing plates 30 1 to 30 3 is usually used and dispersed in the transparent material.
  • the light diffusing agent for example, organic particles such as styrene resin particles and methacrylic resin particles, inorganic particles such as potassium carbonate particles, silica particles, and silicone resin particles are used, and the particle diameter is usually 0.8 ⁇ m to 50 ⁇ m. .
  • the first to third light diffusion plates 30 1 to 30 3 can be manufactured by, for example, a method of cutting out from a transparent material. Moreover, when using a transparent resin material as a transparent material, it can manufacture by normal methods, such as an injection molding method, an extrusion molding method, a photopolymer method, a press molding method, for example.
  • the first to third light diffusion plates 30 1 to 30 3 are provided so as to satisfy the following conditions in the z direction and to allow light to enter from the lower surface 31 1 , 31 2 , 31 3 side.
  • third of the light diffusion plate 30 3 is located above the second light diffusion plate 30 2.
  • a third lower surface 313 of the light diffusion plate 30 3 is located in the second upper surface 32 2 side of the light control pair 30 2.
  • convex portions 33 2, 33 3 in the extending direction are substantially parallel.
  • the extending direction of the convex portion 33 1, and the extending direction of the convex portion 33 2 or convex portion 33 3 are substantially orthogonal.
  • the angle of the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3), 80 ° ⁇ 100 ° are exemplified, and preferably, 90 °.
  • the first to third light diffusion plates 30 1 to 30 3 satisfy the arrangement conditions (i) to (iv), and the first light diffusion plate 30 1 and the second light diffusion plate It is provided in the z direction in the order of 30 2 and the third light diffusing plate 30 3.
  • the distance d 12 between the first and second light diffusing plate 30 1, 30 2, first light diffusing plate 30 1 of the convex portion 33 1 apex 33b 1 and the second light diffusion plate 30 2 a z-direction distance between the lower surface 31 2, 5 mm or less can be exemplified.
  • the second and third light diffusion plate 30 2, 30 a distance d 23 between the 3, the second top portion 33b 2 of the light diffusion plate 30 2 of the convex portion 33 2 and the third light diffusing plate The distance in the z direction between the lower surface 31 3 of 30 3 and 5 mm or less can be exemplified.
  • d 12 and d 23 are 0 mm
  • the second light diffusion plate 30 2 and the first upper convex portion 33 1 of the light diffusing plate 30 1 third light diffusing plate 30 3 the upper of the lower surface 31 2, 31 3 may be arranged in contact with the top 33b 1, 33b 2 of the lower convex portion 33 1, 33 2.
  • the thicknesses d2 and d3 of the second and third light diffusion plates 30 2 and 30 3 are set to the first light.
  • the second and third light diffusion plate 30 2 if the 30 3 was assumed thinner such film-like, the first light diffusing plate 30 1 and the second and third light diffusion plate 30 2, 30 3 It is because it can be used as a support base for.
  • Lx, Ly, and D are values in which Lx / D and Ly / D are each 2 or more, and further 2.5 or more. Is preferable in that it can be made thinner.
  • the light diffusion plate unit 21A, in the transmissive image display device 1, to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged so as to be laterally May be.
  • the function and effect of the light diffusing plate unit 21A will be described by taking as an example the case where the surface light source device 20 including the light diffusing plate unit 21A is applied to the transmissive image display device 1, as shown in FIG. To do.
  • the X1, X2, and X3 directions are parallel to the x direction
  • the Y1, Y2, and Y3 directions are parallel to the y direction.
  • the first convex portion 33 1 of the light diffusing plate 30 because it has a cross sectional shape represented by v I (u I) satisfying the equation (7), the first light diffusing plate on the point light source 22 when placing the 30 1, the first light diffusing plate 30 1, the light output from the point light sources 22, brightness can be emitted into a uniform linear light.
  • the convex portions 33 2 and 33 3 of the second and third light diffusion plates 30 2 and 30 3 have a cross-sectional shape represented by v II (u II ) that satisfies Expression (9),
  • v II (u II ) that satisfies Expression (9)
  • the light diffusing plates 30 2 and 30 3 can emit the light output from the point light source 22 by converting it into linear light with uniform luminance.
  • the light diffuser plate unit 21A as described above, the light diffusion plate 30 1 first convertible to a substantially uniform linear light luminance light from the point light source 22, the second and third In the z direction, the extending direction of the convex portion 33 1 and the extending direction of the convex portion 33 2 (or the convex portion 33 3 ) are substantially orthogonal to each other in the set of the light diffusion plates 30 2 and 30 3.
  • the light diffusing plate unit 21A uniformly disperses the light from the plurality of point light sources 22 and is planar light, which is planar light having higher luminance uniformity in the plane orthogonal to the z direction. Can be emitted.
  • the second and third light diffusion plate 30 2, 30 3 provided in the first upper light diffusion plate 30 1 into a film-like in the configuration of the present embodiment, the second and third light diffusing plate 30 2 and 30 3 can be the same film.
  • the configuration of the light diffusing plate unit 21A shown in FIG. 5 is a configuration that contributes to a reduction in manufacturing cost.
  • the surface light source device 20 includes the light diffusing plate unit 21A, the surface light that uniformly disperses the light from the plurality of point light sources 22 and has higher luminance uniformity on the surface orthogonal to the z direction. Can be emitted.
  • the transmissive image display device 1 includes the light diffusing plate unit 21A, the luminance uniformity in the plane orthogonal to the z direction is higher because the light from the plurality of point light sources 22 is uniformly dispersed. It is possible to irradiate the transmissive image display unit 10 with planar light. As a result, a higher quality image can be displayed.
  • the first to third light diffusion plates 30 1 to 30 3 are provided in order in the z direction.
  • the first to third light diffusion plates 30 1 to 30 3 are arranged according to the arrangement conditions. It may be provided in the z direction so as to satisfy (i) to (iv).
  • Other embodiments of the light diffusing plate unit according to the modified example of the arrangement of the first to third light diffusing plates 30 1 to 30 3 will be described as second and third embodiments.
  • FIG. 10 is a perspective view showing a second embodiment of the light diffusing plate unit (light control plate unit) according to the present invention.
  • the light diffusing plate unit 21B includes first to third light diffusing plates 30 1 , 30 2 , 30 3 as in the case of the first embodiment.
  • the light diffusion plate unit 21B is different from the light diffusion plate unit 21A in the order of arrangement of the first to third light diffusion plates 30 1 to 30 3 . This difference will be mainly described.
  • the first light diffusing plate 30 1 is to be located most point light source 22 side in the light diffuser plate unit A, the first lower surface 31 1 and the point of the light diffusion plate 30 1
  • the distance from the light source 22 was defined as D.
  • the second light diffusion plate 30 2 is located at the most point light source 22 side. Therefore, the distance D in the description of the first embodiment, in this embodiment, the distance between the second light diffusion plate 30 2 of the lower surface 31 2 and the point light sources 22.
  • the optical diffusing plate unit 21B it is substantially parallel to the extending direction of the convex portion 33 2 of the extending direction and the convex portion 33 3. Moreover, it is substantially perpendicular to the extending direction of the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3). Angle between the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3), 80 ° ⁇ 100 ° are exemplified, and preferably, 90 °.
  • the first to third light diffusion plates 30 1 to 30 3 satisfy the arrangement conditions (i) to (iv) described in the first embodiment.
  • the second and the first distance d 21 between the light diffusion plate 30 2, 30 1, second and top 33b 2 of the light diffusion plate 30 and second convex portions 33 2 first light diffusing plate 30 1 a z-direction distance between the lower surface 31 1, 5 mm or less can be exemplified.
  • the distance d 13 between the first and third light diffuser 30 1, 30 3, the first top 33b 1 of the light diffusing plate 30 1 of the convex portion 33 1 and the third light diffusing plate The distance in the z direction between the lower surface 31 3 of 30 3 and 5 mm or less can be exemplified.
  • d 21 and d 13 are 0 mm, the first light diffusing plate 30 1 and the second light diffusion plate 30 2 on the convex portion 33 2 a third light diffusing plate 30 3, the upper bottom surface 31 1, 31 3 that may be disposed in contact with the top 33b 2, 33b 1 of the lower convex portion 33 2, 33 1 first
  • the second light diffusion plate 30 2 of the first and third light diffuser 30 1, 30 3 positioned closest to the point light source 22 side of the first to third light diffusing plate 30 1-30 3 It is preferable to make it thicker.
  • the first and third light diffusing plates 30 1 and 30 3 can be formed into a film as in the case of the first embodiment.
  • the light diffusing plate unit 21B shown in FIG. 10 can be applied to the surface light source device 20 and the transmissive image display device 1 instead of the light diffusing plate unit 21A in FIG.
  • the transmission type image display device 1 the light diffusing plate unit 21B is to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged to be laterally May be.
  • the second and third light diffusion plates 30 2 and 30 3 are provided so as to satisfy the arrangement conditions (i) to (iii).
  • the second and third light diffusing plates 30 2 and 30 3 can convert light from the point light source 22 into linear light having substantially uniform luminance.
  • the first light diffusing plate 30 1 that can convert the light from the point light source 22 into light having uniform luminance between the second and third light diffusing plates 30 2 and 30 3. Is provided to satisfy the arrangement condition (iv).
  • the light diffusing plate unit 21B when used in place of the light diffusing plate unit 21A of FIG. 1, the light from the plurality of point light sources 22 is the light diffusing plate unit as in the first embodiment.
  • the light diffusing plate unit 21B By passing through 21B, it is possible to generate planar light that is uniformly dispersed and, as a result, has a higher luminance uniformity in a plane orthogonal to the z direction.
  • the surface light source device 20 and the transmissive image display device 1 including the light diffusing plate unit 21B and the plurality of point light sources 22 also have the same operational effects as in the case of the first embodiment.
  • the first to third light diffusing plates 30 1 to 30 3 are arranged so that the extending directions of the convex portions 33 1 , 33 2 , and 33 3 are alternately substantially orthogonal in the z direction. Is arranged. Therefore, Moire fringes is unlikely to occur in the third planar light emitted from the light diffusion plate 30 3. Therefore, even in the surface light source device 10 including the light diffusing plate unit 21 ⁇ / b> B and the plurality of point light sources 22, planar light with suppressed moire fringes can be emitted. Further, the transmissive image marking apparatus 1 including the light diffusing plate unit 21 ⁇ / b> B and the plurality of point light sources 22 can display a higher quality image.
  • FIG. 11 is a perspective view showing a third embodiment of a light diffusion plate unit (light control plate unit) according to the present invention.
  • the light diffusing plate unit 21C has first to third light diffusing plates 30 1 , 30 2 , 30 3 as in the case of the first embodiment.
  • the light diffusing plate unit 21C is different from the light diffusing plate unit 21A in the order of arrangement of the first to third light diffusing plates 30 1 to 30 3 . This difference will be mainly described.
  • the second light diffusing plate 30 2 , the third light diffusing plate 30 3, and the first light diffusing plate 30 1 are arranged in the order described in the first embodiment. It satisfies (iv) and is provided in the z direction. Also in this embodiment, as in the second embodiment, the distance D in the first embodiment, the lower surface 312 of the second light diffusion plate 30 2, between the point light sources 22 Distance.
  • the third and the first distance d 31 between the light diffusion plate 30 3, 30 1, and the third top 33b 3 of the convex portion 33 3 of the light diffusion plate 30 3 of the first light diffusing plate 30 1 a z-direction distance between the lower surface 31 1, 5 mm or less can be exemplified. Since the distance d 23 between the second and third light diffusion plates 30 2 and 30 3 is the same as that in the first embodiment, the description thereof is omitted.
  • the third light diffusing plate 30 3 and the second light diffusion plate 30 2 on the convex portion 33 2 the first light diffusion plate 30 1, the upper bottom surface 31 3, 31 1 may be disposed in contact with the top 33b 2, 33b 3 of the lower convex portion 33 2, 33 3, the This is the same as in the first embodiment.
  • the second light diffusion plate 30 2 located closest to the point light source 22 among the first to third light diffusion plates 30 1 to 30 3 is replaced with the third and first light diffusion plates 30 3 and 30 1. it is preferred to thicker, in which case, for example, the third and the first light diffusing plate 30 3, also a 30 1 may be a film-like is the same as in the first embodiment.
  • the light diffusing plate unit 21C shown in FIG. 11 can be applied to the surface light source device 20 and the transmissive image display device 1 in place of the light diffusing plate unit 21A in FIG.
  • the transmission type image display device 1 the light diffusing plate unit 21C is to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged to be laterally May be.
  • the second and third light diffusion plates 30 2 and 30 3 are provided so as to satisfy the arrangement conditions (i) to (iii).
  • the second and third light diffusing plates 30 2 and 30 3 can convert light from the point light source 22 into linear light having substantially uniform luminance.
  • the light diffuser plate unit 21C, the first light diffusing plate 30 1 is on the third light diffusing plate 30 3, are arranged satisfies the arrangement conditions (iv). That is, the extending direction of the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3) are arranged so as to be substantially orthogonal.
  • the light diffusing plate unit 21C is used instead of the light diffusing plate unit 21A of FIG. 1, the light from the plurality of point light sources 22 is the light diffusing plate unit as in the case of the first embodiment.
  • 21C it is possible to generate planar light that is uniformly dispersed and, as a result, has a higher luminance uniformity in a plane orthogonal to the z direction.
  • the surface light source device 20 and the transmissive image display device 1 including the light diffusing plate unit 21C and the plurality of point light sources 22 also exhibit the same operational effects as in the case of the first embodiment.
  • FIGS. 2 and 3 the arrangement examples of the plurality of point light sources 22 are shown in FIGS. 2 and 3.
  • a square lattice that is, between the point light sources 22 adjacent to each other in the x direction and the y direction as described above.
  • the interval may be the same.
  • the end 33a 1 in the cross-sectional shape of the adjacent convex portion 33 1 has been described as overlapping in the arrangement direction of the convex portion 33a 1 , it is slightly flat between the ends 33a 1 of the adjacent convex portions 33 1.
  • a part (for example, a part caused by a manufacturing error) may be generated.
  • the light diffusing plate units 21A to 21C may further include an optical film such as a diffusing film or a microlens film on the transmissive liquid crystal display unit 10 side (for example, the liquid crystal panel side).
  • the transmissive image display device 1 may further include an optical film such as the above-described diffusion film or microlens film between the light diffusing plate units 21A to 21C and the transmissive liquid crystal display unit 10. it can.
  • the surface light source device 20 and the transmissive image display device 1 may include a reflection means such as a reflection plate that reflects the light output from the point light source 22 toward the light diffusion plate units 21A to 21C.
  • the reflecting means may be provided on the side opposite to the light diffusing plate units 21A to 21C with respect to the point light source 22, for example, a holding member for holding the point light source 22
  • the light source mounting surface can be a reflecting surface.
  • k Ia in the formula (8) was a constant satisfying 0.25 -1.00 or more.
  • h IIa in the expression (10) is 0.32w IIa or more and 0. 97w IIa or less, and k IIa is a constant satisfying ⁇ 1.00 or more and 0.75 or less.
  • the convex portion 33 1 having a first light diffusion plate 30 1, or k Ia are constants satisfying the ranges excluding -1.00 or -0.15 range from the range of k Ia
  • h IIa is 0.32 w IIa or more from the above range of h IIa . It is a constant that satisfies the range excluding the range of 80 w IIa or less, or k IIa can be a constant that satisfies the range excluding ⁇ 1.00 and 0.23 from the above range of k IIa. .
  • the first to third light diffusing plate 30 1-30 3 includes a first light diffusion plate 30 first, second and third light diffusion plate 30 2, 30 3, respectively in combination form a plurality of points to the light output from the light source more uniformly dispersed to produce a linear light
  • the convex portion 33 1, the convex portion 33 2 and the convex portion 33 3 are shaped respectively to the exit side of the light
  • Any plate-like optical component may be used.
  • the light diffusing plate unit may be one in which the three optical components are arranged in the relationship described using the light diffusing plate units 21A, 21B, and 21C.
  • the thing of a film form and a sheet form is also included according to thickness.
  • the second and third light control plates 30 2 , 30 3 are formed in a film shape, a photo is formed in the shape of the convex portions 33 2 , 33 3 .
  • Polymer methods can be used.
  • an acrylic ultraviolet curable resin having a refractive index of 1.46 to 1.58 is often used as the material of the second and third light control plates 30 2 and 30 3 , and this leads to cost and yellowing of the film. From the viewpoint of preventing deterioration, it is preferable to use a low refractive index resin having a refractive index of about 1.51.
  • the light control plate other than the light control plate located closest to the point light source is in the form of a film
  • a photopolymer method can be used for shaping the convex portion.
  • an acrylic ultraviolet curable resin having a refractive index of 1.56 to 1.62 and a refractive index of 1.46 to 1.58 can be used as the material for the light control plate.
  • a low refractive index resin having a refractive index of about 1.51 is preferably used.
  • the light control plate located closest to the point light source is preferably in the form of a sheet of 1 mm to 5 mm, and the light control plates other than the light control plate located closest to the point light source are preferably in the form of a film of 1 mm or less.
  • the light from the point light source can be dispersed sufficiently uniformly.
  • first to third light Diffusion plate 33a 1 ... end of convex portion (end of convex portion of first light control plate), 31 1 to 31 3 ... bottom surface of first to third light diffusion plates (first to third First surface of light control plate), 32 1 to 32 3 ... Upper surface of first to third light diffusion plates (second surface of first to third light control plates), 33 1 to 33 3 .

Abstract

Provided is a planar light source device that uniformly distributes light from a point light source. The planar light source device (10) comprises a plurality of point light sources (22) with prescribed light distribution characteristics and first to third light control plates (301 - 303) disposed in the plate thickness direction. Each light control plate has a plurality of protruding sections (331 - 333) extending in one direction. The parallel protruding sections (332, 333) and the extension direction of the protruding section (331) are substantially orthogonal to each other and the profile shape (v(u)) in a uv coordinate system, when an axis line that passes through both ends of the orthogonal cross section in the extension directions of each protruding section is the u axis, fulfills 0.95vo(u)≦v(u)≦1.05vo(u). vo(u) fulfills formula (1). (wa is the width of each protruding section. ha is 0.40wa-1.60wa for the protruding section (331) and 0.32wa-0.97wa for the protruding sections (332, 333). ka is -1-0.25 for the protruding section (331) and -1-0.75 for the protruding sections (332, 333).)

Description

光制御板ユニット、面光源装置及び透過型画像表示装置Light control plate unit, surface light source device, and transmissive image display device
 本発明は、光制御板ユニット、面光源装置及び透過型画像表示装置に関するものである。 The present invention relates to a light control plate unit, a surface light source device, and a transmissive image display device.
 透過型画像表示装置の一例である直下型画像表示装置40として、例えば図12に示すように、透過型画像表示部10の背面側に光源43が配置されたものが広く用いられている。透過型画像表示部10としては、例えば液晶セル11の両面に直線偏光板12,13が配置された液晶表示パネルが挙げられる。光源43としては、直管型の冷陰極線管などのような線状光源が複数本、互いに平行に配置されて用いられている。 As a direct type image display device 40 which is an example of a transmission type image display device, for example, as shown in FIG. 12, a device in which a light source 43 is arranged on the back side of the transmission type image display unit 10 is widely used. Examples of the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11. As the light source 43, a plurality of linear light sources such as a straight tube type cold cathode ray tube are arranged in parallel with each other.
 かかる直下型画像表示装置40としては、光源43からの光を均一に分散させて透過型画像表示部10を均一に照明できることが望ましく、このため光源43と透過型画像表示部10との間には、光源43側から入射した光を、その向きを変えて反対側の透過型画像表示部10側から出射させる機能を有する一枚の光拡散板といった光制御板42が配置されて用いられている(例えば特許文献1:特開平7-198913号公報参照)。なお、光源43から出力された光は光制御板42により面状の光として出射されるため、光源43と光制御板42は面光源装置41を構成していることになる。 It is desirable that the direct image display device 40 can uniformly illuminate the transmissive image display unit 10 by uniformly dispersing light from the light source 43, and for this reason, between the light source 43 and the transmissive image display unit 10. A light control plate 42 such as a single light diffusing plate having a function of changing the direction of light incident from the light source 43 side and emitting it from the opposite transmissive image display unit 10 side is used. (For example, see Patent Document 1: JP-A-7-198913). Since the light output from the light source 43 is emitted as planar light by the light control plate 42, the light source 43 and the light control plate 42 constitute a surface light source device 41.
特開平7-198913号公報JP-A-7-198913
 近年、直管型冷陰極線管に代えて、省エネルギーの観点から、発光ダイオードを光源として用いることが検討されている。発光ダイオードは通常、点状光源であり、これを離散的に配置して用いられる。 In recent years, it has been studied to use a light emitting diode as a light source from the viewpoint of energy saving instead of a straight tube type cold cathode ray tube. The light emitting diode is usually a point light source, and is used by arranging it in a discrete manner.
 しかし、従来の面光源装置が有する光制御板は、発光ダイオードのような点状光源と組み合わせて直下型画像表示装置に用いると、点状光源からの光を十分に均一なものとすることができず、透過型画像表示部によって表示される画像は、点状光源の近傍と、点状光源から離れた位置とで明るさが異なるものになるという問題があった。 However, when the light control plate of the conventional surface light source device is used in a direct type image display device in combination with a point light source such as a light emitting diode, the light from the point light source may be sufficiently uniform. However, the image displayed by the transmissive image display unit has a problem that the brightness differs between the vicinity of the point light source and the position away from the point light source.
 そこで、本発明は、点状光源からの光を十分に均一に分散させることが可能な面光源装置、光制御板ユニット及び透過型画像表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a surface light source device, a light control plate unit, and a transmissive image display device capable of sufficiently uniformly dispersing light from a point light source.
 本発明に係る面光源装置は、複数の点状光源と、複数の点状光源上に設けられる光制御板ユニットと、を備える。本発明に係る面光源装置が有する点状光源は、光の出射角度が70°以上80°以下の範囲に最大出射光強度Imaxを有する配光特性であって、(A)出射角度が0°の場合の出射光強度Iが、
  0.12×Imax≦I≦0.20×Imax
を満し、(B)出射光強度が(I+Imax)/2となる出射角度が60°以上70°以下であり、及び、(C)出射光強度が(I+Imax)/4となる出射角度が47.5°以上57.5°以下である、配光特性を有する。また、本発明に係る面光源装置が有する光制御板ユニットは、第1の面から入射された光を第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しておりその一方向に略直交する方向に並列配置された複数の凸状部が第2の面に形成されている第1~第3の光制御板を備える。そして、(D)第1の光制御板、第2の光制御板及び第3の光制御板は、第3の光制御板が第2の光制御板の上側に位置するように、板厚方向に設けられており、(E)第3の光制御板の第1の面が、第2の光制御板の第2の面側に位置しており、(F)第2の光制御板が有する凸状部の延在方向と第3の光制御板が有する凸状部の延在方向とが略平行であり、(G)第1の光制御板が有する凸状部の延在方向と第2又は第3の光制御板が有する凸状部の延在方向とが略直交している。また、第1~第3の光制御板が有する凸状部の各々の延在方向に直交する断面において両端を通る軸線をu軸とし、u軸上において当該両端間の中心をとおりu軸に直交する軸線をv軸とし、第1~第3の光制御板が有する凸状部の各々に対してu軸方向の長さをwとしたとき、上記断面において第1~第3の光制御板が有する凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(1)を満たすv(u)で表される。
Figure JPOXMLDOC01-appb-M000007
ただし、式(1)において、
Figure JPOXMLDOC01-appb-M000008
(式(2)において、第1の光制御板の凸状部に対して、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ0.25以下を満たす定数である。また、式(2)において、第2及び第3の光制御板の凸状部の各々に対して、hは、0.32w以上0.97w以下を満たす定数であり、kは-1.00以上且つ0.75以下を満たす定数である)
The surface light source device according to the present invention includes a plurality of point light sources and a light control plate unit provided on the plurality of point light sources. The point light source included in the surface light source device according to the present invention has a light distribution characteristic having a maximum emission light intensity I max in a range of light emission angles of 70 ° to 80 °, and (A) the emission angle is 0. The emitted light intensity I 0 in the case of ° is
0.12 × I max ≦ I 0 ≦ 0.20 × I max
(B) The emission angle at which the emission light intensity is (I 0 + I max ) / 2 is 60 ° or more and 70 ° or less, and (C) the emission light intensity is (I 0 + I max ) / 4. The light distribution characteristic is such that the emission angle becomes 47.5 ° or more and 57.5 ° or less. Further, the light control plate unit included in the surface light source device according to the present invention can emit light incident from the first surface from the second surface located on the side opposite to the first surface, and The first to third light control plates each having a plurality of convex portions extending in the direction and arranged in parallel in a direction substantially orthogonal to the one direction are provided on the second surface. (D) The thickness of the first light control plate, the second light control plate, and the third light control plate is such that the third light control plate is positioned above the second light control plate. (E) the first surface of the third light control plate is located on the second surface side of the second light control plate, and (F) the second light control plate. The extending direction of the convex portion of the first light control plate is substantially parallel to the extending direction of the convex portion of the third light control plate, and (G) the extending direction of the convex portion of the first light control plate. And the extending direction of the convex portion of the second or third light control plate are substantially orthogonal to each other. In addition, an axis passing through both ends in a cross section perpendicular to the extending direction of each of the convex portions of the first to third light control plates is defined as a u axis, and the center between the both ends on the u axis is defined as the u axis. When the orthogonal axis is the v-axis and the length in the u-axis direction is w a for each of the convex portions of the first to third light control plates, the first to third lights in the cross section are as follows. The contour shape of each convex portion of the control plate is represented by v (u) satisfying the following formula (1) when −0.475 w a ≦ u ≦ 0.475 w a .
Figure JPOXMLDOC01-appb-M000007
However, in Formula (1),
Figure JPOXMLDOC01-appb-M000008
(In Formula (2), h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is −1.00 or more and is a constant satisfying 0.25 or less. Further, in the equation (2), for each of the convex portions of the second and third light control plate, h a is, 0.32 W a more 0.97W a And k a is a constant satisfying −1.00 and 0.75.
 この構成では、第2の光制御板を通過した光は第3の光制御板に入射されて出射されることになる。第1の光制御板の凸状部が上述した断面形状を有するので、第1の光制御板は、上述した配光特性を有する点状光源からの光を、輝度が均一な線状の光に変換できる。同様に、第2及び第3の光制御板の各々の凸状部が上述した断面形状を有することから、第2及び第3の光制御板は、点状光源上に、第2及び第3の光制御板の凸状部の延在方向を略平行にして配置した場合、点状光源からの光を輝度が均一な線状の光に変換できる。そして、本発明に係る面光源装置では、第1の光制御板の凸状部の延在方向と、第2又は第3の光制御板の凸状部の延在方向とが略直交するように、第1の光制御板と、第2及び第3の光制御板の組とが配置されている。そのため、光制御板ユニットに入射された点状光源の光は、第1の光制御板と、第2及び第3の光制御板の組とによって、互いに略直交する方向にそれぞれ輝度が均一な線状の光に変換される。その結果、上記面光源装置は、点状光源の光を、均一に分散し、面状の光であって板厚方向に直交する面での輝度均斉度が高い面状の光として出射することが可能である。 In this configuration, light that has passed through the second light control plate enters the third light control plate and is emitted. Since the convex portion of the first light control plate has the cross-sectional shape described above, the first light control plate converts light from the point light source having the above-described light distribution characteristics into linear light with uniform luminance. Can be converted to Similarly, since the convex portions of the second and third light control plates have the above-described cross-sectional shape, the second and third light control plates are arranged on the point light source. When the extending directions of the convex portions of the light control plate are arranged substantially in parallel, the light from the point light source can be converted into linear light with uniform luminance. In the surface light source device according to the present invention, the extending direction of the convex portion of the first light control plate and the extending direction of the convex portion of the second or third light control plate are substantially orthogonal to each other. In addition, a first light control plate and a set of second and third light control plates are arranged. For this reason, the light of the point light source incident on the light control plate unit has a uniform luminance in a direction substantially orthogonal to each other by the first light control plate and the set of the second and third light control plates. Converted to linear light. As a result, the surface light source device emits the light from the point light source as planar light that is uniformly dispersed and has high luminance uniformity on the surface perpendicular to the plate thickness direction. Is possible.
 本発明に係る面光源装置では、第1~第3の光制御板の各々が有する第1の面は略平坦である、とすることができる。 In the surface light source device according to the present invention, the first surface of each of the first to third light control plates can be substantially flat.
 本発明に係る透過型画像表示装置は、複数の点状光源と、複数の点状光源上に設けられる光制御板ユニットと、光制御板ユニット上に設けられており、光制御板ユニットから出射された光に照射されて画像を表示する透過型画像表示部と、を備える。本発明に係る透過型画像表示装置が有する点状光源は、光の出射角度が70°以上80°以下の範囲に最大出射光強度Imaxを有する配光特性であって、(a)出射角度が0°の場合の出射光強度Iが、
   0.12×Imax≦I≦0.20×Imax
を満し、(b)出射光強度が(I+Imax)/2となる出射角度が60°以上70°以下であり、及び、(c)出射光強度が(I+Imax)/4となる出射角度が47.5°以上57.5°以下である、配光特性を有する。また、本発明に係る透過型画像表示装置が有する光制御板ユニットは、第1の面から入射された光を第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しておりその一方向に略直交する方向に並列配置された複数の凸状部が第2の面に形成されている第1~第3の光制御板を備える。そして、(d)第1の光制御板、第2の光制御板及び第3の光制御板は、第3の光制御板が第2の光制御板の上側に位置するように、板厚方向に設けられており、(e)第3の光制御板の第1の面が、第2の光制御板の第2の面側に位置しており、(f)第2の光制御板が有する凸状部の延在方向と第3の光制御板が有する凸状部の延在方向とが略平行であり、(g)第1の光制御板が有する凸状部の延在方向と第2又は第3の光制御板が有する凸状部の延在方向とが略直交している。また、第1~第3の光制御板が有する凸状部の各々の延在方向に直交する断面において両端を通る軸線をu軸とし、u軸上において当該両端間の中心をとおりu軸に直交する軸線をv軸とし、第1~第3の光制御板が有する凸状部の各々に対してu軸方向の長さをwとしたとき、上記断面において第1~第3の光制御板が有する凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(3)を満たすv(u)で表される。
Figure JPOXMLDOC01-appb-M000009
ただし、式(3)において、
Figure JPOXMLDOC01-appb-M000010
(式(4)において、第1の光制御板の凸状部に対して、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ0.25以下を満たす定数である。また、式(4)において、第2及び第3の光制御板の凸状部の各々に対して、hは、0.32w以上0.97w以下を満たす定数であり、kは-1.00以上且つ0.75以下を満たす定数である。)
A transmissive image display device according to the present invention includes a plurality of point light sources, a light control plate unit provided on the plurality of point light sources, and provided on the light control plate unit, and is emitted from the light control plate unit. A transmissive image display unit that displays an image by being irradiated with the emitted light. The point light source included in the transmissive image display device according to the present invention has a light distribution characteristic in which the light emission angle has a maximum emission light intensity I max in a range of 70 ° to 80 °, and (a) the emission angle. The emitted light intensity I 0 when is 0 ° is
0.12 × I max ≦ I 0 ≦ 0.20 × I max
(B) The emission angle at which the emission light intensity is (I 0 + I max ) / 2 is 60 ° or more and 70 ° or less, and (c) the emission light intensity is (I 0 + I max ) / 4. The light distribution characteristic is such that the emission angle becomes 47.5 ° or more and 57.5 ° or less. In addition, the light control plate unit included in the transmissive image display device according to the present invention can emit light incident from the first surface from the second surface located on the opposite side of the first surface, and The first to third light control plates each having a plurality of convex portions extending in one direction and arranged in parallel in a direction substantially orthogonal to the one direction are provided on the second surface. (D) The thickness of the first light control plate, the second light control plate, and the third light control plate is such that the third light control plate is positioned above the second light control plate. (E) the first surface of the third light control plate is located on the second surface side of the second light control plate, and (f) the second light control plate. The extending direction of the convex portion of the first light control plate is substantially parallel to the extending direction of the convex portion of the third light control plate, and (g) the extending direction of the convex portion of the first light control plate. And the extending direction of the convex portion of the second or third light control plate are substantially orthogonal to each other. In addition, an axis passing through both ends in a cross section perpendicular to the extending direction of each of the convex portions of the first to third light control plates is defined as a u axis, and the center between the both ends on the u axis is defined as the u axis. When the orthogonal axis is the v-axis and the length in the u-axis direction is w a for each of the convex portions of the first to third light control plates, the first to third lights in the cross section are as follows. The contour shape of each convex portion of the control plate is represented by v (u) that satisfies the following expression (3) when −0.475 w a ≦ u ≦ 0.475 w a .
Figure JPOXMLDOC01-appb-M000009
However, in Formula (3),
Figure JPOXMLDOC01-appb-M000010
(In Expression (4), h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is −1.00 or more and is a constant satisfying 0.25 or less. Further, in the equation (4), for each of the convex portions of the second and third light control plate, h a is, 0.32 W a more 0.97W a (K a is a constant satisfying −1.00 and 0.75)
 この透過型画像表示装置では、第2の光制御板を通過した光は第3の光制御板に入射されて出射されることになる。第1の光制御板の凸状部が上述した断面形状を有するので、第1の光制御板は、上述した配光特性を有する点状光源からの光を、輝度が均一な線状の光に変換できる。同様に、第2及び第3の光制御板の各々の凸状部が上述した断面形状を有することから、第2及び第3の光制御板は、点状光源上に、第2及び第3の光制御板の凸状部の延在方向を略平行にして配置した場合、点状光源からの光を輝度が均一な線状の光に変換できる。そして、本発明に係る光制御板ユニットでは、第1の光制御板の凸状部の延在方向と、第2又は第3の光制御板の凸状部の延在方向とが略直交するように、第1の光制御板と、第2及び第3の光制御板の組とが配置されている。そのため、光制御板ユニットに入射された点状光源の光は、第1の光制御板と、第2及び第3の光制御板の組とによって、互いに略直交する方向にそれぞれ輝度が均一な線状の光に変換される。その結果、上記光制御板ユニットは、点状光源の光を、均一に分散し、面状の光であって板厚方向に直交する面での輝度均斉度が高い面状の光として出射することが可能である。 In this transmissive image display device, light that has passed through the second light control plate enters and exits the third light control plate. Since the convex portion of the first light control plate has the cross-sectional shape described above, the first light control plate converts light from the point light source having the above-described light distribution characteristics into linear light with uniform luminance. Can be converted to Similarly, since the convex portions of the second and third light control plates have the above-described cross-sectional shape, the second and third light control plates are arranged on the point light source. When the extending directions of the convex portions of the light control plate are arranged substantially in parallel, the light from the point light source can be converted into linear light with uniform luminance. In the light control plate unit according to the present invention, the extending direction of the convex portion of the first light control plate is substantially orthogonal to the extending direction of the convex portion of the second or third light control plate. As described above, a first light control plate and a set of second and third light control plates are arranged. For this reason, the light of the point light source incident on the light control plate unit has a uniform luminance in a direction substantially orthogonal to each other by the first light control plate and the set of the second and third light control plates. Converted to linear light. As a result, the light control plate unit disperses the light from the point light source uniformly and emits it as planar light that is planar light and has high luminance uniformity on the surface orthogonal to the plate thickness direction. It is possible.
 本発明に係る光制御板ユニットは、第1の面から入射された光を第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しており一方向に略直交する方向に並列配置された複数の凸状部が第2の面に形成されている第1~第3の光制御板を有し、第1の光制御板、第2の光制御板及び第3の光制御板は、第3の光制御板が第2の光制御板の上側に位置するように、板厚方向に設けられており、第3の光制御板の第1の面が、第2の光制御板の第2の面側に位置し、第2の光制御板が有する凸状部の延在方向と第3の光制御板が有する凸状部の延在方向とが略平行であり、第1の光制御板が有する凸状部の延在方向と第2又は第3の光制御板が有する凸状部の延在方向とが略直交しており、第1~第3の光制御板が有する凸状部の各々の延在方向に直交する断面において両端を通る軸線をu軸とし、u軸上において当該両端間の中心をとおりu軸に直交する軸線をv軸とし、第1~第3の光制御板が有する凸状部の各々に対してu軸方向の長さをwとしたとき、断面において第1~第3の光制御板が有する凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(5)を満たすv(u)で表される。
Figure JPOXMLDOC01-appb-M000011
ただし、前記式(5)において、
Figure JPOXMLDOC01-appb-M000012
(式(6)において、第1の光制御板の凸状部に対して、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ0.25以下を満たす定数である。また、式(6)において、第2及び第3の光制御板の凸状部の各々に対して、hは、0.32w以上0.97w以下を満たす定数であり、kは-1.00以上且つ0.75以下を満たす定数である。ただし、第1の光制御板の凸状部において、kについて-1.00以上0.25以下の範囲から-1.00以上-0.15以下の範囲が除かれるか、または、第2及び第3の光制御板のうちの少なくとも一方の凸状部において、hについて0.32w以上0.97w以下の範囲から0.32w以上0.80w以下の範囲が除かれるか、もしくは、kについて-1.00以上0.75以下の範囲から-1.00以上0.23以下の範囲が除かれる。)
The light control plate unit according to the present invention can emit light incident from the first surface from the second surface located on the opposite side of the first surface, and extends in one direction. The first light control plate, the second light control plate, and the second light control plate have a plurality of convex portions arranged in parallel in a direction substantially orthogonal to one direction. The light control plate and the third light control plate are provided in the plate thickness direction so that the third light control plate is located above the second light control plate. 1 surface is located on the second surface side of the second light control plate, the extending direction of the convex portion of the second light control plate and the extension of the convex portion of the third light control plate. The extending direction of the convex portion included in the first light control plate is substantially orthogonal to the extending direction of the convex portion included in the second or third light control plate. , Have first to third light control plate In the cross section orthogonal to the extending direction of each of the convex portions, an axis passing through both ends is defined as a u axis, and an axis passing through the center between the both ends on the u axis and orthogonal to the u axis is defined as a v axis. When the length in the u-axis direction is w a for each of the convex portions of the light control plate, the contour shape of each of the convex portions of the first to third light control plates in the cross section is − It is represented by v (u) that satisfies the following formula (5) in 0.475 w a ≦ u ≦ 0.475 w a .
Figure JPOXMLDOC01-appb-M000011
However, in the formula (5),
Figure JPOXMLDOC01-appb-M000012
(In Expression (6), h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is −1.00 or more and is a constant satisfying 0.25 or less. Further, in the equation (6), for each of the convex portions of the second and third light control plate, h a is, 0.32 W a more 0.97W a is a constant that satisfies the following, k a is a constant satisfying -1.00 or more and 0.75 or less. However, in the convex portion of the first light control plate, for k a -1.00 or 0. 25 of the following -1.00 or -0.15 or less in the range of range is removed, or, in at least one of the convex portions of the second and third light control plate, 0.32 W for h a the range 0.32 W a or 0.80 W a is removed from 0.97W a following range of a Luke, or a range of -1.00 or 0.23 or less from the scope of -1.00 to 0.75 for k a is removed.)
 この構成では、第1の光制御板の第1の面から入射された光は第2の面から出射される。そして、第1の光制御板の第2の面から出射された光は第2の光制御板の第1の面に入射され、第2の光制御板の第2の面から出射される。光制御板ユニットが有する第1及び第2の光制御板の各々は、第2の面に上記凸状部が複数形成されている。第1及び第2の光制御板の各々が有する凸状部が上記式(5)を満たすv(u)で表される断面形状を有することから、第1及び第2の光制御板は、上述した配光特性を有する点状光源からの光を、線状の光であってその延在方向に輝度がほぼ均一な光に変換することができる。そして、本発明に係る光制御板ユニットでは、第1及び第2の光制御板の各々が有する凸状部の延在方向が略直交するように配置されている。そのため、上記光制御板ユニットは、点状光源からの光を、十分に均一に分散させて面状の光として出射可能である。 In this configuration, light incident from the first surface of the first light control plate is emitted from the second surface. Then, the light emitted from the second surface of the first light control plate enters the first surface of the second light control plate and is emitted from the second surface of the second light control plate. Each of the first and second light control plates of the light control plate unit has a plurality of convex portions formed on the second surface. Since the convex portion of each of the first and second light control plates has a cross-sectional shape represented by v (u) that satisfies the above formula (5), the first and second light control plates are The light from the point light source having the light distribution characteristics described above can be converted into light that is linear light and has substantially uniform brightness in the extending direction. And in the light control board unit which concerns on this invention, it arrange | positions so that the extension direction of the convex part which each of the 1st and 2nd light control board has may be substantially orthogonal. Therefore, the light control plate unit can emit light from the point light source as planar light by sufficiently uniformly dispersing it.
 本発明によれば、点状光源からの光を十分に均一に分散させることが可能な面光源装置、光制御板ユニット及び透過型画像表示装置を提供することができる。 According to the present invention, it is possible to provide a surface light source device, a light control plate unit, and a transmissive image display device that can sufficiently uniformly disperse light from a point light source.
本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of one Embodiment of the transmissive image display apparatus which concerns on this invention. 点状光源の配置の一例を示す図面である。It is drawing which shows an example of arrangement | positioning of a point light source. 点状光源の配置の他の例を示す図面である。It is drawing which shows the other example of arrangement | positioning of a point light source. 図1に示した透過型画像表示装置に用いられる点状光源の配光分布の一例を示す図面である。It is drawing which shows an example of the light distribution of the point light source used for the transmissive image display apparatus shown in FIG. 図1に示した光制御板ユニットの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the light control board unit shown in FIG. 図5に示した光制御板ユニットの第1の光制御板が有する凸状部の断面形状の例を示す図面である。It is drawing which shows the example of the cross-sectional shape of the convex part which the 1st light control board of the light control board unit shown in FIG. 5 has. 図5に示した光制御板ユニットの第1の光制御板が有する凸状部の断面形状が満たす条件を説明するための図面である。It is drawing for demonstrating the conditions which the cross-sectional shape of the convex part which the 1st light control board of the light control board unit shown in FIG. 5 has satisfies. 図5に示した光制御板ユニットの第2及び第3の光制御板が有する凸状部の断面形状を説明するための図面である。FIG. 6 is a view for explaining a cross-sectional shape of a convex portion included in the second and third light control plates of the light control plate unit shown in FIG. 5. 図5に示した光制御板ユニットの第2及び第3の光制御板が有する凸状部の断面形状が満たす条件を説明するための図面である。It is drawing for demonstrating the conditions which the cross-sectional shape of the convex part which the 2nd and 3rd light control board of the light control board unit shown in FIG. 5 has satisfies. 光制御板ユニットの他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a light-control board unit. 光制御板ユニットの更に他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a light-control board unit. 従来の透過型画像表示装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the conventional transmissive image display apparatus.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、同一または相当要素には同一符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent element, and the overlapping description is abbreviate | omitted. The dimensional ratios in the drawings do not necessarily match those described.
 (第1の実施形態)
 図1は、本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。図1は、透過型画像表示装置1を分解して示している。
(First embodiment)
FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention. FIG. 1 shows the transmissive image display device 1 in an exploded manner.
 透過型画像表示装置1は、透過型画像表示部10と、図1において透過型画像表示部10の背面側に配置された面光源装置20とを備えている。以下の説明では、図1に示すように、面光源装置20と透過型画像表示部10の配列方向をz方向(板厚方向)と称し、z方向に直交する2方向であって互いに直交する2方向をx方向及びy方向と称す。 The transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 disposed on the back side of the transmissive image display unit 10 in FIG. In the following description, as shown in FIG. 1, the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a z direction (plate thickness direction), which is two directions orthogonal to the z direction and orthogonal to each other. Two directions are referred to as an x direction and a y direction.
 透過型画像表示部10としては、例えば液晶セル11の両面に直線偏光板12,13が配置された液晶表示パネルが挙げられる。この場合、透過型画像表示装置1は液晶表示装置(又は液晶テレビ)である。液晶セル11,偏光板12,13は、従来の液晶表示装置等の透過型画像表示装置1で用いられているものを用いることができる。液晶セル11としてはTFT型、STN型等の公知の液晶セルが例示される。 Examples of the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11. In this case, the transmissive image display device 1 is a liquid crystal display device (or a liquid crystal television). As the liquid crystal cell 11 and the polarizing plates 12 and 13, those used in the transmissive image display device 1 such as a conventional liquid crystal display device can be used. Examples of the liquid crystal cell 11 include known liquid crystal cells such as TFT type and STN type.
 面光源装置20は、いわゆる直下型の面光源装置である。面光源装置20は、光拡散板ユニット(光制御板ユニット)21Aと、図1においてその背面側に配置された複数の点状光源22と、を含む。 The surface light source device 20 is a so-called direct type surface light source device. The surface light source device 20 includes a light diffusing plate unit (light control plate unit) 21A and a plurality of point light sources 22 arranged on the back side in FIG.
 光拡散板ユニット21Aは、板厚方向(z方向)に順に配置された第1の光拡散板30、第2の光拡散板30及び第3の光拡散板30を備える。 Light diffusing plate unit 21A includes a first light diffusing plate 30 1, a second light diffusion plate 30 2 and the third light diffusing plate 30 3 arranged in this order in the thickness direction (z-direction).
 光拡散板ユニット21Aを構成する第1~第3の光拡散板30~30の平面視形状(z方向からみた形状)はほぼ同一であり、通常、長方形である。第1~第3の光拡散板30~30の平面視形状、換言すれば、光拡散板ユニット21Aの平面視形状のサイズは、目的とする透過型画像表示装置1の画面サイズに適合するように選択されるが、通常は250mm×440mm以上、好ましくは1020mm×1800mm以下である。第1~第3の光拡散板30~30の平面視形状は、長方形に限らず、正方形としてもよいが、以下では、特に断らない限り、長方形として説明する。 The first to third light diffusing plates 30 1 to 30 3 constituting the light diffusing plate unit 21A have substantially the same shape in plan view (the shape seen from the z direction), and are usually rectangular. The planar view shape of the first to third light diffusion plates 30 1 to 30 3 , in other words, the size of the planar view shape of the light diffusion plate unit 21 A matches the target screen size of the transmissive image display device 1. Usually, it is 250 mm × 440 mm or more, preferably 1020 mm × 1800 mm or less. The shape of the first to third light diffusion plates 30 1 to 30 3 in plan view is not limited to a rectangle but may be a square, but in the following, it will be described as a rectangle unless otherwise specified.
 図2は、複数の点状光源の配置関係の一例を示す図面である。図2に示すように、複数の点状光源22は、x方向に等間隔L及びy方向に等間隔Lで配置することができる。図2では、一例として、x方向の間隔Lxがy方向の間隔Lyより大きいとしているが、間隔Lyの方が間隔Lxより大きくてもよいし、間隔Lx及び間隔Lyが同じでもよい。間隔Lx及び間隔Lyは、点状光源22の発光部間の距離とすることができ、通常10mm~150mmである。 FIG. 2 is a drawing showing an example of the arrangement relationship of a plurality of point light sources. As shown in FIG. 2, the plurality of point light sources 22 can be arranged at equal intervals L x in the x direction and at equal intervals L y in the y direction. In FIG. 2, as an example, the interval Lx in the x direction is larger than the interval Ly in the y direction, but the interval Ly may be larger than the interval Lx, or the interval Lx and the interval Ly may be the same. The interval Lx and the interval Ly can be the distance between the light emitting portions of the point light source 22, and are usually 10 mm to 150 mm.
 また、複数の点状光源22は、図3に示した千鳥格子状に配置してもよい。図3は図2の場合の変形とみなすことができるので、点状光源22間のx方向及びy方向の間隔は、図2の場合と同様とすることができる。具体的に説明する。 Further, the plurality of point light sources 22 may be arranged in a staggered pattern shown in FIG. Since FIG. 3 can be regarded as a modification of the case of FIG. 2, the distance between the point light sources 22 in the x direction and the y direction can be the same as in the case of FIG. This will be specifically described.
 図2に示した長方形格子は、x方向に配置された複数の点状光源22からなる点状光源列が、y方向に複数並列されたものとみなすことができる。この場合、図3の千鳥格子状の配置は、y方向に配列された複数の点状光源列のうち隣接する点状光源列をx方向に半周期ずらして配置しているものとなる。よって、図3に示した配置においても、y方向の間隔Lyは、図2に示した場合と同様、すなわち、y方向に並列された上記点状光源列の間の間隔とすることができる。図3では、一例として、y方向に並列された上記点状光源列のうち隣接する点状光源列がx方向に半周期ずれているとしたが、上記説明においてx方向及びy方向が反対であってもよい。 The rectangular lattice shown in FIG. 2 can be regarded as a plurality of point light source arrays composed of a plurality of point light sources 22 arranged in the x direction arranged in parallel in the y direction. In this case, the staggered arrangement in FIG. 3 is such that adjacent point light source arrays out of a plurality of point light source arrays arranged in the y direction are arranged with a half cycle shift in the x direction. Therefore, also in the arrangement shown in FIG. 3, the interval Ly in the y direction can be the same as the case shown in FIG. 2, that is, the interval between the point light source arrays arranged in parallel in the y direction. In FIG. 3, as an example, the adjacent point light source arrays out of the point light source arrays arranged in parallel in the y direction are shifted by a half cycle in the x direction. However, in the above description, the x direction and the y direction are opposite. There may be.
 図4は、面光源装置が有する点状光源の配光分布の一例を示す図面である。図4の横軸は出射角度θ(°)を示しており、縦軸は、最大の出射光強度で規格化した規格化出射光強度を示している。本実施形態において、θ=0は、図1におけるz方向に対応する。 FIG. 4 is a diagram showing an example of a light distribution of a point light source included in the surface light source device. The horizontal axis of FIG. 4 indicates the outgoing angle θ (°), and the vertical axis indicates the normalized outgoing light intensity normalized by the maximum outgoing light intensity. In the present embodiment, θ = 0 corresponds to the z direction in FIG.
 点状光源22は、いわゆるサイドエミッティング型の光源であり、点状光源22の例は、発光ダイオードである。点状光源22は、次の条件を満たす配光特性(指向特性)を有する。
・出射光強度が最大である最大出射光強度Imaxの出射角度θ(以下、ピーク角度θと称す)が70°以上80以下の範囲内にある。
・正面方向(出射角度θが0°方向)からピーク角度θまで出射光強度が略単調増加している。
・正面方向の出射光強度をIとしたとき、Iは、
 0.12×Imax≦I≦0.20×Imax
を満たす。
・出射光強度が(Imax+I)/2となる出射角度θが、60°以上70°以下の範囲にある。
・出射光強度が(Imax+I)/4となる出射角度θが47.5°以上57.5°以下の範囲にある。
The point light source 22 is a so-called side emitting light source, and an example of the point light source 22 is a light emitting diode. The point light source 22 has a light distribution characteristic (directional characteristic) that satisfies the following conditions.
The outgoing angle θ 1 (hereinafter referred to as peak angle θ 1 ) of the maximum outgoing light intensity I max where the outgoing light intensity is maximum is in the range of 70 ° to 80 °.
The intensity of emitted light increases substantially monotonically from the front direction (emitted angle θ is 0 °) to the peak angle θ 1 .
・ When the emitted light intensity in the front direction is I 0 , I 0 is
0.12 × I max ≦ I 0 ≦ 0.20 × I max
Meet.
The outgoing angle θ 2 at which the outgoing light intensity is (I max + I 0 ) / 2 is in the range of 60 ° to 70 °.
The outgoing angle θ 3 at which the outgoing light intensity is (I max + I 0 ) / 4 is in the range of 47.5 ° to 57.5 °.
 図4に例示した配光特性では、縦軸が規格化出射光強度であることから、Imax=1.00000であり、対応する出射角度θは76.8°である。Iは0.140である。この場合、(Imax+I)/2=0.570であり、対応する出射角度θは66.5°である。また、(Imax+I)/4=0.285であり、対応する出射角度θは52.5°である。よって、図4に示した点状光源22の配光特性は、上述した条件を満たしている。 In the light distribution characteristic illustrated in FIG. 4, since the vertical axis is the normalized output light intensity, I max = 1.00000, and the corresponding output angle θ 1 is 76.8 °. I 0 is 0.140. In this case, (I max + I 0 ) /2=0.570, and the corresponding emission angle θ 2 is 66.5 °. Further, (I max + I 0 ) /4=0.285, and the corresponding emission angle θ 3 is 52.5 °. Therefore, the light distribution characteristics of the point light source 22 shown in FIG. 4 satisfy the above-described conditions.
 図5は、光拡散板ユニット(光制御板ユニット)の構成を示すための斜視図である。図5を参照して、光拡散板ユニット21Aを構成する第1~第3の光拡散板30,30,30について説明する。図5では、説明のために、第1~第3の光拡散板30~30を離して配置しているが、後述するように、第1の光拡散板30上に第2~第3の光拡散板30,30を隣接する2枚が接するように設けてもよい。 FIG. 5 is a perspective view for illustrating a configuration of a light diffusion plate unit (light control plate unit). With reference to FIG. 5, the first to third light diffusion plates 30 1 , 30 2 , 30 3 constituting the light diffusion plate unit 21A will be described. In Figure 5, for purposes of explanation, although spaced apart first to third light diffusing plate 30 1-30 3, as described later, the second to the first upper light diffusion plate 30 1 The third light diffusing plates 30 2 and 30 3 may be provided so that two adjacent plates contact each other.
 [第1の光拡散板]
 第1の光拡散板30は、略平坦な下面(第1の光制御板の第1の面)31と、外側(第2の光拡散板30側)に凸である凸状部(第1の光制御板の凸状部)33が複数形成された上面(第1の光制御板の第2の面)32とを有する板状体である。第1の光拡散板30は、例えば凸状部33からの光の出射位置の違いにより光を分散させる光拡散板である。また、第1の光拡散板30は、凸状部33からの光の出射位置により光の出射方向を偏向しているので、光の偏向を調整する形状が付与された偏向構造板ともいえる。ここでは、「板」と称しているが、厚さに応じてシート状及びフィルム状であってもよい。凸状部33は、y方向に略平行なY1方向(第1の光制御板の第1の方向)に延びており、Y1方向に略直交するX1方向(第1の光制御板の第2の方向)に並列配置されている。X1方向及びY1方向はそれぞれx方向及びy方向に平行であることが好ましいが、例えば製造誤差等により±10°程度ずれていてもよい。複数の凸状部33の断面形状は、凸状部33間でほぼ同一である。また、凸状部33の延在方向において、断面形状はほぼ均一である。隣接する2つの凸状部33,33の端33a,33aはX1方向において同じ位置にある。第1の光拡散板30の厚さd1は、下面31と凸状部33の頂部33bとのz方向の距離であり、通常は0.1mm~5mmである。
[First light diffuser]
The first light diffusion plate 30 1, 1 a substantially planar lower surface (first surface of the first light control plate) 31, the outer convex portion is convex (second light diffusion plate 30 2 side) it is a (first convex portion of the light control plate) 33 1 is formed with a plurality of upper surface (second surface of the first light control plate) 32 1 and the plate-like body having a. The first light diffusion plate 30 1 is, for example, a light diffusion plate for dispersing the light by the difference of the emission position of the light from the convex portion 33 1. The first light diffusion plate 30 1, since the deflecting direction of light emission by emitting position of light from the convex portion 33 1, deflecting plate both the shape to adjust the deflection of the light is applied I can say that. Here, although referred to as “plate”, it may be in the form of a sheet or film depending on the thickness. Convex portion 33 1 extends substantially parallel to the Y1 direction in the y-direction (first direction of the first light control plate), first in the X1 direction (the first light control plate which is substantially perpendicular to the Y1 direction 2 direction). The X1 direction and the Y1 direction are preferably parallel to the x direction and the y direction, respectively, but may be shifted by about ± 10 ° due to, for example, a manufacturing error. The cross-sectional shape of the plurality of convex portions 33 1 is substantially the same between the convex portions 33 1 . Further, in the extending direction of the convex portion 33 1, the cross-sectional shape is substantially uniform. The ends 33a 1 and 33a 1 of the two adjacent convex portions 33 1 and 33 1 are at the same position in the X1 direction. First thickness d1 of the light diffusion plate 30 1 is a z-direction distance between the top portion 33b 1 of the lower surface 31 1 and the convex portion 33 1, typically a 0.1 mm ~ 5 mm.
 [第2の光拡散板]
 第2の光拡散板30は、略平坦な下面(第2の光制御板の第1の面)31と、外側(第3の光拡散板30側)に凸である凸状部(第2の光制御板の凸状部)33が複数形成された上面(第2の光制御板の第2の面)32とを有する板状体である。第2の光拡散板30は、例えば凸状部33からの光の出射位置の違いにより光を分散させる光拡散板である。また、第2の光拡散板30は、凸状部33からの光の出射位置により光の出射方向を偏向しているので、光の偏向を調整する形状が付与された偏向構造板ともいえる。ここでは、「板」と称しているが、厚さに応じてシート状及びフィルム状であってもよい。凸状部33は、x方向に略平行なX2方向(第2の光制御板の第1の方向)に延びており、X2方向に略直交するY2方向(第2の光制御板の第2の方向)に並列配置されている。X2方向及びY2方向はそれぞれx方向及びy方向に平行であることが好ましいが、第1の光拡散板30の場合と同様に、例えば製造誤差等により±10°程度ずれていてもよい。複数の凸状部33の断面形状は、凸状部33間でほぼ同一である。また、凸状部33の延在方向において、断面形状はほぼ均一である。隣接する2つの凸状部33,33の端33aはY2方向において同じ位置にある。第2の光拡散板30の厚さd2は、下面31と凸状部33の頂部33bとのz方向の距離であり、通常は0.1mm~5mmである。
[Second light diffuser]
The second light diffusion plate 30 2 is substantially the (first surface of the second light control plate) 31 2 flat lower surface, an outer convex portion is (third light diffuser 30 3 side) in a convex is a (second convex portion of the light control plate) 33 2 is formed with a plurality of upper surface (second second surface of the light control plate) 32 2 and the plate-like body having a. The second light diffusion plate 30 2, for example, a light diffusion plate for dispersing the light by the difference of the emission position of the light from the convex portion 33 1. The second light diffusion plate 30 2, since the deflecting direction of light emission by emitting position of light from the convex portion 33 2, deflecting plate both the shape to adjust the deflection of the light is applied I can say that. Here, although referred to as “plate”, it may be in the form of a sheet or film depending on the thickness. Convex portion 33 2 extend in substantially parallel direction X2 in the x-direction (first direction of the second light control plate), first in the Y2 direction (the second light control plate substantially orthogonal to the X2 direction 2 direction). It is preferred X2 direction and the Y2 direction is parallel to the x and y directions, respectively, but as in the case of the first light diffuser 30 1, for example due to a manufacturing error or the like may be offset about ± 10 °. Cross-sectional shape of the plurality of convex portions 33 2 is substantially same in the convex portion 33 2. Further, in the extending direction of the convex portion 33 2, the cross-sectional shape is substantially uniform. End 33a 2 of two adjacent convex portions 33 2, 33 2 are in the same position in the Y2 direction. The second thickness d2 of the light diffusion plate 30 2 is a z-direction distance between the top portion 33b 2 of the lower surface 31 2 and the convex portion 33 2, typically a 0.1 mm ~ 5 mm.
 [第3の光拡散板]
 第3の光拡散板30は、略平坦な下面(第3の光制御板の第1の面)31と、外側(第2の光拡散板30と反対側)に凸である凸状部(第3の光制御板の凸状部)33が複数形成された上面(第3の光制御板の第2の面)32とを有する板状体である。第3の光拡散板30は、第1の光拡散板30と同様に光拡散板であり、偏向構造板ともいえる。ここでは、「板」と称しているが、厚さに応じてシート状及びフィルム状であってもよい。凸状部33は、x方向に略平行なX3方向(第3の光制御板の第1の方向)に延びており、X3方向に略直交するY3方向(第3の光制御板の第2の方向)に並列配置されている。X3方向及びY3方向はそれぞれx方向及びy方向に平行であることが好ましいが、第1の光拡散板30の場合と同様に、例えば製造誤差等により±10°程度ずれていてもよい。複数の凸状部33の断面形状は、凸状部33間でほぼ同一である。また、凸状部33の延在方向において、断面形状はほぼ均一である。隣接する2つの凸状部33,33の端33a,33aはY3方向において同じ位置にある。第3の光拡散板30の厚さd3は、下面31と凸状部33の頂部33bとのz方向の距離であり、通常は0.1mm~5mmである。
[Third light diffusion plate]
Third light diffusing plate 30 3, and (first surface of the third light control plate) 31 3 substantially flat lower surface is convex outwardly (second light diffusion plate 30 2 and the opposite side) convex Jo unit is a (third convex portion of the light control plate) 33 2 is formed with a plurality of upper surface (3 of the second surface of the light control plate) 32 3 and the plate-like body having a. Third light diffusing plate 30 3, a first light diffusing plate 30 1 in the same manner as in the light diffusing plate, it can be said that the deflection structure plate. Here, although referred to as “plate”, it may be in the form of a sheet or film depending on the thickness. Convex portion 33 3, extends substantially parallel to the direction X3 in the x-direction (first direction of the third light control plate), first of Y3 direction (third light control plate substantially perpendicular to the direction X3 2 direction). It is preferred X3 direction and Y3 direction is parallel to the x and y directions, respectively, but as in the case of the first light diffuser 30 1, for example due to a manufacturing error or the like may be offset about ± 10 °. Cross-sectional shape of the plurality of convex portions 33 3 are substantially same in the convex portion 33 3. Further, in the extending direction of the convex portion 33 3, the cross-sectional shape is substantially uniform. The ends 33a 3 and 33a 3 of the two adjacent convex portions 33 3 and 33 3 are at the same position in the Y3 direction. Third thickness d3 of the light diffusion plate 30 3 are the z-direction distance between the lower surface 313 and the convex portion 33 3 of the top 33b 3, usually a 0.1 mm ~ 5 mm.
 [第1の光拡散板の凸状部]
 第1の光拡散板30が有する凸状部33の形状について説明する。凸状部33は、図4を利用して説明した配光特性を有する点状光源22上に第1の光拡散板30を配置した際に、点状光源22からの光を、輝度が略均一な線状の光に変換可能な断面形状を有する。凸状部33の断面形状について図6を参照して説明する。
[Convex part of first light diffusion plate]
The shape of the convex portion 33 1 in which the first light diffusing plate 30 1 has will be described. Convex portion 33 1, when placing the first light diffusing plate 30 1 on the point light source 22 having a light distribution characteristic which has been described with use of FIG. 4, the light from the point light source 22, luminance Has a cross-sectional shape that can be converted into substantially uniform linear light. The cross-sectional shape of the convex portion 33 1 will be described with reference to FIG.
 図6においては、凸状部33の延在方向に直交する方向をu軸(u軸)としてu座標系を設定している。凸状部33に対するu軸方向はX1方向に対応し、v軸(v軸)方向はz方向に対応する。 6 is set to u I v I coordinate system and the direction orthogonal to the extending direction of the convex portion 33 1 as u I axis (u-axis). U I axis direction with respect to the convex portion 33 1 corresponds to the X1 direction, v I axis (v-axis) direction corresponds to the z-direction.
 上記u座標系において、凸状部33の断面形状は、u軸上に両端33a,33aを有する。凸状部33の輪郭線は、下記式(7)を満足するv(u)で表される。
Figure JPOXMLDOC01-appb-M000013
ただし、式(7)において、
Figure JPOXMLDOC01-appb-M000014
 式(8)において、wIaはu軸方向の凸状部33の長さである。hIaは、凸状部33の両端33a,33a間における最大高さに対応し、hIaは0.40wIa以上1.60wIa以下を満たす定数である。すなわち、hIaは、hIa/wIaが0.40以上1.60以下を満たす定数である。kIaは-1.00以上且つ0.25以下を満たす定数である。凸状部33の幅wIaは、凸状部33の形成が容易であることから、通常40μm以上、好ましくは250μm以上であり、凸状部33に起因する模様が肉眼で視認されにくいことから、通常800μm以下、好ましくは450μm以下である。幅w1aとして具体的には、wIa=410μm、wIa=400μmおよびwIa=325μmが例示できるが、wIaの値はこれに限定されるものではない。
In the u I v I coordinate system, the cross-sectional shape of the convex portion 33 1 has both ends 33a 1 and 33a 1 on the u I axis. Convex portion 33 1 of the contour line is represented by v I (u I) that satisfies the following expression (7).
Figure JPOXMLDOC01-appb-M000013
However, in Formula (7),
Figure JPOXMLDOC01-appb-M000014
In the formula (8), w Ia is the length of the convex portion 33 1 of u I axis. h Ia corresponds to the maximum height between two ends 33a 1, 33a 1 of the convex portion 33 1, h Ia is a constant satisfying the following 0.40 W Ia or 1.60 W Ia. That is, h Ia is a constant that satisfies h Ia / w Ia from 0.40 to 1.60. k Ia is a constant satisfying −1.00 or more and 0.25 or less. Width w Ia of the convex portion 33 1, since formation of the convex portion 33 1 is easy, usually 40μm or more, preferably 250μm or more, the pattern caused by the convex portion 33 1 is visible to the naked eye Since it is difficult, it is usually 800 μm or less, preferably 450 μm or less. Specific examples of the width w 1a include w Ia = 410 μm, w Ia = 400 μm, and w Ia = 325 μm, but the value of w Ia is not limited thereto.
 図6は、凸状部33の断面形状の一例として式(7)を満たす範囲内でvI0(u)をv方向に所定倍だけ伸縮した形状を例示している。この場合、凸状部33は、v軸に対して対象な輪郭線を有する。図6に示した断面形状は、hIa/wIa=0.55であり、kIa=-0.25である場合のvI0(u)に対応する。ただし、凸状部33の断面形状は、図7に示すように、ある幅wIaに対してvI0(u)を決定した際に、0.95vI0(u)で表される輪郭線と、1.05vI0(u)で表される輪郭線の間の領域をとおる輪郭線であればよい。図7に示したvI0(u)においても、hIa/wIa=0.55であり、kIa=-0.25である。 Figure 6 illustrates a predetermined factor only stretch shape equation v I0 (u I) within a range satisfying (7) in the v I direction as an example of the cross-sectional shape of the convex portion 33 1. In this case, the convex portion 33 1 has a symmetrical contour relative to v I axis. The cross-sectional shape shown in FIG. 6 corresponds to v I0 (u I ) when h Ia / w Ia = 0.55 and k Ia = −0.25. However, the sectional shape of the convex portion 33 1, as shown in FIG. 7, when determining the v I0 (u I) for a width w Ia, represented by 0.95v I0 (u I) Any contour line may be used as long as it passes through a region between the contour line and the contour line represented by 1.05v I0 (u I ). Also in v I0 (u I ) shown in FIG. 7, h Ia / w Ia = 0.55 and k Ia = −0.25.
 更に、上記説明では、凸状部33の断面形状が式(7)を満たすv(u)で表されるとした。ただし、凸状部33の両端部近傍での製造誤差及び強度分布に与える影響を考慮すれば、凸状部33の断面形状は、-0.475wIa≦u≦0.475wIaにおいて式(7)を満たすv(u)で表されていればよい。 Further, in the above description, the cross-sectional shape of the convex portion 33 1 is to be represented by v I (u I) satisfying the equation (7). However, considering the effect on the manufacturing error and the intensity distribution at near both ends of the convex portion 33 1, the cross-sectional shape of the convex portion 33 1, in -0.475w Ia u I ≦ 0.475w Ia need only be represented by the formula (7) satisfies the v I (u I).
 また、hIa/wIa及びkIaの範囲は上述した範囲を満たしていればよいが、隣接する2つの点状光源22間の距離をLとし、点状光源22の発光部から光拡散板ユニット21Aの点状光源22側の面(図1又は図5では、第1の光制御板30の下面31)までの距離をDとしたとき、L/Dに対して好ましいhIa/wIa及びkIaの範囲は、以下の表1のとおりである。表1に記載のLは、凸状部33の輪郭線形状に対してはLxである。
Figure JPOXMLDOC01-appb-T000015
The range of h Ia / w Ia and k Ia only needs to satisfy the above-described range. The distance between two adjacent point light sources 22 is L, and the light diffusing plate from the light emitting part of the point light source 22 is used. When the distance to the surface of the unit 21A on the point light source 22 side (the lower surface 31 1 of the first light control plate 30 1 in FIG. 1 or 5) is D, h Ia / preferable for L / D The ranges of w Ia and k Ia are as shown in Table 1 below. L described in Table 1 is Lx for contour shape of the convex portion 33 1.
Figure JPOXMLDOC01-appb-T000015
 [第2及び第3の光拡散板の凸状部]
 第2及び第3の光拡散板30,30の各々が有する凸状部33,33の形状について説明する。
[Convex portions of second and third light diffusion plates]
The shape of the convex portions 33 2 and 33 3 included in each of the second and third light diffusion plates 30 2 and 30 3 will be described.
 凸状部33,33は、図4を利用して説明した配光特性を有する点状光源22上に第2及び第3の光制御板30,30をこの順に設けると共に、凸状部33,33をそれらの延在方向を略平行にして配置した際に、点状光源22からの光を、輝度が略均一な線状の光に変換可能な断面形状を有する。凸状部33,33の断面形状について図8を参照して説明する。 The convex portions 33 2 and 33 3 are provided with the second and third light control plates 30 2 and 30 3 in this order on the point light source 22 having the light distribution characteristics described with reference to FIG. When the shape portions 33 2 and 33 3 are arranged with their extending directions substantially parallel, they have a cross-sectional shape that can convert light from the point light source 22 into linear light having substantially uniform luminance. The cross-sectional shapes of the convex portions 33 2 and 33 3 will be described with reference to FIG.
 ここでは、凸状部33,33を、特に断らない限り凸状部33(iは2又は3)と称して説明する。図8では、凸状部33の延在方向に直交する方向をuII軸(u軸)としてuIIII座標系を設定している。凸状部33及び凸状部33に対応するuII軸方向は、それぞれY2方向及びY3方向に対応する。また、凸状部33及び凸状部33に対応するvII軸(v軸)方向は何れもz方向に対応する。 Here, the convex portions 33 2 and 33 3 will be referred to as convex portions 33 i (i is 2 or 3) unless otherwise specified. In FIG. 8, the u II v II coordinate system is set with the direction orthogonal to the extending direction of the convex portion 33 i as the u II axis (u axis). U II-axis direction corresponding to the convex portion 33 2 and the convex portion 33 3, respectively corresponding to the Y2 direction and the Y3 direction. Further, v II axis corresponding to the convex portion 33 2 and the convex portion 33 3 (v-axis) direction both correspond to the z-direction.
 上記uIIII座標系において、凸状部33の断面形状は、uII軸上に両端33a,33aを有する。凸状部33の輪郭線は、下記式(9)を満足するvII(uII)で表される。
Figure JPOXMLDOC01-appb-M000016
ただし、式(9)において、
Figure JPOXMLDOC01-appb-M000017
 式(10)において、wIIaはuII軸方向の凸状部33の長さである。hIIaは、凸状部33の両端33a,33a間における最大高さに対応し、hIIaは0.32wIIa以上0.97wIIa以下を満たす定数である。すなわち、hIIaは、hIIa/wIIaが0.32以上0.97以下を満たす定数である。kIIaは-1.00以上且つ0.75以下を満たす定数である。凸状部33の幅wIIaは、凸状部33の形成が容易であることから、通常40μm以上、好ましくは250μm以上であり、凸状部33に起因する模様が肉眼で視認されにくいことから、通常800μm以下、好ましくは450μm以下である。幅wIIaとして具体的には、wIIa=410μm、wIIa=400μmおよびwIIa=325μmが例示できるが、wIIaの値はこれに限定されるものではない。
In the u II v II coordinate system, the cross-sectional shape of the convex portion 33 i has both ends 33 a i and 33 a i on the u II axis. The contour line of the convex portion 33 i is represented by v II (u II ) that satisfies the following formula (9).
Figure JPOXMLDOC01-appb-M000016
However, in Formula (9),
Figure JPOXMLDOC01-appb-M000017
In Formula (10), w IIa is the length of the convex portion 33 i in the u II axis direction. h IIa corresponds to the maximum height between the two ends 33a i, 33a i of the convex portion 33 i, h IIa is a constant satisfying the following 0.32 W IIa or 0.97w IIa. That is, h IIa is a constant that satisfies h IIa / w IIa from 0.32 to 0.97. k IIa is a constant satisfying −1.00 or more and 0.75 or less. Width w IIa of the convex portion 33 i, since formation of the convex portion 33 i is easy, usually 40μm or more, preferably 250μm or more, the pattern caused by the convex portion 33 i is visible to the naked eye Since it is difficult, it is usually 800 μm or less, preferably 450 μm or less. Specific examples of the width w IIa include w IIa = 410 μm, w IIa = 400 μm, and w IIa = 325 μm, but the value of w IIa is not limited thereto.
 図8は、凸状部33の断面形状の一例として式(9)を満たす範囲内でvII0(uII)をvII方向に所定倍だけ伸縮した形状を例示している。この場合、凸状部33は、vII軸に対して対象な輪郭線を有する。図8に示した断面形状は、hIIa/wIIa=0.45であり、kIIa=-0.20である場合のvII0(uII)に対応する。ただし、凸状部33の断面形状は、図9に示すように、ある幅wIIaに対してvII0(uII)を決定した際に、0.95vII0(uII)で表される輪郭線と、1.05vII0(uII)で表される輪郭線の間の領域をとおる輪郭線であればよい。図9に示したvII0(uII)においても、hIIa/wIIa=0.45であり、kIIa=-0.20である。 FIG. 8 illustrates a shape in which v II0 (u II ) is expanded and contracted by a predetermined multiple in the v II direction within the range satisfying Expression (9) as an example of the cross-sectional shape of the convex portion 33 i . In this case, the convex portion 33 i has a symmetrical contour relative v II axis. The cross-sectional shape shown in FIG. 8 corresponds to v II0 (u II ) when h IIa / w IIa = 0.45 and k IIa = −0.20. However, the cross-sectional shape of the convex portion 33 i is represented by 0.95v II0 (u II ) when v II0 (u II ) is determined for a certain width w IIa as shown in FIG. Any contour line may be used as long as it passes through a region between the contour line and the contour line represented by 1.05v II0 (u II ). Also in v II0 (u II ) shown in FIG. 9, h IIa / w IIa = 0.45 and k IIa = −0.20.
 更に、上記説明では、凸状部33の断面形状が式(9)を満たすvII(uII)で表されるとした。ただし、凸状部33の両端部近傍での製造誤差及び強度分布に与える影響を考慮すれば、凸状部33の断面形状は、-0.475wIIa≦uII≦0.475wIIaにおいて式(9)を満たすvII(uII)で表されていればよい。 Furthermore, in the above description, it is assumed that the cross-sectional shape of the convex portion 33 i is represented by v II (u II ) that satisfies the formula (9). However, considering the effect on the manufacturing error and the intensity distribution at near both ends of the convex portion 33 i, the cross-sectional shape of the convex portion 33 i, in -0.475w IIa u II ≦ 0.475w IIa need only be represented by the formula (9) satisfies the v II (u II).
 また、hIIa/wIIa及びkIIaの範囲は上述した範囲を満たしていればよいが、隣接する2つの点状光源22間の距離をLとし、点状光源22の発光部から光拡散板ユニット21Aの点状光源22側の面(図1又は図5では、第1の光拡散板30の下面31)までの距離をDとしたとき、L/Dに対して好ましいhIIa/wIIa及びkIIaの範囲は、表2のとおりである。表2に記載のLは、凸状部33,33の輪郭線形状に対してはLyである。
Figure JPOXMLDOC01-appb-T000018
The range of h IIa / w IIa and k IIa only needs to satisfy the above-described range. The distance between two adjacent point light sources 22 is L, and the light diffusing plate from the light emitting portion of the point light source 22 is used. When the distance to the surface of the unit 21A on the point light source 22 side (the lower surface 31 1 of the first light diffusion plate 30 1 in FIG. 1 or FIG. 5) is D, h IIa / preferable for L / D The ranges of w IIa and k IIa are shown in Table 2. L shown in Table 2 is Ly for the contour shape of the convex portions 33 2 and 33 3 .
Figure JPOXMLDOC01-appb-T000018
 第2及び第3の光拡散板30及び30の凸状部33,33のwIIa、hIIa、kIIaは各凸状部33,33間で同じであることが好ましいが、異なっていてよい。すなわち、第2及び第3の光拡散板30,30の各々が有する凸状部33,33の断面形状は、互いに同一の断面形状であることが好ましいが、それぞれの凸状部33,33の断面形状の輪郭線が上記式(9)を満たす範囲において、異なる断面形状であってもよい。 Convex portion 33 2 of the second and third light diffusion plate 30 2 and 30 3, 33 3 w IIa, h IIa, k IIa is preferably the same between the respective convex portions 33 2, 33 3 But it can be different. That is, it is preferable that the cross-sectional shapes of the convex portions 33 2 and 33 3 included in each of the second and third light diffusion plates 30 2 and 30 3 are the same cross-sectional shape. Different cross-sectional shapes may be used as long as the contour lines of the cross-sectional shapes of 33 2 and 33 3 satisfy the above formula (9).
 〔第1~第3の光拡散板の層構成〕
 第1~第3の光拡散板30~30は、単独の透明材料で構成された単層板であってもよいし、互いに異なる透明材料で構成された層が積層された多層構造の多層板であってもよい。第1~第3の光拡散板30~30が多層板である場合、第1~第3の光拡散板30~30の片面または両面は、通常10μm~200μm、好ましくは20μm~100μmの厚みのスキン層が形成された構造とし、このスキン層を構成する透明樹脂材料として紫外線吸収剤が添加されたものを用いることが好ましい。かかる構成とすることにより、点状光源22や外部からの光に含まれることのある紫外線による第1~第3の光拡散板30~30の劣化を防止することができ、特に点状光源22として紫外線の占める割合が比較的大きいものを用いた場合には、紫外線による劣化を防止できることから、下面31~31にスキン層が形成されていることが好ましく、このとき上面32~32にはスキン層が形成されていないことが、コストの面でさらに好ましい。スキン層を構成する透明樹脂材料として紫外線吸収剤が添加されたものを用いる場合、その含有量は、透明樹脂材料を基準として通常0.5質量%~5質量%、好ましくは1質量%~2.5質量%である。
[Layer structure of the first to third light diffusion plates]
The first to third light diffusion plates 30 1 to 30 3 may be single-layer plates made of a single transparent material, or may have a multilayer structure in which layers made of different transparent materials are laminated. A multilayer board may be sufficient. When the first to third light diffusion plates 30 1 to 30 3 are multilayer plates, one or both sides of the first to third light diffusion plates 30 1 to 30 3 are usually 10 μm to 200 μm, preferably 20 μm to It is preferable to use a structure in which a skin layer having a thickness of 100 μm is formed, and a transparent resin material constituting the skin layer to which an ultraviolet absorber is added is used. By adopting such a configuration, it is possible to prevent the first to third light diffusion plates 30 1 to 30 3 from being deteriorated by the point light source 22 and ultraviolet rays that may be included in light from the outside. When a light source 22 having a relatively large proportion of ultraviolet rays is used, it is preferable to form a skin layer on the lower surfaces 31 1 to 31 3 , since deterioration due to ultraviolet rays can be prevented. At this time, the upper surface 32 1 that the ~ 32 3 not formed skin layer is further preferred in terms of cost. When a transparent resin material to which an ultraviolet absorber is added is used as the transparent resin material constituting the skin layer, the content thereof is usually 0.5% by mass to 5% by mass, preferably 1% by mass to 2%, based on the transparent resin material. 0.5% by mass.
 またモアレ低減のために点状光源22側の面を、光拡散性を有する面とすることもできる。例えば、マット化剤と呼ばれる微細な粒子を含むスキン層で前述したように点状光源22側の面を構成してもよいし、点状光源22側の面にエンボス加工、ブラスト加工を施してもよいし、マット化剤およびバインダーを含む塗布液を塗布してマット層を形成してもよい。 Also, the surface on the point light source 22 side can be a surface having light diffusibility in order to reduce moire. For example, the surface on the point light source 22 side may be configured as described above with a skin layer containing fine particles called a matting agent, or the surface on the point light source 22 side may be embossed or blasted. Alternatively, the mat layer may be formed by applying a coating solution containing a matting agent and a binder.
 第1~第3の光拡散板30~30は、片面または両面に帯電防止剤が塗布されていてもよい。帯電防止剤を塗布することにより、静電気によるホコリの付着などを防止して、ホコリの付着による光線透過率の低下を防止することができる。 The first to third light diffusion plates 30 1 to 30 3 may be coated with an antistatic agent on one side or both sides. By applying an antistatic agent, dust adhesion due to static electricity can be prevented, and a decrease in light transmittance due to dust adhesion can be prevented.
 〔構成材料〕
 第1~第3の光拡散板30~30は透明材料からなる。透明材料の屈折率は通常1.46~1.62である。透明材料としては、透明樹脂材料、透明ガラス材料が例示でき、透明樹脂材料としては、ポリカーボネート樹脂(屈折率:1.59)、MS樹脂(メタクリル酸メチル-スチレン共重合体樹脂)(屈折率:1.56~1.59)、ポリスチレン樹脂(屈折率:1.59)、AS樹脂(アクリロニトリル-スチレン共重合体樹脂)(屈折率:1.56~1.59)、アクリル系紫外線硬化樹脂(屈折率1.46~1.58)などが例示され、コストの面および吸湿率が低い点で、好ましくはポリスチレン樹脂である。
[Constituent materials]
The first to third light diffusion plates 30 1 to 30 3 are made of a transparent material. The refractive index of the transparent material is usually 1.46 to 1.62. Examples of transparent materials include transparent resin materials and transparent glass materials. Examples of transparent resin materials include polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index: 1.59), AS resin (acrylonitrile-styrene copolymer resin) (refractive index: 1.56 to 1.59), acrylic ultraviolet curable resin ( A refractive index of 1.46 to 1.58) is exemplified, and a polystyrene resin is preferable in terms of cost and low moisture absorption.
 透明材料として透明樹脂材料を用いる場合、この透明樹脂材料に紫外線吸収剤、帯電防止剤、酸化防止剤、加工安定剤、難燃剤、滑剤などの添加剤を添加することもできる。これらの添加剤はそれぞれ単独で、または2種以上を組み合わせて用いることができる。 When a transparent resin material is used as the transparent material, additives such as an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, a flame retardant, and a lubricant can be added to the transparent resin material. These additives can be used alone or in combination of two or more.
 紫外線吸収剤としては、例えばベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン計紫外線吸収剤、シアノアクリレート系紫外線吸収剤、マロン酸エステル系紫外線吸収剤、シュウ酸アニリド系紫外線吸収剤、トリアジン系紫外線吸収剤などが挙げられ、好ましくはベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤である。 Examples of UV absorbers include benzotriazole UV absorbers, benzophenone meter UV absorbers, cyanoacrylate UV absorbers, malonic ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. Preferred are benzotriazole ultraviolet absorbers and triazine ultraviolet absorbers.
 透明樹脂材料は通常、添加剤として光拡散剤を添加することなく用いられるが、本発明の目的を損なわない僅かな量であれば、光拡散剤を添加して用いてもよい。 The transparent resin material is usually used without adding a light diffusing agent as an additive, but may be added with a light diffusing agent as long as it is a slight amount that does not impair the object of the present invention.
 光拡散剤として通常は、第1~第3の光拡散板30~30を主に構成する上述したような透明材料とは屈折率が異なる粉末が用いられ、これを透明材料中に分散させて用いられる。かかる光拡散剤としては、例えばスチレン樹脂粒子、メタクリル樹脂粒子などの有機粒子、炭酸カリウム粒子、シリカ粒子、シリコーン樹脂粒子などの無機粒子が用いられ、その粒子径は通常0.8μm~50μmである。 As the light diffusing agent, a powder having a refractive index different from that of the above-described transparent material mainly constituting the first to third light diffusing plates 30 1 to 30 3 is usually used and dispersed in the transparent material. Used. As the light diffusing agent, for example, organic particles such as styrene resin particles and methacrylic resin particles, inorganic particles such as potassium carbonate particles, silica particles, and silicone resin particles are used, and the particle diameter is usually 0.8 μm to 50 μm. .
 [第1~第3の光拡散板の製造方法]
 第1~第3の光拡散板30~30は、例えば透明材料から削り出す方法により製造することができる。また、透明材料として透明樹脂材料を用いる場合は、例えば射出成形法、押出成形法、フォトポリマー法、プレス成形法などの通常の方法により製造することができる。
[Methods for producing first to third light diffusing plates]
The first to third light diffusion plates 30 1 to 30 3 can be manufactured by, for example, a method of cutting out from a transparent material. Moreover, when using a transparent resin material as a transparent material, it can manufacture by normal methods, such as an injection molding method, an extrusion molding method, a photopolymer method, a press molding method, for example.
 [第1~第3の光拡散板の配置関係]
 第1~第3の光拡散板30~30は、z方向に以下の条件を満たし且つ下面31,31,31側から光が入射されるように設けられている。
 (i)第3の光拡散板30が第2の光拡散板30の上側に位置している。
 (ii)第3の光拡散板30の下面31が第2の光制御対30の上面32側に位置している。
 (iii)凸状部33,33の延在方向が略平行である。
 (iv)凸状部33の延在方向と、凸状部33又は凸状部33の延在方向とが略直交している。なお、凸状部33の延在方向と凸状部33(又は凸状部33)とのなす角度は、80°~100°が例示され、好ましくは、90°である。
[Disposition relationship of the first to third light diffusion plates]
The first to third light diffusion plates 30 1 to 30 3 are provided so as to satisfy the following conditions in the z direction and to allow light to enter from the lower surface 31 1 , 31 2 , 31 3 side.
(i) third of the light diffusion plate 30 3 is located above the second light diffusion plate 30 2.
(ii) a third lower surface 313 of the light diffusion plate 30 3 is located in the second upper surface 32 2 side of the light control pair 30 2.
(iii) convex portions 33 2, 33 3 in the extending direction are substantially parallel.
(iv) the extending direction of the convex portion 33 1, and the extending direction of the convex portion 33 2 or convex portion 33 3 are substantially orthogonal. Incidentally, the angle of the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3), 80 ° ~ 100 ° are exemplified, and preferably, 90 °.
 本実施形態では、第1~第3の光拡散板30~30は、上記配置条件(i)~(iv)を満たして、第1の光拡散板30、第2の光拡散板30及び第3の光拡散板30の順にz方向に設けられている。 In the present embodiment, the first to third light diffusion plates 30 1 to 30 3 satisfy the arrangement conditions (i) to (iv), and the first light diffusion plate 30 1 and the second light diffusion plate It is provided in the z direction in the order of 30 2 and the third light diffusing plate 30 3.
 第1及び第2の光拡散板30,30の間の距離d12は、第1の光拡散板30の凸状部33の頂部33bと第2の光拡散板30の下面31との間のz方向の距離であり、5mm以下が例示できる。同様に、第2及び第3の光拡散板30,30の間の距離d23は、第2の光拡散板30の凸状部33の頂部33bと第3の光拡散板30の下面31との間のz方向の距離であり、5mm以下が例示できる。 The distance d 12 between the first and second light diffusing plate 30 1, 30 2, first light diffusing plate 30 1 of the convex portion 33 1 apex 33b 1 and the second light diffusion plate 30 2 a z-direction distance between the lower surface 31 2, 5 mm or less can be exemplified. Similarly, the second and third light diffusion plate 30 2, 30 a distance d 23 between the 3, the second top portion 33b 2 of the light diffusion plate 30 2 of the convex portion 33 2 and the third light diffusing plate The distance in the z direction between the lower surface 31 3 of 30 3 and 5 mm or less can be exemplified.
 光拡散板ユニット21Aをコンパクトなものとする観点から、d12及びd23は、0mmであり、第1の光拡散板30の凸状部33上に第2の光拡散板30及び第3の光拡散板30が、上段の下面31,31が下段の凸状部33,33の頂部33b,33bに接するように配置されていてもよい。このように、光拡散板ユニット21Aにおいて最も点状光源22側に位置する第1の光拡散板30上に第2及び第3の光拡散板30,30を、隣接する2つの光拡散板30~30において上側及び下側の板が互いに接するように設ける場合には、第2及び第3の光拡散板30,30の厚さd2,d3を、第1の光拡散板30の厚さd1より薄いものとすることが好適である。例えば、第2及び第3の光拡散板30,30をフィルム状といったより薄いものとした場合、第1の光拡散板30を第2及び第3の光拡散板30,30の支持台として用いることができるからである。 From the viewpoint of the light diffusing plate unit 21A and compact ones, d 12 and d 23 are 0 mm, the second light diffusion plate 30 2 and the first upper convex portion 33 1 of the light diffusing plate 30 1 third light diffusing plate 30 3, the upper of the lower surface 31 2, 31 3 may be arranged in contact with the top 33b 1, 33b 2 of the lower convex portion 33 1, 33 2. Thus, the first light diffusion plate 30 2 of the second and third on the light diffusing plate 30 1, 30 3 positioned closest to the point light source 22 side in the light diffuser plate unit 21A, two adjacent light When the upper and lower plates of the diffusion plates 30 1 to 30 3 are provided so as to contact each other, the thicknesses d2 and d3 of the second and third light diffusion plates 30 2 and 30 3 are set to the first light. it is preferable to use a thinner than the thickness d1 of the diffusion plate 30 1. For example, the second and third light diffusion plate 30 2, if the 30 3 was assumed thinner such film-like, the first light diffusing plate 30 1 and the second and third light diffusion plate 30 2, 30 3 It is because it can be used as a support base for.
 [光拡散板ユニットの配置]
 上記構成の第1~第3の光拡散板30~30を有する光拡散板ユニット21Aは、点状光源22から第1の光拡散板30の下面31までの距離Dが、通常3mm~50mmとなるように、点状光源22上に対して配置される。透過型画像表示装置1又は面光源装置20では、Lx,Ly及びDは、Lx/D及びLy/Dがそれぞれ2以上、さらには2.5以上である値であることが、面光源装置20を薄くすることができる点で、好ましい。
[Arrangement of light diffuser unit]
Light diffusing plate unit 21A having a first through third light diffusing plate 30 1-30 3 having the above-described structure, a distance D from the point light source 22 to the lower surface 31 of the first light diffuser 30 1, usually It is arranged on the point light source 22 so as to be 3 mm to 50 mm. In the transmissive image display device 1 or the surface light source device 20, Lx, Ly, and D are values in which Lx / D and Ly / D are each 2 or more, and further 2.5 or more. Is preferable in that it can be made thinner.
 また、光拡散板ユニット21Aは、透過型画像表示装置1において、凸状部33の延在方向が画面の縦方向になるように配置されてもよいし、横方向になるように配置してもよい。 Further, the light diffusion plate unit 21A, in the transmissive image display device 1, to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged so as to be laterally May be.
 次に、光拡散板ユニット21Aの作用効果について、図1に示したように、光拡散板ユニット21Aを含む面光源装置20が透過型画像表示装置1に適用されている場合を例にして説明する。ここでは、X1方向,X2方向及びX3方向はx方向に平行であるとし、Y1方向,Y2方向及びY3方向はy方向に平行であるとする。 Next, the function and effect of the light diffusing plate unit 21A will be described by taking as an example the case where the surface light source device 20 including the light diffusing plate unit 21A is applied to the transmissive image display device 1, as shown in FIG. To do. Here, it is assumed that the X1, X2, and X3 directions are parallel to the x direction, and the Y1, Y2, and Y3 directions are parallel to the y direction.
 第1の光拡散板30の凸状部33は、式(7)を満たすv(u)で表される断面形状を有するので、点状光源22上に第1の光拡散板30を配置した場合、第1の光拡散板30は、点状光源22から出力された光を、輝度が均一な線状の光に変換して出射できる。また、第2及び第3の光拡散板30,30の凸状部33,33が、式(9)を満たすvII(uII)で表される断面形状を有するので、点状光源22上に、第2及び第3の光拡散板30,30を凸状部33,33の延在方向が略平行になるように配置した場合、第2及び第3の光拡散板30,30は、点状光源22から出力された光を、輝度が均一な線状の光に変換して出射できる。 The first convex portion 33 1 of the light diffusing plate 30 1, because it has a cross sectional shape represented by v I (u I) satisfying the equation (7), the first light diffusing plate on the point light source 22 when placing the 30 1, the first light diffusing plate 30 1, the light output from the point light sources 22, brightness can be emitted into a uniform linear light. In addition, since the convex portions 33 2 and 33 3 of the second and third light diffusion plates 30 2 and 30 3 have a cross-sectional shape represented by v II (u II ) that satisfies Expression (9), When the second and third light diffusing plates 30 2 and 30 3 are arranged on the light source 22 so that the extending directions of the convex portions 33 2 and 33 3 are substantially parallel to each other, The light diffusing plates 30 2 and 30 3 can emit the light output from the point light source 22 by converting it into linear light with uniform luminance.
 そして、光拡散板ユニット21Aでは、上記のように、点状光源22からの光を輝度がほぼ均一な線状の光に変換可能な第1の光拡散板30と、第2及び第3の光拡散板30,30の組とが、z方向において、凸状部33の延在方向と凸状部33(又は凸状部33)の延在方向とが略直交するように配置されている。そのため、点状光源22からの光は、第1の光拡散板30と、第2及び第3の光拡散板30,30の組とにより、輝度が均一で略直交方向にそれぞれ線状の光に変換される。その結果、光拡散板ユニット21Aは、複数の点状光源22からの光を均一に分散し、面状の光であって、z方向に直交する面において輝度均斉度がより高い面状の光として出射可能である。 Then, the light diffuser plate unit 21A, as described above, the light diffusion plate 30 1 first convertible to a substantially uniform linear light luminance light from the point light source 22, the second and third In the z direction, the extending direction of the convex portion 33 1 and the extending direction of the convex portion 33 2 (or the convex portion 33 3 ) are substantially orthogonal to each other in the set of the light diffusion plates 30 2 and 30 3. Are arranged as follows. Therefore, the light from the point light sources 22, a first light diffuser 30 1, the second and third set of the light diffusion plate 30 2, 30 3, respectively line substantially perpendicular direction with uniform brightness Is converted into light. As a result, the light diffusing plate unit 21A uniformly disperses the light from the plurality of point light sources 22 and is planar light, which is planar light having higher luminance uniformity in the plane orthogonal to the z direction. Can be emitted.
 また、第1の光拡散板30上に設ける第2及び第3の光拡散板30,30をフィルム状とした場合、本実施形態の構成では、第2及び第3の光拡散板30,30を同じフィルムとすることができる。その結果、図5に示した光拡散板ユニット21Aの構成は、製造コストの低減に資する構成となっている。 Further, when the second and third light diffusion plate 30 2, 30 3 provided in the first upper light diffusion plate 30 1 into a film-like, in the configuration of the present embodiment, the second and third light diffusing plate 30 2 and 30 3 can be the same film. As a result, the configuration of the light diffusing plate unit 21A shown in FIG. 5 is a configuration that contributes to a reduction in manufacturing cost.
 面光源装置20は、上記光拡散板ユニット21Aを備えているので、複数の点状光源22からの光を均一に分散し、z方向に直交する面における輝度均斉度がより高い面状の光を出射することができる。また、透過型画像表示装置1は、上記光拡散板ユニット21Aを備えているので、複数の点状光源22からの光が均一に分散されてz方向に直交する面における輝度均斉度がより高い面状の光によって、透過型画像表示部10を照射することが可能である。その結果、より高品質な画像を表示することができる。 Since the surface light source device 20 includes the light diffusing plate unit 21A, the surface light that uniformly disperses the light from the plurality of point light sources 22 and has higher luminance uniformity on the surface orthogonal to the z direction. Can be emitted. Further, since the transmissive image display device 1 includes the light diffusing plate unit 21A, the luminance uniformity in the plane orthogonal to the z direction is higher because the light from the plurality of point light sources 22 is uniformly dispersed. It is possible to irradiate the transmissive image display unit 10 with planar light. As a result, a higher quality image can be displayed.
 本実施形態では、z方向に第1~第3の光拡散板30~30が順に設けられているとしたが、第1~第3の光拡散板30~30は、配置条件(i)~(iv)を満たすようにz方向に設けられていればよい。このような、第1~第3の光拡散板30~30の配置の変形例に応じた光拡散板ユニットの他の実施形態を第2及び第3の実施形態として説明する。 In the present embodiment, the first to third light diffusion plates 30 1 to 30 3 are provided in order in the z direction. However, the first to third light diffusion plates 30 1 to 30 3 are arranged according to the arrangement conditions. It may be provided in the z direction so as to satisfy (i) to (iv). Other embodiments of the light diffusing plate unit according to the modified example of the arrangement of the first to third light diffusing plates 30 1 to 30 3 will be described as second and third embodiments.
 (第2の実施形態)
 図10は、本発明に係る光拡散板ユニット(光制御板ユニット)の第2の実施形態を示す斜視図である。光拡散板ユニット21Bは、第1の実施形態の場合と同様に、第1~第3の光拡散板30,30,30を有する。光拡散板ユニット21Bは、第1~第3の光拡散板30~30の配置の順番において、光拡散板ユニット21Aと相違する。この相違点を中心にして説明する。
(Second Embodiment)
FIG. 10 is a perspective view showing a second embodiment of the light diffusing plate unit (light control plate unit) according to the present invention. The light diffusing plate unit 21B includes first to third light diffusing plates 30 1 , 30 2 , 30 3 as in the case of the first embodiment. The light diffusion plate unit 21B is different from the light diffusion plate unit 21A in the order of arrangement of the first to third light diffusion plates 30 1 to 30 3 . This difference will be mainly described.
 光拡散板ユニット21Bでは、第2の光拡散板30、第1の光拡散板30及び第3の光拡散板30の順にz方向に設けられている。第1~第3の光拡散板30~30の構成は、第1の実施形態における第1~第3の光拡散板30~30の構成と同じである。なお、第1の実施形態においては、第1の光拡散板30が光拡散板ユニットAにおいて最も点状光源22側に位置するとし、第1の光拡散板30の下面31と点状光源22との間の距離をDとした。これに対して、本実施形態の第1~第3の光拡散板30~30の配置の順番では、第2の光拡散板30が最も点状光源22側に位置する。よって、第1の実施形態における説明における距離Dは、本実施形態では、第2の光拡散板30の下面31と点状光源22との間の距離とする。 In the light diffusing plate unit 21B, are provided in the z direction in the order of the second light diffusion plate 30 2, the first light diffusing plate 30 1 and the third light diffusing plate 30 3. Configuration of the first to third light diffusing plate 30 1-30 3 are the same as the first to third light diffusing plate 30 1-30 3 configuration in the first embodiment. In the first embodiment, the first light diffusing plate 30 1 is to be located most point light source 22 side in the light diffuser plate unit A, the first lower surface 31 1 and the point of the light diffusion plate 30 1 The distance from the light source 22 was defined as D. In contrast, in the first to third order of arrangement of the light diffusing plate 30 1-30 3 of the present embodiment, the second light diffusion plate 30 2 is located at the most point light source 22 side. Therefore, the distance D in the description of the first embodiment, in this embodiment, the distance between the second light diffusion plate 30 2 of the lower surface 31 2 and the point light sources 22.
 光拡散板ユニット21Bにおいても、凸状部33の延在方向と凸状部33の延在方向とは略平行である。また、凸状部33の延在方向と凸状部33(又は凸状部33)の延在方向とは略直交している。凸状部33の延在方向と凸状部33(又は凸状部33)とのなす角度は、80°~100°が例示され、好ましくは、90°である。 In the optical diffusing plate unit 21B, it is substantially parallel to the extending direction of the convex portion 33 2 of the extending direction and the convex portion 33 3. Moreover, it is substantially perpendicular to the extending direction of the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3). Angle between the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3), 80 ° ~ 100 ° are exemplified, and preferably, 90 °.
 この構成では、第1~第3の光拡散板30~30は、第1の実施形態で述べた配置条件(i)~(iv)を満たしている。 In this configuration, the first to third light diffusion plates 30 1 to 30 3 satisfy the arrangement conditions (i) to (iv) described in the first embodiment.
 第2及び第1の光拡散板30,30の間の距離d21は、第2の光拡散板30の凸状部33の頂部33bと第1の光拡散板30の下面31との間のz方向の距離であり、5mm以下が例示できる。同様に、第1及び第3の光拡散板30,30の間の距離d13は、第1の光拡散板30の凸状部33の頂部33bと第3の光拡散板30の下面31との間のz方向の距離であり、5mm以下が例示できる。 The second and the first distance d 21 between the light diffusion plate 30 2, 30 1, second and top 33b 2 of the light diffusion plate 30 and second convex portions 33 2 first light diffusing plate 30 1 a z-direction distance between the lower surface 31 1, 5 mm or less can be exemplified. Similarly, the distance d 13 between the first and third light diffuser 30 1, 30 3, the first top 33b 1 of the light diffusing plate 30 1 of the convex portion 33 1 and the third light diffusing plate The distance in the z direction between the lower surface 31 3 of 30 3 and 5 mm or less can be exemplified.
 光拡散板ユニット21Bをコンパクトなものとする観点から、d21及びd13は、0mmであり、第2の光拡散板30の凸状部33上に第1の光拡散板30及び第3の光拡散板30が、上段の下面31,31が下段の凸状部33,33の頂部33b,33bに接するように配置されていてもよいことは第1の実施形態の場合と同様である。また、第1~第3の光拡散板30~303のうち最も点状光源22側に位置する第2の光拡散板30を第1及び第3の光拡散板30,30より厚くすることが好ましく、その場合に、例えば第1及び第3の光拡散板30,30をフィルム状とすることができることも第1の実施形態の場合と同様である。 From the viewpoint of the light diffusing plate unit 21B and compact ones, d 21 and d 13 are 0 mm, the first light diffusing plate 30 1 and the second light diffusion plate 30 2 on the convex portion 33 2 a third light diffusing plate 30 3, the upper bottom surface 31 1, 31 3 that may be disposed in contact with the top 33b 2, 33b 1 of the lower convex portion 33 2, 33 1 first This is the same as the case of the embodiment. The second light diffusion plate 30 2 of the first and third light diffuser 30 1, 30 3 positioned closest to the point light source 22 side of the first to third light diffusing plate 30 1-30 3 It is preferable to make it thicker. In this case, for example, the first and third light diffusing plates 30 1 and 30 3 can be formed into a film as in the case of the first embodiment.
 図10に示した光拡散板ユニット21Bは、図1における光拡散板ユニット21Aに代えて面光源装置20及び透過型画像表示装置1に適用することができる。この際、透過型画像表示装置1において、光拡散板ユニット21Bは、凸状部33の延在方向が画面の縦方向になるように配置されてもよいし、横方向になるように配置してもよい。 The light diffusing plate unit 21B shown in FIG. 10 can be applied to the surface light source device 20 and the transmissive image display device 1 instead of the light diffusing plate unit 21A in FIG. In this case, the transmission type image display device 1, the light diffusing plate unit 21B is to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged to be laterally May be.
 光拡散板ユニット21Bにおいても、第2及び第3の光拡散板30,30が配置条件(i)~(iii)を満たして設けられている。この配置では、第2及び第3の光拡散板30,30は、点状光源22からの光を輝度がほぼ均一な線状の光に変換できる。そして、本実施形態では、第2及び第3の光拡散板30,30の間に、点状光源22からの光を輝度が均一な光に変換可能な第1の光拡散板30が、配置条件(iv)を満たして設けられている。 Also in the light diffusion plate unit 21B, the second and third light diffusion plates 30 2 and 30 3 are provided so as to satisfy the arrangement conditions (i) to (iii). In this arrangement, the second and third light diffusing plates 30 2 and 30 3 can convert light from the point light source 22 into linear light having substantially uniform luminance. In this embodiment, the first light diffusing plate 30 1 that can convert the light from the point light source 22 into light having uniform luminance between the second and third light diffusing plates 30 2 and 30 3. Is provided to satisfy the arrangement condition (iv).
 そのため、光拡散板ユニット21Bを、図1の光拡散板ユニット21Aに代えて用いた場合、複数の点状光源22からの光は、第1の実施形態の場合と同様に、光拡散板ユニット21Bを通過することによって、均一に分散され、結果として、z方向に直交する面における輝度均斉度がより高い面状の光を生成することができる。 Therefore, when the light diffusing plate unit 21B is used in place of the light diffusing plate unit 21A of FIG. 1, the light from the plurality of point light sources 22 is the light diffusing plate unit as in the first embodiment. By passing through 21B, it is possible to generate planar light that is uniformly dispersed and, as a result, has a higher luminance uniformity in a plane orthogonal to the z direction.
 従って、上記光拡散板ユニット21Bと複数の点状光源22とを備えた面光源装置20及び透過型画像表示装置1においても、第1の実施形態の場合と同様の作用効果を奏する。 Therefore, the surface light source device 20 and the transmissive image display device 1 including the light diffusing plate unit 21B and the plurality of point light sources 22 also have the same operational effects as in the case of the first embodiment.
また、光拡散板ユニット21Bでは、第1~第3の光拡散板30~30が、z方向において凸状部33,33,33の延在方向が交互に略直交するように配置されている。そのため、第3の光拡散板30から出射される面状の光にモアレ縞が生じにくい。よって、光拡散板ユニット21Bと複数の点状光源22を備えた面光源装置10においても、モアレ縞が抑制された面状の光を出射できる。更に、光拡散板ユニット21Bと複数の点状光源22を備えた透過型画像標示装置1では、より高品質な画像を表示することが可能である。 In the light diffusing plate unit 21B, the first to third light diffusing plates 30 1 to 30 3 are arranged so that the extending directions of the convex portions 33 1 , 33 2 , and 33 3 are alternately substantially orthogonal in the z direction. Is arranged. Therefore, Moire fringes is unlikely to occur in the third planar light emitted from the light diffusion plate 30 3. Therefore, even in the surface light source device 10 including the light diffusing plate unit 21 </ b> B and the plurality of point light sources 22, planar light with suppressed moire fringes can be emitted. Further, the transmissive image marking apparatus 1 including the light diffusing plate unit 21 </ b> B and the plurality of point light sources 22 can display a higher quality image.
 (第3の実施形態)
 図11は、本発明に係る光拡散板ユニット(光制御板ユニット)の第3の実施形態を示す斜視図である。光拡散板ユニット21Cは、第1の実施形態の場合と同様に、第1~第3の光拡散板30,30,30を有する。光拡散板ユニット21Cは、第1~第3の光拡散板30~30の配置の順番において、光拡散板ユニット21Aと相違する。この相違点を中心にして説明する。
(Third embodiment)
FIG. 11 is a perspective view showing a third embodiment of a light diffusion plate unit (light control plate unit) according to the present invention. The light diffusing plate unit 21C has first to third light diffusing plates 30 1 , 30 2 , 30 3 as in the case of the first embodiment. The light diffusing plate unit 21C is different from the light diffusing plate unit 21A in the order of arrangement of the first to third light diffusing plates 30 1 to 30 3 . This difference will be mainly described.
 光拡散板ユニット21Cでは、第2の光拡散板30、第3の光拡散板30及び第1の光拡散板30の順に、第1の実施形態で説明した配置関係(i)~(iv)を満たしてz方向に設けられている。なお、本実施形態においても、第2の実施形態の場合と同様に、第1の実施形態における距離Dは、第2の光拡散板30の下面31と、点状光源22との間の距離とする。 In the light diffusing plate unit 21C, the second light diffusing plate 30 2 , the third light diffusing plate 30 3, and the first light diffusing plate 30 1 are arranged in the order described in the first embodiment. It satisfies (iv) and is provided in the z direction. Also in this embodiment, as in the second embodiment, the distance D in the first embodiment, the lower surface 312 of the second light diffusion plate 30 2, between the point light sources 22 Distance.
 第3及び第1の光拡散板30,30の間の距離d31は、第3の光拡散板30の凸状部33の頂部33bと第1の光拡散板30の下面31との間のz方向の距離であり、5mm以下が例示できる。第2及び第3の光拡散板30,30の間の距離d23は、第1の実施形態の場合と同じなので説明を省略する。 The third and the first distance d 31 between the light diffusion plate 30 3, 30 1, and the third top 33b 3 of the convex portion 33 3 of the light diffusion plate 30 3 of the first light diffusing plate 30 1 a z-direction distance between the lower surface 31 1, 5 mm or less can be exemplified. Since the distance d 23 between the second and third light diffusion plates 30 2 and 30 3 is the same as that in the first embodiment, the description thereof is omitted.
 光拡散板ユニット21Cをコンパクトなものとする観点から、d23及びd13は、0mmであり、第2の光拡散板30の凸状部33上に第3の光拡散板30及び第1の光拡散板30が、上段の下面31,31が下段の凸状部33,33の頂部33b,33bに接するように配置されていてもよいことは、第1の実施形態の場合と同様である。また、第1~第3の光拡散板30~30のうち最も点状光源22側に位置する第2の光拡散板30を第3及び第1の光拡散板30,30より厚くすることが好ましく、その場合に、例えば第3及び第1の光拡散板30,30をフィルム状とすることができることも第1の実施形態の場合と同様である。 From the viewpoint of the light diffusing plate unit 21C and compact ones, d 23 and d 13 are 0 mm, the third light diffusing plate 30 3 and the second light diffusion plate 30 2 on the convex portion 33 2 the first light diffusion plate 30 1, the upper bottom surface 31 3, 31 1 may be disposed in contact with the top 33b 2, 33b 3 of the lower convex portion 33 2, 33 3, the This is the same as in the first embodiment. The second light diffusion plate 30 2 located closest to the point light source 22 among the first to third light diffusion plates 30 1 to 30 3 is replaced with the third and first light diffusion plates 30 3 and 30 1. it is preferred to thicker, in which case, for example, the third and the first light diffusing plate 30 3, also a 30 1 may be a film-like is the same as in the first embodiment.
 図11に示した光拡散板ユニット21Cは、図1における光拡散板ユニット21Aに代えて面光源装置20及び透過型画像表示装置1に適用することができる。この際、透過型画像表示装置1において、光拡散板ユニット21Cは、凸状部33の延在方向が画面の縦方向になるように配置されてもよいし、横方向になるように配置してもよい。 The light diffusing plate unit 21C shown in FIG. 11 can be applied to the surface light source device 20 and the transmissive image display device 1 in place of the light diffusing plate unit 21A in FIG. In this case, the transmission type image display device 1, the light diffusing plate unit 21C is to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged to be laterally May be.
 光拡散板ユニット21Cにおいても、第2及び第3の光拡散板30,30が、配置条件(i)~(iii)を満たして設けられている。この配置では、第2及び第3の光拡散板30,30は、点状光源22からの光を輝度がほぼ均一な線状の光に変換できる。そして、光拡散板ユニット21Cでは、第3の光拡散板30上に第1の光拡散板30が、配置条件(iv)を満たして配置されている。すなわち、凸状部33の延在方向と凸状部33(又は凸状部33)の延在方向とが略直交するように配置されている。 Also in the light diffusion plate unit 21C, the second and third light diffusion plates 30 2 and 30 3 are provided so as to satisfy the arrangement conditions (i) to (iii). In this arrangement, the second and third light diffusing plates 30 2 and 30 3 can convert light from the point light source 22 into linear light having substantially uniform luminance. Then, the light diffuser plate unit 21C, the first light diffusing plate 30 1 is on the third light diffusing plate 30 3, are arranged satisfies the arrangement conditions (iv). That is, the extending direction of the convex portion 33 1 of the extending direction and the convex portion 33 2 (or convex portion 33 3) are arranged so as to be substantially orthogonal.
 そのため、光拡散板ユニット21Cを、図1の光拡散板ユニット21Aに代えて用いた場合、複数の点状光源22からの光は、第1の実施形態の場合と同様に、光拡散板ユニット21Cを通過することによって、均一に分散され、結果として、z方向に直交する面における輝度均斉度がより高い面状の光を生成することができる。 Therefore, when the light diffusing plate unit 21C is used instead of the light diffusing plate unit 21A of FIG. 1, the light from the plurality of point light sources 22 is the light diffusing plate unit as in the case of the first embodiment. By passing through 21C, it is possible to generate planar light that is uniformly dispersed and, as a result, has a higher luminance uniformity in a plane orthogonal to the z direction.
 従って、上記光拡散板ユニット21Cと複数の点状光源22を備えた面光源装置20及び透過型画像表示装置1においても、第1の実施形態の場合と同様の作用効果を奏する。 Therefore, the surface light source device 20 and the transmissive image display device 1 including the light diffusing plate unit 21C and the plurality of point light sources 22 also exhibit the same operational effects as in the case of the first embodiment.
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されない。上記実施形態では、複数の点状光源22の配置例を図2及び図3に示したが、例えば、正方格子、すなわち、前述したようにx方向及びy方向に隣接する点状光源22間の間隔が同じであってもよい。また、隣接する凸状部33の断面形状における端33aは凸状部33aの配列方向において重なっているとして説明したが、隣接する凸状部33の端33a間に僅かな平坦部(例えば製造誤差により生じる程度のもの)などが生じていてもよい。これは、凸状部33a~33aのそれぞれの配置についても同様である。また、光拡散板ユニット21A~21Cは、透過型液晶表示部10側(例えば、液晶パネル側)に、拡散フィルム又はマイクロレンズフィルム等の光学フィルムを更に有していてもよい。また、透過型画像表示装置1は、光拡散板ユニット21A~21Cと、透過型液晶表示部10との間に、上述した拡散フィルム又はマイクロレンズフィルム等の光学フィルムを更に有する構成とすることもできる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. In the above embodiment, the arrangement examples of the plurality of point light sources 22 are shown in FIGS. 2 and 3. For example, a square lattice, that is, between the point light sources 22 adjacent to each other in the x direction and the y direction as described above. The interval may be the same. Moreover, although the end 33a 1 in the cross-sectional shape of the adjacent convex portion 33 1 has been described as overlapping in the arrangement direction of the convex portion 33a 1 , it is slightly flat between the ends 33a 1 of the adjacent convex portions 33 1. A part (for example, a part caused by a manufacturing error) may be generated. The same applies to the arrangement of the convex portions 33a 2 to 33a 3 . The light diffusing plate units 21A to 21C may further include an optical film such as a diffusing film or a microlens film on the transmissive liquid crystal display unit 10 side (for example, the liquid crystal panel side). The transmissive image display device 1 may further include an optical film such as the above-described diffusion film or microlens film between the light diffusing plate units 21A to 21C and the transmissive liquid crystal display unit 10. it can.
 更に、面光源装置20や透過型画像表示装置1は、点状光源22から出力された光を光拡散板ユニット21A~21C側に反射する反射板といった反射手段を備えていても良い。反射手段は、図1に示した模式図において、点状光源22に対して光拡散板ユニット21A~21Cと反対側に設ければよく、例えば、点状光源22を保持するための保持部材の光源載置面を反射面とすることができる。 Furthermore, the surface light source device 20 and the transmissive image display device 1 may include a reflection means such as a reflection plate that reflects the light output from the point light source 22 toward the light diffusion plate units 21A to 21C. In the schematic diagram shown in FIG. 1, the reflecting means may be provided on the side opposite to the light diffusing plate units 21A to 21C with respect to the point light source 22, for example, a holding member for holding the point light source 22 The light source mounting surface can be a reflecting surface.
 第1の光拡散板30が有する凸状部33の断面形状の説明において、式(8)におけるkIaは-1.00以上0.25以下を満たす定数であるとした。また、第2及び第3の光拡散板30,30各々が有する凸状部33,33の断面形状の説明において、式(10)におけるhIIaは、0.32wIIa以上0.97wIIa以下を満たす定数であり、kIIaは-1.00以上0.75以下を満たす定数であるとした。しかしながら、第1の光拡散板30が有する凸状部33において、kIaは、kIaの上記範囲から-1.00以上-0.15の範囲を除いた範囲を満たす定数であるか、又は、第2及び第3の光拡散板30,30のうちの少なくとも一方の凸状部33,33において、hIIaは、hIIaの上記範囲から0.32wIIa以上0.80wIIa以下の範囲を除いた範囲を満たす定数であるか、もしくは、kIIaは、kIIaの上記範囲から-1.00以上且つ0.23以下を除いた範囲を満たす定数とすることもできる。 In the description of the first convex portion 33 1 of the cross-sectional shape which the light diffusion plate 30 1 has, k Ia in the formula (8) was a constant satisfying 0.25 -1.00 or more. In the description of the cross-sectional shapes of the convex portions 33 2 and 33 3 included in each of the second and third light diffusion plates 30 2 and 30 3 , h IIa in the expression (10) is 0.32w IIa or more and 0. 97w IIa or less, and k IIa is a constant satisfying −1.00 or more and 0.75 or less. However, the convex portion 33 1 having a first light diffusion plate 30 1, or k Ia are constants satisfying the ranges excluding -1.00 or -0.15 range from the range of k Ia Alternatively, in at least one convex portion 33 2 , 33 3 of the second and third light diffusing plates 30 2 , 30 3 , h IIa is 0.32 w IIa or more from the above range of h IIa . It is a constant that satisfies the range excluding the range of 80 w IIa or less, or k IIa can be a constant that satisfies the range excluding −1.00 and 0.23 from the above range of k IIa. .
 また、第1~第3の光拡散板30~30は、第1の光拡散板30と、第2及び第3の光拡散板30,30の組み合わせでそれぞれ複数の点状光源から出力された光をより均一に分散させて線状の光を生成するために、光の出射側に凸状部33、凸状部33及び凸状部33がそれぞれ賦形された板状の光学部品であればよい。この場合、光拡散板ユニットは、3つの上記光学部品を、光拡散板ユニット21A,21B,21Cを利用して説明したような関係で配置したものとすることができる。なお、板状として説明したが、厚さに応じてフィルム状及びシート状のものも含む。 Further, the first to third light diffusing plate 30 1-30 3 includes a first light diffusion plate 30 first, second and third light diffusion plate 30 2, 30 3, respectively in combination form a plurality of points to the light output from the light source more uniformly dispersed to produce a linear light, the convex portion 33 1, the convex portion 33 2 and the convex portion 33 3 are shaped respectively to the exit side of the light Any plate-like optical component may be used. In this case, the light diffusing plate unit may be one in which the three optical components are arranged in the relationship described using the light diffusing plate units 21A, 21B, and 21C. In addition, although demonstrated as plate shape, the thing of a film form and a sheet form is also included according to thickness.
 また、上記第1の実施形態において例示したように、第2及び第3の光制御板30,30をフィルム状のものとする場合、凸状部33,33の付形にフォトポリマー法を用いることができる。この場合、第2及び第3の光制御板30,30の材料として屈折率1.46~1.58のアクリル系紫外線硬化樹脂が用いられることが多く、コストの面やフィルムの黄変劣化防止の観点で、屈折率1.51程度の低屈折率樹脂が用いられることが好ましい。また、上記第2及び第3の実施形態においても例示したように、最も点状光源側に位置する光制御板以外の光制御板をフィルム状のものとする場合、上記第1の実施形態における第2及び第3の光制御板30,30と同様に、凸状部の付形にフォトポリマー法を用いることができる。この場合も、光制御板の材料として、通常、屈折率1.56~1.62、それ以外では屈折率1.46~1.58のアクリル系紫外線硬化樹脂を用いることができる。コストの面やフィルムの黄変劣化防止の観点で、屈折率1.51程度の低屈折率樹脂が用いられることが好ましい。 Further, as exemplified in the first embodiment, when the second and third light control plates 30 2 , 30 3 are formed in a film shape, a photo is formed in the shape of the convex portions 33 2 , 33 3 . Polymer methods can be used. In this case, an acrylic ultraviolet curable resin having a refractive index of 1.46 to 1.58 is often used as the material of the second and third light control plates 30 2 and 30 3 , and this leads to cost and yellowing of the film. From the viewpoint of preventing deterioration, it is preferable to use a low refractive index resin having a refractive index of about 1.51. Further, as exemplified in the second and third embodiments, when the light control plate other than the light control plate located closest to the point light source is in the form of a film, in the first embodiment. Similar to the second and third light control plates 30 2 and 30 3 , a photopolymer method can be used for shaping the convex portion. In this case as well, an acrylic ultraviolet curable resin having a refractive index of 1.56 to 1.62 and a refractive index of 1.46 to 1.58 can be used as the material for the light control plate. From the viewpoint of cost and prevention of yellowing deterioration of the film, a low refractive index resin having a refractive index of about 1.51 is preferably used.
 また、最も点状光源側に位置する光制御板は1mm以上5mm以下のシート状が望ましく、最も点状光源側に位置する光制御板以外の光制御板は1mm以下のフィルム状が望ましい。 Also, the light control plate located closest to the point light source is preferably in the form of a sheet of 1 mm to 5 mm, and the light control plates other than the light control plate located closest to the point light source are preferably in the form of a film of 1 mm or less.
 本発明の面光源装置、光制御板ユニット及び透過型画像表示装置では、点状光源からの光を十分に均一に分散させることができる。 In the surface light source device, the light control plate unit, and the transmissive image display device of the present invention, the light from the point light source can be dispersed sufficiently uniformly.
 1…透過型画像表示装置、10…透過型画像表示部、20…面光源装置、21A~21C…光拡散板ユニット、22…点状光源、30~30…第1~第3の光拡散板、33a…凸状部の端(第1の光制御板の凸状部の端)、31~31…第1~第3の光拡散板の下面(第1~第3の光制御板の第1の面)、32~32…第1~第3の光拡散板の上面(第1~第3の光制御板の第2の面)、33~33…第1~第3の光拡散板の凸状部、33…凸状部(第2,第3の光制御板の凸状部)、33a~33a…凸状部の端(第1~第3の光制御板の凸状部の端)、33a…凸状部の端(第2,第3の光制御板の凸状部の端)、Y1…第1の光拡散板の凸状部の延在方向、X1…Y1方向に略直交する方向、X2…第2の光拡散板の凸状部の延在方向、Y2…X2方向に略直交する方向、X3…第3の光拡散板の凸状部の延在方向、Y3…X3方向に略直交する方向。 1 ... transmission type image display apparatus, 10 ... transmission type image display unit, 20 ... surface light source device, 21A-21C ... light diffusion plate unit, 22 ... point light source, 30 1 to 30 3 ... first to third light Diffusion plate 33a 1 ... end of convex portion (end of convex portion of first light control plate), 31 1 to 31 3 ... bottom surface of first to third light diffusion plates (first to third First surface of light control plate), 32 1 to 32 3 ... Upper surface of first to third light diffusion plates (second surface of first to third light control plates), 33 1 to 33 3 . Convex portions of the first to third light diffusing plates, 33 i ... convex portions (convex portions of the second and third light control plates), 33a 1 to 33a 3 ... ends of the convex portions (first To the end of the convex part of the third light control plate), 33a i ... the end of the convex part (end of the convex part of the second and third light control plates), Y1 ... of the first light diffusion plate The extending direction of the convex portion, approximately orthogonal to the X1 ... Y1 direction Direction, X2 ... extension direction of the convex portion of the second light diffusion plate, Y2 ... direction substantially orthogonal to the X2 direction, X3 ... extension direction of the convex portion of the third light diffusion plate, Y3 ... X3 direction The direction that is approximately orthogonal to

Claims (4)

  1.  複数の点状光源と、
     複数の前記点状光源上に設けられる光制御板ユニットと、
    を備え、
     前記点状光源は、
     光の出射角度が70°以上80°以下の範囲に最大出射光強度Imaxを有する配光特性であって、
      前記出射角度が0°の場合の出射光強度Iが、
       0.12×Imax≦I≦0.20×Imax
    を満し、
      出射光強度が(I+Imax)/2となる前記出射角度が60°以上70°以下であり、及び、
      前記出射光強度が(I+Imax)/4となる前記出射角度が47.5°以上57.5°以下である、
    前記配光特性を有し、
     前記光制御板ユニットは、
     第1の面から入射された光を前記第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しており前記一方向に略直交する方向に並列配置された複数の凸状部が前記第2の面に形成されている第1~第3の光制御板を有し、
     前記第1の光制御板、前記第2の光制御板及び前記第3の光制御板は、第3の光制御板が前記第2の光制御板の上側に位置するように、板厚方向に設けられており、
     前記第3の光制御板の前記第1の面が、前記第2の光制御板の前記第2の面側に位置し、
     前記第2の光制御板が有する前記凸状部の延在方向と前記第3の光制御板が有する前記凸状部の延在方向とが略平行であり、
     前記第1の光制御板が有する前記凸状部の延在方向と前記第2又は第3の光制御板が有する前記凸状部の延在方向とが略直交しており、
     前記第1~第3の光制御板が有する前記凸状部の各々の延在方向に直交する断面において両端を通る軸線をu軸とし、前記u軸上において当該両端間の中心をとおり前記u軸に直交する軸線をv軸とし、前記第1~第3の光制御板が有する凸状部の各々に対して前記u軸方向の長さをwとしたとき、前記断面において前記第1~第3の光制御板が有する前記凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(1)を満たすv(u)で表される、面光源装置。
    Figure JPOXMLDOC01-appb-M000001
    ただし、前記式(1)において、
    Figure JPOXMLDOC01-appb-M000002
    (式(2)において、第1の光制御板の凸状部に対して、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ0.25以下を満たす定数である。また、式(2)において、第2及び第3の光制御板の凸状部の各々に対して、hは、0.32w以上0.97w以下を満たす定数であり、kは-1.00以上且つ0.75以下を満たす定数である。)
    A plurality of point light sources;
    A light control plate unit provided on the plurality of point light sources;
    With
    The point light source is
    A light distribution characteristic having a maximum emission light intensity I max in a range of a light emission angle of 70 ° or more and 80 ° or less,
    The outgoing light intensity I 0 when the outgoing angle is 0 ° is
    0.12 × I max ≦ I 0 ≦ 0.20 × I max
    Satisfy
    The emission angle at which the emission light intensity is (I 0 + I max ) / 2 is 60 ° or more and 70 ° or less, and
    The emission angle at which the emission light intensity is (I 0 + I max ) / 4 is 47.5 ° or more and 57.5 ° or less.
    Having the light distribution characteristics;
    The light control plate unit is
    Light incident from the first surface can be emitted from the second surface located on the opposite side of the first surface, and extends in one direction and is substantially perpendicular to the one direction. A plurality of convex portions arranged in parallel have first to third light control plates formed on the second surface;
    The first light control plate, the second light control plate, and the third light control plate are arranged in the thickness direction so that the third light control plate is positioned above the second light control plate. It is provided in
    The first surface of the third light control plate is located on the second surface side of the second light control plate;
    The extending direction of the convex portion that the second light control plate has and the extending direction of the convex portion that the third light control plate has are substantially parallel,
    The extending direction of the convex part that the first light control plate has and the extending direction of the convex part that the second or third light control plate has are substantially orthogonal,
    In the cross section perpendicular to the extending direction of each of the convex portions of the first to third light control plates, an axis passing through both ends is a u-axis, and the u-axis passes through the center between the both ends on the u-axis. When the axis perpendicular to the axis is the v-axis and the length in the u-axis direction is w a for each of the convex portions of the first to third light control plates, the first cross section in the cross section A surface light source in which the contour shape of each of the convex portions of the third light control plate is represented by v (u) satisfying the following expression (1) when −0.475 w a ≦ u ≦ 0.475 w a apparatus.
    Figure JPOXMLDOC01-appb-M000001
    However, in the formula (1),
    Figure JPOXMLDOC01-appb-M000002
    (In Formula (2), h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is −1.00 or more and is a constant satisfying 0.25 or less. Further, in the equation (2), for each of the convex portions of the second and third light control plate, h a is, 0.32 W a more 0.97W a (K a is a constant satisfying −1.00 and 0.75)
  2.  前記第1~第3の光制御板の各々が有する前記第1の面は略平坦である、請求項1記載の面光源装置。 The surface light source device according to claim 1, wherein the first surface of each of the first to third light control plates is substantially flat.
  3.  複数の点状光源と、
     複数の前記点状光源上に設けられる光制御板ユニットと、
     前記光制御板ユニット上に設けられており、前記光制御板ユニットから出射された光に照射されて画像を表示する透過型画像表示部と、
    を備え、
      前記点状光源は、
     光の出射角度が70°以上80°以下の範囲に最大出射光強度Imaxを有する配光特性であって、
      前記出射角度が0°の場合の出射光強度Iが、
       0.12×Imax≦I≦0.20×Imax
    を満し、
      出射光強度が(I+Imax)/2となる前記出射角度が60°以上70°以下であり、及び、
      前記出射光強度が(I+Imax)/4となる前記出射角度が47.5°以上57.5°以下である、
    前記配光特性を有し、
     前記光制御板ユニットは、
     第1の面から入射された光を前記第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しており前記一方向に略直交する方向に並列配置された複数の凸状部が前記第2の面に形成されている第1~第3の光制御板を有し、
     前記第1の光制御板、前記第2の光制御板及び前記第3の光制御板は、第3の光制御板が前記第2の光制御板の上側に位置するように、板厚方向に設けられており、
     前記第3の光制御板の前記第1の面が、前記第2の光制御板の前記第2の面側に位置し、
     前記第2の光制御板が有する前記凸状部の延在方向と前記第3の光制御板が有する前記凸状部の延在方向とが略平行であり、
     前記第1の光制御板が有する前記凸状部の延在方向と前記第2又は第3の光制御板が有する前記凸状部の延在方向とが略直交しており、
     前記第1~第3の光制御板が有する前記凸状部の各々の延在方向に直交する断面において両端を通る軸線をu軸とし、前記u軸上において当該両端間の中心をとおり前記u軸に直交する軸線をv軸とし、前記第1~第3の光制御板が有する凸状部の各々に対して前記u軸方向の長さをwとしたとき、前記断面において前記第1~第3の光制御板が有する前記凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(3)を満たすv(u)で表される、透過型画像表示装置。
    Figure JPOXMLDOC01-appb-M000003
    ただし、前記式(3)において、
    Figure JPOXMLDOC01-appb-M000004
    (式(4)において、第1の光制御板の凸状部に対して、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ0.25以下を満たす定数である。また、式(4)において、第2及び第3の光制御板の凸状部の各々に対して、hは、0.32w以上0.97w以下を満たす定数であり、kは-1.00以上且つ0.75以下を満たす定数である。)
    A plurality of point light sources;
    A light control plate unit provided on the plurality of point light sources;
    A transmission-type image display unit that is provided on the light control plate unit and that is irradiated with light emitted from the light control plate unit to display an image;
    With
    The point light source is
    A light distribution characteristic having a maximum emission light intensity I max in a range of a light emission angle of 70 ° or more and 80 ° or less,
    The outgoing light intensity I 0 when the outgoing angle is 0 ° is
    0.12 × I max ≦ I 0 ≦ 0.20 × I max
    Satisfy
    The emission angle at which the emission light intensity is (I 0 + I max ) / 2 is 60 ° or more and 70 ° or less, and
    The emission angle at which the emission light intensity is (I 0 + I max ) / 4 is 47.5 ° or more and 57.5 ° or less.
    Having the light distribution characteristics;
    The light control plate unit is
    Light incident from the first surface can be emitted from the second surface located on the opposite side of the first surface, and extends in one direction and is substantially perpendicular to the one direction. A plurality of convex portions arranged in parallel have first to third light control plates formed on the second surface;
    The first light control plate, the second light control plate, and the third light control plate are arranged in the thickness direction so that the third light control plate is positioned above the second light control plate. It is provided in
    The first surface of the third light control plate is located on the second surface side of the second light control plate;
    The extending direction of the convex portion that the second light control plate has and the extending direction of the convex portion that the third light control plate has are substantially parallel,
    The extending direction of the convex part that the first light control plate has and the extending direction of the convex part that the second or third light control plate has are substantially orthogonal,
    In the cross section perpendicular to the extending direction of each of the convex portions of the first to third light control plates, an axis passing through both ends is a u-axis, and the u-axis passes through the center between the both ends on the u-axis. When the axis perpendicular to the axis is the v-axis and the length in the u-axis direction is w a for each of the convex portions of the first to third light control plates, the first cross section in the cross section A transmission type in which the contour shape of each of the convex portions of the third light control plate is represented by v (u) satisfying the following expression (3) when −0.475 w a ≦ u ≦ 0.475 w a Image display device.
    Figure JPOXMLDOC01-appb-M000003
    However, in the formula (3),
    Figure JPOXMLDOC01-appb-M000004
    (In Expression (4), h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is −1.00 or more and is a constant satisfying 0.25 or less. Further, in the equation (4), for each of the convex portions of the second and third light control plate, h a is, 0.32 W a more 0.97W a (K a is a constant satisfying −1.00 and 0.75)
  4.  第1の面から入射された光を前記第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しており前記一方向に略直交する方向に並列配置された複数の凸状部が前記第2の面に形成されている第1~第3の光制御板を有し、
     前記第1の光制御板、前記第2の光制御板及び前記第3の光制御板は、第3の光制御板が前記第2の光制御板の上側に位置するように、板厚方向に設けられており、
     前記第3の光制御板の前記第1の面が、前記第2の光制御板の前記第2の面側に位置し、
     前記第2の光制御板が有する前記凸状部の延在方向と前記第3の光制御板が有する前記凸状部の延在方向とが略平行であり、
     前記第1の光制御板が有する前記凸状部の延在方向と前記第2又は第3の光制御板が有する前記凸状部の延在方向とが略直交しており、
     前記第1~第3の光制御板が有する前記凸状部の各々の延在方向に直交する断面において両端を通る軸線をu軸とし、前記u軸上において当該両端間の中心をとおり前記u軸に直交する軸線をv軸とし、前記第1~第3の光制御板が有する凸状部の各々に対して前記u軸方向の長さをwとしたとき、前記断面において前記第1~第3の光制御板が有する前記凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(5)を満たすv(u)で表される、光制御板ユニット。
    Figure JPOXMLDOC01-appb-M000005
    ただし、前記式(5)において、
    Figure JPOXMLDOC01-appb-M000006
    (式(6)において、第1の光制御板の凸状部に対して、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ0.25以下を満たす定数である。また、式(6)において、第2及び第3の光制御板の凸状部の各々に対して、hは、0.32w以上0.97w以下を満たす定数であり、kは-1.00以上且つ0.75以下を満たす定数である。ただし、前記第1の光制御板の凸状部において、kについて前記-1.00以上0.25以下の範囲から-1.00以上-0.15以下の範囲が除かれるか、または、第2及び第3の光制御板のうちの少なくとも一方の凸状部において、hについて前記0.32w以上0.97w以下の範囲から0.32w以上0.80w以下の範囲が除かれるか、もしくは、kについて前記-1.00以上0.75以下の範囲から-1.00以上0.23以下の範囲が除かれる。)
    Light incident from the first surface can be emitted from the second surface located on the opposite side of the first surface, and extends in one direction and is substantially perpendicular to the one direction. A plurality of convex portions arranged in parallel have first to third light control plates formed on the second surface;
    The first light control plate, the second light control plate, and the third light control plate are arranged in the thickness direction so that the third light control plate is positioned above the second light control plate. It is provided in
    The first surface of the third light control plate is located on the second surface side of the second light control plate;
    The extending direction of the convex portion that the second light control plate has and the extending direction of the convex portion that the third light control plate has are substantially parallel,
    The extending direction of the convex part that the first light control plate has and the extending direction of the convex part that the second or third light control plate has are substantially orthogonal,
    In the cross section perpendicular to the extending direction of each of the convex portions of the first to third light control plates, an axis passing through both ends is a u-axis, and the u-axis passes through the center between the both ends on the u-axis. When the axis perpendicular to the axis is the v-axis and the length in the u-axis direction is w a for each of the convex portions of the first to third light control plates, the first cross section in the cross section A light control in which the contour shape of each of the convex portions of the third light control plate is represented by v (u) satisfying the following expression (5) when −0.475 w a ≦ u ≦ 0.475 w a Board unit.
    Figure JPOXMLDOC01-appb-M000005
    However, in the formula (5),
    Figure JPOXMLDOC01-appb-M000006
    (In Expression (6), h a is a constant that satisfies 0.40 w a or more and 1.60 w a or less with respect to the convex portion of the first light control plate, and k a is −1.00 or more and is a constant satisfying 0.25 or less. Further, in the equation (6), for each of the convex portions of the second and third light control plate, h a is, 0.32 W a more 0.97W a K a is a constant satisfying −1.00 or more and 0.75 or less, provided that, in the convex portion of the first light control plate, k a is −1.00 or more. 0.25 or below the range of -1.00 or -0.15 or less in the range of is removed, or, in at least one of the convex portions of the second and third light control plate, wherein the h a from 0.32w a more than 0.97w a following range of not less than 0.32w a more than 0.80w a Or scope is removed, or, k a range of -1.00 or 0.23 or less from the scope of the -1.00 to 0.75 for is removed.)
PCT/JP2011/070876 2010-09-15 2011-09-13 Light control plate unit, planar light source device, and transmissive image display device WO2012036161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-207059 2010-09-15
JP2010207059A JP2012063539A (en) 2010-09-15 2010-09-15 Light control plate unit, surface light source device, and transparent type image display device

Publications (1)

Publication Number Publication Date
WO2012036161A1 true WO2012036161A1 (en) 2012-03-22

Family

ID=45831620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070876 WO2012036161A1 (en) 2010-09-15 2011-09-13 Light control plate unit, planar light source device, and transmissive image display device

Country Status (3)

Country Link
JP (1) JP2012063539A (en)
TW (1) TW201222082A (en)
WO (1) WO2012036161A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004573A1 (en) * 2005-07-01 2007-01-11 Dai Nippon Printing Co., Ltd. Surface light source device
JP2009048838A (en) * 2007-08-17 2009-03-05 Photo Craft Co Ltd Planar light source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004573A1 (en) * 2005-07-01 2007-01-11 Dai Nippon Printing Co., Ltd. Surface light source device
JP2009048838A (en) * 2007-08-17 2009-03-05 Photo Craft Co Ltd Planar light source

Also Published As

Publication number Publication date
JP2012063539A (en) 2012-03-29
TW201222082A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5295721B2 (en) Backlight unit
WO2011132639A1 (en) Light control plate unit, area light source device, and transmissive image display device
WO2012036161A1 (en) Light control plate unit, planar light source device, and transmissive image display device
WO2011081106A1 (en) Optical control board unit, planar light-source device, and transmissive image display device
JP2012164527A (en) Planar light source device and transmission-type image display device
JP2011146167A (en) Light control panel unit, surface light source device, and transmission type image display
JP2012063541A (en) Light control plate unit, surface light source device, and transparent type image display device
JP2012133936A (en) Planar light source unit, and transmissive image display device
WO2011096403A1 (en) Light control plate, light control plate unit, surface light source device, and transmission image display device
WO2011018963A1 (en) Complex light control plate, area light source device, and transmission-type image display device
WO2012033098A1 (en) Light control plate unit, area light source device, and transmission-type image display device
JP2012063540A (en) Light control plate unit, surface light source device, and transparent type image display device
WO2012026426A1 (en) Light control plate unit, planar light source device, and transmissive image display device
JP2012124065A (en) Surface light source device and transmission type image display device
JP2012113869A (en) Surface light source device and transmission type image display device
JP2012004039A (en) Light control board unit, surface light source device, and transmission type image display device
JP2012156062A (en) Surface light source device and transmission image display device
JP2012093647A (en) Optical sheet, backlight unit and display device
JP2011138709A (en) Light control board unit, planar light source device, and transmission type image display device
JP2011150019A (en) Light control panel unit, surface light source device, and transmission type image display device
JP2011138708A (en) Light control board unit, board light source device, and transmission image display device
JP2012124062A (en) Surface light source device and transmission type image display device
JP2011146168A (en) Light control panel unit, surface light source device, and transmission type image display
JP2012199104A (en) Composite light control board
JP2012230828A (en) Planar light source device and transmission image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825161

Country of ref document: EP

Kind code of ref document: A1