WO2011081106A1 - Optical control board unit, planar light-source device, and transmissive image display device - Google Patents

Optical control board unit, planar light-source device, and transmissive image display device Download PDF

Info

Publication number
WO2011081106A1
WO2011081106A1 PCT/JP2010/073448 JP2010073448W WO2011081106A1 WO 2011081106 A1 WO2011081106 A1 WO 2011081106A1 JP 2010073448 W JP2010073448 W JP 2010073448W WO 2011081106 A1 WO2011081106 A1 WO 2011081106A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light control
control plate
convex portion
image display
Prior art date
Application number
PCT/JP2010/073448
Other languages
French (fr)
Japanese (ja)
Inventor
寛史 太田
裕次郎 川口
武志 川上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011081106A1 publication Critical patent/WO2011081106A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a light control plate unit, a surface light source device, and a transmissive image display device.
  • a direct type image display device 40 which is an example of a transmission type image display device, for example, as shown in FIG. 8, a device in which a light source 43 is arranged on the back side of the transmission type image display unit 10 is widely used.
  • the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11.
  • the light source 43 a plurality of linear light sources such as a straight tube type cold cathode ray tube are arranged in parallel with each other.
  • the direct image display device 40 can uniformly illuminate the transmissive image display unit 10 by uniformly dispersing light from the light source 43, and for this reason, between the light source 43 and the transmissive image display unit 10.
  • a light control plate 42 such as a single light diffusing plate having a function of changing the direction of light when light incident from the light source 43 side is emitted from the opposite transmissive image display unit 10 side is disposed. (For example, see Patent Document 1: JP-A-7-198913). Since the light output from the light source 43 is emitted as planar light by the light control plate 42, the light source 43 and the light control plate 42 constitute a surface light source device 41.
  • the light emitting diode is usually a point light source, and is used by arranging it in a discrete manner.
  • the conventional light control plate when used in a direct type image display device in combination with a point light source such as a light emitting diode, the light from the point light source cannot be made sufficiently uniform, and the transmission type The image displayed by the image display unit has a problem that the brightness differs between the vicinity of the point light source and the position away from the point light source.
  • an object of the present invention is to provide a light control plate unit, a surface light source device, and a transmissive image display device that can more uniformly disperse light from a point light source.
  • the light control plate unit can emit light incident from the first surface from the second surface located on the opposite side of the first surface, and extends in one direction.
  • a plurality of convex portions arranged in parallel in a direction substantially perpendicular to the one direction are provided with first and second light control plates formed on the second surface.
  • the second light control plate is provided on the first light control plate, and the first surface of the second light control plate faces the second surface of the first light control plate.
  • the extending direction of the convex portion included in the first light control plate and the extending direction of the convex portion included in the second light control plate are substantially orthogonal to each other, and the convexity included in the first and second light control plates.
  • Each of the shape portions has an axis passing through both ends in a cross section orthogonal to the extending direction of each of the convex portions of the first and second light control plates as a u axis, and passes through the center between both ends on the u axis.
  • the axis perpendicular to the u-axis is the v-axis and the length in the u-axis direction is w a for each of the convex portions of the first and second light control plates
  • the first and second The contour shape of each of the convex portions of the second light control plate is represented by v (u) satisfying the following expression (1) when ⁇ 0.475 w a ⁇ u ⁇ 0.475 w a .
  • v 0 (u) satisfies the formula (2).
  • h a is a constant satisfying the following 0.40 W a or 1.60 W a
  • k a is a constant satisfying -1.00 or more and -0.15 or less
  • each of the first and second light control plates of the light diffusing plate unit has a plurality of convex portions formed on the second surface. Since the convex portion of each of the first and second light control plates has a cross-sectional shape represented by v (u) that satisfies the above formula (1), the first and second light control plates are Light from a point light source can be converted into light that is linear and has a substantially uniform luminance in its extending direction.
  • the 1st and 2nd light control board is arrange
  • the first surface of each of the first and second light control plates may be substantially flat.
  • the surface light source device is provided on the first light control plate side of the light control plate unit according to the present invention and the light control plate unit, and the first surface of the first light control plate.
  • this surface light source device light output from a plurality of point light sources is emitted through the light control plate unit according to the present invention. Therefore, it is possible to uniformly disperse light from a plurality of point light sources to form planar light.
  • a transmissive image display device includes a light control plate unit according to the present invention, a plurality of point light sources for supplying light to the light control plate unit, and a second light control plate of the light control plate unit. And a transmissive image display unit that displays an image irradiated with light emitted from the light control plate unit.
  • the transmissive image display unit is illuminated by light output from a plurality of point light sources and emitted through the light control unit according to the present invention.
  • the transmissive image display unit is illuminated with the planar light in which the light from the point light source is more uniformly dispersed, so that a higher quality image can be displayed.
  • a light control plate unit capable of sufficiently uniformly dispersing light from a point light source, a surface light source device including the light control unit, and a transmissive image display device.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention.
  • FIG. 1 shows the transmissive image display device 1 in an exploded manner.
  • the transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 disposed on the back side of the transmissive image display unit 10 in FIG.
  • the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a z direction (plate thickness direction), and two directions orthogonal to the z direction are an x direction and a y direction. And The x direction and the y direction are orthogonal to each other.
  • the transmissive image display unit 10 examples include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11.
  • the transmissive image display device 1 is a liquid crystal display device (or a liquid crystal television).
  • the liquid crystal cell 11 and the polarizing plates 12 and 13 those used in the transmissive image display device 1 such as a conventional liquid crystal display device can be used.
  • An example of the liquid crystal cell 11 is a known liquid crystal cell such as a TFT liquid crystal cell or an STN liquid crystal cell.
  • the surface light source device 20 is a so-called direct type surface light source device.
  • the surface light source device 20 includes a light diffusing plate unit (light control plate unit) 21 and a plurality of point light sources 22 arranged on the back side in FIG.
  • the light diffusion plate unit 21 includes first and second light diffusion plates 30 1 and 30 2 .
  • First and second light diffusing plate 30 1, 30 2, first light diffusing plate 30 1 is provided in the thickness direction (z-direction) to the second order of the light diffusion plate 30 2.
  • the first and second light diffusing plates 30 1 and 30 2 constituting the light diffusing plate unit 21 have substantially the same plan view shape (shape viewed from the z direction), and are usually rectangular.
  • First and second light diffusing plate 30 1, 30 2 of the plan view shape in other words, the size of the planar shape of the light diffusing plate unit 21 is adapted to the screen size of the transmissive image display device 1 for the purpose Selected as
  • the size of the planar shape of the light diffusing plate unit 21 is usually 250 mm ⁇ 440 mm or more, preferably 1020 mm ⁇ 1800 mm or less.
  • First plan view shape of the light diffusing plate 30 1 and the second light diffusion plate 30 2 is not limited to a rectangle, it may be square, but in the following, unless otherwise specified, be described as a rectangle.
  • the plurality of point light sources 22 can be arranged according to the planar view shape of the light diffusing plate unit 21 or the transmissive image display unit 10.
  • FIG. 2 is a drawing showing an example of the arrangement relationship of a plurality of point light sources.
  • the plurality of point light sources 22 can be arranged at equal intervals L x in the x direction and at equal intervals L y in the y direction.
  • the interval Lx in the x direction is larger than the interval Ly in the y direction.
  • the interval Ly may be larger than the interval Lx, and the interval Lx and the interval Ly may be the same.
  • the interval Lx and the interval Ly can be the distance between the light emitting portions of the point light source 22, and are usually 10 mm to 150 mm.
  • the plurality of point light sources 22 may be arranged in a staggered pattern shown in FIG. Since FIG. 3 can be regarded as a modification of the case of FIG. 2, the distance between the point light sources 22 in the x direction and the y direction can be the same as in the case of FIG. This will be specifically described.
  • the rectangular lattice shown in FIG. 2 can be regarded as a plurality of point light source arrays composed of a plurality of point light sources 22 arranged in the x direction arranged in parallel in the y direction.
  • the staggered arrangement in FIG. 3 is such that adjacent point light source arrays out of a plurality of point light source arrays arranged in the y direction are arranged with a half cycle shift in the x direction. Therefore, also in the arrangement shown in FIG. 3, the interval Ly in the y direction can be the same as the case shown in FIG. 2, that is, the interval between the point light source arrays arranged in parallel in the y direction.
  • the point light source arrays arranged in parallel in the y direction are shifted by a half cycle in the x direction between adjacent point light source arrays.
  • the x direction and the y direction are opposite. There may be.
  • An example of the point light source 22 is a light emitting diode.
  • An example of the light emitting diode is a so-called side emitting light emitting diode.
  • the maximum intensity is generated in a certain angle direction with respect to the z direction.
  • FIG. 4 is a drawing showing the light distribution of OSRAM “Golden DRAGON (registered trademark) ARGUS (registered trademark)” as an example of the light distribution of light emitting diodes.
  • the horizontal axis indicates the angle ⁇ (see FIG. 1) with respect to the z direction
  • the vertical axis indicates the intensity.
  • the intensity is a value normalized with respect to the maximum intensity.
  • FIG. 5 is a perspective view for illustrating a configuration of a light diffusion plate unit (light control plate unit).
  • the first and second light diffusion plates 30 1 and 30 2 constituting the light diffusion plate unit 21 will be described.
  • the first and second light diffusion plates 30 1 and 30 2 are separated from each other, but the first light diffusion plate 301 is in contact with the first light diffusion plate 301 as described later. 2 of a light diffuser 30 2 may be provided on the first upper light diffusion plate 30 1.
  • the first light diffusion plate 30 1 is substantially the (first surface of the first light control plate) 31 1 flat lower surface, the convex portion is convex second light diffusion plate 30 2 side (the first of the convex portion of the light control plate) 33 1 is a plate-like body having a second surface) 32 of the plurality forming top surfaces (first light control plate.
  • the first light diffusing plate 30 1 may be a sheet-like and film-like depending on the thickness.
  • Convex portion 33 1 extends substantially parallel to the Y1 direction in the y-direction (first direction of the first light control plate), first in the X1 direction (the first light control plate which is substantially perpendicular to the Y1 direction 2 direction).
  • the X1 direction and the Y1 direction are preferably parallel to the x direction and the y direction, respectively. However, it may be shifted by about ⁇ 10 ° due to a manufacturing error, for example.
  • the cross-sectional shape of the plurality of convex portions 33 1 is substantially the same between the convex portions 33 1 . Further, in the extending direction of the convex portion 33 1, the cross-sectional shape is substantially uniform.
  • the ends 33a 1 of the two adjacent convex portions 33 1 and 33 1 are at the same position in the X1 direction.
  • First thickness d1 of the light diffusion plate 30 1 is the z-direction distance between the top portion 33b 1 of the lower surface 31 1 and the convex portion 33 1.
  • the thickness d1 is usually 0.5 mm to 5 mm.
  • the second light diffusion plate 30 2 is substantially flat lower surface (second optical control plate first surface of) 31 2, the convex portion is convex outward (convex portion of the second light control plate ) 33 2 is formed with a plurality of upper surface (fourth surface) 32 is a plate-like body having two and. However, the second light diffusion plate 30 2 may be a sheet-like and film-like depending on the thickness. Convex portion 33 2 extend in substantially parallel direction X2 in the x-direction (first direction of the second light control plate), first in the Y2 direction (the second light control plate substantially orthogonal to the X2 direction 2 direction).
  • X2 direction and the Y2 direction is parallel to the x and y directions, respectively, but as in the case of the first light diffuser 30 1, for example due to a manufacturing error or the like may be offset about ⁇ 10 °.
  • Cross-sectional shape of the plurality of convex portions 33 2 is substantially same in the convex portion 33 2. Further, in the extending direction of the convex portion 33 2, the cross-sectional shape is substantially uniform.
  • the ends 33a 1 and 33a 2 of the two adjacent convex portions 33 2 and 33 2 are at the same position in the Y2 direction.
  • the second thickness d2 of the light diffusion plate 30 2 is a z-direction distance between the top portion 33b 2 of the lower surface 31 2 and the convex portion 33 2, typically a 0.1 mm ⁇ 5 mm.
  • the convex portions 33 1 and 33 2 are referred to as convex portions 33 i (i is 1 or 2).
  • the uv coordinate system is set with the u-axis as the direction orthogonal to the extending direction of the convex portion 33 i .
  • U-axis direction with respect to the convex portion 33 1 corresponds to the X1 direction
  • v-axis direction corresponds to the z-direction.
  • U-axis direction with respect to the convex portion 33 2 corresponds to Y2 direction
  • v-axis direction corresponds to the z-direction.
  • the cross-sectional shape of the convex portion 33 i has both ends 33 a i and 33 a i on the u axis, and has a contour line symmetrical to the v axis.
  • This contour line is represented by v (u) that satisfies the following formula (3).
  • v 0 (u) satisfies Expression (4).
  • w a is the length of the convex portion 33 i in the u-axis direction.
  • h a is across 33a i of the convex portion 33 i, corresponding to the maximum height between 33a i, h a is a constant satisfying the following 040W a more 1.60 W a.
  • h a is a constant that satisfies h a / w a of 0.40 or more and 1.60 or less.
  • k a is a constant satisfying ⁇ 1.00 and ⁇ 0.15.
  • Width w a of the convex portion 33 i since formation of the convex portion 33 i is easy, usually 40 ⁇ m or more, preferably 250 ⁇ m or more.
  • the pattern resulting from the convex part 33 i is difficult to be visually recognized with the naked eye, it is usually 800 ⁇ m or less, preferably 450 ⁇ m or less.
  • FIG. 6 shows, as an example of the cross-sectional shape of the convex portion 33 i, a shape in which v 0 (u) is expanded and contracted by a predetermined multiple in the v direction within a range satisfying the expression (3).
  • the sectional shape of the convex portion 33 i as shown in FIG. 7, when determining the v 0 (u) for a width w a, contours represented by 0.95v 0 (u) And a contour line passing through a region between the contour lines represented by 1.05v 0 (u).
  • the cross-sectional shape of the convex portion 33 i is represented by v (u) that satisfies Expression (3).
  • the cross-sectional shape of the convex portion 33 i has the formula in -0.475w a ⁇ u ⁇ 0.475w a It may be expressed by v (u) that satisfies (3).
  • the range of h a / w a and k a may if they meet the aforementioned range.
  • the distance between two adjacent point light sources 22 is L
  • the surface of the light diffusing plate unit 21 on the point light source 22 side from the light emitting portion of the point light source 22 (in FIG. 1 or FIG. when the distance to the lower surface 31 1) of the diffuser 30 1 is D
  • the preferred range of h a / w a and k a relative L / D is as shown in Table 1 below.
  • L described in Table 1 corresponds to Lx for contour shape of the convex portion 33 1, and corresponds to Ly respect contour shape of the convex portion 33 2.
  • w a, h a , k a is may be the same, or different Good. That is, the first convex portion 33 2 of the light diffusing plate 30 1 of the convex portion 33 1 and the second light diffusion plate 30 2 may be the same cross-sectional shapes, each convex Different cross-sectional shapes may be used as long as the contour lines of the cross-sectional shapes of the portions 33 1 and 33 2 satisfy the above formula (2).
  • the first and second light diffusion plates 30 1 and 30 2 may be single-layer plates made of a single transparent material, or may have a multilayer structure in which layers made of different transparent materials are laminated. A multilayer board may be sufficient.
  • the first and second light diffusion plates 30 1 and 30 2 are multilayer plates, one or both sides of the first and second light diffusion plates 30 1 and 30 2 are usually 10 ⁇ m to 200 ⁇ m, preferably 20 ⁇ m to It is preferable to use a structure in which a skin layer having a thickness of 100 ⁇ m is formed, and a transparent resin material constituting the skin layer to which an ultraviolet absorber is added is used.
  • the first and second light diffusion plates 30 1 and 30 2 By adopting such a configuration, it is possible to prevent the first and second light diffusion plates 30 1 and 30 2 from being deteriorated due to the point light source 22 and ultraviolet rays that may be included in light from the outside.
  • the lower surface 31 1, 31 2 in the skin layer is formed. In this case, it is more preferable in terms of cost that no skin layer is formed on the upper surfaces 32 1 and 32 2 .
  • the content of the ultraviolet absorber is usually 0.5% by mass to 5% by mass, preferably 1% by mass based on the transparent resin material. % To 2.5% by mass.
  • the first and second light diffusion plates 30 1 and 30 2 may be coated with an antistatic agent on one side or both sides.
  • an antistatic agent By applying an antistatic agent, dust adhesion due to static electricity can be prevented, and a decrease in light transmittance due to dust adhesion can be prevented.
  • the first and second light diffusion plates 30 1 and 30 2 are made of a transparent material.
  • the refractive index of the transparent material is usually 1.56 to 1.62.
  • Examples of the transparent material are a transparent resin material and a transparent glass material.
  • Examples of transparent resin materials are polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index: 1.59), AS resin (acrylonitrile-styrene copolymer resin) (refractive index: 1.56 to 1.59), and the like.
  • the transparent resin material is preferably a polystyrene resin in terms of cost and low moisture absorption.
  • additives such as an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, a flame retardant, and a lubricant can be added to the transparent resin material. These additives can be used alone or in combination of two or more.
  • UV absorbers examples include benzotriazole UV absorbers, benzophenone meter UV absorbers, cyanoacrylate UV absorbers, malonic ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. is there.
  • the ultraviolet absorber is preferably a benzotriazole ultraviolet absorber or a triazine ultraviolet absorber.
  • a transparent resin material is usually used without adding a light diffusing agent as an additive.
  • a light diffusing agent may be added as long as it is a slight amount that does not impair the object of the present invention.
  • a powder having a refractive index different from that of the above-described transparent material mainly constituting the first and second light diffusing plates 30 1 and 30 2 is usually used and dispersed in the transparent material.
  • the light diffusing agent for example, organic particles such as styrene resin particles and methacrylic resin particles, inorganic particles such as potassium carbonate particles, silica particles, and silicone resin particles are used, and the particle diameter is usually 0.8 ⁇ m to 50 ⁇ m. .
  • the surface on the point light source 22 side can be a surface having light diffusibility in order to reduce moire.
  • the surface on the point light source 22 side may be constituted by a skin layer containing fine particles called a matting agent, or the surface on the point light source 22 side may be embossed or blasted,
  • a matting layer may be formed by applying a coating solution containing a matting agent and a binder.
  • the first and second light diffusion plates 30 1 and 30 2 can be manufactured by, for example, a method of cutting out from a transparent material. Moreover, when using a transparent resin material as a transparent material, it can manufacture by normal methods, such as an injection molding method, an extrusion molding method, a photopolymer method, a press molding method, for example.
  • First and second light diffusion plates 30 1 and 30 2 are sequentially provided in the z direction.
  • First and second light diffusing plate 30 1, 30 2 includes a convex portion 33 1 in the extending direction (Y1 direction), the convex portion 33 2 in the extending direction (X2 direction) Togaryaku to orthogonal Is arranged.
  • the angle formed between the extending direction of convex portion 33 1 of the extending direction and the convex portion 33 2, 80 ° ⁇ 100 ° are exemplified, and preferably, 90 °.
  • the distance d 12 between the first and second light diffusing plate 30 1, 30 2, first light diffusing plate 30 1 of the convex portion 33 1 apex 33b 1 and the second light diffusion plate 30 2 it is a z-direction distance between the lower surface 31 2.
  • Examples of the distance d 12 is 5mm or less. From the viewpoint of the light diffusing plate unit 21 as compact as, d 12 is 0 mm, the first convex portion 33 1 of the light diffusing plate 30 1 and the second and the lower surface 31 2 of the light diffusion plate 30 2 You may arrange
  • a second thickness d2 of the light diffusion plate 30 2 first light diffusing plate it is preferable to use a thinner than 30 1 of the thickness d1.
  • the second light diffusion plate 30 2 If assumed thinner such film form, can be used first light diffusing plate 30 1 as the second support bars of the light diffusion plate 30 2.
  • Light diffusing plate unit 21 having a light diffuser 30 1, 30 2 first and second of the above configuration, the distance D from the point light sources 22 to the lower surface 31 of the first light diffuser 30 1, usually It is arranged on the point light source 22 so as to be 3 mm to 50 mm.
  • Lx, Ly, and D are values in which Lx / D and Ly / D are each 2 or more, and further 2.5 or more. Is preferable in that it can be made thinner.
  • the light diffusing plate unit 21, in the transmissive image display device 1, to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged so as to be laterally May be.
  • the first light diffusion plate 30 1 of the convex portion 33 1 in the extending direction (Y1 direction) is arranged a light diffusing plate unit 21 so that the horizontal direction of the screen, the second light diffusion plate 30 2 convex portion 33 2 in the extending direction (X2 direction) is the longitudinal direction of the screen.
  • k a in equation (2) showing the convex portion 33 2 of the contour is preferably smaller than k a in equation (2) showing the convex portion 33 1 of the contour. More preferably, in the arrangement of the point light sources 22 in the transmissive image display device 1, the interval Lx between the point light sources 22 in the vertical direction of the screen is equal to or greater than the interval Ly between the point light sources 22 in the horizontal direction. It ’s big.
  • k a in the formula (2) showing the convex portion 33 1 of the contour shape is preferably smaller than k a in equation (2) showing the convex portion 33 2 of the contour.
  • the interval Lx between the point light sources 22 in the vertical direction of the screen is equal to or greater than the interval Ly between the point light sources 22 in the horizontal direction. It ’s big.
  • the operation and effect of the light diffusing plate unit 21 will be described by taking as an example the case where the light diffusing plate unit 21 is applied to the transmissive image display device 1 as shown in FIG.
  • the X1 direction and the X2 direction are parallel to the x direction
  • the Y1 direction and the Y2 direction are parallel to the y direction.
  • Convex portions 33 1 and 33 2 are formed on the upper surfaces 32 1 and 32 2 of the first and second light diffusion plates 30 1 and 30 2 of the light diffusion plate unit 21. Therefore, the light from the point light source 22 can be converted into linear light having a substantially uniform luminance distribution.
  • the first and second light diffusing plates 30 1 and 30 2 are arranged such that the convex portions 33 1 and 33 2 are substantially orthogonal to each other.
  • the first and second light diffusing plates 30 1 and 30 2 respectively convert the light from the point light source 22 into light that is linear light and whose luminance in the extending direction of the linear light is substantially uniform. It is supposed to convert to. Therefore, since the light from the plurality of point light sources 22 is uniformly dispersed by the light diffusing plate unit 21, it is possible to generate planar light having higher luminance uniformity on the surface orthogonal to the z direction.
  • the surface light source device 20 includes the light diffusing plate unit 21, the surface light having a higher luminance uniformity on the surface orthogonal to the z direction in which the light from the plurality of point light sources 22 is uniformly dispersed. Can be emitted.
  • the transmissive image display device 1 includes the light diffusing plate unit 21, light from a plurality of point light sources 22 is uniformly dispersed, and the luminance uniformity on the surface orthogonal to the z direction is higher. It is possible to irradiate the transmissive image display unit 10 with planar light. As a result, a higher quality image can be displayed.
  • FIGS. 3 and 4 the arrangement example of the plurality of point light sources 22 is shown in FIGS. 3 and 4.
  • a square lattice that is, between the point light sources 22 adjacent to each other in the x direction and the y direction as described above.
  • the interval may be the same.
  • the description has been given assuming that the ends 33a i in the cross-sectional shape of the adjacent convex portions 33 i (i is 1 or 2) overlap in the arrangement direction of the convex portions 33a i .
  • the light diffusing plate unit 21 may further include an optical film such as a diffusing film or a microlens film on the transmissive liquid crystal display unit 10 side (for example, the liquid crystal panel side).
  • the transmissive image display device 1 may further include an optical film such as the above-described diffusion film or microlens film between the light diffusing plate unit 21 and the transmissive liquid crystal display unit 10.
  • the surface light source device 20 and the transmissive image display device 1 may include a reflecting means such as a reflecting plate that reflects the light output from the point light source 22 toward the light control plate unit 21.
  • the reflecting means may be provided on the side opposite to the light diffusing plate unit (light control plate unit) 21 with respect to the point light source 22, for example, to hold the point light source 22.
  • the light source mounting surface of the holding member can be a reflective surface.
  • the first and second light control plates have been described as the first and second light diffusion plates 30 1 and 30 2 as an example. However, the first and second light control plate, said even light with various deflected toward the convex portion 33 for dispersing the light 1 and the convex portion 33 2 is formed on the exit surface side deflecting structure plate .
  • the first and second light control plate in order to more evenly disperse the light output from the plurality of point light sources to generate a linear light, the convex portion 33 1 and convex on the emission side of the light Jo portion 33 2 may if the shaped plate-like optical components.
  • the light control plate unit can be assumed that two of the optical components, the convex portion 33 1 and the convex portion 33 2 are arranged to be substantially perpendicular to the respective extending direction.
  • the thing of a film form and a sheet form is also included according to thickness.
  • SYMBOLS 1 Transmission type image display apparatus, 10 ... Transmission type image display part, 20 ... Surface light source device, 21 ... Light diffusing plate unit (light control board unit), 22 ... Point light source, 33a 1 ... End of convex-shaped part ( End of the convex portion of the first light control plate), 33a 2 ... End of the convex portion (end of the convex portion of the second light control plate), 33a i ... End of the convex portion (first and first) End of the convex portion of the second light control plate), 33 i ... Convex portion (convex portion of the first and second light control plates), 30 1 ... First light diffusion plate (first light control) Plate), 30 2 ...
  • second light diffusion plate (second light control plate), 31 1 ... lower surface of the first light diffusion plate (first surface of the first light control plate), 31 2 ... first Lower surface of the second light diffusion plate (first surface of the second light control plate), 32 1 ... Upper surface of the first light diffusion plate (second surface of the first light control plate), 32 2 .
  • the upper surface of the second light diffusion plate (the second surface of the second light control plate , 33 i ... convex portion (convex portion of the first and second light control plate), 33 1 ... convex portion of the first light diffusing plate (the convex portion of the first light control plate), 33 2 ... convex portion of the second light diffusion plate (convex portion of the second light control plate), Y1 ...
  • extension direction of the convex portion of the first light control plate X1 ... substantially orthogonal to the Y1 direction Direction
  • X2 Extension direction of the convex portion of the second light control plate
  • Y2 Direction substantially orthogonal to the X2 direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Disclosed is an optical control board unit (30) provided with first and second optical control boards (30­1 and 302). The second optical control board is provided such that a bottom surface thereof (312) faces a top surface (321) of the first optical control board. The top surfaces (321 and 322) of the first and second optical control boards are each provided with a plurality of parallel ridges (331 and 332) that extend in one direction. The directions in which the sets of ridges (331 and 332) extend in are perpendicular to each other. In the cross-section of each ridge (331 and 332), letting a line going from one end to the other be the u axis, and letting a line that is perpendicular to the u axis and runs down the middle between the ends be the v axis, the profile v(u) of the cross-section satisfies the relation 0.95v 0(u) ≤ v(u) ≤ 1.05v 0(u), where v 0(u) satisfies formula (1). This results in an optical control board unit, a planar light-source device, and a transmissive image display device that can distribute the light from a point light source more evenly. (1) (In the formula, wa ­ is the length of the ridges (331 and 332) along the u axis; 0.40wa ha ≤ 1.60wa and −1.00 ≤ ka ≤ −0.15.)

Description

光制御板ユニット、面光源装置及び透過型画像表示装置Light control plate unit, surface light source device, and transmissive image display device
 本発明は、光制御板ユニット、面光源装置及び透過型画像表示装置に関するものである。 The present invention relates to a light control plate unit, a surface light source device, and a transmissive image display device.
 透過型画像表示装置の一例である直下型画像表示装置40として、例えば図8に示すように、透過型画像表示部10の背面側に光源43が配置されたものが広く用いられている。透過型画像表示部10としては、例えば液晶セル11の両面に直線偏光板12,13が配置された液晶表示パネルが挙げられる。光源43としては、直管型の冷陰極線管などのような線状光源が複数本、互いに平行に配置されて用いられている。 As a direct type image display device 40 which is an example of a transmission type image display device, for example, as shown in FIG. 8, a device in which a light source 43 is arranged on the back side of the transmission type image display unit 10 is widely used. Examples of the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11. As the light source 43, a plurality of linear light sources such as a straight tube type cold cathode ray tube are arranged in parallel with each other.
 かかる直下型画像表示装置40としては、光源43からの光を均一に分散させて透過型画像表示部10を均一に照明できることが望ましく、このため光源43と透過型画像表示部10との間には、光源43側から入射した光を、反対側の透過型画像表示部10側から出射させる際に、光の向きを変える機能を有する一枚の光拡散板といった光制御板42が配置されて用いられている(例えば特許文献1:特開平7-198913号公報参照)。なお、光源43から出力された光は光制御板42により面状の光として出射されるため、光源43と光制御板42は面光源装置41を構成していることになる。 It is desirable that the direct image display device 40 can uniformly illuminate the transmissive image display unit 10 by uniformly dispersing light from the light source 43, and for this reason, between the light source 43 and the transmissive image display unit 10. A light control plate 42 such as a single light diffusing plate having a function of changing the direction of light when light incident from the light source 43 side is emitted from the opposite transmissive image display unit 10 side is disposed. (For example, see Patent Document 1: JP-A-7-198913). Since the light output from the light source 43 is emitted as planar light by the light control plate 42, the light source 43 and the light control plate 42 constitute a surface light source device 41.
特開平7-198913号公報JP-A-7-198913
 近年、直管型冷陰極線管に代えて、省エネルギーの観点から、発光ダイオードを光源として用いることが検討されている。発光ダイオードは通常、点状光源であり、これを離散的に配置して用いられる。 In recent years, it has been studied to use a light emitting diode as a light source from the viewpoint of energy saving instead of a straight tube type cold cathode ray tube. The light emitting diode is usually a point light source, and is used by arranging it in a discrete manner.
 しかし、従来の光制御板は、発光ダイオードのような点状光源と組み合わせて直下型画像表示装置に用いると、点状光源からの光を十分に均一なものとすることができず、透過型画像表示部により表示される画像は、点状光源の近傍と、これから離れた位置とで明るさが異なるものになるという問題があった。 However, when the conventional light control plate is used in a direct type image display device in combination with a point light source such as a light emitting diode, the light from the point light source cannot be made sufficiently uniform, and the transmission type The image displayed by the image display unit has a problem that the brightness differs between the vicinity of the point light source and the position away from the point light source.
 そこで、本発明は、点状光源からの光をより均一に分散させることが可能な光制御板ユニット、面光源装置及び透過型画像表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a light control plate unit, a surface light source device, and a transmissive image display device that can more uniformly disperse light from a point light source.
 本発明に係る光制御板ユニットは、第1の面から入射された光を第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しておりその一方向に略直交する方向に並列配置された複数の凸状部が第2の面に形成されている第1及び第2の光制御板を備える。上記第2の光制御板は第1の光制御板上に設けられ、第2の光制御板の第1の面は、第1の光制御板の第2の面に面しており、第1の光制御板が有する凸状部の延在方向と第2の光制御板が有する凸状部の延在方向とは略直交しており、第1及び第2の光制御板が有する凸状部の各々は、第1及び第2の光制御板が有する凸状部のそれぞれの延在方向に直交する断面において両端を通る軸線をu軸とし、u軸上において両端間の中心をとおりu軸に直交する軸線をv軸とし、第1及び第2の光制御板の凸状部の各々に対してu軸方向の長さをそれぞれwとしたとき、上記断面において第1及び第2の光制御板が有する凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(1)を満たすv(u)で表される。
Figure JPOXMLDOC01-appb-M000003
ただし、式(1)において、v(u)は式(2)を満たす。
Figure JPOXMLDOC01-appb-M000004
(式(2)中、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ-0.15以下を満たす定数である)
The light control plate unit according to the present invention can emit light incident from the first surface from the second surface located on the opposite side of the first surface, and extends in one direction. A plurality of convex portions arranged in parallel in a direction substantially perpendicular to the one direction are provided with first and second light control plates formed on the second surface. The second light control plate is provided on the first light control plate, and the first surface of the second light control plate faces the second surface of the first light control plate. The extending direction of the convex portion included in the first light control plate and the extending direction of the convex portion included in the second light control plate are substantially orthogonal to each other, and the convexity included in the first and second light control plates. Each of the shape portions has an axis passing through both ends in a cross section orthogonal to the extending direction of each of the convex portions of the first and second light control plates as a u axis, and passes through the center between both ends on the u axis. When the axis perpendicular to the u-axis is the v-axis and the length in the u-axis direction is w a for each of the convex portions of the first and second light control plates, the first and second The contour shape of each of the convex portions of the second light control plate is represented by v (u) satisfying the following expression (1) when −0.475 w a ≦ u ≦ 0.475 w a .
Figure JPOXMLDOC01-appb-M000003
However, in the formula (1), v 0 (u) satisfies the formula (2).
Figure JPOXMLDOC01-appb-M000004
(In the formula (2), h a is a constant satisfying the following 0.40 W a or 1.60 W a, k a is a constant satisfying -1.00 or more and -0.15 or less)
 この構成では、第1の光制御板の第1の面から入射された光は第2の面から出射される。そして、第1の光制御板の第2の面から出射された光は第2の光制御板の第1の面に入射され、第2の光制御板の第2の面から出射される。光拡散板ユニットが有する第1及び第2の光制御板の各々は、第2の面に上記凸状部が複数形成されている。第1及び第2の光制御板の各々が有する凸状部が上記式(1)を満たすv(u)で表される断面形状を有することから、第1及び第2の光制御板は、点状光源からの光を、線状の光であってその延在方向に輝度がほぼ均一な光に変換することができる。そして、第1及び第2の光制御板は、第1及び第2の光制御板の各々が有する凸状部の延在方向が略直交するように配置されている。そのため、光制御板ユニットは、第1の光制御板の第1の面側に配置された点状光源からの光を、均一に分散させて面状の光とすることが可能である。 In this configuration, light incident from the first surface of the first light control plate is emitted from the second surface. Then, the light emitted from the second surface of the first light control plate enters the first surface of the second light control plate and is emitted from the second surface of the second light control plate. Each of the first and second light control plates of the light diffusing plate unit has a plurality of convex portions formed on the second surface. Since the convex portion of each of the first and second light control plates has a cross-sectional shape represented by v (u) that satisfies the above formula (1), the first and second light control plates are Light from a point light source can be converted into light that is linear and has a substantially uniform luminance in its extending direction. And the 1st and 2nd light control board is arrange | positioned so that the extending direction of the convex part which each of the 1st and 2nd light control board has substantially orthogonally crosses. Therefore, the light control plate unit can uniformly disperse the light from the point light source disposed on the first surface side of the first light control plate to obtain planar light.
 本発明に係る光制御板ユニットでは、第1及び第2の光制御板の各々が有する第1の面は略平坦である、とすることができる。 In the light control plate unit according to the present invention, the first surface of each of the first and second light control plates may be substantially flat.
 また、本発明に係る面光源装置は、本発明に係る光制御板ユニットと、光制御板ユニッの第1の光制御板側に設けられており、第1の光制御板の第1の面に光を供給する複数の点状光源と、を備える。 The surface light source device according to the present invention is provided on the first light control plate side of the light control plate unit according to the present invention and the light control plate unit, and the first surface of the first light control plate. A plurality of point light sources for supplying light to the light source.
 この面光源装置は、複数の点状光源から出力された光が本発明に係る光制御板ユニットを通して出射されることになる。そのため、複数の点状光源からの光を、均一に分散させて面状の光とすることが可能である。 In this surface light source device, light output from a plurality of point light sources is emitted through the light control plate unit according to the present invention. Therefore, it is possible to uniformly disperse light from a plurality of point light sources to form planar light.
 本発明に係る透過型画像表示装置は、本発明に係る光制御板ユニットと、光制御板ユニットに光を供給する複数の点状光源と、光制御板ユニットの第2の光制御板上に設けられており、光制御板ユニットから出射された光によって照射され画像を表示する透過型画像表示部と、を備えることを特徴とする。 A transmissive image display device according to the present invention includes a light control plate unit according to the present invention, a plurality of point light sources for supplying light to the light control plate unit, and a second light control plate of the light control plate unit. And a transmissive image display unit that displays an image irradiated with light emitted from the light control plate unit.
 この透過型画像表示装置では、複数の点状光源から出力され本発明に係る光制御ユニットを通して出射された光によって透過型画像表示部が照明される。その結果、点状光源からの光がより均一に分散された面状の光で透過型画像表示部が照明されるので、より良質な画像を表示することが可能である。 In this transmissive image display device, the transmissive image display unit is illuminated by light output from a plurality of point light sources and emitted through the light control unit according to the present invention. As a result, the transmissive image display unit is illuminated with the planar light in which the light from the point light source is more uniformly dispersed, so that a higher quality image can be displayed.
 本発明によれば、点状光源からの光を十分に均一に分散させることが可能な光制御板ユニット及びその光制御ユニットを備えた面光源装置及び透過型画像表示装置を提供することができる。 According to the present invention, it is possible to provide a light control plate unit capable of sufficiently uniformly dispersing light from a point light source, a surface light source device including the light control unit, and a transmissive image display device. .
本発明に係る透過型画像表示装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the transmissive image display apparatus which concerns on this invention. 点状光源の配置の一例を示す図面である。It is drawing which shows an example of arrangement | positioning of a point light source. 点状光源の配置の他の例を示す図面である。It is drawing which shows the other example of arrangement | positioning of a point light source. 図1に示した透過型画像表示に用いられる点状光源の配光分布の一例を示す図面である。It is drawing which shows an example of the light distribution of the point light source used for the transmissive | pervious image display shown in FIG. 本発明に係る光制御板ユニットの一例を示す斜視図である。It is a perspective view which shows an example of the light control board unit which concerns on this invention. 図5に示した光制御板ユニットの第1及び第2の光制御板が有する凸状部の断面形状の例を示す図面である。It is drawing which shows the example of the cross-sectional shape of the convex part which the 1st and 2nd light control board of the light control board unit shown in FIG. 5 has. 凸状部の断面形状が満たす条件を示す図面である。It is drawing which shows the conditions which the cross-sectional shape of a convex-shaped part satisfy | fills. 従来の透過型画像表示装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the conventional transmissive image display apparatus.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、同一または相当要素には同一符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent element, and the overlapping description is abbreviate | omitted. The dimensional ratios in the drawings do not necessarily match those described.
 図1は、本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。図1は、透過型画像表示装置1を分解して示している。 FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention. FIG. 1 shows the transmissive image display device 1 in an exploded manner.
 透過型画像表示装置1は、透過型画像表示部10と、図1において透過型画像表示部10の背面側に配置された面光源装置20とを備えている。以下の説明では、図1に示すように、面光源装置20と透過型画像表示部10の配列方向をz方向(板厚方向)と称し、z方向に直交する2方向をx方向及びy方向とする。x方向及びy方向は互いに直交する。 The transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 disposed on the back side of the transmissive image display unit 10 in FIG. In the following description, as shown in FIG. 1, the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a z direction (plate thickness direction), and two directions orthogonal to the z direction are an x direction and a y direction. And The x direction and the y direction are orthogonal to each other.
 透過型画像表示部10としては、例えば液晶セル11の両面に直線偏光板12,13が配置された液晶表示パネルが挙げられる。この場合、透過型画像表示装置1は液晶表示装置(又は液晶テレビ)である。液晶セル11,偏光板12,13は、従来の液晶表示装置等の透過型画像表示装置1で用いられているものを用いることができる。液晶セル11の例は、TFT型の液晶セル、STN型の液晶セル等の公知の液晶セルである。 Examples of the transmissive image display unit 10 include a liquid crystal display panel in which linearly polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11. In this case, the transmissive image display device 1 is a liquid crystal display device (or a liquid crystal television). As the liquid crystal cell 11 and the polarizing plates 12 and 13, those used in the transmissive image display device 1 such as a conventional liquid crystal display device can be used. An example of the liquid crystal cell 11 is a known liquid crystal cell such as a TFT liquid crystal cell or an STN liquid crystal cell.
 面光源装置20は、いわゆる直下型の面光源装置である。面光源装置20は、光拡散板ユニット(光制御板ユニット)21と、図1においてその背面側に配置された複数の点状光源22とを含む。 The surface light source device 20 is a so-called direct type surface light source device. The surface light source device 20 includes a light diffusing plate unit (light control plate unit) 21 and a plurality of point light sources 22 arranged on the back side in FIG.
 光拡散板ユニット21は、第1及び第2の光拡散板30,30を備える。第1及び第2の光拡散板30,30は、第1の光拡散板30、第2の光拡散板30の順に板厚方向(z方向)に設けられている。光拡散板ユニット21を構成する第1及び第2の光拡散板30,30の平面視形状(z方向からみた形状)はほぼ同一であり、通常、長方形である。第1及び第2の光拡散板30,30の平面視形状、換言すれば、光拡散板ユニット21の平面視形状のサイズは目的とする透過型画像表示装置1の画面サイズに適合するように選択される。光拡散板ユニット21の平面視形状のサイズは、通常は250mm×440mm以上、好ましくは1020mm×1800mm以下である。第1の光拡散板30及び第2の光拡散板30の平面視形状は、長方形に限らず、正方形としてもよいが、以下では、特に断らない限り、長方形として説明する。 The light diffusion plate unit 21 includes first and second light diffusion plates 30 1 and 30 2 . First and second light diffusing plate 30 1, 30 2, first light diffusing plate 30 1 is provided in the thickness direction (z-direction) to the second order of the light diffusion plate 30 2. The first and second light diffusing plates 30 1 and 30 2 constituting the light diffusing plate unit 21 have substantially the same plan view shape (shape viewed from the z direction), and are usually rectangular. First and second light diffusing plate 30 1, 30 2 of the plan view shape, in other words, the size of the planar shape of the light diffusing plate unit 21 is adapted to the screen size of the transmissive image display device 1 for the purpose Selected as The size of the planar shape of the light diffusing plate unit 21 is usually 250 mm × 440 mm or more, preferably 1020 mm × 1800 mm or less. First plan view shape of the light diffusing plate 30 1 and the second light diffusion plate 30 2 is not limited to a rectangle, it may be square, but in the following, unless otherwise specified, be described as a rectangle.
 複数の点状光源22は、光拡散板ユニット21又は透過型画像表示部10の平面視形状に応じて配置することができる。 The plurality of point light sources 22 can be arranged according to the planar view shape of the light diffusing plate unit 21 or the transmissive image display unit 10.
 図2は、複数の点状光源の配置関係の一例を示す図面である。図2に示すように、複数の点状光源22は、x方向に等間隔L及びy方向に等間隔Lで配置することができる。図2では、一例として、x方向の間隔Lxがy方向の間隔Lyより大きいとしている。しかしながら、間隔Lyの方が間隔Lxより大きくてもよいし、間隔Lx及び間隔Lyが同じでもよい。間隔Lx及び間隔Lyは、点状光源22の発光部間の距離とすることができ、通常10mm~150mmである。 FIG. 2 is a drawing showing an example of the arrangement relationship of a plurality of point light sources. As shown in FIG. 2, the plurality of point light sources 22 can be arranged at equal intervals L x in the x direction and at equal intervals L y in the y direction. In FIG. 2, as an example, the interval Lx in the x direction is larger than the interval Ly in the y direction. However, the interval Ly may be larger than the interval Lx, and the interval Lx and the interval Ly may be the same. The interval Lx and the interval Ly can be the distance between the light emitting portions of the point light source 22, and are usually 10 mm to 150 mm.
 また、複数の点状光源22は、図3に示した千鳥格子状に配置してもよい。図3は図2の場合の変形とみなすことができるので、点状光源22間のx方向及びy方向の間隔は、図2の場合と同様とすることができる。具体的に説明する。 Further, the plurality of point light sources 22 may be arranged in a staggered pattern shown in FIG. Since FIG. 3 can be regarded as a modification of the case of FIG. 2, the distance between the point light sources 22 in the x direction and the y direction can be the same as in the case of FIG. This will be specifically described.
 図2に示した長方形格子は、x方向に配置された複数の点状光源22からなる点状光源列が、y方向に複数並列されたものとみなすことができる。この場合、図3の千鳥格子状の配置は、y方向に配列された複数の点状光源列のうち隣接する点状光源列をx方向に半周期ずらして配置しているものとなる。よって、図3に示した配置においても、y方向の間隔Lyは、図2に示した場合と同様、すなわち、y方向に並列された上記点状光源列の間の間隔とすることができる。図3では、一例として、y方向に並列された上記点状光源列を、隣接する点状光源列がx方向に半周期ずらしているとしたが、上記説明においてx方向及びy方向が反対であってもよい。 The rectangular lattice shown in FIG. 2 can be regarded as a plurality of point light source arrays composed of a plurality of point light sources 22 arranged in the x direction arranged in parallel in the y direction. In this case, the staggered arrangement in FIG. 3 is such that adjacent point light source arrays out of a plurality of point light source arrays arranged in the y direction are arranged with a half cycle shift in the x direction. Therefore, also in the arrangement shown in FIG. 3, the interval Ly in the y direction can be the same as the case shown in FIG. 2, that is, the interval between the point light source arrays arranged in parallel in the y direction. In FIG. 3, as an example, the point light source arrays arranged in parallel in the y direction are shifted by a half cycle in the x direction between adjacent point light source arrays. However, in the above description, the x direction and the y direction are opposite. There may be.
 点状光源22の例は、発光ダイオードある。また、発光ダイオードの例は、所謂サイドエミッティング型の発光ダイオードである。サイドエミッティング型の発光ダイオードでは、z方向に対してある角度方向に対して最大強度が生じる。図4は、発光ダイオードの配光分布の一例として、OSRAM社「Golden DRAGON(登録商標)ARGUS(登録商標)」の配光分布を示す図面である。図4中において横軸はz方向に対する角度θ(図1参照)を示しており、縦軸は強度を示している。強度は、最大強度に対して規格化した値である。 An example of the point light source 22 is a light emitting diode. An example of the light emitting diode is a so-called side emitting light emitting diode. In the side emitting type light emitting diode, the maximum intensity is generated in a certain angle direction with respect to the z direction. FIG. 4 is a drawing showing the light distribution of OSRAM “Golden DRAGON (registered trademark) ARGUS (registered trademark)” as an example of the light distribution of light emitting diodes. In FIG. 4, the horizontal axis indicates the angle θ (see FIG. 1) with respect to the z direction, and the vertical axis indicates the intensity. The intensity is a value normalized with respect to the maximum intensity.
 図5は、光拡散板ユニット(光制御板ユニット)の構成を示すための斜視図である。図5を参照して、光拡散板ユニット21を構成する第1及び第2の光拡散板30,30について説明する。図5では、説明のために、第1及び第2の光拡散板30,30を離して配置しているが、後述するように、第1の光拡散板30に接するように第2の光拡散板30を第1の光拡散板30上に設けてもよい。 FIG. 5 is a perspective view for illustrating a configuration of a light diffusion plate unit (light control plate unit). With reference to FIG. 5, the first and second light diffusion plates 30 1 and 30 2 constituting the light diffusion plate unit 21 will be described. In FIG. 5, for the sake of explanation, the first and second light diffusion plates 30 1 and 30 2 are separated from each other, but the first light diffusion plate 301 is in contact with the first light diffusion plate 301 as described later. 2 of a light diffuser 30 2 may be provided on the first upper light diffusion plate 30 1.
 [第1の光拡散板]
 第1の光拡散板30は、略平坦な下面(第1の光制御板の第1の面)31と、第2の光拡散板30側に凸である凸状部(第1の光制御板の凸状部)33が複数形成された上面(第1の光制御板の第2の面)32とを有する板状体である。ただし、第1の光拡散板30は、厚さに応じてシート状及びフィルム状であってもよい。凸状部33は、y方向に略平行なY1方向(第1の光制御板の第1の方向)に延びており、Y1方向に略直交するX1方向(第1の光制御板の第2の方向)に並列配置されている。X1方向及びY1方向はそれぞれx方向及びy方向に平行であることが好ましい。しかし、例えば製造誤差等により±10°程度ずれていてもよい。複数の凸状部33の断面形状は、凸状部33間でほぼ同一である。また、凸状部33の延在方向において、断面形状はほぼ均一である。隣接する2つの凸状部33,33の端33aはX1方向において同じ位置にある。第1の光拡散板30の厚さd1は、下面31と凸状部33の頂部33bとのz方向の距離である。厚さd1は、通常は0.5mm~5mmである。
[First light diffusion plate]
The first light diffusion plate 30 1 is substantially the (first surface of the first light control plate) 31 1 flat lower surface, the convex portion is convex second light diffusion plate 30 2 side (the first of the convex portion of the light control plate) 33 1 is a plate-like body having a second surface) 32 of the plurality forming top surfaces (first light control plate. However, the first light diffusing plate 30 1 may be a sheet-like and film-like depending on the thickness. Convex portion 33 1 extends substantially parallel to the Y1 direction in the y-direction (first direction of the first light control plate), first in the X1 direction (the first light control plate which is substantially perpendicular to the Y1 direction 2 direction). The X1 direction and the Y1 direction are preferably parallel to the x direction and the y direction, respectively. However, it may be shifted by about ± 10 ° due to a manufacturing error, for example. The cross-sectional shape of the plurality of convex portions 33 1 is substantially the same between the convex portions 33 1 . Further, in the extending direction of the convex portion 33 1, the cross-sectional shape is substantially uniform. The ends 33a 1 of the two adjacent convex portions 33 1 and 33 1 are at the same position in the X1 direction. First thickness d1 of the light diffusion plate 30 1 is the z-direction distance between the top portion 33b 1 of the lower surface 31 1 and the convex portion 33 1. The thickness d1 is usually 0.5 mm to 5 mm.
 [第2の光拡散板]
 第2の光拡散板30は、略平坦な下面(第2の光制御板の第1の面)31と、外側に凸である凸状部(第2の光制御板の凸状部)33が複数形成された上面(第4の面)32とを有する板状体である。ただし、第2の光拡散板30は、厚さに応じてシート状及びフィルム状であってもよい。凸状部33は、x方向に略平行なX2方向(第2の光制御板の第1の方向)に延びており、X2方向に略直交するY2方向(第2の光制御板の第2の方向)に並列配置されている。X2方向及びY2方向はそれぞれx方向及びy方向に平行であることが好ましいが、第1の光拡散板30の場合と同様に、例えば製造誤差等により±10°程度ずれていてもよい。複数の凸状部33の断面形状は、凸状部33間でほぼ同一である。
また、凸状部33の延在方向において、断面形状はほぼ均一である。隣接する2つの凸状部33,33の端33a,33aはY2方向において同じ位置にある。第2の光拡散板30の厚さd2は、下面31と凸状部33の頂部33bとのz方向の距離であり、通常は0.1mm~5mmである。
[Second light diffusion plate]
The second light diffusion plate 30 2 is substantially flat lower surface (second optical control plate first surface of) 31 2, the convex portion is convex outward (convex portion of the second light control plate ) 33 2 is formed with a plurality of upper surface (fourth surface) 32 is a plate-like body having two and. However, the second light diffusion plate 30 2 may be a sheet-like and film-like depending on the thickness. Convex portion 33 2 extend in substantially parallel direction X2 in the x-direction (first direction of the second light control plate), first in the Y2 direction (the second light control plate substantially orthogonal to the X2 direction 2 direction). It is preferred X2 direction and the Y2 direction is parallel to the x and y directions, respectively, but as in the case of the first light diffuser 30 1, for example due to a manufacturing error or the like may be offset about ± 10 °. Cross-sectional shape of the plurality of convex portions 33 2 is substantially same in the convex portion 33 2.
Further, in the extending direction of the convex portion 33 2, the cross-sectional shape is substantially uniform. The ends 33a 1 and 33a 2 of the two adjacent convex portions 33 2 and 33 2 are at the same position in the Y2 direction. The second thickness d2 of the light diffusion plate 30 2 is a z-direction distance between the top portion 33b 2 of the lower surface 31 2 and the convex portion 33 2, typically a 0.1 mm ~ 5 mm.
 [凸状部]
 第1及び第2の光拡散板30,30の各々が有する凸状部33,33の形状について説明する。凸状部33,33は、点状光源22上に第1及び第2の光拡散板30,30をそれぞれ配置した際に、点状光源22からの光を、輝度が略均一な線状の光に変換可能な断面形状を有する。凸状部33,33の断面形状について図6を参照して説明する。
[Convex part]
The shape of the convex portions 33 1 and 33 2 included in each of the first and second light diffusion plates 30 1 and 30 2 will be described. When the first and second light diffusion plates 30 1 and 30 2 are arranged on the point light source 22, the convex portions 33 1 and 33 2 emit light from the point light source 22 with substantially uniform luminance. It has a cross-sectional shape that can be converted into linear light. The cross-sectional shape of the convex portion 33 1, 33 2 will be described with reference to FIG.
 ここでは、凸状部33,33を、特に断らない限り凸状部33(iは1又は2)と称す。図6では、凸状部33の延在方向に直交する方向をu軸としてuv座標系を設定している。凸状部33に対するu軸方向はX1方向に対応し、v軸方向はz方向に対応する。凸状部33に対するu軸方向はY2方向に対応し、v軸方向はz方向に対応する。 Here, unless otherwise specified, the convex portions 33 1 and 33 2 are referred to as convex portions 33 i (i is 1 or 2). In FIG. 6, the uv coordinate system is set with the u-axis as the direction orthogonal to the extending direction of the convex portion 33 i . U-axis direction with respect to the convex portion 33 1 corresponds to the X1 direction, v-axis direction corresponds to the z-direction. U-axis direction with respect to the convex portion 33 2 corresponds to Y2 direction, v-axis direction corresponds to the z-direction.
 上記uv座標系において、凸状部33の断面形状は、u軸上に両端33a,33aを有し、v軸に対して対称な輪郭線を有する。この輪郭線は、下記式(3)を満足するv(u)で表される。
Figure JPOXMLDOC01-appb-M000005
ただし、式(3)において、v(u)は、式(4)を満たす。
Figure JPOXMLDOC01-appb-M000006
 式(4)において、wはu軸方向の凸状部33の長さである。hは、凸状部33の両端33a,33a間における最大高さに対応し、hは040w以上1.60w以下を満たす定数である。すなわち、hは、h/wが0.40以上1.60以下を満たす定数である。kは-1.00以上且つ-0.15以下を満たす定数である。凸状部33の幅waは、凸状部33の形成が容易であることから、通常40μm以上、好ましくは250μm以上である。また、凸状部33に起因する模様が肉眼で視認されにくいことから、通常800μm以下、好ましくは450μm以下である。幅waの具体例は、wa=410μm、wa=400μmおよびwa=325μm等である。ただし、waの値はこれに限定されるものではない。
In the uv coordinate system, the cross-sectional shape of the convex portion 33 i has both ends 33 a i and 33 a i on the u axis, and has a contour line symmetrical to the v axis. This contour line is represented by v (u) that satisfies the following formula (3).
Figure JPOXMLDOC01-appb-M000005
However, in Expression (3), v 0 (u) satisfies Expression (4).
Figure JPOXMLDOC01-appb-M000006
In Expression (4), w a is the length of the convex portion 33 i in the u-axis direction. h a is across 33a i of the convex portion 33 i, corresponding to the maximum height between 33a i, h a is a constant satisfying the following 040W a more 1.60 W a. That is, h a is a constant that satisfies h a / w a of 0.40 or more and 1.60 or less. k a is a constant satisfying −1.00 and −0.15. Width w a of the convex portion 33 i, since formation of the convex portion 33 i is easy, usually 40μm or more, preferably 250μm or more. Moreover, since the pattern resulting from the convex part 33 i is difficult to be visually recognized with the naked eye, it is usually 800 μm or less, preferably 450 μm or less. Specific examples of the width w a are w a = 410 μm, w a = 400 μm, w a = 325 μm, and the like. However, the value of w a is not limited to this.
 図6は、凸状部33の断面形状の一例として、式(3)を満たす範囲内でv(u)をv方向に所定倍だけ伸縮した形状を示している。ただし、凸状部33の断面形状は、図7に示すように、ある幅wに対してv(u)を決定した際に、0.95v(u)で表される輪郭線と、1.05v(u)で表される輪郭線の間の領域をとおる輪郭線であればよい。 FIG. 6 shows, as an example of the cross-sectional shape of the convex portion 33 i, a shape in which v 0 (u) is expanded and contracted by a predetermined multiple in the v direction within a range satisfying the expression (3). However, the sectional shape of the convex portion 33 i, as shown in FIG. 7, when determining the v 0 (u) for a width w a, contours represented by 0.95v 0 (u) And a contour line passing through a region between the contour lines represented by 1.05v 0 (u).
 更に、上記説明では、凸状部33の断面形状が式(3)を満たすv(u)で表されるとした。ただし、凸状部33の両端部近傍での製造誤差及び強度分布に与える影響を考慮すれば、凸状部33の断面形状は、-0.475w≦u≦0.475wにおいて式(3)を満たすv(u)で表されていればよい。 Further, in the above description, it is assumed that the cross-sectional shape of the convex portion 33 i is represented by v (u) that satisfies Expression (3). However, considering the effect on the manufacturing error and the intensity distribution at near both ends of the convex portion 33 i, the cross-sectional shape of the convex portion 33 i has the formula in -0.475w a ≦ u ≦ 0.475w a It may be expressed by v (u) that satisfies (3).
 また、h/w及びkの範囲は上述した範囲を満たしていればよい。しかしながら、隣接する2つの点状光源22間の距離をLとし、点状光源22の発光部から光拡散板ユニット21の点状光源22側の面(図1又は図5では、第1の光拡散板30の下面31)までの距離をDとしたとき、L/Dに対して好ましいh/w及びkの範囲は、以下の表1のとおりである。表1に記載のLは、凸状部33の輪郭線形状に対してはLxに対応し、凸状部33の輪郭線形状に対してLyに対応するものとする。
Figure JPOXMLDOC01-appb-T000007
Further, the range of h a / w a and k a may if they meet the aforementioned range. However, the distance between two adjacent point light sources 22 is L, and the surface of the light diffusing plate unit 21 on the point light source 22 side from the light emitting portion of the point light source 22 (in FIG. 1 or FIG. when the distance to the lower surface 31 1) of the diffuser 30 1 is D, the preferred range of h a / w a and k a relative L / D is as shown in Table 1 below. L described in Table 1 corresponds to Lx for contour shape of the convex portion 33 1, and corresponds to Ly respect contour shape of the convex portion 33 2.
Figure JPOXMLDOC01-appb-T000007
 第1の光拡散板30の凸状部33及び第2の光拡散板30の凸状部33に対して、w、h、kは同じでもよいし、異なっていてよい。すなわち、第1の光拡散板30の凸状部33及び第2の光拡散板30の凸状部33とは、互いに同一の断面形状であってもよいし、それぞれの凸状部33,33の断面形状の輪郭線が上記式(2)を満たす範囲において、異なる断面形状であってもよい。 With respect to the first light diffusing plate 30 1 of the convex portion 33 1 and the second light diffusion plate 30 and second convex portions 33 2, w a, h a , k a is may be the same, or different Good. That is, the first convex portion 33 2 of the light diffusing plate 30 1 of the convex portion 33 1 and the second light diffusion plate 30 2 may be the same cross-sectional shapes, each convex Different cross-sectional shapes may be used as long as the contour lines of the cross-sectional shapes of the portions 33 1 and 33 2 satisfy the above formula (2).
〔第1及び第2の光拡散板の層構成〕
 第1及び第2の光拡散板30,30は、単独の透明材料で構成された単層板であってもよいし、互いに異なる透明材料で構成された層が積層された多層構造の多層板であってもよい。第1及び第2の光拡散板30,30が多層板である場合、第1及び第2の光拡散板30,30の片面または両面は、通常10μm~200μm、好ましくは20μm~100μmの厚みのスキン層が形成された構造とし、このスキン層を構成する透明樹脂材料として紫外線吸収剤が添加されたものを用いることが好ましい。かかる構成とすることにより、点状光源22や外部からの光に含まれることのある紫外線による第1及び第2の光拡散板30,30の劣化を防止することができる。特に点状光源22として紫外線の占める割合が比較的大きいものを用いた場合には、紫外線による劣化を防止できることから、下面31,31にスキン層が形成されていることが好ましい。この場合、上面32,32にはスキン層が形成されていないことが、コストの面でさらに好ましい。スキン層を構成する透明樹脂材料として紫外線吸収剤が添加されたものを用いる場合、紫外線吸収剤の含有量は、透明樹脂材料を基準として通常0.5質量%~5質量%、好ましくは1質量%~2.5質量%である。
[Layer configuration of first and second light diffusion plates]
The first and second light diffusion plates 30 1 and 30 2 may be single-layer plates made of a single transparent material, or may have a multilayer structure in which layers made of different transparent materials are laminated. A multilayer board may be sufficient. When the first and second light diffusion plates 30 1 and 30 2 are multilayer plates, one or both sides of the first and second light diffusion plates 30 1 and 30 2 are usually 10 μm to 200 μm, preferably 20 μm to It is preferable to use a structure in which a skin layer having a thickness of 100 μm is formed, and a transparent resin material constituting the skin layer to which an ultraviolet absorber is added is used. By adopting such a configuration, it is possible to prevent the first and second light diffusion plates 30 1 and 30 2 from being deteriorated due to the point light source 22 and ultraviolet rays that may be included in light from the outside. In particular, when the proportion of ultraviolet light using a relatively large as point light sources 22, because it can prevent deterioration due to ultraviolet rays, it is preferable that the lower surface 31 1, 31 2 in the skin layer is formed. In this case, it is more preferable in terms of cost that no skin layer is formed on the upper surfaces 32 1 and 32 2 . When using a transparent resin material to which the ultraviolet absorber is added as the transparent resin material constituting the skin layer, the content of the ultraviolet absorber is usually 0.5% by mass to 5% by mass, preferably 1% by mass based on the transparent resin material. % To 2.5% by mass.
 第1及び第2の光拡散板30,30は、片面または両面に帯電防止剤が塗布されていてもよい。帯電防止剤を塗布することにより、静電気によるホコリの付着などを防止して、ホコリの付着による光線透過率の低下を防止することができる。 The first and second light diffusion plates 30 1 and 30 2 may be coated with an antistatic agent on one side or both sides. By applying an antistatic agent, dust adhesion due to static electricity can be prevented, and a decrease in light transmittance due to dust adhesion can be prevented.
 〔構成材料〕
 第1及び第2の光拡散板30,30は透明材料からなる。透明材料の屈折率は通常1.56~1.62である。透明材料の例は、透明樹脂材料、透明ガラス材料である。透明樹脂材料の例は、ポリカーボネート樹脂(屈折率:1.59)、MS樹脂(メタクリル酸メチル-スチレン共重合体樹脂)(屈折率:1.56~1.59)、ポリスチレン樹脂(屈折率:1.59)、AS樹脂(アクリロニトリル-スチレン共重合体樹脂)(屈折率:1.56~1.59)などである。透明樹脂材料は、コストの面および吸湿率が低い点で、好ましくはポリスチレン樹脂である。
[Constituent materials]
The first and second light diffusion plates 30 1 and 30 2 are made of a transparent material. The refractive index of the transparent material is usually 1.56 to 1.62. Examples of the transparent material are a transparent resin material and a transparent glass material. Examples of transparent resin materials are polycarbonate resin (refractive index: 1.59), MS resin (methyl methacrylate-styrene copolymer resin) (refractive index: 1.56 to 1.59), polystyrene resin (refractive index: 1.59), AS resin (acrylonitrile-styrene copolymer resin) (refractive index: 1.56 to 1.59), and the like. The transparent resin material is preferably a polystyrene resin in terms of cost and low moisture absorption.
 透明材料として透明樹脂材料を用いる場合、この透明樹脂材料に紫外線吸収剤、帯電防止剤、酸化防止剤、加工安定剤、難燃剤、滑剤などの添加剤を添加することもできる。これらの添加剤はそれぞれ単独で、または2種以上を組み合わせて用いることができる。 When a transparent resin material is used as the transparent material, additives such as an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, a flame retardant, and a lubricant can be added to the transparent resin material. These additives can be used alone or in combination of two or more.
 紫外線吸収剤の例は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン計紫外線吸収剤、シアノアクリレート系紫外線吸収剤、マロン酸エステル系紫外線吸収剤、シュウ酸アニリド系紫外線吸収剤、トリアジン系紫外線吸収剤などである。紫外線吸収剤は、好ましくはベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤である。 Examples of UV absorbers include benzotriazole UV absorbers, benzophenone meter UV absorbers, cyanoacrylate UV absorbers, malonic ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. is there. The ultraviolet absorber is preferably a benzotriazole ultraviolet absorber or a triazine ultraviolet absorber.
 透明樹脂材料は通常、添加剤として光拡散剤を添加することなく用いられる。しかしながら、本発明の目的を損なわない僅かな量であれば、光拡散剤を添加して用いてもよい。 A transparent resin material is usually used without adding a light diffusing agent as an additive. However, a light diffusing agent may be added as long as it is a slight amount that does not impair the object of the present invention.
 光拡散剤として通常は、第1及び第2の光拡散板30,30を主に構成する上述したような透明材料とは屈折率が異なる粉末が用いられ、これを透明材料中に分散させて用いられる。かかる光拡散剤としては、例えばスチレン樹脂粒子、メタクリル樹脂粒子などの有機粒子、炭酸カリウム粒子、シリカ粒子、シリコーン樹脂粒子などの無機粒子が用いられ、その粒子径は通常0.8μm~50μmである。 As the light diffusing agent, a powder having a refractive index different from that of the above-described transparent material mainly constituting the first and second light diffusing plates 30 1 and 30 2 is usually used and dispersed in the transparent material. Used. As the light diffusing agent, for example, organic particles such as styrene resin particles and methacrylic resin particles, inorganic particles such as potassium carbonate particles, silica particles, and silicone resin particles are used, and the particle diameter is usually 0.8 μm to 50 μm. .
 またモアレ低減のために点状光源22側の面を、光拡散性を有する面とすることもできる。例えば、マット化剤と呼ばれる微細な粒子を含むスキン層で点状光源22側の面を構成してもよいし、点状光源22側の面にエンボス加工、ブラスト加工を施してもよいし、マット化剤およびバインダーを含む塗布液を塗布してマット層を形成してもよい。 Also, the surface on the point light source 22 side can be a surface having light diffusibility in order to reduce moire. For example, the surface on the point light source 22 side may be constituted by a skin layer containing fine particles called a matting agent, or the surface on the point light source 22 side may be embossed or blasted, A matting layer may be formed by applying a coating solution containing a matting agent and a binder.
 [第1及び第2の光拡散板の製造方法]
 第1及び第2の光拡散板30,30は、例えば透明材料から削り出す方法により製造することができる。また、透明材料として透明樹脂材料を用いる場合は、例えば射出成形法、押出成形法、フォトポリマー法、プレス成形法などの通常の方法により製造することができる。
[Method for Manufacturing First and Second Light Diffusing Plates]
The first and second light diffusion plates 30 1 and 30 2 can be manufactured by, for example, a method of cutting out from a transparent material. Moreover, when using a transparent resin material as a transparent material, it can manufacture by normal methods, such as an injection molding method, an extrusion molding method, a photopolymer method, a press molding method, for example.
 [第1及び第2の光拡散板の配置関係]
 第1及び第2の光拡散板30,30は、z方向に順に設けられている。第1及び第2の光拡散板30,30は、凸状部33の延在方向(Y1方向)と、凸状部33の延在方向(X2方向)とが略直交するように配置されている。凸状部33の延在方向と凸状部33の延在方向との間のなす角度は、80°~100°が例示され、好ましくは、90°である。
[Disposition relation of first and second light diffusion plates]
The first and second light diffusion plates 30 1 and 30 2 are sequentially provided in the z direction. First and second light diffusing plate 30 1, 30 2 includes a convex portion 33 1 in the extending direction (Y1 direction), the convex portion 33 2 in the extending direction (X2 direction) Togaryaku to orthogonal Is arranged. The angle formed between the extending direction of convex portion 33 1 of the extending direction and the convex portion 33 2, 80 ° ~ 100 ° are exemplified, and preferably, 90 °.
 第1及び第2の光拡散板30,30の間の距離d12は、第1の光拡散板30の凸状部33の頂部33bと第2の光拡散板30の下面31との間のz方向の距離である。距離d12の例は、5mm以下である。光拡散板ユニット21をコンパクトなものとする観点から、d12が0mmであり、第1の光拡散板30の凸状部33と第2の光拡散板30の下面31とが接するように配置されていてもよい。このように、第1の光拡散板30上に第2の光拡散板30を接するように設ける場合には、第2の光拡散板30の厚さd2を第1の光拡散板30の厚さd1より薄いものとすることが好適である。例えば、第2の光拡散板30をフィルム状といったより薄いものとした場合、第1の光拡散板30を第2の光拡散板30の支持台として用いることができるからである。 The distance d 12 between the first and second light diffusing plate 30 1, 30 2, first light diffusing plate 30 1 of the convex portion 33 1 apex 33b 1 and the second light diffusion plate 30 2 it is a z-direction distance between the lower surface 31 2. Examples of the distance d 12 is 5mm or less. From the viewpoint of the light diffusing plate unit 21 as compact as, d 12 is 0 mm, the first convex portion 33 1 of the light diffusing plate 30 1 and the second and the lower surface 31 2 of the light diffusion plate 30 2 You may arrange | position so that it may contact | connect. Thus, in the case of providing in contact with the second light diffusion plate 30 2 to the first on the light diffusing plate 30 1, a second thickness d2 of the light diffusion plate 30 2 first light diffusing plate it is preferable to use a thinner than 30 1 of the thickness d1. For example, since the second light diffusion plate 30 2 If assumed thinner such film form, can be used first light diffusing plate 30 1 as the second support bars of the light diffusion plate 30 2.
 [光拡散板ユニットの配置]
 上記構成の第1及び第2の光拡散板30,30を有する光拡散板ユニット21は、点状光源22から第1の光拡散板30の下面31までの距離Dが、通常3mm~50mmとなるように、点状光源22上に対して配置される。透過型画像表示装置1又は面光源装置20では、Lx,Ly及びDは、Lx/D及びLy/Dがそれぞれ2以上、さらには2.5以上である値であることが、面光源装置20を薄くすることができる点で、好ましい。
[Arrangement of light diffuser unit]
Light diffusing plate unit 21 having a light diffuser 30 1, 30 2 first and second of the above configuration, the distance D from the point light sources 22 to the lower surface 31 of the first light diffuser 30 1, usually It is arranged on the point light source 22 so as to be 3 mm to 50 mm. In the transmissive image display device 1 or the surface light source device 20, Lx, Ly, and D are values in which Lx / D and Ly / D are each 2 or more, and further 2.5 or more. Is preferable in that it can be made thinner.
 また、光拡散板ユニット21は、透過型画像表示装置1において、凸状部33の延在方向が画面の縦方向になるように配置されてもよいし、横方向になるように配置してもよい。 Also, the light diffusing plate unit 21, in the transmissive image display device 1, to the extending direction of the convex portion 33 1 may be arranged such that the longitudinal direction of the screen, arranged so as to be laterally May be.
 第1の光拡散板30の凸状部33の延在方向(Y1方向)が画面の横方向になるように光拡散板ユニット21を配置した場合、第2の光拡散板30の凸状部33の延在方向(X2方向)は画面の縦方向となる。このような配置では、斜め横方向から見たときの輝度ムラをより抑制する観点から、凸状部33の輪郭形状を示す式(2)におけるhaとwaとの比〔R2=ha/wa〕は、凸状部33の輪郭形状を示す式(2)におけるhaとwaとの比〔R1=ha/wa〕よりも小さいことが好ましい。また、凸状部33の輪郭形状を示す式(2)におけるkaは、凸状部33の輪郭形状を示す式(2)におけるkaよりも小さいことが好ましい。さらに好ましくは、透過型画像表示装置1における点状光源22の配置において、画面の縦方向の点状光源22の間隔Lxが、横方向の点状光源22の間隔Lyと等しいか、これよりも大きいことである。 If the first light diffusion plate 30 1 of the convex portion 33 1 in the extending direction (Y1 direction) is arranged a light diffusing plate unit 21 so that the horizontal direction of the screen, the second light diffusion plate 30 2 convex portion 33 2 in the extending direction (X2 direction) is the longitudinal direction of the screen. In such an arrangement, the ratio of the more suppressing brightness unevenness when viewed from an oblique lateral direction, and h a and w a in equation (2) showing the convex portion 33 2 of the contour [R 2 = h a / w a] is smaller than the ratio of h a and w a in equation (2) showing the convex portion 33 1 of the contour [R 1 = h a / w a] is preferred. Also, k a in equation (2) showing the convex portion 33 2 of the contour is preferably smaller than k a in equation (2) showing the convex portion 33 1 of the contour. More preferably, in the arrangement of the point light sources 22 in the transmissive image display device 1, the interval Lx between the point light sources 22 in the vertical direction of the screen is equal to or greater than the interval Ly between the point light sources 22 in the horizontal direction. It ’s big.
 第1の光拡散板30の凸状部33の延在方向(Y1方向)が画面の縦方向になるように光拡散板ユニット21を配置すると、第2の光拡散板30の凸状部33の延在方向(X2方向)は画面の横方向となる。このような配置では、斜め横方向から見たときの輝度ムラをより抑制する観点から、凸状部33の輪郭形状を示す式(2)におけるhaとwaとの比〔R1=ha/wa〕は、凸状部33の輪郭形状を示す式(2)におけるhaとwaとの比〔R2=ha/wa〕よりも小さいことが好ましく、また、凸状部33の輪郭形状を示す式(2)におけるkaは、凸状部33の輪郭形状を示す式(2)におけるkaよりも小さいことが好ましい。さらに好ましくは、透過型画像表示装置1における点状光源22の配置において、画面の縦方向の点状光源22の間隔Lxが、横方向の点状光源22の間隔Lyと等しいか、これよりも大きいことである。 When the first light diffusing plate 30 1 of the convex portion 33 1 in the extending direction (Y1 direction) to position the light diffusing plate unit 21 so that the longitudinal direction of the screen, the second light diffusion plate 30 and second convex Jo portion 33 2 in the extending direction (X2 direction) is the lateral direction of the screen. In such an arrangement, the ratio of the more suppressing brightness unevenness when viewed from an oblique lateral direction, and h a and w a in equation (2) showing the convex portion 33 1 of the contour [R 1 = h a / w a] is preferably smaller than the ratio of h a and w a [R 2 = h a / w a] in equation (2) showing the convex portion 33 2 of the contour shape, k a in the formula (2) showing the convex portion 33 1 of the contour shape is preferably smaller than k a in equation (2) showing the convex portion 33 2 of the contour. More preferably, in the arrangement of the point light sources 22 in the transmissive image display device 1, the interval Lx between the point light sources 22 in the vertical direction of the screen is equal to or greater than the interval Ly between the point light sources 22 in the horizontal direction. It ’s big.
 次に、光拡散板ユニット21の作用効果について、図1に示したように、光拡散板ユニット21が透過型画像表示装置1に適用されている場合を例にして説明する。ここでは、X1方向及びX2方向はx方向に平行であるとし、Y1方向及びY2方向はy方向に平行であるとする。 Next, the operation and effect of the light diffusing plate unit 21 will be described by taking as an example the case where the light diffusing plate unit 21 is applied to the transmissive image display device 1 as shown in FIG. Here, it is assumed that the X1 direction and the X2 direction are parallel to the x direction, and the Y1 direction and the Y2 direction are parallel to the y direction.
 光拡散板ユニット21が有する第1及び第2の光拡散板30,30の上面32,32に凸状部33,33が形成されている。そのため、点状光源22からの光を、輝度分布がほぼ均一な線状の光にそれぞれ変換することができる。そして、光拡散板ユニット21では、第1及び第2の光拡散板30,30を、凸状部33,33が略直交するように配置している。その結果、複数の点状光源22からの光が光拡散板ユニット21によって面状の光に変換される。また、第1及び第2の光拡散板30,30は、それぞれ点状光源22からの光を、線状の光であって線状の光の延在方向の輝度がほぼ均一な光に変換するようになっている。そのため、複数の点状光源22からの光が光拡散板ユニット21によって均一に分散されるので、z方向に直交する面において輝度均斉度がより高い面状の光を生成することができる。 Convex portions 33 1 and 33 2 are formed on the upper surfaces 32 1 and 32 2 of the first and second light diffusion plates 30 1 and 30 2 of the light diffusion plate unit 21. Therefore, the light from the point light source 22 can be converted into linear light having a substantially uniform luminance distribution. In the light diffusing plate unit 21, the first and second light diffusing plates 30 1 and 30 2 are arranged such that the convex portions 33 1 and 33 2 are substantially orthogonal to each other. As a result, light from the plurality of point light sources 22 is converted into planar light by the light diffusion plate unit 21. The first and second light diffusing plates 30 1 and 30 2 respectively convert the light from the point light source 22 into light that is linear light and whose luminance in the extending direction of the linear light is substantially uniform. It is supposed to convert to. Therefore, since the light from the plurality of point light sources 22 is uniformly dispersed by the light diffusing plate unit 21, it is possible to generate planar light having higher luminance uniformity on the surface orthogonal to the z direction.
 面光源装置20は、上記光拡散板ユニット21を備えているので、複数の点状光源22からの光が均一に分散されてz方向に直交する面における輝度均斉度がより高い面状の光を出射することができる。また、透過型画像表示装置1は、上記光拡散板ユニット21を備えているので、複数の点状光源22からの光が均一に分散されてz方向に直交する面における輝度均斉度がより高い面状の光によって、透過型画像表示部10を照射することが可能である。その結果、より高品質な画像を表示することができる。 Since the surface light source device 20 includes the light diffusing plate unit 21, the surface light having a higher luminance uniformity on the surface orthogonal to the z direction in which the light from the plurality of point light sources 22 is uniformly dispersed. Can be emitted. Further, since the transmissive image display device 1 includes the light diffusing plate unit 21, light from a plurality of point light sources 22 is uniformly dispersed, and the luminance uniformity on the surface orthogonal to the z direction is higher. It is possible to irradiate the transmissive image display unit 10 with planar light. As a result, a higher quality image can be displayed.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されない。上記実施形態では、複数の点状光源22の配置例を図3及び図4に示したが、例えば、正方格子、すなわち、前述したようにx方向及びy方向に隣接する点状光源22間の間隔が同じであってもよい。また、隣接する凸状部33(iは1又は2)の断面形状における端33aは凸状部33aの配列方向において重なっているとして説明した。しかしながら、隣接する凸状部33(iは1又は2)の端33a間に僅かな平坦部(例えば製造誤差により生じる程度のもの)などが生じていてもよい。また、光拡散板ユニット21は、透過型液晶表示部10側(例えば、液晶パネル側)に、拡散フィルム又はマイクロレンズフィルム等の光学フィルムを更に有していてもよい。また、透過型画像表示装置1は、光拡散板ユニット21と、透過型液晶表示部10との間に、上述した拡散フィルム又はマイクロレンズフィルム等の光学フィルムを更に有する構成とすることもできる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. In the above embodiment, the arrangement example of the plurality of point light sources 22 is shown in FIGS. 3 and 4. For example, a square lattice, that is, between the point light sources 22 adjacent to each other in the x direction and the y direction as described above. The interval may be the same. Further, the description has been given assuming that the ends 33a i in the cross-sectional shape of the adjacent convex portions 33 i (i is 1 or 2) overlap in the arrangement direction of the convex portions 33a i . However, a slight flat portion (for example, one that is caused by a manufacturing error) or the like may occur between the ends 33 a i of the adjacent convex portions 33 i (i is 1 or 2). The light diffusing plate unit 21 may further include an optical film such as a diffusing film or a microlens film on the transmissive liquid crystal display unit 10 side (for example, the liquid crystal panel side). Further, the transmissive image display device 1 may further include an optical film such as the above-described diffusion film or microlens film between the light diffusing plate unit 21 and the transmissive liquid crystal display unit 10.
 更に、面光源装置20や透過型画像表示装置1は、点状光源22から出力された光を光制御板ユニット21側に反射する反射板といった反射手段を備えていても良い。反射手段は、図1に示した模式図において、点状光源22に対して光拡散板ユニット(光制御板ユニット)21と反対側に設ければよく、例えば、点状光源22を保持するための保持部材の光源載置面を反射面とすることができる。 Furthermore, the surface light source device 20 and the transmissive image display device 1 may include a reflecting means such as a reflecting plate that reflects the light output from the point light source 22 toward the light control plate unit 21. In the schematic diagram shown in FIG. 1, the reflecting means may be provided on the side opposite to the light diffusing plate unit (light control plate unit) 21 with respect to the point light source 22, for example, to hold the point light source 22. The light source mounting surface of the holding member can be a reflective surface.
 また、第1及び第2の光制御板を、一例として第1及び第2の光拡散板30,30として説明した。しかしながら、第1及び第2の光制御板は、光を種々の方向に偏向させて光を分散させる凸状部33や凸状部33が出射面側に形成された偏向構造板ともいえる。第1及び第2の光制御板は、複数の点状光源から出力された光をより均一に分散させて線状の光を生成するために、光の出射側に凸状部33や凸状部33が賦形された板状の光学部品であればよい。この場合、光制御板ユニットは、2つの上記光学部品を、凸状部33や凸状部33がそれぞれの延在方向に略直交するように配置したものとすることができる。なお、板状として説明したが、厚さに応じてフィルム状及びシート状のものも含む。 The first and second light control plates have been described as the first and second light diffusion plates 30 1 and 30 2 as an example. However, the first and second light control plate, said even light with various deflected toward the convex portion 33 for dispersing the light 1 and the convex portion 33 2 is formed on the exit surface side deflecting structure plate . The first and second light control plate, in order to more evenly disperse the light output from the plurality of point light sources to generate a linear light, the convex portion 33 1 and convex on the emission side of the light Jo portion 33 2 may if the shaped plate-like optical components. In this case, the light control plate unit can be assumed that two of the optical components, the convex portion 33 1 and the convex portion 33 2 are arranged to be substantially perpendicular to the respective extending direction. In addition, although demonstrated as plate shape, the thing of a film form and a sheet form is also included according to thickness.
 1…透過型画像表示装置、10…透過型画像表示部、20…面光源装置、21…光拡散板ユニット(光制御板ユニット)、22…点状光源、33a…凸状部の端(第1の光制御板の凸状部の端)、33a…凸状部の端(第2の光制御板の凸状部の端)、33a…凸状部の端(第1及び第2の光制御板の凸状部の端)、33…凸状部(第1及び第2の光制御板の凸状部)、30…第1の光拡散板(第1の光制御板)、30…第2の光拡散板(第2の光制御板)、31…第1の光拡散板の下面(第1の光制御板の第1の面)、31…第2の光拡散板の下面(第2の光制御板の第1の面)、32…第1の光拡散板の上面(第1の光制御板の第2の面)、32…第2の光拡散板の上面(第2の光制御板の第2の面)、33…凸状部(第1及び第2の光制御板の凸状部)、33…第1の光拡散板の凸状部(第1の光制御板の凸状部)、33…第2の光拡散板の凸状部(第2の光制御板の凸状部)、Y1…第1の光制御板の凸状部の延在方向、X1…Y1方向に略直交する方向、X2…第2の光制御板の凸状部の延在方向、Y2…X2方向に略直交する方向。
 
DESCRIPTION OF SYMBOLS 1 ... Transmission type image display apparatus, 10 ... Transmission type image display part, 20 ... Surface light source device, 21 ... Light diffusing plate unit (light control board unit), 22 ... Point light source, 33a 1 ... End of convex-shaped part ( End of the convex portion of the first light control plate), 33a 2 ... End of the convex portion (end of the convex portion of the second light control plate), 33a i ... End of the convex portion (first and first) End of the convex portion of the second light control plate), 33 i ... Convex portion (convex portion of the first and second light control plates), 30 1 ... First light diffusion plate (first light control) Plate), 30 2 ... second light diffusion plate (second light control plate), 31 1 ... lower surface of the first light diffusion plate (first surface of the first light control plate), 31 2 ... first Lower surface of the second light diffusion plate (first surface of the second light control plate), 32 1 ... Upper surface of the first light diffusion plate (second surface of the first light control plate), 32 2 . The upper surface of the second light diffusion plate (the second surface of the second light control plate , 33 i ... convex portion (convex portion of the first and second light control plate), 33 1 ... convex portion of the first light diffusing plate (the convex portion of the first light control plate), 33 2 ... convex portion of the second light diffusion plate (convex portion of the second light control plate), Y1 ... extension direction of the convex portion of the first light control plate, X1 ... substantially orthogonal to the Y1 direction Direction, X2... Extension direction of the convex portion of the second light control plate, Y2... Direction substantially orthogonal to the X2 direction.

Claims (4)

  1.  第1の面から入射された光を前記第1の面と反対側に位置する第2の面から出射可能であり、且つ、一方向に延在しており前記一方向に略直交する方向に並列配置された複数の凸状部が前記第2の面に形成されている第1及び第2の光制御板を備え、
     前記第2の光制御板は前記第1の光制御板上に設けられ、
     前記第2の光制御板の前記第1の面は、前記第1の光制御板の前記第2の面に面しており、
     前記第1の光制御板が有する前記凸状部の延在方向と前記第2の光制御板が有する前記凸状部の延在方向とは略直交しており、
     前記第1及び第2の光制御板が有する前記凸状部の各々は、前記第1及び第2の光制御板が有する前記凸状部のそれぞれの延在方向に直交する断面において両端を通る軸線をu軸とし、前記u軸上において前記両端間の中心をとおり前記u軸に直交する軸線をv軸とし、前記第1及び第2の光制御板の凸状部の各々に対して前記u軸方向の長さをそれぞれwとしたとき、前記断面において前記第1及び第2の光制御板が有する前記凸状部の各々の輪郭形状が-0.475w≦u≦0.475wにおいて下記式(1)を満たすv(u)で表される、光制御板ユニット。
    Figure JPOXMLDOC01-appb-M000001
    ただし、前記式(1)において、v(u)は式(2)を満たす。
    Figure JPOXMLDOC01-appb-M000002
    (式(2)中、hは、0.40w以上1.60w以下を満たす定数であり、kは-1.00以上且つ-0.15以下を満たす定数である)
    Light incident from the first surface can be emitted from the second surface located on the opposite side of the first surface, and extends in one direction and is substantially perpendicular to the one direction. A plurality of convex portions arranged in parallel are provided with first and second light control plates formed on the second surface,
    The second light control plate is provided on the first light control plate;
    The first surface of the second light control plate faces the second surface of the first light control plate;
    The extending direction of the convex portion included in the first light control plate and the extending direction of the convex portion included in the second light control plate are substantially orthogonal to each other.
    Each of the convex portions of the first and second light control plates passes through both ends in a cross section orthogonal to the extending direction of each of the convex portions of the first and second light control plates. An axis is a u-axis, and an axis that passes through the center between the both ends on the u-axis and is orthogonal to the u-axis is a v-axis, and for each of the convex portions of the first and second light control plates, When the length in the u-axis direction is w a , the contour shape of each of the convex portions of the first and second light control plates in the cross section is −0.475 w a ≦ u ≦ 0.475 w. A light control plate unit represented by v (u) satisfying the following formula (1) in a.
    Figure JPOXMLDOC01-appb-M000001
    However, in the formula (1), v 0 (u) satisfies the formula (2).
    Figure JPOXMLDOC01-appb-M000002
    (In the formula (2), h a is a constant satisfying the following 0.40 W a or 1.60 W a, k a is a constant satisfying -1.00 or more and -0.15 or less)
  2.  前記第1及び第2の光制御板の各々が有する前記第1の面は略平坦である、請求項1記載の光制御板ユニット。 The light control plate unit according to claim 1, wherein the first surface of each of the first and second light control plates is substantially flat.
  3.  請求項1又は2記載の光制御板ユニットと、
     前記光制御板ユニットの前記第1の光制御板側に設けられており、前記第1の光制御板の前記第1の面に光を供給する複数の点状光源と、
    を備える、面光源装置。
    The light control plate unit according to claim 1 or 2,
    A plurality of point light sources which are provided on the first light control plate side of the light control plate unit and supply light to the first surface of the first light control plate;
    A surface light source device.
  4.  請求項1又は2記載の光制御板ユニットと、
     前記光制御板ユニットに光を供給する複数の点状光源と、
     前記光制御板ユニットの第2の光制御板上に設けられており、前記光制御板ユニットから出射された光によって照射されて画像を表示する透過型画像表示部と、
    を備える、透過型画像表示装置。
     
    The light control plate unit according to claim 1 or 2,
    A plurality of point light sources for supplying light to the light control plate unit;
    A transmissive image display unit that is provided on the second light control plate of the light control plate unit and that is irradiated with light emitted from the light control plate unit to display an image;
    A transmissive image display device.
PCT/JP2010/073448 2009-12-28 2010-12-24 Optical control board unit, planar light-source device, and transmissive image display device WO2011081106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-298100 2009-12-28
JP2009298100A JP2011138691A (en) 2009-12-28 2009-12-28 Light control board unit, planar light source device, and transmission image display device

Publications (1)

Publication Number Publication Date
WO2011081106A1 true WO2011081106A1 (en) 2011-07-07

Family

ID=44226512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073448 WO2011081106A1 (en) 2009-12-28 2010-12-24 Optical control board unit, planar light-source device, and transmissive image display device

Country Status (3)

Country Link
JP (1) JP2011138691A (en)
TW (1) TW201137405A (en)
WO (1) WO2011081106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358387A (en) * 2018-12-02 2019-02-19 深圳市天诺通光电科技有限公司 U-shaped structure high PS diffuser plate and its manufacture craft and application thoroughly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915730A (en) * 1995-06-29 1997-01-17 Mitsubishi Rayon Co Ltd Rear surface projection type screen
WO2007094426A1 (en) * 2006-02-15 2007-08-23 Dai Nippon Printing Co., Ltd. Surface light source device and light source unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915730A (en) * 1995-06-29 1997-01-17 Mitsubishi Rayon Co Ltd Rear surface projection type screen
WO2007094426A1 (en) * 2006-02-15 2007-08-23 Dai Nippon Printing Co., Ltd. Surface light source device and light source unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358387A (en) * 2018-12-02 2019-02-19 深圳市天诺通光电科技有限公司 U-shaped structure high PS diffuser plate and its manufacture craft and application thoroughly

Also Published As

Publication number Publication date
TW201137405A (en) 2011-11-01
JP2011138691A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
WO2011132639A1 (en) Light control plate unit, area light source device, and transmissive image display device
WO2011081106A1 (en) Optical control board unit, planar light-source device, and transmissive image display device
WO2011096403A1 (en) Light control plate, light control plate unit, surface light source device, and transmission image display device
JP2011146167A (en) Light control panel unit, surface light source device, and transmission type image display
WO2011018963A1 (en) Complex light control plate, area light source device, and transmission-type image display device
JP2012063541A (en) Light control plate unit, surface light source device, and transparent type image display device
WO2012036161A1 (en) Light control plate unit, planar light source device, and transmissive image display device
JP2012164527A (en) Planar light source device and transmission-type image display device
JP2012199104A (en) Composite light control board
JP2012133936A (en) Planar light source unit, and transmissive image display device
JP2011138708A (en) Light control board unit, board light source device, and transmission image display device
JP2011138709A (en) Light control board unit, planar light source device, and transmission type image display device
JP2011146168A (en) Light control panel unit, surface light source device, and transmission type image display
WO2012033098A1 (en) Light control plate unit, area light source device, and transmission-type image display device
JP2012063540A (en) Light control plate unit, surface light source device, and transparent type image display device
JP2011150019A (en) Light control panel unit, surface light source device, and transmission type image display device
WO2012026426A1 (en) Light control plate unit, planar light source device, and transmissive image display device
JP2012004039A (en) Light control board unit, surface light source device, and transmission type image display device
JP2011197297A (en) Light control plate, light control plate unit, surface light source device, and transmission type image display device
JP2011197295A (en) Light control plate, light control plate unit, surface light source device, and transmission type image display apparatus
JP2012156062A (en) Surface light source device and transmission image display device
JP2012113869A (en) Surface light source device and transmission type image display device
JP2012124065A (en) Surface light source device and transmission type image display device
JP2011059668A (en) Complex light control plate, area light source device, and transmission-type image display device
WO2011090123A1 (en) Light control plate, planar light source device, and transmissive image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840962

Country of ref document: EP

Kind code of ref document: A1