WO2012036146A1 - Crystalline solar cell and manufacturing method therefor - Google Patents

Crystalline solar cell and manufacturing method therefor Download PDF

Info

Publication number
WO2012036146A1
WO2012036146A1 PCT/JP2011/070819 JP2011070819W WO2012036146A1 WO 2012036146 A1 WO2012036146 A1 WO 2012036146A1 JP 2011070819 W JP2011070819 W JP 2011070819W WO 2012036146 A1 WO2012036146 A1 WO 2012036146A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
crystalline
solar cell
crystalline substrate
layer
Prior art date
Application number
PCT/JP2011/070819
Other languages
French (fr)
Japanese (ja)
Inventor
田中 美和
菊地 誠
片桐 弘明
小松 孝
幸男 菊地
大園 修司
靖 西方
牧子 高木
圭祐 金澤
洋介 坂尾
伸 浅利
一也 斎藤
太田 淳
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Publication of WO2012036146A1 publication Critical patent/WO2012036146A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03687Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline AIVBIV alloys, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03765Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System including AIVBIV compounds or alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a crystalline solar cell and a method for manufacturing the same.
  • This application claims priority on the basis of Japanese Patent Application No. 2010-204734 for which it applied to Japan on September 13, 2010, and uses the content here.
  • Solar cells that generate power using solar energy are power generation systems that are expected as alternative technologies for fossil fuels.
  • solar cells tend to rapidly increase production from the viewpoint of preserving the global environment. For this reason, solar cells having various structures and configurations have been actively developed.
  • crystalline silicon (Si) solar cells are most commonly produced due to performance such as photoelectric conversion efficiency and superior manufacturing costs.
  • a back contact structure having no electrode on the light receiving surface for example, a pin structure using a heterojunction of single crystal silicon and amorphous silicon, and the like are known. .
  • the conversion efficiency of the crystalline silicon solar cell is improved.
  • a so-called HIT (Heterojunction with Intrinsic Thin-Layer) type solar cell that can improve photoelectric conversion efficiency by improving semiconductor junction characteristics.
  • a HIT type solar cell includes a crystalline semiconductor substrate of one conductivity type (for example, n-type) and an amorphous semiconductor of other conductivity type (for example, p-type).
  • a semiconductor junction is formed by the layers.
  • an amorphous semiconductor layer that is substantially intrinsic is interposed between a crystalline semiconductor substrate of one conductivity type and an amorphous semiconductor layer of another conductivity type.
  • the present invention has been devised in view of the above circumstances, and an object thereof is to provide a solar cell and a method for manufacturing the solar cell that further improve photoelectric conversion characteristics.
  • a crystalline solar cell includes a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function; and light reception of the crystalline substrate A first semiconductor layer disposed on a surface side and containing amorphous or microcrystalline silicon; and disposed on a back surface side opposite to the light-receiving surface of the crystalline substrate and having a non-conductive type opposite to the first semiconductor layer A first semiconductor layer disposed between one of the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer; And a silicon oxide layer.
  • the thickness of the first silicon oxide layer may be 10 to 30 mm.
  • a side surface of the crystalline substrate may be covered with a third silicon oxide layer.
  • a white coating film or a reflective layer that reflects light transmitted from the back surface side of the crystalline substrate toward the crystalline substrate side is formed of the second semiconductor layer. It may be provided on the back side.
  • a back electrode may be arranged so as to cover the back side of the second semiconductor layer.
  • a method for manufacturing a crystalline solar cell includes a crystalline solar cell having a photoelectric conversion function and including a planar crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon.
  • a method of manufacturing a battery comprising: forming a first silicon oxide layer on a light-receiving surface side of the crystalline substrate or on a back surface side opposite to the light-receiving surface; and first including amorphous or microcrystalline silicon Forming a semiconductor layer on the light receiving surface side, and forming a second semiconductor layer containing amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer on the back surface side.
  • the first silicon oxide layer may be formed with a thickness of 10 to 30 mm.
  • a crystalline solar cell includes a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function; and light reception of the crystalline substrate
  • a first semiconductor layer disposed on a surface side and containing amorphous or microcrystalline silicon; and disposed on a back surface side opposite to the light-receiving surface of the crystalline substrate and having a non-conductive type opposite to the first semiconductor layer
  • a first semiconductor layer disposed between one of the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer;
  • the second is provided between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer.
  • the silicon carbide layer may be arranged.
  • a side surface of the crystalline substrate may be covered with a third silicon carbide layer.
  • a white coating film or a reflective layer that reflects light transmitted from the back surface side of the crystalline substrate toward the crystalline substrate side is formed of the second semiconductor layer. It may be provided on the back side.
  • a back electrode may be arranged so as to cover the back side of the second semiconductor layer.
  • a method for manufacturing a crystalline solar cell includes a crystalline solar cell having a photoelectric conversion function and including a planar crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon.
  • a method of manufacturing a battery comprising: forming a silicon carbide layer on a light receiving surface side of the crystalline substrate or a back surface opposite to the light receiving surface; and an amorphous material having a conductivity type opposite to or the same as the crystalline substrate. Or forming a first semiconductor layer made of microcrystalline silicon on the light receiving surface side, and forming a second semiconductor layer made of amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer on the back surface side. And comprising;
  • a crystalline solar cell includes a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function; and light reception by the crystalline substrate.
  • a first semiconductor layer disposed on a surface side and containing amorphous or microcrystalline silicon; and disposed on a back surface side opposite to the light-receiving surface of the crystalline substrate and having a non-conductive type opposite to the first semiconductor layer
  • a second semiconductor layer containing crystalline or microcrystalline silicon and disposed between one of the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer.
  • a first aluminum oxide layer formed thereon.
  • a side surface of the crystalline substrate may be covered with a third aluminum oxide layer.
  • a white coating film or a reflective layer that reflects light transmitted from the back surface side of the crystalline substrate toward the crystalline substrate side is formed of the second semiconductor layer. It may be provided on the back side.
  • a back electrode may be arranged so as to cover the back side of the second semiconductor layer.
  • a method for manufacturing a crystalline solar cell includes a crystalline solar cell having a photoelectric conversion function and including a planar crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon.
  • a method of manufacturing a battery comprising: forming an aluminum oxide layer on a light receiving surface side of the crystalline substrate or on a back surface opposite to the light receiving surface; Or forming a first semiconductor layer made of microcrystalline silicon on the light receiving surface side, and forming a second semiconductor layer made of amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer on the back surface side. And have;
  • the crystalline solar cell according to the above [1] to [7] it is interposed between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. Since the first silicon oxide layer is disposed, a tunnel current flows. This reduces the interface state density at one of the interface between the crystalline substrate and the first semiconductor layer and the interface between the crystalline substrate and the second semiconductor layer. For this reason, the band in the said interface curves, and a passivation effect arises. As described above, it is possible to provide a crystalline solar cell with improved photoelectric conversion characteristics.
  • the first semiconductor layer and the second semiconductor layer are formed after the first silicon oxide layer is formed on the light receiving surface side or the back surface side of the crystalline substrate.
  • the semiconductor layer By forming the semiconductor layer, the above-described passivation effect occurs. Thereby, it becomes possible to stably produce a crystalline solar cell with improved photoelectric conversion characteristics.
  • a crystalline solar cell with further improved photoelectric conversion characteristics can be obtained by performing plasma treatment on the surface of the first silicon oxide layer.
  • the first semiconductor layer and the second semiconductor layer are formed after the first silicon carbide layer is formed on the light receiving surface side or the back surface side of the crystalline substrate.
  • the semiconductor layer By forming the semiconductor layer, the above-described passivation effect can be obtained. Thereby, it becomes possible to stably produce a crystalline solar cell with improved photoelectric conversion characteristics.
  • a crystalline solar cell with further improved photoelectric conversion characteristics can be obtained by subjecting the surface of the first silicon carbide layer to plasma treatment.
  • oxidation is performed between the crystalline substrate and the first semiconductor layer, or between the crystalline substrate and the second semiconductor layer. Since the aluminum layer is disposed, a tunnel current flows. Thereby, the interface state density in one of the interface between the crystalline substrate and the first semiconductor layer and the crystal substrate and the second semiconductor layer is reduced. For this reason, the band in the said interface curves, and a passivation effect arises. As described above, it is possible to provide a crystalline solar cell with improved photoelectric conversion characteristics.
  • the first semiconductor layer and the second semiconductor layer are formed after the aluminum oxide layer is formed on the light receiving surface side or the back surface side of the crystalline substrate.
  • the passivation effect mentioned above arises.
  • a crystalline solar cell with improved photoelectric conversion characteristics can be obtained by subjecting the surface of the aluminum oxide layer to plasma treatment.
  • FIG. 1 is a cross-sectional perspective view schematically showing one structural example of the crystalline solar cell of the present invention.
  • a crystalline solar cell 1A (1) includes a crystalline substrate (base) 10, a first silicon oxide layer (20a) 20, a first semiconductor layer 11, a second semiconductor layer 12, and a transparent conductive material.
  • the film 13, the first electrode 14, the transparent conductive film 15, and the second electrode 16 are roughly configured.
  • the light receiving side of the crystalline solar cell 1A (1) is defined as a light receiving surface 1 ⁇ , and the surface facing the light receiving surface 1 ⁇ (the side opposite to the light receiving surface 1 ⁇ ) is defined as a back surface 1 ⁇ .
  • the crystalline substrate 10 is a semiconductor substrate having a photoelectric conversion function.
  • a flat substrate having a thickness of 50 ⁇ m to 200 ⁇ m and containing p-type or n-type single crystal or polycrystalline silicon (Si) can be used.
  • Si polycrystalline silicon
  • a wafer cut from a single crystal silicon ingot formed by a pulling method, a wafer cut from a polycrystalline silicon ingot formed by a casting technique, or the like can be used.
  • the first silicon oxide layer 20a is made of silicon oxide (SiOx or SiOx: H, where 0 ⁇ x ⁇ 2), and includes a surface 10a on the light-receiving surface 1 ⁇ side and a surface 10b on the back surface 1 ⁇ side of the crystalline substrate 10. It is formed so as to cover at least one.
  • the first silicon oxide layer 20a is arranged between one of the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12. Yes.
  • the silicon oxide layer 20 is disposed between the crystalline substrate 10 and the second semiconductor layer 12.
  • the present invention is not limited to this, and the crystalline substrate 10 and the second semiconductor layer 12 are arranged.
  • a first silicon oxide layer 20 a may be disposed between the semiconductor layer 11.
  • the thickness of the first silicon oxide layer 20a is not particularly limited as long as the tunnel current flows. Specifically, such a thickness is preferably in the range of 10 to 30 mm, for example. When the thickness of the first silicon oxide layer 20a is less than 10 mm, the curvature of the band becomes small and the passivation effect becomes small, which is not good. On the other hand, when the thickness of the first silicon oxide layer 20a exceeds 30 mm, the tunnel current is reduced, and the photoelectric conversion efficiency is thus reduced. Therefore, a preferable range of the thickness of the first silicon oxide layer 20a is 10 to 30 mm.
  • the first semiconductor layer 11 containing amorphous or microcrystalline silicon opposite to or the same conductivity type as the crystalline substrate 10 is disposed on the light receiving surface 1 ⁇ side of the crystalline substrate 10.
  • the first semiconductor layer 11 includes p-type amorphous silicon (pa-Si), p-type microcrystalline silicon (p- ⁇ c-Si). N-type amorphous silicon (na-Si) and n-type microcrystalline silicon (n- ⁇ c-Si) are included.
  • the second semiconductor layer 12 containing amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer 11 is disposed on the back surface 1 ⁇ side of the crystalline substrate 10.
  • the second semiconductor layer 12 contains n-type amorphous silicon (na-Si) or n-type microcrystalline silicon (n- ⁇ c-Si). .
  • the transparent conductive film 13 is made of a conductive material having optical transparency (transmits sunlight), and is disposed on the light receiving surface 1 ⁇ side of the first semiconductor layer 11.
  • Examples of the constituent material of the transparent conductive film 13 include a transparent conductive film mainly composed of zinc oxide in addition to an electrically conductive oxide such as zinc oxide, tin oxide, and indium oxide in which oxygen defects are controlled.
  • ATO Sb-doped SnO 2
  • FTO which is a transparent conductive film mainly composed of tin oxide, such as AZO (Al-doped ZnO), BZO (B-doped ZnO), FZO (F-doped ZnO), and GZO (Ga-doped ZnO).
  • ITO Tin-doped In 2 O 3
  • IFO F-doped In 2 O 3
  • TAOS transparent amorphous oxide semiconductor
  • IGZO InGaZnO
  • SnO 2 or ZnO-based material formed by thermal CVD or MOCVD.
  • the transparent conductive film 13 made of these materials has irregularities called textures formed on the surface thereof.
  • the comb-shaped first electrode 14 is formed on the light receiving surface 1 ⁇ side of the transparent conductive film 13.
  • a conductive material may be appropriately selected according to the structure and process design of the crystalline solar cell 1A (1).
  • aluminum can be used for the purpose of suppressing power loss, or a low resistance material such as silver can be used.
  • the transparent conductive film 15 is disposed on the back surface 1 ⁇ side of the second semiconductor layer 12.
  • a constituent material of the transparent conductive film 15 for example, zinc oxide, tin oxide, indium tin oxide (ITO) or the like is used.
  • the comb-shaped second electrode 16 is formed on the back surface 1 ⁇ side of the transparent conductive film 15.
  • a conductive material may be appropriately selected according to the structure and process design of the crystalline solar cell 1A (1).
  • aluminum can be used for the purpose of suppressing power loss, or a low resistance material such as silver can be used.
  • a white coating film or a reflective layer is formed so as to cover the back surface 1 ⁇ side of the second semiconductor layer 12 and the second electrode 16.
  • This white coating film or reflective layer is a layer (film) for reflecting light transmitted from the back surface 10b side of the crystalline substrate 10 to the crystalline substrate 10 side.
  • the white coating film 17 is formed on the first electrode 16 will be described as an example.
  • the white coating film 17 is a white coating film having a high reflectance in the absorption wavelength region of the crystalline substrate 10.
  • a white component of the white coating film 17 for example, a compound composed of at least one selected from the group consisting of barium sulfate, magnesium oxide, and titanium oxide can be used.
  • the white coating film 17 is formed by applying a white paint composed of fine particles of the white component, a binder, and a solvent to the back surface side of the second semiconductor layer 12.
  • the white coating film 17 having such a configuration functions as a reflecting surface that diffusely reflects a part of light (sunlight) transmitted through the crystalline substrate 10 toward the back surface 10b side of the crystalline substrate 10.
  • the surface (light receiving surface) on the surface 1 ⁇ side of the crystalline solar cell 1A (1) receives sunlight
  • the sunlight incident from the surface is absorbed by the crystalline substrate 10.
  • the thickness of the crystalline substrate 10 is thin in order to reduce the amount of raw material used on the crystalline solar cell 1, the amount of light that cannot be absorbed by the crystalline substrate 10 increases. For this reason, a part of sunlight easily passes through the crystalline substrate 10.
  • part of sunlight passes through the crystalline substrate 10 in this way, part of sunlight passes through the second semiconductor layer 12 and the transparent electrode 15 and reaches the white coating film 17.
  • attained the white coating film 17 is reflected toward the surface 1 alpha side by the light reflectivity which the white coating film 17 has.
  • the light reflected by the white coating film 17 passes through the transparent electrode 15 and the second semiconductor layer 12 again and is absorbed by the crystalline substrate 10. That is, part of the light transmitted through the crystalline substrate 10 is converted into electric energy by the light reflecting function of the white coating film 17.
  • the use efficiency of light in the crystalline solar cell 1 can be improved by providing the white coating film 17 having a light reflection function.
  • the constituent material, film thickness, position, etc. of the white coating film 17 can be changed according to the optical characteristics of the crystalline substrate 10, the first electrode 14, and the second electrode 16, which are other constituent requirements.
  • By appropriately selecting the configuration of such a white coating film 17 reuse of transmitted light can be more appropriately realized. Therefore, it is possible to improve the light utilization efficiency without forcing the crystalline substrate 10, the first electrode 14, and the second electrode 16 to change the constituent materials and design rules.
  • the above-described white coating film 17 is preferably configured to have a reflectance of 90% or more particularly in a wavelength region of 500 nm to 1200 nm. If the white coating film 17 has such a reflectance, the light that can be absorbed again by the crystalline substrate 10 can be efficiently reflected from the light transmitted through the crystalline substrate 10.
  • this reflective layer can be composed of a film of aluminum, silver, copper or the like, for example.
  • the generated carriers are separated into the first semiconductor layer 11 and the second semiconductor layer 12 according to the potential gradient of the pn junction or the heterojunction portion that is the junction portion between the crystalline substrate 10 and the second semiconductor layer 12.
  • the carriers separated in this way are collected from the first electrode 14 and the second electrode 16 and thereby converted into electric energy. That is, the light absorbed by the crystalline substrate 10 is converted into electric energy by the photoelectric conversion function of the crystalline substrate 10.
  • the crystalline solar cell 1A (1) of the present invention has further improved photoelectric conversion characteristics.
  • the first silicon oxide layer 20a is disposed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12.
  • the interface state density is decreased and the band at the interface is curved.
  • a passivation effect is generated, and the crystalline solar cell 1A (1) of the present invention has improved photoelectric conversion characteristics.
  • first silicon oxide layer 20a is disposed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12. This reduces the number of defects at the silicon / silicon oxide interface. For this reason, it is possible to bend the band without additional doping.
  • the thickness of the first semiconductor layer 11 and the thickness of the second semiconductor layer 12 described above are such that the p-type semiconductor layer (for example, the first semiconductor layer 11) is relatively thick, and the n-type semiconductor.
  • a structure in which the layer forming the layer (for example, the second semiconductor layer 12) is relatively thin is preferable. If the thicknesses of the first semiconductor layer 11 and the second semiconductor layer 12 are changed in this way, the carrier generated in the p-type semiconductor layer (for example, the first semiconductor layer 11) is regenerated. Coupling is reduced and conversion efficiency is improved.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the solar battery 1B (1) of the present embodiment.
  • portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
  • both the crystalline substrate 10 and the first semiconductor layer 11 and the crystalline substrate 10 and the second semiconductor layer 12 are One silicon oxide layer 20a or the second silicon oxide layer 20b is provided.
  • a first silicon oxide layer 20 a is provided between the crystalline substrate 10 and the first semiconductor layer 11, and a second silicon oxide layer is provided between the crystalline substrate 10 and the second semiconductor layer 12.
  • An example in which the layer 20b is provided is shown.
  • the first silicon oxide layer 20a or the second silicon oxide layer 20a is formed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12.
  • the silicon oxide layer 20b By disposing the silicon oxide layer 20b, more high energy carriers are collected. For this reason, it becomes possible to further improve the photoelectric conversion efficiency of the solar cell 1B (1).
  • FIG. 3 is a cross-sectional view schematically showing a configuration example of the solar battery 1C (1) of the present embodiment.
  • portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
  • the transparent conductive film 15 is disposed on the second semiconductor layer 12, and the first electrode 16 formed in a comb shape is disposed on the transparent conductive film 15.
  • the back surface electrode 16 is arranged so as to cover the entire surface of the second semiconductor layer 12 on the back surface 1 ⁇ side.
  • FIG. 4 is a cross-sectional view schematically showing a configuration example of the solar battery 1D (1) of the present embodiment.
  • portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
  • the crystalline solar cell 1A (1) of the first embodiment is formed by the following manufacturing process, for example.
  • ⁇ First embodiment> fine unevenness on the surface called texture (not shown) is formed on the crystalline substrate 10 (substrate made of silicon) by wet etching or dry etching. Next, a cleaning process is performed on the surface of the crystalline substrate 10. Next, a silicon oxide film 20 is formed on the surface of the crystalline substrate 10 on which the texture is formed.
  • the method for forming the silicon oxide film 20 on the surface of the crystalline substrate 10 is not particularly limited. Examples of such methods include thermal oxidation with water vapor or oxygen, and deposition methods such as plasma CVD and ALD (atomic layer deposition). Among them, as a method for forming a high-quality ultrathin oxide film with good controllability, for example, a method described in Japanese Patent Application Laid-Open No. 2002-064093 can be used.
  • such a method has a basic configuration, for example, a method in which the semiconductor substrate (crystalline substrate) 10 is immersed in an oxidizing chemical solution and is oxidized. Thereby, an extremely thin oxide film is formed on the surface of the crystalline substrate 10.
  • the thickness of the oxide film can be easily controlled by immersing the crystalline substrate 10 in the oxidizing chemical solution and performing the chemical oxidation treatment. Note that it is desirable to perform a process of removing a natural oxide film or impurities on the surface of the crystalline substrate 10 before the crystalline substrate 10 is immersed in the oxidizing chemical solution. This makes it possible to stably form a high quality ultrathin oxide film.
  • this oxide film may be modified by heat treatment in an inert gas atmosphere.
  • the heat treatment By performing the heat treatment on the oxide film in this manner, the leakage current density is reduced.
  • a chemically oxidized oxide film before heat treatment is in a suboxide state, that is, a state in which oxygen is deficient. For this reason, the oxide film in this state tends to have a large leakage current.
  • the suboxide can be reduced, and the interface between the substrate and the oxide film can be made smooth by the heat treatment. For this reason, the leakage current density of the oxide film can be reduced.
  • the manufacturing process of the crystalline solar cell 1 there is no practical problem even if this heat treatment is not performed.
  • the oxide film By forming the oxide film in this way, a high-quality oxide film having a thickness of 0.3 to 3 nm with little leakage current can be easily formed on the surface of the crystalline substrate 10.
  • the thickness of the oxide film can be easily controlled by adjusting the type and temperature of the oxidizing chemical solution in which the crystalline substrate 10 is immersed. This is because the film thickness of the ultrathin oxide film to be formed hardly changes when the time during which the crystalline substrate 10 is immersed in the chemical solution is longer than a certain time. In addition, since this fixed time changes with chemical
  • the type of the chemical solution is nitric acid, ozone-dissolved water, hydrogen peroxide solution, mixed solution of hydrochloric acid and hydrogen peroxide solution, mixed solution of sulfuric acid and hydrogen peroxide solution, mixed solution of ammonia and hydrogen peroxide solution, sulfuric acid And at least one chemical solution selected from a mixed solution of nitric acid, perchloric acid, and boiling water. This is because by using these chemical solutions, ultrathin oxide films having various thicknesses in the range of 0.3 to 3 nm can be formed with high film thickness controllability.
  • the inert gas is preferably at least one gas selected from nitrogen, argon, neon, hydrogen, or a mixed gas thereof. This is because, when heat treatment is performed using these inert gases, new oxidation does not occur in the oxide film due to heating. For this reason, a change in the thickness of the oxide film during the heat treatment can be prevented.
  • the heating temperature of the inert gas in the heat treatment is desirably in the range of 500 to 1200 ° C.
  • the quality of the oxide film can be improved and the leakage current density can be reduced.
  • an oxide film (silicon oxide layer 20) is formed on the surface of the crystalline substrate 10 made of silicon.
  • the oxide film is formed only on one surface (one surface, for example, the surface 10b) of the crystalline substrate 10, for example, the non-film-formed surface (the other surface, for example, the surface 10a) of the crystalline substrate 10 is masked. And the oxide film on the non-film-formed surface (the other surface) of the crystalline substrate 10 on which the oxide film is formed on both sides is removed by wet etching (single-side coating with a roller wetted with an etchant). Is used.
  • the first semiconductor layer 11 and the second semiconductor layer 12 are formed.
  • the surface of the silicon oxide layer 20 (first silicon oxide layer 20a) is exposed to plasma made of a desired process gas (hereinafter referred to as “plasma”). Also referred to as “processing”.
  • plasma a desired process gas
  • a gas for example, B 2 H 6
  • boron B
  • a gas containing phosphorus (P) for example, PH 3
  • P phosphorus
  • the plasma-treated surface of the oxide film (first silicon oxide layer 20a) by subjecting the surface of the oxide film (first silicon oxide layer 20a) to a desired plasma, the plasma-treated surface of the oxide film (first silicon oxide layer 20a) The electrical barrier between the first semiconductor layer 11 or the second semiconductor layer 12 formed on the surface is lowered. For this reason, the rectification between the surface of the oxide film (first silicon oxide layer 20a) and the first semiconductor layer 11 or the second semiconductor layer 12 becomes high, and the flow of charge becomes smoother. As a result, power generation efficiency is improved. In other words, the process of exposing the surface of the oxide film (first silicon oxide layer 20a) to desired plasma contributes to the improvement of power generation efficiency.
  • the first semiconductor layer 11 is formed on the surface 10a of the crystalline substrate 10 by performing a film forming process using, for example, a CVD method.
  • the second semiconductor layer 12 is formed by performing a film forming process using, for example, a CVD method on the back surface 10b of the crystalline substrate 10 on which the silicon oxide layer 20 is formed.
  • a film formation process using a sputtering method is performed on the surface of the first semiconductor layer 11 and the surface of the second semiconductor layer 12.
  • the transparent conductive film 13 is formed on the front surface 1 ⁇ side of the first semiconductor layer 11, and the transparent conductive film 15 is formed on the back surface 1 ⁇ side of the second semiconductor layer 12.
  • a film forming process using a sputtering method, a printing method, or a coating method is performed on the transparent conductive film 13 and the transparent conductive film 15.
  • the first electrode 14 and the second electrode 16 are formed.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the solar battery 1B (1) of the present embodiment.
  • portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
  • the oxide film (first silicon oxide layer 20a) is formed only on one surface (one surface, for example, the surface 10b) of the crystalline substrate 10, but the crystalline solar cell 1B ( In the manufacturing method 1), silicon oxide layers 20 (first silicon oxide layer 20a and second silicon oxide layer 20b) are formed on both surfaces (surfaces 10a and 10b) of the crystalline substrate 10, respectively.
  • the first silicon oxide layer 20a is provided on the surface 10b
  • the second silicon oxide layer 20b is provided on the surface 10a.
  • the silicon oxide layer 20 (first silicon oxide layer) is formed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12, respectively.
  • the layer 20a and the second silicon oxide layer 20b By forming the layer 20a and the second silicon oxide layer 20b), more high energy carriers can be collected. For this reason, it is possible to further increase the photoelectric conversion efficiency.
  • FIG. 3 is a cross-sectional view schematically showing a configuration example of the solar battery 1C (1) of the present embodiment.
  • portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
  • the transparent conductive film 15 is formed on the second semiconductor layer 12, and the comb-shaped first electrode 16 is formed on the transparent conductive film 15.
  • the back electrode 16 is formed so as to cover the entire surface of the second semiconductor layer 12 on the back surface 1 ⁇ side.
  • FIG. 4 is a cross-sectional view schematically showing a configuration example of the crystalline solar cell 1D (1) of the present embodiment.
  • portions different from the above-described second embodiment will be mainly described, and description of portions similar to the second embodiment will be omitted.
  • the silicon oxide layer 20 (first silicon oxide layer 20a, second silicon oxide layer 20b) is formed so as to cover both surfaces (surfaces 10a, 10b) of the crystalline substrate 10.
  • the silicon oxide layer 20 (third silicon oxide layer 20c) is formed so as to cover the side surface 10c of the crystalline substrate 10.
  • the first silicon oxide layer 20a and the third silicon oxide layer 20c formed integrally with the second silicon oxide layer 20b are also disposed on the side surface 10c of the crystalline substrate 10, thereby forming a crystal.
  • the surface defects of the conductive substrate 10 are further reduced. For this reason, it is possible to further increase the photoelectric conversion efficiency.
  • Table 1 shows the results of examining the power generation efficiency of the crystalline solar cell 1 having various configurations including the silicon oxide layer 20 described above.
  • “upper surface portion” refers to the surface 10 a of the crystalline substrate 10, that is, when the silicon oxide layer 20 is provided between the crystalline substrate 10 and the first semiconductor layer 11. Indicates.
  • the “lower surface portion” refers to the case where the silicon oxide layer 20 is provided between the surface 10 b of the crystalline substrate 10, that is, between the crystalline substrate 10 and the second semiconductor layer 12.
  • the “side surface portion” refers to the case where the silicon oxide layer 20 is provided on the side surface 10 c of the crystalline substrate 10.
  • a circle indicates that the silicon oxide layer 20 is provided, and a cross indicates that the silicon oxide layer 20 is not provided. Further, in the “plasma treatment” column of Table 1, “ ⁇ ” means that a desired plasma treatment was performed, and “x” means that this plasma treatment was not performed.
  • the silicon oxide layer 20 (SiOx,
  • SiCy or SiCy: H) is used instead of silicon oxide at the position where the silicon oxide layer 20 is provided in FIGS.
  • SiCy or SiCy: H silicon carbide
  • AlOz or AlOz: H aluminum oxide layer composed of aluminum oxide
  • crystalline silicon solar cell crystalline solar cell 1 with improved photoelectric conversion characteristics can be provided.
  • silicon carbide layer or an aluminum oxide layer is provided instead of the silicon oxide layer 20
  • the above-described plasma treatment is effective, and power generation efficiency can be improved.
  • the present invention is widely applicable to crystal solar cells.

Abstract

This crystalline solar cell has: a planar crystalline substrate that contains p-type or n-type monocrystalline or polycrystalline silicon and can perform photoelectric conversion; a first semiconductor layer that is disposed on the light-receiving-surface side of the crystalline substrate and contains amorphous or microcrystalline silicon; a second semiconductor layer that is disposed on the back side of the crystalline substrate, opposite the light-receiving-surface side, and contains amorphous or microcrystalline silicon of the conductivity type opposite that of the first semiconductor layer; and a first silicon oxide layer disposed either between the crystalline substrate and the first semiconductor layer or between the crystalline substrate and the second semiconductor layer.

Description

結晶太陽電池及びその製造方法Crystal solar cell and manufacturing method thereof
 本発明は、結晶太陽電池及びその製造方法に関する。
 本願は、2010年9月13日に、日本に出願された特願2010-204734号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a crystalline solar cell and a method for manufacturing the same.
This application claims priority on the basis of Japanese Patent Application No. 2010-204734 for which it applied to Japan on September 13, 2010, and uses the content here.
 太陽光エネルギーを利用して発電する太陽電池は、化石燃料の代替技術として期待される発電システムである。また、太陽電池は、地球環境を保全できる観点からもその生産量を急速に増加させる傾向にある。このため、種々の構造・構成の太陽電池が積極的に開発されている。その中でも、結晶シリコン(Si)系の太陽電池は、その光電変換効率などの性能や製造コストの優位性などにより、最も一般的に生産されている。 Solar cells that generate power using solar energy are power generation systems that are expected as alternative technologies for fossil fuels. In addition, solar cells tend to rapidly increase production from the viewpoint of preserving the global environment. For this reason, solar cells having various structures and configurations have been actively developed. Among them, crystalline silicon (Si) solar cells are most commonly produced due to performance such as photoelectric conversion efficiency and superior manufacturing costs.
 結晶シリコン系太陽電池における光電変換素子の構造としては、例えば、受光面に電極を有しないバックコンタクト構造、単結晶シリコンと非晶質シリコンとのヘテロ接合を利用したpin構造等が知られている。このような各種の構造を採用することによって、結晶シリコン系太陽電池の変換効率の向上が図られている。 As a structure of the photoelectric conversion element in the crystalline silicon solar cell, for example, a back contact structure having no electrode on the light receiving surface, a pin structure using a heterojunction of single crystal silicon and amorphous silicon, and the like are known. . By adopting such various structures, the conversion efficiency of the crystalline silicon solar cell is improved.
 そして近年、半導体接合特性を改善することによって光電変換効率の向上を可能とする、いわゆるHIT(Heterojunction with Intrinsic Thin-Layer)型の太陽電池が知られている。HIT型の太陽電池は、たとえば特許文献1に記載されているように、一導電型(例えば、n型)の結晶系結晶性基板と他導電型(例えば、p型)の非晶質系半導体層とによって半導体接合が形成されている。この半導体接合においては、一導電型の結晶系結晶性基板と他導電型の非晶質系半導体層との間に、実質的に真性である非晶質系半導体層が介挿されている。
 このように太陽電池(結晶シリコン系太陽電池)の光電変換効率の向上は非常に重要なテーマであり、日々その研究が進められている。
In recent years, a so-called HIT (Heterojunction with Intrinsic Thin-Layer) type solar cell that can improve photoelectric conversion efficiency by improving semiconductor junction characteristics is known. As described in Patent Document 1, for example, a HIT type solar cell includes a crystalline semiconductor substrate of one conductivity type (for example, n-type) and an amorphous semiconductor of other conductivity type (for example, p-type). A semiconductor junction is formed by the layers. In this semiconductor junction, an amorphous semiconductor layer that is substantially intrinsic is interposed between a crystalline semiconductor substrate of one conductivity type and an amorphous semiconductor layer of another conductivity type.
Thus, improvement of the photoelectric conversion efficiency of a solar cell (crystalline silicon solar cell) is a very important theme, and its research is being carried out every day.
日本国特開2010-34162号公報Japanese Unexamined Patent Publication No. 2010-34162
 本発明は上記事情に鑑みて考案されたものであり、光電変換特性をさらに向上させる太陽電池及びその製造方法を提供することを目的とする。 The present invention has been devised in view of the above circumstances, and an object thereof is to provide a solar cell and a method for manufacturing the solar cell that further improve photoelectric conversion characteristics.
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。すなわち、
〔1〕本発明の一態様に係る結晶太陽電池は、p型若しくはn型の単結晶又は多結晶シリコンを含み、光電変換機能を有する、平板状の結晶性基板と;前記結晶性基板の受光面側に配され、非晶質又は微結晶シリコンを含む第一半導体層と;前記結晶性基板の前記受光面と反対の裏面側に配され、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層と;前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に配された第一の酸化シリコン層と;を有する。
The present invention employs the following means in order to solve the above problems and achieve the object. That is,
[1] A crystalline solar cell according to one embodiment of the present invention includes a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function; and light reception of the crystalline substrate A first semiconductor layer disposed on a surface side and containing amorphous or microcrystalline silicon; and disposed on a back surface side opposite to the light-receiving surface of the crystalline substrate and having a non-conductive type opposite to the first semiconductor layer A first semiconductor layer disposed between one of the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer; And a silicon oxide layer.
〔2〕上記〔1〕に記載の結晶太陽電池は、前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち、他方に第二の酸化シリコン層が配されていてもよい。 [2] The crystalline solar cell according to [1], wherein the second is disposed between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. The silicon oxide layer may be disposed.
〔3〕上記〔1〕に記載の結晶太陽電池は、前記第一酸化シリコン層の膜厚が10Å~30Åであってもよい。 [3] In the crystalline solar cell according to [1], the thickness of the first silicon oxide layer may be 10 to 30 mm.
〔4〕上記〔1〕に記載の結晶太陽電池は、前記結晶性基板の側面が第三の酸化シリコン層で覆われていてもよい。 [4] In the crystalline solar cell according to [1], a side surface of the crystalline substrate may be covered with a third silicon oxide layer.
〔5〕上記〔1〕に記載の結晶太陽電池は、前記第一半導体層の前記受光面側及び前記第二半導体層の前記裏面側の少なくとも一方に配された透明導電膜と;前記透明導電膜上に配されたくし型電極と;を更に備えていてもよい。 [5] The crystalline solar cell according to [1], wherein the transparent conductive film is disposed on at least one of the light receiving surface side of the first semiconductor layer and the back surface side of the second semiconductor layer; And a comb-shaped electrode disposed on the film.
〔6〕上記〔1〕に記載の結晶太陽電池は、前記結晶性基板の前記裏面側から透過する光を前記結晶性基板側へ反射する白色塗膜又は反射層が、前記第二半導体層の前記裏面側に設けられていてもよい。 [6] In the crystalline solar cell according to [1], a white coating film or a reflective layer that reflects light transmitted from the back surface side of the crystalline substrate toward the crystalline substrate side is formed of the second semiconductor layer. It may be provided on the back side.
〔7〕上記〔1〕に記載の結晶太陽電池は、裏面電極が前記第二半導体層の前記裏面側を覆うように配されていてもよい。 [7] In the crystalline solar cell according to [1], a back electrode may be arranged so as to cover the back side of the second semiconductor layer.
〔8〕本発明の一態様に係る結晶太陽電池の製造方法は、光電変換機能を有し、p型若しくはn型の単結晶又は多結晶シリコンを含む平板状の結晶性基板を具備する結晶太陽電池の製造方法であって;前記結晶性基板の受光面側、あるいはこの受光面と反対の裏面側に第一の酸化シリコン層を形成する工程と;非晶質又は微結晶シリコンを含む第一半導体層を前記受光面側に形成し、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層を前記裏面側に形成する工程と;を備えていてもよい。 [8] A method for manufacturing a crystalline solar cell according to one embodiment of the present invention includes a crystalline solar cell having a photoelectric conversion function and including a planar crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon. A method of manufacturing a battery, comprising: forming a first silicon oxide layer on a light-receiving surface side of the crystalline substrate or on a back surface side opposite to the light-receiving surface; and first including amorphous or microcrystalline silicon Forming a semiconductor layer on the light receiving surface side, and forming a second semiconductor layer containing amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer on the back surface side. .
〔9〕上記〔8〕に記載の結晶太陽電池の製造方法は、前記第一の酸化シリコン層を10Å~30Åの膜厚で形成してもよい。 [9] In the method for manufacturing a crystalline solar cell according to [8], the first silicon oxide layer may be formed with a thickness of 10 to 30 mm.
〔10〕上記〔8〕に記載の結晶太陽電池の製造方法は、前記第一の酸化シリコン層を形成する工程と、前記第一半導体層および前記第二半導体層を形成する工程との間に、前記第一の酸化シリコン層の表面を所望のプロセスガスを含むプラズマに曝す工程を備えていてもよい。 [10] The method for producing a crystalline solar cell according to [8] above, between the step of forming the first silicon oxide layer and the step of forming the first semiconductor layer and the second semiconductor layer. A step of exposing the surface of the first silicon oxide layer to plasma containing a desired process gas may be provided.
〔11〕本発明の一態様に係る結晶太陽電池は、p型若しくはn型の単結晶又は多結晶シリコンを含み、光電変換機能を有する、平板状の結晶性基板と;前記結晶性基板の受光面側に配され、非晶質又は微結晶シリコンを含む第一半導体層と;前記結晶性基板の前記受光面と反対の裏面側に配され、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層と;前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に配された第一の炭化シリコン層と;
を有する。
[11] A crystalline solar cell according to one embodiment of the present invention includes a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function; and light reception of the crystalline substrate A first semiconductor layer disposed on a surface side and containing amorphous or microcrystalline silicon; and disposed on a back surface side opposite to the light-receiving surface of the crystalline substrate and having a non-conductive type opposite to the first semiconductor layer A first semiconductor layer disposed between one of the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer; A silicon carbide layer of;
Have
〔12〕上記〔11〕に記載の結晶太陽電池は、前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち、他方に第二の炭化シリコン層が配されていてもよい。 [12] In the crystalline solar cell according to [11], the second is provided between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. The silicon carbide layer may be arranged.
〔13〕上記〔11〕に記載の結晶太陽電池は、前記結晶性基板の側面が第三の炭化シリコン層で覆われていてもよい。 [13] In the crystalline solar cell according to [11], a side surface of the crystalline substrate may be covered with a third silicon carbide layer.
〔14〕上記〔11〕に記載の結晶太陽電池は、前記第一半導体層の前記受光面側及び前記第二半導体層の前記裏面側の少なくとも一方に配された透明導電膜と;前記透明導電膜上に配されたくし型電極と;を更に備えていてもよい。 [14] The crystalline solar cell according to [11], wherein the transparent conductive film is disposed on at least one of the light receiving surface side of the first semiconductor layer and the back surface side of the second semiconductor layer; And a comb-shaped electrode disposed on the film.
〔15〕上記〔11〕に記載の結晶太陽電池は、前記結晶性基板の前記裏面側から透過する光を前記結晶性基板側へ反射する白色塗膜又は反射層が、前記第二半導体層の前記裏面側に設けられていてもよい。 [15] In the crystalline solar cell according to [11], a white coating film or a reflective layer that reflects light transmitted from the back surface side of the crystalline substrate toward the crystalline substrate side is formed of the second semiconductor layer. It may be provided on the back side.
〔16〕上記〔11〕に記載の結晶太陽電池は、裏面電極が前記第二半導体層の前記裏面側を覆うように配されていてもよい。 [16] In the crystalline solar cell according to [11], a back electrode may be arranged so as to cover the back side of the second semiconductor layer.
〔17〕本発明の一態様に係る結晶太陽電池の製造方法は、光電変換機能を有し、p型若しくはn型の単結晶又は多結晶シリコンを含む平板状の結晶性基板を具備する結晶太陽電池の製造方法であって;前記結晶性基板の受光面側、あるいはこの受光面と反対の裏面側に炭化シリコン層を形成する工程と;前記結晶性基板と逆又は同導電型の非晶質又は微結晶シリコンからなる第一半導体層を前記受光面側に形成し、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンからなる第二半導体層を前記裏面側に形成する工程と;を備える。 [17] A method for manufacturing a crystalline solar cell according to one embodiment of the present invention includes a crystalline solar cell having a photoelectric conversion function and including a planar crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon. A method of manufacturing a battery, comprising: forming a silicon carbide layer on a light receiving surface side of the crystalline substrate or a back surface opposite to the light receiving surface; and an amorphous material having a conductivity type opposite to or the same as the crystalline substrate. Or forming a first semiconductor layer made of microcrystalline silicon on the light receiving surface side, and forming a second semiconductor layer made of amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer on the back surface side. And comprising;
〔18〕上記〔17〕に記載の結晶太陽電池の製造方法は、前記炭化シリコン層を形成する工程と、前記第一半導体層および前記第二半導体層を形成する工程との間に、前記炭化シリコン層の表面を所望のプロセスガスからなるプラズマに曝す処理を行う工程を備えていてもよい。 [18] The method for manufacturing a crystalline solar cell according to [17], wherein the carbonization is performed between the step of forming the silicon carbide layer and the step of forming the first semiconductor layer and the second semiconductor layer. You may provide the process of performing the process which exposes the surface of a silicon layer to the plasma which consists of desired process gas.
〔19〕本発明の一態様に係る結晶太陽電池は、p型若しくはn型の単結晶又は多結晶シリコンを含み、光電変換機能を有する、平板状の結晶性基板と;前記結晶性基板の受光面側に配され、非晶質又は微結晶シリコンを含む第一半導体層と;前記結晶性基板の前記受光面と反対の裏面側に配され、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層と;を具備し、前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に配された第一の酸化アルミニウム層と;を有していてもよい。 [19] A crystalline solar cell according to one embodiment of the present invention includes a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function; and light reception by the crystalline substrate. A first semiconductor layer disposed on a surface side and containing amorphous or microcrystalline silicon; and disposed on a back surface side opposite to the light-receiving surface of the crystalline substrate and having a non-conductive type opposite to the first semiconductor layer A second semiconductor layer containing crystalline or microcrystalline silicon; and disposed between one of the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. A first aluminum oxide layer formed thereon.
〔20〕上記〔19〕に記載の結晶太陽電池は、前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち、他方に第二の酸化アルミニウム層が配されていてもよい。 [20] The crystalline solar cell according to [19], wherein the second is provided between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. An aluminum oxide layer may be provided.
〔21〕上記〔19〕に記載の結晶太陽電池は、前記結晶性基板の側面が第三の酸化アルミニウム層で覆われていてもよい。 [21] In the crystalline solar cell according to [19], a side surface of the crystalline substrate may be covered with a third aluminum oxide layer.
〔22〕上記〔19〕に記載の結晶太陽電池は、前記第一半導体層の前記受光面側、及び前記第二半導体層の前記裏面側の少なくとも一方に配された透明導電膜と;前記透明導電膜上に配されたくし型電極と;を更に備えていてもよい。 [22] The crystal solar cell according to [19], wherein the transparent conductive film disposed on at least one of the light receiving surface side of the first semiconductor layer and the back surface side of the second semiconductor layer; And a comb-type electrode disposed on the conductive film.
〔23〕上記〔19〕に記載の結晶太陽電池は、前記結晶性基板の前記裏面側から透過する光を前記結晶性基板側へ反射する白色塗膜又は反射層が、前記第二半導体層の前記裏面側に設けられていてもよい。 [23] In the crystalline solar cell according to [19], a white coating film or a reflective layer that reflects light transmitted from the back surface side of the crystalline substrate toward the crystalline substrate side is formed of the second semiconductor layer. It may be provided on the back side.
〔24〕上記〔19〕に記載の結晶太陽電池は、裏面電極が前記第二半導体層の前記裏面側を覆うように配されていてもよい。 [24] In the crystalline solar cell according to [19], a back electrode may be arranged so as to cover the back side of the second semiconductor layer.
〔25〕本発明の一態様に係る結晶太陽電池の製造方法は、光電変換機能を有し、p型若しくはn型の単結晶又は多結晶シリコンを含む平板状の結晶性基板を具備する結晶太陽電池の製造方法であって;前記結晶性基板の受光面側、あるいはこの受光面と反対の裏面側に酸化アルミニウム層を形成する工程と;前記結晶性基板と逆又は同導電型の非晶質又は微結晶シリコンからなる第一半導体層を前記受光面側に形成し、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンからなる第二半導体層を前記裏面側に形成する工程と;を備えている。 [25] A method for manufacturing a crystalline solar cell according to one embodiment of the present invention includes a crystalline solar cell having a photoelectric conversion function and including a planar crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon. A method of manufacturing a battery, comprising: forming an aluminum oxide layer on a light receiving surface side of the crystalline substrate or on a back surface opposite to the light receiving surface; Or forming a first semiconductor layer made of microcrystalline silicon on the light receiving surface side, and forming a second semiconductor layer made of amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer on the back surface side. And have;
〔26〕上記〔25〕に記載の結晶太陽電池の製造方法は、前記酸化アルミニウム層を形成する工程と、前記第一半導体層および前記第二半導体層を形成する工程との間に、前記酸化アルミニウム層の表面を所望のプロセスガスからなるプラズマに曝す処理を行う工程を備えていてもよい。 [26] The method for manufacturing a crystalline solar cell according to [25] described above, wherein the oxidation is performed between the step of forming the aluminum oxide layer and the step of forming the first semiconductor layer and the second semiconductor layer. You may provide the process of performing the process which exposes the surface of an aluminum layer to the plasma which consists of desired process gas.
 上記〔1〕~〔7〕に記載の結晶太陽電池によれば、前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に第一の酸化シリコン層が配されているため、トンネル電流が流れる。これにより前記結晶性基板と前記第一半導体層との界面、及び前記結晶性基板と前記第二半導体層との界面のうち一方における界面準位密度が減少する。このため、前記界面におけるバンドが湾曲し、パッシベーション効果が生じる。以上により、光電変換特性を向上させた結晶太陽電池を提供することが可能となる。 According to the crystalline solar cell according to the above [1] to [7], it is interposed between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. Since the first silicon oxide layer is disposed, a tunnel current flows. This reduces the interface state density at one of the interface between the crystalline substrate and the first semiconductor layer and the interface between the crystalline substrate and the second semiconductor layer. For this reason, the band in the said interface curves, and a passivation effect arises. As described above, it is possible to provide a crystalline solar cell with improved photoelectric conversion characteristics.
 また、上記〔8〕~〔10〕に記載の結晶太陽電池の製造方法では、結晶性基板の受光面側、あるいは裏面側に第一の酸化シリコン層を形成した後に第一半導体層と第二半導体層を形成することにより、上述したパッシベーション効果が生じる。これにより、光電変換特性を向上させた結晶太陽電池を安定して作製することが可能となる。
 特に、上記〔10〕に記載の結晶太陽電池の製造方法の場合、第一の酸化シリコン層の表面にプラズマ処理を施すことにより、さらに光電変換特性の向上した結晶太陽電池を得られる。
In the method for manufacturing a crystalline solar cell according to the above [8] to [10], the first semiconductor layer and the second semiconductor layer are formed after the first silicon oxide layer is formed on the light receiving surface side or the back surface side of the crystalline substrate. By forming the semiconductor layer, the above-described passivation effect occurs. Thereby, it becomes possible to stably produce a crystalline solar cell with improved photoelectric conversion characteristics.
In particular, in the case of the method for producing a crystalline solar cell according to [10] above, a crystalline solar cell with further improved photoelectric conversion characteristics can be obtained by performing plasma treatment on the surface of the first silicon oxide layer.
 また、上記〔11〕~〔16〕に記載の結晶太陽電池によれば、前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に第一の炭化シリコン層が配されているため、トンネル電流が流れる。これにより前記結晶性基板と前記第一半導体層との界面、及び前記結晶性基板と前記第二半導体層との界面のうち一方における界面準位密度が減少する。このため、前記界面におけるバンドが湾曲し、パッシベーション効果が生じる。以上により、光電変換特性を向上させた結晶太陽電池を提供することが可能となる。 In addition, according to the crystalline solar cell described in [11] to [16] above, between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. Since the first silicon carbide layer is disposed on one side, a tunnel current flows. This reduces the interface state density at one of the interface between the crystalline substrate and the first semiconductor layer and the interface between the crystalline substrate and the second semiconductor layer. For this reason, the band in the said interface curves, and a passivation effect arises. As described above, it is possible to provide a crystalline solar cell with improved photoelectric conversion characteristics.
 また、上記〔17〕~〔18〕に記載の結晶太陽電池の製造方法では、結晶性基板の受光面側、あるいは裏面側に第一の炭化シリコン層を形成した後に第一半導体層と第二半導体層を形成することにより、上述したパッシベーション効果が得られる。これにより、光電変換特性を向上させた結晶太陽電池を安定して作製することが可能となる。
 特に、上記〔18〕に記載の結晶太陽電池の製造方法の場合、第一の炭化シリコン層の表面にプラズマ処理を施すことにより、さらに光電変換特性の改善された結晶太陽電池を得られる。
In the method for manufacturing a crystalline solar cell according to [17] to [18], the first semiconductor layer and the second semiconductor layer are formed after the first silicon carbide layer is formed on the light receiving surface side or the back surface side of the crystalline substrate. By forming the semiconductor layer, the above-described passivation effect can be obtained. Thereby, it becomes possible to stably produce a crystalline solar cell with improved photoelectric conversion characteristics.
In particular, in the case of the method for producing a crystalline solar cell according to [18] above, a crystalline solar cell with further improved photoelectric conversion characteristics can be obtained by subjecting the surface of the first silicon carbide layer to plasma treatment.
 また、上記〔19〕~〔24〕に記載の結晶太陽電池によれば、前記結晶性基板と前記第一半導体層との間、又は前記結晶性基板と前記第二半導体層との間に酸化アルミニウム層が配されているため、トンネル電流が流れる。これにより前記結晶性基板と前記第一半導体層との界面、及び前記結晶性基板と前記第二半導体層とのうち一方における界面準位密度が減少する。このため、前記界面におけるバンドが湾曲し、パッシベーション効果が生じる。以上により、光電変換特性を向上させた結晶太陽電池を提供することが可能となる。 In addition, according to the crystalline solar cell described in [19] to [24] above, oxidation is performed between the crystalline substrate and the first semiconductor layer, or between the crystalline substrate and the second semiconductor layer. Since the aluminum layer is disposed, a tunnel current flows. Thereby, the interface state density in one of the interface between the crystalline substrate and the first semiconductor layer and the crystal substrate and the second semiconductor layer is reduced. For this reason, the band in the said interface curves, and a passivation effect arises. As described above, it is possible to provide a crystalline solar cell with improved photoelectric conversion characteristics.
 また、上記〔25〕~〔26〕に記載の結晶太陽電池の製造方法では、結晶性基板の受光面側、あるいは裏面側に酸化アルミニウム層を形成した後に第一半導体層と第二半導体層を形成することにより、上述したパッシベーション効果が生じる。これにより、光電変換特性を向上させた結晶太陽電池を安定して作製することが可能となる。
 特に、上記〔26〕に記載の結晶太陽電池の製造方法の場合、酸化アルミニウム層の表面にプラズマ処理を施すことにより、さらに光電変換特性の改善された結晶太陽電池を得られる。
In the method for manufacturing a crystalline solar cell according to the above [25] to [26], the first semiconductor layer and the second semiconductor layer are formed after the aluminum oxide layer is formed on the light receiving surface side or the back surface side of the crystalline substrate. By forming, the passivation effect mentioned above arises. Thereby, it becomes possible to stably produce a crystalline solar cell with improved photoelectric conversion characteristics.
In particular, in the case of the method for producing a crystalline solar cell according to [26] above, a crystalline solar cell with further improved photoelectric conversion characteristics can be obtained by subjecting the surface of the aluminum oxide layer to plasma treatment.
本発明の結晶太陽電池の一構成例(第一実施形態)を模式的に示す断面図である。It is sectional drawing which shows typically one structural example (1st embodiment) of the crystalline solar cell of this invention. 本発明の結晶太陽電池の一構成例(第二実施形態)を模式的に示す断面図である。It is sectional drawing which shows typically the example of 1 structure (2nd embodiment) of the crystalline solar cell of this invention. 本発明の結晶太陽電池の一構成例(第三実施形態)を模式的に示す断面図である。It is sectional drawing which shows typically the example of 1 structure (3rd embodiment) of the crystalline solar cell of this invention. 本発明の結晶太陽電池の一構成例(第四実施形態)を模式的に示す断面図である。It is sectional drawing which shows typically the example of 1 structure (4th embodiment) of the crystal solar cell of this invention.
 以下、図面を参照して、本発明に係る結晶太陽電池(結晶シリコン系太陽電池)の第一実施形態について説明する。 Hereinafter, a first embodiment of a crystalline solar cell (crystalline silicon solar cell) according to the present invention will be described with reference to the drawings.
 <第一実施形態>
 図1は、本発明の結晶太陽電池の一構成例を模式的に示す断面斜視図である。
 図1に示されるように、結晶太陽電池1A(1)は、結晶性基板(基体)10、第一の酸化シリコン層(20a)20、第一半導体層11、第二半導体層12、透明導電膜13、第一電極14、透明導電膜15、第二電極16によって概略構成されている。結晶太陽電池1A(1)の、光を受光する側を受光面1αとし、受光面1αと対向する面(受光面1αと反対の側)を裏面1βとする。
<First embodiment>
FIG. 1 is a cross-sectional perspective view schematically showing one structural example of the crystalline solar cell of the present invention.
As shown in FIG. 1, a crystalline solar cell 1A (1) includes a crystalline substrate (base) 10, a first silicon oxide layer (20a) 20, a first semiconductor layer 11, a second semiconductor layer 12, and a transparent conductive material. The film 13, the first electrode 14, the transparent conductive film 15, and the second electrode 16 are roughly configured. The light receiving side of the crystalline solar cell 1A (1) is defined as a light receiving surface 1α, and the surface facing the light receiving surface 1α (the side opposite to the light receiving surface 1α) is defined as a back surface 1β.
 結晶性基板10は、光電変換機能を有する半導体基板である。結晶性基板10としては、例えば50μm~200μmの厚さの、p型若しくはn型の単結晶又は多結晶シリコン(Si)を含む平板状の基体を用いることができる。このような基体としては、引き上げ法により形成された単結晶シリコンのインゴットから切り出されたウエハや、鋳造技術により形成された多結晶シリコンのインゴットから切り出されたウエハ等を利用することができる。 The crystalline substrate 10 is a semiconductor substrate having a photoelectric conversion function. As the crystalline substrate 10, for example, a flat substrate having a thickness of 50 μm to 200 μm and containing p-type or n-type single crystal or polycrystalline silicon (Si) can be used. As such a substrate, a wafer cut from a single crystal silicon ingot formed by a pulling method, a wafer cut from a polycrystalline silicon ingot formed by a casting technique, or the like can be used.
 第一の酸化シリコン層20aは酸化シリコン(SiOx又はSiOx:H、ただし、0<x≦2)からなり、結晶性基板10の受光面1α側の表面10a、及び、裏面1β側の表面10bの少なくとも一方を覆うように形成されている。これにより第一の酸化シリコン層20aは、結晶性基板10と第一半導体層11との間、及び結晶性基板10と第二半導体層12との間のうち一方に配された構成となっている。
 図1に示す例では、結晶性基板10と第二半導体層12との間に酸化シリコン層20が配されている場合を示すが、本発明はこれに限定されず、結晶性基板10と第一半導体層11との間に第一の酸化シリコン層20aが配されていてもよい。
The first silicon oxide layer 20a is made of silicon oxide (SiOx or SiOx: H, where 0 <x ≦ 2), and includes a surface 10a on the light-receiving surface 1α side and a surface 10b on the back surface 1β side of the crystalline substrate 10. It is formed so as to cover at least one. Thus, the first silicon oxide layer 20a is arranged between one of the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12. Yes.
In the example shown in FIG. 1, the silicon oxide layer 20 is disposed between the crystalline substrate 10 and the second semiconductor layer 12. However, the present invention is not limited to this, and the crystalline substrate 10 and the second semiconductor layer 12 are arranged. A first silicon oxide layer 20 a may be disposed between the semiconductor layer 11.
 第一の酸化シリコン層20aの厚みは特に限定されるものではなく、トンネル電流が流れる程度の厚みであればよい。このような厚みは、具体的には例えば10~30Åの範囲が好ましい。第一の酸化シリコン層20aの厚みが10Åを下回ると、バンドの湾曲が小さくなりパッシベーション効果が小さくなり芳しくない。一方、第一の酸化シリコン層20aの厚みが30Åを上回ると、トンネル電流が低下するので光電変換効率が低下する。ゆえに、第一の酸化シリコン層20aの厚みの好適範囲は10~30Åである。 The thickness of the first silicon oxide layer 20a is not particularly limited as long as the tunnel current flows. Specifically, such a thickness is preferably in the range of 10 to 30 mm, for example. When the thickness of the first silicon oxide layer 20a is less than 10 mm, the curvature of the band becomes small and the passivation effect becomes small, which is not good. On the other hand, when the thickness of the first silicon oxide layer 20a exceeds 30 mm, the tunnel current is reduced, and the photoelectric conversion efficiency is thus reduced. Therefore, a preferable range of the thickness of the first silicon oxide layer 20a is 10 to 30 mm.
 結晶性基板10と逆又は同導電型の非晶質又は微結晶シリコンが含まれた第一半導体層11は、結晶性基板10の受光面1α側に配されている。
 例えば結晶性基板10としてn型シリコンからなる基体を用いる場合は、第一半導体層11は、p型のアモルファスシリコン(p-a-Si)、p型の微結晶シリコン(p-μc-Si)、n型のアモルファスシリコン(n-a-Si)、n型の微結晶シリコン(n-μc-Si)が含まれている。
The first semiconductor layer 11 containing amorphous or microcrystalline silicon opposite to or the same conductivity type as the crystalline substrate 10 is disposed on the light receiving surface 1α side of the crystalline substrate 10.
For example, when a substrate made of n-type silicon is used as the crystalline substrate 10, the first semiconductor layer 11 includes p-type amorphous silicon (pa-Si), p-type microcrystalline silicon (p-μc-Si). N-type amorphous silicon (na-Si) and n-type microcrystalline silicon (n-μc-Si) are included.
 第一半導体層11と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層12は、結晶性基板10の裏面1β側に配されている。
 例えば第一半導体層11がp型の場合、第二半導体層12は、n型のアモルファスシリコン(n-a-Si)又はn型の微結晶シリコン(n-μc-Si)が含まれている。
The second semiconductor layer 12 containing amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer 11 is disposed on the back surface 1β side of the crystalline substrate 10.
For example, when the first semiconductor layer 11 is p-type, the second semiconductor layer 12 contains n-type amorphous silicon (na-Si) or n-type microcrystalline silicon (n-μc-Si). .
 透明導電膜13は、光透過性(太陽光を透過する)を有した導電材料からなり、第一半導体層11の受光面1α側に配されている。
 このような透明導電膜13の構成材料としては、例えば、酸素欠陥を制御した酸化亜鉛、酸化スズ、酸化インジウム等の電気伝導性酸化物の他、酸化亜鉛を主成分とする透明導電膜であるAZO(AlドープZnO)、BZO(BドープZnO)、FZO(FドープZnO)、GZO(GaドープZnO)等、酸化スズを主成分とする透明導電膜であるATO(SbドープSnO)、FTO(FドープSnO)等や、酸化インジウムを主成分とする透明導電膜であるITO(SbドープIn)、IFO(FドープIn)等を用いることができる。また、透明導電膜13の構成材料としては、高移動度が得られるIGZO(InGaZnO)をはじめとする、いわゆるTAOS(透明アモルファス酸化物半導体)を用いてもよい。
 透明導電膜13の構成材料として特に好適なものは、熱CVD法やMOCVD法により成膜されたSnOやZnO系の材料である。これらの材料からなる透明導電膜13は、その表面にテクスチャーと呼ばれる凹凸が形成される。このため、透明導電膜13の表面において光が散乱しやすくなる。そして、光の入射側あるいは反射側に配された透明導電膜13により光路が曲げられ、結晶性基板10を通る距離が長くなる。このため、キャリア生成効率が向上し、光電変換特性がさらに向上する。
The transparent conductive film 13 is made of a conductive material having optical transparency (transmits sunlight), and is disposed on the light receiving surface 1α side of the first semiconductor layer 11.
Examples of the constituent material of the transparent conductive film 13 include a transparent conductive film mainly composed of zinc oxide in addition to an electrically conductive oxide such as zinc oxide, tin oxide, and indium oxide in which oxygen defects are controlled. ATO (Sb-doped SnO 2 ), FTO, which is a transparent conductive film mainly composed of tin oxide, such as AZO (Al-doped ZnO), BZO (B-doped ZnO), FZO (F-doped ZnO), and GZO (Ga-doped ZnO). (F-doped SnO 2 ) or the like, ITO (Sb-doped In 2 O 3 ), IFO (F-doped In 2 O 3 ), or the like, which is a transparent conductive film mainly composed of indium oxide, can be used. Moreover, as a constituent material of the transparent conductive film 13, so-called TAOS (transparent amorphous oxide semiconductor) including IGZO (InGaZnO) which can obtain high mobility may be used.
Particularly suitable as a constituent material of the transparent conductive film 13 is a SnO 2 or ZnO-based material formed by thermal CVD or MOCVD. The transparent conductive film 13 made of these materials has irregularities called textures formed on the surface thereof. For this reason, light easily scatters on the surface of the transparent conductive film 13. Then, the optical path is bent by the transparent conductive film 13 disposed on the light incident side or the reflection side, and the distance passing through the crystalline substrate 10 becomes longer. For this reason, carrier generation efficiency improves and a photoelectric conversion characteristic improves further.
 くし型の第一電極14は、前記透明導電膜13の受光面1α側に形成されている。
 第一電極14の構成材料としては、結晶太陽電池1A(1)の構造やプロセス設計に応じて導電材料を適宜選択してよい。このような構成材料としては、例えば電力損失を抑える目的でアルミニウムを用いたり、銀等の低抵抗材料を用いることができる。
The comb-shaped first electrode 14 is formed on the light receiving surface 1α side of the transparent conductive film 13.
As a constituent material of the first electrode 14, a conductive material may be appropriately selected according to the structure and process design of the crystalline solar cell 1A (1). As such a constituent material, for example, aluminum can be used for the purpose of suppressing power loss, or a low resistance material such as silver can be used.
 透明導電膜15は、第二半導体層12の前記裏面1β側に配されている。
 透明導電膜15の構成材料としては、例えば、酸化亜鉛、酸化スズ、酸化スズインジウム(ITO)等が用いられる。
 くし型の第二電極16は、前記透明導電膜15の裏面1β側に形成されている。第二電極16の構成材料としては、結晶太陽電池1A(1)の構造やプロセス設計に応じて導電材料を適宜選択してよい。このような構成材料としては、例えば電力損失を抑える目的でアルミニウムを用いたり、銀等の低抵抗材料を用いることができる。
The transparent conductive film 15 is disposed on the back surface 1β side of the second semiconductor layer 12.
As a constituent material of the transparent conductive film 15, for example, zinc oxide, tin oxide, indium tin oxide (ITO) or the like is used.
The comb-shaped second electrode 16 is formed on the back surface 1β side of the transparent conductive film 15. As a constituent material of the second electrode 16, a conductive material may be appropriately selected according to the structure and process design of the crystalline solar cell 1A (1). As such a constituent material, for example, aluminum can be used for the purpose of suppressing power loss, or a low resistance material such as silver can be used.
 また、白色塗膜又は反射層が、第二半導体層12の裏面1β側および第二電極16を覆うように形成されている。
 この白色塗膜又は反射層は、結晶性基板10の裏面10b側から透過する光をこの結晶性基板10側へ反射させるための層(膜)である。ここでは、前記第一電極16上に白色塗膜17が形成されている場合を例にあげて説明する。
In addition, a white coating film or a reflective layer is formed so as to cover the back surface 1β side of the second semiconductor layer 12 and the second electrode 16.
This white coating film or reflective layer is a layer (film) for reflecting light transmitted from the back surface 10b side of the crystalline substrate 10 to the crystalline substrate 10 side. Here, the case where the white coating film 17 is formed on the first electrode 16 will be described as an example.
 白色塗膜17は、結晶性基板10の吸収波長の領域において高い反射率を有する白色の塗膜である。白色塗膜17の白色成分としては、例えば、硫酸バリウム、酸化マグネシウム及び酸化チタンからなる群から選択される少なくとも一種からなる化合物を用いることができる。
 白色塗膜17は、上記白色成分の微粒子とバインダと溶剤とからなる白色塗料が前記第二半導体層12の前記裏面側に塗布されることにより形成されている。こうした構成からなる白色塗膜17は、結晶性基板10を透過した光(太陽光)の一部を、結晶性基板10の裏面10b側へ拡散反射する反射面として機能する。
The white coating film 17 is a white coating film having a high reflectance in the absorption wavelength region of the crystalline substrate 10. As a white component of the white coating film 17, for example, a compound composed of at least one selected from the group consisting of barium sulfate, magnesium oxide, and titanium oxide can be used.
The white coating film 17 is formed by applying a white paint composed of fine particles of the white component, a binder, and a solvent to the back surface side of the second semiconductor layer 12. The white coating film 17 having such a configuration functions as a reflecting surface that diffusely reflects a part of light (sunlight) transmitted through the crystalline substrate 10 toward the back surface 10b side of the crystalline substrate 10.
 結晶太陽電池1A(1)の表面1α側の面(受光面)が太陽光を受けると、表面から入射した太陽光は、結晶性基板10に吸収される。だが、結晶太陽電池1に掛かる原料使用量を低減するために結晶性基板10の厚みが薄く形成されている場合、結晶性基板10で吸収できない光量が高くなってしまう。このため、太陽光の一部が結晶性基板10を透過しやすくなる。
 このように太陽光の一部が結晶性基板10を透過すると、その一部の太陽光は、第二半導体層12、透明電極15までも透過して白色塗膜17に到達する。この際、白色塗膜17に到達した光は、白色塗膜17が有する光反射性により、表面1α側へ向けて反射される。そして、白色塗膜17で反射されたその光は、再び透明電極15、第二半導体層12を透過して結晶性基板10に吸収される。すなわち、結晶性基板10を透過した光の一部は、白色塗膜17の光反射機能によって、電気エネルギーに変換される。
When the surface (light receiving surface) on the surface 1α side of the crystalline solar cell 1A (1) receives sunlight, the sunlight incident from the surface is absorbed by the crystalline substrate 10. However, if the thickness of the crystalline substrate 10 is thin in order to reduce the amount of raw material used on the crystalline solar cell 1, the amount of light that cannot be absorbed by the crystalline substrate 10 increases. For this reason, a part of sunlight easily passes through the crystalline substrate 10.
When part of sunlight passes through the crystalline substrate 10 in this way, part of sunlight passes through the second semiconductor layer 12 and the transparent electrode 15 and reaches the white coating film 17. Under the present circumstances, the light which reached | attained the white coating film 17 is reflected toward the surface 1 alpha side by the light reflectivity which the white coating film 17 has. The light reflected by the white coating film 17 passes through the transparent electrode 15 and the second semiconductor layer 12 again and is absorbed by the crystalline substrate 10. That is, part of the light transmitted through the crystalline substrate 10 is converted into electric energy by the light reflecting function of the white coating film 17.
 このように、光反射機能を有する白色塗膜17が設けられていることによって、結晶太陽電池1における光の利用効率を向上させることができる。
 また、白色塗膜17の構成材料、膜厚、位置等は、他の構成要件である結晶性基板10、第一電極14及び第二電極16の光学特性に応じて変更可能である。このような白色塗膜17の構成を適宜選択することにより、透過光の再利用がより適切に実現可能になる。ゆえに、結晶性基板10、第一電極14、及び第二電極16に対して、その構成材料や設計ルールの変更等を強いることなく、光の利用効率を向上することができる。
Thus, the use efficiency of light in the crystalline solar cell 1 can be improved by providing the white coating film 17 having a light reflection function.
The constituent material, film thickness, position, etc. of the white coating film 17 can be changed according to the optical characteristics of the crystalline substrate 10, the first electrode 14, and the second electrode 16, which are other constituent requirements. By appropriately selecting the configuration of such a white coating film 17, reuse of transmitted light can be more appropriately realized. Therefore, it is possible to improve the light utilization efficiency without forcing the crystalline substrate 10, the first electrode 14, and the second electrode 16 to change the constituent materials and design rules.
 なお、結晶性基板10としてシリコン基板を用いる場合、上述する白色塗膜17は、特に500nm~1200nmの波長領域で90%以上の反射率を有するように構成されていることが好ましい。白色塗膜17がこのような反射率を有する構成であれば、結晶性基板10で再度吸収可能な光を、結晶性基板10を透過した光の中から効率よく反射することができる。 When a silicon substrate is used as the crystalline substrate 10, the above-described white coating film 17 is preferably configured to have a reflectance of 90% or more particularly in a wavelength region of 500 nm to 1200 nm. If the white coating film 17 has such a reflectance, the light that can be absorbed again by the crystalline substrate 10 can be efficiently reflected from the light transmitted through the crystalline substrate 10.
 また、前記白色塗膜17の代わりに反射層を配する場合、この反射層は、例えばアルミニウムや、銀、銅などの膜により構成することができる。 Further, when a reflective layer is provided in place of the white coating film 17, this reflective layer can be composed of a film of aluminum, silver, copper or the like, for example.
 このような結晶太陽電池1A(1)において、結晶太陽電池1A(1)の受光面1α側の表面(受光面)が太陽光(図1の矢印)を照射されると、受光面から入射した太陽光は、透明導電膜13を透過し、第一半導体層11を透過して、さらに結晶性基板10の表面10aに到達する。この際、結晶性基板10の表面10aは、太陽光を受光する受光面として機能する。そして、結晶性基板10を透過した太陽光は、第二半導体層12にも進入する。
 このように太陽光が結晶太陽電池1A(1)の各層を透過する際に、結晶性基板10の各部に吸収された光は、キャリアである電子や正孔を生成する。そして、生成されたキャリアは、結晶性基板10と第二半導体層12との接合部であるpn接合あるいはヘテロ接合部の電位勾配に従って、第一半導体層11と第二半導体層12とに分離される。このようにして分離されたキャリアは、第一電極14及び第二電極16から収集されることにより、電気エネルギーに変換される。すなわち、結晶性基板10に吸収された光は、結晶性基板10の光電変換機能によって、電気エネルギーに変換される。
In such a crystalline solar cell 1A (1), when the surface (light receiving surface) on the light receiving surface 1α side of the crystalline solar cell 1A (1) is irradiated with sunlight (arrows in FIG. 1), it enters from the light receiving surface. Sunlight passes through the transparent conductive film 13, passes through the first semiconductor layer 11, and further reaches the surface 10 a of the crystalline substrate 10. At this time, the surface 10a of the crystalline substrate 10 functions as a light receiving surface that receives sunlight. Then, the sunlight transmitted through the crystalline substrate 10 enters the second semiconductor layer 12.
Thus, when sunlight passes through each layer of the crystalline solar cell 1A (1), the light absorbed in each part of the crystalline substrate 10 generates electrons and holes that are carriers. Then, the generated carriers are separated into the first semiconductor layer 11 and the second semiconductor layer 12 according to the potential gradient of the pn junction or the heterojunction portion that is the junction portion between the crystalline substrate 10 and the second semiconductor layer 12. The The carriers separated in this way are collected from the first electrode 14 and the second electrode 16 and thereby converted into electric energy. That is, the light absorbed by the crystalline substrate 10 is converted into electric energy by the photoelectric conversion function of the crystalline substrate 10.
 このとき、本発明の結晶太陽電池1A(1)では、結晶性基板10と前記第一半導体層11との間、及び前記結晶性基板10と前記第二半導体層12との間のうち一方に第一の酸化シリコン層20aが配されているので、この第一の酸化シリコン層20aによりトンネル電流が流れる。このため、より高エネルギーのキャリアが第一電極14または第二電極16から収集される。その結果、本発明の結晶太陽電池1A(1)は光電変換特性がさらに向上したものとなる。 At this time, in the crystalline solar cell 1 </ b> A (1) of the present invention, between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12. Since the first silicon oxide layer 20a is disposed, a tunnel current flows through the first silicon oxide layer 20a. For this reason, higher energy carriers are collected from the first electrode 14 or the second electrode 16. As a result, the crystalline solar cell 1A (1) of the present invention has further improved photoelectric conversion characteristics.
 また、結晶性基板10と前記第一半導体層11との間、及び前記結晶性基板10と前記第二半導体層12との間のうち一方に第一の酸化シリコン層20aが配されていることにより、界面準位密度の減少と界面におけるバンドが湾曲する。これによりパッシベーション効果が生じ、本発明の結晶太陽電池1A(1)は光電変換特性が向上したものとなる。 Also, the first silicon oxide layer 20a is disposed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12. As a result, the interface state density is decreased and the band at the interface is curved. As a result, a passivation effect is generated, and the crystalline solar cell 1A (1) of the present invention has improved photoelectric conversion characteristics.
 さらに、結晶性基板10と前記第一半導体層11との間、及び前記結晶性基板10と前記第二半導体層12との間のうち一方に第一の酸化シリコン層20aが配されていることにより、シリコン/酸化シリコン界面の欠陥数が少なくなる。このため、追加ドープ無しでバンドを曲げることが可能となる。 Further, the first silicon oxide layer 20a is disposed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12. This reduces the number of defects at the silicon / silicon oxide interface. For this reason, it is possible to bend the band without additional doping.
 なお、上述する第一半導体層11の厚さ、及び第二半導体層12の厚さは、p型半導体層をなす方の層(例えば第一半導体層11)が相対的に厚く、n型半導体層をなす方の層(例えば第二半導体層12)が相対的に薄い構成が好ましい。このように第一半導体層11と第二半導体層12との厚さを変えた構成であれば、p型半導体層をなす方の層(例えば第一半導体層11)で生成されるキャリアの再結合が軽減されるかたちとなり、変換効率が向上される。 Note that the thickness of the first semiconductor layer 11 and the thickness of the second semiconductor layer 12 described above are such that the p-type semiconductor layer (for example, the first semiconductor layer 11) is relatively thick, and the n-type semiconductor. A structure in which the layer forming the layer (for example, the second semiconductor layer 12) is relatively thin is preferable. If the thicknesses of the first semiconductor layer 11 and the second semiconductor layer 12 are changed in this way, the carrier generated in the p-type semiconductor layer (for example, the first semiconductor layer 11) is regenerated. Coupling is reduced and conversion efficiency is improved.
 <第二実施形態>
 次いで、本発明の第二実施形態について説明する。
 図2は、本実施形態の太陽電電池1B(1)の一構成例を模式的に示す断面図である。なお、以下の説明では、上述した第一実施形態と異なる部分について主に説明し、第一実施形態と同様の部分については説明を省略する。
<Second embodiment>
Next, a second embodiment of the present invention will be described.
FIG. 2 is a cross-sectional view schematically showing a configuration example of the solar battery 1B (1) of the present embodiment. In the following description, portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
 第二実施形態の結晶太陽電池1B(1)では、結晶性基板10と前記第一半導体層11との間、及び前記結晶性基板10と前記第二半導体層12との間の双方に、第一の酸化シリコン層20aまたは第二の酸化シリコン層20bが配されている。ここでは例えば、結晶性基板10と前記第一半導体層11との間に第一の酸化シリコン層20aが設けられ、結晶性基板10と前記第二半導体層12との間に第二の酸化シリコン層20bが設けられている例を示す。 In the crystalline solar cell 1B (1) of the second embodiment, both the crystalline substrate 10 and the first semiconductor layer 11 and the crystalline substrate 10 and the second semiconductor layer 12 are One silicon oxide layer 20a or the second silicon oxide layer 20b is provided. Here, for example, a first silicon oxide layer 20 a is provided between the crystalline substrate 10 and the first semiconductor layer 11, and a second silicon oxide layer is provided between the crystalline substrate 10 and the second semiconductor layer 12. An example in which the layer 20b is provided is shown.
 このように、結晶性基板10と前記第一半導体層11との間、及び前記結晶性基板10と前記第二半導体層12との間の双方に、第一の酸化シリコン層20aまたは第二の酸化シリコン層20bが配されていることにより、より多くの高エネルギーのキャリアが収集される。このため、太陽電電池1B(1)の光電変換効率をさらに高めることが可能となる。 As described above, the first silicon oxide layer 20a or the second silicon oxide layer 20a is formed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12. By disposing the silicon oxide layer 20b, more high energy carriers are collected. For this reason, it becomes possible to further improve the photoelectric conversion efficiency of the solar cell 1B (1).
 <第三実施形態>
 次いで、本発明の第三実施形態について説明する。図3は、本実施形態の太陽電電池1C(1)の一構成例を模式的に示す断面図である。なお、以下の説明では、上述した第一実施形態と異なる部分について主に説明し、第一実施形態と同様の部分については説明を省略する。
<Third embodiment>
Next, a third embodiment of the present invention will be described. FIG. 3 is a cross-sectional view schematically showing a configuration example of the solar battery 1C (1) of the present embodiment. In the following description, portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
 上述した第一実施形態では、第二半導体層12上に透明導電膜15が配され、この透明導電膜15上に、くし形に形成された第一電極16が配されていた。これに対し、第三実施形態の結晶太陽電池1C(1)では、裏面電極16が、第二半導体層12の裏面1β側の全面を覆うように配されている。 In the first embodiment described above, the transparent conductive film 15 is disposed on the second semiconductor layer 12, and the first electrode 16 formed in a comb shape is disposed on the transparent conductive film 15. On the other hand, in the crystalline solar cell 1C (1) of the third embodiment, the back surface electrode 16 is arranged so as to cover the entire surface of the second semiconductor layer 12 on the back surface 1β side.
 <第四実施形態>
 次いで、本発明の第三実施形態について説明する。図4は、本実施形態の太陽電電池1D(1)の一構成例を模式的に示す断面図である。なお、以下の説明では、上述した第一実施形態と異なる部分について主に説明し、第一実施形態と同様の部分については説明を省略する。
<Fourth embodiment>
Next, a third embodiment of the present invention will be described. FIG. 4 is a cross-sectional view schematically showing a configuration example of the solar battery 1D (1) of the present embodiment. In the following description, portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
 第四実施形態の結晶太陽電池1D(1)では、結晶性基板10と前記第一半導体層11との間、及び前記結晶性基板10と前記第二半導体層12との間の双方に加え、結晶性基板10の側面10cが酸化シリコン層20(第三の酸化シリコン層20c)で覆われている。
 このように結晶性基板10の側面10cにも第三の酸化シリコン層20cを配することにより、結晶性基板10の表面欠陥が更に少なくなる。このため、光電変換効率をさらに高めることが可能である。
In the crystalline solar cell 1D (1) of the fourth embodiment, in addition to both between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12, Side surface 10c of crystalline substrate 10 is covered with silicon oxide layer 20 (third silicon oxide layer 20c).
Thus, by providing the third silicon oxide layer 20c also on the side surface 10c of the crystalline substrate 10, the surface defects of the crystalline substrate 10 are further reduced. For this reason, it is possible to further increase the photoelectric conversion efficiency.
 次いで、上述したような太陽電池(結晶太陽電池)の製造方法について説明する。第一実施形態の結晶太陽電池1A(1)は、例えば以下のような製造工程により形成される。 Next, a method for manufacturing the above-described solar cell (crystal solar cell) will be described. The crystalline solar cell 1A (1) of the first embodiment is formed by the following manufacturing process, for example.
 <第一実施形態>
 はじめに、結晶性基板10(シリコンからなる基体)に対して、図示しないテクスチャと呼ばれる表面の微細な凹凸を、ウェットエッチング又はドライエッチングにより形成する。次いで、結晶性基板10の表面に洗浄処理を施す。
 次に、テクスチャが形成された結晶性基板10の表面に、シリコン酸化膜20を形成する。結晶性基板10の表面にシリコン酸化膜20を形成する方法は特に限定されるものではない。このような方法としては例えば、水蒸気や酸素による熱酸化や、プラズマCVD、ALD(atomic layer deposition)などの堆積法が挙げられる。中でも、良質な極薄酸化膜を制御性良く形成する方法として、例えば、日本国特開2002-064093号公報に記載されているような方法を用いることができる。
<First embodiment>
First, fine unevenness on the surface called texture (not shown) is formed on the crystalline substrate 10 (substrate made of silicon) by wet etching or dry etching. Next, a cleaning process is performed on the surface of the crystalline substrate 10.
Next, a silicon oxide film 20 is formed on the surface of the crystalline substrate 10 on which the texture is formed. The method for forming the silicon oxide film 20 on the surface of the crystalline substrate 10 is not particularly limited. Examples of such methods include thermal oxidation with water vapor or oxygen, and deposition methods such as plasma CVD and ALD (atomic layer deposition). Among them, as a method for forming a high-quality ultrathin oxide film with good controllability, for example, a method described in Japanese Patent Application Laid-Open No. 2002-064093 can be used.
 このような方法は、具体的には、例えば半導体基板(結晶性基板)10を酸化性の薬液に浸漬させて酸化処理する方法を基本的な構成とする。これにより、結晶性基板10の表面に極薄の酸化膜が形成される。このように、結晶性基板10を酸化性の薬液に浸漬して化学的酸化処理を行うことにより、酸化膜の膜厚制御が容易になる。
 なお、結晶性基板10を酸化性の薬液に浸漬する前に、結晶性基板10表面の自然酸化膜または不純物を除去する処理を行うことが望ましい。これにより、高品質の極薄酸化膜を安定的に形成する事が可能となる。
Specifically, such a method has a basic configuration, for example, a method in which the semiconductor substrate (crystalline substrate) 10 is immersed in an oxidizing chemical solution and is oxidized. Thereby, an extremely thin oxide film is formed on the surface of the crystalline substrate 10. As described above, the thickness of the oxide film can be easily controlled by immersing the crystalline substrate 10 in the oxidizing chemical solution and performing the chemical oxidation treatment.
Note that it is desirable to perform a process of removing a natural oxide film or impurities on the surface of the crystalline substrate 10 before the crystalline substrate 10 is immersed in the oxidizing chemical solution. This makes it possible to stably form a high quality ultrathin oxide film.
 その後、必要に応じて、この酸化膜を不活性ガス雰囲気中で熱処理することで改質してもよい。このように酸化膜に熱処理を行うことにより、リーク電流密度が低下する。通常、化学的に酸化された熱処理前の酸化膜はサブオキサイドの状態、即ち酸素が欠乏している状態である。このため、この状態の酸化膜はリーク電流が大きくなりやすいが、このように熱処理を行うことによりサブオキサイドを減少でき、かつ、基板と酸化膜との界面を熱処理によりスムーズにすることができる。このため、酸化膜のリーク電流密度を低下させることができる。ただし、結晶太陽電池1の製造工程においては、この熱処理を行わなくても実用上さしつかえない。 Then, if necessary, this oxide film may be modified by heat treatment in an inert gas atmosphere. By performing the heat treatment on the oxide film in this manner, the leakage current density is reduced. Usually, a chemically oxidized oxide film before heat treatment is in a suboxide state, that is, a state in which oxygen is deficient. For this reason, the oxide film in this state tends to have a large leakage current. However, by performing the heat treatment in this way, the suboxide can be reduced, and the interface between the substrate and the oxide film can be made smooth by the heat treatment. For this reason, the leakage current density of the oxide film can be reduced. However, in the manufacturing process of the crystalline solar cell 1, there is no practical problem even if this heat treatment is not performed.
 このように酸化膜を形成することにより、リーク電流の少ない高品質の膜厚0.3~3nmの酸化膜を、結晶性基板10の表面に容易に形成することができる。また、結晶性基板10を浸漬させる酸化性の薬液の種類と温度を調整することにより、酸化膜の膜厚の制御を簡単に行うことができる。これは、結晶性基板10を薬液に浸漬させている時間が一定時間以上になると、形成される極薄酸化膜の膜厚がほとんど変化しなくなる特性があるからである。なお、この一定時間は薬液により異なるため、薬液の種類と温度により適宜設定すればよい。 By forming the oxide film in this way, a high-quality oxide film having a thickness of 0.3 to 3 nm with little leakage current can be easily formed on the surface of the crystalline substrate 10. In addition, the thickness of the oxide film can be easily controlled by adjusting the type and temperature of the oxidizing chemical solution in which the crystalline substrate 10 is immersed. This is because the film thickness of the ultrathin oxide film to be formed hardly changes when the time during which the crystalline substrate 10 is immersed in the chemical solution is longer than a certain time. In addition, since this fixed time changes with chemical | medical solutions, what is necessary is just to set suitably with the kind and temperature of a chemical | medical solution.
 また、前記薬液の種類が、硝酸、オゾン溶解水、過酸化水素水、塩酸及び過酸化水素水の混合溶液、硫酸及び過酸化水素水の混合溶液、アンモニア及び過酸化水素水の混合溶液、硫酸及び硝酸の混合溶液、過塩素酸、沸騰水から選ばれる少なくとも一つの薬液であることが好ましい。これらの薬液を用いることにより、膜厚が0.3~3nmの範囲の多様な厚さの極薄酸化膜を、高い膜厚制御性を以って形成できるからである。 The type of the chemical solution is nitric acid, ozone-dissolved water, hydrogen peroxide solution, mixed solution of hydrochloric acid and hydrogen peroxide solution, mixed solution of sulfuric acid and hydrogen peroxide solution, mixed solution of ammonia and hydrogen peroxide solution, sulfuric acid And at least one chemical solution selected from a mixed solution of nitric acid, perchloric acid, and boiling water. This is because by using these chemical solutions, ultrathin oxide films having various thicknesses in the range of 0.3 to 3 nm can be formed with high film thickness controllability.
 また、前記不活性ガスは、窒素、アルゴン、ネオン、水素またはそれらの混合ガスから選ばれる少なくとも一つの気体であることが望ましい。これらの不活性ガスを用いて熱処理を行った場合、加熱によって酸化膜に新たな酸化が生じることがないためである。このため、熱処理における酸化膜の膜厚の変化を防ぐことができる。 The inert gas is preferably at least one gas selected from nitrogen, argon, neon, hydrogen, or a mixed gas thereof. This is because, when heat treatment is performed using these inert gases, new oxidation does not occur in the oxide film due to heating. For this reason, a change in the thickness of the oxide film during the heat treatment can be prevented.
 また、熱処理における不活性ガスの加熱温度は500~1200℃の範囲であることが望ましい。この温度範囲で酸化膜を加熱することにより、酸化膜の膜質が向上し、リーク電流密度を減少させることができる。
 以上により、シリコンからなる結晶性基板10の表面に酸化膜(酸化シリコン層20)が形成される。
Further, the heating temperature of the inert gas in the heat treatment is desirably in the range of 500 to 1200 ° C. By heating the oxide film in this temperature range, the quality of the oxide film can be improved and the leakage current density can be reduced.
Thus, an oxide film (silicon oxide layer 20) is formed on the surface of the crystalline substrate 10 made of silicon.
 なお、上記酸化膜を結晶性基板10の片面(一方の面。例えば表面10b)にのみ形成する場合は、例えば、結晶性基板10の非成膜面(他方の面。例えば表面10a)をマスクして成膜する方法や、酸化膜が両面に形成された結晶性基板10の非成膜面(他方の面)の酸化膜のみをウェットエッチング(エッチャントで濡らしたローラーで片面塗布など)で除去する方法が用いられる。 When the oxide film is formed only on one surface (one surface, for example, the surface 10b) of the crystalline substrate 10, for example, the non-film-formed surface (the other surface, for example, the surface 10a) of the crystalline substrate 10 is masked. And the oxide film on the non-film-formed surface (the other surface) of the crystalline substrate 10 on which the oxide film is formed on both sides is removed by wet etching (single-side coating with a roller wetted with an etchant). Is used.
 次いで、第一半導体層11と第二半導体層12を形成する。なお、第一半導体層11と第二半導体層12との形成前に酸化シリコン層20(第一の酸化シリコン層20a)の表面を、所望のプロセスガスからなるプラズマに曝す処理(以下、「プラズマ処理」とも呼ぶ)を行ってもよい。
 第一半導体層11あるいは第二半導体層12がp型半導体の場合には、プラズマ処理のプロセスガスとしてボロン(B)を含むガス(例えば、B)などが用いられる。一方、第一半導体層11あるいは第二半導体層12がn型半導体の場合には、プロセスガスとしてリン(P)を含むガス(例えば、PH)などが用いられる。
 このように、酸化膜(第一の酸化シリコン層20a)の表面に対して、所望のプラズマに曝す処理を施すことによって、酸化膜(第一の酸化シリコン層20a)のプラズマ処理された表面と、その表面に形成される第一半導体層11あるいは第二半導体層12との間の電気的な障壁が低下する。このため、酸化膜(第一の酸化シリコン層20a)表面と、第一半導体層11あるいは第二半導体層12との間の整流性が高くなり、電荷の流れがよりスムーズとなる。これにより、発電効率の向上がもたらされる。換言すると、酸化膜(第一の酸化シリコン層20a)の表面を所望のプラズマに曝す処理は、発電効率の向上に寄与する。
Next, the first semiconductor layer 11 and the second semiconductor layer 12 are formed. In addition, before the formation of the first semiconductor layer 11 and the second semiconductor layer 12, the surface of the silicon oxide layer 20 (first silicon oxide layer 20a) is exposed to plasma made of a desired process gas (hereinafter referred to as “plasma”). Also referred to as “processing”.
When the first semiconductor layer 11 or the second semiconductor layer 12 is a p-type semiconductor, a gas (for example, B 2 H 6 ) containing boron (B) is used as a process gas for plasma treatment. On the other hand, when the first semiconductor layer 11 or the second semiconductor layer 12 is an n-type semiconductor, a gas containing phosphorus (P) (for example, PH 3 ) or the like is used as a process gas.
In this way, by subjecting the surface of the oxide film (first silicon oxide layer 20a) to a desired plasma, the plasma-treated surface of the oxide film (first silicon oxide layer 20a) The electrical barrier between the first semiconductor layer 11 or the second semiconductor layer 12 formed on the surface is lowered. For this reason, the rectification between the surface of the oxide film (first silicon oxide layer 20a) and the first semiconductor layer 11 or the second semiconductor layer 12 becomes high, and the flow of charge becomes smoother. As a result, power generation efficiency is improved. In other words, the process of exposing the surface of the oxide film (first silicon oxide layer 20a) to desired plasma contributes to the improvement of power generation efficiency.
 次に、結晶性基板10の表面10aに、例えばCVD法を用いた成膜処理を施すことにより、第一半導体層11を形成する。
 次いで、酸化シリコン層20が形成された結晶性基板10の裏面10bに、例えばCVD法を用いた成膜処理を施すことにより、第二半導体層12を形成する。
Next, the first semiconductor layer 11 is formed on the surface 10a of the crystalline substrate 10 by performing a film forming process using, for example, a CVD method.
Next, the second semiconductor layer 12 is formed by performing a film forming process using, for example, a CVD method on the back surface 10b of the crystalline substrate 10 on which the silicon oxide layer 20 is formed.
 次いで、スパッタ法を用いた成膜処理を、第一半導体層11表面及び第二半導体層12表面に施す。これにより第一半導体層11の表面1α側に透明導電膜13、第二半導体層12の裏面1β側に透明導電膜15がそれぞれ形成される。
 そして、透明導電膜13と透明導電膜15とに、スパッタ法や印刷法あるいは塗布法を用いた成膜処理を施す。以上により、第一電極14と第二電極16とが形成される。
Next, a film formation process using a sputtering method is performed on the surface of the first semiconductor layer 11 and the surface of the second semiconductor layer 12. As a result, the transparent conductive film 13 is formed on the front surface 1α side of the first semiconductor layer 11, and the transparent conductive film 15 is formed on the back surface 1β side of the second semiconductor layer 12.
Then, a film forming process using a sputtering method, a printing method, or a coating method is performed on the transparent conductive film 13 and the transparent conductive film 15. Thus, the first electrode 14 and the second electrode 16 are formed.
 そして、白色塗料を利用する塗布法を用いて、第二電極16上に成膜処理を施す。これにより白色塗膜17が形成される。
 以上のようにして、図1に示したような結晶太陽電池1A(1)が得られる。
And the film-forming process is performed on the 2nd electrode 16 using the apply | coating method using a white coating material. Thereby, the white coating film 17 is formed.
As described above, a crystalline solar cell 1A (1) as shown in FIG. 1 is obtained.
 <第二実施形態>
 以下、第二実施形態の結晶太陽電池1B(1)の製造方法について説明する。
 図2は、本実施形態の太陽電電池1B(1)の一構成例を模式的に示す断面図である。なお、以下の説明では、上述した第一実施形態と異なる部分について主に説明し、第一実施形態と同様の部分については説明を省略する。
<Second embodiment>
Hereinafter, the manufacturing method of crystalline solar cell 1B (1) of 2nd embodiment is demonstrated.
FIG. 2 is a cross-sectional view schematically showing a configuration example of the solar battery 1B (1) of the present embodiment. In the following description, portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
 上述した第一実施形態では、結晶性基板10の片面(一方の面。例えば表面10b)にのみ酸化膜(第一の酸化シリコン層20a)を形成したが、本実施形態の結晶太陽電池1B(1)の製造方法では、結晶性基板10の両面(表面10a、10b)にそれぞれ配された酸化シリコン層20(第一の酸化シリコン層20a、第二の酸化シリコン層20b)を形成する。ここでは例えば、表面10bに第一の酸化シリコン層20aを設け、表面10aに第二の酸化シリコン層20bを設けた例を示す。
 このように、結晶性基板10と前記第一半導体層11との間、及び前記結晶性基板10と前記第二半導体層12との間の双方に、それぞれ酸化シリコン層20(第一の酸化シリコン層20a、第二の酸化シリコン層20b)を形成することで、より多くの高エネルギーのキャリアを収集できる。このため、光電変換効率をさらに高めることが可能となる。
In the first embodiment described above, the oxide film (first silicon oxide layer 20a) is formed only on one surface (one surface, for example, the surface 10b) of the crystalline substrate 10, but the crystalline solar cell 1B ( In the manufacturing method 1), silicon oxide layers 20 (first silicon oxide layer 20a and second silicon oxide layer 20b) are formed on both surfaces ( surfaces 10a and 10b) of the crystalline substrate 10, respectively. Here, for example, an example is shown in which the first silicon oxide layer 20a is provided on the surface 10b and the second silicon oxide layer 20b is provided on the surface 10a.
Thus, the silicon oxide layer 20 (first silicon oxide layer) is formed between the crystalline substrate 10 and the first semiconductor layer 11 and between the crystalline substrate 10 and the second semiconductor layer 12, respectively. By forming the layer 20a and the second silicon oxide layer 20b), more high energy carriers can be collected. For this reason, it is possible to further increase the photoelectric conversion efficiency.
 <第三実施形態>
 以下、第三実施形態の結晶太陽電池1C(1)の製造方法について説明する。
 図3は、本実施形態の太陽電電池1C(1)の一構成例を模式的に示す断面図である。なお、以下の説明では、上述した第一実施形態と異なる部分について主に説明し、第一実施形態と同様の部分については説明を省略する。
<Third embodiment>
Hereinafter, the manufacturing method of crystalline solar cell 1C (1) of 3rd embodiment is demonstrated.
FIG. 3 is a cross-sectional view schematically showing a configuration example of the solar battery 1C (1) of the present embodiment. In the following description, portions different from the above-described first embodiment will be mainly described, and description of portions similar to the first embodiment will be omitted.
 上述した第一実施形態では、前記第二半導体層12上に透明導電膜15を形成し、この透明導電膜15上に、くし形の第一電極16を形成した。これに対し、本実施形態の結晶太陽電池1C(1)の製造方法では、裏面電極16を、第二半導体層12の裏面1β側の全面を覆うように形成する。 In the first embodiment described above, the transparent conductive film 15 is formed on the second semiconductor layer 12, and the comb-shaped first electrode 16 is formed on the transparent conductive film 15. On the other hand, in the manufacturing method of the crystalline solar cell 1C (1) of the present embodiment, the back electrode 16 is formed so as to cover the entire surface of the second semiconductor layer 12 on the back surface 1β side.
 <第四実施形態>
 以下、第四実施形態の結晶太陽電池1D(1)の製造方法について説明する。
 図4は、本実施形態の結晶太陽電池1D(1)の一構成例を模式的に示す断面図である。なお、以下の説明では、上述した第二実施形態と異なる部分について主に説明し、第二実施形態と同様の部分については説明を省略する。
<Fourth embodiment>
Hereinafter, the manufacturing method of crystalline solar cell 1D (1) of 4th embodiment is demonstrated.
FIG. 4 is a cross-sectional view schematically showing a configuration example of the crystalline solar cell 1D (1) of the present embodiment. In the following description, portions different from the above-described second embodiment will be mainly described, and description of portions similar to the second embodiment will be omitted.
 上述した第二実施形態では、酸化シリコン層20(第一の酸化シリコン層20a、第二の酸化シリコン層20b)を、結晶性基板10両面(表面10a、10b)を覆うように形成した。これに対し、本実施形態の結晶太陽電池1D(1)の製造方法では、酸化シリコン層20(第三の酸化シリコン層20c)を、結晶性基板10の側面10cを覆うように形成する。
 このように結晶性基板10の側面10cにも、第一の酸化シリコン層20a、および第二の酸化シリコン層20bと一体的に形成された第三の酸化シリコン層20cを配することにより、結晶性基板10の表面欠陥が更に少なくなる。このため、光電変換効率をさらに高めることが可能となる。
In the second embodiment described above, the silicon oxide layer 20 (first silicon oxide layer 20a, second silicon oxide layer 20b) is formed so as to cover both surfaces ( surfaces 10a, 10b) of the crystalline substrate 10. On the other hand, in the manufacturing method of the crystalline solar cell 1D (1) of the present embodiment, the silicon oxide layer 20 (third silicon oxide layer 20c) is formed so as to cover the side surface 10c of the crystalline substrate 10.
As described above, the first silicon oxide layer 20a and the third silicon oxide layer 20c formed integrally with the second silicon oxide layer 20b are also disposed on the side surface 10c of the crystalline substrate 10, thereby forming a crystal. The surface defects of the conductive substrate 10 are further reduced. For this reason, it is possible to further increase the photoelectric conversion efficiency.
 表1は、上述した酸化シリコン層20を備えた各種構成の結晶太陽電池1について、発電効率を調べた結果である。
 表1の「酸化シリコン層20」欄において、「上面部」とは、結晶性基板10の表面10a、すなわち結晶性基板10と第一半導体層11との間に酸化シリコン層20を設けた場合を示す。また、「下面部」とは、結晶性基板10の表面10b、すなわち結晶性基板10と第二半導体層12との間に酸化シリコン層20を設けた場合を示す。そして、「側面部」とは結晶性基板10の側面10cに酸化シリコン層20を設けた場合を示す。○印は、酸化シリコン層20を設けたことを示し、×印は酸化シリコン層20を設けなかったことを示す。
 また、表1の「プラズマ処理」欄において、○印は所望のプラズマ処理を施したことを意味し、×印はこのプラズマ処理を行わなかったことを意味する。
Table 1 shows the results of examining the power generation efficiency of the crystalline solar cell 1 having various configurations including the silicon oxide layer 20 described above.
In the “Silicon oxide layer 20” column of Table 1, “upper surface portion” refers to the surface 10 a of the crystalline substrate 10, that is, when the silicon oxide layer 20 is provided between the crystalline substrate 10 and the first semiconductor layer 11. Indicates. The “lower surface portion” refers to the case where the silicon oxide layer 20 is provided between the surface 10 b of the crystalline substrate 10, that is, between the crystalline substrate 10 and the second semiconductor layer 12. The “side surface portion” refers to the case where the silicon oxide layer 20 is provided on the side surface 10 c of the crystalline substrate 10. A circle indicates that the silicon oxide layer 20 is provided, and a cross indicates that the silicon oxide layer 20 is not provided.
Further, in the “plasma treatment” column of Table 1, “◯” means that a desired plasma treatment was performed, and “x” means that this plasma treatment was not performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、以下の点が明らかとなった。
(1)従来の構成(本発明に係る酸化シリコン層20が全く備えられていない)の結晶太陽電池の発電効率を調べた場合(実験例1)に比べて、結晶性基板10の少なくとも一部(上面部、下面部、側面部のいずれかの部分)に酸化シリコン層20が設けられた結晶太陽電池1の発電効率が向上した。
(2)実験例2、3、4、5の間では、番号が大きくなるほど、発電効率も高くなる傾向があることが分かった。また、実験例3、4、5より、結晶性基板10が酸化シリコン層20で広く覆われているほど、発電効率が高くなる傾向があることが分かった。
(3)実験例5に比べて実験例6の発電効率が増えたことから、プラズマ処理が発電効率の増加に寄与することが分かった。
From Table 1, the following points became clear.
(1) At least a part of the crystalline substrate 10 as compared with the case where the power generation efficiency of the crystal solar cell having the conventional configuration (the silicon oxide layer 20 according to the present invention is not provided at all) is examined (Experimental Example 1). The power generation efficiency of the crystalline solar cell 1 in which the silicon oxide layer 20 was provided on any one of the upper surface portion, the lower surface portion, and the side surface portion was improved.
(2) It was found that among the experimental examples 2, 3, 4, and 5, the power generation efficiency tends to increase as the number increases. In addition, from Experimental Examples 3, 4, and 5, it was found that the power generation efficiency tends to increase as the crystalline substrate 10 is more widely covered with the silicon oxide layer 20.
(3) Since the power generation efficiency of Experimental Example 6 increased compared to Experimental Example 5, it was found that plasma treatment contributed to the increase of power generation efficiency.
 以上においては、本発明の結晶太陽電池1において、結晶性基板10と第一半導体層11との間、又は結晶性基板10と第二半導体層12との間に、酸化シリコン層20(SiOx、ただし、0<x≦2)を設けた構成例について詳細に説明したが、図1~図4において酸化シリコン層20が設けられる位置に、酸化シリコンに代えて、炭化シリコン(SiCy又はSiCy:H、ただし、0<y≦1)からなる炭化シリコン層や、酸化アルミニウム(AlOz又はAlOz:H、ただし、0<z≦1.5)からなる酸化アルミニウム層を設けても、同様の作用・効果を得ることができる。すなわち、結晶性基板10表面に炭化シリコン層や酸化アルミニウム層を設けても、界面準位密度を減少させることができる。このため、界面において、バンドの湾曲によるパッシベーション効果が生じる。以上により、光電変換特性を向上させた結晶シリコン太陽電池(結晶太陽電池1)を提供することができる。
 また、酸化シリコン層20に代えて炭化シリコン層や酸化アルミニウム層を設けた場合にも、上述したプラズマ処理が有効であり、発電効率の向上をもたらすことができる。
In the above, in the crystalline solar cell 1 of the present invention, between the crystalline substrate 10 and the first semiconductor layer 11 or between the crystalline substrate 10 and the second semiconductor layer 12, the silicon oxide layer 20 (SiOx, However, although the configuration example provided with 0 <x ≦ 2) has been described in detail, silicon carbide (SiCy or SiCy: H) is used instead of silicon oxide at the position where the silicon oxide layer 20 is provided in FIGS. However, even if a silicon carbide layer composed of 0 <y ≦ 1) or an aluminum oxide layer composed of aluminum oxide (AlOz or AlOz: H, where 0 <z ≦ 1.5) is provided, the same operation and effect are achieved. Can be obtained. That is, even when a silicon carbide layer or an aluminum oxide layer is provided on the surface of the crystalline substrate 10, the interface state density can be reduced. For this reason, the passivation effect by the curvature of a band arises in an interface. As described above, a crystalline silicon solar cell (crystalline solar cell 1) with improved photoelectric conversion characteristics can be provided.
In addition, when a silicon carbide layer or an aluminum oxide layer is provided instead of the silicon oxide layer 20, the above-described plasma treatment is effective, and power generation efficiency can be improved.
 以上、本発明の結晶太陽電池について説明してきたが、本発明はこれらの例に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。 The crystal solar cell of the present invention has been described above, but the present invention is not limited to these examples, and can be appropriately changed without departing from the spirit of the invention.
 本発明は、結晶太陽電池に広く適用可能である。 The present invention is widely applicable to crystal solar cells.
 1,1A,1B,1C,1D  結晶太陽電池
 10a,10b  表面
 10c  側面
 11  第一半導体層
 12  第二半導体層
 13  透明導電膜
 14  第一電極
 15  透明導電膜
 16  第二電極
 17  白色塗膜
 20  酸化シリコン層
 20a  第一の酸化シリコン層
 20b  第二の酸化シリコン層
 20c  第三の酸化シリコン層
1,1A, 1B, 1C, 1D Crystalline solar cell 10a, 10b Surface 10c Side surface 11 First semiconductor layer 12 Second semiconductor layer 13 Transparent conductive film 14 First electrode 15 Transparent conductive film 16 Second electrode 17 White coating film 20 Oxidation Silicon layer 20a First silicon oxide layer 20b Second silicon oxide layer 20c Third silicon oxide layer

Claims (26)

  1.  p型若しくはn型の単結晶又は多結晶シリコンを含み、光電変換機能を有する、平板状の結晶性基板と;
     前記結晶性基板の受光面側に配され、非晶質又は微結晶シリコンを含む第一半導体層と;
     前記結晶性基板の前記受光面と反対の裏面側に配され、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層と;
     前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に配された第一の酸化シリコン層と;
    を有することを特徴とする結晶太陽電池。
    a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function;
    A first semiconductor layer disposed on a light-receiving surface side of the crystalline substrate and containing amorphous or microcrystalline silicon;
    A second semiconductor layer disposed on a back surface opposite to the light receiving surface of the crystalline substrate and including amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer;
    A first silicon oxide layer disposed between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer;
    A crystalline solar cell comprising:
  2.  前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち、他方に第二の酸化シリコン層が配されていることを特徴とする請求項1に記載の結晶太陽電池。 The second silicon oxide layer is disposed on the other side between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. Item 2. The crystalline solar cell according to Item 1.
  3.  前記第一酸化シリコン層の膜厚が10Å~30Åであることを特徴とする請求項1に記載の結晶太陽電池。 2. The crystalline solar cell according to claim 1, wherein the thickness of the first silicon oxide layer is 10 to 30 mm.
  4.  前記結晶性基板の側面が第三の酸化シリコン層で覆われていることを特徴とする請求項1に記載の結晶太陽電池。 The crystalline solar cell according to claim 1, wherein a side surface of the crystalline substrate is covered with a third silicon oxide layer.
  5.  前記第一半導体層の前記受光面側及び前記第二半導体層の前記裏面側の少なくとも一方に配された透明導電膜と;
     前記透明導電膜上に配されたくし型電極と;
    を更に備えていること、を特徴とする請求項1に記載の結晶太陽電池。
    A transparent conductive film disposed on at least one of the light receiving surface side of the first semiconductor layer and the back surface side of the second semiconductor layer;
    A comb-shaped electrode disposed on the transparent conductive film;
    The crystal solar cell according to claim 1, further comprising:
  6.  前記結晶性基板の前記裏面側から透過する光を前記結晶性基板側へ反射する白色塗膜又は反射層が、前記第二半導体層の前記裏面側に設けられていることを特徴とする請求項1に記載の結晶太陽電池。 The white coating film or the reflective layer that reflects light transmitted from the back surface side of the crystalline substrate to the crystalline substrate side is provided on the back surface side of the second semiconductor layer. 2. The crystalline solar cell according to 1.
  7.  裏面電極が前記第二半導体層の前記裏面側を覆うように配されていることを特徴とする請求項1に記載の結晶太陽電池。 2. The crystalline solar cell according to claim 1, wherein a back electrode is disposed so as to cover the back side of the second semiconductor layer.
  8.  光電変換機能を有し、p型若しくはn型の単結晶又は多結晶シリコンを含む平板状の結晶性基板を具備する結晶太陽電池の製造方法であって;
     前記結晶性基板の受光面側、あるいはこの受光面と反対の裏面側に第一の酸化シリコン層を形成する工程と;
     非晶質又は微結晶シリコンを含む第一半導体層を前記受光面側に形成し、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層を前記裏面側に形成する工程と;
    を備えていることを特徴とする結晶太陽電池の製造方法。
    A method for producing a crystalline solar cell having a planar crystalline substrate having a photoelectric conversion function and containing p-type or n-type single crystal or polycrystalline silicon;
    Forming a first silicon oxide layer on the light receiving surface side of the crystalline substrate or on the back surface side opposite to the light receiving surface;
    A first semiconductor layer containing amorphous or microcrystalline silicon is formed on the light receiving surface side, and a second semiconductor layer containing amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer is formed on the back surface side. Forming the step;
    A method for producing a crystalline solar cell, comprising:
  9.  前記第一の酸化シリコン層を10Å~30Åの膜厚で形成することを特徴とする請求項8に記載の結晶太陽電池の製造方法。 The method for producing a crystalline solar cell according to claim 8, wherein the first silicon oxide layer is formed with a thickness of 10 to 30 mm.
  10.  前記第一の酸化シリコン層を形成する工程と、前記第一半導体層および前記第二半導体層を形成する工程との間に、前記第一の酸化シリコン層の表面を所望のプロセスガスを含むプラズマに曝す工程を備えることを特徴とする請求項8に記載の結晶太陽電池の製造方法。 Plasma including a desired process gas on the surface of the first silicon oxide layer between the step of forming the first silicon oxide layer and the step of forming the first semiconductor layer and the second semiconductor layer. The method for producing a crystalline solar cell according to claim 8, further comprising a step of exposing to water.
  11.  p型若しくはn型の単結晶又は多結晶シリコンを含み、光電変換機能を有する、平板状の結晶性基板と;
     前記結晶性基板の受光面側に配され、非晶質又は微結晶シリコンを含む第一半導体層と;
     前記結晶性基板の前記受光面と反対の裏面側に配され、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層と;
     前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に配された第一の炭化シリコン層と;
    を有することを特徴とする結晶太陽電池。
    a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function;
    A first semiconductor layer disposed on a light-receiving surface side of the crystalline substrate and containing amorphous or microcrystalline silicon;
    A second semiconductor layer disposed on a back surface opposite to the light receiving surface of the crystalline substrate and including amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer;
    A first silicon carbide layer disposed between one of the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer;
    A crystalline solar cell comprising:
  12.  前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち、他方に第二の炭化シリコン層が配されていることを特徴とする請求項11に記載の結晶太陽電池。 The second silicon carbide layer is disposed on the other side between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. Item 12. The crystalline solar cell according to Item 11.
  13.  前記結晶性基板の側面が第三の炭化シリコン層で覆われていることを特徴とする請求項11に記載の結晶太陽電池。 The crystalline solar cell according to claim 11, wherein a side surface of the crystalline substrate is covered with a third silicon carbide layer.
  14.  前記第一半導体層の前記受光面側及び前記第二半導体層の前記裏面側の少なくとも一方に配された透明導電膜と;
     前記透明導電膜上に配されたくし型電極と;
    を更に備えていることを特徴とする請求項11に記載の結晶太陽電池。
    A transparent conductive film disposed on at least one of the light receiving surface side of the first semiconductor layer and the back surface side of the second semiconductor layer;
    A comb-shaped electrode disposed on the transparent conductive film;
    The crystal solar cell according to claim 11, further comprising:
  15.  前記結晶性基板の前記裏面側から透過する光を前記結晶性基板側へ反射する白色塗膜又は反射層が、前記第二半導体層の前記裏面側に設けられていることを特徴とする請求項11に記載の結晶太陽電池。 The white coating film or the reflective layer that reflects light transmitted from the back surface side of the crystalline substrate to the crystalline substrate side is provided on the back surface side of the second semiconductor layer. 11. The crystalline solar cell according to 11.
  16.  裏面電極が前記第二半導体層の前記裏面側を覆うように配されていることを特徴とする請求項11に記載の結晶太陽電池。 The crystal solar cell according to claim 11, wherein a back electrode is disposed so as to cover the back side of the second semiconductor layer.
  17.  光電変換機能を有し、p型若しくはn型の単結晶又は多結晶シリコンを含む平板状の結晶性基板を具備する結晶太陽電池の製造方法であって;
     前記結晶性基板の受光面側、あるいはこの受光面と反対の裏面側に炭化シリコン層を形成する工程と;
     前記結晶性基板と逆又は同導電型の非晶質又は微結晶シリコンからなる第一半導体層を前記受光面側に形成し、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンからなる第二半導体層を前記裏面側に形成する工程と;
    を備えていることを特徴とする結晶太陽電池の製造方法。
    A method for producing a crystalline solar cell having a planar crystalline substrate having a photoelectric conversion function and containing p-type or n-type single crystal or polycrystalline silicon;
    Forming a silicon carbide layer on the light-receiving surface side of the crystalline substrate or on the back surface side opposite to the light-receiving surface;
    A first semiconductor layer made of amorphous or microcrystalline silicon opposite to or the same conductivity type as the crystalline substrate is formed on the light-receiving surface side, and amorphous or microcrystalline silicon opposite to the first semiconductor layer. Forming a second semiconductor layer comprising: on the back side;
    A method for producing a crystalline solar cell, comprising:
  18.  前記炭化シリコン層を形成する工程と、前記第一半導体層および前記第二半導体層を形成する工程との間に、前記炭化シリコン層の表面を所望のプロセスガスからなるプラズマに曝す処理を行う工程を備えることを特徴とする請求項17に記載の結晶太陽電池の製造方法。 Between the step of forming the silicon carbide layer and the step of forming the first semiconductor layer and the second semiconductor layer, a step of subjecting the surface of the silicon carbide layer to plasma made of a desired process gas The manufacturing method of the crystalline solar cell of Claim 17 characterized by the above-mentioned.
  19.  p型若しくはn型の単結晶又は多結晶シリコンを含み、光電変換機能を有しする平板状の結晶性基板と;
     前記結晶性基板の受光面側に配され、非晶質又は微結晶シリコンを含む第一半導体層と;
     前記結晶性基板の前記受光面と反対の裏面側に配され、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンを含む第二半導体層と;
    を具備し、
     前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち一方に配された第一の酸化アルミニウム層と;
    を有することを特徴とする結晶太陽電池。
    a flat crystalline substrate containing p-type or n-type single crystal or polycrystalline silicon and having a photoelectric conversion function;
    A first semiconductor layer disposed on a light-receiving surface side of the crystalline substrate and containing amorphous or microcrystalline silicon;
    A second semiconductor layer disposed on a back surface opposite to the light receiving surface of the crystalline substrate and including amorphous or microcrystalline silicon having a conductivity type opposite to that of the first semiconductor layer;
    Comprising
    A first aluminum oxide layer disposed between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer;
    A crystalline solar cell comprising:
  20.  前記結晶性基板と前記第一半導体層との間、及び前記結晶性基板と前記第二半導体層との間のうち、他方に第二の酸化アルミニウム層が配されていることを特徴とする請求項19に記載の結晶太陽電池。 The second aluminum oxide layer is disposed on the other side between the crystalline substrate and the first semiconductor layer and between the crystalline substrate and the second semiconductor layer. Item 20. The crystalline solar cell according to Item 19.
  21.  前記結晶性基板の側面が第三の酸化アルミニウム層で覆われていることを特徴とする請求項19に記載の結晶太陽電池。 The crystal solar cell according to claim 19, wherein a side surface of the crystalline substrate is covered with a third aluminum oxide layer.
  22.  前記第一半導体層の前記受光面側、及び前記第二半導体層の前記裏面側の少なくとも一方に配された透明導電膜と;
     前記透明導電膜上に配されたくし型電極と;
    を更に備えていることを特徴とする請求項19に記載の結晶太陽電池。
    A transparent conductive film disposed on at least one of the light receiving surface side of the first semiconductor layer and the back surface side of the second semiconductor layer;
    A comb-shaped electrode disposed on the transparent conductive film;
    The crystal solar cell according to claim 19, further comprising:
  23.  前記結晶性基板の前記裏面側から透過する光を前記結晶性基板側へ反射する白色塗膜又は反射層が、前記第二半導体層の前記裏面側に設けられていることを特徴とする請求項19に記載の結晶太陽電池。 The white coating film or the reflective layer that reflects light transmitted from the back surface side of the crystalline substrate to the crystalline substrate side is provided on the back surface side of the second semiconductor layer. 19. The crystalline solar cell according to 19.
  24.  裏面電極が前記第二半導体層の前記裏面側を覆うように配されていることを特徴とする請求項19に記載の結晶太陽電池。 The crystal solar cell according to claim 19, wherein a back electrode is arranged so as to cover the back side of the second semiconductor layer.
  25.  光電変換機能を有し、p型若しくはn型の単結晶又は多結晶シリコンを含む平板状の結晶性基板を具備する結晶太陽電池の製造方法であって;
     前記結晶性基板の受光面側、あるいはこの受光面と反対の裏面側に酸化アルミニウム層を形成する工程と;
     前記結晶性基板と逆又は同導電型の非晶質又は微結晶シリコンからなる第一半導体層を前記受光面側に形成し、前記第一半導体層と逆導電型の非晶質又は微結晶シリコンからなる第二半導体層を前記裏面側に形成する工程と;
    を備えていることを特徴とする結晶太陽電池の製造方法。
    A method for producing a crystalline solar cell having a planar crystalline substrate having a photoelectric conversion function and containing p-type or n-type single crystal or polycrystalline silicon;
    Forming an aluminum oxide layer on the light receiving surface side of the crystalline substrate or on the back surface opposite to the light receiving surface;
    A first semiconductor layer made of amorphous or microcrystalline silicon opposite to or the same conductivity type as the crystalline substrate is formed on the light-receiving surface side, and amorphous or microcrystalline silicon opposite to the first semiconductor layer. Forming a second semiconductor layer comprising: on the back side;
    A method for producing a crystalline solar cell, comprising:
  26.  前記酸化アルミニウム層を形成する工程と、前記第一半導体層および前記第二半導体層を形成する工程との間に、前記酸化アルミニウム層の表面を所望のプロセスガスからなるプラズマに曝す処理を行う工程を備えることを特徴とする請求項25に記載の結晶太陽電池の製造方法。 Between the step of forming the aluminum oxide layer and the step of forming the first semiconductor layer and the second semiconductor layer, a step of exposing the surface of the aluminum oxide layer to plasma made of a desired process gas The method for producing a crystalline solar cell according to claim 25, comprising:
PCT/JP2011/070819 2010-09-13 2011-09-13 Crystalline solar cell and manufacturing method therefor WO2012036146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010204734A JP2012060080A (en) 2010-09-13 2010-09-13 Crystal solar battery and method for producing the same
JP2010-204734 2010-09-13

Publications (1)

Publication Number Publication Date
WO2012036146A1 true WO2012036146A1 (en) 2012-03-22

Family

ID=45831605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070819 WO2012036146A1 (en) 2010-09-13 2011-09-13 Crystalline solar cell and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP2012060080A (en)
TW (1) TW201218401A (en)
WO (1) WO2012036146A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015060437A1 (en) * 2013-10-25 2017-03-09 シャープ株式会社 Photoelectric conversion element, photoelectric conversion module, and photovoltaic power generation system
US10749069B2 (en) 2014-11-04 2020-08-18 Lg Electronics Inc. Solar cell and method for manufacturing the same
CN112349802A (en) * 2020-10-27 2021-02-09 福建新峰二维材料科技有限公司 Manufacturing method of ingot casting single crystal or polycrystalline amorphous silicon heterojunction solar cell
CN112436063A (en) * 2020-11-13 2021-03-02 福建新峰二维材料科技有限公司 Preparation method of cast monocrystalline silicon heterojunction solar cell
US11133426B2 (en) 2014-11-28 2021-09-28 Lg Electronics Inc. Solar cell and method for manufacturing the same
US11329172B2 (en) 2013-04-03 2022-05-10 Lg Electronics Inc. Solar cell
US11462654B2 (en) 2015-06-30 2022-10-04 Lg Electronics Inc. Solar cell and method of manufacturing the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112292B2 (en) 2012-03-16 2015-08-18 Makita Corporation Terminal structure
US9054255B2 (en) 2012-03-23 2015-06-09 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
JP2014075418A (en) * 2012-10-03 2014-04-24 Ulvac Japan Ltd Silicon substrate for solar cell and manufacturing method therefor, and solar cell
US20160284918A1 (en) * 2013-03-19 2016-09-29 Choshu Industry Co., Ltd. Photovoltaic element and manufacturing method therefor
JP5938077B2 (en) * 2013-10-04 2016-06-22 旭化成株式会社 Solar cell
US9337369B2 (en) * 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
US20150380581A1 (en) * 2014-06-27 2015-12-31 Michael C. Johnson Passivation of light-receiving surfaces of solar cells with crystalline silicon
US20160072000A1 (en) * 2014-09-05 2016-03-10 David D. Smith Front contact heterojunction process
JP2017017219A (en) * 2015-07-02 2017-01-19 株式会社アルバック solar battery
JP2017059763A (en) * 2015-09-18 2017-03-23 シャープ株式会社 Photoelectric conversion element and method of manufacturing the same
EP3422422A4 (en) * 2016-02-22 2019-02-27 Panasonic Intellectual Property Management Co., Ltd. Solar battery cell and method for manufacturing solar battery cell
WO2017154384A1 (en) * 2016-03-10 2017-09-14 株式会社カネカ Solar cell module
EP3496162B9 (en) * 2016-08-04 2021-10-20 Panasonic Intellectual Property Management Co., Ltd. Solar cell and method for producing solar cell
CN112002778B (en) * 2020-07-23 2022-10-04 隆基绿能科技股份有限公司 Silicon heterojunction solar cell and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192569A (en) * 1990-11-27 1992-07-10 Sharp Corp Solar battery
JPH08508368A (en) * 1993-10-11 1996-09-03 ユニヴェルシテ ドゥ ヌーシャテル アンスティチュ ドゥ ミクロテクニク Photovoltaic cells and methods for manufacturing photovoltaic cells
JPH11512886A (en) * 1995-10-05 1999-11-02 エバラ・ソーラー・インコーポレーテッド Self-aligned partially deep diffused emitter solar cells.
JP2001189478A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Semiconductor element and manufacturing method therefor
JP2002076409A (en) * 2000-09-05 2002-03-15 Sanyo Electric Co Ltd Photovoltaic device
JP2003142709A (en) * 2001-10-31 2003-05-16 Sharp Corp Laminated solar battery and method for manufacturing the same
JP2010153740A (en) * 2008-12-26 2010-07-08 Ulvac Japan Ltd Crystal solar battery and method of manufacturing crystal solar battery
JP2010177264A (en) * 2009-01-27 2010-08-12 Kyocera Corp Solar battery element and manufacturing method for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613461A (en) * 1992-06-25 1994-01-21 Sharp Corp Manufacture of photoelectric converting apparatus
JP2010123859A (en) * 2008-11-21 2010-06-03 Kyocera Corp Solar battery element and production process of solar battery element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192569A (en) * 1990-11-27 1992-07-10 Sharp Corp Solar battery
JPH08508368A (en) * 1993-10-11 1996-09-03 ユニヴェルシテ ドゥ ヌーシャテル アンスティチュ ドゥ ミクロテクニク Photovoltaic cells and methods for manufacturing photovoltaic cells
JPH11512886A (en) * 1995-10-05 1999-11-02 エバラ・ソーラー・インコーポレーテッド Self-aligned partially deep diffused emitter solar cells.
JP2001189478A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Semiconductor element and manufacturing method therefor
JP2002076409A (en) * 2000-09-05 2002-03-15 Sanyo Electric Co Ltd Photovoltaic device
JP2003142709A (en) * 2001-10-31 2003-05-16 Sharp Corp Laminated solar battery and method for manufacturing the same
JP2010153740A (en) * 2008-12-26 2010-07-08 Ulvac Japan Ltd Crystal solar battery and method of manufacturing crystal solar battery
JP2010177264A (en) * 2009-01-27 2010-08-12 Kyocera Corp Solar battery element and manufacturing method for the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329172B2 (en) 2013-04-03 2022-05-10 Lg Electronics Inc. Solar cell
US11456391B2 (en) 2013-04-03 2022-09-27 Lg Electronics Inc. Solar cell
US11482629B2 (en) 2013-04-03 2022-10-25 Lg Electronics Inc. Solar cell
JPWO2015060437A1 (en) * 2013-10-25 2017-03-09 シャープ株式会社 Photoelectric conversion element, photoelectric conversion module, and photovoltaic power generation system
US10749069B2 (en) 2014-11-04 2020-08-18 Lg Electronics Inc. Solar cell and method for manufacturing the same
US11133426B2 (en) 2014-11-28 2021-09-28 Lg Electronics Inc. Solar cell and method for manufacturing the same
US11239379B2 (en) 2014-11-28 2022-02-01 Lg Electronics Inc. Solar cell and method for manufacturing the same
US11462654B2 (en) 2015-06-30 2022-10-04 Lg Electronics Inc. Solar cell and method of manufacturing the same
CN112349802A (en) * 2020-10-27 2021-02-09 福建新峰二维材料科技有限公司 Manufacturing method of ingot casting single crystal or polycrystalline amorphous silicon heterojunction solar cell
CN112436063A (en) * 2020-11-13 2021-03-02 福建新峰二维材料科技有限公司 Preparation method of cast monocrystalline silicon heterojunction solar cell

Also Published As

Publication number Publication date
TW201218401A (en) 2012-05-01
JP2012060080A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2012036146A1 (en) Crystalline solar cell and manufacturing method therefor
WO2005011002A1 (en) Silicon based thin film solar cell
EP2980861B1 (en) Solar cell
WO2012020682A1 (en) Crystalline silicon solar cell
JP2002057359A (en) Laminated solar battery
RU2456709C2 (en) Solar cell and method and apparatus for making said solar cell
JP5307688B2 (en) Crystalline silicon solar cell
JP4619388B2 (en) Thin film solar cell element and manufacturing method thereof
WO2014134515A1 (en) High-efficiency, low-cost silicon-zinc oxide heterojunction solar cells
Lee et al. Enhanced optical and electrical properties of ITO/Ag/AZO transparent conductors for photoelectric applications
JP4178513B2 (en) Method for forming conductive thin film having texture structure
CN110476256B (en) Solar cell, solar cell module, and method for manufacturing solar cell
WO2019138613A1 (en) Method for manufacturing solar cell
CN111403538A (en) Solar cell and preparation method thereof
JP2011077454A (en) Crystal silicon system solar cell and method of manufacturing the same
TWI447919B (en) Silicon based solar cell with a heterojunction structure and the manufacturing method thereof
Park et al. Influence on the haze effect of Si thin-film solar cell on multi-surface textures of periodic honeycomb glass
JP2011003639A (en) Crystal silicon-based solar cell and manufacturing method thereof
JP2012009598A (en) Crystal silicon based solar cell
JP5405923B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4618694B2 (en) Method for manufacturing tandem thin film solar cell
KR101134730B1 (en) Solar cell apparatus and method of fabricating the same
Cruz et al. Microstructural and optical properties of CSS and CBD-CdS thin films for photovoltaic solar cells
JP2002222969A (en) Laminated solar battery
JP5409675B2 (en) Thin film solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825148

Country of ref document: EP

Kind code of ref document: A1