WO2012035943A1 - Soldering device - Google Patents

Soldering device Download PDF

Info

Publication number
WO2012035943A1
WO2012035943A1 PCT/JP2011/069056 JP2011069056W WO2012035943A1 WO 2012035943 A1 WO2012035943 A1 WO 2012035943A1 JP 2011069056 W JP2011069056 W JP 2011069056W WO 2012035943 A1 WO2012035943 A1 WO 2012035943A1
Authority
WO
WIPO (PCT)
Prior art keywords
air curtain
printed circuit
unit
substrate
air
Prior art date
Application number
PCT/JP2011/069056
Other languages
French (fr)
Japanese (ja)
Inventor
崇史 杉原
井上 裕之
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to CN2011800067877A priority Critical patent/CN102714923B/en
Publication of WO2012035943A1 publication Critical patent/WO2012035943A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • B23K1/085Wave soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0646Solder baths
    • B23K3/0653Solder baths with wave generating means, e.g. nozzles, jets, fountains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3468Applying molten solder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/081Blowing of gas, e.g. for cooling or for providing heat during solder reflowing

Definitions

  • the present invention relates to a soldering apparatus having an air curtain area at a predetermined position and applicable to a jet soldering apparatus, a reflow apparatus or the like.
  • the jet soldering apparatus ejects molten solder to a component mounting portion of a printed circuit board, and solders the printed circuit board and the electronic component.
  • the reflow apparatus performs a soldering process on the electronic component and the printed board by performing a reflow process on the printed board on which the electronic component is placed by cream solder.
  • a jet soldering device when an electronic component is soldered to a predetermined surface of a printed circuit board, a jet soldering device, a reflow device, or the like is used.
  • a fluxer, a pre-heater, a jet soldering processing unit, a cooler, and the like are arranged at predetermined positions.
  • this jet soldering apparatus when an electronic component is soldered to a printed board, first, flux is applied to one surface of the printed board with a fluxer. Next, the printed circuit board is preheated with a preheater, the printed circuit board and the electronic component are soldered with a jet soldering tank, and the printed circuit board is cooled with a cooler. By these processes, the soldering is completed (see Patent Document 1).
  • Patent Document 2 discloses a soldering reflow furnace.
  • the soldering reflow furnace includes a cylindrical muffle, a heat insulating wall, a preheating heater, a reflow heater, a cooling device, and an air curtain.
  • a preheating heater, a reflow heater and a cooling device are arranged from the inlet side to the outlet side through a heat insulating wall.
  • Air curtains are provided on the inlet side and outlet side of the muffle, and nitrogen gas is introduced into the air curtain.
  • the air curtain functions to prevent outside air from flowing in from the entrance / exit of the muffle, prevent inflow of dust and the like into the interior, and prevent outflow of nitrogen gas from the inside of the muffle to the outside.
  • the inside of the muffle is sealed except for the carry-in part for carrying the printed circuit board and the carry-out part for carrying it out, and a nitrogen atmosphere is created by nitrogen gas blown from the air curtain.
  • a mesh belt is provided inside the muffle, and the printed circuit board is conveyed in a predetermined direction.
  • Patent Document 3 discloses a soldering method and a soldering apparatus.
  • This soldering apparatus includes a tunnel-type heating furnace and an air curtain, and performs a soldering process between workpieces such as an electronic component and a substrate.
  • the heating furnace has a nitrogen atmosphere chamber and a hydrogen atmosphere chamber, and an air curtain is provided at a portion serving as a work entrance / exit in the heating furnace.
  • the nitrogen atmosphere chamber is filled with nitrogen gas, and the workpieces are soldered.
  • the air curtain functions to prevent outside air from flowing in from the entrance / exit, to prevent inflow of dust and the like into the nitrogen atmosphere chamber, and to prevent outflow of nitrogen gas from the inside of the nitrogen atmosphere chamber to the outside.
  • the hydrogen atmosphere chamber is a room where the work can be taken in and out, arranged so as to be separated from the nitrogen atmosphere chamber.
  • the hydrogen atmosphere chamber is filled with hydrogen gas to reduce the workpiece.
  • Hydrogen gas is filled only in the hydrogen atmosphere chamber.
  • the conveyance mechanism continuously conveys the workpiece from the nitrogen atmosphere to the hydrogen atmosphere and from the hydrogen atmosphere to the nitrogen atmosphere. On the premise of this, the work that has been reduced in a hydrogen atmosphere is soldered in a nitrogen atmosphere.
  • soldering apparatus is configured in this way, a high-quality soldering process in which an oxide (oxide film) is removed can be performed.
  • the amount of hydrogen gas used can be reduced to the minimum amount necessary for the workpiece reduction process. This simplifies the structure of the soldering device, reduces the size, and improves the heating / cooling efficiency of the solder or workpiece.
  • Japanese Patent Laid-Open No. 2001-230538 (6th page, FIG. 1) Japanese Patent Laid-Open No. 01-118369 (page 3, Fig. 2) Japanese Patent Laid-Open No. 10-202362 (page 3, FIG. 1)
  • the air curtain is introduced into the carry-out portion of the jet soldering apparatus as seen in Patent Document 1 or the reflow furnace as seen in Patent Document 2 or Patent Document 3 or the like.
  • the air curtain found in Patent Document 2 or Patent Document 3 is applied as it is, it prevents outside air from flowing in from the carry-in part or the carry-out part of the apparatus, or dust or the like in an inert atmosphere chamber such as nitrogen. Inflow can be prevented.
  • the function of preventing the outflow of nitrogen (inert) gas from the inside of the inert atmosphere chamber to the outside that is, the function of blocking the atmosphere on the conveyance path in the air curtain area can be obtained as it is.
  • the air curtain area is always formed, the air forming the air curtain area is temporarily blocked by the printed circuit board surface as the printed circuit board passes through the air curtain area. For this reason, there is a problem that the air curtain is disturbed.
  • the tip portion blocks air blowing up on the front side of the air curtain area. So it causes turbulence. Even when the substrate passes through the air curtain area, the entire air curtain causes turbulence because the substrate blocks air blow-up. When the substrate is separated from the air curtain area, the rear end portion blocks air blowing up on the rear side of the air curtain area, which may cause turbulence.
  • a first soldering apparatus preheats a board on which an electronic component is attached, conveys the preheated board to a soldering processing unit, and An apparatus for soldering electronic components to a substrate.
  • This soldering apparatus is provided at a predetermined position of a transport path for transporting the substrate, and passes through the air curtain area with a blower mechanism that forms an air curtain area that blows gas on the transport path to block the atmosphere.
  • a control unit that controls the blower mechanism so as to send or stop the gas to the air curtain area in response to the passage timing of the substrate.
  • the control unit controls the air blowing mechanism so as to send or stop the gas to the air curtain area in accordance with the passage timing of the substrate passing through the air curtain area.
  • This control unit can be controlled so as to stop the blowing immediately before the substrate passes through the air curtain area, stop the blowing even while the substrate passes, and restart the blowing immediately after the substrate passes through the air curtain area. Therefore, generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the blower mechanism, and the substrate can pass through the air curtain area without generating turbulent flow. .
  • a soldering device is the soldering apparatus according to the first aspect, wherein the air blowing mechanism controlled by the control unit is rotatable in a main body portion having an intake port and an exhaust port at predetermined positions, and in the main body portion.
  • a fan unit that is engaged and blows out the gas sucked from the intake port from the exhaust port, and a drive unit that drives the fan unit.
  • a soldering device is the soldering apparatus according to the second aspect, wherein the control unit controls the driving unit to turn on the air and blows gas from the blower mechanism to the transport path to form the air curtain area.
  • the drive unit is controlled to be off to stop the blowing of gas from the blower mechanism to the transport path.
  • the second soldering apparatus wherein the substrate on which electronic components are attached is preheated, the preheated substrate is transported to a soldering processing unit, and the electronic components are soldered to the substrate. It is.
  • the soldering apparatus is provided at a predetermined position of a transport path for transporting the substrate, and a blower mechanism that forms an air curtain area that blows gas on the transport path to block the atmosphere, and an exhaust port of the blower mechanism And a control unit that controls the shutter mechanism so as to send or stop the gas to the air curtain area corresponding to the passage timing of the substrate passing through the air curtain area. Is.
  • the second soldering apparatus of the present invention in the case of preheating the substrate on which the electronic component is attached, transporting the preheated substrate to the soldering processing unit, and soldering the electronic component to the substrate
  • the air blowing mechanism that forms the air curtain area is provided at a predetermined position of the transport path for transporting the substrate, and blows gas on the transport path to block the atmosphere.
  • the control unit controls the shutter mechanism so as to send or stop the gas to the air curtain area corresponding to the passage timing of the substrate passing through the air curtain area.
  • the shutter mechanism that is controlled to be opened and closed by the control unit includes a shutter unit that closes or opens an exhaust port of the blower mechanism, and opens and closes the shutter unit. And a driving unit for driving.
  • the soldering device according to claim 6 is the soldering device according to claim 5, wherein the control unit controls the driving unit to turn on and the shutter unit is opened to blow gas from the blowing mechanism to the conveyance path. In addition to forming an air curtain area, the drive unit is controlled to be off, and the shutter unit is closed to prevent the blowing of gas from the blowing mechanism to the conveyance path.
  • the soldering device is provided with a detection unit that detects the substrate that is input to the transfer path and outputs substrate input information according to any one of claims 1 to 6, and the control unit includes: Substrate length information indicating the length of the substrate in the conveyance direction based on the substrate loading information output from the detection unit, and the elapsed time from the time when the substrate is loaded into the conveyance path to the arrival of the air curtain area Substrate arrival information to be displayed, and substrate removal information to indicate the time at which the substrate leaves the air curtain area.
  • a soldering apparatus is the soldering apparatus according to any one of the first to seventh aspects, wherein air, an inert gas, or a mixed gas thereof is introduced into the main body of the blower mechanism.
  • the first soldering apparatus includes a control unit that controls a blower mechanism that is provided at a predetermined position in the transport path and blows gas. This control unit controls to send or stop the gas to the air curtain area in accordance with the passage timing of the substrate passing through the air curtain area.
  • control unit can control to stop the blowing immediately before the substrate passes through the air curtain area, stop the blowing even while the substrate passes, and resume the blowing immediately after the substrate passes through the air curtain area. . Therefore, generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the blower mechanism, and the substrate can pass through the air curtain area without generating turbulent flow. .
  • the second soldering apparatus includes a control unit that controls a shutter mechanism provided at an exhaust port of a blowing mechanism for blowing gas to form an air curtain area.
  • This control unit controls the shutter mechanism so as to send or block the gas to the air curtain area in accordance with the passage timing of the substrate passing through the air curtain area.
  • control unit can control the air flow immediately before the substrate passes through the air curtain area, the air flow during the substrate passage, and the air flow restart immediately after the substrate passes through the air curtain area. . Therefore, generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the blower mechanism, and the substrate can pass through the air curtain area without generating turbulent flow. .
  • the atmosphere includes an atmosphere containing an inert gas such as nitrogen gas (described as a nitrogen gas atmosphere or an inert gas atmosphere), or an atmosphere not including an inert gas such as nitrogen gas (simply described as an atmosphere). It expresses the concept of
  • FIG. 1 It is a conceptual diagram which shows the structural example of the jet soldering apparatus 100 as embodiment which concerns on this invention. It is a perspective view which shows the structural example of the air blower 904 in the ventilation mechanism 99. FIG. It is a disassembled perspective view which shows the assembly example of the air blower 904. FIG. It is sectional drawing which shows the operation example of the air blower 904. FIG. It is a block diagram which shows the structural example of the control system of the jet soldering apparatus. It is a block diagram which shows the control example (the 1) of the ventilation mechanism 99 as a 1st Example. It is a block diagram which shows the control example (the 2) of the ventilation mechanism 99 as a 1st Example.
  • FIG. 10 is an explanatory diagram illustrating an operation example of a shutter mechanism 950.
  • the present invention devised a driving method of the air blowing mechanism that forms the air curtain area, and can prevent the occurrence of turbulence in preference to the function of blocking the atmosphere on the conveyance path by the air curtain area,
  • An object of the present invention is to provide a soldering apparatus in which a substrate can pass through an air curtain area without generating turbulent flow.
  • a jet soldering apparatus 100 shown in FIG. 1 constitutes an example of a soldering apparatus, pre-heats a printed circuit board 1 (Printed circuit board: hereinafter also referred to as PCB) to which an electronic component is attached, and the printed circuit board after pre-heating. 1 is conveyed in the atmosphere of inert gas, an electronic component is soldered to the printed circuit board 1 in the atmosphere of inert gas, and the printed circuit board 1 after soldering is cooled.
  • PCB printed circuit board
  • the side where the printed circuit board 1 is taken into the jet soldering apparatus 100 is referred to as the upstream side
  • the side where the printed board 1 is taken out is referred to as the downstream side. It is assumed that the printed circuit board 1 is transported from the upstream side to the downstream side. The conveyance direction of the printed circuit board 1 is conveyed from the left end side to the right end side as shown by a white arrow I in FIG.
  • the jet soldering apparatus 100 has a main body base 101.
  • the main body frame 101 includes a transport unit 10, a heat treatment unit 20, a lid support sealing mechanism 30, a partition member 40, a chamber 50, a jet solder tank 60, a gas supply mechanism 70 at both ends, a lid unit 80, a cooling processing unit 90, and an air blower.
  • a mechanism 99 is provided.
  • the main body base 101 has at least beam frame members 102 and leg portions 103 and 104 and leg portions 105 and 106 (not shown) at four corners of the beam frame member 102.
  • the beam frame member 102 and the legs 103 to 106 are made of steel members.
  • a conveyance unit 10 that constitutes a conveyance path of the printed circuit board 1 is provided on the beam frame member 102.
  • the transport unit 10 is disposed through the chamber 50 and upstream and downstream.
  • the transport unit 10 is obliquely attached to the main body base 101 with a predetermined elevation angle ⁇ .
  • the elevation angle ⁇ is, for example, about 5 ° to 10 °.
  • the transport unit 10 transports the printed circuit board 1 attached with electronic components in the direction of the chamber 50.
  • the transport unit 10 includes an endless chain member 11 and a plurality of L-shaped claw-shaped transport chucks 12.
  • the chain members 11 are provided on both sides of the printed board 1 in the conveyance direction.
  • the conveyance chuck 12 is attached to the chain member 11 at a predetermined arrangement pitch.
  • the printed circuit board 1 is set so as to be transported with the printed circuit board 1 sandwiched between the transport chucks 12 on both sides.
  • a heat treatment section 20 is provided on the upstream side of the chamber 50.
  • the heat treatment part 20 has an opening 201 in the upper part, and heats the printed circuit board 1.
  • the opening 201 covers the area where the printed board 1 is conveyed with a lid.
  • the opening 201 is closed with a plurality of predetermined lids 31, 32, 33, 34. That is, the heat treatment unit 20 has a tunnel shape for transporting the printed circuit board 1.
  • the printed circuit board 1 to which electronic components are attached is heated to a predetermined temperature by a panel heater or heated by a far infrared heater.
  • the hot air As hot air that circulates an atmosphere of air, inert gas, or the like with a fan, the hot air is used for heating.
  • the heat treatment unit 20 is provided so as to cover the upstream conveyance unit 10 with respect to the chamber 50.
  • a substrate carry-in port 202 is provided on the most upstream side of the heat treatment unit 20.
  • the printed circuit board 1 is set in the transport unit 10 at the board carry-in port 202.
  • the substrate detection sensor 18 is disposed at the substrate carry-in port 202.
  • the PCB detection data D18 is generated by detecting the printed circuit board 1 set in the transport unit 10 at the board carry-in port 202.
  • the PCB detection data D18 is output to the control unit 65 shown in FIG.
  • the heat treatment section 20 is composed of, for example, four preheating zones 21, 22, 23, and 24 (preheater zones).
  • the preheating zones 21 to 24 each form a heating atmosphere in order to gradually heat the printed circuit board 1 to which electronic components are attached and to heat the printed circuit board 1 to an optimal soldering temperature.
  • a substrate communication port 203 reaching the chamber 50 is provided on the downstream side of the heat treatment unit 20.
  • the transport unit 10 transports the pre-heated printed circuit board 1 through the substrate communication port 203 and into the chamber 50.
  • the heat treatment unit 20 is provided with a lid support sealing mechanism 30.
  • the lid support sealing mechanism 30 supports the lids 31, 32, 33, and 34 to seal the opening 201.
  • the lid members 31 and 34 are provided with partition members 40.
  • the partition member 40 includes a plurality of labyrinth portions 43.
  • the labyrinth unit 43 prevents dust and the like from entering the heat treatment unit 20 from the outside, and prevents leakage of nitrogen gas from the chamber 50 to the outside.
  • a chamber 50 (processing vessel) is connected to the substrate communication port 203 of the heat treatment unit 20.
  • an inert gas is introduced to form an inert gas atmosphere.
  • Nitrogen gas (N 2 ) or argon gas (Ar) is generally used as the inert gas.
  • the chamber 50 solders electronic components to the printed circuit board 1 in an inert gas atmosphere.
  • a jet solder bath 60 is provided below the chamber 50.
  • the jet solder bath 60 accommodates the molten solder 7 heated to a predetermined temperature.
  • the jet solder bath 60 jets molten solder 7 in an atmosphere of nitrogen gas, and solders electronic components to the printed circuit board 1.
  • the jet solder bath 60 has two systems of jet nozzles 61 and 62.
  • the ejection nozzles 61 and 62 are arranged side by side in the transport direction of the printed circuit board 1.
  • the upstream ejection nozzle 61 is used during a primary soldering process in which solder is roughly jetted and soldered.
  • the jet nozzle 62 on the downstream side is used for a secondary soldering process (for finishing) in which solder is finely jetted and soldered.
  • the jet solder bath 60 is configured by, for example, forming a stainless (SUS) plate into a box shape.
  • a jet pump (hereinafter simply referred to as pumps 8 and 9) is provided in the jet solder bath 60.
  • pumps 8 and 9 for example, a screw pump having a plurality of blades, preferably four or more blades is used.
  • the pump 8 is driven by a motor 68 to supply the molten solder 7 accommodated in the jet solder bath 60 to the jet nozzle 61 with a predetermined pressure.
  • the pump 9 is driven by a motor 69 and supplies the molten solder 7 accommodated in the jet solder bath 60 to the jet nozzle 62 at a predetermined pressure.
  • the molten solder 7 ejected from the ejection nozzles 61 and 62 is controlled by a jet solder driving unit 66 shown in FIG.
  • the chamber 50 and the jet solder bath 60 constitute a soldering processing unit.
  • a gas supply mechanism 70 at both ends is provided below the main body frame 101 and adjacent to the jet solder bath 60.
  • the both-end gas supply mechanism 70 ejects, for example, nitrogen gas (N 2 ) onto the liquid surface of the jet solder bath 60 and forms a nitrogen gas atmosphere on the side where the electronic components are soldered.
  • the both-end gas supply mechanism 70 includes, for example, gas supply units 71 and 72, an N2 gas tank 74, and a nozzle conduit 75. One end of each of the gas supply units 71 and 72 is connected to the N2 gas tank 74.
  • the other end of the gas supply unit 71 is connected to one end of the nozzle conduit 75, and the other end of the gas supply unit 72 is connected to the other end of the nozzle conduit 75.
  • the gas supply units 71 and 72 individually adjust the nitrogen gas for making the nitrogen gas atmosphere on the liquid surface of the jet solder bath 60 via the nozzle conduit 75.
  • the gas supply unit 73 adjusts the flow rate of nitrogen gas for making the inside of the chamber 50 a nitrogen gas atmosphere.
  • a lid unit 80 is detachably attached above the chamber 50 so as to close (cover) the opening 501 on the chamber 50.
  • the lid unit 80 has an atmosphere inlet / outlet 801 and an atmosphere outlet 802.
  • the atmosphere cleaning unit 81 is connected to the atmosphere inlet 801 and the atmosphere outlet 802.
  • the atmosphere inlet 801 is a part for feeding nitrogen gas after the flux fume is removed by the atmosphere cleaning unit 81 into the chamber 50.
  • the atmosphere discharge port 802 is a portion that discharges nitrogen gas containing flux fume in the chamber 50 to the atmosphere cleaning unit 81.
  • the atmosphere cleaning unit 81 cleans the nitrogen gas containing flux fumes discharged from the atmosphere discharge port 802, and circulates the atmosphere so as to supply the cleaned nitrogen gas to the atmosphere inlet 801 ( A blower) 813.
  • the atmosphere cleaning unit 81 includes a casing 83 having an atmosphere inlet 803 and an atmosphere outlet 804, and a plurality of pipes 82 provided in the casing 83. Air (cold air) is ventilated inside the pipe 82.
  • the nitrogen gas atmosphere (nitrogen gas + atmosphere) containing this flux fume is introduced into the housing 83, and when passing through the outside of the pipe 82, the flux fume strikes the pipe 82 and is cooled, and the flux fume is condensed (condensed). And adheres to the outside of the pipe 82. As a result, the flux fume and the nitrogen gas atmosphere can be separated.
  • a cooling processing unit 90 is provided on the downstream side of the chamber 50.
  • the cooling processing unit 90 is provided so as to cover the transport unit 10 on the downstream side with respect to the chamber 50.
  • the above-described transport unit 10 transports the printed circuit board 1 after the soldering process to the cooling processing unit 90.
  • the cooling processing unit 90 cools the printed circuit board 1 to which the electronic component is soldered that is transported by the transport unit 10.
  • the cooling processing unit 90 has an opening 901 at the top, and the opening 901 is closed by a plurality of predetermined lids 91 and 92, and the cooling processing unit 90 forms a tunnel shape.
  • the lids 91 and 92 are provided with a partition member 40, and a lid support sealing mechanism 30 is provided between the opening 901 and the lids 91 and 92.
  • the cooling processing unit 90 is provided with an air cooling fan (not shown), and a cooling process is performed on the printed circuit board 1 by blowing nitrogen gas or cold air onto the upper and lower surfaces of the printed circuit board 1 to which electronic components are attached.
  • a substrate carry-out port 902 extending to the outside is provided on the downstream side of the cooling processing unit 90. The printed circuit board 1 after cooling is taken out from the board carry-out port 902.
  • the substrate carry-out port 902 is provided with a blower mechanism 99 that forms an air curtain area 927, and blows gas on the transfer path to block the atmosphere.
  • This gas includes air, an inert gas, or a mixed gas thereof, and any one of them is introduced onto the transport path, and an air curtain area 927 is formed by a wide film-like blowing airflow.
  • the blower mechanism 99 includes a blower 904 such as a cross flow fan (Cross Flow Fan), a lower guide plate 905, and an upper guide plate 906.
  • the blower 904 is attached to the main body base 101.
  • the lower guide plate 905 is provided below the transport unit 10, and the upper guide plate 906 is provided above the transport unit 10.
  • the lower guide plate 905 and the upper guide plate 906 have substantially the same length as the width direction of the transport unit 10, and the inner surface has, for example, an R shape.
  • the lower guide plate 905 and the upper guide plate 906 may be L-shaped or straight.
  • the lower guide plate 905 and the upper guide plate 906 are made of a metal member such as stainless steel or an iron plate, or a hard resin.
  • a blower 904 shown in FIG. 2 includes a motor 96, a casing 913, a reinforcing member 914, a right side plate 915, a left side plate 917, and a fan portion 919, and constitutes a once-through fan, a multiblade fan, or the like.
  • a fan cover 910 as shown in FIG. 3 is also included in the configuration.
  • the fan cover 910, the casing 913, the reinforcing member 914, the right side plate 915 and the left side plate 917 constitute a main body of the blower 904.
  • the main body is provided with an intake port 911 (see FIG. 3) and an exhaust port 912 at predetermined positions.
  • the fan part 919 is rotatably engaged in the main body part.
  • the right side plate 915 is provided with a bearing portion 916
  • the left side plate 917 is provided with a bearing portion 918.
  • the right side plate 915 and the left side plate 917 are formed by bending an iron plate outward in a pentagonal shape, for example.
  • a fan portion 919 is rotatably engaged between the right side plate 915 and the left side plate 917.
  • the right side plate 915 is provided with openings 956 and 957. The opening 956 and the like function so as to allow air to escape when the exhaust port 912 is blocked.
  • the fan unit 919 has the same forward-facing blades as the sirocco fan.
  • the fan unit 919 has an impeller shape in which the blade width is larger than the diameter, and the airflow is sucked from the direction perpendicular to the axis.
  • the fan portion 919 includes a shaft portion 921 and a shaft portion 922.
  • One shaft portion 921 of the fan portion 919 is rotatably engaged with the bearing portion 916, and the other shaft portion 922 is rotatably engaged with the bearing portion 918.
  • a casing 913 and a reinforcing member 914 are disposed between the right side plate 915 and the left side plate 917.
  • the casing 913 and the reinforcing member 914 constitute an exhaust port 912.
  • the casing 913 has a J-shaped cross section for restricting the flow.
  • the casing 913 is formed by bending an iron plate.
  • the reinforcing member 914 has a concave cross section in order to restrict the flow together with the casing 913.
  • the reinforcing member 914 is also formed by bending an iron plate.
  • a motor 96 is connected (directly connected) to the shaft portion 922 of the fan unit 919, and operates to rotate the fan unit 919 in a predetermined direction.
  • the gas flow can flow in a plane perpendicular to the rotation axis, and the exhaust port 912 can be set long in the axial direction. Further, the wind speed is obtained from the exhaust port 912 toward the exhaust duct 907.
  • a motor 96 a casing 913, a reinforcing member 914, a right side plate 915, a left side plate 917, and a fan unit 919 are prepared.
  • the motor 96 is first attached to the outside of the left side plate 917 and fixed with screws or the like.
  • the motor 96 is disposed so that the motor shaft 961 faces the fan unit 919 side.
  • the fan part 919 is an impeller having a shaft part 921 and a shaft part 922 at both ends.
  • the shaft portion 922 is prepared, for example, having a hole portion into which the motor shaft 961 can be fitted at its center position. Then, the shaft portion 922 of the fan portion 919 is fitted to the bearing portion 918 of the left side plate 917 and the shaft portion 922 is connected to the motor shaft 961.
  • the motor shaft 961 is fitted into a hole inside the shaft portion 922 and the motor shaft 961 is fixed from the outside of the shaft portion 922 with a screw or the like.
  • the cross section of the motor shaft 961 is processed into a polygonal shape or a D shape
  • the cross section of the hole portion of the shaft portion 922 is processed into a polygonal shape, a D shape, or the like.
  • a method of fitting a shaft hole with a polygonal cross section of 922 or a method of fitting a motor shaft 961 with a D shape in section and a shaft hole with a D shape in cross section of the shaft portion 922 may be adopted. Screws from the outside can be omitted.
  • the shaft portion 921 of the fan portion 919 is fitted to the bearing portion 916 of the right side plate 915.
  • a casing 913 and a reinforcing member 914 are disposed between the right side plate 915 and the left side plate 917.
  • One end of the casing 913 and the reinforcing member 914 abuts on the right side plate 915 and is fixed.
  • a fan cover 910 having a U-shaped cross section is prepared.
  • the fan cover 910 is formed by bending an iron plate.
  • a fan cover 910 having a slit-like air inlet 911 is used.
  • the air inlet 911 is formed by punching the fan cover 910.
  • the fan cover 910 is positioned and attached to the right side plate 915 and the left side plate 917, and the fan cover 910 is fixed to the right side plate 915 and the left side plate 917 with screws (not shown) to complete the blower 904.
  • blower mechanism 99 An operation example of the blower mechanism 99 will be described with reference to FIG.
  • a blower 904 shown in FIG. 4 is attached to a cooling unit mounting base 908 below the transport unit 10 and constitutes a part of the blower mechanism 99.
  • the blower mechanism 99 is controlled by the control unit 65 shown in FIG.
  • the white arrow indicates the direction of air flow.
  • the motor 96 shown in FIG. 2 rotates the fan unit 919 in the clockwise direction. By this rotation, the air sucked from the air inlet 911 of the fan cover 910 is guided to the casing 913 and guided to the exhaust duct 907 via the exhaust port 912. The air is blown out above the exhaust duct 907 (see white arrow).
  • the blower 904 blows air upward from the exhaust port 912.
  • the air once passes through the conveyance path of the printed circuit board 1 once.
  • the left side portion 906a of the upper guide plate 906 once guides the air received from the blower 904 toward the substrate carry-out port 902, that is, in the direction of conveyance of the printed circuit board 1 (right arrow in the figure). See).
  • the right side portion 906b of the upper guide plate 906 directs the air downward and guides the conveyance path of the printed circuit board 1 again.
  • the lower guide plate 905 guides air received from above so as to face upward.
  • the air blowing mechanism 99 forms the air curtain area 927 by convection of air to the substrate carry-out port 902.
  • air from the blower 904 to the left side 906 a of the upper guide plate 906 is transferred from the right side 906 b of the upper guide plate 906 to the lower guide plate 905, and further from the lower guide plate 905 to the upper guide plate 906.
  • the left curtain 906a is formed by forming an air curtain with convection air.
  • This air blowing mechanism 99 forms an air curtain area 927 in which air convects (circulates) between the lower guide plate 905 and the upper guide plate 906, so that dust or the like can be prevented from entering the cooling processing unit 90 from the outside. At the same time, leakage of nitrogen gas from the inside of the chamber 50 to the outside can be prevented. As a result, nitrogen gas resources can be used efficiently.
  • the air blown out from the blower 904 is once led to the substrate carry-out port 902 side by the upper guide plate 906 (left side portion 906a). For this reason, from the outside into the furnace through the substrate carry-out port 902 This is preferable because the function of suppressing the intrusion of air becomes more remarkable.
  • the air curtain area 927 in this example is circulated.
  • the air curtain area 927 is air that blows in one direction without being circulated. May be formed.
  • FIG. 5 a configuration example of a control system of the jet soldering apparatus 100 will be described with reference to FIG.
  • the control system of the jet soldering apparatus 100 shown in FIG. 5 in addition to the input unit 64 and the supply control unit 605, the conveyance drive unit 14, the monitor 16, the substrate detection sensor 18, the preheating drive unit 25, the control unit 65, A jet solder driving unit 66, a cooling driving unit 93, an air curtain driving unit 95, and a fume removal driving unit 97 are provided. These are connected to the control unit 65.
  • the monitor 16 displays a setting screen related to the jet soldering process based on the display data D16.
  • a liquid crystal display device with a touch panel is used as the monitor 16.
  • the touch panel constitutes a part of the input unit 64.
  • the input unit 64 for example, as described later, setting of operating conditions such as a single wafer processing mode in which printed circuit boards are put into a soldering apparatus one by one, a continuous processing mode to be periodically inserted, setting of fume removal control, This is for inputting setting information (hereinafter referred to as setting data D65) such as height information and mounting distribution information of electronic components mounted on the printed circuit board.
  • the display data D16 includes information on the height of the electronic component soldered to the printed circuit board 1, mounting distribution information of the electronic component soldered to the printed circuit board 1, and the like. In addition, information on the number of substrates to which electronic components are soldered, setting data D65 indicating soldering processing conditions, and the like are also included.
  • the control unit 65 outputs the conveyance drive data D14 generated based on a predetermined control program to the conveyance drive unit 14 and executes conveyance control.
  • the preheating control data D25 is output to the preheating drive unit 25 to execute the preheating control.
  • the solder bath control data D66 is output to the jet solder driving unit 66 to execute jet solder control.
  • the cooling control data D93 is output to the cooling drive unit 93 to execute the cooling control.
  • control unit 65 outputs the curtain control data D95 to the air curtain drive unit 95 to execute motor control.
  • the control unit 65 controls the air blowing mechanism 99 so as to send or stop air in accordance with the passage timing of the printed circuit board 1 that passes through the air curtain area 927.
  • the fume removal control data D97 is output to the fume removal drive unit 97 to execute motor control.
  • the mounting distribution data D64 is output to the supply control unit 605 to execute nitrogen gas supply control.
  • the transport drive unit 14 generates a motor control signal S15 based on the transport drive data D14 input from the control unit 65.
  • a motor 15 that drives the transport unit 10 is connected to the transport drive unit 14.
  • the motor 15 inputs the motor control signal S15 and drives the chain member 11 and the like.
  • the printed circuit board 1 set on the conveyance chuck 12 of the chain member 11 is sequentially conveyed into the chamber 50 through the preheating zones 21, 22, 23, 24, and the like.
  • the substrate detection sensor 18 is connected to the control unit 65.
  • the substrate detection sensor 18 outputs PCB detection data D18 obtained by detecting the printed circuit board 1 set in the transport unit 10 at the substrate carry-in port 202 to the control unit 65.
  • the PCB detection data D18 includes, for example, the time when the leading edge of the printed circuit board 1 is detected.
  • the substrate detection sensor 18 is a reflection type or transmission type optical sensor.
  • the arrival detection sensor 19 and the drop detection sensor 39 are connected to the control unit 65 depending on the embodiment described below.
  • the arrival detection sensor 19 is arranged on the head portion side (upstream side) of the air curtain area 927 and detects the printed circuit board 1 immediately before reaching the air curtain area 927 to indicate arrival detection information (arrival detection below). Data D19) is output to the controller 65.
  • the missing detection sensor 39 is arranged on the rear end side (downstream side) of the air curtain area 927 and detects the printed circuit board 1 immediately after coming out of the air curtain area 927 to show missing detection information (hereinafter referred to as missing detection data). D39) is output to the control unit 65.
  • an optical sensor such as a reflection type or a transmission type is used.
  • the preheating drive unit 25 generates heat generation control signals S21 to S24 based on the preheating control data D25 input from the control unit 65.
  • a plurality of heaters 26 to 29 are connected to the preheating drive unit 25. In this example, the heaters 26 to 29 are arranged in four preheating zones 21 to 24 (see FIG. 1).
  • the preheating zone 21 shown in FIG. 1 is provided with a heater 26 and generates heat based on the heat generation control signal S21.
  • a heater 27 is provided in the preheating zone 22 and generates heat based on the heat generation control signal S22.
  • a heater 28 is provided in the preheating zone 23 and generates heat based on the heat generation control signal S23.
  • a heater 29 is provided in the preheating zone 24 and generates heat based on the heat generation control signal S24.
  • the printed circuit board 1 is preheated by these heat generations.
  • the jet solder driving unit 66 generates a heat generation control signal S67 and motor control signals S68 and S69 based on the solder bath control data D66 input from the control unit 65.
  • a heater 67 and two motors 68 and 69 are connected to the jet solder driving unit 66.
  • the heater 67 generates heat based on the heat generation control signal S67 and heats the jet solder bath 60 to a predetermined temperature.
  • the motor 68 jets the molten solder 7 to the jet nozzle 61 based on the motor control signal S68.
  • the motor 69 causes the molten solder 7 to jet through the jet nozzle 62 based on the motor control signal S69.
  • the cooling drive unit 93 generates a motor control signal S94 based on the cooling control data D93 input from the control unit 65.
  • a fan motor 94 is connected to the cooling drive unit 93.
  • the motor 94 rotates a fan (not shown) based on the motor control signal S94. Thereby, the printed circuit board 1 after soldering an electronic component is cooled.
  • the air curtain drive unit 95 generates a motor control signal S96 based on the curtain control data D95 input from the control unit 65.
  • the air curtain drive unit 95 is connected to a blower motor 96 that constitutes an example of the drive unit.
  • the motor 96 rotates the fan unit 919 shown in FIGS. 1 to 4 based on the motor control signal S96.
  • the control unit 65 always controls the motor 96 to be turned on to blow gas from the blower mechanism 99 to the transport path, and controls the motor 96 to be turned off based on the PCB detection data D18 obtained from the substrate detection sensor 18.
  • the air curtain driving unit 95 is controlled so as to stop the air from the mechanism 99 to the conveyance path.
  • a convection (circulating) air curtain can be formed at the board carry-out port 902 at a timing when the printed circuit board 1 does not pass through the air curtain area 927.
  • the air since the air is controlled to be sent out or stopped in accordance with the passage timing of the printed circuit board 1 passing through the air curtain area 927, it has priority over the function of blocking the atmosphere on the conveyance path by the air curtain area 927. Therefore, the generation of turbulent flow can be prevented.
  • the fume removal driving unit 97 generates a motor control signal S98 based on the fume removal control data D97 input from the control unit 65.
  • a motor 98 for driving the pump is connected to the fume removal driving unit 97.
  • the motor 98 drives the pump shown in FIG. 1 based on the motor control signal S98. Thereby, the nitrogen gas from which the flux fumes have been removed can be fed into the chamber 50.
  • the supply control unit 605 generates supply control signals S71, S72, S73, and S74 based on the mounting distribution data D64 input from the control unit 65, the N2 concentration detection signal S17 output from the N2 sensor (not shown), and the like.
  • Four gas supply units 71, 72, 73 and 741 are connected to the supply control unit 605.
  • the gas supply unit 71 adjusts the supply pressure of nitrogen gas to P1 based on the supply control signal S71.
  • the gas supply unit 72 adjusts the supply pressure of nitrogen gas to P2 based on the supply control signal S72. As a result, the nitrogen gas supplied to the nozzle conduit 75 can be adjusted.
  • the gas supply unit 73 adjusts the supply pressure of nitrogen gas to P3 based on the supply control signal S73. Further, the gas supply unit 741 adjusts the supply pressure of nitrogen gas to P4 based on the supply control signal S74. Thereby, in the cooling process part 90, the cooling process with respect to the said printed circuit board 1 is performed by spraying nitrogen gas on the upper and lower surfaces of the printed circuit board 1 which attached the electronic component. These constitute the control system of the jet soldering apparatus 100.
  • the air curtain area 927 formed in the vicinity of the board carry-out port 902 of the jet soldering apparatus 100 is always reached by arrival detection data D19 and drop detection data D39 obtained from the arrival detection sensor 19 and the drop detection sensor 39.
  • An example of controlling the blower mechanism 99 based on the above will be described. Assume that a transmissive optical sensor is used for the arrival detection sensor 19 and the drop detection sensor 39.
  • the printed circuit board 1 is set in the transport unit 10 and transported so as to move from a left end to a right end in a predetermined transport direction, in this example.
  • x is the length of the printed board 1 in the transport direction.
  • L is the length of the jet soldering apparatus 100 in the transport direction.
  • Lc is the length of the air curtain area 927 in the transport direction.
  • the length Lc of the air curtain area 927 is, for example, about 400 mm.
  • V is the conveyance speed of the printed circuit board 1 and is, for example, about 0.2 to 0.5 m / min.
  • the arrival detection sensor 19 disposed on the head side (upstream side) of the air curtain area 927 is printed circuit board when the output of the arrival detection sensor 19 changes from high level to low level due to arrival of the printed circuit board 1. Even after 1 passes the arrival detection sensor 19, the low level is maintained. The reason why the output of the arrival detection sensor 19 returns from the low level to the high level is that the arrival detection sensor 19 is reset triggered by the fact that the output of the missing detection sensor 39 described later has changed from the low level to the high level. To be done.
  • the omission detection sensor 39 disposed on the rear end side (downstream side) of the air curtain area 927 has an output from the omission detection sensor 39 that changes from a high level to a low level when the printed circuit board 1 arrives.
  • the printed circuit board 1 coming out of the circuit is detected, and the output of the detection sensor 39 outputs the logic value from the low level to the high level to the control unit 65 as the missing detection data D39.
  • the air curtain area 927 is formed, and the output of either the arrival detection sensor 19 or the missing detection sensor 39 is low. At the level, the air curtain area 927 is not formed.
  • the board detection sensor 18 shown in FIG. 6A detects the printed board 1 set in the transport unit 10 at the board carry-in port 202 shown in FIG. 1, and the PCB detection data D18 is shown in FIG. It outputs to the control part 65 shown.
  • the PCB detection data D18 includes, for example, the time when the leading edge of the printed circuit board 1 is detected.
  • the arrival detection sensor 19 arranged on the leading side (upstream side) of the air curtain area 927 uses the arrival detection data D19 indicating that the substrate has not reached since the printed circuit board 1 has not reached the air curtain area 927. Output to the control unit 65.
  • the arrival detection data D19 indicating that the substrate has not reached indicates a high-level logical value because a transmission type optical sensor is used as the arrival detection sensor 19.
  • the missing detection sensor 39 arranged on the rear end side (downstream side) of the air curtain area 927 has not detected the printed circuit board 1 coming out of the air curtain area 927, so the missing detection data D39 indicating that the board has not been detected. Is output to the control unit 65.
  • the missing detection data D39 indicating that the substrate has not been detected indicates a high level logical value because a transmission type optical sensor is used as the missing detection sensor 39.
  • the control unit 65 controls the blower mechanism 99 based on arrival detection data D19 indicating that the substrate has not been reached and missing detection data D39 indicating that the substrate has not been detected.
  • the air blowing mechanism 99 forms air curtain areas 927 by convection of air to the substrate carry-out port 902 shown in FIG.
  • the air curtain area 927 is formed by air blown from the exhaust port 912 (see FIGS. 1 to 5).
  • the printed circuit board 1 shown in FIG. 6A is conveyed by the conveying unit 10 shown in FIG. 1 so as to move from the left end to the right end, and immediately before the printed circuit board 1 shown in FIG. 6B enters the air curtain area 927.
  • the arrival detection sensor 19 detects the tip of the printed circuit board 1 until the printed circuit board 1 goes out of the detection range of the arrival detection sensor 19. For example, arrival detection data D19 indicating the arrival of the substrate is generated.
  • the arrival detection data D19 indicating the arrival of the substrate indicates, for example, a low-level logical value and maintains this state.
  • the missing detection sensor 39 since the missing detection sensor 39 has not detected the printed circuit board 1 immediately after coming out of the air curtain area 927 at this time, the missing detection data D39 indicating that no board is detected is output to the control unit 65.
  • the control unit 65 controls the blower mechanism 99 based on arrival detection data D19 indicating the arrival of the substrate and missing detection data D39 indicating that the substrate has not been detected.
  • the air blowing mechanism 99 is changed from the formation state of the air curtain area 927 shown in FIG. 6A to the non-formation state as shown in FIG. 6B.
  • the air blowing mechanism 99 stops air blowing. Since air is not blown out from the exhaust port 912, the air curtain area 927 is not formed.
  • the arrival detection sensor 19 still detects the printed circuit board 1, and the printed circuit board 1 remains in the detection range of the arrival detection sensor 19. Even if the process exits, arrival detection data D19 indicating that the substrate is being detected is generated as described above.
  • the arrival detection data D19 indicating that the substrate is being detected also indicates a low level logical value.
  • missing detection data D39 indicating that the air curtain area 927 is passing is generated.
  • the missing detection data D39 indicating that the air curtain area 927 is passing indicates a low level logical value.
  • Omission detection data D39 indicating that the air curtain area 927 is passing is output to the control unit 65.
  • the control unit 65 controls the blower mechanism 99 based on the arrival detection data D19 indicating that the substrate is being detected and the missing detection data D39 indicating that the air curtain area 927 is passing.
  • the air blowing mechanism 99 leaves the air curtain area 927 in the non-formed state in the same manner as in FIG. 6B.
  • the blower mechanism 99 remains stopped from blowing air. Since air is not yet blown out from the exhaust port 912, the air curtain area 927 is maintained in a non-formed state.
  • the missing detection sensor 39 generates missing detection data D39 indicating that the printed circuit board 1 is passing until the printed circuit board 1 passes through the air curtain area 927.
  • the missing detection sensor 39 detects the trailing edge of the printed board 1, the missing detection data D39 indicating that the board is missing changes from a low level logical value to a high level logical value. .
  • the low level logical value of the arrival detection data D19 is reset to the high level logical value, and the arrival detection data indicating that the substrate is not detected D19 and missing detection data D39 indicating substrate missing are output to the controller 65.
  • the control unit 65 controls the blower mechanism 99 based on the arrival detection data D19 indicating that the board is not detected and the missing detection data D39 indicating that the board is missing.
  • the blower mechanism 99 convects air to the substrate carry-out port 902 and resumes the formation of the air curtain area 927. Since the air blowing mechanism 99 resumes air blowing, air is blown out from the exhaust port 912, and the air curtain area 927 is formed (see FIGS. 1 to 5).
  • a rotary encoder is attached to the rotating shaft of the conveying means, and time measurement can be performed based on a pulse output from the rotary encoder.
  • the pulse generated from the rotary encoder can be used as an address or can be used as position information of the printed circuit board 1 by counting the number of pulses.
  • the required time T0 is that the printed circuit board 1 is subjected to a soldering process from the time t0 (hereinafter also referred to as the charging time t0) when the printed circuit board 1 is loaded into the jet soldering apparatus 100, and then the air curtain area 927. It is the elapsed time to reach.
  • the passage time T3 means the time for the printed circuit board 1 to pass through the air curtain area 927.
  • the stop time T2 is a time for stopping the motor 96 of the blower mechanism 99, and the margin ⁇ is also taken into account after the above-described passage time T3.
  • the printed circuit board 1 is transported by the transport unit 10 at a predetermined transport speed V and the printed circuit board 1 is soldered.
  • the printed circuit board 1 is put into the jet soldering apparatus 100 at time t0 shown in FIG.
  • PCB detection data D18 shown in FIG. Generated.
  • the PCB detection data D18 is output from the substrate detection sensor 18 to the control unit 65.
  • the counter 65a (may be a timer) shown in FIG. 5 is started in synchronization with the rising edge of the PCB detection data D18.
  • the counter 65a generates the CLK signal shown in FIG. 7B, and outputs the count value at time t14 when the arrival required time T1 is reached. Further, after the elapse of the stop time T2 of the blower mechanism 99, the time t18 To output the count value.
  • the air curtain drive unit 95 controls the motor control signal S96 shown in FIG. 7D from on (high level) to off (low level) using the count value output at time t14 as a trigger.
  • the motor 96 stops when the motor control signal S96 falls from the high level to the low level.
  • the air curtain drive unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t18 as a trigger.
  • the motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
  • T3 shown in FIG. 7E is the time for the printed circuit board 1 (PCB # 1) to pass through the air curtain area 927.
  • the passage time T3 is a time required for the front end portion of the printed circuit board 1 to enter the air curtain area 927 and the rear end portion to pass through the air curtain area 927.
  • the stop time T2 is set longer than the passage time T3.
  • “1 second” is set as the margin time ⁇ .
  • the margin time ⁇ is not limited to “1 second”, and may be “2 seconds”, “3 seconds”, etc. Even if the margins of ⁇ and ⁇ are set to different values, Moreover, you may set to the same value.
  • the motor 96 can be stopped one second before the front end of the printed circuit board 1 enters the air curtain area 927.
  • the motor 96 can be driven after one second has elapsed after the rear end of the printed circuit board 1 has passed through the air curtain area 927.
  • the printed circuit board 1 to which the electronic component is attached is preheated, the preheated printed circuit board 1 is conveyed to the soldering processing unit, and the printing is performed.
  • the control unit 65 controls the blower mechanism 99 so as to send or stop the air corresponding to the passage timing of the printed board 1 that passes through the air curtain area 927. Become.
  • the control unit 65 stops the air blowing just before the printed circuit board 1 passes through the air curtain area 927, stops the air blowing while the printed circuit board 1 passes, and immediately after the printed circuit board 1 passes through the air curtain area 927. Blowing can be resumed. Therefore, the control unit 65 can prevent the occurrence of turbulence in preference to the function of blocking the atmosphere on the transport path by the blower mechanism 99.
  • the printed circuit board 1 can pass through the air curtain area 927 without generating turbulent flow. Thereby, the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
  • the timing of stopping the blowing of the blowing mechanism 99 and the timing of re-forming the air curtain area 927 after stopping the blowing are stopped before the printed circuit board 1 passes through the air curtain area 927. After completely passing through the air blowing mechanism 99, it is preferable to restart the air blowing to re-form the air curtain area 927.
  • These timings can be appropriately determined in consideration of production efficiency. That is, the values of the margins ⁇ and ⁇ include positive and zero values.
  • the upper guide plate 906 is configured by one member, but the present invention is not limited thereto, and the left side portion 906a of the upper guide plate 906 is configured by one component, and the right side portion 906b is configured by one component.
  • the upper guide plate 906 may be divided into two members in total. The same applies to the lower guide plate 905.
  • the air blower mechanism 99 operates when the power is turned on to always form the air curtain area 927.
  • the length x This is a case where a plurality of known printed circuit boards 1 of the same type are continuously fed into the jet soldering apparatus 100.
  • the time required for reaching T1 preset for each printed circuit board 1 has elapsed with reference to the time when the first printed circuit board 1 is put into the jet soldering apparatus 100 (corresponding to the leading edge detection time).
  • the operation of stopping the air blowing mechanism 99 is repeated for the stop time T2 will be described.
  • the required time T1 is the elapsed time from the time when each printed circuit board 1 is put into the jet soldering apparatus 100 to the time when the printed circuit board 1 is subjected to the soldering process, and then to the air curtain area 927. That is, the margin ⁇ is taken into consideration in the same manner as in the first embodiment from the required travel time T1.
  • the stop time T2 is a time during which the motor 96 of the blower mechanism 99 is stopped in consideration of the margins ⁇ and ⁇ as in the first embodiment.
  • the plurality of printed circuit boards 1 are sequentially transported by the transport unit 10 at a constant transport speed V, and the printed circuit boards 1 are continuously soldered.
  • the first printed circuit board 1 is put into the jet soldering apparatus 100 at time t0 shown in FIG.
  • the insertion of the first printed circuit board 1 (denoted as PCB # 1 in the figure) into the jet soldering apparatus 100 is detected at time t0 shown in FIG.
  • the PCB detection data D18 shown in FIG. 8C is generated.
  • the PCB detection data D18 is output from the substrate detection sensor 18 to the control unit 65.
  • the counter 65a (may be a timer) shown in FIG. 5 is started in synchronization with the rising edge of the PCB detection data D18.
  • the counter 65a generates the CLK signal shown in FIG. 8B with reference to the time t0.
  • the arrival required time T1 for example, the counter 65a outputs a count value at the time t160, and further stops the blower mechanism 99.
  • time T2 is reached, the count value is output at time t180.
  • the air curtain drive unit 95 controls the motor control signal S96 shown in FIG. 8D from on (high level) to off (low level) using the count value output at time t160 as a trigger.
  • the motor 96 stops when the motor control signal S96 falls from the high level to the low level.
  • the printed circuit board 1 (PCB # 1) shown in FIG. 8E passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
  • the air curtain driving unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t180 as a trigger.
  • the motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
  • the air curtain driving unit 95 uses the count value output at time t200 as a trigger to perform motor control shown in FIG.
  • the signal S96 is controlled from on (high level) to off (low level).
  • the motor 96 stops when the motor control signal S96 falls from the high level to the low level.
  • the printed circuit board 1 (PCB # 2) shown in FIG. 8F passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
  • the air curtain drive unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t220 as a trigger.
  • the motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
  • the air curtain driving unit 95 uses the count value output at time t240 as a trigger to perform motor control shown in FIG.
  • the signal S96 is controlled from on (high level) to off (low level).
  • the motor 96 stops when the motor control signal S96 falls from the high level to the low level.
  • the printed circuit board 1 (PCB # 3) shown in FIG. 8G passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
  • the air curtain drive unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t260 as a trigger.
  • the motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
  • the air curtain driving unit 95 uses the count value output at time t280 as a trigger to perform motor control shown in FIG.
  • the signal S96 is controlled from on (high level) to off (low level).
  • the motor 96 stops when the motor control signal S96 falls from the high level to the low level.
  • the printed circuit board 1 (PCB # 4) shown in FIG. 8H passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
  • the air curtain driving unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t300 as a trigger.
  • the motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
  • each of the passage times T3 shown in (E) to (H) of FIG. 8 is the same as in the first embodiment, the leading end of the printed circuit board 1 enters the air curtain area 927, and the trailing end is air. This is the time required to pass through the curtain area 927.
  • the stop time T2 is set longer than the passage time T3 in the same manner as in the first embodiment.
  • the margin times ⁇ and ⁇ for example, “1 second” is set in the same manner as in the first embodiment.
  • the margin time ⁇ is not limited to “1 second”, and may be “2 seconds”, “3 seconds”, etc. Even if the margins of ⁇ and ⁇ are set to different values, Moreover, you may set to the same value.
  • the blower 904 when the printed circuit board 1 having a plurality of predetermined lengths is continuously inserted into the jet soldering apparatus 100, the first print is performed.
  • the control unit 65 can stop the air blowing immediately before the printed board 1 that is continuously conveyed passes through the air curtain area 927 and can stop the air blowing while the printed board 1 is passing. Immediately after the printed circuit board 1 passes through the air curtain area 927, the control unit 65 can resume air blowing, so that the generation of turbulence is prevented in preference to the function of blocking the atmosphere on the conveyance path by the air curtain area 927. become able to. Thereby, the printed circuit board 1 conveyed continuously can pass through the air curtain area 927 without generating turbulent flow.
  • the stop time T2 is set longer than the passage time T3 in the same manner as in the first embodiment.
  • the motor 96 can be stopped one second before the tip of the printed circuit board 1 that is continuously input enters the air curtain area 927.
  • the motor 96 can be driven after one second has elapsed after the rear end of the printed circuit board 1 has passed through the air curtain area 927.
  • the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
  • the timing of stopping the blowing of the blowing mechanism 99 and the timing of re-forming the air curtain after stopping the blowing are stopped before the printed circuit board 1 passes through the air curtain area 927 and the printed circuit board 1 is turned into the air curtain. After completely passing through the area 927, it is preferable to re-form the air curtain area 927 by restarting air blowing.
  • These timings can be appropriately determined in consideration of production efficiency. That is, the values of margins ⁇ and ⁇ include zero values in addition to positive values.
  • the control unit 65 illustrated in FIG. 9A includes a timer 65b, a comparison calculation unit 65c, and a memory unit 65d.
  • a timer 65b and a memory unit 65d are connected to the timer 65b and the comparison calculation unit 65c.
  • the timer 65b sequentially generates time data D (i) indicating the current time.
  • the memory unit 65d has substrate loading information (hereinafter referred to as substrate loading data D (t)), distance information (hereinafter referred to as distance data D (L)), and substrate arrival information (hereinafter referred to as substrate arrival data D (T)). ), Substrate missing information (hereinafter referred to as substrate missing data D (S)), substrate length information (hereinafter referred to as substrate length data D (x)), and conveyance speed information (hereinafter referred to as conveyance speed data D (V)). ) Is stored.
  • the board loading data D (t) is included in the PCB detection data D18 output from the board detection sensor 18.
  • the board loading data D (t) includes, for example, a time ta when the leading edge of the printed board 1 conveyed at a constant conveyance speed V is detected and a time tb when the trailing edge of the printed board 1 is detected.
  • the distance data D (L) is information indicating the distance L (actual measurement) from the substrate carry-in entrance 202 to the leading portion of the air curtain area 927.
  • the distance L is, for example, the distance from the optical axis of the substrate detection sensor 18 shown in FIG. 1 to one wall surface of the exhaust duct 907 of the blower mechanism 99.
  • the board arrival data D (T) is information indicating the elapsed time from the time (corresponding to ta) when the printed board 1 is introduced into the board carry-in entrance 202 (transport path) until it reaches the air curtain area 927.
  • the substrate arrival data D (T) corresponds to the required time T0 in the first embodiment ((D) in FIG. 7). In this example, since the margin ⁇ is not provided, the substrate arrival data D (T) also corresponds to the required arrival time T1.
  • the board missing data D (S) is information indicating the time when the printed board 1 passes through the rear end portion of the air curtain area 927.
  • the board length data D (x) is information indicating the length x of the printed board 1 in the transport direction.
  • the conveyance speed data D (V) is information indicating the conveyance speed V at which the printed circuit board 1 is conveyed.
  • the comparison calculation unit 65c compares the time data D (i) output from the timer 65b with the substrate arrival data D (T), It is detected whether or not. These constitute the inside of the control unit 65.
  • FIG. 9B shows a configuration example in which the two motors 96 a and 96 b are controlled by the air curtain driving unit 95.
  • the air curtain driving unit 95 shown in FIG. 9B is connected to blower motors 96a and 96b that constitute an example of the driving unit.
  • the motor 96a rotates the fan unit 919 shown in FIGS. 1 to 4 based on the motor control signal S9a.
  • the motor 96b rotates the fan unit 919 shown in the figure based on the motor control signal S9b.
  • the two air blowing mechanisms 99a and 99b can be controlled in a time-sharing manner by the air curtain driving unit 95 (see FIG. 14).
  • the printed circuit board 1 (denoted as PCB in the figure) is put into the jet soldering apparatus 100 one by one and soldered, and the blower mechanism 99 is driven in an idling state.
  • the unit 65 performs software processing on the board loading data D (t) and the distance data D (L), and the board length data D (x), board arrival data D (T), and board missing data D (S) in real time. This information is calculated when the air curtain driving unit 95 sets these pieces of information.
  • the idling state refers to a state in which the printed circuit board 1 is not put into the jet soldering apparatus 100 and the soldering process is not performed.
  • the control unit 65 accepts the setting of operation conditions in step ST1 shown in FIG. At this time, as a driving condition, the user operates the input unit 64 shown in FIG. 5 to set the single wafer processing mode.
  • the single wafer processing mode refers to a mode in which the printed circuit boards 1 are put into the jet soldering apparatus 100 one by one and soldered.
  • the user sets the number of printed circuit boards 1 to be soldered in the control unit 65.
  • the substrate detection sensor 18 shown in FIG. 5 detects the insertion of the printed circuit board 1 (denoted as PCB in the drawing) and outputs the substrate insertion data D (t) to the control unit 65.
  • step ST3 the control unit 65 starts the timer 65b shown in FIG. 9A based on the substrate loading data D (t).
  • the timer 65b sequentially outputs time data D (i) indicating the current time as a control reference to the control unit 65.
  • step ST5 the control unit 65 calculates the approach time ti from the board arrival data D (T) of the printed circuit board 1 and the removal time tj from the board removal data D (S).
  • the substrate arrival data D (T) is calculated from the distance data D (L) and the conveyance speed data D (V).
  • T L / V.
  • the approach time ti is time data D (i) output from the timer 65b at the substrate arrival time T and corresponds to, for example, the time t16 in the first embodiment.
  • the missing time tj is time data D (i) output from the timer 65b at the passage time S, and corresponds to, for example, the time t18 in the first embodiment.
  • step ST6 the control unit 65 determines whether or not the printed circuit board 1 has approached.
  • the judgment criterion at that time is performed by comparing the time data D (i) output from the timer 65b with the substrate arrival data D (T) and detecting whether or not they match (information comparison detection). processing). If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
  • step ST6 the control unit 65 stops the operation of the blower mechanism 99. To do. At this time, the control unit 65 outputs curtain control data D95 based on the substrate arrival data D (T) to the air curtain driving unit 95.
  • the air curtain driving unit 95 outputs a motor control signal S96 for turning off the motor 96.
  • the fan unit 919 stops when the motor 96 is turned off. Thereby, operation
  • step ST7 the control unit 65 determines whether the printed circuit board 1 has passed through the air curtain area 927.
  • the judgment criterion at that time is performed by comparing the time data D (i) output from the timer 65b with the board missing data D (S) and detecting whether or not they match (information comparison detection). processing). If the printed circuit board 1 does not pass through the air curtain area 927, the information comparison detection process is continued.
  • the control unit 65 outputs curtain control data D95 based on the substrate removal data D (S) to the air curtain driving unit 95.
  • the air curtain driving unit 95 outputs a motor control signal S96 for turning on the motor 96.
  • the motor 96 is turned on, the fan unit 919 rotates. Thereby, the air blowing mechanism 99 can be operated based on the board missing data D (S).
  • step ST9 the control unit 65 determines whether or not the soldering process for all the printed circuit boards 1 has been completed.
  • the discrimination criterion at that time is, for example, detecting whether or not the number of printed circuit boards 1 set in step ST1 has been counted up.
  • the count-up signal is not detected, it is determined that the soldering process for all the printed circuit boards 1 has not been completed, and the process returns to step ST2 to repeat the above-described steps ST2 to ST8.
  • the count-up signal is detected, it is determined that the soldering process for all the printed circuit boards 1 has been completed, and the control of the blower mechanism 99 is ended.
  • the printed circuit board 1 which attached the electronic component was thrown into the jet soldering apparatus 100 one by one, and it pre-heated and after pre-heating.
  • the control unit 65 that drives the blower mechanism 99 in the idling state includes the substrate input data D (t) and the distance data.
  • D (L) is processed by software to calculate the board length data D (x), board arrival data D (T), and board missing data D (S) in real time. I set it.
  • the control unit 65 performs the printing based on the board length data D (x), the board arrival data D (T), and the board missing data D (S). Air blowing can be stopped immediately before the substrate 1 passes through the air curtain area 927. At the same time, the control unit 65 stops the blowing while the printed circuit board 1 is passing, and the blowing can be resumed immediately after the printed circuit board 1 passes through the air curtain area 927.
  • the generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the air blowing mechanism 99 that forms the air curtain area 927. become.
  • the printed circuit boards 1 having different lengths can pass through the air curtain area 927 without generating turbulent flow.
  • the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
  • the air curtain driving unit 95 may be controlled by setting the margins ⁇ and ⁇ as in the first embodiment.
  • the length of the printed board 1 in the transport direction is automatically detected. Therefore, it is preferably applicable when the length of the printed circuit board 1 in the transport direction is unknown, but can also be applied when the length of the printed circuit board 1 in the transport direction has a predetermined length.
  • the board detection sensor 18 shown in FIG. 9A periodically detects the continuously loaded printed circuit boards 1. become.
  • the board detection sensor 18 outputs board insertion data D (t) to the control unit 65 every time the printed board 1 is detected.
  • the controller 65 periodically inputs the board loading data D (t), and performs software processing on the board loading data D (t) and the distance data D (L) for each printed board 1 that is continuously loaded. . Then, the control unit 65 calculates the board length data D (x), the board arrival data D (T), and the board missing data D (S) in real time, and sets these information in the air curtain driving unit 95. Are stored in the memory unit 65d.
  • an information recording area as shown in FIG. 11 is allocated to the memory unit 65d shown in FIG. 9A.
  • a turn-on time tx, an approach time ti, and a drop-off time tj are described together with a number (for example, NO. PCB # 1) for identifying the printed circuit board 1.
  • NO. PCB # 1 for identifying the printed circuit board 1.
  • the input time t0, the approach time t160, and the withdrawal time t180 are described for PCB # 1.
  • NO. for identifying the second printed circuit board 1 The input time t40, the approach time t200, and the withdrawal time t220 are described for PCB # 2.
  • the input time t80, the approach time t240, and the exit time t260 are described for PCB # 3. NO.
  • the input time t120, the approach time t280, and the exit time t300 are described for PCB # 4. NO.
  • An input time t160, an approach time t320, and an exit time t340 are described for PCB # 5.
  • the insertion time tx, the approach time ti, and the removal time tj related to the set number of printed circuit boards 1 are respectively described.
  • the control unit 65 controls the air curtain driving unit 95 with reference to the description content of the memory unit 65d.
  • the board loading data D (t) is periodically stored, and the board loading data D (t) and the distance data D (L) are processed for each printed board 1 by software processing.
  • Substrate length data D (x), substrate arrival data D (T), and substrate missing data D (S) are calculated in real time, and these pieces of information are stored in the memory unit 65d for setting in the air curtain drive unit 95.
  • the control unit 65 refers to the information recording contents of the memory unit 65d and controls the air curtain driving unit 95 in parallel with the information recording.
  • the control unit 65 accepts the setting of operation conditions in step ST11.
  • the user operates the input unit 64 shown in FIG. 5 as an operation condition to set the continuous processing mode.
  • the continuous processing mode refers to a mode in which the printed circuit board 1 is periodically and continuously put into the jet soldering apparatus 100 and soldered. Also in this example, the user sets the number of printed circuit boards 1 to be soldered in the control unit 65.
  • the first printed circuit board 1 is put into the board carry-in port 202 of the carrying path provided with the air blowing mechanism 99 that forms the air curtain area 927.
  • D (t) is output to the control unit 65.
  • step ST13 the control unit 65 stores the board loading data D (t) of the first printed board 1 in the memory unit 65d and starts the timer 65b shown in FIG. 9A.
  • the timer 65b sequentially outputs time data D (i) indicating the current time as a control reference to the control unit 65.
  • the substrate loading data D (t) indicating the loading time tx at that time corresponds to, for example, the time t0 in the third embodiment.
  • step ST14 the control unit 65 measures the substrate length of the first printed circuit board 1.
  • the controller 65 determines the difference between the leading edge detection time ta and the trailing edge detection time tb of the first printed circuit board 1 that is transported at the transport speed V, and the transport speed data D (V ) To calculate the substrate length data D (x).
  • step ST15 the control unit 65 calculates the approach time ti from the board arrival data D (T) of the first printed circuit board 1 and the removal time tj from the board removal data D (S).
  • the substrate arrival data D (T) is calculated from the distance data D (L) and the conveyance speed data D (V).
  • the approach time ti is time data D (i) output from the timer 65b at the substrate arrival time T, and corresponds to, for example, the time t160 in the third embodiment.
  • the missing time tj is time data D (i) output from the timer 65b at the passage time S and corresponds to, for example, the time t180 in the third embodiment.
  • step ST16 the control unit 65 stores the insertion time tx, the approach time ti, and the removal time tj of the printed circuit board 1 in the memory unit 65d (time information recording). For example, the NO.
  • the input time t0, the approach time t160, and the withdrawal time t180 are described for PCB # 1 (see FIG. 11).
  • step ST17 the control unit 65 reads the substrate loading data D (t) and the like from the memory unit 65d and executes the process. To do.
  • step ST18 the control unit 65 determines whether or not the first printed circuit board 1 has approached. The judgment criterion at that time is to compare whether the time data D (i) output from the timer 65b and the board arrival data D (T) of the first printed circuit board 1 match each other. (Information comparison detection process). If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
  • the control unit 65 outputs curtain control data D95 based on the board arrival data D (T) of the first printed circuit board 1 to the air curtain driving unit 95.
  • the air curtain driving unit 95 outputs a motor control signal S96 for turning off the motor 96.
  • the fan unit 919 stops when the motor 96 is turned off. Thereby, the operation of the blower mechanism 99 can be stopped based on the board arrival data D (T) of the first printed board 1.
  • step ST20 the control unit 65 determines whether the printed circuit board 1 has passed through the air curtain area 927.
  • the judgment criterion at that time is to compare the time data D (i) output from the timer 65b with the board missing data D (S) of the first printed circuit board 1, and detect whether or not they match. (Information comparison detection process). If the printed circuit board 1 does not pass through the air curtain area 927, the information comparison detection process is continued.
  • the control unit 65 outputs curtain control data D95 based on the board removal data D (S) of the first printed circuit board 1 to the air curtain driving unit 95.
  • the air curtain driving unit 95 outputs a motor control signal S96 for turning on the motor 96.
  • the motor 96 is turned on, the fan unit 919 rotates. Thereby, the air blowing mechanism 99 can be operated based on the board missing data D (S) of the first printed board 1.
  • step ST22 the control unit 65 determines whether or not the soldering process for all the printed circuit boards 1 has been completed.
  • the discrimination criterion at that time is, for example, detecting whether or not the number of printed circuit boards 1 set in step ST11 is counted up. If the count-up signal is not detected, it is determined that the soldering process for all the printed circuit boards 1 has not been completed, and the control unit 65 returns to step ST12 and determines whether the second (th) and subsequent PCBs have been detected. Determine.
  • the determination criterion is that the substrate detection data 18 (denoted as PCB in the drawing) of the second printed circuit board 1 shown in FIG. 9A is output to the control unit 65 from the substrate detection sensor 18. Is done by detecting it. Since the subsequent processing is as described above, the description thereof is omitted.
  • the control unit 65 periodically inputs the board loading data D (t) of the printed board 1 that is continuously loaded, The board input data D (t) and the distance data D (L) are processed by software for each printed circuit board 1. Then, the control unit 65 calculates the board length data D (x), the board arrival data D (T), and the board missing data D (S) in real time, and sets these information in the air curtain driving unit 95. Store in the memory unit 65d. The control unit 65 refers to the information recording contents of the memory unit 65d and controls the air curtain driving unit 95 in parallel with the information recording.
  • the control unit 65 converts the board length data D (x), the board arrival data D (T), and the board missing data D (S) even when the lengths of the printed boards 1 that are continuously input are different. Based on this, the blowing can be stopped immediately before the printed circuit board 1 passes through the air curtain area 927. At the same time, the control unit 65 stops air blowing even while the printed circuit board 1 is passing, and can resume air blowing immediately after the printed circuit board 1 passes through the air curtain area 927.
  • the generation of turbulence takes precedence over the function of blocking the atmosphere on the conveyance path by the air blowing mechanism 99 that forms the air curtain area 927. Can be prevented.
  • the printed circuit boards 1 having different lengths can pass through the air curtain area 927 without generating turbulent flow. Thereby, the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
  • Example suitable for a reflow apparatus having a plurality of air curtain areas a configuration example of the reflow apparatus 200 as the fifth embodiment will be described with reference to FIG.
  • the airflow mechanisms 99a and 99b for forming a plurality (two in this example) of air curtain areas 927a and 927b are arranged in the reflow apparatus 200.
  • the reflow apparatus 200 shown in FIG. 13 constitutes another example of a soldering apparatus, and includes an apparatus main body 211 and a conveyor 52.
  • the apparatus main body 211 is formed of a tunnel-shaped housing having a carry-in port 10a and a carry-out port 10b.
  • the conveyor 52 extends along the conveyance path X from the carry-in port 10a to the carry-out port 10b, and the printed circuit board 3 is moved from the carry-in port 10a of the apparatus main body 211 toward the carry-out port 10b at a predetermined speed. Transport.
  • a substrate detection sensor 18 as described in the first embodiment is disposed at the carry-in entrance 10a.
  • the printed circuit board 3 set on the conveyor 52 is detected at the carry-in entrance 10a to generate PCB detection data D18.
  • the PCB detection data D18 is output to the control unit 65 shown in FIG.
  • the preheating zone Z1 is an area for volatilizing a solvent contained in the cream solder, and a heater 42, a fan 44, a motor 46, and the like are installed.
  • a heater 42, a fan 44, a motor 46, and the like are installed as the cream solder.
  • the cream solder for example, lead-free solder containing tin-silver-copper, tin-zinc-bismuth or the like is used.
  • the melting point of this solder is, for example, about 180 ° C. to 220 ° C.
  • the heating zone Z2 is an area for melting the solder by heating the printed circuit board 3, and a heater 42, a fan 44, a motor 46, and the like are installed.
  • the configurations of the heater 42, the fan 44, and the motor 46 are generally different by using only the temperature setting using the same configuration, but different configurations. It is also good. Even when different configurations are adopted, the basic configuration and functions are the same, and thus the description thereof is omitted for the sake of convenience.
  • the heater 42 is disposed so as to face the upper and lower sides of the conveyor 52, and heats the air inside the preheating zone Z1 and the heating zone Z2.
  • three heaters 42 are arranged above and below, and in the heating zone Z2, two heaters 42 are arranged above and below, respectively.
  • the motor 46 is arranged so as to face the upper and lower sides of the conveyor 52, and rotates the fans 44 arranged in each zone.
  • three motors 46 are arranged above and below, and in the heating zone Z2, two motors 46 are arranged above and below, respectively.
  • the fan 44 is composed of, for example, a turbo fan or a sirocco fan, and is electrically connected to the motor 46.
  • the fan 44 is driven to rotate by driving of the motor 46, and the hot air heated by the heater 42 is circulated inside the preheating zone Z1 and the heating zone Z2 and blown to the upper surface and the lower surface of the printed circuit board 3, respectively.
  • three fans 44 are arranged on the upper and lower sides in the preheating zone Z1, and two fans 44 are arranged on the upper and lower sides in the heating zone Z2.
  • the first air blowing mechanism 99a and the air curtain area 927a are disposed between the heating zone Z2 and the cooling zone Z3.
  • the second air blowing mechanism 99b and the air curtain area 927b are disposed at the carry-out port 10b of the apparatus main body 211.
  • the blower 904 described in the first embodiment is used for the blower mechanisms 99a and 99b.
  • An inert gas such as air or nitrogen (N2) or a mixed gas thereof is introduced into the blowing mechanisms 99a and 99b.
  • the air blowing mechanisms 99a and 99b are controlled by the control unit 65 described in the second embodiment.
  • FIG. 9A, 9B, and 14 a control example of the blower mechanisms 99a and 99b will be described with reference to FIGS. 9A, 9B, and 14.
  • FIG. 10 the processing contents of steps ST6 to ST8 shown in FIG. 10 and the portions corresponding to the processing contents of steps ST17 to ST21 shown in FIG. 12 are the processing contents of steps ST71 to ST78 shown in FIG. Is replaced by Accordingly, the processing contents of steps ST71 to ST78 shown in FIG. 14 will be described.
  • the other processing contents are the same as those shown in FIGS. 9A, 9B, and 12, and will not be described.
  • step ST71 shown in FIG. 14 the control unit 65 determines whether or not the printed circuit board 1 (described as PCB in the drawing) has approached the first air curtain area 927a.
  • the criterion is that the time data D (i) output from the timer 65b shown in FIG. 9A is compared with the board arrival data D (Ta) of the printed circuit board 1, and whether or not they match. It is performed by detecting (information comparison detection process). If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
  • the substrate arrival data D (Ta) is calculated from the distance data D (La) and the conveyance speed data D (V).
  • the board arrival data D (Ta) is information indicating the elapsed time from the time (corresponding to ta) when the printed board 1 is introduced into the carry-in entrance 10a until it reaches the first air curtain area 927a.
  • the substrate arrival data D (Ta) corresponds to the required time to reach the air curtain area 927a.
  • the distance data D (La) is information indicating a distance La (actual measurement) from the carry-in entrance 10a to the air curtain area 927a.
  • the control unit 65 shown in FIG. 9A outputs curtain control data D95 based on the board arrival data D (Ta) of the printed circuit board 1 to the air curtain driving unit 95.
  • the air curtain driving unit 95 outputs a motor control signal S9a for turning off the motor 96a shown in FIG. 9B.
  • the fan unit 919 stops when the motor 96a is turned off. Thereby, the operation of the blower mechanism 99a can be stopped based on the board arrival data D (Ta) of the printed board 1.
  • step ST73 the control unit 65 determines whether the printed circuit board 1 has passed the air curtain area 927a.
  • the judgment criterion at that time is performed by comparing the time data D (i) output from the timer 65b with the board missing data D (S) of the printed circuit board 1 and detecting whether or not they match. . If the printed circuit board 1 does not pass through the air curtain area 927a, the information comparison detection process is continued.
  • step ST74 the blower mechanism 99a is driven. Control to resume.
  • the control unit 65 outputs curtain control data D95 based on the board removal data D (S) of the printed board 1 to the air curtain driving unit 95.
  • the air curtain drive unit 95 outputs a motor control signal S9a that turns on the motor 96a.
  • the motor 96a is turned on, the fan unit 919 rotates. Thereby, the ventilation mechanism 99a can be operated based on the board missing data D (S) of the printed board 1.
  • step ST75 the control unit 65 determines whether or not the printed circuit board 1 has approached the second air curtain area 927b.
  • the determination criterion is to compare the time data D (i) output from the timer 65b with the board arrival data D (Tb) of the printed circuit board 1 and detect whether they match. Is called. If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
  • the substrate arrival data D (Tb) is calculated from the distance data D (Lb) and the conveyance speed data D (V).
  • the board arrival data D (Tb) is information indicating an elapsed time from the time (corresponding to ta) when the printed board 1 is introduced into the carry-in entrance 10a until it reaches the second air curtain area 927b.
  • the board arrival data D (Tb) corresponds to the time required to reach the air curtain area 927b.
  • the distance data D (Lb) is information indicating a distance Lb (actual measurement) from the carry-in entrance 10a to the air curtain area 927b.
  • the control unit 65 outputs curtain control data D95 based on the board arrival data D (Tb) of the first printed circuit board 1 to the air curtain driving unit 95.
  • the air curtain driving unit 95 outputs a motor control signal S9b that turns off the motor 96b.
  • the fan unit 919 stops when the motor 96b is turned off. Thereby, based on the board
  • step ST77 the control unit 65 determines whether the printed circuit board 1 has passed through the air curtain area 927b.
  • the judgment criterion at that time is to compare the time data D (i) output from the timer 65b with the board missing data D (S) of the first printed circuit board 1, and detect whether or not they match. Is done.
  • the information comparison detection process is continued.
  • the blower mechanism 99b is driven in step ST78. Control to resume.
  • the control unit 65 outputs curtain control data D95 based on the board removal data D (S) of the printed board 1 to the air curtain driving unit 95.
  • the air curtain driving unit 95 outputs a motor control signal S9b that turns on the motor 96b.
  • the motor 96b is turned on, the fan unit 919 rotates. Accordingly, the blower mechanism 99b can be operated based on the board missing data D (S) of the printed board 1.
  • the printed circuit board 1 to which the electronic components are attached is put into the reflow apparatus 200. Then, preheating is performed in the preheating zone Z1, and the printed circuit board 1 after the preheating is conveyed to the heating zone Z2.
  • the control unit 65 that drives the air blowing mechanisms 99a and 99b in the idling state includes the board input data D (t) and the distance data D (La). , D (Lb) is processed by software. Then, the control unit 65 calculates the substrate length data D (x), the substrate arrival data D (Ta), D (Tb), and the substrate missing data D (S) in real time, and supplies these information to the air curtain driving unit. It was set to 95.
  • the control unit 65 performs the circuit board length data D (x), board arrival data D (Ta), D (Tb), and board missing data D (S) Based on the above, it is possible to stop the air blowing immediately before the printed circuit board 1 passes through the air curtain areas 927a and 927b. At the same time, the control unit 65 stops the blowing while the printed circuit board 1 is passing, and the blowing can be resumed immediately after the printed circuit board 1 passes through the air curtain areas 927a and 927b.
  • the 1st air curtain area 927a brings about the heat insulation effect between the heating zone Z2 and the cooling zone Z3. According to the heat insulating effect of the air curtain area 927a, the outflow of the high temperature atmosphere from the heating zone Z2 to the cooling zone Z3 is prevented, or the inflow of the low temperature atmosphere from the cooling zone Z3 to the heating zone Z2 is prevented.
  • the second air curtain area 927b provides a heat insulating effect and an outside air intrusion preventing effect between the heating zone Z2 and the carry-out port 10b. According to the heat insulating effect and the outside air intrusion preventing effect of the air curtain area 927b, the cooling atmosphere outflow from the cooling zone Z3 to the outside air is prevented, and the low temperature atmosphere inflow from the outside air to the cooling zone Z3 is prevented.
  • a plurality of air curtain areas 927a and 927b may be applied to the jet soldering apparatus 100 described in the first embodiment.
  • an air curtain area 927a may be disposed between the chamber 50 of the jet soldering apparatus 100 and the cooling processing unit 90. A similar heat insulation effect can be expected.
  • the blower mechanism 99c shown in FIG. 15 has a shutter mechanism 950 that is controlled to be opened and closed by the control unit 65.
  • the shutter mechanism 950 is disposed between the blower 904 and the cooling unit mounting base 908, for example.
  • the shutter mechanism 950 includes a mechanism main body portion 951, a shutter portion 952, a connecting rod 953, and a solenoid portion 954.
  • the mechanism main body 951 forms a housing having an opening at a predetermined site.
  • the opening of the mechanism main body 951 has the same size as the opening of the exhaust port 912.
  • the opening of the mechanism body 951 and the opening of the exhaust port 912 are aligned and attached to the cooling unit mounting base 908.
  • a shutter portion 952 is slidably incorporated in the mechanism main body portion 951.
  • the shutter portion 952 has a flat plate shape and has an area that blocks an opening portion of the mechanism main body portion 951 (an opening portion of the exhaust port 912).
  • the shutter unit 952 closes or opens the exhaust port 912 of the blower mechanism 99c.
  • the shutter portion 952 shown in FIG. 15 is in an open state.
  • a connecting rod 953 is connected to the shutter portion 952.
  • the connecting rod 953 is connected to a solenoid portion 954 that constitutes an example of a drive portion.
  • the solenoid portion 954 movably engages the connecting rod 953, and the solenoid portion 954 is driven to open and close so as to slide the shutter portion 952 via the connecting rod 953.
  • the shutter portion 952 operates so as to block the opening portion of the mechanism main body portion 951 (the opening portion of the exhaust port 912) by the solenoid portion 954. These constitute a shutter mechanism 950.
  • an air curtain driving unit 95 and a motor 96 are connected to the control unit 65 shown in FIG.
  • the controller 65 drives the motor 96 directly.
  • the motor control signal S96 is output to the motor 96 when the power is turned on.
  • the motor 96 controls the motor control signal when the soldering apparatus is idling, when the printed circuit board 1 is in the process of soldering, and while the printed circuit board 1 passes through an air curtain area (not shown).
  • the fan unit 919 is continuously rotated based on S96.
  • a solenoid unit 954 constituting an example of a drive unit is connected to the air curtain drive unit 95.
  • the air curtain drive unit 95 generates a solenoid control signal S9c based on the curtain control data D95 input from the control unit 65.
  • the air curtain driving unit 95 outputs a solenoid control signal S9c to the solenoid unit 954.
  • the solenoid unit 954 opens and closes the shutter unit 952 based on the solenoid control signal S9c.
  • the air curtain driving unit 95 when opening the shutter mechanism 950 and blowing air from the blower mechanism 99c to the conveyance path, the air curtain driving unit 95 generates a high-level solenoid control signal S9c based on the curtain control data D95 input from the control unit 65. Generate.
  • the solenoid unit 954 opens the shutter unit 952 based on the high-level solenoid control signal S9c (ON control of the solenoid unit 954). As a result, air is blown from the blower mechanism 99c to the transport path via the blower 904, and an air curtain area (not shown) is formed.
  • the air curtain driving unit 95 uses the curtain control data D95 input from the control unit 65. Based on this, a low-level solenoid control signal S9c is generated.
  • the solenoid unit 954 closes the shutter unit 952 based on the low-level solenoid control signal S9c (off control of the solenoid unit 954). Thereby, the ventilation of the air from the air curtain area which is not illustrated to a conveyance path
  • the blower 904 allows air to escape through the openings 956 and 957. This air may be positively used for other functions.
  • the shutter mechanism 950 is disposed between the air blower 904 and the cooling unit mounting base 908, and the shutter mechanism 950 is controlled to be opened and closed by the control unit 65. Is.
  • This opening / closing control makes it possible to instantaneously stop or restart the blowing of air from the blowing mechanism 99c to the conveyance path. Therefore, in the board
  • the air curtain area (not shown) can be formed or not formed (see FIGS. 6A to 6D).
  • the air blow prevention by the shutter mechanism of this embodiment may be combined with the function of stopping the air blowing described in the first to fifth embodiments. By comprising in this way, it can be ensured that the air curtain areas 927 and 927b are formed or not formed.
  • the present invention has an air curtain area, jets solder to a part mounting location of a printed circuit board, and performs soldering processing on the printed circuit board and an electronic component.
  • the present invention is extremely suitable for application to a reflow apparatus for soldering the electronic component and the printed circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A soldering device that solders electronic components onto substrates. As shown in figure 1, said soldering device is provided with: a blower mechanism (99) that is provided at a prescribed location along a conveyance path, which conveys substrates, and blows a gas over the conveyance path to form an air-curtain area (927) in which the surrounding atmosphere is kept away; and a control unit (65) that controls the blower mechanism (99) so as to start or stop the flow of air in accordance with the timing at which substrates pass said mechanism. The blower mechanism can be controlled such that blowing stops immediately before a substrate passes the air-curtain area (927), remains stopped while the substrate is passing by, and restarts immediately after the substrate passes the air-curtain area (927). This makes it possible to prevent turbulence, with higher priority than the ability of the blower mechanism to keep the surrounding atmosphere away from the conveyance path, and allow substrates to pass the air-curtain area without accompanying turbulence.

Description

はんだ付け装置Soldering equipment
 本発明は、所定の位置にエアーカーテンエリアを有する、噴流はんだ付け装置や、リフロー装置等に適用可能なはんだ付け装置に関するものである。噴流はんだ付け装置は、プリント基板の部品取付箇所に溶融はんだを噴出させて、プリント基板と電子部品とをはんだ付け処理する。リフロー装置は、クリームはんだによって電子部品が載置されたプリント基板をリフロー処理することにより、電子部品とプリント基板とをはんだ付け処理する。 The present invention relates to a soldering apparatus having an air curtain area at a predetermined position and applicable to a jet soldering apparatus, a reflow apparatus or the like. The jet soldering apparatus ejects molten solder to a component mounting portion of a printed circuit board, and solders the printed circuit board and the electronic component. The reflow apparatus performs a soldering process on the electronic component and the printed board by performing a reflow process on the printed board on which the electronic component is placed by cream solder.
 従来から、プリント基板の所定の面に電子部品をはんだ付け処理する場合には、噴流はんだ付け装置や、リフロー装置等が使用される。噴流はんだ付け装置によれば、フラクサーや、プリヒーター、噴流はんだ付け処理部、冷却機等を所定の位置に配設されて構成される。この噴流はんだ付け装置では、電子部品をプリント基板にはんだ付けする場合、まず、プリント基板の一面にフラクサーでフラックスを塗布する。次に、プリヒーターでプリント基板を予備加熱し、噴流はんだ付け槽でプリント基板と電子部品とをはんだ付けし、冷却機でプリント基板を冷却する。これらの処理により、はんだ付けが完了する(特許文献1参照)。 Conventionally, when an electronic component is soldered to a predetermined surface of a printed circuit board, a jet soldering device, a reflow device, or the like is used. According to the jet soldering apparatus, a fluxer, a pre-heater, a jet soldering processing unit, a cooler, and the like are arranged at predetermined positions. In this jet soldering apparatus, when an electronic component is soldered to a printed board, first, flux is applied to one surface of the printed board with a fluxer. Next, the printed circuit board is preheated with a preheater, the printed circuit board and the electronic component are soldered with a jet soldering tank, and the printed circuit board is cooled with a cooler. By these processes, the soldering is completed (see Patent Document 1).
 また、リフロー装置に関して特許文献2には、はんだ付けリフロー炉が開示されている。はんだ付けリフロー炉によれば、筒状のマッフル、断熱壁、予熱用ヒーター、リフロー用ヒーター、冷却装置及びエアーカーテンを備えている。 Also, with respect to the reflow apparatus, Patent Document 2 discloses a soldering reflow furnace. The soldering reflow furnace includes a cylindrical muffle, a heat insulating wall, a preheating heater, a reflow heater, a cooling device, and an air curtain.
 マッフルの外周部位には断熱壁を介して入口側から出口側に向かって予熱用ヒーター、リフロー用ヒーター及び冷却装置が配置されている。マッフルの入口側及び出口側にはエアーカーテンが設けられ、エアーカーテンには窒素ガスが導入される。エアーカーテンはマッフルの出入口から外気が流入することを防止したり、内部への塵埃等の流入を防止したり、マッフル内部から外部への窒素ガスの流出を防止するように機能する。 In the outer periphery of the muffle, a preheating heater, a reflow heater and a cooling device are arranged from the inlet side to the outlet side through a heat insulating wall. Air curtains are provided on the inlet side and outlet side of the muffle, and nitrogen gas is introduced into the air curtain. The air curtain functions to prevent outside air from flowing in from the entrance / exit of the muffle, prevent inflow of dust and the like into the interior, and prevent outflow of nitrogen gas from the inside of the muffle to the outside.
 マッフルはその内部がプリント基板を搬入する搬入部及びそれを搬出する搬出部を除いて密閉され、エアーカーテンから噴出される窒素ガスによって、窒素雰囲気となされている。マッフルの内部にはメッシュベルトが設けられ、プリント基板を所定の方向に搬送するようになされる。 The inside of the muffle is sealed except for the carry-in part for carrying the printed circuit board and the carry-out part for carrying it out, and a nitrogen atmosphere is created by nitrogen gas blown from the air curtain. A mesh belt is provided inside the muffle, and the printed circuit board is conveyed in a predetermined direction.
 これを前提にして、塗布されたクリームはんだの粘着力によって電子部品が載置されたプリント基板がリフロー装置に搬入されると、メッシュベルトによって、プリント基板が搬送される。次に、予熱用ヒーターにより予備加熱され、その後、リフロー用ヒーターによって、クリームはんだがリフロー処理され、電子部品とプリント基板とがはんだ付けされ、その後、冷却装置によって冷却される。これらのリフロー処理により、はんだ付けが完了する。 Based on this assumption, when the printed circuit board on which the electronic component is placed is carried into the reflow apparatus by the adhesive force of the applied cream solder, the printed circuit board is conveyed by the mesh belt. Next, preheating is performed by a preheating heater, and then the cream solder is reflowed by the reflow heater, the electronic component and the printed board are soldered, and then cooled by the cooling device. Soldering is completed by these reflow processes.
 さらに、この種のリフロー装置に関連して特許文献3には、はんだ付け方法及びはんだ付け装置が開示されている。このはんだ付け装置は、トンネルタイプの加熱炉及びエアーカーテンを備え、電子部品と基板等のようにワーク同士のはんだ付け処理を行う。加熱炉は窒素雰囲気室及び水素雰囲気室を有し、加熱炉でワークの出入口となる部分にエアーカーテンが設けられる。窒素雰囲気室はその内部に窒素ガスが充填され、ワーク同士のはんだ付けを行われる。エアーカーテンは出入口から外気が流入することを防止したり、窒素雰囲気室への塵埃等の流入を防止したり、窒素雰囲気室内部から外部への窒素ガスの流出を防止するように機能する。 Furthermore, in connection with this type of reflow apparatus, Patent Document 3 discloses a soldering method and a soldering apparatus. This soldering apparatus includes a tunnel-type heating furnace and an air curtain, and performs a soldering process between workpieces such as an electronic component and a substrate. The heating furnace has a nitrogen atmosphere chamber and a hydrogen atmosphere chamber, and an air curtain is provided at a portion serving as a work entrance / exit in the heating furnace. The nitrogen atmosphere chamber is filled with nitrogen gas, and the workpieces are soldered. The air curtain functions to prevent outside air from flowing in from the entrance / exit, to prevent inflow of dust and the like into the nitrogen atmosphere chamber, and to prevent outflow of nitrogen gas from the inside of the nitrogen atmosphere chamber to the outside.
 水素雰囲気室は窒素雰囲気室中に分離形成するように配置され、ワークの出し入れが自在な部屋である。水素雰囲気室は内部に水素ガスが充填され、ワークの還元処理が行われる。水素ガスは水素雰囲気室のみに充填される。搬送機構は、窒素雰囲気中から水素雰囲気中へ、及び、水素雰囲気中から窒素雰囲気中へワークを連続的に搬送する。これを前提にして、水素雰囲気中で還元処理を終了したワークを窒素雰囲気中ではんだ付処理するようにした。 The hydrogen atmosphere chamber is a room where the work can be taken in and out, arranged so as to be separated from the nitrogen atmosphere chamber. The hydrogen atmosphere chamber is filled with hydrogen gas to reduce the workpiece. Hydrogen gas is filled only in the hydrogen atmosphere chamber. The conveyance mechanism continuously conveys the workpiece from the nitrogen atmosphere to the hydrogen atmosphere and from the hydrogen atmosphere to the nitrogen atmosphere. On the premise of this, the work that has been reduced in a hydrogen atmosphere is soldered in a nitrogen atmosphere.
 このようにはんだ付け装置を構成すると、酸化物(酸化膜)を除去した高品質のはんだ付け処理を行うことができる。水素ガスの使用量をワークの還元処理に必要な最小量にすることができる。はんだ付け装置の構造の簡略化や小型化、はんだやワーク等の加熱・冷却効率が向上できるというものである。 If the soldering apparatus is configured in this way, a high-quality soldering process in which an oxide (oxide film) is removed can be performed. The amount of hydrogen gas used can be reduced to the minimum amount necessary for the workpiece reduction process. This simplifies the structure of the soldering device, reduces the size, and improves the heating / cooling efficiency of the solder or workpiece.
特開2001-230538号公報(第6頁 図1)Japanese Patent Laid-Open No. 2001-230538 (6th page, FIG. 1) 特開平 01-118369号公報(第3頁 図2)Japanese Patent Laid-Open No. 01-118369 (page 3, Fig. 2) 特開平 10-202362号公報(第3頁 図1)Japanese Patent Laid-Open No. 10-202362 (page 3, FIG. 1)
 ところで、従来例に係るはんだ付け装置によれば、特許文献1に見られるような噴流はんだ付け装置の搬出部や、特許文献2や特許文献3等に見られるリフロー炉内に、エアーカーテンを導入する場合がある。特許文献2や特許文献3等に見られるエアーカーテンをそのまま適用した場合、装置の搬入部や搬出部等から外気が流入することを防止したり、窒素等の不活性雰囲気室への塵埃等の流入を防止できる。また、不活性雰囲気室の内部から外部への窒素(不活性)ガスの流出を防止する機能、すなわち、エアーカーテンエリアで搬送経路上の雰囲気を遮断する機能はそのまま得られる。しかし、常時、エアーカーテンエリアを形成する形態が採られるので、プリント基板がエアーカーテンエリアを通過することに伴って、エアーカーテンエリアを形成するエアーがプリント基板面によって一時的に遮断される。このため、エアーカーテンが乱れるという問題がある。 By the way, according to the soldering apparatus according to the conventional example, the air curtain is introduced into the carry-out portion of the jet soldering apparatus as seen in Patent Document 1 or the reflow furnace as seen in Patent Document 2 or Patent Document 3 or the like. There is a case. When the air curtain found in Patent Document 2 or Patent Document 3 is applied as it is, it prevents outside air from flowing in from the carry-in part or the carry-out part of the apparatus, or dust or the like in an inert atmosphere chamber such as nitrogen. Inflow can be prevented. Further, the function of preventing the outflow of nitrogen (inert) gas from the inside of the inert atmosphere chamber to the outside, that is, the function of blocking the atmosphere on the conveyance path in the air curtain area can be obtained as it is. However, since the air curtain area is always formed, the air forming the air curtain area is temporarily blocked by the printed circuit board surface as the printed circuit board passes through the air curtain area. For this reason, there is a problem that the air curtain is disturbed.
 すなわち、常時、エアーカーテンエリアを形成する形態であると、プリント基板(以下で単に基板ともいう)がエアーカーテンエリアに突入するとき、その先端部がエアーカーテンエリア前面側のエアーの吹き上げを遮断するので、乱流を引き起こす。基板がエアーカーテンエリアを通過するときも、基板がエアーの吹き上げを遮断するので、エアーカーテン全体が乱流を引き起こす。基板がエアーカーテンエリアから離脱するとき、その後端部がエアーカーテンエリア後面側のエアーの吹き上げを遮断するので、乱流を引き起こすことが考えられる。 In other words, when the air curtain area is always formed, when a printed circuit board (hereinafter also simply referred to as a board) enters the air curtain area, the tip portion blocks air blowing up on the front side of the air curtain area. So it causes turbulence. Even when the substrate passes through the air curtain area, the entire air curtain causes turbulence because the substrate blocks air blow-up. When the substrate is separated from the air curtain area, the rear end portion blocks air blowing up on the rear side of the air curtain area, which may cause turbulence.
 上述の課題を解決するために、請求項1に記載の第1のはんだ付け装置は、電子部品を取り付けた基板を予備加熱し、予備加熱後の前記基板をはんだ付け処理部に搬送し、前記基板に電子部品をはんだ付けする装置である。このはんだ付け装置は、前記基板を搬送する搬送経路の所定位置に設けられ、当該搬送経路上に気体を送風して雰囲気を遮断するエアーカーテンエリアを形成する送風機構と、前記エアーカーテンエリアを通過する前記基板の通過タイミングに対応して前記エアーカーテンエリアへの気体の送出又は停止をするように前記送風機構を制御する制御部とを備えるものである。 In order to solve the above-described problem, a first soldering apparatus according to claim 1 preheats a board on which an electronic component is attached, conveys the preheated board to a soldering processing unit, and An apparatus for soldering electronic components to a substrate. This soldering apparatus is provided at a predetermined position of a transport path for transporting the substrate, and passes through the air curtain area with a blower mechanism that forms an air curtain area that blows gas on the transport path to block the atmosphere. And a control unit that controls the blower mechanism so as to send or stop the gas to the air curtain area in response to the passage timing of the substrate.
 本発明に係る第1のはんだ付け装置によれば、電子部品を取り付けた基板を予備加熱し、予備加熱後の基板をはんだ付け処理部に搬送し、この基板に電子部品をはんだ付けする場合において、エアーカーテンエリアを形成する送風機構は、基板を搬送する搬送経路の所定位置に設けられ、当該搬送経路上に気体を送風して雰囲気を遮断する。これを前提にして、制御部がエアーカーテンエリアを通過する基板の通過タイミングに対応してエアーカーテンエリアへの気体の送出又は停止をするように送風機構を制御するようになる。 According to the first soldering apparatus of the present invention, in the case of preheating the substrate on which the electronic component is attached, transporting the preheated substrate to the soldering processing unit, and soldering the electronic component to the substrate The air blowing mechanism that forms the air curtain area is provided at a predetermined position of the transport path for transporting the substrate, and blows gas on the transport path to block the atmosphere. Based on this assumption, the control unit controls the air blowing mechanism so as to send or stop the gas to the air curtain area in accordance with the passage timing of the substrate passing through the air curtain area.
 この制御部は、基板がエアーカーテンエリアを通過する直前に送風を停止すると共に基板通過中も送風を停止し、基板がエアーカーテンエリアを通過した直後に送風を再開するように制御できる。従って、当該送風機構による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになると共に、基板が乱流の発生を伴うことなくエアーカーテンエリアを通過できるようになる。 This control unit can be controlled so as to stop the blowing immediately before the substrate passes through the air curtain area, stop the blowing even while the substrate passes, and restart the blowing immediately after the substrate passes through the air curtain area. Therefore, generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the blower mechanism, and the substrate can pass through the air curtain area without generating turbulent flow. .
 請求項2に記載のはんだ付け装置は、請求項1において、前記制御部によって制御される送風機構は、所定の位置に吸気口及び排気口を有した本体部と、前記本体部内に回転自在に係合され、前記吸気口から吸い込んだ気体を排気口から吹き出すファン部と、前記ファン部を駆動する駆動部とを有するものである。 A soldering device according to a second aspect of the present invention is the soldering apparatus according to the first aspect, wherein the air blowing mechanism controlled by the control unit is rotatable in a main body portion having an intake port and an exhaust port at predetermined positions, and in the main body portion. A fan unit that is engaged and blows out the gas sucked from the intake port from the exhaust port, and a drive unit that drives the fan unit.
 請求項3に記載のはんだ付け装置は、請求項2において、前記制御部は、前記駆動部をオン制御して前記送風機構から搬送経路へ気体を送風して前記エアーカーテンエリアを形成すると共に、前記駆動部をオフ制御して当該送風機構から搬送経路への気体の送風を停止するものである。 A soldering device according to a third aspect of the present invention is the soldering apparatus according to the second aspect, wherein the control unit controls the driving unit to turn on the air and blows gas from the blower mechanism to the transport path to form the air curtain area. The drive unit is controlled to be off to stop the blowing of gas from the blower mechanism to the transport path.
 請求項4に記載の第2のはんだ付け装置は、電子部品を取り付けた基板を予備加熱し、予備加熱後の前記基板をはんだ付け処理部に搬送し、前記基板に電子部品をはんだ付けする装置である。このはんだ付け装置は、前記基板を搬送する搬送経路の所定位置に設けられ、当該搬送経路上に気体を送風して雰囲気を遮断するエアーカーテンエリアを形成する送風機構と、前記送風機構の排気口に設けられたシャッター機構と、前記エアーカーテンエリアを通過する前記基板の通過タイミングに対応して前記エアーカーテンエリアへの気体の送出又は停止をするように前記シャッター機構を制御する制御部とを備えるものである。 5. The second soldering apparatus according to claim 4, wherein the substrate on which electronic components are attached is preheated, the preheated substrate is transported to a soldering processing unit, and the electronic components are soldered to the substrate. It is. The soldering apparatus is provided at a predetermined position of a transport path for transporting the substrate, and a blower mechanism that forms an air curtain area that blows gas on the transport path to block the atmosphere, and an exhaust port of the blower mechanism And a control unit that controls the shutter mechanism so as to send or stop the gas to the air curtain area corresponding to the passage timing of the substrate passing through the air curtain area. Is.
 本発明に係る第2のはんだ付け装置によれば、電子部品を取り付けた基板を予備加熱し、予備加熱後の基板をはんだ付け処理部に搬送し、この基板に電子部品をはんだ付けする場合において、エアーカーテンエリアを形成する送風機構は、基板を搬送する搬送経路の所定位置に設けられ、当該搬送経路上に気体を送風して雰囲気を遮断する。これを前提にして、制御部がエアーカーテンエリアを通過する基板の通過タイミングに対応してエアーカーテンエリアへの気体の送出又は停止をするようにシャッター機構を制御するようになる。 According to the second soldering apparatus of the present invention, in the case of preheating the substrate on which the electronic component is attached, transporting the preheated substrate to the soldering processing unit, and soldering the electronic component to the substrate The air blowing mechanism that forms the air curtain area is provided at a predetermined position of the transport path for transporting the substrate, and blows gas on the transport path to block the atmosphere. On the premise of this, the control unit controls the shutter mechanism so as to send or stop the gas to the air curtain area corresponding to the passage timing of the substrate passing through the air curtain area.
 この制御によって、基板がエアーカーテンエリアを通過する直前に送風を阻止すると共に基板通過中も送風を阻止し、基板がエアーカーテンエリアを通過した直後に送風を再開するように制御できる。従って、当該シャッター機構による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになると共に、基板が乱流の発生を伴うことなくエアーカーテンエリアを通過できるようになる。 By this control, it is possible to prevent the air flow just before the substrate passes through the air curtain area, block the air flow even while the substrate passes, and restart the air flow immediately after the substrate passes through the air curtain area. Therefore, generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the shutter mechanism, and the substrate can pass through the air curtain area without generating turbulent flow. .
 請求項5に記載のはんだ付け装置は、請求項4において、前記制御部によって開閉制御されるシャッター機構は、前記送風機構の排気口を閉蓋又は開蓋するシャッター部と、前記シャッター部を開閉駆動する駆動部とを有するものである。 According to a fifth aspect of the present invention, there is provided the soldering apparatus according to the fourth aspect, wherein the shutter mechanism that is controlled to be opened and closed by the control unit includes a shutter unit that closes or opens an exhaust port of the blower mechanism, and opens and closes the shutter unit. And a driving unit for driving.
 請求項6に記載のはんだ付け装置は、請求項5において、前記制御部が前記駆動部をオン制御して前記シャッター部を開蓋状態にして前記送風機構から搬送経路へ気体を送風して前記エアーカーテンエリアを形成すると共に、前記駆動部をオフ制御して前記シャッター部を閉蓋状態にして前記送風機構から搬送経路への気体の送風を阻止するものである。 The soldering device according to claim 6 is the soldering device according to claim 5, wherein the control unit controls the driving unit to turn on and the shutter unit is opened to blow gas from the blowing mechanism to the conveyance path. In addition to forming an air curtain area, the drive unit is controlled to be off, and the shutter unit is closed to prevent the blowing of gas from the blowing mechanism to the conveyance path.
 請求項7に記載のはんだ付け装置は請求項1乃至6のいずれかにおいて、前記搬送経路に投入される前記基板を検出して基板投入情報を出力する検出部を備え、前記制御部は、前記検出部から出力される基板投入情報に基づいて前記基板の搬送方向の長さを示す基板長さ情報と、前記基板が搬送経路に投入された時刻からエアーカーテンエリアへ到達するまでの経過時間を示す基板到達情報と、前記基板がエアーカーテンエリアを抜ける時刻を示す基板抜け情報とを算出するものである。 The soldering device according to claim 7 is provided with a detection unit that detects the substrate that is input to the transfer path and outputs substrate input information according to any one of claims 1 to 6, and the control unit includes: Substrate length information indicating the length of the substrate in the conveyance direction based on the substrate loading information output from the detection unit, and the elapsed time from the time when the substrate is loaded into the conveyance path to the arrival of the air curtain area Substrate arrival information to be displayed, and substrate removal information to indicate the time at which the substrate leaves the air curtain area.
 請求項8に記載のはんだ付け装置は、請求項1乃至7のいずれかにおいて、前記送風機構の本体部に空気又は不活性気体又はこれらの混合気体を導入するものである。 A soldering apparatus according to an eighth aspect of the present invention is the soldering apparatus according to any one of the first to seventh aspects, wherein air, an inert gas, or a mixed gas thereof is introduced into the main body of the blower mechanism.
 本発明に係る第1のはんだ付け装置によれば、搬送経路の所定位置に設けられて気体を送風するための送風機構を制御する制御部を備える。この制御部は、エアーカーテンエリアを通過する基板の通過タイミングに対応してエアーカーテンエリアへの気体の送出又は停止をするように制御するものである。 The first soldering apparatus according to the present invention includes a control unit that controls a blower mechanism that is provided at a predetermined position in the transport path and blows gas. This control unit controls to send or stop the gas to the air curtain area in accordance with the passage timing of the substrate passing through the air curtain area.
 この構成によって、制御部は、基板がエアーカーテンエリアを通過する直前に送風を停止すると共に基板通過中も送風を停止し、基板がエアーカーテンエリアを通過した直後に送風を再開するように制御できる。従って、当該送風機構による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになると共に、基板が乱流の発生を伴うことなくエアーカーテンエリアを通過できるようになる。 With this configuration, the control unit can control to stop the blowing immediately before the substrate passes through the air curtain area, stop the blowing even while the substrate passes, and resume the blowing immediately after the substrate passes through the air curtain area. . Therefore, generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the blower mechanism, and the substrate can pass through the air curtain area without generating turbulent flow. .
 本発明に係る第2のはんだ付け装置によれば、気体を送風してエアーカーテンエリアを形成するための送風機構の排気口に設けられたシャッター機構を制御する制御部を備える。この制御部は、エアーカーテンエリアを通過する基板の通過タイミングに対応してエアーカーテンエリアへの気体の送出又は阻止をするようにシャッター機構を制御するものである。 The second soldering apparatus according to the present invention includes a control unit that controls a shutter mechanism provided at an exhaust port of a blowing mechanism for blowing gas to form an air curtain area. This control unit controls the shutter mechanism so as to send or block the gas to the air curtain area in accordance with the passage timing of the substrate passing through the air curtain area.
 この構成によって、制御部は、基板がエアーカーテンエリアを通過する直前に送風を阻止すると共に基板通過中も送風を阻止し、基板がエアーカーテンエリアを通過した直後に送風を再開するように制御できる。従って、当該送風機構による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになると共に、基板が乱流の発生を伴うことなくエアーカーテンエリアを通過できるようになる。 With this configuration, the control unit can control the air flow immediately before the substrate passes through the air curtain area, the air flow during the substrate passage, and the air flow restart immediately after the substrate passes through the air curtain area. . Therefore, generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the blower mechanism, and the substrate can pass through the air curtain area without generating turbulent flow. .
 これにより、乱流発生防止機能を有した送風機構付きの噴流はんだ付け装置や、リフロー装置等を提供できるようになる。なお、上記雰囲気とは、窒素ガス等の不活性ガスを含んだ雰囲気(窒素ガス雰囲気または不活性ガス雰囲気と記載)、または、窒素ガス等の不活性ガスを含まない雰囲気(単に雰囲気と記載)の概念を表すものである。 This makes it possible to provide a jet soldering device with a blower mechanism having a turbulent flow prevention function, a reflow device, and the like. Note that the atmosphere includes an atmosphere containing an inert gas such as nitrogen gas (described as a nitrogen gas atmosphere or an inert gas atmosphere), or an atmosphere not including an inert gas such as nitrogen gas (simply described as an atmosphere). It expresses the concept of
本発明に係る実施形態としての噴流はんだ付け装置100の構成例を示す概念図である。It is a conceptual diagram which shows the structural example of the jet soldering apparatus 100 as embodiment which concerns on this invention. 送風機構99における送風機904の構成例を示す斜視図である。It is a perspective view which shows the structural example of the air blower 904 in the ventilation mechanism 99. FIG. 送風機904の組立例を示す分解斜視図である。It is a disassembled perspective view which shows the assembly example of the air blower 904. FIG. 送風機904の動作例を示す断面図である。It is sectional drawing which shows the operation example of the air blower 904. FIG. 噴流はんだ付け装置100の制御系の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control system of the jet soldering apparatus. 第1の実施例としての送風機構99の制御例(その1)を示すブロック図である。It is a block diagram which shows the control example (the 1) of the ventilation mechanism 99 as a 1st Example. 第1の実施例としての送風機構99の制御例(その2)を示すブロック図である。It is a block diagram which shows the control example (the 2) of the ventilation mechanism 99 as a 1st Example. 第1の実施例としての送風機構99の制御例(その3)を示すブロック図である。It is a block diagram which shows the control example (the 3) of the ventilation mechanism 99 as a 1st Example. 第1の実施例としての送風機構99の制御例(その4)を示すブロック図である。It is a block diagram which shows the control example (the 4) of the ventilation mechanism 99 as a 1st Example. (A)乃至(E)は、送風機904の制御例を示す動作タイミングチャートである。(A) thru | or (E) are the operation | movement timing charts which show the example of control of the air blower 904. FIG. (A)乃至(G)は、第2の実施例としての送風機構99の制御例を示す動作タイミングチャートである。(A) thru | or (G) are the operation | movement timing charts which show the example of control of the ventilation mechanism 99 as a 2nd Example. 第3の実施例としての制御部65の内部構成例(その1)を示すブロック図である。It is a block diagram which shows the internal structural example (the 1) of the control part 65 as a 3rd Example. 第3の実施例としての制御部65の内部構成例(その2)を示すブロック図である。It is a block diagram which shows the internal structural example (the 2) of the control part 65 as a 3rd Example. 送風機構99の他の制御例を示すフローチャートである。It is a flowchart which shows the other example of control of the ventilation mechanism 99. 第4の実施例としての複数のプリント基板に対応する情報記録例を示す表図である。It is a table | surface figure which shows the example of information recording corresponding to the some printed circuit board as a 4th Example. 第4の実施例に係る送風機構99の制御例を示すフローチャートである。It is a flowchart which shows the example of control of the ventilation mechanism 99 which concerns on a 4th Example. 第5の実施例としてのリフロー装置200の構成例を示す概念図である。It is a conceptual diagram which shows the structural example of the reflow apparatus 200 as a 5th Example. 2つの送風機構99a,99bの制御例を示すフローチャートである。It is a flowchart which shows the example of control of the two ventilation mechanisms 99a and 99b. 第6の実施例としてのシャッター機構950の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the shutter mechanism 950 as a 6th Example. シャッター機構950の動作例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an operation example of a shutter mechanism 950.
 本発明は、エアーカーテンエリアを形成する送風機構の駆動方法を工夫して、当該エアーカーテンエリアによる搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようにすると共に、基板が乱流の発生を伴うことなくエアーカーテンエリアを通過できるようにしたはんだ付け装置を提供することを目的とする。 The present invention devised a driving method of the air blowing mechanism that forms the air curtain area, and can prevent the occurrence of turbulence in preference to the function of blocking the atmosphere on the conveyance path by the air curtain area, An object of the present invention is to provide a soldering apparatus in which a substrate can pass through an air curtain area without generating turbulent flow.
 以下、図面を参照しながら、本発明に係る実施例としてのはんだ付け装置について説明する。 Hereinafter, a soldering apparatus as an embodiment according to the present invention will be described with reference to the drawings.
 <長さ既知のプリント基板1枚をはんだ付けする場合>
 図1に示す噴流はんだ付け装置100は、はんだ付け装置の一例を構成し、電子部品を取り付けたプリント基板1(Printed circuit board:以下でPCBともいう)を予備加熱し、予備加熱後のプリント基板1を不活性ガスの雰囲気中に搬送し、不活性ガスの雰囲気中で電子部品をプリント基板1にはんだ付けし、はんだ付け後のプリント基板1を冷却するものである。
<When soldering one printed circuit board of known length>
A jet soldering apparatus 100 shown in FIG. 1 constitutes an example of a soldering apparatus, pre-heats a printed circuit board 1 (Printed circuit board: hereinafter also referred to as PCB) to which an electronic component is attached, and the printed circuit board after pre-heating. 1 is conveyed in the atmosphere of inert gas, an electronic component is soldered to the printed circuit board 1 in the atmosphere of inert gas, and the printed circuit board 1 after soldering is cooled.
 この例では、噴流はんだ付け装置100にプリント基板1を取り込む側を上流側といい、プリント基板1を取り出す側を下流側という。プリント基板1は上流側から下流側へ搬送されるものとする。プリント基板1の搬送方向は、図1において、白抜き矢印Iに示すように左端側から右端側へ搬送される。 In this example, the side where the printed circuit board 1 is taken into the jet soldering apparatus 100 is referred to as the upstream side, and the side where the printed board 1 is taken out is referred to as the downstream side. It is assumed that the printed circuit board 1 is transported from the upstream side to the downstream side. The conveyance direction of the printed circuit board 1 is conveyed from the left end side to the right end side as shown by a white arrow I in FIG.
 噴流はんだ付け装置100は本体架台101を有している。本体架台101には、搬送部10、熱処理部20、蓋体支持密閉機構30、仕切り部材40、チャンバー50、噴流はんだ槽60、両端ガス供給機構70、蓋体ユニット80、冷却処理部90及び送風機構99が備えられる。 The jet soldering apparatus 100 has a main body base 101. The main body frame 101 includes a transport unit 10, a heat treatment unit 20, a lid support sealing mechanism 30, a partition member 40, a chamber 50, a jet solder tank 60, a gas supply mechanism 70 at both ends, a lid unit 80, a cooling processing unit 90, and an air blower. A mechanism 99 is provided.
 本体架台101は、少なくとも、梁枠部材102及び当該梁枠部材102の四隅に脚部103,104及び脚部105,106(図示せず)を有している。梁枠部材102及び脚部103乃至106は鉄骨部材から構成される。 The main body base 101 has at least beam frame members 102 and leg portions 103 and 104 and leg portions 105 and 106 (not shown) at four corners of the beam frame member 102. The beam frame member 102 and the legs 103 to 106 are made of steel members.
 梁枠部材102上にはプリント基板1の搬送経路を構成する搬送部10が設けられる。搬送部10はチャンバー50を貫いてその上流側及び下流側に渡って配置されている。搬送部10は溶融はんだ7の切れを良くするために、本体架台101に対して所定の仰角θを有して斜め取り付けられる。仰角θは、例えば、5°乃至10°程度である。 On the beam frame member 102, a conveyance unit 10 that constitutes a conveyance path of the printed circuit board 1 is provided. The transport unit 10 is disposed through the chamber 50 and upstream and downstream. In order to improve the cutting of the molten solder 7, the transport unit 10 is obliquely attached to the main body base 101 with a predetermined elevation angle θ. The elevation angle θ is, for example, about 5 ° to 10 °.
 搬送部10は電子部品を取り付けたプリント基板1をチャンバー50の方向に搬送するものである。搬送部10には、無終端状のチェーン部材11及びL字爪状の複数の搬送チャック12を備える。チェーン部材11はプリント基板1の搬送方向の両側に設けられる。搬送チャック12は所定の配置ピッチでチェーン部材11に取り付けられる。当該プリント基板1は、両側の搬送チャック12の間にプリント基板1を挟んで搬送するようにセットされる。 The transport unit 10 transports the printed circuit board 1 attached with electronic components in the direction of the chamber 50. The transport unit 10 includes an endless chain member 11 and a plurality of L-shaped claw-shaped transport chucks 12. The chain members 11 are provided on both sides of the printed board 1 in the conveyance direction. The conveyance chuck 12 is attached to the chain member 11 at a predetermined arrangement pitch. The printed circuit board 1 is set so as to be transported with the printed circuit board 1 sandwiched between the transport chucks 12 on both sides.
 チャンバー50の上流側には熱処理部20が設けられる。熱処理部20は上部に開口部201を有してプリント基板1を熱処理する。当該開口部201はプリント基板1が搬送される範囲を蓋体で覆うようになされている。本例の場合では、所定の複数の蓋体31,32,33,34で開口部201を密閉するように塞がれる。すなわち、熱処理部20はプリント基板1を搬送するためにトンネル状を成し、例えば、電子部品を取り付けたプリント基板1を所定の温度に、パネルヒーターで加熱したり、遠赤外線ヒーターによって熱せられた空気、不活性ガス等の雰囲気をファンで循環する熱風として、その熱風で加熱するようになされている。 A heat treatment section 20 is provided on the upstream side of the chamber 50. The heat treatment part 20 has an opening 201 in the upper part, and heats the printed circuit board 1. The opening 201 covers the area where the printed board 1 is conveyed with a lid. In the case of this example, the opening 201 is closed with a plurality of predetermined lids 31, 32, 33, 34. That is, the heat treatment unit 20 has a tunnel shape for transporting the printed circuit board 1. For example, the printed circuit board 1 to which electronic components are attached is heated to a predetermined temperature by a panel heater or heated by a far infrared heater. As hot air that circulates an atmosphere of air, inert gas, or the like with a fan, the hot air is used for heating.
 この例で、熱処理部20がチャンバー50を基準にしてその上流側の搬送部10を覆うように設けられる。熱処理部20の最上流側には基板搬入口202が設けられる。プリント基板1は基板搬入口202で搬送部10にセットされる。基板搬入口202には基板検出センサ18が配設される。基板搬入口202で搬送部10にセットされたプリント基板1を検出してPCB検出データD18を発生する。PCB検出データD18は図5に示す制御部65に出力される。熱処理部20は、例えば、4つの予備加熱ゾーン21,22,23,24(プリヒーターゾーン)から構成される。 In this example, the heat treatment unit 20 is provided so as to cover the upstream conveyance unit 10 with respect to the chamber 50. A substrate carry-in port 202 is provided on the most upstream side of the heat treatment unit 20. The printed circuit board 1 is set in the transport unit 10 at the board carry-in port 202. The substrate detection sensor 18 is disposed at the substrate carry-in port 202. The PCB detection data D18 is generated by detecting the printed circuit board 1 set in the transport unit 10 at the board carry-in port 202. The PCB detection data D18 is output to the control unit 65 shown in FIG. The heat treatment section 20 is composed of, for example, four preheating zones 21, 22, 23, and 24 (preheater zones).
 熱処理部20では、電子部品を取り付けたプリント基板1を徐々に加熱して最適なはんだ処理温度に加熱するために、予備加熱ゾーン21乃至24は、各々加熱雰囲気を形成する。熱処理部20の下流側にはチャンバー50に至る基板連通口203が設けられる。上述の搬送部10は、予備加熱後のプリント基板1を基板連通口203を通過してチャンバー50内に搬送する。熱処理部20には蓋体支持密閉機構30が設けられる。蓋体支持密閉機構30は蓋体31,32,33,34を支持して開口部201を密閉するものである。 In the heat treatment section 20, the preheating zones 21 to 24 each form a heating atmosphere in order to gradually heat the printed circuit board 1 to which electronic components are attached and to heat the printed circuit board 1 to an optimal soldering temperature. A substrate communication port 203 reaching the chamber 50 is provided on the downstream side of the heat treatment unit 20. The transport unit 10 transports the pre-heated printed circuit board 1 through the substrate communication port 203 and into the chamber 50. The heat treatment unit 20 is provided with a lid support sealing mechanism 30. The lid support sealing mechanism 30 supports the lids 31, 32, 33, and 34 to seal the opening 201.
 この例で、蓋体31,34には仕切り部材40が設けられる。仕切り部材40は複数のラビリンス部43から構成される。ラビリンス部43は、外部から熱処理部20に塵埃等が入らないようにすると共に、窒素ガスのチャンバー50内から外部への漏洩を防止する。 In this example, the lid members 31 and 34 are provided with partition members 40. The partition member 40 includes a plurality of labyrinth portions 43. The labyrinth unit 43 prevents dust and the like from entering the heat treatment unit 20 from the outside, and prevents leakage of nitrogen gas from the chamber 50 to the outside.
 熱処理部20の基板連通口203にはチャンバー50(処理容器)が連接して備えられる。チャンバー50内は、不活性ガスが導入され、不活性ガス雰囲気が形成される。不活性ガスには窒素ガス(N)や、アルゴンガス(Ar)が一般的に使用される。チャンバー50は、不活性ガスの雰囲気中で、電子部品をプリント基板1にはんだ付け処理する。 A chamber 50 (processing vessel) is connected to the substrate communication port 203 of the heat treatment unit 20. In the chamber 50, an inert gas is introduced to form an inert gas atmosphere. Nitrogen gas (N 2 ) or argon gas (Ar) is generally used as the inert gas. The chamber 50 solders electronic components to the printed circuit board 1 in an inert gas atmosphere.
 チャンバー50の下方には、噴流はんだ槽60が設けられる。噴流はんだ槽60は所定の温度に加熱された溶融はんだ7が収容される。噴流はんだ槽60は、窒素ガスの雰囲気中で溶融はんだ7を噴流し、電子部品をプリント基板1にはんだ付け処理する。噴流はんだ槽60は、2系統の噴出ノズル61,62を有している。噴出ノズル61,62はプリント基板1の搬送方向に並べて配置される。 Below the chamber 50, a jet solder bath 60 is provided. The jet solder bath 60 accommodates the molten solder 7 heated to a predetermined temperature. The jet solder bath 60 jets molten solder 7 in an atmosphere of nitrogen gas, and solders electronic components to the printed circuit board 1. The jet solder bath 60 has two systems of jet nozzles 61 and 62. The ejection nozzles 61 and 62 are arranged side by side in the transport direction of the printed circuit board 1.
 上流側の噴出ノズル61は、はんだを粗く噴流してはんだ付け処理する一次はんだ付け処理時に使用される。下流側の噴出ノズル62は、はんだを細密に噴流してはんだ付け処理する二次はんだ付け処理(仕上げ用)に使用される。噴流はんだ槽60は、例えば、ステンレス(SUS)板を箱状に形成して構成される。噴流はんだ槽60内には、噴流ポンプ(以下単にポンプ8,9という)が設けられる。ポンプ8,9には、例えば、複数枚、好ましくは、4枚以上の羽根を有するスクリューポンプが使用される。 The upstream ejection nozzle 61 is used during a primary soldering process in which solder is roughly jetted and soldered. The jet nozzle 62 on the downstream side is used for a secondary soldering process (for finishing) in which solder is finely jetted and soldered. The jet solder bath 60 is configured by, for example, forming a stainless (SUS) plate into a box shape. A jet pump (hereinafter simply referred to as pumps 8 and 9) is provided in the jet solder bath 60. As the pumps 8 and 9, for example, a screw pump having a plurality of blades, preferably four or more blades is used.
 ポンプ8はモーター68により駆動され、噴流はんだ槽60に収容された溶融はんだ7を所定の圧力で噴出ノズル61に供給する。ポンプ9はモーター69により駆動され、噴流はんだ槽60に収容された溶融はんだ7を所定の圧力で噴出ノズル62に供給する。噴出ノズル61,62から噴出される溶融はんだ7は、図5に示す噴流はんだ駆動部66によって制御される。なお、チャンバー50及び噴流はんだ槽60は、はんだ付け処理部を構成する。 The pump 8 is driven by a motor 68 to supply the molten solder 7 accommodated in the jet solder bath 60 to the jet nozzle 61 with a predetermined pressure. The pump 9 is driven by a motor 69 and supplies the molten solder 7 accommodated in the jet solder bath 60 to the jet nozzle 62 at a predetermined pressure. The molten solder 7 ejected from the ejection nozzles 61 and 62 is controlled by a jet solder driving unit 66 shown in FIG. The chamber 50 and the jet solder bath 60 constitute a soldering processing unit.
 この例で、本体架台101の下方であって、噴流はんだ槽60に隣接して両端ガス供給機構70が設けられる。両端ガス供給機構70は、噴流はんだ槽60の液面上に、例えば、窒素ガス(N)を噴出し、電子部品をはんだ付けする側に、窒素ガス雰囲気を形成する。両端ガス供給機構70は、例えば、ガス供給部71,72、N2ガスタンク74及びノズル管路75を有している。ガス供給部71,72の各々の一端はN2ガスタンク74に接続される。 In this example, a gas supply mechanism 70 at both ends is provided below the main body frame 101 and adjacent to the jet solder bath 60. The both-end gas supply mechanism 70 ejects, for example, nitrogen gas (N 2 ) onto the liquid surface of the jet solder bath 60 and forms a nitrogen gas atmosphere on the side where the electronic components are soldered. The both-end gas supply mechanism 70 includes, for example, gas supply units 71 and 72, an N2 gas tank 74, and a nozzle conduit 75. One end of each of the gas supply units 71 and 72 is connected to the N2 gas tank 74.
 ガス供給部71の他端はノズル管路75の一端に接続され、ガス供給部72の他端はノズル管路75の他端に接続される。ガス供給部71,72は、噴流はんだ槽60の液面上をノズル管路75を介して窒素ガス雰囲気にするための窒素ガスを個々に調整する。なお、ガス供給部73は、チャンバー50内を窒素ガス雰囲気にするための窒素ガスの流量を調整する。 The other end of the gas supply unit 71 is connected to one end of the nozzle conduit 75, and the other end of the gas supply unit 72 is connected to the other end of the nozzle conduit 75. The gas supply units 71 and 72 individually adjust the nitrogen gas for making the nitrogen gas atmosphere on the liquid surface of the jet solder bath 60 via the nozzle conduit 75. The gas supply unit 73 adjusts the flow rate of nitrogen gas for making the inside of the chamber 50 a nitrogen gas atmosphere.
 チャンバー50の上方には、本例においては、当該チャンバー50上の開口部501を塞ぐ(覆う)ように蓋体ユニット80が着脱自在に取り付けられる。蓋体ユニット80は雰囲気送入口801及び雰囲気排出口802を有している。 In the present example, a lid unit 80 is detachably attached above the chamber 50 so as to close (cover) the opening 501 on the chamber 50. The lid unit 80 has an atmosphere inlet / outlet 801 and an atmosphere outlet 802.
 この雰囲気送入口801及び雰囲気排出口802には雰囲気清浄化部81が接続される。雰囲気送入口801は、雰囲気清浄化部81でフラックスヒュームが除去された後の窒素ガスをチャンバー50内に送入する部分である。雰囲気排出口802は、チャンバー50内でフラックスヒュームを含んだ窒素ガスを雰囲気清浄化部81へ排出する部分である。 The atmosphere cleaning unit 81 is connected to the atmosphere inlet 801 and the atmosphere outlet 802. The atmosphere inlet 801 is a part for feeding nitrogen gas after the flux fume is removed by the atmosphere cleaning unit 81 into the chamber 50. The atmosphere discharge port 802 is a portion that discharges nitrogen gas containing flux fume in the chamber 50 to the atmosphere cleaning unit 81.
 雰囲気清浄化部81は、雰囲気排出口802から排出されるフラックスヒュームを含んだ窒素ガスを清浄化し、清浄化後の窒素ガスを雰囲気送入口801に供給するように雰囲気を循環させるためのファン(送風機)813を有している。例えば、雰囲気清浄化部81は、雰囲気送入口803及び雰囲気排出口804を有した筺体83、及び、当該筺体83内に設けられた複数のパイプ82から構成されている。当該パイプ82の内側には空気(冷気)が通風される。 The atmosphere cleaning unit 81 cleans the nitrogen gas containing flux fumes discharged from the atmosphere discharge port 802, and circulates the atmosphere so as to supply the cleaned nitrogen gas to the atmosphere inlet 801 ( A blower) 813. For example, the atmosphere cleaning unit 81 includes a casing 83 having an atmosphere inlet 803 and an atmosphere outlet 804, and a plurality of pipes 82 provided in the casing 83. Air (cold air) is ventilated inside the pipe 82.
 このフラックスヒュームを含んだ窒素ガス雰囲気(窒素ガス+雰囲気)は筺体83内に導入され、そのパイプ82の外側を通過する際に、フラックスヒュームがパイプ82に当たって冷やされ、フラックスヒュームが結露(凝結)してパイプ82の外側に付着する。これにより、フラックスヒュームと窒素ガス雰囲気とを分離できるようになる。 The nitrogen gas atmosphere (nitrogen gas + atmosphere) containing this flux fume is introduced into the housing 83, and when passing through the outside of the pipe 82, the flux fume strikes the pipe 82 and is cooled, and the flux fume is condensed (condensed). And adheres to the outside of the pipe 82. As a result, the flux fume and the nitrogen gas atmosphere can be separated.
 チャンバー50の下流側には冷却処理部90が設けられる。例えば、冷却処理部90はチャンバー50を基準にしてその下流側の搬送部10を覆うように設けられる。上述の搬送部10は、はんだ付け処理後のプリント基板1を冷却処理部90へ搬送する。冷却処理部90は、搬送部10によって搬送されてくる、電子部品がはんだ付けされたプリント基板1を冷却する。 A cooling processing unit 90 is provided on the downstream side of the chamber 50. For example, the cooling processing unit 90 is provided so as to cover the transport unit 10 on the downstream side with respect to the chamber 50. The above-described transport unit 10 transports the printed circuit board 1 after the soldering process to the cooling processing unit 90. The cooling processing unit 90 cools the printed circuit board 1 to which the electronic component is soldered that is transported by the transport unit 10.
 冷却処理部90は上部に開口部901を有しており、当該開口部901は所定の複数の蓋体91,92で塞がれ、冷却処理部90がトンネル状を構成している。蓋体91,92には、仕切り部材40が備えられ、開口部901と蓋体91,92との間には蓋体支持密閉機構30が備えられている。 The cooling processing unit 90 has an opening 901 at the top, and the opening 901 is closed by a plurality of predetermined lids 91 and 92, and the cooling processing unit 90 forms a tunnel shape. The lids 91 and 92 are provided with a partition member 40, and a lid support sealing mechanism 30 is provided between the opening 901 and the lids 91 and 92.
 冷却処理部90には図示しない空冷ファンが設けられ、電子部品を取り付けたプリント基板1の上下面に窒素ガスや冷風を吹き付けることで、当該プリント基板1に対する冷却処理を施す。冷却処理部90の下流側には外部に至る基板搬出口902が設けられる。冷却後のプリント基板1は基板搬出口902から取り出される。 The cooling processing unit 90 is provided with an air cooling fan (not shown), and a cooling process is performed on the printed circuit board 1 by blowing nitrogen gas or cold air onto the upper and lower surfaces of the printed circuit board 1 to which electronic components are attached. A substrate carry-out port 902 extending to the outside is provided on the downstream side of the cooling processing unit 90. The printed circuit board 1 after cooling is taken out from the board carry-out port 902.
 基板搬出口902にはエアーカーテンエリア927を形成する送風機構99が設けられ、搬送経路上に気体を送風して雰囲気を遮断するようになされる。この気体には空気又は不活性気体又はこれらの混合気体が含まれ、これらのいずれかが搬送経路上に導入され、幅の広い膜状の吹き出し気流によるエアーカーテンエリア927が形成される。送風機構99は、クロスフローファン(Cross Flow Fan)等の送風機904、下側ガイド板905及び上側ガイド板906から構成される。 The substrate carry-out port 902 is provided with a blower mechanism 99 that forms an air curtain area 927, and blows gas on the transfer path to block the atmosphere. This gas includes air, an inert gas, or a mixed gas thereof, and any one of them is introduced onto the transport path, and an air curtain area 927 is formed by a wide film-like blowing airflow. The blower mechanism 99 includes a blower 904 such as a cross flow fan (Cross Flow Fan), a lower guide plate 905, and an upper guide plate 906.
 送風機904は本体架台101に取り付けられる。下側ガイド板905は搬送部10の下方に設けられ、上側ガイド板906は搬送部10の上方に設けられる。下側ガイド板905及び上側ガイド板906は搬送部10の幅方向とほぼ等しい長さを有し、かつ、内面が例えば、R形状を有している。もちろん、下側ガイド板905及び上側ガイド板906はL形状でも、ストレート形状であってもよい。下側ガイド板905及び上側ガイド板906はステンレスや、鉄板等の金属部材や、硬質樹脂から構成される。 The blower 904 is attached to the main body base 101. The lower guide plate 905 is provided below the transport unit 10, and the upper guide plate 906 is provided above the transport unit 10. The lower guide plate 905 and the upper guide plate 906 have substantially the same length as the width direction of the transport unit 10, and the inner surface has, for example, an R shape. Of course, the lower guide plate 905 and the upper guide plate 906 may be L-shaped or straight. The lower guide plate 905 and the upper guide plate 906 are made of a metal member such as stainless steel or an iron plate, or a hard resin.
 ここで、図2を参照して、送風機904の構成例について説明する。図2に示す送風機904は、モーター96、ケーシング913、補強部材914、右側面板915、左側面板917及びファン部919を有して貫流送風機や多翼送風機等を構成する。もちろん、図3に示すようなファンカバー910もその構成に含まれる。 Here, a configuration example of the blower 904 will be described with reference to FIG. A blower 904 shown in FIG. 2 includes a motor 96, a casing 913, a reinforcing member 914, a right side plate 915, a left side plate 917, and a fan portion 919, and constitutes a once-through fan, a multiblade fan, or the like. Of course, a fan cover 910 as shown in FIG. 3 is also included in the configuration.
 ファンカバー910、ケーシング913、補強部材914、右側面板915及び左側面板917は、送風機904の本体部を構成する。本体部には、所定の位置に吸気口911(図3参照)及び排気口912が設けられる。ファン部919は本体部内に回転自在に係合される。 The fan cover 910, the casing 913, the reinforcing member 914, the right side plate 915 and the left side plate 917 constitute a main body of the blower 904. The main body is provided with an intake port 911 (see FIG. 3) and an exhaust port 912 at predetermined positions. The fan part 919 is rotatably engaged in the main body part.
 この例では、右側面板915には軸受け部916が設けられ、左側面板917には軸受け部918が設けられる。右側面板915及び左側面板917は鉄板を例えば、五角形状に外側に折り曲げ加工して形成される。右側面板915及び左側面板917の間にはファン部919が回転自在に係合されている。右側面板915には開口部956,957が設けられる。開口部956等は、排気口912が塞がれた場合に、エアーを逃がすように機能する。 In this example, the right side plate 915 is provided with a bearing portion 916, and the left side plate 917 is provided with a bearing portion 918. The right side plate 915 and the left side plate 917 are formed by bending an iron plate outward in a pentagonal shape, for example. A fan portion 919 is rotatably engaged between the right side plate 915 and the left side plate 917. The right side plate 915 is provided with openings 956 and 957. The opening 956 and the like function so as to allow air to escape when the exhaust port 912 is blocked.
 ファン部919はシロッコファンと同じ前向きの羽根を有している。ファン部919は羽根の幅が直径に比べて大きい羽根車状を成しており、気流は軸に垂直な方向から吸い込まれる。ファン部919は軸部921及び軸部922を有している。ファン部919の一方の軸部921は回転自在に軸受け部916に係合され、他方の軸部922は回転自在に軸受け部918に係合されている。 The fan unit 919 has the same forward-facing blades as the sirocco fan. The fan unit 919 has an impeller shape in which the blade width is larger than the diameter, and the airflow is sucked from the direction perpendicular to the axis. The fan portion 919 includes a shaft portion 921 and a shaft portion 922. One shaft portion 921 of the fan portion 919 is rotatably engaged with the bearing portion 916, and the other shaft portion 922 is rotatably engaged with the bearing portion 918.
 送風機904では、右側面板915と左側面板917との間に、ケーシング913と補強部材914とが配置される。このケーシング913と補強部材914とにより排気口912が構成される。ケーシング913は流れを規制するために断面J状を成している。ケーシング913は鉄板を折り曲げ加工して形成される。補強部材914はケーシング913と共に流れを規制するために断面凹状を成している。補強部材914も鉄板を折り曲げ加工して形成される。 In the blower 904, a casing 913 and a reinforcing member 914 are disposed between the right side plate 915 and the left side plate 917. The casing 913 and the reinforcing member 914 constitute an exhaust port 912. The casing 913 has a J-shaped cross section for restricting the flow. The casing 913 is formed by bending an iron plate. The reinforcing member 914 has a concave cross section in order to restrict the flow together with the casing 913. The reinforcing member 914 is also formed by bending an iron plate.
 ファン部919の軸部922にはモーター96が接続(直結)され、ファン部919を所定の方向に回転するように動作する。これらにより送風機904を構成する。送風機904は、気体の流れが回転軸に対し、垂直な面内を流れ、排気口912を軸方向に長く設定できる。また、排気口912から排気ダクト907の方向に風速が得られる。 A motor 96 is connected (directly connected) to the shaft portion 922 of the fan unit 919, and operates to rotate the fan unit 919 in a predetermined direction. These constitute the blower 904. In the blower 904, the gas flow can flow in a plane perpendicular to the rotation axis, and the exhaust port 912 can be set long in the axial direction. Further, the wind speed is obtained from the exhaust port 912 toward the exhaust duct 907.
 続いて、図3を参照して、送風機904の組立例について説明する。まず、モーター96、ケーシング913、補強部材914、右側面板915、左側面板917及びファン部919を準備する。送風機904の組み立て方については、何通りかが有るが、例えば、最初にモーター96を左側面板917の外側に取り付けてビス等により固定する。モーター96は、モーター軸961がファン部919の側に向くように配置する。 Subsequently, an assembly example of the blower 904 will be described with reference to FIG. First, a motor 96, a casing 913, a reinforcing member 914, a right side plate 915, a left side plate 917, and a fan unit 919 are prepared. There are several methods for assembling the blower 904. For example, the motor 96 is first attached to the outside of the left side plate 917 and fixed with screws or the like. The motor 96 is disposed so that the motor shaft 961 faces the fan unit 919 side.
 ファン部919には両端に軸部921,軸部922を有した羽根車状のものを使用する。軸部922には、例えば、モーター軸961が嵌合可能な穴部がその中心位置に形成されたものを準備する。そして、左側面板917の軸受け部918にファン部919の軸部922を嵌合すると共に、軸部922をモーター軸961に接続する。接続方法は、例えば、軸部922の内側の穴部にモーター軸961を嵌合して軸部922の外部からビス等によりモーター軸961を固定する。 The fan part 919 is an impeller having a shaft part 921 and a shaft part 922 at both ends. The shaft portion 922 is prepared, for example, having a hole portion into which the motor shaft 961 can be fitted at its center position. Then, the shaft portion 922 of the fan portion 919 is fitted to the bearing portion 918 of the left side plate 917 and the shaft portion 922 is connected to the motor shaft 961. As a connection method, for example, the motor shaft 961 is fitted into a hole inside the shaft portion 922 and the motor shaft 961 is fixed from the outside of the shaft portion 922 with a screw or the like.
 もちろん、これに限られることはない。例えば、モーター軸961の断面を多角形状やD状等に加工し、軸部922の穴部の断面を多角形状やD状等に加工し、これらの断面多角形状のモーター軸961と、軸部922の断面多角形状の軸穴とを嵌合する方式や、断面D状のモーター軸961と、軸部922の断面D状の軸穴とを嵌合する方式等を採ってもよい。外側からのビスが省略できる。 Of course, this is not a limitation. For example, the cross section of the motor shaft 961 is processed into a polygonal shape or a D shape, the cross section of the hole portion of the shaft portion 922 is processed into a polygonal shape, a D shape, or the like. A method of fitting a shaft hole with a polygonal cross section of 922 or a method of fitting a motor shaft 961 with a D shape in section and a shaft hole with a D shape in cross section of the shaft portion 922 may be adopted. Screws from the outside can be omitted.
 その後、右側面板915の軸受け部916にファン部919の軸部921を嵌合する。そして、右側面板915と左側面板917との間にケーシング913と補強部材914とを配置する。ケーシング913及び補強部材914の一端を右側面板915に当接して固定する。 Thereafter, the shaft portion 921 of the fan portion 919 is fitted to the bearing portion 916 of the right side plate 915. A casing 913 and a reinforcing member 914 are disposed between the right side plate 915 and the left side plate 917. One end of the casing 913 and the reinforcing member 914 abuts on the right side plate 915 and is fixed.
 一方、ケーシング913及び補強部材914の他端を左側面板917に当接して固定する。ファンカバー910には断面横U状を成したものを準備する。例えば、ファンカバー910は鉄板を折り曲げ加工して形成する。ファンカバー910にはスリット状の吸気口911が設けられたものを使用する。吸気口911は例えば、ファンカバー910を打ち抜き加工して形成する。 On the other hand, the other ends of the casing 913 and the reinforcing member 914 are brought into contact with and fixed to the left side plate 917. A fan cover 910 having a U-shaped cross section is prepared. For example, the fan cover 910 is formed by bending an iron plate. A fan cover 910 having a slit-like air inlet 911 is used. For example, the air inlet 911 is formed by punching the fan cover 910.
 そして、ファンカバー910を右側面板915及び左側面板917に位置合わせして取り付け、図示しないビス等でファンカバー910を右側面板915及び左側面板917に固定して送風機904を完成する。 Then, the fan cover 910 is positioned and attached to the right side plate 915 and the left side plate 917, and the fan cover 910 is fixed to the right side plate 915 and the left side plate 917 with screws (not shown) to complete the blower 904.
 続いて、図4を参照して、送風機構99の動作例について説明する。図4に示す送風機904は搬送部10の下方の冷却部取付架台908に取り付けられ、送風機構99の一部を構成する。送風機構99は図5に示す制御部65によって制御される。図中、白抜き矢印は空気(エアー)の流れの方向である。この例では、図2に示したモーター96がファン部919を時計方向に回転する。この回転によって、ファンカバー910の吸気口911から吸い込んだ空気がケーシング913にガイドされて排気口912を介して排気ダクト907に導かれる。空気は、当該排気ダクト907の上方へ吹き出すようになされる(白抜き矢印参照)。 Subsequently, an operation example of the blower mechanism 99 will be described with reference to FIG. A blower 904 shown in FIG. 4 is attached to a cooling unit mounting base 908 below the transport unit 10 and constitutes a part of the blower mechanism 99. The blower mechanism 99 is controlled by the control unit 65 shown in FIG. In the figure, the white arrow indicates the direction of air flow. In this example, the motor 96 shown in FIG. 2 rotates the fan unit 919 in the clockwise direction. By this rotation, the air sucked from the air inlet 911 of the fan cover 910 is guided to the casing 913 and guided to the exhaust duct 907 via the exhaust port 912. The air is blown out above the exhaust duct 907 (see white arrow).
 例えば、送風機904が排気口912から上方に空気を吹き出す。空気は、プリント基板1の搬送経路を一旦縦断する。その後、図1に示すように上側ガイド板906の左側部906aは、送風機904から受けた空気を一旦、基板搬出口902の側、すなわち、プリント基板1の搬送方向に導く(図中の右向き矢印を参照)。その後、上側ガイド板906の右側部906bは、その空気を下方に向き、再度、プリント基板1の搬送経路を縦断するように導く。下側ガイド板905は上方から受けた空気を上方に向くように導く。 For example, the blower 904 blows air upward from the exhaust port 912. The air once passes through the conveyance path of the printed circuit board 1 once. Thereafter, as shown in FIG. 1, the left side portion 906a of the upper guide plate 906 once guides the air received from the blower 904 toward the substrate carry-out port 902, that is, in the direction of conveyance of the printed circuit board 1 (right arrow in the figure). See). After that, the right side portion 906b of the upper guide plate 906 directs the air downward and guides the conveyance path of the printed circuit board 1 again. The lower guide plate 905 guides air received from above so as to face upward.
 このように送風機構99は、基板搬出口902に空気を対流させてエアーカーテンエリア927を形成する。このエアーカーテンエリア927は、送風機904から上側ガイド板906の左側部906aに至る空気が、上側ガイド板906の右側部906bから下側ガイド板905へ、さらに下側ガイド板905から上側ガイド板906の左側部906aに至り、対流する空気によってエアーカーテンが形成されることで構成される。 In this way, the air blowing mechanism 99 forms the air curtain area 927 by convection of air to the substrate carry-out port 902. In the air curtain area 927, air from the blower 904 to the left side 906 a of the upper guide plate 906 is transferred from the right side 906 b of the upper guide plate 906 to the lower guide plate 905, and further from the lower guide plate 905 to the upper guide plate 906. The left curtain 906a is formed by forming an air curtain with convection air.
 この送風機構99によって、エアーが下側ガイド板905及び上側ガイド板906間を対流(循環)するエアーカーテンエリア927が形成されるので、外部から冷却処理部90に塵埃等が入らないようにできると共に、窒素ガスのチャンバー50内から外部への漏洩を防止できるようになる。この結果、窒素ガス資源を効率良く使用できるようになる。 This air blowing mechanism 99 forms an air curtain area 927 in which air convects (circulates) between the lower guide plate 905 and the upper guide plate 906, so that dust or the like can be prevented from entering the cooling processing unit 90 from the outside. At the same time, leakage of nitrogen gas from the inside of the chamber 50 to the outside can be prevented. As a result, nitrogen gas resources can be used efficiently.
 しかも、エアーカーテンエリア927を通過するプリント基板1の通過タイミングに対応して空気の送出又はその停止をするように制御されるので、エアーカーテンエリア927による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになる。 In addition, since air is sent out or stopped in accordance with the passage timing of the printed circuit board 1 passing through the air curtain area 927, priority is given to the function of blocking the atmosphere on the conveyance path by the air curtain area 927. Thus, generation of turbulent flow can be prevented.
 本例の場合、送風機904から吹き出された空気を、一旦、上側ガイド板906(左側部906a)で基板搬出口902の側に導く、このため、基板搬出口902を介して外部から炉内に大気が侵入することを抑制する働きがより顕著にとなるので好ましい。 In the case of this example, the air blown out from the blower 904 is once led to the substrate carry-out port 902 side by the upper guide plate 906 (left side portion 906a). For this reason, from the outside into the furnace through the substrate carry-out port 902 This is preferable because the function of suppressing the intrusion of air becomes more remarkable.
 しかしながら、送風機904から吹き出された空気を、基板搬出口902と反対側の噴流はんだ槽60の側に吹き出すように構成した場合でも、空気(エアー)が下側ガイド板905及び上側ガイド板906間を対流(循環)するようになる。従って、外部から冷却処理部90に塵埃等が入らないようにできると共に、窒素ガスのチャンバー50内から外部への漏洩を防止できるようになる。その結果、窒素ガス資源を効率良く使用できるようになる。 However, even when the air blown from the blower 904 is blown to the jet solder bath 60 side opposite to the board carry-out port 902, the air (air) is between the lower guide plate 905 and the upper guide plate 906. Convection (circulation). Accordingly, dust and the like can be prevented from entering the cooling processing unit 90 from the outside, and leakage of nitrogen gas from the chamber 50 to the outside can be prevented. As a result, nitrogen gas resources can be used efficiently.
 また、本例の場合のエアーカーテンエリア927を循環するようにしたが、特許文献2や特許文献3等に開示されているように、循環せずに一方向に吹き出す空気で、エアーカーテンエリア927を形成するようにしてもよい。 In addition, the air curtain area 927 in this example is circulated. However, as disclosed in Patent Document 2, Patent Document 3, and the like, the air curtain area 927 is air that blows in one direction without being circulated. May be formed.
 続いて、図5を参照して、噴流はんだ付け装置100の制御系の構成例について説明する。図5に示す噴流はんだ付け装置100の制御系によれば、入力部64及び供給制御部605の他に、搬送駆動部14、モニタ16、基板検出センサ18、予熱駆動部25、制御部65、噴流はんだ駆動部66、冷却駆動部93、エアーカーテン駆動部95、ヒューム除去駆動部97が備えられる。これらは制御部65に接続される。 Subsequently, a configuration example of a control system of the jet soldering apparatus 100 will be described with reference to FIG. According to the control system of the jet soldering apparatus 100 shown in FIG. 5, in addition to the input unit 64 and the supply control unit 605, the conveyance drive unit 14, the monitor 16, the substrate detection sensor 18, the preheating drive unit 25, the control unit 65, A jet solder driving unit 66, a cooling driving unit 93, an air curtain driving unit 95, and a fume removal driving unit 97 are provided. These are connected to the control unit 65.
 モニタ16は噴流はんだ付け処理に係る設定画面等を表示データD16に基づいて表示する。モニタ16には、例えば、タッチパネル付きの液晶表示装置が使用される。タッチパネルは、入力部64の一部を構成する。入力部64は、例えば、後述するようにプリント基板を1枚ずつはんだ付け装置に投入する枚葉処理モードや、周期的に投入する連続処理モード等の運転条件の設定、ヒューム除去制御の設定、プリント基板に搭載される電子部品の高さ情報や実装分布情報等の設定情報(以下で設定データD65という)を入力するためのものである。従って、表示データD16には、プリント基板1にはんだ付けされる電子部品の高さ情報や、プリント基板1にはんだ付けされる電子部品の実装分布情報等が含まれる。この他に、電子部品がはんだ付けされる基板の枚数情報、はんだ付け処理条件を示す設定データD65等も含まれる。 The monitor 16 displays a setting screen related to the jet soldering process based on the display data D16. As the monitor 16, for example, a liquid crystal display device with a touch panel is used. The touch panel constitutes a part of the input unit 64. The input unit 64, for example, as described later, setting of operating conditions such as a single wafer processing mode in which printed circuit boards are put into a soldering apparatus one by one, a continuous processing mode to be periodically inserted, setting of fume removal control, This is for inputting setting information (hereinafter referred to as setting data D65) such as height information and mounting distribution information of electronic components mounted on the printed circuit board. Accordingly, the display data D16 includes information on the height of the electronic component soldered to the printed circuit board 1, mounting distribution information of the electronic component soldered to the printed circuit board 1, and the like. In addition, information on the number of substrates to which electronic components are soldered, setting data D65 indicating soldering processing conditions, and the like are also included.
 制御部65は、所定の制御プログラムに基づいて生成した搬送駆動データD14を搬送駆動部14に出力して搬送制御を実行する。同様にして、予備加熱制御データD25を予熱駆動部25に出力して予備加熱制御を実行する。同様に、はんだ槽制御データD66を噴流はんだ駆動部66に出力して噴流はんだ制御を実行する。同様にして、冷却制御データD93を冷却駆動部93に出力して冷却制御を実行する。 The control unit 65 outputs the conveyance drive data D14 generated based on a predetermined control program to the conveyance drive unit 14 and executes conveyance control. Similarly, the preheating control data D25 is output to the preheating drive unit 25 to execute the preheating control. Similarly, the solder bath control data D66 is output to the jet solder driving unit 66 to execute jet solder control. Similarly, the cooling control data D93 is output to the cooling drive unit 93 to execute the cooling control.
 制御部65は同様にして、カーテン制御データD95をエアーカーテン駆動部95に出力してモーター制御を実行する。制御部65は、エアーカーテンエリア927を通過するプリント基板1の通過タイミングに対応してエアーの送出又は停止をするように送風機構99を制御する。 Similarly, the control unit 65 outputs the curtain control data D95 to the air curtain drive unit 95 to execute motor control. The control unit 65 controls the air blowing mechanism 99 so as to send or stop air in accordance with the passage timing of the printed circuit board 1 that passes through the air curtain area 927.
 同様にして、ヒューム除去制御データD97をヒューム除去駆動部97に出力してモーター制御を実行する。同様に、実装分布データD64を供給制御部605に出力して窒素ガス供給制御を実行する。 Similarly, the fume removal control data D97 is output to the fume removal drive unit 97 to execute motor control. Similarly, the mounting distribution data D64 is output to the supply control unit 605 to execute nitrogen gas supply control.
 搬送駆動部14は制御部65から入力した搬送駆動データD14に基づいてモーター制御信号S15を生成する。搬送駆動部14には搬送部10を駆動するモーター15が接続される。モーター15はモーター制御信号S15を入力してチェーン部材11等を駆動する。チェーン部材11の搬送チャック12にセットされたプリント基板1は、予備加熱ゾーン21,22,23,24等を通過して順次チャンバー50内に搬送される。 The transport drive unit 14 generates a motor control signal S15 based on the transport drive data D14 input from the control unit 65. A motor 15 that drives the transport unit 10 is connected to the transport drive unit 14. The motor 15 inputs the motor control signal S15 and drives the chain member 11 and the like. The printed circuit board 1 set on the conveyance chuck 12 of the chain member 11 is sequentially conveyed into the chamber 50 through the preheating zones 21, 22, 23, 24, and the like.
 基板検出センサ18は制御部65に接続される。基板検出センサ18は、基板搬入口202で搬送部10にセットされたプリント基板1を検出して得たPCB検出データD18を制御部65に出力する。PCB検出データD18には、例えば、プリント基板1の先端エッジを検出した時刻が含まれる。基板検出センサ18には反射型や、透過型の光学センサが使用される。 The substrate detection sensor 18 is connected to the control unit 65. The substrate detection sensor 18 outputs PCB detection data D18 obtained by detecting the printed circuit board 1 set in the transport unit 10 at the substrate carry-in port 202 to the control unit 65. The PCB detection data D18 includes, for example, the time when the leading edge of the printed circuit board 1 is detected. The substrate detection sensor 18 is a reflection type or transmission type optical sensor.
 制御部65には、以下で説明する実施例によっては、基板検出センサ18の他に、例えば、到達検出センサ19及び抜け検出センサ39が接続される。到達検出センサ19はエアーカーテンエリア927の先頭部側(上流側)に配置され、エアーカーテンエリア927に到達される直前のプリント基板1を検出して基板到達を示す到達検出情報(以下で到達検出データD19という)を制御部65に出力する。 In addition to the substrate detection sensor 18, for example, the arrival detection sensor 19 and the drop detection sensor 39 are connected to the control unit 65 depending on the embodiment described below. The arrival detection sensor 19 is arranged on the head portion side (upstream side) of the air curtain area 927 and detects the printed circuit board 1 immediately before reaching the air curtain area 927 to indicate arrival detection information (arrival detection below). Data D19) is output to the controller 65.
 抜け検出センサ39はエアーカーテンエリア927の後端部側(下流側)に配置され、エアーカーテンエリア927から抜け出る直後のプリント基板1を検出して基板抜けを示す抜け検出情報(以下で抜け検出データD39という)を制御部65に出力する。到達検出センサ19及び抜け検出センサ39には反射型や、透過型等の光学センサが使用される。 The missing detection sensor 39 is arranged on the rear end side (downstream side) of the air curtain area 927 and detects the printed circuit board 1 immediately after coming out of the air curtain area 927 to show missing detection information (hereinafter referred to as missing detection data). D39) is output to the control unit 65. As the arrival detection sensor 19 and the missing detection sensor 39, an optical sensor such as a reflection type or a transmission type is used.
 予熱駆動部25は制御部65から入力した予備加熱制御データD25に基づいて発熱制御信号S21乃至S24を生成する。予熱駆動部25には複数のヒーター26乃至29(発熱体)が接続される。この例では、ヒーター26乃至29は4つの予備加熱ゾーン21乃至24に配置される(図1参照)。図1に示した予備加熱ゾーン21には、ヒーター26が設けられ、発熱制御信号S21に基づいて発熱する。予備加熱ゾーン22には、ヒーター27が設けられ、発熱制御信号S22に基づいて発熱する。予備加熱ゾーン23には、ヒーター28が設けられ、発発熱制御信号S23に基づいて発熱する。予備加熱ゾーン24には、ヒーター29が設けられ、発熱制御信号S24に基づいて発熱する。これらの発熱によって、プリント基板1が予備加熱処理される。 The preheating drive unit 25 generates heat generation control signals S21 to S24 based on the preheating control data D25 input from the control unit 65. A plurality of heaters 26 to 29 (heating elements) are connected to the preheating drive unit 25. In this example, the heaters 26 to 29 are arranged in four preheating zones 21 to 24 (see FIG. 1). The preheating zone 21 shown in FIG. 1 is provided with a heater 26 and generates heat based on the heat generation control signal S21. A heater 27 is provided in the preheating zone 22 and generates heat based on the heat generation control signal S22. A heater 28 is provided in the preheating zone 23 and generates heat based on the heat generation control signal S23. A heater 29 is provided in the preheating zone 24 and generates heat based on the heat generation control signal S24. The printed circuit board 1 is preheated by these heat generations.
 噴流はんだ駆動部66は制御部65から入力したはんだ槽制御データD66に基づいて発熱制御信号S67、モーター制御信号S68及びS69を生成する。噴流はんだ駆動部66にはヒーター67及び2個のモーター68,69が接続される。ヒーター67は、発熱制御信号S67に基づいて発熱し、噴流はんだ槽60を所定の温度に加熱する。モーター68はモーター制御信号S68に基づいて噴出ノズル61に溶融はんだ7を噴流させる。モーター69はモーター制御信号S69に基づいて噴出ノズル62に溶融はんだ7を噴流させる。 The jet solder driving unit 66 generates a heat generation control signal S67 and motor control signals S68 and S69 based on the solder bath control data D66 input from the control unit 65. A heater 67 and two motors 68 and 69 are connected to the jet solder driving unit 66. The heater 67 generates heat based on the heat generation control signal S67 and heats the jet solder bath 60 to a predetermined temperature. The motor 68 jets the molten solder 7 to the jet nozzle 61 based on the motor control signal S68. The motor 69 causes the molten solder 7 to jet through the jet nozzle 62 based on the motor control signal S69.
 冷却駆動部93は制御部65から入力した冷却制御データD93に基づいてモーター制御信号S94を生成する。冷却駆動部93にはファン用のモーター94が接続される。モーター94は、モーター制御信号S94に基づいて図示しないファンを回転する。これにより、電子部品をはんだ付けした後のプリント基板1が冷却される。 The cooling drive unit 93 generates a motor control signal S94 based on the cooling control data D93 input from the control unit 65. A fan motor 94 is connected to the cooling drive unit 93. The motor 94 rotates a fan (not shown) based on the motor control signal S94. Thereby, the printed circuit board 1 after soldering an electronic component is cooled.
 エアーカーテン駆動部95は制御部65から入力したカーテン制御データD95に基づいてモーター制御信号S96を生成する。エアーカーテン駆動部95には駆動部の一例を構成する送風用のモーター96が接続される。モーター96は、モーター制御信号S96に基づいて図1乃至図4に示したファン部919を回転する。 The air curtain drive unit 95 generates a motor control signal S96 based on the curtain control data D95 input from the control unit 65. The air curtain drive unit 95 is connected to a blower motor 96 that constitutes an example of the drive unit. The motor 96 rotates the fan unit 919 shown in FIGS. 1 to 4 based on the motor control signal S96.
 制御部65は、常時、モーター96をオン制御して送風機構99から搬送経路へ気体を送風し、基板検出センサ18から得られたPCB検出データD18に基づいてモーター96をオフ制御して当該送風機構99から搬送経路へのエアーを停止するようにエアーカーテン駆動部95を制御する。 The control unit 65 always controls the motor 96 to be turned on to blow gas from the blower mechanism 99 to the transport path, and controls the motor 96 to be turned off based on the PCB detection data D18 obtained from the substrate detection sensor 18. The air curtain driving unit 95 is controlled so as to stop the air from the mechanism 99 to the conveyance path.
 これにより、プリント基板1がエアーカーテンエリア927を通過していないタイミングで、基板搬出口902に対流(循環する)エアーカーテンを形成できるようになる。しかも、エアーカーテンエリア927を通過するプリント基板1の通過タイミングに対応して空気の送出又は停止をするように制御されるので、エアーカーテンエリア927による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになる。 Thereby, a convection (circulating) air curtain can be formed at the board carry-out port 902 at a timing when the printed circuit board 1 does not pass through the air curtain area 927. In addition, since the air is controlled to be sent out or stopped in accordance with the passage timing of the printed circuit board 1 passing through the air curtain area 927, it has priority over the function of blocking the atmosphere on the conveyance path by the air curtain area 927. Therefore, the generation of turbulent flow can be prevented.
 また、ヒューム除去駆動部97は制御部65から入力したヒューム除去制御データD97に基づいてモーター制御信号S98を生成する。ヒューム除去駆動部97には、ポンプ駆動用のモーター98が接続される。モーター98は、モーター制御信号S98に基づいて図1に示したポンプを駆動する。これにより、フラックスヒュームを除去した窒素ガスをチャンバー50に送入できるようになる。 Further, the fume removal driving unit 97 generates a motor control signal S98 based on the fume removal control data D97 input from the control unit 65. A motor 98 for driving the pump is connected to the fume removal driving unit 97. The motor 98 drives the pump shown in FIG. 1 based on the motor control signal S98. Thereby, the nitrogen gas from which the flux fumes have been removed can be fed into the chamber 50.
 供給制御部605は制御部65から入力した実装分布データD64や、図示しないN2センサから出力されるN2濃度検知信号S17等に基づいて供給制御信号S71,S72,S73,S74を生成する。供給制御部605には、4つのガス供給部71,72,73,741が接続される。ガス供給部71は、供給制御信号S71に基づいて窒素ガスの供給圧力をP1に調整する。ガス供給部72は、供給制御信号S72に基づいて窒素ガスの供給圧力をP2に調整する。これにより、ノズル管路75に供給する窒素ガスを調整できるようになる。 The supply control unit 605 generates supply control signals S71, S72, S73, and S74 based on the mounting distribution data D64 input from the control unit 65, the N2 concentration detection signal S17 output from the N2 sensor (not shown), and the like. Four gas supply units 71, 72, 73 and 741 are connected to the supply control unit 605. The gas supply unit 71 adjusts the supply pressure of nitrogen gas to P1 based on the supply control signal S71. The gas supply unit 72 adjusts the supply pressure of nitrogen gas to P2 based on the supply control signal S72. As a result, the nitrogen gas supplied to the nozzle conduit 75 can be adjusted.
 ガス供給部73は、供給制御信号S73に基づいて窒素ガスの供給圧力をP3に調整する。また、ガス供給部741は、供給制御信号S74に基づいて窒素ガスの供給圧力をP4に調整する。これにより、冷却処理部90において、電子部品を取り付けたプリント基板1の上下面に窒素ガスを吹き付けることで、当該プリント基板1に対する冷却処理が施される。これらにより、噴流はんだ付け装置100の制御系を構成する。 The gas supply unit 73 adjusts the supply pressure of nitrogen gas to P3 based on the supply control signal S73. Further, the gas supply unit 741 adjusts the supply pressure of nitrogen gas to P4 based on the supply control signal S74. Thereby, in the cooling process part 90, the cooling process with respect to the said printed circuit board 1 is performed by spraying nitrogen gas on the upper and lower surfaces of the printed circuit board 1 which attached the electronic component. These constitute the control system of the jet soldering apparatus 100.
 続いて、図1乃至図5及び、図6A乃至図6Dを参照して、第1の実施例としての送風機904の制御例について説明する。この実施例では、常時、噴流はんだ付け装置100の基板搬出口902付近に形成されているエアーカーテンエリア927を、到達検出センサ19及び抜け検出センサ39から得られる到達検出データD19及び抜け検出データD39に基づいて送風機構99を制御する場合を例に挙げる。到達検出センサ19及び抜け検出センサ39には透過型の光学センサが使用される場合を想定する。プリント基板1は搬送部10にセットされ、所定の搬送方向、この例では、左側端から右側端へ移動するように搬送される。 Subsequently, a control example of the blower 904 as the first embodiment will be described with reference to FIGS. 1 to 5 and FIGS. 6A to 6D. In this embodiment, the air curtain area 927 formed in the vicinity of the board carry-out port 902 of the jet soldering apparatus 100 is always reached by arrival detection data D19 and drop detection data D39 obtained from the arrival detection sensor 19 and the drop detection sensor 39. An example of controlling the blower mechanism 99 based on the above will be described. Assume that a transmissive optical sensor is used for the arrival detection sensor 19 and the drop detection sensor 39. The printed circuit board 1 is set in the transport unit 10 and transported so as to move from a left end to a right end in a predetermined transport direction, in this example.
 なお、図6Aにおいて、xはプリント基板1の搬送方向の長さである。プリント基板1の長さxは例えば、x=350mm程度である。Lは、噴流はんだ付け装置100の搬送方向の長さである。噴流はんだ付け装置100の長さLは例えば、L=5145mm程度である。Lcは、エアーカーテンエリア927における搬送方向の長さである。エアーカーテンエリア927の長さLcは例えば、400mm程度である。Vはプリント基板1の搬送速度であり、例えば、0.2乃至0.5m/min程度である。 In FIG. 6A, x is the length of the printed board 1 in the transport direction. The length x of the printed circuit board 1 is, for example, about x = 350 mm. L is the length of the jet soldering apparatus 100 in the transport direction. The length L of the jet soldering apparatus 100 is, for example, about L = 5145 mm. Lc is the length of the air curtain area 927 in the transport direction. The length Lc of the air curtain area 927 is, for example, about 400 mm. V is the conveyance speed of the printed circuit board 1 and is, for example, about 0.2 to 0.5 m / min.
 エアーカーテンエリア927の先頭部側(上流側)に配置された到達検出センサ19は、本例の場合、到達検出センサ19の出力がプリント基板1の到達によりハイレベルからローレベルになると、プリント基板1が到達検出センサ19を通過した後も、ローレベルを維持する。到達検出センサ19の出力がローレベルからハイレベルに復帰するのは、後述する抜け検出センサ39の出力がローレベルからハイレベルになったことをトリガにして到達検出センサ19がリセットされることによって行われるようになっている。 In the case of this example, the arrival detection sensor 19 disposed on the head side (upstream side) of the air curtain area 927 is printed circuit board when the output of the arrival detection sensor 19 changes from high level to low level due to arrival of the printed circuit board 1. Even after 1 passes the arrival detection sensor 19, the low level is maintained. The reason why the output of the arrival detection sensor 19 returns from the low level to the high level is that the arrival detection sensor 19 is reset triggered by the fact that the output of the missing detection sensor 39 described later has changed from the low level to the high level. To be done.
 エアーカーテンエリア927の後端部側(下流側)に配置された抜け検出センサ39は、プリント基板1の到達によって、抜け検出センサ39の出力がハイレベルからローレベルに、また、エアーカーテンエリア927から抜け出るプリント基板1を検出して、抜け検出センサ39の出力がローレベルからハイレベルの論理値を抜け検出データD39として制御部65に出力する。 The omission detection sensor 39 disposed on the rear end side (downstream side) of the air curtain area 927 has an output from the omission detection sensor 39 that changes from a high level to a low level when the printed circuit board 1 arrives. The printed circuit board 1 coming out of the circuit is detected, and the output of the detection sensor 39 outputs the logic value from the low level to the high level to the control unit 65 as the missing detection data D39.
 すなわち、本例の場合、到達検出センサ19及び抜け検出センサ39の出力が共にハイレベルの時に、エアーカーテンエリア927が形成状態となり、到達検出センサ19及び抜け検出センサ39のいずれかの出力がローレベルの時には、エアーカーテンエリア927が非形成状態となる。 That is, in the case of this example, when both the output of the arrival detection sensor 19 and the missing detection sensor 39 are at a high level, the air curtain area 927 is formed, and the output of either the arrival detection sensor 19 or the missing detection sensor 39 is low. At the level, the air curtain area 927 is not formed.
 この例で、基板投入時、図6Aに示す基板検出センサ18は、図1に示した基板搬入口202で搬送部10にセットされたプリント基板1を検出し、PCB検出データD18を図5に示した制御部65に出力する。PCB検出データD18には、例えば、プリント基板1の先端エッジを検出した時刻が含まれる。 In this example, when the board is loaded, the board detection sensor 18 shown in FIG. 6A detects the printed board 1 set in the transport unit 10 at the board carry-in port 202 shown in FIG. 1, and the PCB detection data D18 is shown in FIG. It outputs to the control part 65 shown. The PCB detection data D18 includes, for example, the time when the leading edge of the printed circuit board 1 is detected.
 このとき、エアーカーテンエリア927の先頭部側(上流側)に配置された到達検出センサ19は、プリント基板1がエアーカーテンエリア927に到達していないので、基板未到達を示す到達検出データD19を制御部65に出力する。基板未到達を示す到達検出データD19は到達検出センサ19に透過型の光学センサが使用されていることから、ハイレベルの論理値を示す。 At this time, the arrival detection sensor 19 arranged on the leading side (upstream side) of the air curtain area 927 uses the arrival detection data D19 indicating that the substrate has not reached since the printed circuit board 1 has not reached the air curtain area 927. Output to the control unit 65. The arrival detection data D19 indicating that the substrate has not reached indicates a high-level logical value because a transmission type optical sensor is used as the arrival detection sensor 19.
 また、エアーカーテンエリア927の後端部側(下流側)に配置された抜け検出センサ39も、エアーカーテンエリア927から抜け出るプリント基板1を検出していないので、基板未検出を示す抜け検出データD39を制御部65に出力する。基板未検出を示す抜け検出データD39は抜け検出センサ39に透過型の光学センサが使用されていることから、ハイレベルの論理値を示す。 Also, the missing detection sensor 39 arranged on the rear end side (downstream side) of the air curtain area 927 has not detected the printed circuit board 1 coming out of the air curtain area 927, so the missing detection data D39 indicating that the board has not been detected. Is output to the control unit 65. The missing detection data D39 indicating that the substrate has not been detected indicates a high level logical value because a transmission type optical sensor is used as the missing detection sensor 39.
 制御部65は、基板未到達を示す到達検出データD19及び基板未検出を示す抜け検出データD39に基づいて送風機構99を制御する。送風機構99は、図1に示した基板搬出口902に空気を対流させてエアーカーテンエリア927を形成する。エアーカーテンエリア927は排気口912から吹き出されるエアーによって形成される(図1乃至図5参照)。 The control unit 65 controls the blower mechanism 99 based on arrival detection data D19 indicating that the substrate has not been reached and missing detection data D39 indicating that the substrate has not been detected. The air blowing mechanism 99 forms air curtain areas 927 by convection of air to the substrate carry-out port 902 shown in FIG. The air curtain area 927 is formed by air blown from the exhaust port 912 (see FIGS. 1 to 5).
 そして、図6Aに示したプリント基板1が図1に示した搬送部10によって、左側端から右側端へ移動するように搬送され、図6Bに示すプリント基板1がエアーカーテンエリア927に突入する直前の状態に至る。この突入直前の状態から、プリント基板1がエアーカーテンエリア927に突入すると、到達検出センサ19がプリント基板1の先端部を検出し、当該プリント基板1が到達検出センサ19の検出範囲を抜けるまで、例えば、基板到達を示す到達検出データD19を発生する。基板到達を示す到達検出データD19は例えば、ローレベルの論理値を示し、この状態を維持する。 Then, the printed circuit board 1 shown in FIG. 6A is conveyed by the conveying unit 10 shown in FIG. 1 so as to move from the left end to the right end, and immediately before the printed circuit board 1 shown in FIG. 6B enters the air curtain area 927. To the state of. When the printed circuit board 1 enters the air curtain area 927 from the state immediately before the entry, the arrival detection sensor 19 detects the tip of the printed circuit board 1 until the printed circuit board 1 goes out of the detection range of the arrival detection sensor 19. For example, arrival detection data D19 indicating the arrival of the substrate is generated. The arrival detection data D19 indicating the arrival of the substrate indicates, for example, a low-level logical value and maintains this state.
 なお、抜け検出センサ39は、この時点で、エアーカーテンエリア927から抜け出る直後のプリント基板1を検出していないので、基板未検出を示す抜け検出データD39を制御部65に出力する。 Note that, since the missing detection sensor 39 has not detected the printed circuit board 1 immediately after coming out of the air curtain area 927 at this time, the missing detection data D39 indicating that no board is detected is output to the control unit 65.
 制御部65は、基板到達を示す到達検出データD19及び基板未検出を示す抜け検出データD39に基づいて送風機構99を制御する。送風機構99は、図6Aに示したエアーカーテンエリア927の形成状態から図6Bに示すような非形成状態にする。送風機構99は、エアーの吹き出しを停止する。排気口912からエアーが吹き出されないので、エアーカーテンエリア927は非形成状態となる。 The control unit 65 controls the blower mechanism 99 based on arrival detection data D19 indicating the arrival of the substrate and missing detection data D39 indicating that the substrate has not been detected. The air blowing mechanism 99 is changed from the formation state of the air curtain area 927 shown in FIG. 6A to the non-formation state as shown in FIG. 6B. The air blowing mechanism 99 stops air blowing. Since air is not blown out from the exhaust port 912, the air curtain area 927 is not formed.
 更に、図6Cに示すプリント基板1がエアーカーテンエリア927を通過中の状態によれば、到達検出センサ19がプリント基板1を検出したままであり、当該プリント基板1が到達検出センサ19の検出範囲を抜けても、上述のように基板検出中を示す到達検出データD19を発生する。基板検出中を示す到達検出データD19も、ローレベルの論理値を示す。 Furthermore, according to the state in which the printed circuit board 1 shown in FIG. 6C is passing through the air curtain area 927, the arrival detection sensor 19 still detects the printed circuit board 1, and the printed circuit board 1 remains in the detection range of the arrival detection sensor 19. Even if the process exits, arrival detection data D19 indicating that the substrate is being detected is generated as described above. The arrival detection data D19 indicating that the substrate is being detected also indicates a low level logical value.
 なお、プリント基板1が抜け検出センサ39の検出範囲に突入すると、エアーカーテンエリア927の通過中を示す抜け検出データD39を発生する。エアーカーテンエリア927の通過中を示す抜け検出データD39は、ローレベルの論理値を示す。このエアーカーテンエリア927の通過中を示す抜け検出データD39は制御部65に出力される。 When the printed circuit board 1 enters the detection range of the missing detection sensor 39, missing detection data D39 indicating that the air curtain area 927 is passing is generated. The missing detection data D39 indicating that the air curtain area 927 is passing indicates a low level logical value. Omission detection data D39 indicating that the air curtain area 927 is passing is output to the control unit 65.
 制御部65は、基板検出中を示す到達検出データD19及びエアーカーテンエリア927の通過中を示す抜け検出データD39に基づいて送風機構99を制御する。送風機構99は、図6Bと同様にして、エアーカーテンエリア927を非形成状態のままにする。送風機構99は、エアーの吹き出しを停止したままである。排気口912からは、依然としてエアーが吹き出されていないので、エアーカーテンエリア927は非形成状態のまま維持される。 The control unit 65 controls the blower mechanism 99 based on the arrival detection data D19 indicating that the substrate is being detected and the missing detection data D39 indicating that the air curtain area 927 is passing. The air blowing mechanism 99 leaves the air curtain area 927 in the non-formed state in the same manner as in FIG. 6B. The blower mechanism 99 remains stopped from blowing air. Since air is not yet blown out from the exhaust port 912, the air curtain area 927 is maintained in a non-formed state.
 抜け検出センサ39は、当該プリント基板1がエアーカーテンエリア927を抜けるまで、通過中を示す抜け検出データD39を発生する。プリント基板1がエアーカーテンエリア927を抜け、抜け検出センサ39がプリント基板1の後端エッジを検出すると、基板抜けを示す抜け検出データD39はローレベルの論理値からハイレベルの論理値に変化する。 The missing detection sensor 39 generates missing detection data D39 indicating that the printed circuit board 1 is passing until the printed circuit board 1 passes through the air curtain area 927. When the printed board 1 passes through the air curtain area 927 and the missing detection sensor 39 detects the trailing edge of the printed board 1, the missing detection data D39 indicating that the board is missing changes from a low level logical value to a high level logical value. .
 抜け検出データD39のローレベルの論理値からハイレベルの論理値に変化をトリガとして、到達検出データD19のローレベルの論理値からハイレベルの論理値へリセットさせ、基板未検知を示す到達検出データD19及び基板抜けを示す抜け検出データD39は制御部65へ出力される。 Triggered by a change from the low level logical value of the missing detection data D39 to the high level logical value, the low level logical value of the arrival detection data D19 is reset to the high level logical value, and the arrival detection data indicating that the substrate is not detected D19 and missing detection data D39 indicating substrate missing are output to the controller 65.
 制御部65は、基板未検出を示す到達検出データD19及び基板抜けを示す抜け検出データD39に基づいて送風機構99を制御する。送風機構99は、基板搬出口902に空気を対流させてエアーカーテンエリア927の形成を再開する。送風機構99は、エアーの吹き出しを再開するので、排気口912からエアーが吹き出され、エアーカーテンエリア927が形成状態となされる(図1乃至図5参照)。 The control unit 65 controls the blower mechanism 99 based on the arrival detection data D19 indicating that the board is not detected and the missing detection data D39 indicating that the board is missing. The blower mechanism 99 convects air to the substrate carry-out port 902 and resumes the formation of the air curtain area 927. Since the air blowing mechanism 99 resumes air blowing, air is blown out from the exhaust port 912, and the air curtain area 927 is formed (see FIGS. 1 to 5).
 続いて、図7の(A)乃至(E)を参照して、第1の実施例に係る送風機904の他の制御例について説明する。この例では、図6A乃至図6Dに示した到達検出センサ19及び抜け検出センサ39が省略され、電源オンと共に送風機構99が動作して、常時、エアーカーテンエリア927を形成する場合である。 Subsequently, another control example of the blower 904 according to the first embodiment will be described with reference to (A) to (E) of FIG. In this example, the arrival detection sensor 19 and the drop detection sensor 39 shown in FIGS. 6A to 6D are omitted, and the air blowing area 99 is operated when the power is turned on to always form the air curtain area 927.
 この場合に、プリント基板1が当該噴流はんだ付け装置100に投入された時刻(先端エッジ検出時刻に相当)から、基板の搬送速度と基板検出センサ18からエアーカーテン位置までの距離とから算出される所要時間T0に余裕時間α(マージン)を考慮して予め設定された到達所要時間T1を経過した後、停止時間T2だけ送風機構99を停止する場合を例に挙げる。 In this case, from the time when the printed circuit board 1 is put into the jet soldering apparatus 100 (corresponding to the leading edge detection time), it is calculated from the transport speed of the substrate and the distance from the substrate detection sensor 18 to the air curtain position. An example will be given in which the blower mechanism 99 is stopped only for the stop time T2 after the required arrival time T1 that has been set in advance in consideration of the allowance time α (margin) has elapsed in the required time T0.
 時間計測方法としては、一例として搬送手段の回転軸にロータリーエンコーダーを取り付け、このロータリーエンコーダーからのパルス出力に基づいて時間計測を行うことができる。このロータリーエンコーダーから発生するパルスは、アドレスとして使用したり、そのパルス数をカウントすることでプリント基板1の位置情報として使用することもできる。 As a time measurement method, for example, a rotary encoder is attached to the rotating shaft of the conveying means, and time measurement can be performed based on a pulse output from the rotary encoder. The pulse generated from the rotary encoder can be used as an address or can be used as position information of the printed circuit board 1 by counting the number of pulses.
 ここに所要時間T0は、プリント基板1が当該噴流はんだ付け装置100に投入された時刻t0(以下で投入時刻t0ともいう)から当該プリント基板1がはんだ付け処理を受け、その後、エアーカーテンエリア927に至るまでの経過時間である。 Here, the required time T0 is that the printed circuit board 1 is subjected to a soldering process from the time t0 (hereinafter also referred to as the charging time t0) when the printed circuit board 1 is loaded into the jet soldering apparatus 100, and then the air curtain area 927. It is the elapsed time to reach.
 また、到達所要時間T1とは、所要時間T0からマージンα分を考慮した時間である。すなわち、T1=T0-αである。通過時間T3とは、プリント基板1がエアーカーテンエリア927を通過する時間をいい、通過時間T3は、プリント基板1の搬送方向の長さx(x=350mm程度)と、エアーカーテンエリア927の基板搬送方向の長さLc(Lc=400mm程度)と、搬送速度V(V=0.2乃至0.5m/min程度)から決まる時間である。 Further, the arrival required time T1 is a time considering the margin α from the required time T0. That is, T1 = T0−α. The passage time T3 means the time for the printed circuit board 1 to pass through the air curtain area 927. The passage time T3 is the length x (x = about 350 mm) in the conveyance direction of the printed circuit board 1 and the substrate in the air curtain area 927. This time is determined from the length Lc in the transport direction (Lc = about 400 mm) and the transport speed V (V = about 0.2 to 0.5 m / min).
 停止時間T2は、送風機構99のモーター96を停止する時間であり、上述の通過時間T3の後にもマージンβ分を考慮している。停止時間T2にはマージンα及びβを考慮した時間が設定される。すなわち、T2=T3+α+βである。 The stop time T2 is a time for stopping the motor 96 of the blower mechanism 99, and the margin β is also taken into account after the above-described passage time T3. A time considering the margins α and β is set as the stop time T2. That is, T2 = T3 + α + β.
 もちろん、プリント基板1は搬送部10によって所定の搬送速度Vで搬送され、当該プリント基板1がはんだ付け処理される場合を前提とする。この例では、プリント基板1が図7の(A)に示す時刻t0で当該噴流はんだ付け装置100に投入された場合を想定する。 Of course, it is assumed that the printed circuit board 1 is transported by the transport unit 10 at a predetermined transport speed V and the printed circuit board 1 is soldered. In this example, it is assumed that the printed circuit board 1 is put into the jet soldering apparatus 100 at time t0 shown in FIG.
 これらを制御条件にして、図7の(A)に示す時刻t0で、当該噴流はんだ付け装置100へプリント基板1の投入が検出されると、図7の(C)に示すPCB検出データD18が発生される。PCB検出データD18は、基板検出センサ18から制御部65へ出力される。制御部65では、PCB検出データD18の立ち上がりに同期して、図5に示したカウンタ65a(タイマーでもよい)が起動される。カウンタ65aは、図7の(B)に示すCLK信号を発生し、到達所要時間T1に至ると、時刻t14でカウント値を出力し、更に、送風機構99の停止時間T2の経過後に、時刻t18でカウント値を出力する。 Under these control conditions, when the insertion of the printed circuit board 1 is detected to the jet soldering apparatus 100 at time t0 shown in FIG. 7A, PCB detection data D18 shown in FIG. Generated. The PCB detection data D18 is output from the substrate detection sensor 18 to the control unit 65. In the control unit 65, the counter 65a (may be a timer) shown in FIG. 5 is started in synchronization with the rising edge of the PCB detection data D18. The counter 65a generates the CLK signal shown in FIG. 7B, and outputs the count value at time t14 when the arrival required time T1 is reached. Further, after the elapse of the stop time T2 of the blower mechanism 99, the time t18 To output the count value.
 これらのカウント値は制御部65からカーテン制御データD95として、エアーカーテン駆動部95に出力される。エアーカーテン駆動部95は、時刻t14で出力されるカウント値をトリガにして、図7の(D)に示すモーター制御信号S96をオン(ハイレベル)からオフ(ローレベル)に制御する。モーター96は、モーター制御信号S96がハイレベルからローレベルへ立ち下がることで停止する。 These count values are output from the control unit 65 to the air curtain drive unit 95 as curtain control data D95. The air curtain drive unit 95 controls the motor control signal S96 shown in FIG. 7D from on (high level) to off (low level) using the count value output at time t14 as a trigger. The motor 96 stops when the motor control signal S96 falls from the high level to the low level.
 また、エアーカーテン駆動部95は、時刻t18で出力されるカウント値をトリガにして、同図に示すモーター制御信号S96をオフ(ローレベル)からオン(ハイレベル)に制御する。モーター96は、モーター制御信号S96がローレベルからハイレベルに立ち上がることで回転を再開する。これにより、送風機構99によるエアーカーテンエリア927が再形成される。 Further, the air curtain drive unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t18 as a trigger. The motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
 図7の(E)に示すT3はプリント基板1(PCB#1)がエアーカーテンエリア927を通過する時間である。通過時間T3は、プリント基板1の先端部がエアーカーテンエリア927に進入し、その後端部がエアーカーテンエリア927を抜けるまでに要する時間である。この例で、停止時間T2は通過時間T3に比べて長く設定される。例えば、通過時間T3の前後に乱流を防止するために余裕時間α及びβ(マージン)を加算して、T2=T3+α+βに設定するようになされる。余裕時間αとして、例えば、「1秒」が設定される。もちろん、余裕時間αは「1秒」に限られることはなく、「2秒」、「3秒」・・・であってもよいし、αとβのマージンは異なる値で設定しても、また、同じ値に設定してもよい。 T3 shown in FIG. 7E is the time for the printed circuit board 1 (PCB # 1) to pass through the air curtain area 927. The passage time T3 is a time required for the front end portion of the printed circuit board 1 to enter the air curtain area 927 and the rear end portion to pass through the air curtain area 927. In this example, the stop time T2 is set longer than the passage time T3. For example, in order to prevent turbulent flow before and after the passage time T3, margin times α and β (margin) are added to set T2 = T3 + α + β. For example, “1 second” is set as the margin time α. Of course, the margin time α is not limited to “1 second”, and may be “2 seconds”, “3 seconds”, etc. Even if the margins of α and β are set to different values, Moreover, you may set to the same value.
 このように通過時間T3に対して停止時間T2を設定すると、プリント基板1の先端部がエアーカーテンエリア927に進入する1秒前にモーター96を停止できる。また、プリント基板1の後端部がエアーカーテンエリア927を抜けてから1秒を経過した後にモーター96を駆動できるようになる。 Thus, when the stop time T2 is set with respect to the passage time T3, the motor 96 can be stopped one second before the front end of the printed circuit board 1 enters the air curtain area 927. In addition, the motor 96 can be driven after one second has elapsed after the rear end of the printed circuit board 1 has passed through the air curtain area 927.
 このように、第1の実施例としての噴流はんだ付け装置100によれば、電子部品を取り付けたプリント基板1を予備加熱し、予備加熱後のプリント基板1をはんだ付け処理部に搬送し、プリント基板1に電子部品をはんだ付けする場合において、制御部65がエアーカーテンエリア927を通過するプリント基板1の通過タイミングに対応して空気の送出又は停止をするように送風機構99を制御するようになる。 As described above, according to the jet soldering apparatus 100 as the first embodiment, the printed circuit board 1 to which the electronic component is attached is preheated, the preheated printed circuit board 1 is conveyed to the soldering processing unit, and the printing is performed. When the electronic component is soldered to the board 1, the control unit 65 controls the blower mechanism 99 so as to send or stop the air corresponding to the passage timing of the printed board 1 that passes through the air curtain area 927. Become.
 この制御部65は、プリント基板1がエアーカーテンエリア927を通過する直前に送風を停止すると共に、プリント基板1の通過中も送風を停止し、プリント基板1がエアーカーテンエリア927を通過した直後に送風を再開できる。従って、制御部65は、当該送風機構99による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになる。プリント基板1が乱流の発生を伴うことなくエアーカーテンエリア927を通過できるようになる。これにより、乱流発生防止機能を有したエアーカーテンエリア927付きの噴流はんだ付け装置100を提供できるようになる。 The control unit 65 stops the air blowing just before the printed circuit board 1 passes through the air curtain area 927, stops the air blowing while the printed circuit board 1 passes, and immediately after the printed circuit board 1 passes through the air curtain area 927. Blowing can be resumed. Therefore, the control unit 65 can prevent the occurrence of turbulence in preference to the function of blocking the atmosphere on the transport path by the blower mechanism 99. The printed circuit board 1 can pass through the air curtain area 927 without generating turbulent flow. Thereby, the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
 なお、送風機構99の送風停止のタイミングや、送風停止後のエアーカーテンエリア927の再形成を行うタイミングは、プリント基板1がエアーカーテンエリア927を通過する前に送風を停止し、プリント基板1が送風機構99を完全に通過した後に、エアーの送風を再開してエアーカーテンエリア927を再形成するのが好ましい。これらのタイミングは、生産効率を考慮して適宜決定することができる。すなわち、マージンα,βの値は正の他、零の値を含むものである。 The timing of stopping the blowing of the blowing mechanism 99 and the timing of re-forming the air curtain area 927 after stopping the blowing are stopped before the printed circuit board 1 passes through the air curtain area 927. After completely passing through the air blowing mechanism 99, it is preferable to restart the air blowing to re-form the air curtain area 927. These timings can be appropriately determined in consideration of production efficiency. That is, the values of the margins α and β include positive and zero values.
 また、上側ガイド板906は、1つの部材で構成する場合について説明したが、これに限られることはなく、上側ガイド板906の左側部906aを一部品で構成し、その右側部906bを一部品で構成し、上側ガイド板906を計2つの部材に分けて構成してもよい。下側ガイド板905についても同様である。 In addition, the case where the upper guide plate 906 is configured by one member has been described, but the present invention is not limited thereto, and the left side portion 906a of the upper guide plate 906 is configured by one component, and the right side portion 906b is configured by one component. The upper guide plate 906 may be divided into two members in total. The same applies to the lower guide plate 905.
<第1の実施例に対して基板連続投入した場合>
 続いて、図8の(A)乃至(H)を参照して、第2の実施例としての送風機904の制御例について説明する。この例では、第1の実施例と同様にして、電源オンと共に送風機構99が動作して、常時、エアーカーテンエリア927を形成する場合であって、第1の実施例と異なり、長さxが既知の複数枚同種のプリント基板1が連続して当該噴流はんだ付け装置100に投入される場合である。この場合、最初のプリント基板1が当該噴流はんだ付け装置100に投入された時刻(先端エッジ検出時刻に相当)を基準にして、当該プリント基板1毎に予め設定された到達所要時間T1を経過した後、停止時間T2だけ送風機構99を停止する動作を繰り返す場合を例に挙げる。
<When the substrate is continuously loaded in the first embodiment>
Subsequently, a control example of the blower 904 as the second embodiment will be described with reference to FIGS. In this example, as in the first embodiment, the air blower mechanism 99 operates when the power is turned on to always form the air curtain area 927. Unlike the first embodiment, the length x This is a case where a plurality of known printed circuit boards 1 of the same type are continuously fed into the jet soldering apparatus 100. In this case, the time required for reaching T1 preset for each printed circuit board 1 has elapsed with reference to the time when the first printed circuit board 1 is put into the jet soldering apparatus 100 (corresponding to the leading edge detection time). Subsequently, an example in which the operation of stopping the air blowing mechanism 99 is repeated for the stop time T2 will be described.
 ここに到達所要時間T1は、各々のプリント基板1が当該噴流はんだ付け装置100に投入された時刻から当該プリント基板1がはんだ付け処理を受け、その後、エアーカーテンエリア927に至るまでの経過時間、すなわち、到達所要時間T1から第1の実施例と同様にしてマージンαを考慮したものである。停止時間T2は、第1の実施例と同様にしてマージンα,βを考慮した、送風機構99のモーター96を停止する時間である。 Here, the required time T1 is the elapsed time from the time when each printed circuit board 1 is put into the jet soldering apparatus 100 to the time when the printed circuit board 1 is subjected to the soldering process, and then to the air curtain area 927. That is, the margin α is taken into consideration in the same manner as in the first embodiment from the required travel time T1. The stop time T2 is a time during which the motor 96 of the blower mechanism 99 is stopped in consideration of the margins α and β as in the first embodiment.
 もちろん、複数のプリント基板1は搬送部10によって一定の搬送速度Vで順次搬送され、当該プリント基板1が連続してはんだ付け処理される場合を前提とする。この例では、第1番目のプリント基板1が図8の(A)に示す時刻t0で当該噴流はんだ付け装置100に投入された場合を想定する。 Of course, it is assumed that the plurality of printed circuit boards 1 are sequentially transported by the transport unit 10 at a constant transport speed V, and the printed circuit boards 1 are continuously soldered. In this example, it is assumed that the first printed circuit board 1 is put into the jet soldering apparatus 100 at time t0 shown in FIG.
 これらを制御条件にして、図8の(A)に示す時刻t0で、当該噴流はんだ付け装置100へ第1番目のプリント基板1(図中ではPCB#1と記述する)の投入が検出されると、図8の(C)に示すPCB検出データD18が発生される。PCB検出データD18は、基板検出センサ18から制御部65へ出力される。制御部65では、PCB検出データD18の立ち上がりに同期して、図5に示したカウンタ65a(タイマーでもよい)が起動される。カウンタ65aは時刻t0を基準とした、図8の(B)に示すCLK信号を発生し、到達所要時間T1に至ると、例えば、時刻t160でカウント値を出力し、更に、送風機構99の停止時間T2に至ると、時刻t180でカウント値を出力する。 Using these as control conditions, the insertion of the first printed circuit board 1 (denoted as PCB # 1 in the figure) into the jet soldering apparatus 100 is detected at time t0 shown in FIG. Then, the PCB detection data D18 shown in FIG. 8C is generated. The PCB detection data D18 is output from the substrate detection sensor 18 to the control unit 65. In the control unit 65, the counter 65a (may be a timer) shown in FIG. 5 is started in synchronization with the rising edge of the PCB detection data D18. The counter 65a generates the CLK signal shown in FIG. 8B with reference to the time t0. When the arrival required time T1 is reached, for example, the counter 65a outputs a count value at the time t160, and further stops the blower mechanism 99. When time T2 is reached, the count value is output at time t180.
 更に、第2番目のプリント基板1(図中ではPCB#2と記述する)の投入が、図8の(A)に示す時刻t40で検出されると、図8の(C)に示すPCB#2の投入を検出した旨を示すPCB検出データD18が発生される。同様にして、第3番目のプリント基板1(図中ではPCB#3と記述する)の投入が時刻t80で検出されると、図8の(C)に示すPCB#3の投入を検出した旨を示すPCB検出データD18が発生される。第4番目のプリント基板1(図中ではPCB#4と記述する)の投入が時刻t120で検出されると、図8の(C)に示すPCB#4の投入を検出した旨を示すPCB検出データD18が発生される。以下、PCB#5乃至PCB#8が検出される。 Further, when the insertion of the second printed circuit board 1 (denoted as PCB # 2 in the figure) is detected at time t40 shown in FIG. 8A, PCB # shown in FIG. PCB detection data D18 indicating that the input of 2 has been detected is generated. Similarly, when the insertion of the third printed circuit board 1 (denoted as PCB # 3 in the figure) is detected at time t80, it is detected that the insertion of PCB # 3 shown in FIG. PCB detection data D18 indicating is generated. When the insertion of the fourth printed circuit board 1 (described as PCB # 4 in the figure) is detected at time t120, the PCB detection indicating that the insertion of PCB # 4 shown in FIG. 8C is detected. Data D18 is generated. Hereinafter, PCB # 5 to PCB # 8 are detected.
 これらのカウント値は制御部65からカーテン制御データD95として、エアーカーテン駆動部95に出力される。エアーカーテン駆動部95は、時刻t160で出力されるカウント値をトリガにして、図8の(D)に示すモーター制御信号S96をオン(ハイレベル)からオフ(ローレベル)に制御する。モーター96は、モーター制御信号S96がハイレベルからローレベルへ立ち下がることで停止する。図8の(E)に示すプリント基板1(PCB#1)は、送風機構99が停止している期間に通過時間T3を要して、エアーカーテン非形成領域を通過する。 These count values are output from the control unit 65 to the air curtain drive unit 95 as curtain control data D95. The air curtain drive unit 95 controls the motor control signal S96 shown in FIG. 8D from on (high level) to off (low level) using the count value output at time t160 as a trigger. The motor 96 stops when the motor control signal S96 falls from the high level to the low level. The printed circuit board 1 (PCB # 1) shown in FIG. 8E passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
 また、エアーカーテン駆動部95は、時刻t180で出力されるカウント値をトリガにして、同図に示すモーター制御信号S96をオフ(ローレベル)からオン(ハイレベル)に制御する。モーター96は、モーター制御信号S96がローレベルからハイレベルに立ち上がることで回転を再開する。これにより、送風機構99によるエアーカーテンエリア927が再形成される。 Further, the air curtain driving unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t180 as a trigger. The motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
 更に、連続して搬送されてくるプリント基板1(PCB#2)に関しては、エアーカーテン駆動部95は、時刻t200で出力されるカウント値をトリガにして、図8の(D)に示すモーター制御信号S96をオン(ハイレベル)からオフ(ローレベル)に制御する。モーター96は、モーター制御信号S96がハイレベルからローレベルへ立ち下がることで停止する。図8の(F)に示すプリント基板1(PCB#2)は、送風機構99が停止している期間に通過時間T3を要して、エアーカーテン非形成領域を通過する。 Further, for the printed board 1 (PCB # 2) that is continuously conveyed, the air curtain driving unit 95 uses the count value output at time t200 as a trigger to perform motor control shown in FIG. The signal S96 is controlled from on (high level) to off (low level). The motor 96 stops when the motor control signal S96 falls from the high level to the low level. The printed circuit board 1 (PCB # 2) shown in FIG. 8F passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
 また、エアーカーテン駆動部95は、時刻t220で出力されるカウント値をトリガにして、同図に示すモーター制御信号S96をオフ(ローレベル)からオン(ハイレベル)に制御する。モーター96は、モーター制御信号S96がローレベルからハイレベルに立ち上がることで回転を再開する。これにより、送風機構99によるエアーカーテンエリア927が再形成される。 Further, the air curtain drive unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t220 as a trigger. The motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
 また、連続して搬送されてくるプリント基板1(PCB#3)に関しては、エアーカーテン駆動部95は、時刻t240で出力されるカウント値をトリガにして、図8の(D)に示すモーター制御信号S96をオン(ハイレベル)からオフ(ローレベル)に制御する。モーター96は、モーター制御信号S96がハイレベルからローレベルへ立ち下がることで停止する。図8の(G)に示すプリント基板1(PCB#3)は、送風機構99が停止している期間に通過時間T3を要して、エアーカーテン非形成領域を通過する。 For the printed circuit board 1 (PCB # 3) that is continuously conveyed, the air curtain driving unit 95 uses the count value output at time t240 as a trigger to perform motor control shown in FIG. The signal S96 is controlled from on (high level) to off (low level). The motor 96 stops when the motor control signal S96 falls from the high level to the low level. The printed circuit board 1 (PCB # 3) shown in FIG. 8G passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
 また、エアーカーテン駆動部95は、時刻t260で出力されるカウント値をトリガにして、同図に示すモーター制御信号S96をオフ(ローレベル)からオン(ハイレベル)に制御する。モーター96は、モーター制御信号S96がローレベルからハイレベルに立ち上がることで回転を再開する。これにより、送風機構99によるエアーカーテンエリア927が再形成される。 Further, the air curtain drive unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t260 as a trigger. The motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
 更に、連続して搬送されてくるプリント基板1(PCB#4)に関しては、エアーカーテン駆動部95は、時刻t280で出力されるカウント値をトリガにして、図8の(D)に示すモーター制御信号S96をオン(ハイレベル)からオフ(ローレベル)に制御する。モーター96は、モーター制御信号S96がハイレベルからローレベルへ立ち下がることで停止する。図8の(H)に示すプリント基板1(PCB#4)は、送風機構99が停止している期間に通過時間T3を要して、エアーカーテン非形成領域を通過する。 Further, for the printed board 1 (PCB # 4) that is continuously conveyed, the air curtain driving unit 95 uses the count value output at time t280 as a trigger to perform motor control shown in FIG. The signal S96 is controlled from on (high level) to off (low level). The motor 96 stops when the motor control signal S96 falls from the high level to the low level. The printed circuit board 1 (PCB # 4) shown in FIG. 8H passes through the air curtain non-formation region with a passage time T3 during the period when the blower mechanism 99 is stopped.
 また、エアーカーテン駆動部95は、時刻t300で出力されるカウント値をトリガにして、同図に示すモーター制御信号S96をオフ(ローレベル)からオン(ハイレベル)に制御する。モーター96は、モーター制御信号S96がローレベルからハイレベルに立ち上がることで回転を再開する。これにより、送風機構99によるエアーカーテンエリア927が再形成される。 Further, the air curtain driving unit 95 controls the motor control signal S96 shown in the figure from off (low level) to on (high level) using the count value output at time t300 as a trigger. The motor 96 resumes rotation when the motor control signal S96 rises from a low level to a high level. Thereby, the air curtain area 927 by the blower mechanism 99 is re-formed.
 図8の(E)乃至(H)に示した通過時間T3の各々は、第1の実施例と同様にして、プリント基板1の先端部がエアーカーテンエリア927に進入し、その後端部がエアーカーテンエリア927を抜けるまでに要する時間である。この例でも、第1の実施例と同様にして停止時間T2は通過時間T3に比べて長く設定される。通過時間T3の前後には、乱流を防止するために余裕時間α及びβ(マージン)を加算して、T2=T3+α+βに設定するようになされる。余裕時間α,βとして、例えば、第1の実施例と同様にして「1秒」が設定される。もちろん、余裕時間αは「1秒」に限られることはなく、「2秒」、「3秒」・・・であってもよいし、αとβのマージンは異なる値で設定しても、また、同じ値に設定してもよい。 Each of the passage times T3 shown in (E) to (H) of FIG. 8 is the same as in the first embodiment, the leading end of the printed circuit board 1 enters the air curtain area 927, and the trailing end is air. This is the time required to pass through the curtain area 927. Also in this example, the stop time T2 is set longer than the passage time T3 in the same manner as in the first embodiment. Before and after the passage time T3, extra time α and β (margin) are added to prevent turbulent flow, and T2 = T3 + α + β is set. As the margin times α and β, for example, “1 second” is set in the same manner as in the first embodiment. Of course, the margin time α is not limited to “1 second”, and may be “2 seconds”, “3 seconds”, etc. Even if the margins of α and β are set to different values, Moreover, you may set to the same value.
 このように第2の実施例に係る送風機904の制御例によれば、複数の所定の長さを有するプリント基板1が連続して当該噴流はんだ付け装置100に投入される場合において、最初のプリント基板1が当該噴流はんだ付け装置100に投入された時刻t0を基準にして、当該プリント基板1毎に予め設定された到達所要時間T1を経過した後、停止時間T2だけ送風機構99が停止する動作を繰り返すようになされる。 As described above, according to the control example of the blower 904 according to the second embodiment, when the printed circuit board 1 having a plurality of predetermined lengths is continuously inserted into the jet soldering apparatus 100, the first print is performed. The operation in which the blower mechanism 99 stops only for the stop time T2 after the required time T1 preset for each printed circuit board 1 has elapsed with respect to the time t0 when the board 1 is put into the jet soldering apparatus 100. Will be repeated.
 この制御部65は、連続して搬送されてくるプリント基板1がエアーカーテンエリア927を通過する直前に送風を停止できると共に、プリント基板1の通過中も送風を停止できる。プリント基板1がエアーカーテンエリア927を通過した直後に、制御部65は、送風を再開できるので、当該エアーカーテンエリア927による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになる。これにより、連続して搬送されてくるプリント基板1が乱流の発生を伴うことなくエアーカーテンエリア927を通過できるようになる。 The control unit 65 can stop the air blowing immediately before the printed board 1 that is continuously conveyed passes through the air curtain area 927 and can stop the air blowing while the printed board 1 is passing. Immediately after the printed circuit board 1 passes through the air curtain area 927, the control unit 65 can resume air blowing, so that the generation of turbulence is prevented in preference to the function of blocking the atmosphere on the conveyance path by the air curtain area 927. become able to. Thereby, the printed circuit board 1 conveyed continuously can pass through the air curtain area 927 without generating turbulent flow.
 しかも、マージンα,βの値を共に「1秒」に設定したときには、通過時間T3に対して停止時間T2を第1の実施例と同様にして長く設定する。この設定によって、連続して投入されるプリント基板1の先端部がエアーカーテンエリア927に進入する1秒前にモーター96を停止できる。また、プリント基板1の後端部がエアーカーテンエリア927を抜けてから1秒を経過した後にモーター96を駆動できるようになる。これにより、乱流発生防止機能を有したエアーカーテンエリア927付きの噴流はんだ付け装置100を提供できるようになる。 Furthermore, when both the values of the margins α and β are set to “1 second”, the stop time T2 is set longer than the passage time T3 in the same manner as in the first embodiment. With this setting, the motor 96 can be stopped one second before the tip of the printed circuit board 1 that is continuously input enters the air curtain area 927. In addition, the motor 96 can be driven after one second has elapsed after the rear end of the printed circuit board 1 has passed through the air curtain area 927. Thereby, the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
 なお、送風機構99の送風停止のタイミングや、送風停止後のエアーカーテンの再形成を行うタイミングは、プリント基板1がエアーカーテンエリア927を通過する前に送風を停止し、プリント基板1がエアーカーテンエリア927を完全に通過した後に、エアーの送風を再開してエアーカーテンエリア927を再形成するのが好ましい。これらのタイミングは、生産効率を考慮して適宜決定することができる。すなわち、マージンα,βの値は正の他に零の値を含むものである。 The timing of stopping the blowing of the blowing mechanism 99 and the timing of re-forming the air curtain after stopping the blowing are stopped before the printed circuit board 1 passes through the air curtain area 927 and the printed circuit board 1 is turned into the air curtain. After completely passing through the area 927, it is preferable to re-form the air curtain area 927 by restarting air blowing. These timings can be appropriately determined in consideration of production efficiency. That is, the values of margins α and β include zero values in addition to positive values.
 <基板長を自動検出する場合:マージン無し>
 続いて、図9A、図9B及び図10を参照して、第3の実施例としての送風機構99の制御例について説明する。この例では、停止時間T2にマージンα,βを設定しない場合を挙げる。図9Aに示す制御部65は、タイマー65b、比較演算部65c及びメモリ部65dを有して構成される。タイマー65b、比較演算部65cにはタイマー65b及びメモリ部65dが接続される。タイマー65bは、逐次、現在の時刻を示す時間データD(i)を発生する。
<When automatically detecting the board length: no margin>
Subsequently, a control example of the blower mechanism 99 as the third embodiment will be described with reference to FIGS. 9A, 9B, and 10. In this example, the case where the margins α and β are not set for the stop time T2 will be described. The control unit 65 illustrated in FIG. 9A includes a timer 65b, a comparison calculation unit 65c, and a memory unit 65d. A timer 65b and a memory unit 65d are connected to the timer 65b and the comparison calculation unit 65c. The timer 65b sequentially generates time data D (i) indicating the current time.
 メモリ部65dには、基板投入情報(以下で基板投入データD(t)という)、距離情報(以下で距離データD(L)という)、基板到達情報(以下で基板到達データD(T)という)、基板抜け情報(以下で基板抜けデータD(S)という)、基板長さ情報(以下で基板長さデータD(x)という)及び搬送速度情報(以下で搬送速度データD(V)という)が記憶される。基板投入データD(t)は、基板検出センサ18から出力されるPCB検出データD18に含まれる。基板投入データD(t)には、例えば、一定の搬送速度Vで搬送されるプリント基板1の先端エッジを検出した時刻ta及び、プリント基板1の後端エッジを検出した時刻tbが含まれる。 The memory unit 65d has substrate loading information (hereinafter referred to as substrate loading data D (t)), distance information (hereinafter referred to as distance data D (L)), and substrate arrival information (hereinafter referred to as substrate arrival data D (T)). ), Substrate missing information (hereinafter referred to as substrate missing data D (S)), substrate length information (hereinafter referred to as substrate length data D (x)), and conveyance speed information (hereinafter referred to as conveyance speed data D (V)). ) Is stored. The board loading data D (t) is included in the PCB detection data D18 output from the board detection sensor 18. The board loading data D (t) includes, for example, a time ta when the leading edge of the printed board 1 conveyed at a constant conveyance speed V is detected and a time tb when the trailing edge of the printed board 1 is detected.
 距離データD(L)は基板搬入口202からエアーカーテンエリア927の先頭部分に至る距離L(実測)を示す情報である。距離Lは、例えば、図1に示した基板検出センサ18の光軸から送風機構99の排気ダクト907の一方の壁面に至る距離である。基板到達データD(T)は、プリント基板1が基板搬入口202(搬送経路)に投入された時刻(taに相当)からエアーカーテンエリア927へ到達するまでの経過時間を示す情報である。基板到達データD(T)は実施例1(図7の(D))の所要時間T0に相当する。この例では、マージンαを設けないので、基板到達データD(T)が到達所要時間T1にも相当する。 The distance data D (L) is information indicating the distance L (actual measurement) from the substrate carry-in entrance 202 to the leading portion of the air curtain area 927. The distance L is, for example, the distance from the optical axis of the substrate detection sensor 18 shown in FIG. 1 to one wall surface of the exhaust duct 907 of the blower mechanism 99. The board arrival data D (T) is information indicating the elapsed time from the time (corresponding to ta) when the printed board 1 is introduced into the board carry-in entrance 202 (transport path) until it reaches the air curtain area 927. The substrate arrival data D (T) corresponds to the required time T0 in the first embodiment ((D) in FIG. 7). In this example, since the margin α is not provided, the substrate arrival data D (T) also corresponds to the required arrival time T1.
 基板抜けデータD(S)は、プリント基板1がエアーカーテンエリア927の後端部分を抜ける時刻を示す情報である。基板長さデータD(x)は、プリント基板1の搬送方向の長さxを示す情報である。搬送速度データD(V)はプリント基板1を搬送する搬送速度Vを示す情報である。 The board missing data D (S) is information indicating the time when the printed board 1 passes through the rear end portion of the air curtain area 927. The board length data D (x) is information indicating the length x of the printed board 1 in the transport direction. The conveyance speed data D (V) is information indicating the conveyance speed V at which the printed circuit board 1 is conveyed.
 比較演算部65cは、エアーカーテン駆動部95にカーテン制御データD95を出力するために、例えば、タイマー65bから出力される時間データD(i)と基板到達データD(T)とを比較し、両者が一致したか否かを検出する。これらにより制御部65の内部を構成する。 In order to output the curtain control data D95 to the air curtain drive unit 95, for example, the comparison calculation unit 65c compares the time data D (i) output from the timer 65b with the substrate arrival data D (T), It is detected whether or not. These constitute the inside of the control unit 65.
 なお、図9Bにはエアーカーテン駆動部95で2個のモーター96a,96bを制御する構成例を示している。図9Bに示すエアーカーテン駆動部95には駆動部の一例を構成する送風用のモーター96a,96bが接続される。モーター96aは、モーター制御信号S9aに基づいて図1乃至図4に示したファン部919を回転する。モーター96bは、モーター制御信号S9bに基づいて同図に示したファン部919を回転する。これにより、後述するように2個の送風機構99a,99bをエアーカーテン駆動部95によって時分割に制御できるようになる(図14参照)。 FIG. 9B shows a configuration example in which the two motors 96 a and 96 b are controlled by the air curtain driving unit 95. The air curtain driving unit 95 shown in FIG. 9B is connected to blower motors 96a and 96b that constitute an example of the driving unit. The motor 96a rotates the fan unit 919 shown in FIGS. 1 to 4 based on the motor control signal S9a. The motor 96b rotates the fan unit 919 shown in the figure based on the motor control signal S9b. Thereby, as will be described later, the two air blowing mechanisms 99a and 99b can be controlled in a time-sharing manner by the air curtain driving unit 95 (see FIG. 14).
 続いて、図10を参照して、第3の実施例に係る送風機構99の制御例について説明する。この例では、プリント基板1(図中では、PCBと記述する)を1枚ずつ噴流はんだ付け装置100に投入して、はんだ付け処理する場合であって、アイドリング状態で送風機構99を駆動する制御部65が、基板投入データD(t)及び距離データD(L)をソフトウエア処理して基板長さデータD(x)、基板到達データD(T)及び基板抜けデータD(S)をリアルタイムに計算し、これらの情報をエアーカーテン駆動部95に設定する場合である。ここにアイドリング状態とは、噴流はんだ付け装置100内にプリント基板1が投入されておらず、はんだ付け処理が行われていない状態をいう。 Subsequently, a control example of the blower mechanism 99 according to the third embodiment will be described with reference to FIG. In this example, the printed circuit board 1 (denoted as PCB in the figure) is put into the jet soldering apparatus 100 one by one and soldered, and the blower mechanism 99 is driven in an idling state. The unit 65 performs software processing on the board loading data D (t) and the distance data D (L), and the board length data D (x), board arrival data D (T), and board missing data D (S) in real time. This information is calculated when the air curtain driving unit 95 sets these pieces of information. Here, the idling state refers to a state in which the printed circuit board 1 is not put into the jet soldering apparatus 100 and the soldering process is not performed.
 これらを制御条件にして、図10に示すステップST1で制御部65は運転条件の設定を受け付ける。このとき、ユーザは運転条件として、図5に示した入力部64を操作して枚葉処理モードを設定する。ここに枚葉処理モードとは、プリント基板1を1枚ずつ噴流はんだ付け装置100に投入して、はんだ付け処理するモードをいう。また、ユーザは、はんだ付け処理をするプリント基板1の枚数を制御部65に設定する。 With these as control conditions, the control unit 65 accepts the setting of operation conditions in step ST1 shown in FIG. At this time, as a driving condition, the user operates the input unit 64 shown in FIG. 5 to set the single wafer processing mode. Here, the single wafer processing mode refers to a mode in which the printed circuit boards 1 are put into the jet soldering apparatus 100 one by one and soldered. In addition, the user sets the number of printed circuit boards 1 to be soldered in the control unit 65.
 ユーザは運転条件を設定するとエアーカーテンエリア927が設けられた搬送経路の基板搬入口202にプリント基板1を投入する。すると、ステップST2で、図5に示した基板検出センサ18はプリント基板1(図中ではPCBと記述)の投入を検出して基板投入データD(t)を制御部65に出力する。 When the user sets the operating condition, the user puts the printed circuit board 1 into the board carry-in port 202 on the carrying path provided with the air curtain area 927. Then, in step ST2, the substrate detection sensor 18 shown in FIG. 5 detects the insertion of the printed circuit board 1 (denoted as PCB in the drawing) and outputs the substrate insertion data D (t) to the control unit 65.
 ステップST3で制御部65は基板投入データD(t)に基づいて図9Aに示したタイマー65bを起動する。タイマー65bは制御基準となる現在の時刻を示す時間データD(i)を逐次、制御部65に出力する。 In step ST3, the control unit 65 starts the timer 65b shown in FIG. 9A based on the substrate loading data D (t). The timer 65b sequentially outputs time data D (i) indicating the current time as a control reference to the control unit 65.
 ステップST4で制御部65はプリント基板1の基板長さを計測する。このとき、制御部65は、搬送速度Vで搬送されるプリント基板1の先端エッジ検出時刻taと後端エッジ検出時刻tbとの差分及び、搬送部10の搬送速度データD(V)から基板長さデータD(x)を算出する。搬送部10により搬送されるプリント基板1の搬送速度をVとし、当該プリント基板1の長さをxとすると、制御部65がx=(tb-ta)・Vを演算することで、基板長さデータD(x)が得られる。 In step ST4, the control unit 65 measures the board length of the printed board 1. At this time, the control unit 65 determines the substrate length from the difference between the leading edge detection time ta and the trailing edge detection time tb of the printed circuit board 1 transported at the transport speed V and the transport speed data D (V) of the transport unit 10. Data D (x) is calculated. Assuming that the conveyance speed of the printed circuit board 1 conveyed by the conveyance unit 10 is V and the length of the printed circuit board 1 is x, the control unit 65 calculates x = (tb−ta) · V. Data D (x) is obtained.
 ステップST5で制御部65はプリント基板1の基板到達データD(T)からその接近時刻ti及び、その基板抜けデータD(S)から抜け時刻tjを演算する。基板到達データD(T)は、距離データD(L)と搬送速度データD(V)から算出される。基板搬入口202からエアーカーテンエリア927に至るプリント基板1の基板到達時間をTとし、基板搬入口202からエアーカーテンエリア927に至る距離をLとすると、制御部65がT=L/Vを演算することで、基板到達データD(T)が得られる。接近時刻tiは、基板到達時間Tにおけるタイマー65bから出力される時間データD(i)であって、例えば、第1の実施例の時刻t16に相当する。 In step ST5, the control unit 65 calculates the approach time ti from the board arrival data D (T) of the printed circuit board 1 and the removal time tj from the board removal data D (S). The substrate arrival data D (T) is calculated from the distance data D (L) and the conveyance speed data D (V). When the substrate arrival time of the printed circuit board 1 from the substrate carry-in port 202 to the air curtain area 927 is T, and the distance from the substrate carry-in port 202 to the air curtain area 927 is L, the control unit 65 calculates T = L / V. Thus, substrate arrival data D (T) is obtained. The approach time ti is time data D (i) output from the timer 65b at the substrate arrival time T and corresponds to, for example, the time t16 in the first embodiment.
 基板抜けデータD(S)は、基板長さデータD(x)と搬送速度データD(V)から算出される。エアーカーテンエリア927の基板搬送方向の長さLcとして、当該エアーカーテンエリア927から抜け出るプリント基板1の通過時間をSとすると、制御部65がS=(x+Lc)/Vを演算することで、基板抜けデータD(S)が得られる。抜け時刻tjは通過時間Sにおけるタイマー65bから出力される時間データD(i)であって、例えば、第1の実施例の時刻t18に相当する。 Substrate missing data D (S) is calculated from substrate length data D (x) and transport speed data D (V). Assuming that the length Lc of the air curtain area 927 in the substrate conveyance direction is S and the passage time of the printed circuit board 1 that exits from the air curtain area 927 is S, the control unit 65 calculates S = (x + Lc) / V, Missing data D (S) is obtained. The missing time tj is time data D (i) output from the timer 65b at the passage time S, and corresponds to, for example, the time t18 in the first embodiment.
 ステップST6で制御部65はプリント基板1が接近したか否かを判別する。その際の判断基準は、タイマー65bから出力される時間データD(i)と基板到達データD(T)とを比較し、両者が一致したか否かを検出することで行われる(情報比較検出処理)。プリント基板1が接近していない場合は、情報比較検出処理を継続する。 In step ST6, the control unit 65 determines whether or not the printed circuit board 1 has approached. The judgment criterion at that time is performed by comparing the time data D (i) output from the timer 65b with the substrate arrival data D (T) and detecting whether or not they match (information comparison detection). processing). If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
 プリント基板1が接近した場合は、時間データD(i)と基板到達データD(T)とが一致し、接近時刻tiを確定するので、ステップST6で制御部65は送風機構99の動作を停止する。このとき、制御部65はエアーカーテン駆動部95へ基板到達データD(T)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、モーター96をオフさせるモーター制御信号S96を出力する。モーター96がオフすることで、ファン部919が停止する。これにより、基板到達データD(T)に基づいて送風機構99の動作を停止することができる。 When the printed circuit board 1 approaches, the time data D (i) and the board arrival data D (T) coincide with each other, and the approach time ti is determined. In step ST6, the control unit 65 stops the operation of the blower mechanism 99. To do. At this time, the control unit 65 outputs curtain control data D95 based on the substrate arrival data D (T) to the air curtain driving unit 95. The air curtain driving unit 95 outputs a motor control signal S96 for turning off the motor 96. The fan unit 919 stops when the motor 96 is turned off. Thereby, operation | movement of the ventilation mechanism 99 can be stopped based on the board | substrate arrival data D (T).
 その後、ステップST7で制御部65はプリント基板1がエアーカーテンエリア927を通過したかを判別する。その際の判断基準は、タイマー65bから出力される時間データD(i)と基板抜けデータD(S)とを比較し、両者が一致したか否かを検出することで行われる(情報比較検出処理)。プリント基板1がエアーカーテンエリア927を通過していない場合は、情報比較検出処理を継続する。 Thereafter, in step ST7, the control unit 65 determines whether the printed circuit board 1 has passed through the air curtain area 927. The judgment criterion at that time is performed by comparing the time data D (i) output from the timer 65b with the board missing data D (S) and detecting whether or not they match (information comparison detection). processing). If the printed circuit board 1 does not pass through the air curtain area 927, the information comparison detection process is continued.
 プリント基板1がエアーカーテンエリア927を通過した場合は、時間データD(i)と基板抜けデータD(S)とが一致し、抜け時刻tjを確定するので、ステップST8で送風機構99の駆動を再開するように制御する。このとき、制御部65はエアーカーテン駆動部95へ基板抜けデータD(S)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、モーター96をオンさせるモーター制御信号S96を出力する。モーター96がオンすることで、ファン部919が回転する。これにより、基板抜けデータD(S)に基づいて送風機構99を動作させることができる。 When the printed circuit board 1 passes through the air curtain area 927, the time data D (i) and the board removal data D (S) coincide with each other and the removal time tj is determined, so that the blower mechanism 99 is driven in step ST8. Control to resume. At this time, the control unit 65 outputs curtain control data D95 based on the substrate removal data D (S) to the air curtain driving unit 95. The air curtain driving unit 95 outputs a motor control signal S96 for turning on the motor 96. When the motor 96 is turned on, the fan unit 919 rotates. Thereby, the air blowing mechanism 99 can be operated based on the board missing data D (S).
 そして、ステップST9で制御部65は全てのプリント基板1のはんだ付け処理を終了したか否かを判別する。その際の判別基準は、例えば、ステップST1で設定されたプリント基板1の枚数をカウントアップしたか否かを検出する。カウントアップ信号が検出されない場合は、全てのプリント基板1のはんだ付け処理が終了していないと判断して、ステップST2に戻って上述したステップST2乃至ステップST8を繰り返す。カウントアップ信号が検出された場合は、全てのプリント基板1のはんだ付け処理が終了したと判断して、送風機構99の制御を終了する。 In step ST9, the control unit 65 determines whether or not the soldering process for all the printed circuit boards 1 has been completed. The discrimination criterion at that time is, for example, detecting whether or not the number of printed circuit boards 1 set in step ST1 has been counted up. When the count-up signal is not detected, it is determined that the soldering process for all the printed circuit boards 1 has not been completed, and the process returns to step ST2 to repeat the above-described steps ST2 to ST8. When the count-up signal is detected, it is determined that the soldering process for all the printed circuit boards 1 has been completed, and the control of the blower mechanism 99 is ended.
 このように、第3の実施例としての噴流はんだ付け装置100によれば、電子部品を取り付けたプリント基板1を1枚ずつ噴流はんだ付け装置100に投入して、予備加熱し、予備加熱後のプリント基板1をはんだ付け処理部に搬送し、プリント基板1に電子部品をはんだ付け処理する場合において、アイドリング状態で送風機構99を駆動する制御部65が、基板投入データD(t)及び距離データD(L)をソフトウエア処理して基板長さデータD(x)、基板到達データD(T)及び基板抜けデータD(S)をリアルタイムに計算し、これらの情報をエアーカーテン駆動部95に設定するようにした。 Thus, according to the jet soldering apparatus 100 as a 3rd Example, the printed circuit board 1 which attached the electronic component was thrown into the jet soldering apparatus 100 one by one, and it pre-heated and after pre-heating. When the printed circuit board 1 is transported to the soldering processing unit and the electronic component is soldered to the printed circuit board 1, the control unit 65 that drives the blower mechanism 99 in the idling state includes the substrate input data D (t) and the distance data. D (L) is processed by software to calculate the board length data D (x), board arrival data D (T), and board missing data D (S) in real time. I set it.
 この制御部65は、プリント基板1の長さが各々異なる場合であっても、基板長さデータD(x)、基板到達データD(T)及び基板抜けデータD(S)に基づいて当該プリント基板1がエアーカーテンエリア927を通過する直前に送風を停止できるようになる。これと共に制御部65は、プリント基板1の通過中も送風を停止し、プリント基板1がエアーカーテンエリア927を通過した直後に送風を再開できるようになる。 Even if the lengths of the printed circuit boards 1 are different from each other, the control unit 65 performs the printing based on the board length data D (x), the board arrival data D (T), and the board missing data D (S). Air blowing can be stopped immediately before the substrate 1 passes through the air curtain area 927. At the same time, the control unit 65 stops the blowing while the printed circuit board 1 is passing, and the blowing can be resumed immediately after the printed circuit board 1 passes through the air curtain area 927.
 従って、プリント基板1の長さが各々異なる場合であっても、当該エアーカーテンエリア927を形成する送風機構99による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになる。長さが各々異なるプリント基板1が乱流の発生を伴うことなくエアーカーテンエリア927を通過できるようになる。これにより、乱流発生防止機能を有したエアーカーテンエリア927付きの噴流はんだ付け装置100を提供できるようになる。 Therefore, even when the lengths of the printed circuit boards 1 are different from each other, the generation of turbulent flow can be prevented in preference to the function of blocking the atmosphere on the conveyance path by the air blowing mechanism 99 that forms the air curtain area 927. become. The printed circuit boards 1 having different lengths can pass through the air curtain area 927 without generating turbulent flow. Thereby, the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
 本例では、マージンα,βを設定しない場合について説明したが、第1の実施例と同様にしてマージンα,βを設定してエアーカーテン駆動部95を制御してもよい。また、この実施例においては、プリント基板1の搬送方向の長さを自動的に検出するようにした。従って、好ましくは、プリント基板1の搬送方向の長さが未知の場合に適用できるが、プリント基板1の搬送方向の長さが所定の長さを有する場合も適用できる。 In this example, the case where the margins α and β are not set has been described. However, the air curtain driving unit 95 may be controlled by setting the margins α and β as in the first embodiment. In this embodiment, the length of the printed board 1 in the transport direction is automatically detected. Therefore, it is preferably applicable when the length of the printed circuit board 1 in the transport direction is unknown, but can also be applied when the length of the printed circuit board 1 in the transport direction has a predetermined length.
<第3の実施例に対して複数の基板が連続投入される場合:情報記録及び制御例>
 この実施例では、実施例1の制御例を実施例2に適用したように、実施例3の複数のプリント基板1をはんだ付けする際の制御例を第4の実施例においても、同様に適用できるようにした。その際には、図11に示すように複数のプリント基板1に対応する情報記録を行い、情報記録によって得られた基板投入データD(t)に基づいて送風機構99を並列に制御すればよい。
<When a plurality of substrates are continuously input to the third embodiment: information recording and control example>
In this embodiment, as in the case of the control example of the first embodiment applied to the second embodiment, the control example when soldering the plurality of printed circuit boards 1 of the third embodiment is similarly applied to the fourth embodiment. I was able to do it. In that case, information recording corresponding to a plurality of printed circuit boards 1 is performed as shown in FIG. 11, and the blower mechanism 99 may be controlled in parallel based on the substrate insertion data D (t) obtained by the information recording. .
 続いて、図11を参照して、第4の実施例としての複数のプリント基板1に対応する情報記録例について説明する。この例では、複数のプリント基板1を連続してはんだ付け処理する場合である。 Subsequently, an example of information recording corresponding to a plurality of printed circuit boards 1 as a fourth embodiment will be described with reference to FIG. In this example, a plurality of printed circuit boards 1 are successively soldered.
 各々のプリント基板1を規則正しく周期的に噴流はんだ付け装置100に投入する場合を想定すると、図9Aに示した基板検出センサ18は、連続して投入されるプリント基板1を周期的に検出するようになる。基板検出センサ18は、プリント基板1を検出する毎に、基板投入データD(t)を制御部65に出力する。 Assuming a case where each printed circuit board 1 is regularly and periodically loaded into the jet soldering apparatus 100, the board detection sensor 18 shown in FIG. 9A periodically detects the continuously loaded printed circuit boards 1. become. The board detection sensor 18 outputs board insertion data D (t) to the control unit 65 every time the printed board 1 is detected.
 制御部65では、周期的に基板投入データD(t)を入力し、連続して投入されるプリント基板1毎に当該基板投入データD(t)及び距離データD(L)をソフトウエア処理する。そして、制御部65は、基板長さデータD(x)、基板到達データD(T)及び基板抜けデータD(S)をリアルタイムに計算し、これらの情報をエアーカーテン駆動部95に設定するためにメモリ部65dに記憶するようになる。 The controller 65 periodically inputs the board loading data D (t), and performs software processing on the board loading data D (t) and the distance data D (L) for each printed board 1 that is continuously loaded. . Then, the control unit 65 calculates the board length data D (x), the board arrival data D (T), and the board missing data D (S) in real time, and sets these information in the air curtain driving unit 95. Are stored in the memory unit 65d.
 この例では、図9Aに示したメモリ部65dには、図11に示すような情報記録領域が割り当てられる。この情報記録領域には、プリント基板1を識別する番号(例えば、NO.PCB#1)と共に、投入時刻tx、接近時刻ti及び抜け時刻tjが記述される。例えば、1枚目のプリント基板1を識別するNO.PCB#1に対して、投入時刻t0、接近時刻t160及び抜け時刻t180が記述される。2枚目のプリント基板1を識別するNO.PCB#2に対して、投入時刻t40、接近時刻t200及び抜け時刻t220が記述される。 In this example, an information recording area as shown in FIG. 11 is allocated to the memory unit 65d shown in FIG. 9A. In this information recording area, a turn-on time tx, an approach time ti, and a drop-off time tj are described together with a number (for example, NO. PCB # 1) for identifying the printed circuit board 1. For example, the NO. The input time t0, the approach time t160, and the withdrawal time t180 are described for PCB # 1. NO. For identifying the second printed circuit board 1 The input time t40, the approach time t200, and the withdrawal time t220 are described for PCB # 2.
 3枚目のプリント基板1を識別するNO.PCB#3に対して、投入時刻t80、接近時刻t240及び抜け時刻t260が記述される。4枚目のプリント基板1を識別するNO.PCB#4に対して、投入時刻t120、接近時刻t280及び抜け時刻t300が記述される。5枚目のプリント基板1を識別するNO.PCB#5に対して、投入時刻t160、接近時刻t320及び抜け時刻t340が記述される。以下、同様にして、設定された枚数分のプリント基板1に係る投入時刻tx、接近時刻ti、抜け時刻tjが各々記述される。制御部65では、メモリ部65dの記述内容を参照して、エアーカーテン駆動部95を制御するようになる。 .No. To identify the third printed circuit board 1 The input time t80, the approach time t240, and the exit time t260 are described for PCB # 3. NO. For identifying the fourth printed circuit board 1. The input time t120, the approach time t280, and the exit time t300 are described for PCB # 4. NO. For identifying the fifth printed circuit board 1 An input time t160, an approach time t320, and an exit time t340 are described for PCB # 5. Hereinafter, similarly, the insertion time tx, the approach time ti, and the removal time tj related to the set number of printed circuit boards 1 are respectively described. The control unit 65 controls the air curtain driving unit 95 with reference to the description content of the memory unit 65d.
 続いて、図12を参照して、複数のPCB投入時の送風機構99の制御例について説明する。この例では、周期的に基板投入データD(t)を記憶し、連続して投入されるプリント基板1毎に当該基板投入データD(t)及び距離データD(L)をソフトウエア処理して基板長さデータD(x)、基板到達データD(T)及び基板抜けデータD(S)をリアルタイムに計算し、これらの情報をエアーカーテン駆動部95に設定するためにメモリ部65dに記憶する場合を前提とする。制御部65は、メモリ部65dの情報記録内容を参照し、情報記録に並行してエアーカーテン駆動部95を制御する。 Subsequently, a control example of the blower mechanism 99 when a plurality of PCBs are inserted will be described with reference to FIG. In this example, the board loading data D (t) is periodically stored, and the board loading data D (t) and the distance data D (L) are processed for each printed board 1 by software processing. Substrate length data D (x), substrate arrival data D (T), and substrate missing data D (S) are calculated in real time, and these pieces of information are stored in the memory unit 65d for setting in the air curtain drive unit 95. Assumes the case. The control unit 65 refers to the information recording contents of the memory unit 65d and controls the air curtain driving unit 95 in parallel with the information recording.
 これらを制御条件にして、ステップST11で制御部65は運転条件の設定を受け付ける。このとき、ユーザは運転条件として、図5に示した入力部64を操作して連続処理モードを設定する。ここに連続処理モードとは、プリント基板1を周期的に連続して噴流はんだ付け装置100に投入しはんだ付け処理するモードをいう。この例でも、ユーザは、はんだ付け処理をするプリント基板1の枚数を制御部65に設定する。 Using these as control conditions, the control unit 65 accepts the setting of operation conditions in step ST11. At this time, the user operates the input unit 64 shown in FIG. 5 as an operation condition to set the continuous processing mode. Here, the continuous processing mode refers to a mode in which the printed circuit board 1 is periodically and continuously put into the jet soldering apparatus 100 and soldered. Also in this example, the user sets the number of printed circuit boards 1 to be soldered in the control unit 65.
 ユーザは運転条件を設定すると、エアーカーテンエリア927を形成する送風機構99が設けられた搬送経路の基板搬入口202に第1番目のプリント基板1を投入する。すると、一方で、ステップST12において、図9Aに示した基板検出センサ18は第i番目(i=1乃至n)のプリント基板1(図中ではPCBと記述)の投入を検出して基板投入データD(t)を制御部65に出力する。 When the user sets the operating conditions, the first printed circuit board 1 is put into the board carry-in port 202 of the carrying path provided with the air blowing mechanism 99 that forms the air curtain area 927. Then, on the other hand, in step ST12, the board detection sensor 18 shown in FIG. 9A detects the insertion of the i-th (i = 1 to n) printed circuit board 1 (denoted as PCB in the figure) to detect board insertion data. D (t) is output to the control unit 65.
 ステップST13で制御部65は第1番目のプリント基板1の基板投入データD(t)をメモリ部65dに記憶すると共に、図9Aに示したタイマー65bを起動する。タイマー65bは制御基準となる現在の時刻を示す時間データD(i)を逐次、制御部65に出力する。その際の投入時刻txを示す基板投入データD(t)は、例えば、第3の実施例の時刻t0に相当する。 In step ST13, the control unit 65 stores the board loading data D (t) of the first printed board 1 in the memory unit 65d and starts the timer 65b shown in FIG. 9A. The timer 65b sequentially outputs time data D (i) indicating the current time as a control reference to the control unit 65. The substrate loading data D (t) indicating the loading time tx at that time corresponds to, for example, the time t0 in the third embodiment.
 ステップST14で制御部65は第1番目のプリント基板1の基板長さを計測する。このとき、制御部65は、搬送速度Vで搬送される第1番目のプリント基板1の先端エッジ検出時刻taと後端エッジ検出時刻tbとの差分及び、搬送部10の搬送速度データD(V)から基板長さデータD(x)を算出する。搬送部10により搬送されるプリント基板1の搬送速度をVとし、当該プリント基板1の長さをxとすると、制御部65がx=(tb-ta)・Vを演算することで、基板長さデータD(x)が得られる。 In step ST14, the control unit 65 measures the substrate length of the first printed circuit board 1. At this time, the controller 65 determines the difference between the leading edge detection time ta and the trailing edge detection time tb of the first printed circuit board 1 that is transported at the transport speed V, and the transport speed data D (V ) To calculate the substrate length data D (x). Assuming that the conveyance speed of the printed circuit board 1 conveyed by the conveyance unit 10 is V and the length of the printed circuit board 1 is x, the control unit 65 calculates x = (tb−ta) · V. Data D (x) is obtained.
 ステップST15で制御部65は第1番目のプリント基板1の基板到達データD(T)からその接近時刻ti及び、その基板抜けデータD(S)から抜け時刻tjを演算する。基板到達データD(T)は、距離データD(L)と搬送速度データD(V)から算出される。基板搬入口202から送風機構99に至るプリント基板1の基板到達時間をTとし、基板搬入口202から送風機構99に至る距離をLとする(図1参照)と、制御部65がT=L/Vを演算することで、第1番目のプリント基板1の基板到達データD(T)が得られる。接近時刻tiは、基板到達時間Tにおけるタイマー65bから出力される時間データD(i)であって、例えば、第3の実施例の時刻t160に相当する。 In step ST15, the control unit 65 calculates the approach time ti from the board arrival data D (T) of the first printed circuit board 1 and the removal time tj from the board removal data D (S). The substrate arrival data D (T) is calculated from the distance data D (L) and the conveyance speed data D (V). When the substrate arrival time of the printed circuit board 1 from the substrate carry-in port 202 to the blower mechanism 99 is T, and the distance from the substrate carry-in port 202 to the blower mechanism 99 is L (see FIG. 1), the control unit 65 has T = L. By calculating / V, substrate arrival data D (T) of the first printed circuit board 1 is obtained. The approach time ti is time data D (i) output from the timer 65b at the substrate arrival time T, and corresponds to, for example, the time t160 in the third embodiment.
 基板抜けデータD(S)は、基板長さデータD(x)と搬送速度データD(V)から算出される。エアーカーテンエリア927の基板搬送方向の長さLcとして、当該エアーカーテンエリア927から抜け出る第1番目のプリント基板1の通過時間をSとすると、制御部65がS=(x+Lc)/Vを演算することで、第1番目のプリント基板1の基板抜けデータD(S)が得られる。抜け時刻tjは通過時間Sにおけるタイマー65bから出力される時間データD(i)であって、例えば、第3の実施例の時刻t180に相当する。 Substrate missing data D (S) is calculated from substrate length data D (x) and transport speed data D (V). Assuming that the length Lc of the air curtain area 927 in the board conveyance direction is S and the passage time of the first printed circuit board 1 exiting from the air curtain area 927 is S, the control unit 65 calculates S = (x + Lc) / V. Thus, the board missing data D (S) of the first printed board 1 is obtained. The missing time tj is time data D (i) output from the timer 65b at the passage time S and corresponds to, for example, the time t180 in the third embodiment.
 ステップST16で制御部65はメモリ部65dに当該プリント基板1の投入時刻tx、接近時刻ti及び抜け時刻tjを記憶する(時刻情報記録)。例えば、第1番目のプリント基板1を識別するNO.PCB#1に対して、投入時刻t0、接近時刻t160及び抜け時刻t180が記述される(図11参照)。 In step ST16, the control unit 65 stores the insertion time tx, the approach time ti, and the removal time tj of the printed circuit board 1 in the memory unit 65d (time information recording). For example, the NO. The input time t0, the approach time t160, and the withdrawal time t180 are described for PCB # 1 (see FIG. 11).
 上述の基板投入データD(t)等のメモリ部65dへの記憶処理に並行して、ステップST17で、制御部65は、当該メモリ部65dから基板投入データD(t)等を読み出し処理を実行する。そして、ステップST18で、制御部65は第1番目のプリント基板1が接近したか否かを判別する。その際の判断基準は、タイマー65bから出力される時間データD(i)と第1番目のプリント基板1の基板到達データD(T)とを比較し、両者が一致したか否かを検出することで行われる(情報比較検出処理)。当該プリント基板1が接近していない場合は、情報比較検出処理を継続する。 In parallel with the storage process of the substrate loading data D (t) and the like in the memory unit 65d, in step ST17, the control unit 65 reads the substrate loading data D (t) and the like from the memory unit 65d and executes the process. To do. In step ST18, the control unit 65 determines whether or not the first printed circuit board 1 has approached. The judgment criterion at that time is to compare whether the time data D (i) output from the timer 65b and the board arrival data D (T) of the first printed circuit board 1 match each other. (Information comparison detection process). If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
 第1番目のプリント基板1が接近した場合は、時間データD(i)と基板到達データD(T)とが一致し、接近時刻tiを確定するので、ステップST19で制御部65は送風機構99の動作を停止する。このとき、制御部65はエアーカーテン駆動部95へ第1番目のプリント基板1の基板到達データD(T)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、モーター96をオフさせるモーター制御信号S96を出力する。モーター96がオフすることで、ファン部919が停止する。これにより、第1番目のプリント基板1の基板到達データD(T)に基づいて送風機構99の動作を停止することができる。 When the first printed circuit board 1 approaches, the time data D (i) and the board arrival data D (T) coincide with each other, and the approach time ti is determined. Stop the operation. At this time, the control unit 65 outputs curtain control data D95 based on the board arrival data D (T) of the first printed circuit board 1 to the air curtain driving unit 95. The air curtain driving unit 95 outputs a motor control signal S96 for turning off the motor 96. The fan unit 919 stops when the motor 96 is turned off. Thereby, the operation of the blower mechanism 99 can be stopped based on the board arrival data D (T) of the first printed board 1.
 その後、ステップST20で制御部65は当該プリント基板1がエアーカーテンエリア927を通過したかを判別する。その際の判断基準は、タイマー65bから出力される時間データD(i)と第1番目のプリント基板1の基板抜けデータD(S)とを比較し、両者が一致したか否かを検出することで行われる(情報比較検出処理)。当該プリント基板1がエアーカーテンエリア927を通過していない場合は、情報比較検出処理を継続する。 Thereafter, in step ST20, the control unit 65 determines whether the printed circuit board 1 has passed through the air curtain area 927. The judgment criterion at that time is to compare the time data D (i) output from the timer 65b with the board missing data D (S) of the first printed circuit board 1, and detect whether or not they match. (Information comparison detection process). If the printed circuit board 1 does not pass through the air curtain area 927, the information comparison detection process is continued.
 第1番目のプリント基板1がエアーカーテンエリア927を通過した場合は、時間データD(i)と基板抜けデータD(S)とが一致し、抜け時刻tjを確定するので、ステップST21で送風機構99の駆動を再開するように制御する。このとき、制御部65はエアーカーテン駆動部95へ第1番目のプリント基板1の基板抜けデータD(S)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、モーター96をオンさせるモーター制御信号S96を出力する。モーター96がオンすることで、ファン部919が回転する。これにより、第1番目のプリント基板1の基板抜けデータD(S)に基づいて送風機構99を動作させることができる。 When the first printed circuit board 1 passes through the air curtain area 927, the time data D (i) and the board removal data D (S) coincide with each other, and the removal time tj is determined. 99 is controlled to resume. At this time, the control unit 65 outputs curtain control data D95 based on the board removal data D (S) of the first printed circuit board 1 to the air curtain driving unit 95. The air curtain driving unit 95 outputs a motor control signal S96 for turning on the motor 96. When the motor 96 is turned on, the fan unit 919 rotates. Thereby, the air blowing mechanism 99 can be operated based on the board missing data D (S) of the first printed board 1.
 そして、ステップST22で制御部65は全てのプリント基板1のはんだ付け処理を終了したか否かを判別する。その際の判別基準は、例えば、ステップST11で設定されたプリント基板1の枚数をカウントアップしたか否かを検出する。カウントアップ信号が検出されない場合は、全てのプリント基板1のはんだ付け処理が終了していないと判断して、ステップST12に戻って制御部65は第2(番目)以降のPCBが検出されたかを判別する。その際の判別基準は、図9Aに示した基板検出センサ18から、第2番目のプリント基板1(図中ではPCBと記述)の投入を示す基板投入データD(t)が制御部65に出力され、それを検出することで行われる。以後の処理は上述した通りであるので、その説明を省略する。 In step ST22, the control unit 65 determines whether or not the soldering process for all the printed circuit boards 1 has been completed. The discrimination criterion at that time is, for example, detecting whether or not the number of printed circuit boards 1 set in step ST11 is counted up. If the count-up signal is not detected, it is determined that the soldering process for all the printed circuit boards 1 has not been completed, and the control unit 65 returns to step ST12 and determines whether the second (th) and subsequent PCBs have been detected. Determine. In this case, the determination criterion is that the substrate detection data 18 (denoted as PCB in the drawing) of the second printed circuit board 1 shown in FIG. 9A is output to the control unit 65 from the substrate detection sensor 18. Is done by detecting it. Since the subsequent processing is as described above, the description thereof is omitted.
 このように、第4の実施例としての噴流はんだ付け装置100によれば、制御部65は、連続して投入されるプリント基板1の基板投入データD(t)を周期的に入力し、当該プリント基板1毎に基板投入データD(t)及び距離データD(L)をソフトウエア処理する。そして、制御部65は基板長さデータD(x)、基板到達データD(T)及び基板抜けデータD(S)をリアルタイムに計算し、これらの情報をエアーカーテン駆動部95に設定するためにメモリ部65dに記憶する。制御部65は、メモリ部65dの情報記録内容を参照し、当該情報記録に並行してエアーカーテン駆動部95を制御するようになる。 Thus, according to the jet soldering apparatus 100 as the fourth embodiment, the control unit 65 periodically inputs the board loading data D (t) of the printed board 1 that is continuously loaded, The board input data D (t) and the distance data D (L) are processed by software for each printed circuit board 1. Then, the control unit 65 calculates the board length data D (x), the board arrival data D (T), and the board missing data D (S) in real time, and sets these information in the air curtain driving unit 95. Store in the memory unit 65d. The control unit 65 refers to the information recording contents of the memory unit 65d and controls the air curtain driving unit 95 in parallel with the information recording.
 この制御部65は、連続投入されるプリント基板1の長さが各々異なる場合であっても、基板長さデータD(x)、基板到達データD(T)及び基板抜けデータD(S)に基づいて当該プリント基板1がエアーカーテンエリア927を通過する直前に送風を停止できる。これと共に、制御部65は、プリント基板1の通過中も送風を停止し、プリント基板1がエアーカーテンエリア927を通過した直後に送風を再開できるようになる。 The control unit 65 converts the board length data D (x), the board arrival data D (T), and the board missing data D (S) even when the lengths of the printed boards 1 that are continuously input are different. Based on this, the blowing can be stopped immediately before the printed circuit board 1 passes through the air curtain area 927. At the same time, the control unit 65 stops air blowing even while the printed circuit board 1 is passing, and can resume air blowing immediately after the printed circuit board 1 passes through the air curtain area 927.
 従って、連続投入されるプリント基板1の長さが各々異なる場合であっても、当該エアーカーテンエリア927を形成する送風機構99による搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになる。長さが各々異なるプリント基板1が乱流の発生を伴うことなくエアーカーテンエリア927を通過できるようになる。これにより、乱流発生防止機能を有したエアーカーテンエリア927付きの噴流はんだ付け装置100を提供できるようになる。 Therefore, even when the lengths of the printed circuit boards 1 that are continuously input are different from each other, the generation of turbulence takes precedence over the function of blocking the atmosphere on the conveyance path by the air blowing mechanism 99 that forms the air curtain area 927. Can be prevented. The printed circuit boards 1 having different lengths can pass through the air curtain area 927 without generating turbulent flow. Thereby, the jet soldering apparatus 100 with the air curtain area 927 having a turbulent flow generation preventing function can be provided.
<複数のエアーカーテンエリアを備えたリフロー装置に適した実施例>
 続いて、図13を参照して、第5の実施例としてのリフロー装置200の構成例について説明する。この例では、リフロー装置200に複数(この例では2つ)のエアーカーテンエリア927a,927bを形成するための送風機構99a,99bが配置される場合である。
<Example suitable for a reflow apparatus having a plurality of air curtain areas>
Next, a configuration example of the reflow apparatus 200 as the fifth embodiment will be described with reference to FIG. In this example, the airflow mechanisms 99a and 99b for forming a plurality (two in this example) of air curtain areas 927a and 927b are arranged in the reflow apparatus 200.
 図13に示すリフロー装置200は、はんだ付け装置の他の一例を構成し、装置本体部211とコンベア52とを備えている。装置本体部211は、搬入口10aと搬出口10bとを有したトンネル状の筐体からなる。コンベア52は、搬入口10aから搬出口10bに至る搬送経路Xに沿うようにして延在しており、プリント基板3を装置本体部211の搬入口10aから搬出口10bに向かって所定の速度で搬送する。搬入口10aには、第1の実施例で説明したような基板検出センサ18が配設される。搬入口10aでコンベア52にセットされたプリント基板3を検出してPCB検出データD18を発生する。PCB検出データD18は図5に示した制御部65に出力される。 The reflow apparatus 200 shown in FIG. 13 constitutes another example of a soldering apparatus, and includes an apparatus main body 211 and a conveyor 52. The apparatus main body 211 is formed of a tunnel-shaped housing having a carry-in port 10a and a carry-out port 10b. The conveyor 52 extends along the conveyance path X from the carry-in port 10a to the carry-out port 10b, and the printed circuit board 3 is moved from the carry-in port 10a of the apparatus main body 211 toward the carry-out port 10b at a predetermined speed. Transport. A substrate detection sensor 18 as described in the first embodiment is disposed at the carry-in entrance 10a. The printed circuit board 3 set on the conveyor 52 is detected at the carry-in entrance 10a to generate PCB detection data D18. The PCB detection data D18 is output to the control unit 65 shown in FIG.
 装置本体部211の内部には、搬送経路Xに沿って、予備加熱ゾーンZ1、加熱ゾーンZ2および冷却ゾーンZ3が順番に設けられている。予備加熱ゾーンZ1は、クリームはんだに含まれる溶剤を揮発させるための領域であり、ヒーター42、ファン44およびモーター46等が設置される。クリームはんだとしては、例えば錫-銀-銅や、錫-亜鉛-ビスマス等を含有する鉛フリーはんだが用いられる。このはんだの融点は、例えば180℃乃至220℃程度である。加熱ゾーンZ2は、プリント基板3を加熱することによりはんだを溶融させるための領域であり、ヒーター42、ファン44およびモーター46等が設置される。 Inside the apparatus main body 211, a preheating zone Z1, a heating zone Z2, and a cooling zone Z3 are provided in order along the transport path X. The preheating zone Z1 is an area for volatilizing a solvent contained in the cream solder, and a heater 42, a fan 44, a motor 46, and the like are installed. As the cream solder, for example, lead-free solder containing tin-silver-copper, tin-zinc-bismuth or the like is used. The melting point of this solder is, for example, about 180 ° C. to 220 ° C. The heating zone Z2 is an area for melting the solder by heating the printed circuit board 3, and a heater 42, a fan 44, a motor 46, and the like are installed.
 なお、予備加熱ゾーンZ1と加熱ゾーンZ2では、ヒーター42、ファン44およびモーター46の構成は、同一構成を用いて温度設定のみ異なるようにすることが一般的には行われているが、異なる構成としても良い。異なる構成を採用した場合においても基本的な構成および機能は同一であるため、便宜上説明を省略する。 Note that, in the preheating zone Z1 and the heating zone Z2, the configurations of the heater 42, the fan 44, and the motor 46 are generally different by using only the temperature setting using the same configuration, but different configurations. It is also good. Even when different configurations are adopted, the basic configuration and functions are the same, and thus the description thereof is omitted for the sake of convenience.
 ヒーター42は、コンベア52の上下のそれぞれに対向するようにして配置され、予備加熱ゾーンZ1および加熱ゾーンZ2内部の空気を加熱する。この例では、図12に示すように、予備加熱ゾーンZ1には上下のそれぞれに3個のヒーター42が配置され、加熱ゾーンZ2には上下のそれぞれに2個のヒーター42が配置される。 The heater 42 is disposed so as to face the upper and lower sides of the conveyor 52, and heats the air inside the preheating zone Z1 and the heating zone Z2. In this example, as shown in FIG. 12, in the preheating zone Z1, three heaters 42 are arranged above and below, and in the heating zone Z2, two heaters 42 are arranged above and below, respectively.
 モーター46は、コンベア52の上下のそれぞれに対向するようにして配置され、各ゾーンに配置されるファン44を回転駆動させる。この例では、図12に示すように、予備加熱ゾーンZ1には上下のそれぞれに3個のモーター46が配置され、加熱ゾーンZ2には上下のそれぞれに2個のモーター46が配置される。 The motor 46 is arranged so as to face the upper and lower sides of the conveyor 52, and rotates the fans 44 arranged in each zone. In this example, as shown in FIG. 12, in the preheating zone Z1, three motors 46 are arranged above and below, and in the heating zone Z2, two motors 46 are arranged above and below, respectively.
 ファン44は、例えばターボファンやシロッコファン等から構成され、モーター46に電気的に接続される。このファン44は、モーター46の駆動により回転駆動し、ヒーター42によって加熱された熱風を予備加熱ゾーンZ1および加熱ゾーンZ2の内部で循環させてプリント基板3の上面および下面のそれぞれに吹き付ける。この例では、予備加熱ゾーンZ1には上下のそれぞれに3個のファン44が配置され、加熱ゾーンZ2には上下のそれぞれに2個のファン44が配置される。 The fan 44 is composed of, for example, a turbo fan or a sirocco fan, and is electrically connected to the motor 46. The fan 44 is driven to rotate by driving of the motor 46, and the hot air heated by the heater 42 is circulated inside the preheating zone Z1 and the heating zone Z2 and blown to the upper surface and the lower surface of the printed circuit board 3, respectively. In this example, three fans 44 are arranged on the upper and lower sides in the preheating zone Z1, and two fans 44 are arranged on the upper and lower sides in the heating zone Z2.
 この例では、第1の送風機構99a及びエアーカーテンエリア927aは加熱ゾーンZ2と冷却ゾーンZ3との間に配置される。第2の送風機構99b及びエアーカーテンエリア927bは装置本体部211の搬出口10bに配置される。送風機構99a,99bには第1の実施例で説明した送風機904が使用される。送風機構99a,99bには、空気又は窒素(N2)等の不活性気体又はこれらの混合気体が導入される。送風機構99a,99bは、第2の実施例で説明した制御部65によって制御される。 In this example, the first air blowing mechanism 99a and the air curtain area 927a are disposed between the heating zone Z2 and the cooling zone Z3. The second air blowing mechanism 99b and the air curtain area 927b are disposed at the carry-out port 10b of the apparatus main body 211. The blower 904 described in the first embodiment is used for the blower mechanisms 99a and 99b. An inert gas such as air or nitrogen (N2) or a mixed gas thereof is introduced into the blowing mechanisms 99a and 99b. The air blowing mechanisms 99a and 99b are controlled by the control unit 65 described in the second embodiment.
 続いて、図9A、図9B及び図14を参照して、送風機構99a,99bの制御例について説明する。この例では、図10に示したステップST6乃至ステップST8の処理内容や、図12に示したステップST17~ステップST21の処理内容に相当する部分が、図14に示すステップST71乃至ステップST78の処理内容に置き換えられる。従って、図14に示すステップST71乃至ステップST78の処理内容について説明をする。他の処理内容については、図9A、図9B及び図12と同様であるので、その説明を省略する。 Subsequently, a control example of the blower mechanisms 99a and 99b will be described with reference to FIGS. 9A, 9B, and 14. FIG. In this example, the processing contents of steps ST6 to ST8 shown in FIG. 10 and the portions corresponding to the processing contents of steps ST17 to ST21 shown in FIG. 12 are the processing contents of steps ST71 to ST78 shown in FIG. Is replaced by Accordingly, the processing contents of steps ST71 to ST78 shown in FIG. 14 will be described. The other processing contents are the same as those shown in FIGS. 9A, 9B, and 12, and will not be described.
 すなわち、図14に示すステップST71で制御部65はプリント基板1(図中ではPCBと記述する)が第1のエアーカーテンエリア927aに接近したか否かを判別する。その際の判断基準は、図9Aに示したタイマー65bから出力される時間データD(i)と当該プリント基板1の基板到達データD(Ta)とを比較し、両者が一致したか否かを検出することで行われる(情報比較検出処理)。プリント基板1が接近していない場合は、情報比較検出処理を継続する。 That is, in step ST71 shown in FIG. 14, the control unit 65 determines whether or not the printed circuit board 1 (described as PCB in the drawing) has approached the first air curtain area 927a. In this case, the criterion is that the time data D (i) output from the timer 65b shown in FIG. 9A is compared with the board arrival data D (Ta) of the printed circuit board 1, and whether or not they match. It is performed by detecting (information comparison detection process). If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
 基板到達データD(Ta)は、距離データD(La)と搬送速度データD(V)から算出される。基板到達データD(Ta)は、プリント基板1が搬入口10aに投入された時刻(taに相当)から第1のエアーカーテンエリア927aへ到達するまでの経過時間を示す情報である。基板到達データD(Ta)はエアーカーテンエリア927aまでの到達所要時間に相当する。距離データD(La)は搬入口10aからエアーカーテンエリア927aに至る距離La(実測)を示す情報である。 The substrate arrival data D (Ta) is calculated from the distance data D (La) and the conveyance speed data D (V). The board arrival data D (Ta) is information indicating the elapsed time from the time (corresponding to ta) when the printed board 1 is introduced into the carry-in entrance 10a until it reaches the first air curtain area 927a. The substrate arrival data D (Ta) corresponds to the required time to reach the air curtain area 927a. The distance data D (La) is information indicating a distance La (actual measurement) from the carry-in entrance 10a to the air curtain area 927a.
 プリント基板1がエアーカーテンエリア927aに接近した場合は、時間データD(i)と基板到達データD(Ta)とが一致し、接近時刻tiを確定するので、ステップST72で制御部65は第1の送風機構99aの動作を停止する。このとき、図9Aに示した制御部65はエアーカーテン駆動部95へプリント基板1の基板到達データD(Ta)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、図9Bに示すモーター96aをオフさせるモーター制御信号S9aを出力する。モーター96aがオフすることで、ファン部919が停止する。これにより、プリント基板1の基板到達データD(Ta)に基づいて送風機構99aの動作を停止することができる。 When the printed circuit board 1 approaches the air curtain area 927a, the time data D (i) and the board arrival data D (Ta) coincide with each other to determine the approach time ti. The operation of the air blowing mechanism 99a is stopped. At this time, the control unit 65 shown in FIG. 9A outputs curtain control data D95 based on the board arrival data D (Ta) of the printed circuit board 1 to the air curtain driving unit 95. The air curtain driving unit 95 outputs a motor control signal S9a for turning off the motor 96a shown in FIG. 9B. The fan unit 919 stops when the motor 96a is turned off. Thereby, the operation of the blower mechanism 99a can be stopped based on the board arrival data D (Ta) of the printed board 1.
 その後、ステップST73で制御部65は当該プリント基板1がエアーカーテンエリア927aを通過したかを判別する。その際の判断基準は、タイマー65bから出力される時間データD(i)とプリント基板1の基板抜けデータD(S)とを比較し、両者が一致したか否かを検出することで行われる。当該プリント基板1がエアーカーテンエリア927aを通過していない場合は、情報比較検出処理を継続する。 Thereafter, in step ST73, the control unit 65 determines whether the printed circuit board 1 has passed the air curtain area 927a. The judgment criterion at that time is performed by comparing the time data D (i) output from the timer 65b with the board missing data D (S) of the printed circuit board 1 and detecting whether or not they match. . If the printed circuit board 1 does not pass through the air curtain area 927a, the information comparison detection process is continued.
 プリント基板1がエアーカーテンエリア927aを通過した場合は、時間データD(i)と基板抜けデータD(S)とが一致し、抜け時刻tjを確定するので、ステップST74で送風機構99aの駆動を再開するように制御する。このとき、制御部65はエアーカーテン駆動部95へプリント基板1の基板抜けデータD(S)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、モーター96aをオンさせるモーター制御信号S9aを出力する。モーター96aがオンすることで、ファン部919が回転する。これにより、プリント基板1の基板抜けデータD(S)に基づいて送風機構99aを動作させることができる。 When the printed circuit board 1 passes through the air curtain area 927a, the time data D (i) and the board removal data D (S) coincide with each other and the removal time tj is determined. Therefore, in step ST74, the blower mechanism 99a is driven. Control to resume. At this time, the control unit 65 outputs curtain control data D95 based on the board removal data D (S) of the printed board 1 to the air curtain driving unit 95. The air curtain drive unit 95 outputs a motor control signal S9a that turns on the motor 96a. When the motor 96a is turned on, the fan unit 919 rotates. Thereby, the ventilation mechanism 99a can be operated based on the board missing data D (S) of the printed board 1.
 更に、ステップST75で制御部65はプリント基板1が第2のエアーカーテンエリア927bに接近したか否かを判別する。その際の判断基準は、タイマー65bから出力される時間データD(i)と当該プリント基板1の基板到達データD(Tb)とを比較し、両者が一致したか否かを検出することで行われる。当該プリント基板1が接近していない場合は、情報比較検出処理を継続する。 Further, in step ST75, the control unit 65 determines whether or not the printed circuit board 1 has approached the second air curtain area 927b. In this case, the determination criterion is to compare the time data D (i) output from the timer 65b with the board arrival data D (Tb) of the printed circuit board 1 and detect whether they match. Is called. If the printed circuit board 1 is not approaching, the information comparison detection process is continued.
 基板到達データD(Tb)は、距離データD(Lb)と搬送速度データD(V)から算出される。基板到達データD(Tb)は、プリント基板1が搬入口10aに投入された時刻(taに相当)から第2のエアーカーテンエリア927bへ到達するまでの経過時間を示す情報である。基板到達データD(Tb)はエアーカーテンエリア927bまでの到達所要時間に相当する。距離データD(Lb)は搬入口10aからエアーカーテンエリア927bに至る距離Lb(実測)を示す情報である。 The substrate arrival data D (Tb) is calculated from the distance data D (Lb) and the conveyance speed data D (V). The board arrival data D (Tb) is information indicating an elapsed time from the time (corresponding to ta) when the printed board 1 is introduced into the carry-in entrance 10a until it reaches the second air curtain area 927b. The board arrival data D (Tb) corresponds to the time required to reach the air curtain area 927b. The distance data D (Lb) is information indicating a distance Lb (actual measurement) from the carry-in entrance 10a to the air curtain area 927b.
 プリント基板1がエアーカーテンエリア927bに接近した場合は、時間データD(i)と基板到達データD(Tb)とが一致し、接近時刻tiを確定するので、ステップST76で制御部65は送風機構99bの動作を停止する。このとき、制御部65はエアーカーテン駆動部95へ第1番目のプリント基板1の基板到達データD(Tb)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、モーター96bをオフさせるモーター制御信号S9bを出力する。モーター96bがオフすることで、ファン部919が停止する。これにより、プリント基板1の基板到達データD(Tb)に基づいて送風機構99bの動作を停止することができる。 When the printed circuit board 1 approaches the air curtain area 927b, the time data D (i) and the board arrival data D (Tb) coincide with each other, and the approach time ti is determined. The operation of 99b is stopped. At this time, the control unit 65 outputs curtain control data D95 based on the board arrival data D (Tb) of the first printed circuit board 1 to the air curtain driving unit 95. The air curtain driving unit 95 outputs a motor control signal S9b that turns off the motor 96b. The fan unit 919 stops when the motor 96b is turned off. Thereby, based on the board | substrate arrival data D (Tb) of the printed circuit board 1, operation | movement of the ventilation mechanism 99b can be stopped.
 その後、ステップST77で制御部65は当該プリント基板1がエアーカーテンエリア927bを通過したかを判別する。その際の判断基準は、タイマー65bから出力される時間データD(i)と第1番目のプリント基板1の基板抜けデータD(S)とを比較し、両者が一致したか否かを検出することで行われる。当該プリント基板1がエアーカーテンエリア927bを通過していない場合は、情報比較検出処理を継続する。 Thereafter, in step ST77, the control unit 65 determines whether the printed circuit board 1 has passed through the air curtain area 927b. The judgment criterion at that time is to compare the time data D (i) output from the timer 65b with the board missing data D (S) of the first printed circuit board 1, and detect whether or not they match. Is done. When the printed circuit board 1 does not pass through the air curtain area 927b, the information comparison detection process is continued.
 プリント基板1がエアーカーテンエリア927bを通過した場合は、時間データD(i)と基板抜けデータD(S)とが一致し、抜け時刻tjを確定するので、ステップST78で送風機構99bの駆動を再開するように制御する。このとき、制御部65はエアーカーテン駆動部95へプリント基板1の基板抜けデータD(S)に基づくカーテン制御データD95を出力する。エアーカーテン駆動部95は、モーター96bをオンさせるモーター制御信号S9bを出力する。モーター96bがオンすることで、ファン部919が回転する。これにより、プリント基板1の基板抜けデータD(S)に基づいて送風機構99bを動作させることができる。 When the printed circuit board 1 passes through the air curtain area 927b, the time data D (i) and the board removal data D (S) coincide with each other and the removal time tj is determined. Therefore, the blower mechanism 99b is driven in step ST78. Control to resume. At this time, the control unit 65 outputs curtain control data D95 based on the board removal data D (S) of the printed board 1 to the air curtain driving unit 95. The air curtain driving unit 95 outputs a motor control signal S9b that turns on the motor 96b. When the motor 96b is turned on, the fan unit 919 rotates. Accordingly, the blower mechanism 99b can be operated based on the board missing data D (S) of the printed board 1.
 このように、第5の実施例に係るエアーカーテンエリア927a,927bを形成する送風機構99a,99bを備えたリフロー装置200によれば、電子部品を取り付けたプリント基板1をリフロー装置200に投入して、予備加熱ゾーンZ1で予備加熱し、予備加熱後のプリント基板1を加熱ゾーンZ2に搬送する。加熱ゾーンZ2でプリント基板1に電子部品をはんだ付け処理する場合であって、アイドリング状態で送風機構99a,99bを駆動する制御部65は、基板投入データD(t)及び距離データD(La),D(Lb)をソフトウエア処理する。そして、制御部65は、基板長さデータD(x)、基板到達データD(Ta),D(Tb)及び基板抜けデータD(S)をリアルタイムに計算し、これらの情報をエアーカーテン駆動部95に設定するようにした。 As described above, according to the reflow apparatus 200 including the air blowing mechanisms 99a and 99b for forming the air curtain areas 927a and 927b according to the fifth embodiment, the printed circuit board 1 to which the electronic components are attached is put into the reflow apparatus 200. Then, preheating is performed in the preheating zone Z1, and the printed circuit board 1 after the preheating is conveyed to the heating zone Z2. In the case where the electronic component is soldered to the printed circuit board 1 in the heating zone Z2, the control unit 65 that drives the air blowing mechanisms 99a and 99b in the idling state includes the board input data D (t) and the distance data D (La). , D (Lb) is processed by software. Then, the control unit 65 calculates the substrate length data D (x), the substrate arrival data D (Ta), D (Tb), and the substrate missing data D (S) in real time, and supplies these information to the air curtain driving unit. It was set to 95.
 この制御部65は、プリント基板1の長さが各々異なる場合であっても、基板長さデータD(x)、基板到達データD(Ta),D(Tb)及び基板抜けデータD(S)に基づいて当該プリント基板1が各々のエアーカーテンエリア927a,927bを通過する直前に送風を停止できる。これと共に、制御部65は、プリント基板1の通過中も送風を停止し、プリント基板1が各々のエアーカーテンエリア927a,927bを通過した直後に送風を再開できるようになる。 Even if the lengths of the printed circuit boards 1 are different from each other, the control unit 65 performs the circuit board length data D (x), board arrival data D (Ta), D (Tb), and board missing data D (S) Based on the above, it is possible to stop the air blowing immediately before the printed circuit board 1 passes through the air curtain areas 927a and 927b. At the same time, the control unit 65 stops the blowing while the printed circuit board 1 is passing, and the blowing can be resumed immediately after the printed circuit board 1 passes through the air curtain areas 927a and 927b.
 従って、プリント基板1の長さが各々異なる場合であっても、当該エアーカーテンエリア927a,927bを形成する送風機構99a,99bによる搬送経路上の雰囲気を遮断する機能に優先して乱流の発生を防止できるようになる。長さが各々異なるプリント基板1が乱流の発生を伴うことなく、2つのエアーカーテンエリア927a,927bを通過できるようになる。これにより、乱流発生防止機能を有した2つのエアーカーテンエリア927a,927b付きのリフロー装置を提供できるようになる。 Therefore, even if the lengths of the printed circuit boards 1 are different from each other, generation of turbulence is given priority over the function of blocking the atmosphere on the conveyance path by the air blowing mechanisms 99a and 99b forming the air curtain areas 927a and 927b. Can be prevented. The printed circuit boards 1 having different lengths can pass through the two air curtain areas 927a and 927b without causing turbulence. This makes it possible to provide a reflow device with two air curtain areas 927a and 927b having a turbulent flow generation prevention function.
 なお、第1のエアーカーテンエリア927aは加熱ゾーンZ2と冷却ゾーンZ3との間で断熱効果をもたらす。このエアーカーテンエリア927aの断熱効果によれば、加熱ゾーンZ2から冷却ゾーンZ3への高温雰囲気の流出を妨げたり、冷却ゾーンZ3から加熱ゾーンZ2への低温雰囲気の流入を妨げるようになる。 In addition, the 1st air curtain area 927a brings about the heat insulation effect between the heating zone Z2 and the cooling zone Z3. According to the heat insulating effect of the air curtain area 927a, the outflow of the high temperature atmosphere from the heating zone Z2 to the cooling zone Z3 is prevented, or the inflow of the low temperature atmosphere from the cooling zone Z3 to the heating zone Z2 is prevented.
 また、第2のエアーカーテンエリア927bは加熱ゾーンZ2と搬出口10bとの間で断熱効果や外気侵入防止効果をもたらす。このエアーカーテンエリア927bの断熱効果や外気侵入防止効果によれば、冷却ゾーンZ3から外気への冷却雰囲気の流出を妨げたり、外気から冷却ゾーンZ3への低温雰囲気の流入を妨げるようになる。 Also, the second air curtain area 927b provides a heat insulating effect and an outside air intrusion preventing effect between the heating zone Z2 and the carry-out port 10b. According to the heat insulating effect and the outside air intrusion preventing effect of the air curtain area 927b, the cooling atmosphere outflow from the cooling zone Z3 to the outside air is prevented, and the low temperature atmosphere inflow from the outside air to the cooling zone Z3 is prevented.
 もちろん、複数のエアーカーテンエリア927a,927bを第1の実施例で説明した噴流はんだ付け装置100に適用してもよい。この場合には、噴流はんだ付け装置100のチャンバー50と、冷却処理部90との間にエアーカーテンエリア927aを配置してもよい。同様な断熱効果が期待できる。 Of course, a plurality of air curtain areas 927a and 927b may be applied to the jet soldering apparatus 100 described in the first embodiment. In this case, an air curtain area 927a may be disposed between the chamber 50 of the jet soldering apparatus 100 and the cooling processing unit 90. A similar heat insulation effect can be expected.
<シャッター機能付きのエアーカーテン機構>
 続いて、図15及び図16を参照して、第6の実施例としてのシャッター機能付きの送風機構99cの構成例及びその動作例について説明する。図15に示す送風機構99cは制御部65によって開閉制御されるシャッター機構950を有している。シャッター機構950は、例えば、送風機904と冷却部取付架台908との間に配設される。
<Air curtain mechanism with shutter function>
Next, a configuration example and an operation example of the air blowing mechanism 99c with a shutter function according to the sixth embodiment will be described with reference to FIGS. The blower mechanism 99c shown in FIG. 15 has a shutter mechanism 950 that is controlled to be opened and closed by the control unit 65. The shutter mechanism 950 is disposed between the blower 904 and the cooling unit mounting base 908, for example.
 シャッター機構950は、機構本体部951、シャッター部952、連接棒953及びソレノイド部954を有して構成される。機構本体部951は所定部位に開口部を有した筺体を成している。機構本体部951の開口部は排気口912の開口部と同じ大きさを有している。機構本体部951の開口部と排気口912の開口部とが位置合わせされて冷却部取付架台908に取り付けられる。 The shutter mechanism 950 includes a mechanism main body portion 951, a shutter portion 952, a connecting rod 953, and a solenoid portion 954. The mechanism main body 951 forms a housing having an opening at a predetermined site. The opening of the mechanism main body 951 has the same size as the opening of the exhaust port 912. The opening of the mechanism body 951 and the opening of the exhaust port 912 are aligned and attached to the cooling unit mounting base 908.
 機構本体部951内には摺動自在にシャッター部952が組み込まれている。シャッター部952は平板状を有し、かつ、機構本体部951の開口部(排気口912の開口部)を遮る面積を有している。シャッター部952は、送風機構99cの排気口912を閉蓋又は開蓋する。図15に示すシャッター部952は開状態である。 A shutter portion 952 is slidably incorporated in the mechanism main body portion 951. The shutter portion 952 has a flat plate shape and has an area that blocks an opening portion of the mechanism main body portion 951 (an opening portion of the exhaust port 912). The shutter unit 952 closes or opens the exhaust port 912 of the blower mechanism 99c. The shutter portion 952 shown in FIG. 15 is in an open state.
 シャッター部952には連接棒953が接続される。連接棒953には駆動部の一例を構成するソレノイド部954が接続される。ソレノイド部954は連接棒953を可動自在に係合し、ソレノイド部954は連接棒953を介してシャッター部952を摺動するように開閉駆動する。シャッター部952はソレノイド部954によって機構本体部951の開口部(排気口912の開口部)を遮るように動作する。これらによりシャッター機構950を構成する。 A connecting rod 953 is connected to the shutter portion 952. The connecting rod 953 is connected to a solenoid portion 954 that constitutes an example of a drive portion. The solenoid portion 954 movably engages the connecting rod 953, and the solenoid portion 954 is driven to open and close so as to slide the shutter portion 952 via the connecting rod 953. The shutter portion 952 operates so as to block the opening portion of the mechanism main body portion 951 (the opening portion of the exhaust port 912) by the solenoid portion 954. These constitute a shutter mechanism 950.
 この例では、図15に示す制御部65にエアーカーテン駆動部95及びモーター96が接続される。制御部65がモーター96を直接駆動する。例えば、電源オンと共にモーター96にモーター制御信号S96を出力する。モーター96は、当該はんだ付け装置がアイドリング状態のときも、プリント基板1がはんだ付け処理の最中であるときも、プリント基板1が図示しないエアーカーテンエリアを通過している間も、モーター制御信号S96に基づいてファン部919を連続して回転する。 In this example, an air curtain driving unit 95 and a motor 96 are connected to the control unit 65 shown in FIG. The controller 65 drives the motor 96 directly. For example, the motor control signal S96 is output to the motor 96 when the power is turned on. The motor 96 controls the motor control signal when the soldering apparatus is idling, when the printed circuit board 1 is in the process of soldering, and while the printed circuit board 1 passes through an air curtain area (not shown). The fan unit 919 is continuously rotated based on S96.
 一方、エアーカーテン駆動部95には駆動部の一例を構成するソレノイド部954が接続される。エアーカーテン駆動部95は制御部65から入力したカーテン制御データD95に基づいてソレノイド制御信号S9cを生成する。エアーカーテン駆動部95はソレノイド部954にソレノイド制御信号S9cを出力する。ソレノイド部954は、ソレノイド制御信号S9cに基づいてシャッター部952を開閉する。 On the other hand, a solenoid unit 954 constituting an example of a drive unit is connected to the air curtain drive unit 95. The air curtain drive unit 95 generates a solenoid control signal S9c based on the curtain control data D95 input from the control unit 65. The air curtain driving unit 95 outputs a solenoid control signal S9c to the solenoid unit 954. The solenoid unit 954 opens and closes the shutter unit 952 based on the solenoid control signal S9c.
 例えば、シャッター機構950を開制御して送風機構99cから搬送経路へ空気を送風する場合、エアーカーテン駆動部95は制御部65から入力したカーテン制御データD95に基づいてハイレベルのソレノイド制御信号S9cを生成する。ソレノイド部954は、ハイレベルのソレノイド制御信号S9cに基づいてシャッター部952を開く(ソレノイド部954のオン制御)。これにより、送風機904を介して送風機構99cから搬送経路へ空気が送風され、図示しないエアーカーテンエリアが形成される。 For example, when opening the shutter mechanism 950 and blowing air from the blower mechanism 99c to the conveyance path, the air curtain driving unit 95 generates a high-level solenoid control signal S9c based on the curtain control data D95 input from the control unit 65. Generate. The solenoid unit 954 opens the shutter unit 952 based on the high-level solenoid control signal S9c (ON control of the solenoid unit 954). As a result, air is blown from the blower mechanism 99c to the transport path via the blower 904, and an air curtain area (not shown) is formed.
 また、図16に示すようにシャッター機構950を閉制御して送風機構99cから搬送経路への空気の送風を停止する場合は、エアーカーテン駆動部95は制御部65から入力したカーテン制御データD95に基づいてローレベルのソレノイド制御信号S9cを生成する。ソレノイド部954は、ローレベルのソレノイド制御信号S9cに基づいてシャッター部952を閉じる(ソレノイド部954のオフ制御)。これにより、図示しないエアーカーテンエリアから搬送経路への空気の送風が阻止される。この間も、モーター96が駆動しているので、送風機904では開口部956,957を介して空気を逃がすようになされる。この空気を積極的に他の機能に利用してもよい。 In addition, as shown in FIG. 16, when the shutter mechanism 950 is controlled to be closed and air blowing from the blowing mechanism 99 c to the conveyance path is stopped, the air curtain driving unit 95 uses the curtain control data D95 input from the control unit 65. Based on this, a low-level solenoid control signal S9c is generated. The solenoid unit 954 closes the shutter unit 952 based on the low-level solenoid control signal S9c (off control of the solenoid unit 954). Thereby, the ventilation of the air from the air curtain area which is not illustrated to a conveyance path | route is blocked | prevented. During this time, since the motor 96 is driven, the blower 904 allows air to escape through the openings 956 and 957. This air may be positively used for other functions.
 このように第6の実施例に係る送風機構99cによれば、送風機904と冷却部取付架台908との間にシャッター機構950が配設され、このシャッター機構950が制御部65によって開閉制御されるものである。 Thus, according to the air blowing mechanism 99c according to the sixth embodiment, the shutter mechanism 950 is disposed between the air blower 904 and the cooling unit mounting base 908, and the shutter mechanism 950 is controlled to be opened and closed by the control unit 65. Is.
 この開閉制御によって、送風機構99cから搬送経路への空気の送風を瞬時に停止又は再開できるようになる。従って、噴流はんだ付け装置100の基板搬出口902や、そのチャンバー50と冷却処理部90との間、リフロー装置200の搬出口10b、その加熱ゾーンZ2と冷却ゾーンZ3との間等において、瞬時に、図示しないエアーカーテンエリアを形成状態又はそれを非形成状態とすることができる(図6A乃至図6D参照)。 This opening / closing control makes it possible to instantaneously stop or restart the blowing of air from the blowing mechanism 99c to the conveyance path. Therefore, in the board | substrate carry-out port 902 of the jet soldering apparatus 100, between the chamber 50 and the cooling process part 90, the carry-out port 10b of the reflow apparatus 200, between the heating zone Z2, and the cooling zone Z3 etc., it is instantaneous. The air curtain area (not shown) can be formed or not formed (see FIGS. 6A to 6D).
 本実施例のシャッター機構による送風阻止と、上述した実施例1乃至5に記載の送風を停止する機能を組み合わせてもよい。このように構成することにより、エアーカーテンエリア927,927bを形成状態又はそれを非形成状態とすることが確実にできる。 The air blow prevention by the shutter mechanism of this embodiment may be combined with the function of stopping the air blowing described in the first to fifth embodiments. By comprising in this way, it can be ensured that the air curtain areas 927 and 927b are formed or not formed.
 本発明は、エアーカーテンエリアを有して、プリント基板の部品取付箇所に、はんだを噴出させ、プリント基板と電子部品とをはんだ付け処理する噴流はんだ付け自動装置や、フラックスを含むはんだペースト上に電子部品が実装されたプリント基板をリフロー処理することにより、電子部品とプリント基板とをはんだ付け処理するリフロー装置等に適用して極めて好適である。 The present invention has an air curtain area, jets solder to a part mounting location of a printed circuit board, and performs soldering processing on the printed circuit board and an electronic component. By applying a reflow process to the printed circuit board on which the electronic component is mounted, the present invention is extremely suitable for application to a reflow apparatus for soldering the electronic component and the printed circuit board.
 7 溶融はんだ
 8,9 ポンプ
 10 搬送部
 11 チェーン部材
 12 搬送チャック
 14 搬送駆動部
 15,46,68,69,94,96,98 モーター
 16 モニタ
 18 基板検出センサ(検出部)
 20 熱処理部
 21乃至24 予備加熱ゾーン
 25 予熱駆動部 
 26~29,42,67 ヒーター
 30 蓋体支持密閉機構
 31乃至34,91,92 蓋体
 40 仕切部材可動機構
 43 ラベリンス部(仕切部材)
 44 ファン
 48 冷却部材
 50 チャンバー(処理容器)
 52 コンベア
 60 噴流はんだ槽
 61,62 噴出ノズル
 64 入力部
 65 制御部
 65a カウンタ
 65b タイマー
 65c 比較演算部
 65d メモリ部 
 70 両端ガス供給機構
 71~73,741 ガス供給部
 74 N2ガスタンク
 75 ノズル管路
 80 蓋体ユニット
 81 ガス清浄化部(雰囲気清浄化部)
 82 パイプ
 90 冷却処理部
 93 冷却駆動部
 95 エアーカーテン駆動部
 99,99a,99b,99c 送風機構
100 噴流はんだ付け装置 
101 本体架台
102 梁枠部材
103乃至106 脚部  
200 リフロー装置
801,803 雰囲気送入口
802,804 雰囲気排出口
904 送風機
905 下側ガイド板
906 上側ガイド板
927,927a,927b エアーカーテンエリア
950 シャッター機構
7 Molten solder 8,9 Pump 10 Transport unit 11 Chain member 12 Transport chuck 14 Transport drive unit 15, 46, 68, 69, 94, 96, 98 Motor 16 Monitor 18 Substrate detection sensor (detection unit)
20 Heat treatment part 21 to 24 Preheating zone 25 Preheating drive part
26 to 29, 42, 67 Heater 30 Lid support / sealing mechanism 31 to 34, 91, 92 Lid 40 Partition member moving mechanism 43 Laverin portion (partition member)
44 Fan 48 Cooling member 50 Chamber (processing vessel)
52 Conveyor 60 Jet solder bath 61, 62 Spray nozzle 64 Input unit 65 Control unit 65a Counter 65b Timer 65c Comparison operation unit 65d Memory unit
70 Both-end gas supply mechanism 71 to 73, 741 Gas supply unit 74 N2 gas tank 75 Nozzle conduit 80 Lid unit 81 Gas cleaning unit (atmosphere cleaning unit)
82 Pipe 90 Cooling processing unit 93 Cooling drive unit 95 Air curtain drive unit 99, 99a, 99b, 99c Blowing mechanism 100 Jet soldering device
101 Main body frame 102 Beam frame members 103 to 106 Legs
200 Reflow device 801, 803 Atmosphere inlet 802, 804 Atmosphere outlet 904 Blower 905 Lower guide plate 906 Upper guide plates 927, 927a, 927b Air curtain area 950 Shutter mechanism

Claims (8)

  1.  電子部品を取り付けた基板を予備加熱し、予備加熱後の前記基板をはんだ付け処理部に搬送し、前記基板に電子部品をはんだ付けするはんだ付け装置において、
     前記基板を搬送する搬送経路の所定位置に設けられ、当該搬送経路上に気体を送風して雰囲気を遮断するためのエアーカーテンエリアを形成する送風機構と、
     前記エアーカーテンエリアを通過する前記基板の通過タイミングに対応して前記エアーカーテンエリアへの気体の送出又は停止をするように前記送風機構を制御する制御部とを備えることを特徴とするはんだ付け装置。
    In the soldering apparatus for preheating the board on which the electronic component is mounted, transporting the board after the preheating to the soldering processing unit, and soldering the electronic component to the board,
    A blower mechanism which is provided at a predetermined position of a transport path for transporting the substrate and forms an air curtain area for blowing gas on the transport path to block the atmosphere;
    A soldering apparatus comprising: a control unit that controls the blower mechanism so as to send or stop gas to the air curtain area in response to a passage timing of the substrate passing through the air curtain area. .
  2.  前記制御部によって制御される送風機構は、
     所定の位置に吸気口及び排気口を有した本体部と、
     前記本体部内に回転自在に係合され、前記吸気口から吸い込んだ気体を排気口から吹き出すファン部と、
     前記ファン部を駆動する駆動部とを有することを特徴とする請求の範囲第1項に記載のはんだ付け装置。
    The air blowing mechanism controlled by the control unit is
    A main body having an intake port and an exhaust port at a predetermined position;
    A fan part that is rotatably engaged in the main body part and blows out the gas sucked from the intake port from the exhaust port;
    The soldering apparatus according to claim 1, further comprising: a driving unit that drives the fan unit.
  3.  前記制御部は、
     前記駆動部をオン制御して前記送風機構から搬送経路へ気体を送風して前記エアーカーテンエリアを形成すると共に、前記駆動部をオフ制御して当該送風機構から搬送経路への気体の送風を停止することを特徴とする請求の範囲第2項に記載のはんだ付け装置。
    The controller is
    The drive unit is turned on to blow gas from the blower mechanism to the conveyance path to form the air curtain area, and the drive unit is turned off to stop blowing gas from the blower mechanism to the conveyance path. The soldering apparatus according to claim 2, wherein:
  4.  電子部品を取り付けた基板を予備加熱し、予備加熱後の前記基板をはんだ付け処理部に搬送し、前記基板に電子部品をはんだ付けするはんだ付け装置において、
     前記基板を搬送する搬送経路の所定位置に設けられ、当該搬送経路上に気体を送風して雰囲気を遮断するエアーカーテンエリアを形成する送風機構と、
     前記送風機構の排気口に設けられたシャッター機構と、
     前記エアーカーテンエリアを通過する前記基板の通過タイミングに対応して前記エアーカーテンエリアへの気体の送出又は停止をするように前記シャッター機構を制御する制御部とを備えることを特徴とするはんだ付け装置。
    In the soldering apparatus for preheating the board on which the electronic component is mounted, transporting the board after the preheating to the soldering processing unit, and soldering the electronic component to the board,
    A blower mechanism that is provided at a predetermined position of a transport path for transporting the substrate and forms an air curtain area that blows gas on the transport path to block the atmosphere;
    A shutter mechanism provided at an exhaust port of the blower mechanism;
    A soldering apparatus comprising: a control unit that controls the shutter mechanism so as to send or stop the gas to the air curtain area in response to the passage timing of the substrate passing through the air curtain area. .
  5.  前記制御部によって開閉制御されるシャッター機構は、
     前記送風機構の排気口を閉蓋又は開蓋するシャッター部と、
     前記シャッター部を開閉駆動する駆動部とを有することを特徴とする請求の範囲第4項に記載のはんだ付け装置。
    The shutter mechanism that is controlled to open and close by the control unit,
    A shutter part for closing or opening the exhaust port of the air blowing mechanism;
    The soldering apparatus according to claim 4, further comprising: a drive unit that opens and closes the shutter unit.
  6.  前記制御部は、
     前記駆動部をオン制御して前記シャッター部を開蓋状態にして前記送風機構から搬送経路へ気体を送風して前記エアーカーテンエリアを形成すると共に、前記駆動部をオフ制御して前記シャッター部を閉蓋状態にして前記送風機構から搬送経路への気体の送風を阻止することを特徴とする請求の範囲第5項に記載のはんだ付け装置。
    The controller is
    The drive unit is turned on to open the shutter unit, and air is blown from the blowing mechanism to the conveyance path to form the air curtain area, and the drive unit is turned off to control the shutter unit. 6. The soldering apparatus according to claim 5, wherein a gas is blown from the air blowing mechanism to the conveyance path in a closed state.
  7.  前記搬送経路に投入される前記基板を検出して基板投入情報を出力する検出部を備え、
     前記制御部は、
     前記検出部から出力される基板投入情報に基づいて前記基板の搬送方向の長さを示す基板長さ情報と、
     前記基板が搬送経路に投入された時刻からエアーカーテンエリアへ到達するまでの経過時間を示す基板到達情報と、
     前記基板がエアーカーテンエリアを抜ける時刻を示す基板抜け情報とを算出することを特徴とする請求の範囲第1乃至6項のいずれかに記載のはんだ付け装置。
    A detection unit that detects the substrate put into the transport path and outputs substrate loading information;
    The controller is
    Substrate length information indicating the length of the substrate in the transport direction based on the substrate loading information output from the detection unit;
    Substrate arrival information indicating the elapsed time from the time when the substrate is put into the transport path to the air curtain area,
    The soldering apparatus according to any one of claims 1 to 6, wherein board missing information indicating a time at which the board leaves the air curtain area is calculated.
  8.  前記送風機構の本体部に空気又は不活性気体又はこれらの混合気体を導入することを特徴とする請求の範囲第1乃至7項のいずれかに記載のはんだ付け装置。 The soldering device according to any one of claims 1 to 7, wherein air, an inert gas, or a mixed gas thereof is introduced into the main body of the blower mechanism.
PCT/JP2011/069056 2010-09-17 2011-08-24 Soldering device WO2012035943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800067877A CN102714923B (en) 2010-09-17 2011-08-24 Soldering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010210013A JP4978723B2 (en) 2010-09-17 2010-09-17 Soldering equipment
JP2010-210013 2010-09-17

Publications (1)

Publication Number Publication Date
WO2012035943A1 true WO2012035943A1 (en) 2012-03-22

Family

ID=45831415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069056 WO2012035943A1 (en) 2010-09-17 2011-08-24 Soldering device

Country Status (3)

Country Link
JP (1) JP4978723B2 (en)
CN (1) CN102714923B (en)
WO (1) WO2012035943A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009350B2 (en) * 2012-12-28 2016-10-19 花王株式会社 Circuit board manufacturing method with electronic components joined
JP6269793B1 (en) * 2016-12-05 2018-01-31 千住金属工業株式会社 Transport device
CN109990598A (en) * 2019-04-18 2019-07-09 昆山福烨电子有限公司 A kind of air curtain type high temperature Muffle furnace receiving and feeding device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336361U (en) * 1989-08-17 1991-04-09
JPH07336041A (en) * 1994-06-03 1995-12-22 Tamura Seisakusho Co Ltd Reflowing apparatus
JPH0823161A (en) * 1994-07-05 1996-01-23 Fujitsu Ltd Reflow device
JP2000015432A (en) * 1998-06-29 2000-01-18 Nihon Dennetsu Keiki Co Ltd Method and device for sealing in-chamber atmosphere
JP2003275866A (en) * 2002-03-19 2003-09-30 Nihon Dennetsu Keiki Co Ltd Reflow soldering apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090651A (en) * 1990-01-31 1992-02-25 Electrovert Ltd. Gas curtain additives and zoned tunnel for soldering
GB9121003D0 (en) * 1991-10-03 1991-11-13 Boc Group Plc Soldering
TW200524496A (en) * 2004-01-07 2005-07-16 Senju Metal Industry Reflow furnace
CN2750883Y (en) * 2004-07-15 2006-01-11 北京七星华创电子股份有限公司 Hydrogen brazing furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336361U (en) * 1989-08-17 1991-04-09
JPH07336041A (en) * 1994-06-03 1995-12-22 Tamura Seisakusho Co Ltd Reflowing apparatus
JPH0823161A (en) * 1994-07-05 1996-01-23 Fujitsu Ltd Reflow device
JP2000015432A (en) * 1998-06-29 2000-01-18 Nihon Dennetsu Keiki Co Ltd Method and device for sealing in-chamber atmosphere
JP2003275866A (en) * 2002-03-19 2003-09-30 Nihon Dennetsu Keiki Co Ltd Reflow soldering apparatus

Also Published As

Publication number Publication date
JP2012064896A (en) 2012-03-29
CN102714923A (en) 2012-10-03
JP4978723B2 (en) 2012-07-18
CN102714923B (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5878018B2 (en) Soldering equipment
JP4978723B2 (en) Soldering equipment
JPH03124369A (en) Reflow soldering device
CN107398615B (en) Jet flow soft brazing filler metal trough and jet flow soldering device
JP2019509394A (en) Magnetic domain refinement method and apparatus for grain-oriented electrical steel sheet
WO2011135737A1 (en) Heating apparatus and cooling apparatus
JPS60119792A (en) Leveling system of solder
JP2022065287A (en) Transport heating device
JP2000015432A (en) Method and device for sealing in-chamber atmosphere
JP2007281271A (en) Solder heating device and method therefor
CN102835195B (en) Soldering device and cover support/sealing structure
JP3404768B2 (en) Reflow equipment
JP4524377B2 (en) Reflow device
CN101648306A (en) Selective bridging removing device for wave soldering
JP2007012874A (en) Substrate heating method, substrate heating apparatus, and hot-air reflow apparatus
WO2023188840A1 (en) Conveying heating apparatus
JPH07231160A (en) Reflow soldering device
JP2847020B2 (en) Reflow soldering equipment
JP4092258B2 (en) Reflow furnace and temperature control method for reflow furnace
JP7502358B2 (en) Transport heating device
CN102860145B (en) Soldering device and moveable partitioning member structure
JPH06155010A (en) Reflow soldering device
JPH06275947A (en) Reflow soldering device
JP3257049B2 (en) Reflow device and reflow method
JP4017388B2 (en) Reflow soldering equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006787.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824951

Country of ref document: EP

Kind code of ref document: A1