WO2012035615A1 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
WO2012035615A1
WO2012035615A1 PCT/JP2010/065825 JP2010065825W WO2012035615A1 WO 2012035615 A1 WO2012035615 A1 WO 2012035615A1 JP 2010065825 W JP2010065825 W JP 2010065825W WO 2012035615 A1 WO2012035615 A1 WO 2012035615A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
rich spike
scr
internal combustion
Prior art date
Application number
PCT/JP2010/065825
Other languages
French (fr)
Japanese (ja)
Inventor
櫻井 健治
徹 木所
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012533773A priority Critical patent/JP5534020B2/en
Priority to PCT/JP2010/065825 priority patent/WO2012035615A1/en
Publication of WO2012035615A1 publication Critical patent/WO2012035615A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine that includes a NOx storage reduction catalyst and a NOx selective reduction catalyst.
  • NSR catalyst NOx storage reduction catalyst
  • SCR NOx selective reduction catalyst
  • the NOx occlusion retention amount in the NSR catalyst increases with the passage of time. Therefore, in the above-described conventional system, rich spike control for temporarily enriching the exhaust air-fuel ratio of the internal combustion engine is executed at a point where the NOx occlusion holding amount in the NSR catalyst approaches a predetermined occlusion capacity. Thereby, NOx occluded and held in the NSR catalyst is purified.
  • ammonia (NH 3 ) is generated in the three-way catalyst and the NSR catalyst.
  • the SCR has a function of adsorbing ammonia (NH 3 ) and occludes NH 3 generated by the three-way catalyst and the NSR catalyst.
  • the stored NH 3 is used when NOx flowing into the SCR is selectively reduced.
  • NOx discharged from the internal combustion engine is purified by a combination of the NSR catalyst and the SCR.
  • SCR generally tends to be deteriorated with time more than a three-way catalyst or a NSR catalyst containing a noble metal. This is because the zeolite structure in the SCR tends to be relatively easily destroyed by water vapor and de-Al reaction.
  • the NOx purification rate decreases due to the decrease in NOx reduction performance. For this reason, in order to always maintain a high NOx purification rate by the combination of the NSR catalyst and the SCR, it is necessary to compensate for the decrease in the NOx purification rate due to the aging deterioration of the SCR with the NOx purification performance of the NSR catalyst.
  • the above conventional system does not take into account a decrease in NOx purification performance due to aging degradation of the SCR. For this reason, the above-described conventional system leaves room for further improvement in terms of always realizing a high NOx purification rate by the combination of the NSR catalyst and the SCR.
  • the present invention has been made to solve the above-described problems.
  • an internal combustion engine including an NSR catalyst and an SCR a high NOx purification rate is achieved by a combination of the NSR catalyst and the SCR regardless of the degree of deterioration of the SCR.
  • An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can be realized.
  • a first invention is an exhaust purification device for an internal combustion engine capable of lean operation, A NOx occlusion reduction catalyst (hereinafter referred to as NSR catalyst) disposed in the exhaust passage of the internal combustion engine; A NOx selective reduction catalyst (hereinafter referred to as SCR) disposed downstream of the NSR catalyst; Obtaining means for obtaining information on the degradation degree of the SCR; Rich spike means for executing a rich spike at a predetermined timing during lean operation, The rich spike means includes air / fuel ratio setting means for variably setting an exhaust air / fuel ratio during the rich spike according to information on the degree of deterioration.
  • NSR catalyst NOx occlusion reduction catalyst
  • SCR NOx selective reduction catalyst
  • the acquisition means is characterized in that the continuous travel distance of a vehicle on which the internal combustion engine is mounted is acquired as information relating to the degree of deterioration.
  • the air-fuel ratio setting means sets the exhaust air-fuel ratio at the rich spike to a rich value as the continuous travel distance is longer.
  • the air-fuel ratio setting means sets the exhaust air-fuel ratio at the time of the rich spike to a slight rich when the continuous travel distance is shorter than a predetermined distance.
  • the rich spike means executes a two-stage rich spike for switching the exhaust air-fuel ratio during execution of the rich spike from the first air-fuel ratio to the second air-fuel ratio
  • the air-fuel ratio setting means includes The second air-fuel ratio is variably set according to information on the degree of deterioration, and the first air-fuel ratio is set to a richer value than the second air-fuel ratio.
  • a sixth invention is any one of the first to fifth inventions, Bed temperature acquisition means for acquiring the bed temperature of the NSR catalyst and / or SCR; Correction means for correcting the air-fuel ratio set by the air-fuel ratio setting means in the rich direction when the bed temperature is lower than a predetermined reference value; Is further provided.
  • NOx stored in the NSR catalyst NOx storage reduction catalyst
  • NH 3 is generated in the NSR catalyst.
  • the produced NH 3 is stored in an SCR (NOx selective reduction catalyst) disposed on the downstream side through the exhaust passage. In the SCR, the stored NH 3 is used to selectively reduce NOx blown downstream of the NSR catalyst.
  • the exhaust air-fuel ratio at the time of rich spike is variably set according to the degree of deterioration of the SCR. If the exhaust air-fuel ratio at the time of rich spike is controlled to be rich, the purification of NOx stored in the NSR catalyst is promoted, so the NOx purification ratio of the NSR catalyst to the SCR can be effectively increased. On the other hand, if the air-fuel ratio at the time of rich spike is controlled to be rich rich, the amount of NH 3 produced in the NSR catalyst increases, so the NOx purification ratio of SCR relative to the NSR catalyst can be effectively increased.
  • the NOx purification ratio between the NSR catalyst and the SCR can be changed in accordance with the degree of deterioration of the SCR. Therefore, even if the SCR deterioration has progressed, the NSR catalyst and the SCR A high NOx purification rate can be realized by the combination.
  • the continuous travel distance of the vehicle on which the internal combustion engine is mounted is acquired as information on the degree of deterioration of the SCR.
  • the deterioration of SCR progresses as the continuous running distance is longer. Therefore, according to the present invention, the deterioration degree of SCR can be effectively reflected in the setting of the exhaust air / fuel ratio at the time of rich spike.
  • the rich spike exhaust air-fuel ratio is set to a richer value as the continuous travel distance is longer.
  • the NOx purification performance of the NSR catalyst can be improved as the NOx purification performance of the SCR decreases. Therefore, even in a state where the deterioration of the SCR has progressed, a high NOx purification rate can be realized by the combination of the NSR catalyst and the SCR.
  • the air fuel ratio of the rich spike is set to be slightly rich. For this reason, according to the present invention, since the purification performance of the SCR is effectively increased by increasing the amount of NH 3 produced in the NSR catalyst, the combination of the NSR catalyst and the SCR is effectively suppressed while effectively suppressing the deterioration of fuel consumption. A high NOx purification rate can be realized.
  • the second air-fuel ratio at the time of the rich spike is variably set according to the information on the degree of deterioration, and the first air-fuel ratio at the time of the rich spike is It is set richer than the second air-fuel ratio.
  • the rich component at the beginning of the rich spike is used for the oxygen release reaction of the OSC material contained in the NSR catalyst. Therefore, according to the present invention, it is possible to effectively eliminate the influence of the oxygen release reaction of the OSC material and realize a desired exhaust air-fuel ratio.
  • the set rich spike air-fuel ratio is corrected in the rich direction. Therefore, according to the present invention, it is possible to effectively suppress the emissions of N 2 O to the catalyst bed temperature is discharged when a lower (greenhouse gas).
  • Embodiment 1 of this invention It is a diagram showing the relationship of the NH 3 generated concentration and generation time for exhaust air-fuel ratio.
  • 3 shows a map that defines the relationship between the travel distance of a vehicle on which the internal combustion engine 10 is mounted and the rich spike target A / F.
  • FIG. 1 is a diagram for explaining the configuration of the embodiment of the present invention.
  • the system of the present embodiment includes an internal combustion engine 10.
  • the internal combustion engine 10 is configured as a V-type gasoline engine including a right bank 101 and a left bank 102.
  • the cylinder group belonging to the right bank 101 communicates with the exhaust passage 121.
  • the cylinder group belonging to the left bank 102 communicates with the exhaust passage 122.
  • the exhaust passages 121 and 122 communicate with one end of the exhaust passage 123 after joining downstream.
  • exhaust passage 12 when the exhaust passages 121, 122, and 123 are not particularly distinguished, they are simply referred to as “exhaust passage 12”.
  • start catalysts hereinafter referred to as “SC”
  • SC start catalysts
  • NSR catalyst NOx storage reduction catalyst
  • SCR NOx selective reduction catalyst
  • the internal combustion engine 10 easily discharges HC and CO when the air-fuel ratio is rich. Further, it is easy to exhaust NOx when the air-fuel ratio is lean.
  • the SC 14 reduces NOx (purifies to N 2 ) while adsorbing oxygen (O 2 ) in a lean atmosphere.
  • NOx purifies to N 2
  • O 2 oxygen
  • HC and CO are oxidized (purified to H 2 O, CO 2 ) while releasing oxygen.
  • ammonia (NH 3 ) is generated by the reaction of nitrogen and hydrogen or HC and NOx contained in the exhaust gas.
  • the NSR catalyst 16 occludes NOx contained in the exhaust gas under a lean atmosphere. Further, the NSR catalyst 16 releases NOx stored in a rich atmosphere. NOx released in a rich atmosphere is reduced by HC and CO. At this time, NH 3 is also generated in the NSR 16 as in the case of the SC 14.
  • the SCR 18 is configured as an Fe-based zeolite catalyst, and the SC 14 and the NSR catalyst 16 occlude NH 3 produced in a rich atmosphere.
  • the NO 3 in the exhaust gas is selectively used with NH 3 as a reducing agent. It has the function of reducing to According to the SCR 18, it is possible to effectively prevent a situation in which NH 3 and NOx blown downstream of the NSR catalyst 16 are released into the atmosphere.
  • the system according to the present embodiment includes an ECU (Electronic Control Unit) 30 as shown in FIG.
  • Various actuators such as a fuel injection device (not shown) are connected to the output portion of the ECU 30.
  • the input part of the ECU 30 includes the operating conditions of the internal combustion engine 10 and Various sensors for detecting the driving state are connected.
  • the ECU 30 can control the state of the system shown in FIG. 1 based on various types of input information.
  • the ECU 30 normally operates the internal combustion engine 10 at a lean air-fuel ratio (lean operation).
  • lean operation oxidizers such as NOx are discharged in a larger amount than reducing agents such as HC and CO.
  • reducing agents such as HC and CO.
  • the system according to the first embodiment is provided with the NSR catalyst 16 in the exhaust passage 123.
  • the NSR catalyst 16 has a function of storing NOx as nitrates such as Ba (NO 3 ) 2 . For this reason, according to the system of the first embodiment, it is possible to effectively suppress the situation where the NOx is released into the atmosphere even during the lean operation.
  • a predetermined storage limit amount for example, an amount corresponding to 80% of the maximum storage amount
  • the exhaust gas during execution of rich spike contains a large amount of reducing agent such as HC, CO, H 2 and the like. For this reason, when these reducing agents are introduced into the NSR catalyst 16, NOx stored as nitrate is reduced to NO and desorbed from the base. The desorbed NOx is purified to N 2 or the like on the catalyst in the NSR catalyst 16 and processed.
  • the NOx occluded in the NSR catalyst 16 can be desorbed, so that the NOx occlusion performance can be effectively recovered.
  • the target A / F at the time of rich spike can be set as appropriate, but the rich air-fuel ratio is more preferable from the viewpoint of improving the NOx purification performance of the NSR catalyst 16.
  • the exhaust air-fuel ratio is set as lean as possible when NOx purification in the SCR 18 described later can be expected.
  • the function of the SCR 18 will be described.
  • the NOx storage performance of the NSR catalyst 16 can be effectively recovered by executing the rich spike.
  • part of the NOx desorbed from the NSR catalyst 16 is blown downstream without being purified.
  • the system according to the first embodiment includes an SCR 18 for processing NOx blown through the downstream side of the NSR catalyst 16.
  • the SCR 18 occludes therein NH 3 produced by the SC 14 and the NSR catalyst 16 in a rich atmosphere.
  • NOx blown downstream of the NSR catalyst 16 can be selectively reduced and purified by NH 3 . Thereby, the situation where NOx is released into the atmosphere and the emission deteriorates can be effectively prevented.
  • FIG. 2 is a graph showing the relationship between the NH 3 production concentration and the production time with respect to the exhaust air-fuel ratio.
  • the NOx purification performance of the SCR 18 can be effectively enhanced by controlling the target A / F during the rich spike to the light rich air-fuel ratio.
  • the target A / F that maximizes the amount of NH 3 flowing into the SCR 18 is set in consideration of not only the NH 3 generation concentration but also the NH 3 generation time. It is preferable to do.
  • the NOx purification ratio between the NSR catalyst 16 and the SCR 18 changes. More specifically, the NOx purification ratio of the SCR 18 with respect to the NSR catalyst 16 becomes higher as the target A / F at the time of rich spike becomes closer to the rich rich from the rich side. Therefore, in the system of the present embodiment, when the target A / F at the time of the rich spike is controlled to be a rich rich (target A / F ⁇ 13), a desired NOx purification performance is obtained by a combination of the NSR catalyst 16 and the SCR 18.
  • the SCR 18 tends to deteriorate with time more than the SC 14 and the NSR catalyst 16 containing noble metals. This is because the zeolite structure in the SCR 18 tends to be relatively easily destroyed by water vapor and de-Al reaction. As the SCR 18 deteriorates with time, the NOx purification rate decreases due to the decrease in NOx reduction performance. For this reason, in order to always maintain a high NOx purification rate by the combination of the NSR catalyst 16 and the SCR 18, it is necessary to compensate for the decrease in the NOx purification rate due to the aging of the SCR 18 with the NOx purification performance of the NSR catalyst 16.
  • the target A / F at the time of rich spike is changed to the rich side as the SCR 18 deteriorates with time.
  • the NOx purification ratio of the NSR catalyst 16 to the SCR 18 becomes higher. Thereby, it can transfer to the NOx purification system which mainly made the NSR catalyst 16 corresponding to the NOx purification performance fall of SCR18. Therefore, the desired NOx purification rate can be maintained even when the SCR 18 deteriorates with time.
  • the degree of deterioration of the SCR 18 with time can be determined using the continuous travel distance of the vehicle on which the internal combustion engine 10 is mounted as an index.
  • FIG. 3 shows a map that defines the relationship between the continuous travel distance of the vehicle on which the internal combustion engine 10 is mounted and the rich spike target A / F.
  • the ECU 30 can set the target A / F at the time of rich spike using, for example, this map. In this map, the value is specified so that the target A / F becomes a richer value as the continuous travel distance is longer. Therefore, by using such a map, the degree of deterioration with time of the SCR 18 can be reflected in the target A / F at the time of rich spike.
  • FIG. 4 is a flowchart of a routine in which the ECU 30 executes rich spike control. Note that the routine shown in FIG. 4 is repeatedly executed during the lean operation of the internal combustion engine 10.
  • step 100 it is first determined whether or not the rich spike execution condition is satisfied. Specifically, first, the current NOx occlusion amount occluded in the NSR catalyst 16 is estimated. Then, it is determined whether the estimated NOx occlusion amount has reached a predetermined occlusion limit amount. As a result, if the establishment of NOx storage amount ⁇ storage limit amount is not recognized, it is determined that the execution condition of the rich spike has not yet been established, and this step 100 is repeatedly executed.
  • step 100 if it is determined in step 100 that NOx occlusion amount ⁇ occlusion limit amount is established, it is determined that the execution condition of the rich spike is established, the process proceeds to the next step, and the target A at the time of rich spike is set. / F is read (step 102).
  • the continuous travel distance up to the present is read.
  • the target A / F corresponding to the read continuous mileage is specified using the map shown in FIG.
  • step 104 a rich spike is executed.
  • rich spike control based on the target A / F read in step 102 is executed.
  • the target A / F at the time of rich spike is variably set according to the continuous travel distance. For this reason, since the NOx purification ratio between the NSR catalyst 16 and the SCR 18 can be set to a ratio corresponding to the degree of deterioration of the SCR 18 with time, a high NOx purification rate can be realized regardless of the deterioration of the SCR 18 with time. .
  • the target A / F at the time of rich spike is set to be slightly rich. Therefore, a high NOx purification rate can be realized by a combination of the NSR catalyst 16 and the SCR 18 while suppressing deterioration of fuel consumption.
  • FIG. 5 is a diagram showing another example of a map that defines the relationship between the continuous travel distance of the vehicle and the target A / F of the rich spike.
  • a map in which the target A / F with respect to the travel distance is set on the lean side may be used.
  • the continuous travel distance of the vehicle is used as an index of aging degradation of the SCR 18, but the usable index is not limited to this. That is, as the SCR 18 deteriorates with time, the catalyst bed temperature of the SCR 18 tends to decrease. Therefore, for example, a temperature sensor for detecting the catalyst bed temperature of the SCR 18 may be arranged, and the catalyst bed temperature may be used as an indicator of the deterioration of the SCR 18 with time.
  • the NSR catalyst 16 corresponds to the “NSR catalyst” in the first invention
  • the SCR 18 corresponds to the “SCR” in the first invention.
  • the ECU 30 executes the process of step 102
  • the “income means” in the first invention executes the process of step 104.
  • the “rich spike means” in the first aspect of the invention executes the processing of step 102, thereby realizing the “air-fuel ratio setting means” in the first aspect of the invention.
  • an OSC material such as ceria is used as one component of the carrier for the purpose of enhancing robustness.
  • This OSC material has an oxygen absorption / release capability, absorbs oxygen in a lean atmosphere, and releases oxygen in a rich atmosphere. For this reason, a part of the reducing agent discharged in the early stage of the rich spike tends to be used for the oxygen storage reaction in the OSC material. Therefore, if the target A / F during the rich spike execution period is controlled to be constant as in the system of the first embodiment described above, the desired target A / F is realized in the initial period of the rich spike. It is also assumed that it has not been done.
  • FIG. 6 is a diagram for explaining a two-stage rich spike.
  • the rich component of the first stage rich spike is used for the oxygen storage reaction in the OSC material. For this reason, by executing the above-described two-stage rich spike, it is possible to effectively suppress the air-fuel ratio deviation in the initial period of the rich spike.
  • the first stage A / F may be a fixed value that is richer than the second stage A / F, but the first stage A / F and its period so as to compensate for the consumption of the reducing agent by the OSC material. Is preferably set. As a result, it is possible to effectively eliminate the influence of the oxygen release reaction of the OSC material and realize a desired target A / F throughout the rich spike period.
  • the first stage A / F is the “first air-fuel ratio” in the fifth aspect of the invention, and the first stage A / F is the “second stage” in the fifth aspect of the invention. It corresponds to “air-fuel ratio”.
  • Embodiment 3 FIG. [Features of Embodiment 3]
  • a third embodiment of the present invention will be described with reference to FIG.
  • the third embodiment can be realized by executing a routine shown in FIG. 7 to be described later using the system shown in FIG.
  • the target A / F at the time of rich spike is variably set according to the travel distance.
  • N 2 O nitrous oxide
  • N 2 O is said to be a greenhouse gas about 300 times as much as carbon dioxide, and it is preferable to suppress emissions as much as possible.
  • This N 2 O production reaction tends to occur particularly in an environment where the catalyst bed temperature is low, that is, the catalyst activity is low. Therefore, in the system of the third embodiment, when the bed temperatures of the NSR catalyst 16 and the SCR 18 are lower than the predetermined reference temperature, the target A / F at the rich spike specified by the map shown in FIG. It will be corrected to the air-fuel ratio on the side. As the exhaust air-fuel ratio at the time of rich spike is the rich air-fuel ratio, the combustion reaction in the catalyst is activated. Therefore, it is possible to effectively suppress the N 2 O formation reaction.
  • the target A / F may be corrected by mapping the correction amount for each target A / F, or by multiplying the target A / F by a predetermined coefficient.
  • the catalyst bed temperature may be detected by providing a temperature sensor for each catalyst, or may be estimated from the operating conditions and states of the internal combustion engine 10 using a known method. Further, it is preferable to acquire the catalyst bed temperatures of both the NSR catalyst 16 and the SCR 18, but if any catalyst bed temperature is detected, at least the above-described invention can be implemented.
  • FIG. 7 is a flowchart of a routine in which the ECU 30 executes rich spike control. Note that the routine shown in FIG. 7 is repeatedly executed during the lean operation of the internal combustion engine 10.
  • step 200 it is first determined whether or not the rich spike execution condition is satisfied.
  • step 200 the same processing as in step 100 is executed.
  • the establishment of NOx storage amount ⁇ storage limit amount is not recognized, it is determined that the rich spike execution condition has not yet been established, and this step 200 is repeatedly executed.
  • step 200 if the establishment of NOx occlusion amount ⁇ occlusion limit amount is recognized in step 200, it is determined that the rich spike execution condition is established, the process proceeds to the next step, and the target A at the time of rich spike is determined. / F is read (step 202). Here, specifically, the same processing as in step 102 is executed.
  • step 204 it is determined whether or not the catalyst bed temperature of the NSR catalyst 16 and / or the SCR 18 is lower than a predetermined temperature.
  • the catalyst bed temperature T of each catalyst is estimated based on the detection signal of the temperature sensor arrange
  • step 206 when establishment of catalyst bed temperature ⁇ predetermined temperature is recognized, it is determined that the N 2 O generation rate in each catalyst is high, the process proceeds to the next step, and the target A / F read in step 202 is read. Is corrected to the rich side and rich spike control is executed (step 206).
  • the target A / F during the rich spike is corrected to the rich side when the catalyst bed temperature is lower than the predetermined temperature.
  • the target A / F during the rich spike execution period is controlled to be constant as in Embodiment 1 described above, but as in Embodiment 2 described above, Two rich spikes may be executed.
  • at least the second stage A / F may be corrected according to the catalyst bed temperature.
  • the ECU 30 executes the process of step 202, and the “income means” in the first invention executes the process of step 206 or 208.
  • the “rich spike means” according to the first aspect of the present invention implements the “air-fuel ratio setting means” according to the first aspect of the present invention by executing the processing of step 202 described above.
  • the ECU 30 executes the process of step 204, and the “bed temperature acquisition means” in the sixth aspect of the invention executes the process of step 208.
  • the “correction means” in the sixth aspect of the invention is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Provided is an exhaust gas purification device for an internal combustion engine provided with an NSR catalyst and an SCR, the exhaust gas purification device being capable of achieving a high NOx purification rate by combining an NSR catalyst and an SCR regardless of the deterioration degree of the SCR. An exhaust gas purification device for an internal combustion engine (10) capable of performing a lean operation, the exhaust gas purification device being provided with a NOx storage-reduction catalyst (NSR catalyst) (16) disposed on the exhaust path (12) of the internal combustion engine (10), a NOx selective-reduction catalyst (SCR) (18) disposed on the downstream of the NSR catalyst (16), an acquisition means for acquiring information pertaining to the deterioration degree of the SCR (18), and a rich spike means for performing rich spike control at a predetermined timing during a lean operation, wherein the rich spike means variably sets the exhaust air-fuel ratio during rich spike control in accordance with the information pertaining to the deterioration degree. Preferably, the continuous traveling distance is acquired as the information pertaining to the deterioration degree and the exhaust air-fuel ratio during rich spike control is set to a value towards the rich side, the longer the continuous traveling distance.

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 この発明は、内燃機関の排気浄化装置に係り、特に、NOx吸蔵還元触媒とNOx選択還元触媒とを備える内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine that includes a NOx storage reduction catalyst and a NOx selective reduction catalyst.
 従来、例えば日本特開2008-303759号公報に開示されるように、三元触媒、NOx吸蔵還元触媒(以下、「NSR触媒」と称する)、およびNOx選択還元触媒(以下、「SCR」と称する)が、内燃機関の排気通路の上流側からこの順序で配置されたシステムが知られている。NSR触媒は、内燃機関から排出される燃焼ガスに含まれる窒素酸化物(NOx)を触媒内部に吸蔵する吸蔵機能と、NOxおよび炭化水素(HC)等を浄化処理する触媒機能と、を備えた触媒である。内燃機関がリーン空燃比で運転(リーン運転)されると、NOxを多量に含む排気ガスが排出される。NSR触媒は、このNOxをその内部に吸蔵保持して、該NOxが触媒下流へ放出される事態を抑制する。 Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-303759, a three-way catalyst, a NOx storage reduction catalyst (hereinafter referred to as “NSR catalyst”), and a NOx selective reduction catalyst (hereinafter referred to as “SCR”). Are known in this order from the upstream side of the exhaust passage of the internal combustion engine. The NSR catalyst has an occlusion function that occludes nitrogen oxide (NOx) contained in combustion gas discharged from the internal combustion engine inside the catalyst, and a catalytic function that purifies NOx and hydrocarbons (HC) and the like. It is a catalyst. When the internal combustion engine is operated at a lean air-fuel ratio (lean operation), exhaust gas containing a large amount of NOx is discharged. The NSR catalyst occludes and holds this NOx therein, and suppresses the situation where the NOx is released downstream of the catalyst.
 リーン運転中は、時間の経過に伴ってNSR触媒内のNOx吸蔵保持量が増加する。そこで、上記従来のシステムでは、該NSR触媒内のNOx吸蔵保持量が所定の吸蔵容量に近づいた地点で、内燃機関の排気空燃比を一時的にリッチにするリッチスパイク制御が実行される。これにより、該NSR触媒内に吸蔵保持されていたNOxが浄化される。 During lean operation, the NOx occlusion retention amount in the NSR catalyst increases with the passage of time. Therefore, in the above-described conventional system, rich spike control for temporarily enriching the exhaust air-fuel ratio of the internal combustion engine is executed at a point where the NOx occlusion holding amount in the NSR catalyst approaches a predetermined occlusion capacity. Thereby, NOx occluded and held in the NSR catalyst is purified.
 また、リッチスパイク制御が実行されると、三元触媒およびNSR触媒では、アンモニア(NH)が生成される。SCRは、アンモニア(NH)を吸着する機能を有しており、三元触媒およびNSR触媒で生成されたNHをその内部に吸蔵する。吸蔵されたNHは、該SCRに流入するNOxを選択的に還元する際に使用される。このように、上記従来のシステムでは、NSR触媒とSCRとの組み合わせによって、内燃機関から排出されるNOxを浄化することとしている。 When rich spike control is executed, ammonia (NH 3 ) is generated in the three-way catalyst and the NSR catalyst. The SCR has a function of adsorbing ammonia (NH 3 ) and occludes NH 3 generated by the three-way catalyst and the NSR catalyst. The stored NH 3 is used when NOx flowing into the SCR is selectively reduced. Thus, in the conventional system, NOx discharged from the internal combustion engine is purified by a combination of the NSR catalyst and the SCR.
日本特開2008-303759号公報Japanese Unexamined Patent Publication No. 2008-303759
 ところで、一般的にSCRは、貴金属を含む三元触媒やNSR触媒よりも経時劣化し易い傾向にある。これは、SCR内のゼオライト構造が水蒸気や脱Al反応によって比較的容易に破壊される傾向にあるためである。SCRの経時劣化が進行すると、そのNOx還元性能の低下によりNOx浄化率が低下してしまう。このため、NSR触媒とSCRとの組み合わせによって常に高いNOx浄化率を維持するためには、SCRの経時劣化によるNOx浄化率の低下分をNSR触媒のNOx浄化性能で補う必要がある。上記従来のシステムでは、SCRの経時劣化によるNOx浄化性能の低下を考慮していない。このため、上記従来のシステムでは、NSR触媒とSCRとの組み合わせで常に高いNOx浄化率を実現する面で、更なる改良の余地を残すものであった。 By the way, SCR generally tends to be deteriorated with time more than a three-way catalyst or a NSR catalyst containing a noble metal. This is because the zeolite structure in the SCR tends to be relatively easily destroyed by water vapor and de-Al reaction. As the SCR deteriorates over time, the NOx purification rate decreases due to the decrease in NOx reduction performance. For this reason, in order to always maintain a high NOx purification rate by the combination of the NSR catalyst and the SCR, it is necessary to compensate for the decrease in the NOx purification rate due to the aging deterioration of the SCR with the NOx purification performance of the NSR catalyst. The above conventional system does not take into account a decrease in NOx purification performance due to aging degradation of the SCR. For this reason, the above-described conventional system leaves room for further improvement in terms of always realizing a high NOx purification rate by the combination of the NSR catalyst and the SCR.
 この発明は、上述のような課題を解決するためになされたもので、NSR触媒とSCRとを備える内燃機関において、SCRの劣化度合によらずNSR触媒とSCRとの組み合わせによって高いNOx浄化率を実現することのできる内燃機関の排気浄化装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. In an internal combustion engine including an NSR catalyst and an SCR, a high NOx purification rate is achieved by a combination of the NSR catalyst and the SCR regardless of the degree of deterioration of the SCR. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can be realized.
 第1の発明は、上記の目的を達成するため、リーン運転が可能な内燃機関の排気浄化装置であって、
 前記内燃機関の排気通路に配置されたNOx吸蔵還元触媒(以下、NSR触媒)と、
 前記NSR触媒の下流に配置されたNOx選択還元触媒(以下、SCR)と、
 前記SCRの劣化度合に関する情報を取得する取得手段と、
 リーン運転中の所定のタイミングでリッチスパイクを実行するリッチスパイク手段と、を備え、
 前記リッチスパイク手段は、前記劣化度合に関する情報に応じて、前記リッチスパイク時の排気空燃比を可変に設定する空燃比設定手段を含むことを特徴としている。
In order to achieve the above object, a first invention is an exhaust purification device for an internal combustion engine capable of lean operation,
A NOx occlusion reduction catalyst (hereinafter referred to as NSR catalyst) disposed in the exhaust passage of the internal combustion engine;
A NOx selective reduction catalyst (hereinafter referred to as SCR) disposed downstream of the NSR catalyst;
Obtaining means for obtaining information on the degradation degree of the SCR;
Rich spike means for executing a rich spike at a predetermined timing during lean operation,
The rich spike means includes air / fuel ratio setting means for variably setting an exhaust air / fuel ratio during the rich spike according to information on the degree of deterioration.
 第2の発明は、第1の発明において、
 前記取得手段は、前記内燃機関が搭載された車両の継続走行距離を前記劣化度合に関する情報として取得することを特徴としている。
According to a second invention, in the first invention,
The acquisition means is characterized in that the continuous travel distance of a vehicle on which the internal combustion engine is mounted is acquired as information relating to the degree of deterioration.
 第3の発明は、第2の発明において、
 前記空燃比設定手段は、前記継続走行距離が長いほど前記リッチスパイク時の排気空燃比をリッチ側の値に設定することを特徴としている。
According to a third invention, in the second invention,
The air-fuel ratio setting means sets the exhaust air-fuel ratio at the rich spike to a rich value as the continuous travel distance is longer.
 第4の発明は、第2または第3の発明において、
 前記空燃比設定手段は、前記継続走行距離が所定距離より短い場合に、前記リッチスパイク時の排気空燃比をスライトリッチに設定することを特徴としている。
4th invention is 2nd or 3rd invention,
The air-fuel ratio setting means sets the exhaust air-fuel ratio at the time of the rich spike to a slight rich when the continuous travel distance is shorter than a predetermined distance.
 第5の発明は、第1乃至第4の何れか1つの発明において、
 前記リッチスパイク手段は、前記リッチスパイクの実行中の排気空燃比を第1の空燃比から第2の空燃比へ切り替える2段階のリッチスパイクを実行し、
 前記空燃比設定手段は、
 前記劣化度合に関する情報に応じて前記第2の空燃比を可変に設定し、前記第1の空燃比を前記第2の空燃比よりもリッチな値に設定することを特徴としている。
According to a fifth invention, in any one of the first to fourth inventions,
The rich spike means executes a two-stage rich spike for switching the exhaust air-fuel ratio during execution of the rich spike from the first air-fuel ratio to the second air-fuel ratio,
The air-fuel ratio setting means includes
The second air-fuel ratio is variably set according to information on the degree of deterioration, and the first air-fuel ratio is set to a richer value than the second air-fuel ratio.
 第6の発明は、第1乃至第5の何れか1つの発明において、
 前記NSR触媒および/またはSCRの床温を取得する床温取得手段と、
 前記床温が所定の基準値よりも低い場合に、前記空燃比設定手段によって設定された空燃比をリッチ方向へ補正する補正手段と、
 を更に備えることを特徴としている。
A sixth invention is any one of the first to fifth inventions,
Bed temperature acquisition means for acquiring the bed temperature of the NSR catalyst and / or SCR;
Correction means for correcting the air-fuel ratio set by the air-fuel ratio setting means in the rich direction when the bed temperature is lower than a predetermined reference value;
Is further provided.
 リッチスパイクが実行されると、NSR触媒(NOx吸蔵還元触媒)に吸蔵されていたNOxが脱離・浄化されるとともに、該NSR触媒においてNHが生成される。生成されたNHは、排気通路を流通して下流側に配置されたSCR(NOx選択還元触媒)内に吸蔵される。該SCRでは、吸蔵されたNHを用いて、NSR触媒の下流に吹き抜けたNOxを選択的に還元する。 When the rich spike is executed, NOx stored in the NSR catalyst (NOx storage reduction catalyst) is desorbed and purified, and NH 3 is generated in the NSR catalyst. The produced NH 3 is stored in an SCR (NOx selective reduction catalyst) disposed on the downstream side through the exhaust passage. In the SCR, the stored NH 3 is used to selectively reduce NOx blown downstream of the NSR catalyst.
 第1の発明によれば、リッチスパイク時の排気空燃比がSCRの劣化度合に応じて可変に設定される。リッチスパイク時の排気空燃比をリッチに制御すると、NSR触媒に吸蔵されていたNOxの浄化が促進されるので、SCRに対するNSR触媒のNOx浄化比率を有効に高めることができる。一方、リッチスパイク時の空燃比をスライトリッチに制御すると、該NSR触媒でのNH生成量が高まるので、NSR触媒に対するSCRのNOx浄化比率を有効に高めることができる。つまり、本発明によれば、SCRの劣化度合に応じてNSR触媒とSCRとのNOx浄化比率を変化させることができるので、SCRの劣化が進行した状態であっても、NSR触媒とSCRとに組み合わせによって高いNOx浄化率を実現することができる。 According to the first invention, the exhaust air-fuel ratio at the time of rich spike is variably set according to the degree of deterioration of the SCR. If the exhaust air-fuel ratio at the time of rich spike is controlled to be rich, the purification of NOx stored in the NSR catalyst is promoted, so the NOx purification ratio of the NSR catalyst to the SCR can be effectively increased. On the other hand, if the air-fuel ratio at the time of rich spike is controlled to be rich rich, the amount of NH 3 produced in the NSR catalyst increases, so the NOx purification ratio of SCR relative to the NSR catalyst can be effectively increased. That is, according to the present invention, the NOx purification ratio between the NSR catalyst and the SCR can be changed in accordance with the degree of deterioration of the SCR. Therefore, even if the SCR deterioration has progressed, the NSR catalyst and the SCR A high NOx purification rate can be realized by the combination.
 第2の発明によれば、内燃機関が搭載された車両の継続走行距離が、SCRの劣化度合に関する情報として取得される。SCRの劣化は継続走行距離が長いほど進行する。このため、本発明によれば、SCRの劣化度合をリッチスパイク時の排気空燃比の設定に有効に反映させることができる。 According to the second aspect of the invention, the continuous travel distance of the vehicle on which the internal combustion engine is mounted is acquired as information on the degree of deterioration of the SCR. The deterioration of SCR progresses as the continuous running distance is longer. Therefore, according to the present invention, the deterioration degree of SCR can be effectively reflected in the setting of the exhaust air / fuel ratio at the time of rich spike.
 第3の発明によれば、継続走行距離が長いほどリッチスパイクの排気空燃比がリッチ側の値に設定される。このため、本発明によれば、SCRのNOx浄化性能が低下するほどNSR触媒のNOx浄化性能を高めることができる。したがって、SCRの劣化が進行した状態であっても、NSR触媒とSCRとの組み合わせによって高いNOx浄化率を実現することができる。 According to the third aspect of the invention, the rich spike exhaust air-fuel ratio is set to a richer value as the continuous travel distance is longer. For this reason, according to the present invention, the NOx purification performance of the NSR catalyst can be improved as the NOx purification performance of the SCR decreases. Therefore, even in a state where the deterioration of the SCR has progressed, a high NOx purification rate can be realized by the combination of the NSR catalyst and the SCR.
 第4の発明によれば、継続走行距離が所定距離よりも短い場合に、リッチスパイクの空燃比がスライトリッチに設定される。このため、本発明によれば、NSR触媒でのNH生成量が増大することによりSCRの浄化性能が有効に高まるので、燃費の悪化を有効に抑制しつつ、NSR触媒とSCRとの組み合わせによって高いNOx浄化率を実現することができる。 According to the fourth invention, when the continuous travel distance is shorter than the predetermined distance, the air fuel ratio of the rich spike is set to be slightly rich. For this reason, according to the present invention, since the purification performance of the SCR is effectively increased by increasing the amount of NH 3 produced in the NSR catalyst, the combination of the NSR catalyst and the SCR is effectively suppressed while effectively suppressing the deterioration of fuel consumption. A high NOx purification rate can be realized.
 第5の発明によれば、2段階のリッチスパイクにおいて、リッチスパイク時の第2の空燃比が前記劣化度合に関する情報に応じて可変に設定され、且つ、リッチスパイク時の第1の空燃比が第2の空燃比よりもリッチに設定される。リッチスパイク初期のリッチ成分は、NSR触媒に含まれるOSC材の酸素放出反応に使用される。このため、本発明によれば、OSC材の酸素放出反応による影響を有効に排除して所望の排気空燃比を実現することができる。 According to the fifth aspect, in the two-stage rich spike, the second air-fuel ratio at the time of the rich spike is variably set according to the information on the degree of deterioration, and the first air-fuel ratio at the time of the rich spike is It is set richer than the second air-fuel ratio. The rich component at the beginning of the rich spike is used for the oxygen release reaction of the OSC material contained in the NSR catalyst. Therefore, according to the present invention, it is possible to effectively eliminate the influence of the oxygen release reaction of the OSC material and realize a desired exhaust air-fuel ratio.
 第6の発明によれば、NSR触媒および/またはSCRの床温が所定の基準値よりも低い場合に、設定されたリッチスパイクの空燃比がリッチ方向へ補正される。このため、本発明によれば、触媒床温が低い場合に排出されるNO(温暖化ガス)の排出量を有効に抑制することができる。 According to the sixth aspect, when the bed temperature of the NSR catalyst and / or the SCR is lower than the predetermined reference value, the set rich spike air-fuel ratio is corrected in the rich direction. Therefore, according to the present invention, it is possible to effectively suppress the emissions of N 2 O to the catalyst bed temperature is discharged when a lower (greenhouse gas).
本発明の実施の形態1の構成を説明するための図である。It is a figure for demonstrating the structure of Embodiment 1 of this invention. 排気空燃比に対するNH生成濃度および生成時間の関係を示す図である。It is a diagram showing the relationship of the NH 3 generated concentration and generation time for exhaust air-fuel ratio. 内燃機関10が搭載された車両の走行距離とリッチスパイクの目標A/Fとの関係を規定したマップを示す。3 shows a map that defines the relationship between the travel distance of a vehicle on which the internal combustion engine 10 is mounted and the rich spike target A / F. 本発明の実施の形態1において実行されるルーチンのフローチャートである。It is a flowchart of the routine performed in Embodiment 1 of the present invention. 車両の継続走行距離とリッチスパイクの目標A/Fとの関係を規定したマップの他の例を示す図である。It is a figure which shows the other example of the map which prescribed | regulated the relationship between the continuous travel distance of a vehicle, and the target A / F of a rich spike. 2段階のリッチスパイクを説明するための図である。It is a figure for demonstrating a two-stage rich spike. 本発明の実施の形態3において実行されるルーチンのフローチャートである。It is a flowchart of the routine performed in Embodiment 3 of the present invention.
 以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. The present invention is not limited to the following embodiments.
実施の形態1.
[実施の形態1の構成]
 図1は、本発明の実施の形態の構成を説明するための図である。図1に示すように、本実施の形態のシステムは、内燃機関10を備えている。内燃機関10は、右バンク101および左バンク102を備えたV型のガソリンエンジンとして構成されている。右バンク101に属する気筒群は、排気通路121に連通している。また、左バンク102に属する気筒群は、排気通路122に連通している。排気通路121および122は、下流で合流した後に排気通路123の一端に連通している。以下、排気通路121、122、および123を特に区別しない場合には、これらを単に「排気通路12」と称することとする。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a diagram for explaining the configuration of the embodiment of the present invention. As shown in FIG. 1, the system of the present embodiment includes an internal combustion engine 10. The internal combustion engine 10 is configured as a V-type gasoline engine including a right bank 101 and a left bank 102. The cylinder group belonging to the right bank 101 communicates with the exhaust passage 121. The cylinder group belonging to the left bank 102 communicates with the exhaust passage 122. The exhaust passages 121 and 122 communicate with one end of the exhaust passage 123 after joining downstream. Hereinafter, when the exhaust passages 121, 122, and 123 are not particularly distinguished, they are simply referred to as “exhaust passage 12”.
 排気通路121および122には、三元触媒であるスタート触媒(以下、「SC」と称する)141および142がそれぞれ配置されている。また、排気通路123には、NOx吸蔵還元触媒(NSR触媒)16が配置されている。更に、排気通路123におけるNSR触媒16の下流側には、NOx選択還元触媒(SCR)18が配置されている。以下、SC141および142を特に区別しない場合には、これらを単に「SC14」と称することとする。 In the exhaust passages 121 and 122, start catalysts (hereinafter referred to as “SC”) 141 and 142, which are three-way catalysts, are arranged, respectively. Further, a NOx storage reduction catalyst (NSR catalyst) 16 is disposed in the exhaust passage 123. Further, a NOx selective reduction catalyst (SCR) 18 is disposed downstream of the NSR catalyst 16 in the exhaust passage 123. Hereinafter, when the SCs 141 and 142 are not particularly distinguished, these are simply referred to as “SC 14”.
 内燃機関10は、空燃比がリッチである場合に、HCおよびCOを排出し易い。また、空燃比がリーンである場合にNOxを排出しやすい。SC14は、リーン雰囲気では酸素(O)を吸着しながらNOxを還元(Nに浄化)する。他方、リッチ雰囲気では、酸素を放出しながらHCおよびCOを酸化(HO、COに浄化)する。また、リッチ雰囲気下では、排気ガス中に含まれる窒素と水素、或いはHCとNOxが反応することにより、アンモニア(NH)が生成される。 The internal combustion engine 10 easily discharges HC and CO when the air-fuel ratio is rich. Further, it is easy to exhaust NOx when the air-fuel ratio is lean. The SC 14 reduces NOx (purifies to N 2 ) while adsorbing oxygen (O 2 ) in a lean atmosphere. On the other hand, in a rich atmosphere, HC and CO are oxidized (purified to H 2 O, CO 2 ) while releasing oxygen. In a rich atmosphere, ammonia (NH 3 ) is generated by the reaction of nitrogen and hydrogen or HC and NOx contained in the exhaust gas.
 NSR触媒16は、リーン雰囲気下では、排気ガス中に含まれるNOxを吸蔵する。また、NSR触媒16は、リッチ雰囲気下で吸蔵しているNOxを放出する。リッチ雰囲気下で放出されたNOxは、HCやCOにより還元される。この際、SC14の場合と同様に、NSR16においてもNHが生成される。 The NSR catalyst 16 occludes NOx contained in the exhaust gas under a lean atmosphere. Further, the NSR catalyst 16 releases NOx stored in a rich atmosphere. NOx released in a rich atmosphere is reduced by HC and CO. At this time, NH 3 is also generated in the NSR 16 as in the case of the SC 14.
 SCR18は、Fe系ゼオライト触媒として構成され、SC14およびNSR触媒16が、リッチ雰囲気下で生成するNHを吸蔵し、リーン雰囲気下では、NHを還元剤として、排気ガス中のNOxを選択的に還元する機能を有している。SCR18によれば、NSR触媒16の下流に吹き抜けてきたNHおよびNOxが大気中に放出される事態を有効に阻止することができる。 The SCR 18 is configured as an Fe-based zeolite catalyst, and the SC 14 and the NSR catalyst 16 occlude NH 3 produced in a rich atmosphere. In the lean atmosphere, the NO 3 in the exhaust gas is selectively used with NH 3 as a reducing agent. It has the function of reducing to According to the SCR 18, it is possible to effectively prevent a situation in which NH 3 and NOx blown downstream of the NSR catalyst 16 are released into the atmosphere.
 本実施の形態のシステムは、図1に示すとおり、ECU(Electronic Control Unit)30を備えている。ECU30の出力部には、燃料噴射装置(図示せず)等の種々のアクチュエータが接続されている。ECU30の入力部には、機関回転数NEを検出するためのクランク角センサやスロットル開度TAを検出するためのスロットル開度センサ(何れも図示せず)の他、内燃機関10の運転条件および運転状態を検出するための種々のセンサ類が接続されている。ECU30は、入力された各種の情報に基づいて、図1に示すシステムの状態を制御することができる。 The system according to the present embodiment includes an ECU (Electronic Control Unit) 30 as shown in FIG. Various actuators such as a fuel injection device (not shown) are connected to the output portion of the ECU 30. In addition to the crank angle sensor for detecting the engine speed NE and the throttle opening sensor (not shown) for detecting the throttle opening TA, the input part of the ECU 30 includes the operating conditions of the internal combustion engine 10 and Various sensors for detecting the driving state are connected. The ECU 30 can control the state of the system shown in FIG. 1 based on various types of input information.
[実施の形態1の動作]
 先ず、本実施の形態のシステムにおいて実行されるリッチスパイク制御について説明する。ECU30は、通常、内燃機関10をリーン空燃比で運転(リーン運転)させる。リーン運転中は、NOx等の酸化剤がHC、CO等の還元剤よりも多量に排出される。このため、三元触媒を用いて当該排気ガスを浄化しようとしても、還元剤の不足によって全てのNOxを浄化することができない。そこで、本実施の形態1のシステムは、排気通路123にNSR触媒16を備えることとしている。NSR触媒16は、NOxをBa(NO等の硝酸塩として吸蔵する機能を有している。このため、本実施の形態1のシステムによれば、リーン運転中であっても、該NOxが大気中に放出されてしまう事態を効果的に抑制することができる。
[Operation of Embodiment 1]
First, rich spike control executed in the system of the present embodiment will be described. The ECU 30 normally operates the internal combustion engine 10 at a lean air-fuel ratio (lean operation). During lean operation, oxidizers such as NOx are discharged in a larger amount than reducing agents such as HC and CO. For this reason, even if it is going to purify the exhaust gas using a three-way catalyst, it is not possible to purify all NOx due to a shortage of reducing agent. Therefore, the system according to the first embodiment is provided with the NSR catalyst 16 in the exhaust passage 123. The NSR catalyst 16 has a function of storing NOx as nitrates such as Ba (NO 3 ) 2 . For this reason, according to the system of the first embodiment, it is possible to effectively suppress the situation where the NOx is released into the atmosphere even during the lean operation.
 但し、NSR触媒16のNOx吸蔵性能は、吸蔵量が増加するにつれて低下してしまう。このため、リーン運転が長時間継続されると、吸蔵されなかったNOxが該触媒下流に吹き抜けてしまう。そこで、本実施の形態1のシステムでは、NSR触媒16に吸蔵されたNOxを定期的に脱離させて処理するリッチスパイク制御が実行される。より具体的には、NSR触媒16に吸蔵されているNOx量が所定の吸蔵限界量(例えば、最大吸蔵量の8割に相当する量)に達したタイミングで、内燃機関10の排気空燃比が一時的にリッチ(例えば、目標A/F=12)に制御される。リッチスパイク実行中の排気ガスには、HC、CO、H等の還元剤が多量に含まれている。このため、これらの還元剤がNSR触媒16内へ導入されると、硝酸塩として吸蔵されていたNOxは、NOまで還元されて塩基から脱離される。脱離したNOxは、NSR触媒16内の触媒上でN等に浄化されて処理される。このように、リーン運転中にリッチスパイクを実行することにより、NSR触媒16に吸蔵されていたNOxを脱離処理することができるので、NOx吸蔵性能を有効に回復させることができる。 However, the NOx storage performance of the NSR catalyst 16 decreases as the storage amount increases. For this reason, if the lean operation is continued for a long time, NOx that has not been occluded will blow through downstream of the catalyst. Therefore, in the system of the first embodiment, rich spike control is performed in which NOx occluded in the NSR catalyst 16 is periodically desorbed and processed. More specifically, at the timing when the NOx amount stored in the NSR catalyst 16 reaches a predetermined storage limit amount (for example, an amount corresponding to 80% of the maximum storage amount), the exhaust air-fuel ratio of the internal combustion engine 10 is increased. It is temporarily controlled to be rich (for example, target A / F = 12). The exhaust gas during execution of rich spike contains a large amount of reducing agent such as HC, CO, H 2 and the like. For this reason, when these reducing agents are introduced into the NSR catalyst 16, NOx stored as nitrate is reduced to NO and desorbed from the base. The desorbed NOx is purified to N 2 or the like on the catalyst in the NSR catalyst 16 and processed. Thus, by executing the rich spike during the lean operation, the NOx occluded in the NSR catalyst 16 can be desorbed, so that the NOx occlusion performance can be effectively recovered.
 尚、リッチスパイク時の目標A/Fは適宜設定可能であるが、NSR触媒16におけるNOx浄化性能向上の観点からはリッチ空燃比であるほど好ましい。但し、背反として燃費が悪化するため、後述するSCR18におけるNOx浄化が期待できる場合には、排気空燃比を出来る限りリーン側に設定することが好ましい。 The target A / F at the time of rich spike can be set as appropriate, but the rich air-fuel ratio is more preferable from the viewpoint of improving the NOx purification performance of the NSR catalyst 16. However, since fuel efficiency deteriorates as a contradiction, it is preferable to set the exhaust air-fuel ratio as lean as possible when NOx purification in the SCR 18 described later can be expected.
 次に、SCR18の機能について説明する。上述したとおり、リッチスパイクの実行によって、NSR触媒16のNOx吸蔵性能を有効に回復させることができる。しかしながら、リッチスパイクが実行されると、該NSR触媒16から脱離したNOxの一部が浄化されずにそのまま下流に吹き抜けてしまう。また、上述したとおり、リーン運転中にNSR触媒16に吸蔵されずに下流に吹き抜けたNOxも存在する。これらの吹き抜けNOxがそのまま大気中に放出されてしまうとエミッションの悪化を招いてしまう。 Next, the function of the SCR 18 will be described. As described above, the NOx storage performance of the NSR catalyst 16 can be effectively recovered by executing the rich spike. However, when the rich spike is executed, part of the NOx desorbed from the NSR catalyst 16 is blown downstream without being purified. Further, as described above, there is also NOx that is blown downstream without being stored in the NSR catalyst 16 during the lean operation. If these blow-by NOx are released into the atmosphere as they are, emissions will be deteriorated.
 そこで、本実施の形態1のシステムは、NSR触媒16の下流側に吹き抜けたNOxを処理するためのSCR18を備えることとしている。上述したとおり、SCR18は、SC14およびNSR触媒16が、リッチ雰囲気下で生成するNHをその内部に吸蔵している。このため、SCR18によれば、NSR触媒16の下流に吹き抜けてきたNOxをNHで選択的に還元して浄化することができる。これにより、NOxが大気中に放出されてエミッションが悪化する事態を有効に阻止することができる。 Therefore, the system according to the first embodiment includes an SCR 18 for processing NOx blown through the downstream side of the NSR catalyst 16. As described above, the SCR 18 occludes therein NH 3 produced by the SC 14 and the NSR catalyst 16 in a rich atmosphere. For this reason, according to the SCR 18, NOx blown downstream of the NSR catalyst 16 can be selectively reduced and purified by NH 3 . Thereby, the situation where NOx is released into the atmosphere and the emission deteriorates can be effectively prevented.
 尚、本出願の発明者の見解によれば、SC14およびNSR触媒16(特にNSR触媒16)において生成されるNH量は、リッチスパイク時の排気空燃比によって変動する。図2は、排気空燃比に対するNH生成濃度および生成時間の関係を示す図である。この図に示すとおり、排気空燃比がA/F=13近傍となるスライトリッチ空燃比である場合に、NH濃度が最も高くなっている。このため、リッチスパイク時の目標A/Fをこのスライトリッチ空燃比に制御することで、SCR18のNOx浄化性能を有効に高めることができる。但し、図2に示すとおり、排気空燃比がリッチからストイキへ近づくほどNHが発生するまでの時間が長くなる傾向にある。このため、SCR18のNOx浄化性能を向上させる観点からは、NHの生成濃度だけでなくNHの生成時間も考慮して、SCR18に流入するNH量が最大となる目標A/Fに設定することが好ましい。 According to the view of the inventors of the present application, the amount of NH 3 produced in the SC 14 and the NSR catalyst 16 (particularly the NSR catalyst 16) varies depending on the exhaust air-fuel ratio at the time of rich spike. FIG. 2 is a graph showing the relationship between the NH 3 production concentration and the production time with respect to the exhaust air-fuel ratio. As shown in this figure, the NH 3 concentration is the highest when the exhaust air-fuel ratio is a light rich air-fuel ratio in the vicinity of A / F = 13. For this reason, the NOx purification performance of the SCR 18 can be effectively enhanced by controlling the target A / F during the rich spike to the light rich air-fuel ratio. However, as shown in FIG. 2, the time until NH 3 is generated tends to increase as the exhaust air-fuel ratio approaches from stoichiometric to rich. Therefore, from the viewpoint of improving the NOx purification performance of the SCR 18, the target A / F that maximizes the amount of NH 3 flowing into the SCR 18 is set in consideration of not only the NH 3 generation concentration but also the NH 3 generation time. It is preferable to do.
 このように、リッチスパイク時の排気空燃比を変化させると、NSR触媒16とSCR18とのNOx浄化比率が変化する。より具体的には、リッチスパイク時の目標A/Fがリッチ側からスライトリッチに近づくほど、NSR触媒16に対するSCR18のNOx浄化比率が高くなる。そこで、本実施の形態のシステムでは、リッチスパイク時の目標A/Fをスライトリッチ(目標A/F≒13)に制御した場合に、これらNSR触媒16とSCR18との組み合わせで所望のNOx浄化性能(例えば、NOx浄化率=99.6%)を発揮するように、その触媒容量・特性等の条件を決定している。これにより、SCR18を用いたNOx浄化を主としたNOx浄化システムを実現することができるので、燃費の悪化を抑制しつつ所望のNOx浄化率を実現することができる。 Thus, when the exhaust air-fuel ratio at the time of rich spike is changed, the NOx purification ratio between the NSR catalyst 16 and the SCR 18 changes. More specifically, the NOx purification ratio of the SCR 18 with respect to the NSR catalyst 16 becomes higher as the target A / F at the time of rich spike becomes closer to the rich rich from the rich side. Therefore, in the system of the present embodiment, when the target A / F at the time of the rich spike is controlled to be a rich rich (target A / F≈13), a desired NOx purification performance is obtained by a combination of the NSR catalyst 16 and the SCR 18. The conditions such as the catalyst capacity and characteristics are determined so as to exhibit (for example, NOx purification rate = 99.6%). Thereby, since the NOx purification system mainly using NOx purification using the SCR 18 can be realized, it is possible to realize a desired NOx purification rate while suppressing deterioration of fuel consumption.
[本実施の形態1の特徴的動作]
 次に、図3を参照して、本実施の形態の特徴的動作について説明する。上述したとおり、本実施の形態のシステムでは、NSR触媒16とSCR18との組み合わせによってNOxを浄化するシステムにおいて、リッチスパイク時の目標A/Fをスライトリッチに制御することで、SCR18を主としたNOx浄化を実現している。
[Characteristic operation of the first embodiment]
Next, characteristic operations of the present embodiment will be described with reference to FIG. As described above, in the system of the present embodiment, in the system that purifies NOx by the combination of the NSR catalyst 16 and the SCR 18, the SCR 18 is mainly used by controlling the target A / F at the time of rich spike to be slightly rich. NOx purification is realized.
 ここで、一般的にSCR18は、貴金属を含むSC14やNSR触媒16よりも経時劣化し易い傾向にある。これは、SCR18内のゼオライト構造が水蒸気や脱Al反応によって比較的容易に破壊される傾向にあるためである。SCR18の経時劣化が進行すると、そのNOx還元性能の低下によりNOx浄化率が低下してしまう。このため、NSR触媒16とSCR18との組み合わせによって常に高いNOx浄化率を維持するためには、SCR18の経時劣化によるNOx浄化率の低下分をNSR触媒16のNOx浄化性能で補う必要がある。 Here, in general, the SCR 18 tends to deteriorate with time more than the SC 14 and the NSR catalyst 16 containing noble metals. This is because the zeolite structure in the SCR 18 tends to be relatively easily destroyed by water vapor and de-Al reaction. As the SCR 18 deteriorates with time, the NOx purification rate decreases due to the decrease in NOx reduction performance. For this reason, in order to always maintain a high NOx purification rate by the combination of the NSR catalyst 16 and the SCR 18, it is necessary to compensate for the decrease in the NOx purification rate due to the aging of the SCR 18 with the NOx purification performance of the NSR catalyst 16.
 そこで、本実施の形態のシステムでは、SCR18の経時劣化が進行するほど、リッチスパイク時の目標A/Fをリッチ側へ変化させることとしている。リッチスパイク時の目標A/Fがスライトリッチからリッチ側へ移行するほど、SCR18に対するNSR触媒16のNOx浄化比率が高くなる。これにより、SCR18のNOx浄化性能低下に対応してNSR触媒16を主としたNOx浄化システムに移行することができる。したがって、SCR18の経時劣化が進行した場合であっても所望のNOx浄化率を維持することができる。 Therefore, in the system of the present embodiment, the target A / F at the time of rich spike is changed to the rich side as the SCR 18 deteriorates with time. As the target A / F at the time of rich spike shifts from the rich rich to the rich side, the NOx purification ratio of the NSR catalyst 16 to the SCR 18 becomes higher. Thereby, it can transfer to the NOx purification system which mainly made the NSR catalyst 16 corresponding to the NOx purification performance fall of SCR18. Therefore, the desired NOx purification rate can be maintained even when the SCR 18 deteriorates with time.
 尚、SCR18の経時劣化度合は、内燃機関10が搭載された車両の継続走行距離を指標にして判断することができる。図3は、内燃機関10が搭載された車両の継続走行距離とリッチスパイクの目標A/Fとの関係を規定したマップを示す。ECU30は、例えばこのマップを用いて、リッチスパイク時の目標A/Fを設定することができる。このマップでは、継続走行距離が長いほど目標A/Fがよりリッチな値となるように、その値が規定されている。したがって、かかるマップを用いることにより、SCR18の経時劣化度合をリッチスパイク時の目標A/Fに反映させることができる。 It should be noted that the degree of deterioration of the SCR 18 with time can be determined using the continuous travel distance of the vehicle on which the internal combustion engine 10 is mounted as an index. FIG. 3 shows a map that defines the relationship between the continuous travel distance of the vehicle on which the internal combustion engine 10 is mounted and the rich spike target A / F. The ECU 30 can set the target A / F at the time of rich spike using, for example, this map. In this map, the value is specified so that the target A / F becomes a richer value as the continuous travel distance is longer. Therefore, by using such a map, the degree of deterioration with time of the SCR 18 can be reflected in the target A / F at the time of rich spike.
[実施の形態1における具体的処理]
 次に、図4を参照して、本実施の形態において実行する処理の具体的内容について説明する。図4は、ECU30が、リッチスパイク制御を実行するルーチンのフローチャートである。尚、図4に示すルーチンは、内燃機関10のリーン運転中に繰り返し実行されるものとする。
[Specific Processing in Embodiment 1]
Next, with reference to FIG. 4, the specific content of the process performed in this Embodiment is demonstrated. FIG. 4 is a flowchart of a routine in which the ECU 30 executes rich spike control. Note that the routine shown in FIG. 4 is repeatedly executed during the lean operation of the internal combustion engine 10.
 図4に示すルーチンでは、先ず、リッチスパイクの実行条件が成立したか否かが判定される(ステップ100)。ここでは、具体的には、先ず、NSR触媒16中に吸蔵されている現在のNOx吸蔵量が推定される。そして、推定されたNOx吸蔵量が所定の吸蔵限界量に達しているかが判定される。その結果、NOx吸蔵量≧吸蔵限界量の成立が認められない場合には、未だリッチスパイクの実行条件が成立していないと判断されて、本ステップ100が繰り返し実行される。 In the routine shown in FIG. 4, it is first determined whether or not the rich spike execution condition is satisfied (step 100). Specifically, first, the current NOx occlusion amount occluded in the NSR catalyst 16 is estimated. Then, it is determined whether the estimated NOx occlusion amount has reached a predetermined occlusion limit amount. As a result, if the establishment of NOx storage amount ≧ storage limit amount is not recognized, it is determined that the execution condition of the rich spike has not yet been established, and this step 100 is repeatedly executed.
 一方、上記ステップ100において、NOx吸蔵量≧吸蔵限界量の成立が認められた場合には、リッチスパイクの実行条件が成立したと判断されて、次のステップに移行し、リッチスパイク時の目標A/Fが読み込まれる(ステップ102)。ここでは、具体的には、現在までの継続走行距離が読み込まれる。そして、図3に示すマップを用いて、読み込まれた継続走行距離に対応する目標A/Fが特定される。 On the other hand, if it is determined in step 100 that NOx occlusion amount ≥ occlusion limit amount is established, it is determined that the execution condition of the rich spike is established, the process proceeds to the next step, and the target A at the time of rich spike is set. / F is read (step 102). Here, specifically, the continuous travel distance up to the present is read. And the target A / F corresponding to the read continuous mileage is specified using the map shown in FIG.
 次に、リッチスパイクが実行される(ステップ104)。ここでは、具体的には、上記ステップ102において読み込まれた目標A/Fによるリッチスパイク制御が実行される。 Next, a rich spike is executed (step 104). Here, specifically, rich spike control based on the target A / F read in step 102 is executed.
 以上説明したとおり、本実施の形態のシステムによれば、継続走行距離に応じてリッチスパイク時の目標A/Fが可変に設定される。このため、NSR触媒16とSCR18とのNOx浄化比率を、SCR18の経時劣化の度合に応じた比率に設定することができるので、SCR18の経時劣化によらず高いNOx浄化率を実現することができる。 As described above, according to the system of the present embodiment, the target A / F at the time of rich spike is variably set according to the continuous travel distance. For this reason, since the NOx purification ratio between the NSR catalyst 16 and the SCR 18 can be set to a ratio corresponding to the degree of deterioration of the SCR 18 with time, a high NOx purification rate can be realized regardless of the deterioration of the SCR 18 with time. .
 また、本実施の形態のシステムによれば、継続走行距離が短い場合、すなわちSCR18の経時劣化が進行していない場合には、リッチスパイク時の目標A/Fがスライトリッチに設定される。これにより、燃費の悪化を抑制しつつ、NSR触媒16とSCR18との組み合わせで高いNOx浄化率を実現することができる。 Further, according to the system of the present embodiment, when the continuous running distance is short, that is, when the SCR 18 is not deteriorated with time, the target A / F at the time of rich spike is set to be slightly rich. Thereby, a high NOx purification rate can be realized by a combination of the NSR catalyst 16 and the SCR 18 while suppressing deterioration of fuel consumption.
 ところで、上述した実施の形態1においては、図3に示すマップに従いリッチスパイク時の目標A/Fを設定することとしているが、SCR18の劣化耐性によって適宜異なるマップを使用することとしてもよい。図5は、車両の継続走行距離とリッチスパイクの目標A/Fとの関係を規定したマップの他の例を示す図である。この図のマップに示すとおり、例えば、経時劣化し難いSCR18を使用している場合には、走行距離に対する目標A/Fがよりリーン側に設定されたマップを使用すればよい。これにより、走行距離が伸びても薄いリッチスパイクを打ち続けることができるので、燃費の悪化を有効に抑止することができる。 Incidentally, in the above-described first embodiment, the target A / F at the time of rich spike is set according to the map shown in FIG. 3, but a different map may be used as appropriate depending on the deterioration resistance of the SCR 18. FIG. 5 is a diagram showing another example of a map that defines the relationship between the continuous travel distance of the vehicle and the target A / F of the rich spike. As shown in the map of this figure, for example, when using the SCR 18 that hardly deteriorates with time, a map in which the target A / F with respect to the travel distance is set on the lean side may be used. As a result, even if the mileage is extended, a thin rich spike can be continued, so that deterioration in fuel consumption can be effectively suppressed.
 また、上述した実施の形態1においては、SCR18の経時劣化の指標として車両の継続走行距離を用いているが、使用可能な指標はこれに限られない。すなわち、SCR18の経時劣化が進行すると、該SCR18の触媒床温が低下する傾向にある。そこで、例えば、SCR18の触媒床温を検出するための温度センサを配置し、係る触媒床温をSCR18の経時劣化の指標として用いることとしてもよい。 In the first embodiment described above, the continuous travel distance of the vehicle is used as an index of aging degradation of the SCR 18, but the usable index is not limited to this. That is, as the SCR 18 deteriorates with time, the catalyst bed temperature of the SCR 18 tends to decrease. Therefore, for example, a temperature sensor for detecting the catalyst bed temperature of the SCR 18 may be arranged, and the catalyst bed temperature may be used as an indicator of the deterioration of the SCR 18 with time.
 尚、上述した実施の形態1においては、NSR触媒16が前記第1の発明における「NSR触媒」に、SCR18が前記第1の発明における「SCR」に、それぞれ相当している。また、上述した実施の形態1においては、ECU30が、上記ステップ102の処理を実行することにより、前記第1の発明における「所得手段」が、上記ステップ104の処理を実行することにより、前記第1の発明における「リッチスパイク手段」が、上記ステップ102の処理を実行することにより、前記第1の発明における「空燃比設定手段」が、それぞれ実現されている。 In the first embodiment described above, the NSR catalyst 16 corresponds to the “NSR catalyst” in the first invention, and the SCR 18 corresponds to the “SCR” in the first invention. Further, in the first embodiment described above, the ECU 30 executes the process of step 102, and the “income means” in the first invention executes the process of step 104. The “rich spike means” in the first aspect of the invention executes the processing of step 102, thereby realizing the “air-fuel ratio setting means” in the first aspect of the invention.
実施の形態2.
[実施の形態2の特徴]
 次に、図6を参照して、本発明の実施の形態2の特徴について説明する。三元機能を有するSC14やNSR触媒16には、ロバスト性を高めることを目的として、セリア等のOSC材が担体の一成分として用いられている。このOSC材は酸素吸放出能を有し、リーン雰囲気で酸素を吸収しリッチ雰囲気で酸素を放出する。このため、リッチスパイクの実行初期に排出される還元剤の一部は、OSC材での酸素吸蔵反応に使用されてしまう傾向にある。このため、上述した実施の形態1のシステムのように、リッチスパイクの実行期間中の目標A/Fを一定に制御することとすると、該リッチスパイクの初期期間において所望の目標A/Fを実現できていないことも想定される。
Embodiment 2. FIG.
[Features of Embodiment 2]
Next, features of the second embodiment of the present invention will be described with reference to FIG. For the SC14 and the NSR catalyst 16 having a ternary function, an OSC material such as ceria is used as one component of the carrier for the purpose of enhancing robustness. This OSC material has an oxygen absorption / release capability, absorbs oxygen in a lean atmosphere, and releases oxygen in a rich atmosphere. For this reason, a part of the reducing agent discharged in the early stage of the rich spike tends to be used for the oxygen storage reaction in the OSC material. Therefore, if the target A / F during the rich spike execution period is controlled to be constant as in the system of the first embodiment described above, the desired target A / F is realized in the initial period of the rich spike. It is also assumed that it has not been done.
 そこで、本実施の形態2のシステムでは、2段階のリッチスパイクを実行することとする。図6は、2段階のリッチスパイクを説明するための図である。この図に示すとおり、ECU30は、2段目のリッチスパイクの制御A/F(以下、2段目A/F)を図4に示すマップから特定された目標A/F(例えば、2段目A/F=13)に設定し、1段目のリッチスパイクの制御A/F(以下、1段目A/F)を2段目A/Fよりもリッチな値(例えば、1段目A/F=12)に設定する。1段目のリッチスパイクのリッチ成分の一部は、OSC材での酸素吸蔵反応に使用される。このため、上記2段階のリッチスパイクを実行することで、リッチスパイクの初期期間の空燃比ズレを有効に抑制することができる。 Therefore, in the system of the second embodiment, two stages of rich spikes are executed. FIG. 6 is a diagram for explaining a two-stage rich spike. As shown in this figure, the ECU 30 sets the target A / F (for example, the second stage) for the control A / F (hereinafter, the second stage A / F) of the second stage rich spike from the map shown in FIG. A / F = 13), and the rich spike control A / F of the first stage (hereinafter, the first stage A / F) is richer than the second stage A / F (for example, the first stage A / F = 12). Part of the rich component of the first stage rich spike is used for the oxygen storage reaction in the OSC material. For this reason, by executing the above-described two-stage rich spike, it is possible to effectively suppress the air-fuel ratio deviation in the initial period of the rich spike.
 尚、1段目A/Fは、2段目A/Fよりもリッチな固定値としてもよいが、OSC材による還元剤の消費分を補うように、1段目のA/Fおよびその期間を設定することが好ましい。これにより、OSC材の酸素放出反応による影響を有効に排除してリッチスパイク期間の全域にわたり所望の目標A/Fを実現することができる。 The first stage A / F may be a fixed value that is richer than the second stage A / F, but the first stage A / F and its period so as to compensate for the consumption of the reducing agent by the OSC material. Is preferably set. As a result, it is possible to effectively eliminate the influence of the oxygen release reaction of the OSC material and realize a desired target A / F throughout the rich spike period.
 尚、上述した実施の形態2においては、1段目A/Fが前記第5の発明における「第1の空燃比」に、1段目A/Fが前記第5の発明における「第2の空燃比」に、それぞれ相当している。 In the second embodiment described above, the first stage A / F is the “first air-fuel ratio” in the fifth aspect of the invention, and the first stage A / F is the “second stage” in the fifth aspect of the invention. It corresponds to “air-fuel ratio”.
実施の形態3.
[実施の形態3の特徴]
 次に、図7を参照して、本発明の実施の形態3について説明する。本実施の形態3は、図1に示すシステムを用いて、後述する図7に示すルーチンを実行することにより実現することができる。
Embodiment 3 FIG.
[Features of Embodiment 3]
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment can be realized by executing a routine shown in FIG. 7 to be described later using the system shown in FIG.
 上述した実施の形態1のシステムでは、走行距離に応じてリッチスパイク時の目標A/Fを可変に設定することとしている。これにより、SCR18の経時劣化度合によらず、NSR触媒16とSCR18との組み合わせで高いNOx浄化率を実現することができる。 In the system of the first embodiment described above, the target A / F at the time of rich spike is variably set according to the travel distance. Thereby, a high NOx purification rate can be realized by the combination of the NSR catalyst 16 and the SCR 18 regardless of the deterioration degree of the SCR 18 with time.
 ここで、NSR触媒16およびSCR18では、NOxの浄化反応に加えて亜酸化窒素(NO)の生成反応が起こる。NOは二酸化炭素の約300倍の温室効果ガスであるといわれており、極力排出を抑制することが好ましい。このNO生成反応は、特に触媒床温が低い、すなわち触媒活性が低い環境下において起こり易い傾向にある。そこで、本実施の形態3のシステムでは、NSR触媒16およびSCR18の床温が所定の基準温度よりも低い場合に、図3に示すマップによって特定されたリッチスパイク時の目標A/Fを更にリッチ側の空燃比へと補正することとする。リッチスパイク時の排気空燃比がリッチ空燃比であるほど、触媒内の燃焼反応が活発化される。このため、NO生成反応を有効に抑制することができる。 Here, in the NSR catalyst 16 and the SCR 18, a nitrous oxide (N 2 O) generation reaction occurs in addition to the NOx purification reaction. N 2 O is said to be a greenhouse gas about 300 times as much as carbon dioxide, and it is preferable to suppress emissions as much as possible. This N 2 O production reaction tends to occur particularly in an environment where the catalyst bed temperature is low, that is, the catalyst activity is low. Therefore, in the system of the third embodiment, when the bed temperatures of the NSR catalyst 16 and the SCR 18 are lower than the predetermined reference temperature, the target A / F at the rich spike specified by the map shown in FIG. It will be corrected to the air-fuel ratio on the side. As the exhaust air-fuel ratio at the time of rich spike is the rich air-fuel ratio, the combustion reaction in the catalyst is activated. Therefore, it is possible to effectively suppress the N 2 O formation reaction.
 尚、目標A/Fの補正は、目標A/F毎の補正量をマップ化しておいてもよいし、また、目標A/Fに所定の係数を乗算することとしてもよい。但し、極端なリッチ空燃比は燃費の悪化やNHの生成量低下等の弊害があるため、これらを考慮しつつ最適な補正量を設定することが好ましい。また、触媒床温は、各触媒に温度センサを設けて検出することとしてもよいし、また、内燃機関10の運転条件・状態から公知の手法を用いて推定することとしてもよい。また、NSR触媒16とSCR18との両方の触媒床温を取得することが好ましいが、何れかの触媒床温を検出すれば、少なくとも上記発明を実行することができる。 The target A / F may be corrected by mapping the correction amount for each target A / F, or by multiplying the target A / F by a predetermined coefficient. However, since an extreme rich air-fuel ratio has problems such as deterioration of fuel consumption and a decrease in the amount of NH 3 produced, it is preferable to set an optimal correction amount in consideration of these. Further, the catalyst bed temperature may be detected by providing a temperature sensor for each catalyst, or may be estimated from the operating conditions and states of the internal combustion engine 10 using a known method. Further, it is preferable to acquire the catalyst bed temperatures of both the NSR catalyst 16 and the SCR 18, but if any catalyst bed temperature is detected, at least the above-described invention can be implemented.
 [実施の形態3における具体的処理]
 次に、図7を参照して、本実施の形態において実行する処理の具体的内容について説明する。図7は、ECU30が、リッチスパイク制御を実行するルーチンのフローチャートである。尚、図7に示すルーチンは、内燃機関10のリーン運転中に繰り返し実行されるものとする。
[Specific Processing in Embodiment 3]
Next, with reference to FIG. 7, the specific content of the process performed in this Embodiment is demonstrated. FIG. 7 is a flowchart of a routine in which the ECU 30 executes rich spike control. Note that the routine shown in FIG. 7 is repeatedly executed during the lean operation of the internal combustion engine 10.
 図4に示すルーチンでは、先ず、リッチスパイクの実行条件が成立したか否かが判定される(ステップ200)。ここでは、具体的には、上記ステップ100と同様の処理が実行される。その結果、NOx吸蔵量≧吸蔵限界量の成立が認められない場合には、未だリッチスパイクの実行条件が成立していないと判断されて、本ステップ200が繰り返し実行される。 In the routine shown in FIG. 4, it is first determined whether or not the rich spike execution condition is satisfied (step 200). Here, specifically, the same processing as in step 100 is executed. As a result, if the establishment of NOx storage amount ≧ storage limit amount is not recognized, it is determined that the rich spike execution condition has not yet been established, and this step 200 is repeatedly executed.
 一方、上記ステップ200において、NOx吸蔵量≧吸蔵限界量の成立が認められた場合には、リッチスパイクの実行条件が成立したと判断されて、次のステップに移行し、リッチスパイク時の目標A/Fが読み込まれる(ステップ202)。ここでは、具体的には、上記ステップ102と同様の処理が実行される。 On the other hand, if the establishment of NOx occlusion amount ≥ occlusion limit amount is recognized in step 200, it is determined that the rich spike execution condition is established, the process proceeds to the next step, and the target A at the time of rich spike is determined. / F is read (step 202). Here, specifically, the same processing as in step 102 is executed.
 次に、NSR触媒16および/またはSCR18の触媒床温が所定温度より低いか否かが判定される(ステップ204)。ここでは、各触媒に配置された温度センサの検出信号に基づいて、各触媒の触媒床温Tが推定される。そして、これらの触媒床温がそれぞれ所定温度kよりも低いか否かが判定される。その結果、触媒床温<所定温度の成立が認められない場合には、各触媒におけるN2Oの生成率は低いと判断されて、次のステップに移行し、上記ステップ202において読み込まれた目標A/Fによるリッチスパイク制御が実行される(ステップ204)。 Next, it is determined whether or not the catalyst bed temperature of the NSR catalyst 16 and / or the SCR 18 is lower than a predetermined temperature (step 204). Here, the catalyst bed temperature T of each catalyst is estimated based on the detection signal of the temperature sensor arrange | positioned at each catalyst. Then, it is determined whether each of these catalyst bed temperatures is lower than a predetermined temperature k. As a result, if establishment of catalyst bed temperature <predetermined temperature is not recognized, it is determined that the N 2 O generation rate in each catalyst is low, the process proceeds to the next step, and the target A / Rich spike control by F is executed (step 204).
 一方、触媒床温<所定温度の成立が認められた場合には、各触媒におけるN2Oの生成率が高いと判断されて、次のステップに移行し、上記ステップ202において読み込まれた目標A/Fをリッチ側に補正した上でリッチスパイク制御が実行される(ステップ206)。 On the other hand, when establishment of catalyst bed temperature <predetermined temperature is recognized, it is determined that the N 2 O generation rate in each catalyst is high, the process proceeds to the next step, and the target A / F read in step 202 is read. Is corrected to the rich side and rich spike control is executed (step 206).
 以上説明したとおり、本実施の形態のシステムによれば、触媒床温が所定温度よりも低い場合にリッチスパイク時の目標A/Fがリッチ側に補正される。これにより、温室効果ガスであるNOが大気に多量に放出されてしまう事態を有効に抑制することができる。 As described above, according to the system of the present embodiment, the target A / F during the rich spike is corrected to the rich side when the catalyst bed temperature is lower than the predetermined temperature. Thereby, the situation where a large amount of N 2 O, which is a greenhouse gas, is released to the atmosphere can be effectively suppressed.
 ところで、上述した実施の形態3では、上述した実施の形態1のようにリッチスパイクの実行期間中の目標A/Fを一定に制御することとしているが、上述した実施の形態2のように、2段階のリッチスパイクを実行することとしてもよい。尚、その際は、少なくとも2段目A/Fを触媒床温に応じて補正することとすればよい。これにより、リッチスパイクの初期に重畳するOSC材の影響を排除しつつ、NOの排出を有効に抑制することができる。 By the way, in Embodiment 3 described above, the target A / F during the rich spike execution period is controlled to be constant as in Embodiment 1 described above, but as in Embodiment 2 described above, Two rich spikes may be executed. In this case, at least the second stage A / F may be corrected according to the catalyst bed temperature. Thereby, discharge of N 2 O can be effectively suppressed while eliminating the influence of the OSC material superimposed at the beginning of the rich spike.
 尚、上述した実施の形態3においては、ECU30が、上記ステップ202の処理を実行することにより、前記第1の発明における「所得手段」が、上記ステップ206または208の処理を実行することにより、前記第1の発明における「リッチスパイク手段」が、上記ステップ202の処理を実行することにより、前記第1の発明における「空燃比設定手段」が、それぞれ実現されている。 In the third embodiment described above, the ECU 30 executes the process of step 202, and the “income means” in the first invention executes the process of step 206 or 208. The “rich spike means” according to the first aspect of the present invention implements the “air-fuel ratio setting means” according to the first aspect of the present invention by executing the processing of step 202 described above.
 また、上述した実施の形態3においては、ECU30が、上記ステップ204の処理を実行することにより、前記第6の発明における「床温取得手段」が、上記ステップ208の処理を実行することにより、前記第6の発明における「補正手段」が、それぞれ実現されている。 In the above-described third embodiment, the ECU 30 executes the process of step 204, and the “bed temperature acquisition means” in the sixth aspect of the invention executes the process of step 208. The “correction means” in the sixth aspect of the invention is realized.
10 内燃機関(エンジン)
12 排気通路
14 スタート触媒(SC)
16 NOx吸蔵還元触媒(NSR触媒)
18 NOx選択還元触媒(SCR)
30 ECU(Electronic Control Unit)
10 Internal combustion engine
12 Exhaust passage 14 Start catalyst (SC)
16 NOx storage reduction catalyst (NSR catalyst)
18 NOx selective reduction catalyst (SCR)
30 ECU (Electronic Control Unit)

Claims (6)

  1.  リーン運転が可能な内燃機関の排気浄化装置であって、
     前記内燃機関の排気通路に配置されたNOx吸蔵還元触媒(以下、NSR触媒)と、
     前記NSR触媒の下流に配置されたNOx選択還元触媒(以下、SCR)と、
     前記SCRの劣化度合に関する情報を取得する取得手段と、
     リーン運転中の所定のタイミングでリッチスパイクを実行するリッチスパイク手段と、を備え、
     前記リッチスパイク手段は、前記劣化度合に関する情報に応じて、前記リッチスパイク時の排気空燃比を可変に設定する空燃比設定手段を含むことを特徴とする内燃機関の排気浄化装置。
    An exhaust purification device for an internal combustion engine capable of lean operation,
    A NOx occlusion reduction catalyst (hereinafter referred to as NSR catalyst) disposed in the exhaust passage of the internal combustion engine;
    A NOx selective reduction catalyst (hereinafter referred to as SCR) disposed downstream of the NSR catalyst;
    Obtaining means for obtaining information on the degradation degree of the SCR;
    Rich spike means for executing a rich spike at a predetermined timing during lean operation,
    The exhaust purification device for an internal combustion engine, wherein the rich spike means includes air / fuel ratio setting means for variably setting an exhaust air / fuel ratio at the time of the rich spike according to information on the degree of deterioration.
  2.  前記取得手段は、前記内燃機関が搭載された車両の継続走行距離を前記劣化度合に関する情報として取得することを特徴とする請求項1記載の内燃機関の排気浄化装置。 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the acquisition means acquires a continuous travel distance of a vehicle on which the internal combustion engine is mounted as information on the degree of deterioration.
  3.  前記空燃比設定手段は、前記継続走行距離が長いほど前記リッチスパイク時の排気空燃比をリッチ側の値に設定することを特徴とする請求項2記載の内燃機関の排気浄化装置。 3. The exhaust emission control device for an internal combustion engine according to claim 2, wherein the air-fuel ratio setting means sets the exhaust air-fuel ratio at the rich spike to a rich value as the continuous travel distance is longer.
  4.  前記空燃比設定手段は、前記継続走行距離が所定距離より短い場合に、前記リッチスパイク時の排気空燃比をスライトリッチに設定することを特徴とする請求項2または3記載の内燃機関の排気浄化装置。 The exhaust purification of an internal combustion engine according to claim 2 or 3, wherein the air-fuel ratio setting means sets the exhaust air-fuel ratio at the time of the rich spike to a slight rich when the continuous travel distance is shorter than a predetermined distance. apparatus.
  5.  前記リッチスパイク手段は、前記リッチスパイクの実行中の排気空燃比を第1の空燃比から第2の空燃比へ切り替える2段階のリッチスパイクを実行し、
     前記空燃比設定手段は、
     前記劣化度合に関する情報に応じて前記第2の空燃比を可変に設定し、前記第1の空燃比を前記第2の空燃比よりもリッチな値に設定することを特徴とする請求項1乃至4の何れか1項記載の内燃機関の排気浄化装置。
    The rich spike means executes a two-stage rich spike for switching the exhaust air-fuel ratio during execution of the rich spike from the first air-fuel ratio to the second air-fuel ratio,
    The air-fuel ratio setting means includes
    2. The first air-fuel ratio is variably set according to information on the degree of deterioration, and the first air-fuel ratio is set to a richer value than the second air-fuel ratio. 5. An exhaust emission control device for an internal combustion engine according to any one of claims 4 to 4.
  6.  前記NSR触媒および/またはSCRの床温を取得する床温取得手段と、
     前記床温が所定の基準値よりも低い場合に、前記空燃比設定手段によって設定された空燃比をリッチ方向へ補正する補正手段と、
     を更に備えることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の排気浄化装置。
    Bed temperature acquisition means for acquiring the bed temperature of the NSR catalyst and / or SCR;
    Correction means for correcting the air-fuel ratio set by the air-fuel ratio setting means in the rich direction when the bed temperature is lower than a predetermined reference value;
    The exhaust emission control device for an internal combustion engine according to claim 1, further comprising:
PCT/JP2010/065825 2010-09-14 2010-09-14 Exhaust gas purification device for internal combustion engine WO2012035615A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012533773A JP5534020B2 (en) 2010-09-14 2010-09-14 Exhaust gas purification device for internal combustion engine
PCT/JP2010/065825 WO2012035615A1 (en) 2010-09-14 2010-09-14 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065825 WO2012035615A1 (en) 2010-09-14 2010-09-14 Exhaust gas purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012035615A1 true WO2012035615A1 (en) 2012-03-22

Family

ID=45831117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065825 WO2012035615A1 (en) 2010-09-14 2010-09-14 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5534020B2 (en)
WO (1) WO2012035615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857643A4 (en) * 2012-05-24 2015-07-01 Toyota Motor Co Ltd Exhaust emission purification device for internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102907B2 (en) 2014-12-26 2017-03-29 トヨタ自動車株式会社 Exhaust purification device deterioration diagnosis device
JP6287996B2 (en) 2015-08-06 2018-03-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211676A (en) * 2002-11-11 2004-07-29 Toyota Motor Corp Exhaust gas cleaner for internal combustion engine
JP2010112345A (en) * 2008-11-10 2010-05-20 Mitsubishi Motors Corp Exhaust emission control device
JP2010116784A (en) * 2008-11-11 2010-05-27 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2010185372A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Method and device for exhaust emission control of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211676A (en) * 2002-11-11 2004-07-29 Toyota Motor Corp Exhaust gas cleaner for internal combustion engine
JP2010112345A (en) * 2008-11-10 2010-05-20 Mitsubishi Motors Corp Exhaust emission control device
JP2010116784A (en) * 2008-11-11 2010-05-27 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2010185372A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Method and device for exhaust emission control of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857643A4 (en) * 2012-05-24 2015-07-01 Toyota Motor Co Ltd Exhaust emission purification device for internal combustion engine

Also Published As

Publication number Publication date
JP5534020B2 (en) 2014-06-25
JPWO2012035615A1 (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5282828B2 (en) Exhaust gas purification system for internal combustion engine
JP5333598B2 (en) Exhaust gas purification system for internal combustion engine
JP4894954B2 (en) Exhaust gas purification system for internal combustion engine
JP4665923B2 (en) Catalyst deterioration judgment device
JP5625872B2 (en) Exhaust gas purification device for internal combustion engine
AU2011376494B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5534013B2 (en) Exhaust gas purification device for internal combustion engine
JP2012057571A (en) Exhaust emission control apparatus of internal combustion engine
JP5146545B2 (en) Exhaust gas purification system for internal combustion engine
EP2754868B1 (en) Exhaust gas purification apparatus for internal combustion engine
JP5482222B2 (en) Exhaust gas purification device for internal combustion engine
JP5534020B2 (en) Exhaust gas purification device for internal combustion engine
JP5488493B2 (en) Exhaust gas purification device for internal combustion engine
JP2008303816A (en) Exhaust emission control device for internal combustion engine
JP2009162179A (en) Exhaust emission control device for internal combustion engine and its control device
JP2007309108A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533773

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857249

Country of ref document: EP

Kind code of ref document: A1