WO2012034913A2 - Procédé de mesure de la géométrie du profil de corps courbés, en particulier cylindriques - Google Patents

Procédé de mesure de la géométrie du profil de corps courbés, en particulier cylindriques Download PDF

Info

Publication number
WO2012034913A2
WO2012034913A2 PCT/EP2011/065486 EP2011065486W WO2012034913A2 WO 2012034913 A2 WO2012034913 A2 WO 2012034913A2 EP 2011065486 W EP2011065486 W EP 2011065486W WO 2012034913 A2 WO2012034913 A2 WO 2012034913A2
Authority
WO
WIPO (PCT)
Prior art keywords
segments
circumferential
height
contour
height profiles
Prior art date
Application number
PCT/EP2011/065486
Other languages
German (de)
English (en)
Other versions
WO2012034913A3 (fr
Inventor
Olaf Nemitz
Till Schmitte
Stefan Nitsche
Original Assignee
V & M Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V & M Deutschland Gmbh filed Critical V & M Deutschland Gmbh
Priority to EP11763876.7A priority Critical patent/EP2616763A2/fr
Publication of WO2012034913A2 publication Critical patent/WO2012034913A2/fr
Publication of WO2012034913A3 publication Critical patent/WO2012034913A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded

Definitions

  • the invention relates to a method for measuring the profile geometry of curved, in particular cylindrical bodies according to the preamble of claim 1.
  • the present invention relates to an optical profile measurement which takes place without contact according to the light-slit method as a two-dimensional triangulation method known per se.
  • a two-dimensional triangulation method known per se.
  • a pipe can be constructed.
  • the profile measurement considered in the context of the present invention is based in its one-dimensional shape on the known point triangulation, in which a laser and a cell-shaped position-sensitive detector form the triangulation sensor.
  • the laser beam axis and optical axis of the detector span a plane which is referred to below as a "normal plane” and are at a triangulation angle to one another
  • the distance of the measurement object from the sensor in the direction of the laser beam represents the measured variable DE 40 37 383 A1.
  • the two-dimensional extension of the point triangulation is the subject of the present patent application.
  • the punctiform laser beam is replaced by a laser beam fan and the one-dimensional cell-shaped detector by a two-dimensional planar detector.
  • the laser generates as a measuring field a laser beam fan whose reflected from the surface of the test object rays from a lens and a be received and imaged two-dimensional planar detector.
  • Lens and detector form a two-dimensional surface-area camera.
  • the laser beam fan is typically generated by a diffractive lens mounted in front of the punctiform laser beam exit and thus generates on the measurement object a one-dimensional line called "light-section line".
  • the light section line is typically aligned orthogonal to the tube axis, thereby capturing a portion of the peripheral contour.
  • several probes are to be arranged in a star shape around the measurement object according to DE 40 37 383 A1. With this method, a circumferential contour line of the pipe cross-section in the particular measuring plane, i. H. Longitudinal position of the pipe to be detected.
  • a peripheral contour surface of the tube can be taken over its length with continuous measurement.
  • Disadvantage of the known method is the very complex measuring method with a plurality of sensors to be arranged around the measurement object in order to detect the peripheral contour. In addition to the high capital expenditure, this method can often not be retrofitted in existing production facilities because of the size of the device. A measurement of the profile geometry over the whole
  • the present invention is therefore an object of the invention to provide an easy to implement method for measuring the profile geometry of curved particular cylindrical bodies by means of two-dimensional light-section method, with which the disadvantages described are overcome, ie which requires only one sensor and the relative movement of the tube to Sensor compensated.
  • the height profiles of the respective ones measured during rotation on the object to be measured are used to measure the profile geometry
  • Portions of the circumferential contour to a circumferential contour consisting of virtual segments of the individual height profiles comprising the following steps: a) recording the height profiles with a number of height values in cycles, b) mapping the height values to the virtual circumference segments consisting of data points in a two-dimensional space, c) determining d) arranging the individual perimeter segments in the positions that physically occupy the associated height profiles on the respective subregion of the circumferential contour by means of rotation about a common point of rotation for all
  • Circumference segments e) determination of the overlap lengths of overlapping regions of the circumferential segments, f) rotation and displacement of the individual circumferential segments in such a way that the overlapping regions of the circumferential segments lie over one another as congruently as possible, wherein the height profiles are taken in clocked recording with a number of height values in such a way that adjacent height profiles partially overlap with their ends and / or extend the existing ends by extrapolation and overlapping end regions of adjacent circumferential segments are formed.
  • the great advantage of the method according to the invention is that it is now possible with only one measuring unit, comprising a projector and a detector, ie in particular with a laser and a camera, the profile geometry z. B. of pipes over their entire circumference and length.
  • the inventive method can be very easily integrated into existing test systems, since the space required is very low.
  • the method is designed so that, for the measurement of the profile geometry, both the tube can rotate under the fixed measuring device or the measuring device rotates about the stationary tube.
  • the essential core of the invention is that now the height profiles determined only by a sensor are assembled by mathematical methods to a circumferential contour very close to the real profile geometry, even if the absolute positions of the individual profiles are significantly distorted relative to one another by the relative movement of the tube.
  • the invention is based on overlapping regions of the virtual circumference segments.
  • the mathematical image of the The measured object can then be measured automatically for the desired target values such as roundness deviations.
  • the overlapping areas can be formed by overlapping the receptacles on the pipe jacket even when the height profiles are being recorded in cycles. In these overlapping segments, therefore, the tube jacket is irradiated twice concretely and twice the height values of the same section of the tube jacket are measured, which form the ends of the height profiles.
  • the overlapping regions can also be formed by extrapolation of the virtual circumferential segments, which were obtained from the real measured height data. In other words, the virtual profile lines are extended beyond their ends using computational extrapolation methods such that adjacent circumferential segments overlap in an angle section. This overlap is only virtual or would be visible on a screen display of the data values.
  • the wall thickness over the circumference z. B. determined by means of ultrasound and from the measured data of the outer contour and the wall thickness the
  • FIG. 1 a shows a schematic measuring setup for carrying out the method in a lateral view
  • FIG. 1 b shows a schematic measuring setup for carrying out the method in cross section
  • FIGS. 2a-2d visualize height profiles in a cross-sectional coordinate system at different stages of the measured value processing
  • Figure 3 shows a detail of Figure 2b in an enlarged view
  • FIG. 1 schematically illustrates the measuring principle for a profile measurement in the case of the two-dimensional light-section measurement using the example of a cylindrical tube.
  • the measurement uses an image of the surface of the measurement object 4 irradiated in a fan-shaped manner by a laser 1 as a projected laser line 2 onto the detector 3 designed as a camera.
  • the left partial image shows schematically the view as a longitudinal section and the right partial image as a cross section with respect to the longitudinal axis of the measurement object 4
  • Light-section arrangement of laser 1 and camera are arranged in the normal plane in line with the longitudinal axis of the measurement object, wherein the angle between the axis of the laser beam fan 5 of the laser 1 and the optical axis 6 of the camera in longitudinal section of the triangulation angle.
  • the measurement object 4 moves in accordance with the indicated arrow directions relative to the laser 1 and the camera rotationally or translatorily.
  • the laser line 2 is detected as part of the peripheral contour of the camera and converted into a height profile, which is represented by lateral calibration on a virtual segment.
  • the tube rotates at least once completely under the laser 1 so that height profiles from the various circumferential positions on the complete circumferential contour are detected.
  • the frequency, d. H. the frame rate of the camera is adjusted according to a preferred variant of the method according to the invention so that the recorded height profiles overlap. If, in addition, the circumferential geometry is measured at very many points in the longitudinal direction of the tube, then the profile surface, that is to say the surface contour of the entire tube, can be determined.
  • the z. B. measures the surface movement of the tube in the circumferential direction and after a fixed distance traveled provides a pulse leaves Now determine the absolute angular position of the height profiles on the peripheral contour.
  • the recorded height profiles are then mapped by a lateral-balancing on virtual segments, which describe the height profiles as a set of data points in two-dimensional space.
  • the next step of the method according to the invention is to rotate the virtual segments of the recorded height profiles into that position which physically occupies the associated height profiles on the respective subregion of the peripheral contour of the measurement object.
  • the rotational angle is basically known by the rotational speed of the tube or the rotary encoder acting from the outside on the tube surface and the measuring frequency of the camera, it may be subject to significant errors due to the relative movement of the measured object to the camera. For the same reason, the point by which the circumferential segments must each be rotated, usually not known with sufficient accuracy.
  • a compensation circle is placed in each virtual segment and from this the associated circle center is determined. The calculated average of the centers of the balancing circuits of the different segments is then used as the center around which the individual
  • Peripheral segments 11.1 11. n are turned back, see Figure 2a. to
  • Calculation of the average value of the centers can, for. B. the arithmetic or geometric mean of the coordinates or the center of gravity can be used.
  • Another essential core of the method according to the invention consists of rotating and displacing the virtual circumference segments 11.1, 11n in the evaluation unit in such a way in the area or in space that the overlapping ends are as good as possible, that is, in the area. H. as congruent as possible, lie on each other and so on
  • Curve shape is created, which describes the entire real peripheral contour.
  • the length of the respective overlap region of two adjacent segments is calculated, provided that - as already described at the beginning - there are zones which are doubly detected at the real object by end regions of two adjacent height profiles. If such zones were not included in the measured value recording, overlapping areas are formed numerically by extrapolation of the mutually facing ends of adjacent height profiles. The overlapping areas are marked thicker in FIG. 2b than the remaining lines, which represent circumferential segments. In a further step, the distance from adjacent profiles in the
  • Figure 3 shows an enlarged view of the end portions 12.1, 12 n two
  • the data points are obtained from raw data in which by a filtering method the justified in the construction of the measuring unit fluctuations were filtered out.
  • FIG. 4 shows the height profile after carrying out the method according to the invention.
  • the algorithm described is carried out in a computer unit by means of a suitable computer program.
  • This method can now be repeated over the length of the tube at several longitudinal positions in order to obtain a contour information of the entire tube.
  • the method can also be performed in a spiral relative movement of the tube, when the change of the contour of the tube of a

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un procédé de mesure de la géométrie du profil de corps courbés en particulier cylindriques en tant qu'objets à mesurer (4) à l'aide d'un procédé bidimensionnel de coupe optique, selon lequel une ligne de coupe optique en éventail (2) est reproduite sur une zone partielle du contour périphérique du corps au moyen d'un projecteur (1) et les rayons réfléchis par la surface du corps sont captés par un détecteur (3), le projecteur (1) et le détecteur (3) formant une unité de mesure et les valeurs de mesure étant ensuite fournies à une unité d'évaluation. L'invention vise à mettre au point un procédé simple à réaliser. A cet effet, les profils de hauteur des zones partielles respectives du contour périphérique mesurés pendant la rotation sur l'objet à mesurer (4) sont assemblés en un contour périphérique constitué de segments périphériques virtuels des profils de hauteur individuels selon les étapes suivantes : a) l'enregistrement cadencé des profils de hauteur à l'aide d'un certain nombre de valeurs de hauteur, b) la reproduction de valeurs de hauteur sur les segments périphériques (11.1,..., 11. n) virtuels constitués de points de données (14.1.1, 14.n.i) dans un espace bidimensionnel, c) la détermination de la position angulaire du profil de hauteur respectif sur le contour périphérique de l'objet à mesurer (4), d) l'agencement des segments périphériques individuels (11.1,..., 11.n) dans les positions qu'occupent les profils de hauteur associés physiquement sur la zone partielle respective du contour périphérique au moyen d'une rotation autour d'un point de rotation commun (10) pour tous les segments périphériques (11.1,..., 11.n), e) la détermination des longueurs de recouvrement des zones chevauchantes (12.1,..., 12. n) des segments périphériques (11.1,..., 11. n), f) la rotation et le déplacement des segments périphériques individuels (11.1,..., 11.n) de telle sorte que les zones chevauchantes (12.1,..., 12. n) des segments périphériques (11.1,..., 11.n) reposent les unes sur les autres de manière à coïncider autant que possible, les angles de rotation et les positions spatiales incorrects des segments étant ainsi corrigés. Lors de l'enregistrement cadencé à l'aide d'un certain nombre de valeurs de hauteur, les profils de hauteur sont enregistrés de telle sorte que des profils de hauteur adjacents se recouvrent partiellement par leurs extrémités et/ou les extrémités présentes soient allongées par extrapolation et que des zones d'extrémité chevauchantes de segments périphériques (11.1,..., 11.n) adjacents soient formées.
PCT/EP2011/065486 2010-09-17 2011-09-07 Procédé de mesure de la géométrie du profil de corps courbés, en particulier cylindriques WO2012034913A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11763876.7A EP2616763A2 (fr) 2010-09-17 2011-09-07 Procédé de mesure de la géométrie du profil de corps courbés, en particulier cylindriques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010037621.3 2010-09-17
DE102010037621A DE102010037621A1 (de) 2010-09-17 2010-09-17 Verfahren zur Messung der Profilgeometrie von gekrümmten, insbesondere zylindrischen Körpern

Publications (2)

Publication Number Publication Date
WO2012034913A2 true WO2012034913A2 (fr) 2012-03-22
WO2012034913A3 WO2012034913A3 (fr) 2012-06-07

Family

ID=44720856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065486 WO2012034913A2 (fr) 2010-09-17 2011-09-07 Procédé de mesure de la géométrie du profil de corps courbés, en particulier cylindriques

Country Status (3)

Country Link
EP (1) EP2616763A2 (fr)
DE (1) DE102010037621A1 (fr)
WO (1) WO2012034913A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9418431B2 (en) * 2012-12-19 2016-08-16 Tenaris Connections Limited Straightness measurements of linear stock material
CN105363833B (zh) * 2015-12-02 2017-07-11 中国石油集团渤海石油装备制造有限公司 一种直缝钢管预弯工艺在线检测方法
DE102018121448B4 (de) * 2018-09-03 2022-06-02 SmartRay GmbH Inspektions-Verfahren sowie diesbezügliche Vorrichtung
CN110986769B (zh) * 2019-12-12 2020-11-17 天目爱视(北京)科技有限公司 一种超高超长物体三维采集装置
EP3951313A1 (fr) 2020-08-05 2022-02-09 SMS Group GmbH Mesure de la rectitude des pièces allongées dans l'industrie métallurgique
CN116558438B (zh) * 2023-07-11 2023-09-15 湖南视觉伟业智能科技有限公司 一种吹瓶质量检测装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037383A1 (de) 1990-11-20 1992-05-21 Mesacon Messtechnik Verfahren zum kontinuierlichen beruehrungsfreien messen von profilen und einrichtung zur durchfuehrung des messverfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749937B2 (ja) * 1988-03-22 1995-05-31 工業技術院長 形状測定方法
US5615003A (en) * 1994-11-29 1997-03-25 Hermary; Alexander T. Electromagnetic profile scanner
WO2002001150A1 (fr) * 2000-06-27 2002-01-03 Universite Catholique De Louvain Mesure d'objets cylindriques par telemetrie laser
US7079263B2 (en) * 2002-06-14 2006-07-18 Kimberly-Clark Worldwide, Inc. Method and apparatus for on-line log diameter measurement and closed-loop control
WO2004083778A1 (fr) * 2003-03-18 2004-09-30 Hermary Alexander Thomas Detecteur a balayage de profil a double observation et lumiere codee
AT501507B1 (de) * 2005-01-27 2008-12-15 Joanneum Res Forschungsgesells Verfahren zur mobilen berührungslosen erfassung, sowie ermittlung und auswertung von körper-konturen
JP2007271530A (ja) * 2006-03-31 2007-10-18 Brother Ind Ltd 3次元形状検出装置及び3次元形状検出方法
JP4315169B2 (ja) * 2006-06-15 2009-08-19 コニカミノルタセンシング株式会社 三次元形状測定システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037383A1 (de) 1990-11-20 1992-05-21 Mesacon Messtechnik Verfahren zum kontinuierlichen beruehrungsfreien messen von profilen und einrichtung zur durchfuehrung des messverfahrens

Also Published As

Publication number Publication date
WO2012034913A3 (fr) 2012-06-07
DE102010037621A1 (de) 2012-03-22
EP2616763A2 (fr) 2013-07-24

Similar Documents

Publication Publication Date Title
DE102011000304B4 (de) Kalibrierung von Laser-Lichtschnittsensoren bei gleichzeitiger Messung
WO2012034913A2 (fr) Procédé de mesure de la géométrie du profil de corps courbés, en particulier cylindriques
DE102006041033B4 (de) Verfahren zur Rekonstruktion eines dreidimensionalen Bildvolumens
DE102011119658B4 (de) Verfahren und Vorrichtung zum Prüfen von Rohren
DE102013109843A1 (de) Verfahren und Vorrichtung zur Korrektur von Computertomographiemessungen mit einem Koordinatenmessgerät
DE102010000473A1 (de) Verfahren zum Messen eines Objektes
EP3622247A1 (fr) Procédé pour référencer plusieurs unités de détection et dispositif de mesure associé
EP2637564A1 (fr) Dispositif de mesure pour un tomographe assisté par ordinateur
EP2604352B1 (fr) Procédé de surveillance du processus de fabrication de tubes en acier fabriqués à chaud
WO2019158440A1 (fr) Procédé et dispositif d'analyse d'objets de test à symétrie de révolution
DE3125009A1 (de) Rohrwanddickenmessung
DE102011056819A1 (de) Verfahren zur Bestimmung der Hüllkontur eines Werkstücks
DE102006022104B4 (de) Vorrichtung zur dreidimensionalen Vermessung eines Festkörpers
AT515510B1 (de) Verfahren und Computerprogramm zum Analysieren der Wanddickenverteilung eines Rohres
DE69129733T2 (de) Verfahren und Vorrichtung zur dreidimensionalen Bilderzeugung eines Objektes mit zwei Kreisbahnen gemeinsamer Achse
DE10309603A1 (de) Röntgen-CT-Vorrichtung und Verfahren zu deren Steuerung
EP2847579A1 (fr) Procédé de détermination de caractéristiques d'un objet à mesurer
EP2636019B1 (fr) Procédé et dispositif d'évaluation servant à déterminer la position d'une structure se trouvant dans un objet à examiner au moyen d'une tomographie aux rayons x assistée par ordinateur
EP1000408B1 (fr) Procede de tomographie avec balayage helicoidal d'une zone d'examen
DE2064485A1 (de) Verfahren zum Herstellen einer Kopie von einem rohr oder stangenförmigen Mo del!
DE102012213244B4 (de) Röntgenprüfverfahren
WO2013023741A1 (fr) Procédé de radioscopie de roues aux rayons x, et cabine de protection contre l'irradiation, conçue pour ce procédé
EP2705332A1 (fr) Détermination des cotes d'une pièce usinée
DE102012004064A1 (de) Verfahren und Vorrichtung zur zerstörungsfreien Ermittlung der Innenmaße von Schuhen
WO2016055167A1 (fr) Procédé et dispositif de tomodensitométrie pour une pièce

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11763876

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011763876

Country of ref document: EP