WO2012034305A1 - Lcd投影机光源系统 - Google Patents

Lcd投影机光源系统 Download PDF

Info

Publication number
WO2012034305A1
WO2012034305A1 PCT/CN2010/078582 CN2010078582W WO2012034305A1 WO 2012034305 A1 WO2012034305 A1 WO 2012034305A1 CN 2010078582 W CN2010078582 W CN 2010078582W WO 2012034305 A1 WO2012034305 A1 WO 2012034305A1
Authority
WO
WIPO (PCT)
Prior art keywords
red
blue
light
green
led
Prior art date
Application number
PCT/CN2010/078582
Other languages
English (en)
French (fr)
Inventor
靳张铝
刘喜章
孙小金
李海洋
Original Assignee
天津爱安特科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津爱安特科技股份有限公司 filed Critical 天津爱安特科技股份有限公司
Publication of WO2012034305A1 publication Critical patent/WO2012034305A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the invention relates to a projector light source system, in particular to an LCD projector light source system using three LED light panels. Background technique
  • UHE ultra-high pressure mercury bulbs and metal halogen bulbs, which is an ideal light source widely used in medium and low-end projectors.
  • the UHE ultra-high pressure mercury bulb has the advantage of being moderately priced and has almost no attenuation before 4000 hours of use.
  • Metal halide bulbs are cheaper than UHE, high efficiency, high color rendering, high color temperature, but high heat and short half-life. Generally, the brightness will be reduced to about half of the original 1000 hours.
  • the projector has a high heat dissipation system and should not be used for long time (more than 4 hours).
  • Metal halogen bulbs are widely used in low-end projectors.
  • the two light sources can better meet the brightness requirements of large-format projection, but the optical path structure of the projector is complicated and bulky. It needs to be preheated for 1 ⁇ 2 minutes to light up, and the life of the lamp is short. It accounts for 1/4 ⁇ 1/5 of the total price of the equipment, which is a big economic burden for the projector users, which is unbearable for the average family.
  • FIG. 1 The working principle of the optical path system known to the 3LCD projectors on the market is shown in Figure 1: including the closed diaphragm 101; the light source (bulb) 102, the cold mirror (optical insulating glass) 103; the UV (ultraviolet) can be removed to protect the LCD screen Without being damaged by heat, the integrator lenses 104, 106, 109, 111, 112, 114, 116 are responsible for uniformizing the light emitted from the light source and uniformly illuminating the respective corners of the projection screen, the mirrors 105, 108, 113, 115 It is responsible for sending the respective color light sources to a suitable position, the beam splitter 107 passes the red frequency light, the green and blue frequency light is reflected to the green and blue light paths, and the beam splitter 110 passes the blue light into the blue light path to reflect the green light.
  • the integrator lenses 104, 106, 109, 111, 112, 114, 116 are responsible for uniformizing the light emitted from
  • the green light path front polarizing plate 124, the green LCD screen 125, the rear polarizing film 126, and finally the synthetic prism 120 are entered, and the red and blue are similar.
  • the synthesizing prism 120 recombines the red, green, and blue signals into a color signal having a uniform direction to project a large-format color image onto the screen through the lens 130.
  • LED Light-emitting diode
  • the object of the present invention is to overcome the deficiencies of the prior art, and provide an LCD projector light source system using three LED light panels; that is, a light panel composed of three LED wicks of red, green and blue is used as a light source instead of
  • the UHE ultra-high pressure mercury lamp or halogen light source commonly used in 3LCD projectors can achieve the purpose of small size, long life, low price and environmental protection of the projector, and the projector is popularized and replaced to replace the application of the current home TV.
  • An LCD projector light source system using three LED light panels is a 3LCD projector light source system comprising a plurality of LED wicks as a light source, including red and green Blue three independent LED wick boards.
  • the system is equipped with 45 ⁇ 90 red, green and blue LED wicks on each LED wick board according to the LCD screen area of different projectors.
  • the power of each LED wick can be selected within 1 ⁇ 3W, the illuminating angle of the wick is more than 100°, and the arrangement is evenly arranged.
  • the LED wick layout area is larger than the LCD screen area of the projector, and the size of the length and width direction.
  • the red LED light board emits red light, and the red polarized light sheet passes through the red polarized light sheet to illuminate the red signal LCD display screen, and then passes through the red polarized light sheet to enter the image synthesis prism;
  • the green LED light board emits After the green polarized light of the green light path illuminates the green signal LCD display, the rear polarized light passing through the green light path enters the image synthesis prism, and the blue light emitted by the blue LED light plate illuminates the blue signal through the front polarized light of the blue light path.
  • the back polarized light through the blue light enters the image synthesis prism, and the three color images are reflected by the red and blue mirrors in the image synthesis prism to form a mixed color image of red, green and blue in the same direction.
  • the zoom lens projects a large-screen color image on the screen.
  • the system includes a sealed LED light path base ⁇ for fixing the components, each component is mounted at a designed relative position, the image synthesis prism is located at the center of the LED light path base ,, and the image output surface of the image synthesis prism is located at the zoom lens
  • the incident surface, the two sides are opposite and parallel, the center points of the two sides are on the same axis, facing the synthetic prism
  • the red, green and blue image planes are respectively mounted with the rear polarizers of the optical paths, and the outer sides of the rear polarizers are the red, green and blue signal LCD screens; the red, green and blue signals are displayed on the outside of the LCD screen respectively.
  • red, green and blue LED light plates are respectively arranged on the outer side of the front polarizing plate, and the light emitting surface of each color LED light board and the front polarizing film of the corresponding optical path, the LCD display screen, the rear polarizing film,
  • the center points of the incident faces of the synthetic prisms are on the same axis, and the four faces corresponding to each other in the respective portions are parallel.
  • the invention has the beneficial effects that: the light source of the LED simplifies the overall structure of the projector and reduces the volume, and the optical path system can be reduced by more than 2 times than the volume of the conventional metal halide lamp, and the professional, cumbersome and high-priced brand of the projector can be eliminated.
  • the lens, mirror, color filter and other components are omitted, which can directly reduce the system cost, simplify the production process, and greatly improve the reliability.
  • the LED life is more than 10 times that of the current metal halogen bulb, prolonging the service life and effectively reducing the cost; With the rapid improvement of LED technology and performance, the advantages of energy saving and environmental protection will be more prominent, and the practical effect is very significant.
  • the invention brings the most shocking large-screen experience to ordinary consumers; and is beneficial to energy conservation and environmental protection, and can be continuously used for a long time under the condition of ensuring effective heat dissipation of the LED light source; the device not only satisfies professional requirements but also is suitable for popularization of ordinary households. application. DRAWINGS
  • FIG. 1 is a schematic diagram of a light source system of a conventional 3LCD projector
  • FIG. 2.1 is a schematic plan view showing the optical structure of a projector using three LEDs as a light source of an LCD projector according to the present invention
  • FIG. 2.2 is a perspective view showing the optical structure of a projector using three LEDs as a light source of an LCD projector according to the present invention
  • Schematic diagram of the working principle of a projector with three LEDs as a 3LCD light source
  • FIG. 4 is a schematic view showing the arrangement of wicks of red, green and blue LED illuminating plates according to the present invention. detailed description
  • the system is a 3LCD projector light source system with multiple LED wicks as the light source, including three independent LED wick boards of red, green and blue.
  • the system is based on the LCD screen area of different projectors. 45 ⁇ 90 red, green and blue LED wicks are installed on each LED wick board.
  • the system includes a sealed LED optical path base 21 for fixing components, an image synthesizing prism 22, a zoom lens 23, a red light front polarizing plate 241, and a red signal LCD display. 242.
  • the image synthesizing prism 22 is located at the center of the LED optical path base 21, and the image output surface of the image synthesizing prism 22 is located on the incident surface of the zoom lens 23.
  • the two sides are opposite and parallel, and the center points of the two sides are on the same axis, facing the image synthesizing prism.
  • the red, green, and blue image input faces of 22 are respectively mounted with rear polarizing plates 243, 253, and 263 of the respective optical paths, and the outer sides of the rear polarizing plates are respectively red, green, and blue signal LCD display screens 242, 252, and 262;
  • the red, green, and blue signal LCD screens 242, 252, and 262 are respectively the optical path front polarizing plates 241, 251, and 261; the front and the front side of the front polarizing plate are respectively mounted with red, green, and blue LED boards 244, 254, and 264, respectively.
  • the color LED light board emitting surface and the front polarizing film of the corresponding optical path, the LCD display screen, the rear polarizing film, and the center point of the synthetic prism incident surface are on the same axis, and the four faces corresponding to each other are parallel .
  • FIG 3 is a working principle diagram of a 3LCD projector using three LED light sources.
  • the light source composed of a multi-core LED light panel can emit uniform red, green and blue primary light, and the front polarized light beams of each optical path are respectively irradiated to red.
  • green, blue signal LCD display the image on the red LCD screen enters the synthesis prism 30 through the rear polarizer in the red light path, and the red image is reflected on the surface of the 45° red mirror 31, the blue LCD screen
  • the upper image enters the synthesizing prism 30 through the rear polarizer in the blue light path, and the blue image is reflected on the mirror surface of the 45° blue mirror 32, and the image on the green LCD screen passes through the rear polarized light in the green light path.
  • the red reflecting mirror 31 and the blue reflecting mirror 32 are superimposed on the image reflected by the synthetic prism and the red and blue reflecting mirrors to form a uniform color image, and the color magnifying glass is projected by the zoom lens.
  • the power of each LED wick can be selected within 1 ⁇ 3W, the illuminating angle of the wick is more than 100°, and the arrangement is evenly arranged.
  • the LED wick layout area is larger than the LCD screen area of the projector, and the size of the length and width direction. Each increased by 10% to 20%.
  • Figure 4 is a schematic diagram of the LED wick, which is arranged in series and parallel mixing.
  • the illuminating surface of each wick is larger than 100°
  • the red LED spectrum is 620 ⁇ 630nm
  • the green LED spectrum is 520 ⁇ 530nm
  • the blue LED spectrum is 460 ⁇ 470nm. .
  • the LED lamp panel 41 is a circuit arrangement diagram of the red lamp panel 244, and the LED panel 42 is a circuit arrangement diagram of the green and blue LED panel 254, 264.
  • FIG. 4 is an embodiment in which a 50V DC voltage is used to supply the LED.
  • the wicks 41-01 to 41-60 of the lamp board 41 have a total of 60 particles, and each red LED wick has a typical working voltage of 2.4V, respectively 41- 01 to 41-20, 41-21 to 41-40, 41-41 to 41-60, 20 pieces of a series connected voltage 48V, and then three sets of parallel, 50V power supply plus a current limiting resistor.
  • LED wick 42-01 is placed on the circuit layout diagram of 42 representing green and blue LED panels in Figure 4.
  • each green and blue LED wick typical working voltage 3.25V, respectively, 42-01 to 42-15, 42-16 to 42-30, 42-31 to 42-45, 15 groups After the series connection, the voltage is 48.75V, and the other three groups are connected in parallel.
  • the 50V power supply and a current limiting resistor are used for power supply.
  • the 50V DC power supply is used.
  • the LED wicks are respectively arranged in red 60, green and blue 45, and the power supply uses a well-known switching DC power supply, according to different brightness requirements. , to determine the power supply using 50V or 145V.
  • the wick is selected according to the red, green and blue brightness values and power.
  • the color limit is ensured by appropriately adjusting the current limiting resistor value in the series circuit of the power supply LED.
  • the red, green and blue light panels made of LED wicks are used as the light source of the 3LCD projector.
  • the service life is generally 50,000 hours under the operating temperature of 50 ° C, which is more than ten times the life of the halogen lamp.
  • the brightness of the LED has been flat with the halogen lamp, and it is currently above 100 lm/W. It is expected to increase to 150 ⁇ 200 1m/W in 2011. In recent years, the development speed has increased by an average of 301m/W or more per year.
  • the upper limit of the luminous efficiency of LED is considered to be It is about 2501m/W, so there is still great potential for development in terms of efficiency and energy saving.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Description

LCD投影仪光源系统
技术领域
本发明涉及一种投影机光源系统, 特别涉及一种采用三片 LED灯板的 LCD投影机 光源系统。 背景技术
多年来投影机一直是商务活动、 教育等领域的公用设备, 其特点是可以轻松获得大 画面, 可显示数字、 模拟图像, 可以作为超大屏幕电视应用, 正在由公用设备逐步向家 用电器的应用普及; 目前市场上 3LCD投影机的光源多采用 UHE超高压汞灯泡和金属 卤素灯泡, 是中、 低档投影机中广泛采用的理想光源。 UHE超高压汞灯泡优点是价格 适中, 在使用 4000小时以前亮度几乎不衰减。 金属卤素灯泡价格相对 UHE便宜, 高效 率、 高显色性、 高色温, 但发热高, 半衰期短, 一般使用 1000小时左右亮度就会降低 到原先的一半左右。 对投影机散热系统要求高, 不宜做长时间 (4小时以上) 的投影使 用, 金属卤素灯泡在低端投影机中被广泛使用。 两种光源能够较好满足大幅面投影的亮 度要求, 但是投影机光路结构都较复杂, 体积大, 开机需要预热 1〜2分钟才能点亮, 同时灯的寿命短, 属设备消耗材料, 价格约占设备总价的 1/4〜1/5, 对投影机用户是一 个较大的经济负担, 一般家庭难以承受。
目前市场上 3LCD投影机公知的光路系统的工作原理如图 1 所示: 包括密闭光匣 101 ; 光源 (灯泡) 102, 冷光镜 (光学隔热玻璃) 103; 可以去掉 UV (紫外线) 保护 LCD屏不受热量损害, 积分透镜 104、 106、 109、 111、 112、 114、 116负责将从光源发 出的光线均匀化后均匀地照射到投影屏幕的各个边角, 反光镜 105、 108、 113、 115 负 责将各色光源送到合适的位置, 分光镜 107将红色频率的光通过, 绿和蓝色频率光被反 射到绿、 蓝光路, 分光镜 110将蓝光通过送进蓝光路, 将绿光反射, 经过积分透镜 111 送入绿光路前偏振光片 124、 绿 LCD屏 125、 后偏振光片 126, 最后进入合成棱镜 120, 红色和蓝色同理。 合成棱镜 120将红、 绿、 蓝三信号重合成方向一致的彩色信号经镜头 130投射出大幅面彩色图象到屏幕上。 随着世界低碳经济、 节能环保主导人们消费生活的发展趋势, 科技进步为电子设备 的革新提供了新的机遇, 发光二级管 (LED) 是一种寿命长、 环保的半导体光源, 但在 过去一段时间, 由于高亮度、 大功率 LED灯芯价格高, 影响了普及应用。 电子产品升 级遵循摩尔定律, LED产品近来性能有了很大的提升, 伴随着大量的普及应用, 价格也 趋于合理, 科研开发前景日益显现。
因此, 提供一种设计合理、 性能可靠、 高效节能的采用三片 LED灯板的 LCD投影 机光源系统, 是该领域科研技术人员急需解决的重要难题之一。 发明内容
本发明的目的在于克服现有技术不足之处, 提供一种采用三片 LED灯板的 LCD投 影机光源系统; 即采用红、 绿、 蓝三片多个 LED灯芯组成的灯板作为光源, 替代目前 3LCD投影机普遍使用的 UHE超高压汞灯或卤素灯光源, 可以实现投影机体积小、 寿 命长、 价格低和环保的目的, 且将该投影机普及推广替代现在家庭电视的应用。
为实现上述目的本发明所采用的实施方式如下: 一种采用三片 LED灯板的 LCD投 影机光源系统, 该系统是由多个 LED 灯芯为光源的 3LCD投影机光源系统,其包括红、 绿、 蓝三片独立的 LED灯芯板, 系统根据不同投影机 LCD显示屏面积, 每块 LED灯 芯板上分别安装 45〜90粒红、 绿、 蓝 LED灯芯。
投影机根据亮度需求的不同, 每粒 LED灯芯功率可以在 1〜3W内选择, 灯芯发光 角度大于 100° , 均匀排列布置, LED灯芯布置面积大于投影机 LCD显示屏面积, 长、 宽方向的尺寸各增加 10%〜20%, 红色 LED灯板发出红光经红光路的前偏振光片照射 红信号 LCD显示屏后经红光路的后偏振光片进入图像合成棱镜; 绿色 LED灯板发出绿 光经绿光路的前偏振光片照射绿信号 LCD显示屏后, 经绿光路的后偏振光片进入图像 合成棱镜,蓝色 LED灯板发出的蓝光经蓝光路的前偏振光片照射蓝信号 LCD显示屏后, 经蓝光路的后偏振光片进入图像合成棱镜, 三种颜色图像经图像合成棱镜内的红、 蓝两 个镜面反射后形成方向一致的红、 绿、 蓝混合彩色图像, 经变焦镜头在幕布上投射出大 画面彩色图像。
所述系统包括一个固定各部件的密闭 LED光路底座匣, 各部件安装在设计好的相 关位置上, 所述图像合成棱镜位于 LED光路底座匣的中心, 图像合成棱镜的图像输出 面位于变焦镜头的入射面, 两面相对且平行, 两面中心点在同一轴心上, 面对合成棱镜 的红、 绿、 蓝三个图像入射面分别安装各光路的后偏振光片, 后偏振光片的外侧分别是 红、绿、蓝信号 LCD显示屏; 红、绿、蓝信号 LCD显示屏外侧分别是各光路前偏振片; 前偏振片外侧分别安装红、 绿、 蓝 LED灯板, 每种颜色的 LED灯板发光面和所对应光 路的前偏振光片、 LCD显示屏、 后偏振光片、 合成棱镜入射面的中心点在同一轴心上, 且各部分内相互对应的四个面平行。
本发明的有益效果是: 本发明采用 LED 的光源简化投影机整体结构、 縮小体积, 光路系统比传统金属卤素灯的体积可以减小 2倍以上, 摆脱投影机专业、 笨重、 高价的 烙印, 同时省去了透镜、 反射镜、滤色镜等器件, 可直接降低系统成本, 简化生产工艺, 可靠性会有很大提高, LED寿命是目前金属卤素灯泡的 10倍以上, 延长使用寿命, 有 效降低成本; 随着 LED技术、 性能的快速提升, 节能环保的优势将会更为突出, 实用 效果非常显著。 同时本发明给普通消费者带来最为震撼的大画面体验; 且有利于节能环 保, 在保证 LED光源有效散热条件下, 可长时间连续使用; 该装置不但满足专业要求 也适合于普通家庭的普及应用。 附图说明
图 1是现有 3LCD投影机光源系统示意图;
图 2.1是本发明采用三片 LED作为 LCD投影机光源的投影机光学结构平面示意图; 图 2.2是本发明采用三片 LED作为 LCD投影机光源的投影机光学结构立体示意图; 图 3是本发明采用三片 LED作为 3LCD光源的投影机工作原理示意图;
图 4是本发明举例说明红、 绿、 蓝 LED发光板灯芯布置示意图。 具体实施方式
以下结合附图和较佳实施例, 对依据本发明提供的具体实施方式、 结构、 特征详述 如下:
如图 2〜图 4所示, 该系统是由多个 LED 灯芯为光源的 3LCD投影机光源系统, 包括 红、 绿、 蓝三片独立的 LED灯芯板, 系统根据不同投影机 LCD显示屏面积, 每块 LED 灯芯板上分别安装 45〜90粒红、 绿、 蓝 LED灯芯。
如图 2.1、 图 2.2所示的位置装配, 所述系统包括一个固定各部件的密闭 LED光路 底座匣 21、 图像合成棱镜 22、 变焦镜头 23、 红光路前偏振片 241、 红信号 LCD显示屏 242、 红光路后偏振光片 243、 红色 LED灯板 244、 绿光路前偏振片 251、 绿信号 LCD 显示屏 252、 绿光路后偏振光片 253、 绿色 LED灯板 254、 蓝光路前偏振片 261、 蓝信 号 LCD显示屏 262、 蓝光路后偏振光片 263及蓝色 LED灯板 264。
所述图像合成棱镜 22位于 LED光路底座匣 21的中心,图像合成棱镜 22的图像输 出面位于变焦镜头 23 的入射面, 两面相对且平行, 两面中心点在同一轴心上, 面对图 像合成棱镜 22的红、 绿、 蓝三个图像入射面分别安装各光路的后偏振光片 243、 253、 263, 后偏振光片的外侧分别是红、 绿、 蓝信号 LCD显示屏 242、 252、 262; 红、 绿、 蓝信号 LCD显示屏 242、 252、 262外侧分别是各光路前偏振片 241、 251、 261; 前偏振 片外侧分别安装红、 绿、 蓝 LED灯板 244、 254、 264, 每种颜色的 LED灯板发光面和 所对应光路的前偏振光片、 LCD显示屏、后偏振光片、合成棱镜入射面的中心点在同一 轴心上, 且各部分内相互对应的四个面平行。
为了保证系统正常工作的环境要求, 遵循 LED灯工作特性按常规做好相关的专业 散热工艺, 故不再本发明文件中赘述。
图 3是采用三片 LED光源的 3LCD投影机工作原理图, 以多芯 LED灯板组成的光 源可发出均匀的红、 绿、 蓝三基色光, 通过各光路的前偏振光片分别照射到红、 绿、 蓝 信号 LCD显示屏,红色 LCD屏上的图像经红光路中的后偏振光片进入合成棱镜 30中, 在 45° 的红色反射镜 31表面反射出红色图象, 蓝色 LCD屏上的图像经蓝光路中的后 偏振光片进入合成棱镜 30中,在 45° 蓝色反射镜 32镜面上反射出蓝色图像,绿色 LCD 屏上的图像通过绿光路中的后偏振光片透过红色反射镜 31、 蓝色反射镜 32在合成棱镜 与红、 蓝反射镜面反射出的图像重合为方向一致彩色图像, 经变焦镜头投射出彩色大幅 面艳丽图像。
投影机根据亮度需求的不同, 每粒 LED灯芯功率可以在 1〜3W内选择, 灯芯发光 角度大于 100° , 均匀排列布置, LED灯芯布置面积大于投影机 LCD显示屏面积, 长、 宽方向的尺寸各增加 10%〜20%。
图 4是 LED灯芯原理图, 采用串联、 并联混合方式布置, 每单粒灯芯发光面大于 100° , 红色 LED光谱为 620〜630nm, 绿色 LED光谱为 520〜530nm, 蓝色 LED光谱 为 460〜470nm。
在图 4中 LED灯板 41是红色灯板 244的电路布置示意图, LED板 42是绿、蓝 LED 灯板 254、 264的电路布置示意图; 图 4是采用 50V直流电压供电的实施例, 布置 LED 灯板 41的灯芯 41-01到 41-60共 60粒, 每粒红 LED灯芯典型工作电压 2.4V, 分别以 41- 01到 41-20、 41-21到 41-40、 41-41到 41-60, 20粒一组串联后电压 48V, 再三组并 联, 采用 50V电源加一个限流电阻供电。
在图 4中 42代表绿色和蓝色 LED板的电路布置示意图上布置 LED灯芯 42-01到
42- 45共 45粒,每粒绿、蓝 LED灯芯典型工作电压 3.25V,分别以 42-01到 42-15、 42-16 到 42-30、 42-31到 42-45, 15粒一组串联后电压 48.75V, 再三组并联, 采用 50V电源 加一个限流电阻供电。
在上述实施例中采用的 50V直流电源供电, 当采用 145V供电方式时, LED灯芯分 别以红色 60粒, 绿、 蓝色 45粒进行串联, 电源供电采用公知的开关型直流电源, 根据 不同亮度需求, 确定采用 50V或 145V方式供电。
为了满足色彩平衡要求, 选用灯芯时按照红、 绿、 蓝色亮度值和功率进行配比, 同 时通过适当调整供电 LED串联电路中的限流电阻值来保证色彩的纯正。
采用 LED灯芯制作的红、 绿、 蓝色三块灯板作为 3LCD投影机的光源, 在摄氏 50 °〇的工作温度条件下寿命一般为 50000小时, 是卤素灯寿命的十几倍, 同等功率的 LED 亮度已经与卤素灯持平, 目前达到 lOO lm/W以上, 2011年有望提高至 150〜200 1m/W, 近几年发展速度是平均每年提高 301m/W 以上, LED 的发光效率的上限被认为是 2501m/W左右, 因此高效、 节能上还有很大的发展潜力。
上述参照实施例对该采用三片 LED灯板的 LCD投影机光源系统进行的详细描述, 是说明性的而不是限定性的, 因此在不脱离本发明总体构思下的变化和修改, 应属本发 明的保护范围之内。

Claims

权 利 要 求 书
1. 一种采用三片 LED灯板的 LCD投影机光源系统,其特征在于该系统是由多个 LED 灯 芯为光源的 3LCD投影机光源系统, 包括红、 绿、 蓝三片独立的 LED灯芯板, 系统根 据不同投影机 LCD显示屏面积,每块 LED灯芯板上分别安装 45〜90粒红、绿、蓝 LED 灯芯; 每粒 LED灯芯功率可以在 1〜3W内选择, 灯芯发光角度大于 100° , 均匀排列 布置, LED灯芯布置面积大于投影机 LCD显示屏面积,长、宽方向的尺寸各增加 10%〜 20%, 红色 LED灯板发出红光经红光路的前偏振光片照射红信号 LCD显示屏后经红光 路的后偏振光片进入图像合成棱镜; 绿色 LED灯板发出绿光经绿光路的前偏振光片照 射绿信号 LCD显示屏后, 经绿光路的后偏振光片进入图像合成棱镜, 蓝色 LED灯板发 出的蓝光经蓝光路的前偏振光片照射蓝信号 LCD显示屏后, 经蓝光路的后偏振光片进 入图像合成棱镜, 三种颜色图像经图像合成棱镜内的红、 蓝两个镜面反射后形成方向一 致的红、 绿、 蓝混合彩色图像, 经变焦镜头在幕布上投射出大画面彩色图像; 所述系统 包括一个固定各部件的密闭 LED光路底座匣, 所述图像合成棱镜位于 LED光路底座匣 的中心, 图像合成棱镜的图像输出面位于变焦镜头的入射面, 两面相对且平行, 两面中 心点在同一轴心上, 面对合成棱镜的红、 绿、 蓝三个图像入射面分别安装各光路的后偏 振光片, 后偏振光片的外侧分别是红、 绿、 蓝信号 LCD显示屏; 红、 绿、 蓝信号 LCD 显示屏外侧分别是各光路前偏振片; 前偏振片外侧分别安装红、 绿、 蓝 LED灯板, 每 种颜色的 LED灯板发光面和所对应光路的前偏振光片、 LCD显示屏、 后偏振光片、 合 成棱镜入射面的中心点在同一轴心上, 且各部分内相互对应的四个面平行。
2. 根据权利要求 1所述的采用三片 LED灯板的 LCD投影机光源系统,其特征在于以多 粒 LED灯芯板组成的光源可发出均匀的红、 绿、 蓝三基色光, 通过各光路的前偏振光 片分别照射到红、 绿、 蓝信号 LCD显示屏, 红色 LCD屏上的图像经红光路中的后偏振 光片进入合成棱镜中,在 45° 的红色反射镜表面反射出红色图象, 蓝色 LCD屏上的图 像经蓝光路中的后偏振光片进入合成棱镜中, 在 45° 的蓝色反射镜上反射出蓝色图像, 绿色 LCD屏上的图像通过绿光路中的后偏振光片透过红色反射镜、 蓝色反射镜与红、 蓝反射镜面反射出的图像重合为方向一致彩色图像,经变焦镜头投射出彩色大幅面艳丽 图像。
3. 根据权利要求 1所述的采用三片 LED灯板的 LCD投影机光源系统,其特征在于单粒 灯芯发光面大于 100° , 红色 LED光谱为 620〜630nm, 绿色 LED光谱为 520〜530nm, 蓝色 LED光谱为 460〜470nm。
PCT/CN2010/078582 2010-09-19 2010-11-09 Lcd投影机光源系统 WO2012034305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102858752A CN101963747A (zh) 2010-09-19 2010-09-19 采用三片led灯板的lcd投影机光源系统
CN201010285875.2 2010-09-19

Publications (1)

Publication Number Publication Date
WO2012034305A1 true WO2012034305A1 (zh) 2012-03-22

Family

ID=43516678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078582 WO2012034305A1 (zh) 2010-09-19 2010-11-09 Lcd投影机光源系统

Country Status (2)

Country Link
CN (3) CN101963747A (zh)
WO (1) WO2012034305A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963747A (zh) * 2010-09-19 2011-02-02 天津爱安特科技股份有限公司 采用三片led灯板的lcd投影机光源系统
CN101995747A (zh) * 2010-12-14 2011-03-30 天津爱安特科技股份有限公司 采用三片led灯板为光源的3lcd投影机散热系统
CN103574505B (zh) * 2013-11-15 2015-11-18 丁文娟 一种棱镜集束led灯
CN204856020U (zh) * 2015-07-22 2015-12-09 广景视睿科技(深圳)有限公司 一种紧凑型投影装置
WO2018126480A1 (en) * 2017-01-09 2018-07-12 Goertek. Inc Projection module and electronics apparatus
US10924857B2 (en) 2017-01-20 2021-02-16 Goertek. Inc Portable earphone device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121929A (ja) * 2001-10-19 2003-04-23 Fujitsu General Ltd 液晶プロジェクタ装置
US20040228147A1 (en) * 2003-04-29 2004-11-18 Park Chan Young Display device
CN101498885A (zh) * 2009-03-13 2009-08-05 武汉盟信科技有限责任公司 用于3lcd投影的高亮度led照明系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442295B1 (ko) * 2001-12-29 2004-07-30 엘지.필립스 엘시디 주식회사 액정투사기
JP2005003900A (ja) * 2003-06-11 2005-01-06 Seiko Epson Corp プロジェクタ
US7524084B2 (en) * 2004-03-30 2009-04-28 Sanyo Electric Co., Ltd. Illuminating device, and projection type video display
JP4115420B2 (ja) * 2004-03-30 2008-07-09 三洋電機株式会社 照明装置及び投写型映像表示装置
EP1844366B1 (en) * 2005-01-31 2008-11-26 Olympus Corporation Illumination optical apparatus and optical apparatus
CN101788749A (zh) * 2009-01-22 2010-07-28 上海广擎光电科技有限公司 用三个单基色led照明光源的投影光学引擎系统
CN101510044B (zh) * 2009-03-18 2010-11-17 重庆大学 一种基于光栅光调制器的微型投影显示系统
CN101963747A (zh) * 2010-09-19 2011-02-02 天津爱安特科技股份有限公司 采用三片led灯板的lcd投影机光源系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121929A (ja) * 2001-10-19 2003-04-23 Fujitsu General Ltd 液晶プロジェクタ装置
US20040228147A1 (en) * 2003-04-29 2004-11-18 Park Chan Young Display device
CN101498885A (zh) * 2009-03-13 2009-08-05 武汉盟信科技有限责任公司 用于3lcd投影的高亮度led照明系统

Also Published As

Publication number Publication date
CN202257012U (zh) 2012-05-30
CN102305987A (zh) 2012-01-04
CN101963747A (zh) 2011-02-02

Similar Documents

Publication Publication Date Title
WO2012034305A1 (zh) Lcd投影机光源系统
JP3336664B2 (ja) 投写型表示装置
TWI439793B (zh) 投影機光源裝置
CN101487928A (zh) 三色混合光源组件及投影系统
CN110191327B (zh) 一种两片式lcd投影机
CN201926855U (zh) 一种三片式lcos激光投影显示用光学引擎
CN201654426U (zh) 一种led光源的lcd投影光学照明引擎
TW201317701A (zh) 投影機光機裝置
WO2010099709A1 (zh) 微型投影机用光学引擎
CN101303454A (zh) 一种led投影机光学系统
CN102566237B (zh) 采用逆反射棱镜阵列的便携式液晶投影光引擎
US11333963B2 (en) Illumination system and projection device
CN207164452U (zh) 一种基于led光源的dlp大屏幕投影设备
CN210465965U (zh) 一种基于pbs分合光的两片式lcd投影机
WO2022134263A1 (zh) 一种投影系统及投影仪
CN102081290A (zh) 一种led光源的lcd投影光学照明引擎
CN101976011B (zh) Md短焦距投影显示装置
CN2879242Y (zh) 大功率面发光二极管投影光源
Lee et al. LED projection displays
WO2011113186A1 (zh) 高亮度大屏幕电视
CN220672199U (zh) 一种基于新型光源的多分区背光投影控制装置
CN2779448Y (zh) 一种用于投影显示的新型光源装置
CN201639697U (zh) 高亮度大屏幕电视
CN109996049B (zh) 透镜扫描成像系统
CN2909745Y (zh) 一种改进型防尘背投电视

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857161

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/08/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10857161

Country of ref document: EP

Kind code of ref document: A1