WO2012033141A1 - Polyester film for solar cell, and easily adhesible polyester film for solar cell and front sheet equipped with the film - Google Patents

Polyester film for solar cell, and easily adhesible polyester film for solar cell and front sheet equipped with the film Download PDF

Info

Publication number
WO2012033141A1
WO2012033141A1 PCT/JP2011/070404 JP2011070404W WO2012033141A1 WO 2012033141 A1 WO2012033141 A1 WO 2012033141A1 JP 2011070404 W JP2011070404 W JP 2011070404W WO 2012033141 A1 WO2012033141 A1 WO 2012033141A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester film
solar cell
mass
solar cells
Prior art date
Application number
PCT/JP2011/070404
Other languages
French (fr)
Japanese (ja)
Inventor
晃侍 伊藤
池畠 良知
潤 稲垣
清水 亮
村田 浩一
澤崎 真治
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2011541425A priority Critical patent/JP6068802B2/en
Publication of WO2012033141A1 publication Critical patent/WO2012033141A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell polyester film suitable for a solar cell constituent material such as a solar cell backside sealing sheet and a solar cell protective sheet, and more specifically, for a solar cell that is excellent in hydrolysis resistance and hardly curls during processing. It relates to a polyester film. Moreover, this invention relates to the easily adhesive polyester film for solar cells, and a front sheet using the same. Specifically, when used on the surface of the solar cell in contact with the encapsulant, the easily adhesive polyester film for solar cells having excellent transparency and high transparency even under high temperature and high humidity, and the same It is related with the front seat using.
  • a solar cell is a photovoltaic power generation system that directly converts solar energy into electricity.
  • solar cell elements semiconductors such as single crystal silicon, polycrystalline silicon, and amorphous silicon, compound-based or organic dyes, and the like are used.
  • a solar cell element has several packagings for protecting a device over a long period (about 20 years or more) by wiring several to several tens of solar cell elements in series and in parallel. Done and unitized. A unit incorporated in this package is called a solar cell module.
  • a solar cell module is a heat- and weather-resistant plastic material whose surface to which sunlight is applied is covered with glass, the solar electronic element under the surface is filled with a sealing material, and the back surface is called a back sheet It is the structure protected by the protective sheet which consists of several layer structures, such as these.
  • a sealing material for filling the solar cell element an olefin resin such as ethylene / vinyl acetate copolymer resin (hereinafter EVA), polyvinyl butyral resin (hereinafter PVB) or the like is used.
  • a module is manufactured by superposing the glass substrate / sealing material / solar cell element / sealing material / back sheet and then heat-pressing with a vacuum laminator or the like.
  • the sealing material has a role of adhering and fixing the solar cell element, preventing moisture from entering from the outside, and protecting the solar cell element.
  • the polyester film constituting the inner layer (the side facing the solar cell element) of the front sheet or the back sheet is required to have adhesiveness with the sealing material.
  • the surface untreated polyester film cannot obtain sufficient adhesiveness and is required to be improved.
  • Patent Documents 12 to 15 it has been proposed to provide an adhesive layer containing a resin or a crosslinking agent.
  • JP 2010-186932 A JP 2007-253463 A JP 2006-261287 A JP-A-11-261085 JP 2000-114565 A JP 2007-150084 A JP 2007-204538 A JP 2002-134770 A JP 2002-26354 A JP 2006-270025 A JP 2008-31680 A JP 2006-152013 A JP 2006-332091 A JP 2007-48944 A JP 2007-136911 A
  • the film proposed in the above-mentioned patent document shows an improvement in hydrolysis resistance as compared with a conventional polyester film by improving the resin composition.
  • these films sometimes break early, unlike the initial assumption.
  • a polyester film as a solar cell member, it is used as a laminated body bonded with a sealing material layer or a barrier layer.
  • the processing temperature at the time of producing a laminate is increasing due to the improvement in productivity. Therefore, the quality of the laminate may be deteriorated due to curling, wrinkles and the like due to the thermal dimensional stability of the film.
  • an object of the present invention is to provide a solar cell polyester film that has excellent hydrolysis resistance and is less likely to curl during processing.
  • composition types including additives such as a crosslinking agent and an ultraviolet absorber are used for the sealing material from the viewpoint of improving productivity and preventing deterioration. Therefore, various packaging processes have been adopted depending on the sealing material used. For example, in the case of a sealing material that is a standard cure type, after temporary bonding by thermocompression bonding (for example, 5 to 10 minutes at 90 to 130 ° C.), heat treatment (for example, 30 to 50 minutes at 140 to 160 ° C.) is performed. Adhesive conditions that slowly cure the encapsulant are employed.
  • polyester film Furthermore, components such as front seats and back seats are required to have high durability that can withstand long-term outdoor use.
  • As measures to improve the durability of the polyester film it has been proposed to keep the carboxyl terminal concentration (acid value) of the polyester resin low, or to use a polyester resin having a relatively high molecular weight (relatively high intrinsic viscosity). ing.
  • the resin composition is improved, when the film is used for a long period of time in a harsh usage environment, these films may be damaged earlier than originally assumed.
  • an object of the present invention is to provide an easily-adhesive polyester film for solar cells having excellent hydrolysis resistance, excellent adhesion to a sealing material, and high transparency.
  • the present invention provides an easily-adhesive polyester film for solar cells that hardly causes a decrease in adhesion under high temperature and high humidity and has good adhesion to various sealing materials. .
  • Polyester film for solar cell The present inventors have examined the occurrence of breakage that occurs earlier than expected as described above, and found that this is due to the balance between the in-plane orientation and crystallinity. In other words, it was found that if the balance of orientation and crystallinity is poor, the original weather resistance of the resin cannot be expressed even if the physical properties of the polyester resin such as carboxyl end concentration and intrinsic viscosity are improved. Furthermore, the surprising effect that the hydrolysis resistance outstanding as a solar cell use was exhibited by controlling the orientation and crystallinity of a polyester film was discovered.
  • a coating layer is formed from a coating liquid containing urethane resin and blocked isocyanate as main components and adjusting the dissociation temperature of the blocked isocyanate and the boiling point of the blocking agent.
  • the adhesiveness to the sealing material is excellent and high transparency can be maintained.
  • the polyester film for solar cells of the present invention has a length of crystals oriented in the longitudinal direction in the ( ⁇ 105 plane) measured by wide-angle X-ray diffraction method of 50 mm or more, and the MOR value when the film thickness is converted to 50 ⁇ m.
  • the value (MOR-C) is 1.0 to 2.0, and the density of the film is 1.37 to 1.40 g / cm 3 .
  • the heat shrinkage rate at 150 ° C. of the film is preferably ⁇ 1.0% or more and 3.0% or less in both the longitudinal direction and the width direction, more preferably ⁇ 0.5% or more and 0.5%. It is as follows.
  • the polyester constituting the film is polymerized using a polycondensation catalyst containing aluminum and / or a compound thereof and a phosphorus compound having a phenol moiety, and the carboxyl terminal concentration is 25 eq / ton or less of the polyester,
  • the intrinsic viscosity (IV) of the film is preferably 0.60 to 0.90 dl / g.
  • MOR is an abbreviation for molecular orientation ratio
  • MOR-C is an abbreviation for molecular orientation ratio-correction.
  • the easily adhesive polyester film for solar cells of the present invention has the above-described polyester film for solar cells and a coating layer formed on at least one surface of the polyester film, and the coating layer is mainly composed of a urethane resin and a blocked isocyanate.
  • the dissociation temperature of the said block isocyanate is 130 degrees C or less, and the boiling point of a blocking agent is 180 degrees C or more, It is characterized by the above-mentioned.
  • the urethane resin is preferably a urethane resin containing an aliphatic polycarbonate polyol as a constituent component.
  • the ratio of the absorbance at the peak near 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component (A 1460 ) to the absorbance at the peak near 1530 cm ⁇ 1 derived from the urethane component (A 1530 ) is preferably 0.50 to 1.55.
  • the mass ratio of urethane resin to blocked isocyanate (urethane resin / block isocyanate) in the coating solution is preferably 1/9 to 9/1.
  • the present invention also includes a solar cell front sheet including the above-described easily adhesive polyester film for solar cells.
  • the polyester film for solar cells of the present invention has good hydrolysis resistance and is less likely to curl during processing. Moreover, the polyester film for solar cells of the present invention can be provided with good productivity. Therefore, it can be suitably applied as a solar cell member.
  • the easily-adhesive polyester film for solar cells of the present invention has good hydrolysis resistance, excellent adhesion to a sealing material, and high transparency. More preferably, it exhibits strong adhesiveness even under various sealing materials and bonding conditions, and is particularly excellent in adhesiveness (humidity heat resistance) under high temperature and high humidity. Therefore, when the easily adhesive polyester film for solar cells of the present invention is used as a member of a front sheet, high photoelectric conversion efficiency is maintained and adhesiveness with a sealing material is good.
  • the present inventor has found that the breakage of the film that occurs earlier than expected due to long-term use in a high-temperature and high-humidity environment is due to the balance between orientation characteristics and crystallinity in the film plane.
  • the balance of the orientation characteristics if there is a difference in the orientation characteristics in the film plane, a difference in the intensity balance in the in-plane direction results.
  • the mechanical strength decreases at a substantially constant speed in each direction (longitudinal direction and width direction), so that the difference in strength balance in the initial state becomes relatively large. Thereby, the deterioration of the film loses the balance of the mechanical strength in the film plane, and the film breaks from a relatively weak portion.
  • the polyester resin composition in order to improve the durability of the film, it is preferable not only to modify the polyester resin composition but also to have a good orientation balance in the film plane.
  • the orientation tends to remain on the stretching axis in the subsequent width direction (TD direction). Differences in mechanical strength within the film surface due to differences are likely to occur. Therefore, maintaining the orientation characteristics in the longitudinal direction is suitable for controlling the balance of mechanical strength in the film plane.
  • polyester crystal forms include oriented crystals having directionality mainly due to stretch orientation and thermal crystals mainly due to heating and cooling. Therefore, by reducing the number of thermal crystals while maintaining the orientation crystal, the balance of crystallinity is controlled by lowering the crystallinity while maintaining high orientation as the whole film, thereby improving the durability of the film. You can plan.
  • the characteristics of the polyester film for solar cells of the present invention based on the above technical idea are that the length of the crystals oriented in the longitudinal direction in the ( ⁇ 105 plane) measured by wide-angle X-ray diffraction method is 50 mm or more, and the film thickness
  • the MOR value (MOR-C) when converted to 50 ⁇ m is 1.0 to 2.0, and the density of the film is 1.37 to 1.40 g / cm 3 .
  • the length of the crystal oriented in the longitudinal direction on the ( ⁇ 105) plane of the polyester film for solar cells measured by wide-angle X-ray diffraction is 50 mm or more, preferably 53 mm or more, more preferably 54 mm or more.
  • the crystal size in the longitudinal direction (MD direction) on the ( ⁇ 105) plane mainly indicates oriented crystals by stretching in the longitudinal direction (MD direction), and the crystal size depends on the orientation strength. Therefore, when the crystal size of the ( ⁇ 105) plane in the longitudinal direction (MD direction) is in the above range, the film orientation is high and the solar cell member has a specific strength.
  • the orientation tends to remain on the stretching axis in the width direction (TD direction) in the subsequent stage. Differences in mechanical strength within the film surface due to differences are likely to occur. Therefore, maintaining the orientation in the longitudinal direction within the above range is suitable for controlling the balance of the mechanical strength in the film plane.
  • the length of the crystal is preferably 60 mm or less. When the crystal length is larger than 60 mm, stretching in the width direction is difficult, and productivity may be deteriorated due to breakage during film formation. In order to control the crystal size, it is preferable to increase the orientation strength of the film by increasing the stretching ratio or decreasing the stretching temperature.
  • the polyester film for solar cell has a MOR value (MOR-C) of 1.0 to 2.0, preferably 1.3 to 1.8, more preferably 1 when the film thickness is converted to 50 ⁇ m. .4 to 1.7.
  • MOR-C is an index indicating the balance between the film longitudinal direction and the width direction. Controlling the MOR-C of the film within the above range and controlling the orientation balance in the film plane is effective in maintaining mechanical strength and durability in a long-term hydrolysis degradation test. In addition, curling that occurs when the solar cell member is laminated with another functional layer can be suppressed, which is effective in improving adhesion.
  • MOR-C is an index indicating the balance between the film longitudinal direction and the width direction. Controlling the MOR-C of the film within the above range and controlling the orientation balance in the film plane is effective in maintaining mechanical strength and durability in a long-term hydrolysis degradation test. In addition, curling that occurs when the solar cell member is laminated with another functional layer can be suppressed, which is effective in improving adhesion.
  • the polyester film for solar cells has a film density of 1.370 to 1.400 g / cm 3 , preferably 1.375 to 1.398 g / cm 3 , more preferably 1.380 to 1.395 g / cm 3 . 3 .
  • the density of the film is an index indicating the crystallinity of the entire film.
  • the thermal crystal of the film is likely to grow in the heat setting step during film formation, it is preferable to lower the heat setting temperature in order to bring the film density to the above range.
  • fine-particles be a film density.
  • the above-mentioned polyester film for solar cells exhibits excellent durability by making the above properties highly compatible. That is, the above properties do not contribute independently, and it is important for the excellent hydrolysis resistance of the present invention that they are indispensably combined.
  • the polyester film for solar cells has an elongation retention at 200 ° C., 100% RH, 0.03 MPa, and 200 hours, which is an evaluation of hydrolysis resistance, preferably 65% or more, more preferably 70% or more. It is. By being in such a range, the polyester film for solar cells can exhibit high hydrolysis resistance that can withstand long-term outdoor use.
  • the solar cell polyester film preferably has a thermal shrinkage rate at 150 ° C. of ⁇ 1.0% or more in both the longitudinal direction (MD direction and longitudinal direction) and the width direction (TD direction and lateral direction). Preferably, it is ⁇ 0.5% or more, preferably 3.0% or less, more preferably 2.0% or less, and still more preferably 1.8% or less.
  • the thermal shrinkage rate at 150 ° C. is determined in the longitudinal direction (MD direction, longitudinal direction) and the width direction. Both (TD direction and lateral direction) are preferably ⁇ 0.5% to 0.5%. Thereby, generation
  • Examples of the method for setting the heat shrinkage rate at 150 ° C. in the above range include controlling the stretching conditions or performing longitudinal relaxation treatment and lateral relaxation treatment in the heat setting step.
  • the thickness of the polyester film for solar cells is preferably 10 to 500 ⁇ m, more preferably 15 to 400 ⁇ m, and still more preferably 20 to 250 ⁇ m. If it is less than 10 ⁇ m, there is no waist and it is difficult to handle. On the other hand, if it exceeds 500 ⁇ m, the handling property is lowered and the handling becomes difficult.
  • polyester The polyester constituting the polyester film for solar cells is an aromatic dicarboxylic acid or ester thereof such as terephthalic acid, isophthalic acid or naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol or the like. Polyester produced by polycondensation with glycol.
  • polyesters are prepared by a method in which an aromatic dicarboxylic acid and a glycol are directly reacted; a method in which an alkyl ester of an aromatic dicarboxylic acid and a glycol are transesterified and then polycondensed; a diglycol ester of an aromatic dicarboxylic acid is subjected to a polycondensation. It can be produced by a method of condensation;
  • This polyester may be a copolymer of the third component, but a homopolymer is preferred from the viewpoint of durability.
  • Representative examples of such polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and the like.
  • the polyester polycondensation catalyst antimony and / or a compound thereof, titanium and / or a compound thereof, germanium and / or a compound thereof, tin and / or a compound thereof, aluminum and / or a compound thereof can be used.
  • the suppression of thermal oxidative degradation is advantageous when the metal content is low, and it is particularly preferable to use a small amount of aluminum and / or a compound thereof and a phosphorus compound as a promoter to ensure polymerization activity.
  • the phosphorus compound preferably has a phenol moiety.
  • the phosphorus compound containing a phenol moiety has an effect of suppressing polyester degradation that decomposes under a radical mechanism under oxygen. In order to enhance this function, it is preferable that the phenol moiety has a hindered phenol skeleton that is sterically and electronically stabilized and exhibits more radical trapping ability.
  • the thermal stability of the polyester can be further enhanced by removing the catalyst from the obtained polyester or deactivating the catalyst by adding a phosphorus compound or the like.
  • the degree of heat-resistant oxidation of polyester can be indicated by a thermal stability parameter (TS) represented by the following formula.
  • TS thermal stability parameter
  • the thermal stability parameter (TS) of the polyester is preferably 0.25 or less, more preferably 0.20 or less.
  • dialkylene glycol is by-produced.
  • the durability may be lowered due to the influence of dialkylene glycol.
  • diethylene glycol as an example of typical dialkylene glycol
  • the amount of diethylene glycol is preferably 2.3 mol% or less, more preferably 2.0 mol% or less, and even more preferably 1.8 mol% or less.
  • the amount of diethylene glycol is preferably small, it is produced as a by-product during the esterification reaction of terephthalic acid and the ester exchange reaction of dimethyl terephthalate during polyester production. It is 0 mol%, further 1.2 mol%.
  • the polyester film for solar cells in order to provide durability of the polyester film for solar cells, it is preferable to use a polyester having an intrinsic viscosity of more than 0.60 dl / g as a raw material resin.
  • the intrinsic viscosity of the polyester constituting the polyester film for solar cells is preferably 0.60 to 0.90 dl / g, more preferably 0.65 to 0.75 dl / g, and still more preferably 0.68 to 0. 72 dl / g.
  • the intrinsic viscosity of the film is lower than 0.60 dl / g, the hydrolysis resistance and heat resistance of the film may be inferior.
  • productivity may deteriorate.
  • the carboxyl terminal of polyester has an action of promoting hydrolysis by autocatalysis. Therefore, it is preferable that the carboxyl terminal density
  • the carboxyl terminal concentration is preferably 20 eq / ton or less, more preferably 18 eq / ton or less, and still more preferably 16 eq / ton or less with respect to the polyester.
  • the carboxyl terminal concentration is preferably low, but is preferably 0.5 eq / ton or more from the viewpoint of productivity.
  • concentration of polyester can be measured by the titration method mentioned later or NMR method.
  • the carboxyl terminal concentration of the polyester chip used as the raw material resin is preferably less than 25 eq / ton.
  • the intrinsic viscosity of the polyester chip used as raw material resin shall be 0.60 dl / g or more. Setting the carboxyl terminal concentration and intrinsic viscosity of the polyester chip to the above ranges can be performed by appropriately selecting the polymerization conditions of the resin.
  • production equipment factors such as the structure of the esterification reaction apparatus, composition ratio of dicarboxylic acid and glycol in the slurry supplied to the esterification reaction tank, esterification reaction temperature, esterification reaction pressure, esterification reaction time, etc. What is necessary is just to set reaction conditions or solid-state polymerization conditions etc. suitably.
  • the solid phase polymerization method can be suitably employed from the viewpoint of productivity.
  • the polyester film for solar cells of the present invention may contain fine particles for the purpose of imparting slipperiness.
  • the fine particles to be contained include silica, kaolinite, talc, calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, titanium oxide, and zinc sulfide, but are not particularly limited.
  • the polyester film for solar cells has a multilayer structure of three or more layers, and it is also a preferable aspect that at least the outermost layer contains inorganic or organic particles for improving slipperiness. Furthermore, in the easily adhesive polyester film for solar cells described later, when high transparency is required, a configuration in which particles are contained only in the coating layer without containing particles in the polyester film serving as a substrate is also preferable.
  • the fine particles preferably have an average particle size of 0.01 ⁇ m or more and 10 ⁇ m or less, more preferably 0.05 ⁇ m or more and 8 ⁇ m or less, and most preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the average particle size of the fine particles is measured by the following method. Take a picture of the particles with a scanning electron microscope (SEM), and at a magnification such that the size of one smallest particle is 2-5 mm, the maximum diameter of 300-500 particles (between the two most distant points) The average value is defined as the average particle size (number basis).
  • the content of the fine particles is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.05% by mass or more and 1% by mass or less in the polyester resin constituting the outermost layer.
  • the content of the fine particles is smaller than 0.01% by mass, the film is less slippery, so that scratches are generated due to friction with a roll or the like in the process, and handling property in post-processing is decreased. Absent.
  • grains exceeds 5 mass%, there exists a possibility that it may become difficult to control a haze value and film surface roughness in a suitable range.
  • the light transmittance (wavelength 380 nm) of the film is preferably 20% or less, and more preferably 15% or less.
  • the light transmittance is measured in a direction perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
  • the light transmittance (wavelength 380 nm) is low, but when a large amount of the ultraviolet absorber is added, the ultraviolet absorber may bleed out to the film surface. Therefore, the lower limit of the light transmittance (wavelength 380 nm) is preferably 0.001%.
  • a known substance can be used as the ultraviolet absorber.
  • the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • organic ultraviolet absorbers include benzotriazoles, benzophenones, cyclic iminoesters, and combinations thereof, but are not particularly limited as long as the absorbance is within the range defined by the present invention. From the viewpoint of durability, benzotriazole and cyclic imino ester are particularly preferable. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be further improved.
  • the concentration of the UV absorber in the master batch is preferably 1 to 30% by mass in order to uniformly disperse the UV absorber and economically blend it. Is preferably low.
  • a condition for producing the master batch it is preferable to use a kneading extruder and to extrude at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. for 1 to 15 minutes. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. When the extrusion temperature is 1 minute or less, uniform mixing of the UV absorber becomes difficult. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
  • additives can be contained in the polyester.
  • the additive include a fluorescent brightening agent, an infrared absorbing dye, a heat stabilizer, an antioxidant, a light resistance agent, an antigelling agent, an organic wetting agent, an antistatic agent, and a surfactant.
  • a fluorescent brightening agent an infrared absorbing dye
  • a heat stabilizer an antioxidant
  • a light resistance agent an antigelling agent
  • an organic wetting agent an antistatic agent
  • surfactant e.g., a surfactant to be used.
  • aromatic amine type, phenol type and the like antioxidants can be used.
  • stabilizer phosphorous, phosphoric acid ester and other phosphorous, sulfur and amine stabilizers can be used.
  • the method for producing the polyester film for solar cells of the present invention is arbitrary and is not particularly limited. For example, it can be produced as follows.
  • the polyester chip obtained by polymerization is melted with an extruder, the resin is extruded from the die into a sheet shape, and taken out with a cooling roll to form an unstretched film.
  • the maximum temperature of the polyester resin in the extruder is preferably 280 ° C or higher, more preferably 290 ° C or higher. By raising the melting temperature, the back pressure at the time of filtration in the extruder is lowered, and good productivity can be achieved. However, when the resin temperature is higher than 310 ° C., the thermal deterioration of the resin proceeds, which is not preferable. Therefore, the maximum temperature of the polyester resin in the extruder is preferably 310 ° C. or less, and more preferably 300 ° C. or less. If the melting temperature is too high, thermal degradation of the polyester proceeds, the carboxyl terminal concentration of the polyester increases, and the hydrolysis resistance may decrease.
  • the obtained unstretched film is heated with a heated roll or a non-contact heater, and then stretched in the longitudinal direction (roll stretching) between rolls having a speed difference, and then uniaxially stretched with a clip. After both ends are held and heated in an oven, the film is stretched in the width direction and heat-fixed by applying higher heat (tenter stretching).
  • the draw ratio in the longitudinal direction is preferably 3.0 to 4.5 times, more preferably 3.5 to 3.8 times.
  • the stretching temperature in the longitudinal direction is preferably 90 to 110 ° C.
  • the draw ratio in the width direction is preferably 3.2 to 4.8 times, more preferably 3.5 to 4.5 times.
  • the stretching temperature in the width direction is preferably 120 to 150 ° C.
  • a method of longitudinal relaxation processing a known method can be used.
  • a method of performing longitudinal relaxation processing by gradually narrowing the clip interval of the tenter Japanese Patent Publication No. 4-028218
  • a method of performing relaxation treatment by inserting a razor at the end and avoiding the influence of the clip Japanese Patent Publication No. 57-54290
  • the heat shrinkage in the vertical and horizontal directions is preferably in the range of ⁇ 1.0% to 3.0%, more preferably in the range of ⁇ 0.5% to 0.5%. If the heat shrinkage is less than -1.0%, the film becomes a problem of deflection during processing. On the other hand, if it is larger than 3.0%, the shrinkage during processing is large and wrinkle-like wrinkles are generated, which is not preferable.
  • the film surface may be coated with a polymer resin by a coating method. Moreover, it is good also as a slippery polyester film by containing inorganic and / or organic particle
  • the coating layer exhibiting easy adhesion is preferably provided by an aqueous coating solution containing at least one of a water-soluble or water-dispersible copolymerized polyester resin, an acrylic resin, and a polyurethane resin.
  • the coating layer formed from the polyurethane resin and block isocyanate which are mentioned later is also a preferable aspect.
  • these coating liquids include water-soluble or water-dispersible copolyester resin solutions, acrylic resin solutions, polyurethane resin solutions disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, and the like. Etc.
  • Such a coating layer may be provided after film formation (offline coating method) or during film formation (inline coating method), but from the point of productivity, during film formation. It is preferable to provide it.
  • the solar cell referred to in the present invention refers to a system that takes in incident light such as sunlight and room light, converts it into electricity, and stores the electricity.
  • the polyester film for a solar cell of the present invention can be used as a base film (base film) for a back surface sealing sheet, a surface protection sheet, or a bonding material for a flexible electronic member.
  • base film for a back surface sealing sheet
  • surface protection sheet for a flexible electronic member.
  • it is suitable as a base film for a solar cell backside sealing sheet that requires high durability and long-term thermal stability.
  • the solar cell back surface sealing sheet protects the solar cell module on the back side of the solar cell.
  • the polyester film for solar cell back surface sealing of the present invention can be used as a solar cell back surface sealing sheet, either alone or in combination.
  • the solar cell backside sealing sheet of the present invention may be laminated with a film having water vapor barrier properties, an aluminum foil or the like for the purpose of imparting water vapor barrier properties.
  • a polyvinylidene fluoride coating film, a silicon oxide vapor deposition film, an aluminum oxide vapor deposition film, an aluminum vapor deposition film, or the like can be used. These can be laminated on the polyester film for solar cell of the present invention via an adhesive layer or directly, or can be used in the form of a sandwich structure.
  • the easy-adhesive polyester film for solar cells of the present invention comprises a urethane resin and a blocked isocyanate having a dissociation temperature of 130 ° C. or lower and a blocking agent having a boiling point of 180 ° C. or higher, based on the polyester film for solar cells. It is important to have a coating layer formed from a coating solution as a main component.
  • the “main component” means that it is contained in an amount of 50% by mass or more, more preferably 70% by mass or more as a total solid component contained in the coating solution.
  • a flexible urethane resin is preferably used.
  • isocyanate may be used as a cross-linking agent, but because of its high reactivity, it reacts with water in an aqueous coating solution to lose cross-linking reactivity or reacts with a urethane resin to produce aggregates. It tends to be easy. Therefore, the so-called pot life is short, and it is difficult to stably apply for a long time. Therefore, an isocyanate having a functional group blocked with a blocking agent that is dissociated by thermal addition may be used.
  • the undissociated blocking agent due to the influence of the undissociated blocking agent, sufficient adhesion may not be obtained when high adhesion is required. Further, depending on the type of blocked isocyanate, the transparency of the polyester film may be deteriorated. This is considered to be because minute uneven pinholes are formed on the coated surface when the dissociated blocking agent volatilizes at a high temperature.
  • the urethane resin contains at least a polyol component and a polyisocyanate component as constituent components, and further contains a chain extender as necessary.
  • the urethane resin is a polymer compound in which these constituent components are copolymerized mainly by urethane bonds.
  • polystyrene resin examples include polyvalent carboxylic acids (for example, malonic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or acid anhydrides thereof and polyhydric alcohols (for example, Reaction of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, neopentylglycol, 1,6-hexanediol, etc.) Polyester polyols, polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and other polyether polyols obtained from Triol compounds and polyolefin polyols, and acrylic polyols, and the like.
  • the aliphatic polycarbonate polyol which is excellent in heat resistance and hydrolysis resistance in the polyol component which is a structural component of the said urethane resin.
  • the structural component of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.
  • the vicinity of 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component measured by infrared spectroscopy of the coating layer is used.
  • the ratio (A 1460 / A 1530 ) between the absorbance (A 1460 ) and the absorbance (A 1530 ) near 1530 cm ⁇ 1 derived from the urethane component is preferably 0.50 to 1.55.
  • thermocompression bonding is performed at a high temperature in a configuration in which a polyester film (coating layer) having a surface protective material / sealing material / coating layer is laminated.
  • stress arises between a polyester film (coating layer) and a sealing material by the thermal contraction of the polyester film at the time of high temperature adhesion.
  • the generation of such stress can also vary depending on various types of sealing materials and bonding conditions.
  • the stress change accompanying the heat shrinkage of the film becomes large. As a result, it is considered that the stress is not completely relaxed and the adhesiveness with the sealing material is lowered.
  • the main component is a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a crosslinking agent
  • the absorbance (A 1460 ) around 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component measured by infrared spectroscopy and the urethane component By setting the ratio (A 1460 / A 1530 ) of the absorbance (A 1530 ) near 1530 cm ⁇ 1 derived from 0.50 to 1.55, the above characteristics can be achieved more suitably. That is, the above characteristics can be achieved by coexisting an aliphatic polycarbonate component having hydrolysis resistance and a urethane component exhibiting toughness at a predetermined ratio and further adding a crosslinking agent.
  • the absorbance around 1460 cm ⁇ 1 (A 1460 ) is derived from the bending vibration unique to the CH bond of the methylene group contained in the aliphatic polycarbonate component. Therefore, the magnitude of the absorbance (A 1460 ) near 1460 cm ⁇ 1 depends on the amount of the aliphatic polycarbonate polyol component constituting the urethane resin present in the coating layer.
  • the absorbance (A 1530 ) in the vicinity of 1530 cm ⁇ 1 is derived from the bending vibration specific to the N—H bond contained in the urethane component.
  • the magnitude of the absorbance (A 1530 ) near 1530 cm ⁇ 1 depends on the amount of the urethane component constituting the urethane resin present in the coating layer. Therefore, these absorbance ratios (A 1460 / A 1530 ) indicate that both components having different characteristics coexist in a specific ratio.
  • the ratio (A 1460 / A 1530 ) is preferably 0.50 to 1.55.
  • the lower limit of the ratio (A 1460 / A 1530 ) is preferably 0.60, and more preferably 0.70.
  • the upper limit of the ratio (A 1460 / A 1530 ) is preferably 1.45, more preferably 1.35, and even more preferably 1.25.
  • the ratio (A 1460 / A 1530 ) is less than 0.50, the amount of the hard urethane component is excessive, and the stress relaxation of the coating layer is lowered, so that the heat and humidity resistance may be lowered.
  • the ratio (A 1460 / A 1530 ) exceeds 1.55, the aliphatic component of the flexible aliphatic polycarbonate is excessively increased, and the strength of the coating layer is lowered. May decrease.
  • Examples of the aliphatic polycarbonate polyol include an aliphatic polycarbonate diol and an aliphatic polycarbonate triol, and an aliphatic polycarbonate diol can be preferably used.
  • Examples of the aliphatic polycarbonate diol that is a component of the urethane resin include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1 , 5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedi Examples thereof include aliphatic polycarbonate diols obtained by reacting one or more diols such as
  • the number average molecular weight of the aliphatic polycarbonate diol is preferably 1500 to 4000, more preferably 2000 to 3000.
  • the ratio of the aliphatic polycarbonate component constituting the urethane resin is relatively small. Therefore, in order to make the ratio (A 1460 / A 1530 ) within the above range, it is preferable to control the number average molecular weight of the aliphatic polycarbonate diol within the above range.
  • the absorbance (A 1460 ) around 1460 cm ⁇ 1 derived from the aliphatic polycarbonate component increases and the aliphatic component increases.
  • the strength after processing may be reduced.
  • the number average molecular weight of the aliphatic polycarbonate diol is small, a strong urethane component increases, and stress due to thermal shrinkage of the base material cannot be relieved, and adhesiveness may be lowered.
  • polyisocyanate that is a component of the urethane resin examples include aromatic diisocyanates such as xylylene diisocyanate; alicyclic rings such as isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis (isocyanatomethyl) cyclohexane.
  • aromatic diisocyanates such as xylylene diisocyanate
  • alicyclic rings such as isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis (isocyanatomethyl) cyclohexane.
  • Diisocyanates of formula aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate
  • polyisocyanates obtained by adding these compounds in advance with trimethylolpropane or the like in a single or plural form.
  • chain extender examples include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, and 1,6-hexanediol; polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol; ethylenediamine Diamines such as hexamethylenediamine and piperazine; aminoalcohols such as monoethanolamine and diethanolamine; thiodiglycols such as thiodiethylene glycol; or water.
  • glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, and 1,6-hexanediol
  • polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol
  • ethylenediamine Diamines such as hexamethylenediamine and piperazine
  • a chain extender having a short main chain when used, the absorbance (A 1530 ) in the vicinity of 1530 cm ⁇ 1 derived from the urethane component increases, and the flexibility of the coating layer may decrease. Therefore, a chain extender having a long main chain is preferable. From the viewpoint of imparting flexibility to the coating layer, a chain extender of diol or diamine having a length of 4 to 10 carbon atoms in the main chain is preferable. From these points, 1,4-butanediol, 1,6-hexanediol, hexamethylenediamine and the like are preferable as the chain extender used in the present invention.
  • straight chain and high molecular weight materials such as 1,4-butanediol, 1,6-hexanediol, and hexamethylenediamine are preferable.
  • the coating layer of the present invention is preferably provided by an in-line coating method described later using an aqueous coating solution. Therefore, it is desirable that the urethane resin of the present invention is water-soluble.
  • said "water-soluble” means melt
  • a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. Since the sulfonic acid (salt) group is strongly acidic and it may be difficult to maintain moisture resistance due to its hygroscopic performance, it is preferable to introduce a weakly acidic carboxylic acid (salt) group. Moreover, nonionic groups, such as a polyoxyalkylene group, can also be introduce
  • a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid is introduced as a copolymer component to form a salt.
  • the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine; N such as N-methylmorpholine and N-ethylmorpholine.
  • -Alkylmorpholines; N-dialkylalkanolamines such as N-dimethylethanolamine and N-diethylethanolamine; and the like. These can be used alone or in combination of two or more.
  • the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the total poly of the urethane resin.
  • the isocyanate component is 100 mol%, it is preferably 3 to 60 mol%, more preferably 5 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult. Moreover, when the said composition molar ratio exceeds 60 mol%, since water resistance falls, moist heat resistance may fall.
  • the glass transition temperature of the urethane resin of the present invention is preferably less than 0 ° C, more preferably less than -5 ° C.
  • the viscosity is close to that of partially melted olefin resin such as EVA or PVB at the time of pressure bonding, contributing to the improvement of strong adhesion by partial mixing. From the viewpoint of stress relaxation of the layer, it is preferable that suitable flexibility is easily obtained.
  • a crosslinking group may be introduced into the resin itself.
  • a silanol group is preferred from the viewpoint of the stability over time of the coating solution and the effect of improving the crosslinking density.
  • a resin other than the urethane resin may be contained in order to improve the adhesiveness.
  • a urethane resin, an acrylic resin, a polyester resin, or the like containing polyether or polyester as a constituent component may be used.
  • Block isocyanate In the present invention, it is necessary to contain a blocked isocyanate having a dissociation temperature of 130 ° C. or lower and a blocking agent having a boiling point of 180 ° C. or higher in the coating solution.
  • the blocked isocyanate can be obtained by reacting a polyisocyanate and a blocking agent.
  • the dissociation temperature and boiling point can be measured by differential thermal analysis.
  • the dissociation temperature of the blocked isocyanate is 130 ° C or lower, more preferably 125 ° C or lower, and further preferably 120 ° C or lower.
  • the blocking agent is dissociated from the functional group by heat addition in the film forming step, and a regenerated isocyanate group is generated. Therefore, a crosslinking reaction with a urethane resin or the like proceeds, and the adhesiveness is improved.
  • the dissociation temperature of the blocked isocyanate is equal to or lower than the above temperature, the dissociation of the blocking agent proceeds sufficiently, so that the adhesiveness, particularly the moist heat resistance is improved.
  • the dissociation temperature is not particularly limited as long as it is room temperature or higher for stabilization of the coating solution, but is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher.
  • a compound having one active hydrogen in the molecule is preferably used.
  • a blocking agent capable of obtaining a high electron density for example, a blocking agent having a heterocyclic ring or a similar structure in the molecule is preferably used.
  • the boiling point of the blocking agent is 180 ° C or higher, preferably 190 ° C or higher, more preferably 200 ° C or higher, and further preferably 210 ° C or higher.
  • the upper limit of the boiling point of the blocking agent is not particularly limited, but is about 300 ° C. from the viewpoint of productivity.
  • the molecular weight of the blocking agent is preferably 50 or more, more preferably 60 or more, and still more preferably 80 or more.
  • Examples of the blocking agent having a dissociation temperature of 130 ° C. or lower used for the blocked isocyanate and a boiling point of the blocking agent of 180 ° C. or higher include bisulfite compounds such as sodium bisulfite; 3,5-dimethylpyrazole, 3-methyl Pyrazole compounds such as pyrazole, 4-bromo-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole; malonic acid diester (dimethyl malonate, diethyl malonate, di-n-butyl malonate, di2 malonate) Active methylenes such as -ethylhexyl); triazoles such as 1,2,4-triazole.
  • pyrazole compounds are preferred from the viewpoints of heat and humidity resistance and yellowing.
  • the polyisocyanate that is a precursor of the blocked isocyanate is obtained by introducing diisocyanate.
  • the polyisocyanate include diisocyanate urethane-modified products, allophanate-modified products, urea-modified products, biuret-modified products, uretdione-modified products, uretoimine-modified products, isocyanurate-modified products, and carbodiimide-modified products.
  • Diisocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 1,5-naphthylene diene Isocyanate, 1,4-naphthylene diisocyanate, phenylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4 '-Diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, 3,3'-dimethoxydiphenyl-4
  • the blocked isocyanate introduces a hydrophilic group to the precursor polyisocyanate in order to impart water solubility or water dispersibility.
  • Hydrophilic groups include (1) quaternary ammonium salts of dialkylamino alcohols and quaternary ammonium salts of dialkylaminoalkylamines, (2) sulfonates, carboxylates, phosphates, etc. (3) alkoxy groups
  • One end-capped polyethylene glycol, polypropylene glycol and the like can be mentioned.
  • a hydrophilic site When a hydrophilic site is introduced, it becomes (1) cationic, (2) anionic, and (3) nonionic.
  • the anionic and nonionic thing which can be easily compatible is preferable.
  • anionic ones are excellent in compatibility with the resin, and nonionic ones do not have an ionic hydrophilic group, so that they are preferable for improving the heat and moisture resistance.
  • anionic and cationic ones aggregate with the resin or self-aggregate and may affect the transparency and appearance, and among these, nonionic ones are more preferable.
  • anionic hydrophilic group those having a hydroxyl group for introduction into polyisocyanate and a carboxylic acid group for imparting hydrophilicity are preferable.
  • examples include glycolic acid, lactic acid, tartaric acid, citric acid, oxybutyric acid, oxyvaleric acid, hydroxypivalic acid, dimethylolacetic acid, dimethylolpropionic acid, dimethylolbutanoic acid, and polycaprolactone having a carboxylic acid group.
  • An organic amine compound is preferable for neutralizing the carboxylic acid group.
  • organic amine compound examples include ammonia, methylamine, ethylamine, propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, C1-C20 linear, branched 1, 2 or tertiary amines such as triisopropylamine, tributylamine and ethylenediamine; cyclic amines such as morpholine, N-alkylmorpholine and pyridine; monoisopropanolamine and methylethanol Amine, methylisopropanolamine, dimethylethanolamine, diisopropanolamine, diethanolamine, triethanolamine, diethylethanol Amine, hydroxyl group-containing amines such as triethanolamine; and the like.
  • the nonionic hydrophilic group is preferably one having 3 to 50 repeating units of polyethylene glycol, polypropylene glycol having ethylene oxide and / or propylene oxide capped at one end with an alkoxy group, more preferably 5 to 30.
  • the repeating unit is small, the compatibility with the resin is deteriorated and the haze is increased.
  • the repeating unit is large, the adhesiveness under high temperature and high humidity may be decreased.
  • nonionic, anionic, cationic, and amphoteric surfactants can be added to the coating solution.
  • the surfactant include nonionic surfactants such as polyethylene glycol and polyhydric alcohol fatty acid esters; anionic surfactants such as fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, sulfosuccinates, and alkyl phosphates.
  • cationic surfactants such as alkylamine salts and alkylbetaines; amphoteric surfactants such as carboxylic acid amine salts, sulfonic acid amine salts, and sulfate ester salts.
  • the coating solution can contain a water-soluble organic solvent in addition to water.
  • a water-soluble organic solvent in addition to water.
  • the organic solvent used in the reaction or it can be removed and another organic solvent can be added.
  • the mass ratio of urethane resin to blocked isocyanate (urethane resin / block isocyanate) in the coating solution is preferably 1/9 to 9/1, more preferably 1/9 to 8/2, and further 2/8 to 6/4. preferable.
  • content of the block isocyanate in the solid component of a coating liquid 5 to 90 mass% is preferable, More preferably, it is 20 to 80 mass%.
  • the content of the blocked isocyanate is low, the solvent resistance of the coating layer and the adhesiveness under high temperature and high humidity decrease, and when it is high, the flexibility of the resin of the coating layer decreases, and the high temperature and high temperature Adhesion under humidity decreases.
  • Two or more types of blocked isocyanates may be combined, or two or more types of blocking agents may be combined. In that case, at least one blocked isocyanate must satisfy the provisions of the present invention.
  • crosslinking agents may be mixed in order to improve the strength of the coating layer.
  • the crosslinking agent to be mixed include melamine, epoxy, carbodiimide, and oxazoline.
  • a carbodiimide type and an oxazoline type are preferable from the viewpoint of the stability over time of the coating solution and the effect of improving the adhesion under high temperature and high humidity treatment.
  • a catalyst etc. are used suitably as needed.
  • particles may be contained in the coating layer.
  • the particles are (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, titanium dioxide, zirconium dioxide, satin white, Inorganic particles such as aluminum silicate, diatomaceous earth, calcium silicate, aluminum hydroxide, hydrous halloysite, magnesium carbonate, magnesium hydroxide, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, Styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / isoprene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea, epoxy, urethane Phenolic, diallyl phthalate, polycarbonate,
  • the particles preferably have an average particle diameter of 1 to 500 nm.
  • the average particle size is not particularly limited, but is preferably 1 to 100 nm from the viewpoint of maintaining the transparency of the film.
  • the particles may contain two or more kinds of particles having different average particle diameters.
  • the average particle size (on the basis of the number) is obtained by photographing a cross section of the laminated film at a magnification of 120,000 using a transmission electron microscope (TEM), and measuring 10 or more particles present in the cross section of the coating layer. The maximum diameter can be measured and obtained as an average value thereof.
  • TEM transmission electron microscope
  • the particle content is preferably 0.5% by mass or more and 20% by mass or less.
  • the amount is small, sufficient blocking resistance cannot be obtained. In addition, the scratch resistance is deteriorated.
  • the amount is large, the coating film strength decreases.
  • the coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution.
  • the surfactant may be any of cationic, anionic, nonionic, etc., but is preferably a silicon-based, acetylene glycol-based or fluorine-based surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the sealing material, for example, in the range of 0.005 to 0.5% by mass in the coating solution.
  • additives may be contained within a range that does not impair the adhesion with the sealing material.
  • the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.
  • a method of providing a coating layer on a polyester film a method of coating a polyester film with a coating solution containing a solvent, the urethane resin, the blocked isocyanate and, if necessary, particles, and the like, and drying can be mentioned.
  • the solvent include organic solvents such as toluene, water, and a mixed system of water and a water-soluble organic solvent.
  • water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.
  • the coating layer is formed by coating a coating solution on at least one surface of the polyester film at any stage of the formed film or the film manufacturing process.
  • coating in-line coating method
  • the solid content concentration of the resin composition in the coating solution is preferably 2 to 35% by mass, and particularly preferably 4 to 15% by mass.
  • any known method can be used as a method for applying the coating liquid to the polyester film.
  • reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
  • the coating layer is formed by applying the coating solution to an unstretched or uniaxially stretched polyester film, drying it, stretching in at least a uniaxial direction, and then performing a heat treatment.
  • the thickness of the coating layer finally obtained is preferably 10 to 3000 nm, more preferably 10 to 1000 nm, still more preferably 10 to 500 nm, and particularly preferably 10 to 400 nm.
  • the coating amount of the coating layer after drying is preferably 0.01 to 3 g / m 2 , more preferably 0.01 to 1 g / m 2 , still more preferably 0.01 to 0.5 g / m 2 , and particularly Preferably, it is 0.01 to 0.4 g / m 2 .
  • the coating amount of the coating layer is less than 0.01 g / m 2 , the effect on the adhesiveness is almost lost.
  • the coating amount exceeds 3 g / m 2 the blocking resistance is lowered.
  • the maximum temperature and heat treatment time in the tenter during heat treatment of the film is preferably 160 ° C. or higher, preferably 1 second or longer, 180 ° C. or higher, 5 seconds or longer. Is more preferable.
  • the maximum temperature in the tenter and the heat treatment time during heat treatment are preferably 250 ° C. or less and 60 seconds or less, and more preferably 240 ° C. or less and 50 seconds or less.
  • the said heat processing time says the residence time from the heat processing zone in a tenter after extending
  • the thickness of the polyester film as a substrate is not particularly limited, but is preferably 20 to 500 ⁇ m, more preferably 25 to 450 ⁇ m, and further preferably 30 to 300 ⁇ m. If the substrate thickness is thin, the influence of heat shrinkage is large, and the adhesiveness after the high-temperature and high-humidity treatment may be reduced. If it is thick, it cannot be wound as a roll.
  • the transparency of the film is high from the viewpoint of photoelectric conversion efficiency.
  • the haze of the film is preferably less than 5.0%, more preferably less than 4.5%, and still more preferably 4.3% or less.
  • the front sheet for solar cells of the present invention comprises the above-mentioned easily adhesive polyester film for solar cells as a constituent member.
  • it is preferably used for the outermost layer that is in direct contact with the sealing material.
  • the back sheet for a solar cell of the present invention can exhibit strong adhesion with a sealing material, and exhibits excellent adhesion even under a severe environment over a long period of time. Therefore, it can contribute to moisture proof maintenance and barrier property improvement of the solar cell element.
  • the solar cell front sheet of the present invention for example, a configuration such as the above-mentioned easily adhesive polyester film for solar cells / adhesive / metal foil or a film having a metal-based thin film layer / adhesive / hard coat layer
  • the configuration include an easily adhesive polyester film for solar cells / adhesive / hard coat layer.
  • the structure which has the said coating layer on both surfaces may be sufficient as the said easily-adhesive polyester film for solar cells.
  • the lamination process can be suitably performed without newly providing an adhesive layer.
  • the coating layer can exhibit good adhesion with a configuration other than the sealing material (for example, a hard coat layer).
  • a film having a metal foil or a metal thin film layer a film having a water vapor barrier property can be suitably used.
  • the metal examples include aluminum, tin, magnesium, silver, and stainless steel. Among them, aluminum and silver are preferable because they have a relatively high reflectance and are easily available industrially.
  • the metal layer may be used as a metal foil, or may be laminated as a thin film on a polyester film or the like. As a method of laminating these metals as a thin film, a vacuum deposition method, a sputtering method, an ion plating method, a plasma vapor deposition method (CVD), or the like can be used.
  • an ultraviolet absorber is added to the hard coat layer in order to improve the weather resistance.
  • providing an antifouling layer, an antireflection layer, or the like as the outermost layer is a preferable aspect in increasing the amount of light incident on the solar cell element and improving the photoelectric conversion efficiency.
  • the easily adhesive polyester film for solar cells of the present invention can also be suitably used as the innermost layer (layer on the side in contact with the sealing material) of the solar cell backsheet.
  • the easy-adhesive polyester film for solar cells can be used as a constituent member of a back sheet for solar cells.
  • it is preferably used for the outermost layer that is in direct contact with the sealing material.
  • the solar cell backsheet can exhibit strong adhesion to the sealing material, and can exhibit good adhesion even under a severe environment for a long period of time. Therefore, it can contribute to moisture proof maintenance and barrier property improvement of the solar cell element.
  • the back sheet for solar cell examples include, for example, the above-mentioned easily adhesive polyester film for solar cell / adhesive / metal foil or film having a metal thin film layer / adhesive / polyvinyl fluoride film or polyester-based highly durable moisture-proof film.
  • Such a configuration is exemplified.
  • the structure which has the said coating layer on both surfaces may be sufficient as the said easily-adhesive polyester film for solar cells.
  • the coating layer of the present invention can exhibit good adhesiveness with configurations other than the sealing material.
  • a film having a metal foil or a metal thin film layer a film having a water vapor barrier property can be suitably used.
  • the solar cell module uses, for example, a solar cell element as a photovoltaic element provided with wiring, a sealing material interposed so as to sandwich the solar cell element, and the solar cell front sheet or back sheet of the present invention. Composed.
  • a sealing material an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is preferably used.
  • the coating layer of the present invention since the coating layer of the present invention has such flexibility, it can exhibit good adhesiveness with a sealing material such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin.
  • Sealing materials are classified into a standard cure type that cures by a curing process in an oven provided in a separate line after thermocompression bonding in the laminating process, and a fast cure type that cures inside the laminator in the laminating process. However, either can be applied.
  • the coating layer of the present invention can exhibit suitable adhesion in any of these types and has high versatility.
  • an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is used.
  • the “main component” means that 50% by mass or more, more preferably 70% by mass or more of the sealing material is contained.
  • a crosslinking agent or a reaction initiator for causing the crosslinking reaction to proceed is added to the sealing material.
  • 2,5-dimethylhexane-2,5-dihydroxyperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne di- Organic peroxides such as t-butyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane are used.
  • a photosensitizer such as benzophenone, methyl orthobenzoylbenzoate or benzoin ether is used.
  • a silane coupling agent may be blended in consideration of adhesion to the glass substrate.
  • Epoxy group-containing compounds include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, acrylic glycidyl ether, 2-ethylhexyl glycidyl ether, etc. A compound is used.
  • Evaluation method 1-1 Polyester raw material / Intrinsic viscosity of film (IV) The polyester raw material or film was dissolved using a 6/4 (mass ratio) mixed solvent of phenol / 1,1,2,2-tetrachloroethane and measured at a temperature of 30 ° C.
  • the length of the crystal oriented in the longitudinal direction (MD direction) A film laminated to a thickness of about 50 ⁇ m or more is used as a sample for X-ray diffraction, and the film is placed on the sample holder of an X-ray diffraction apparatus (manufactured by Rigaku Corporation) A sample was placed so as to measure in a plane perpendicular to the MD direction. While changing the incident angle of X-rays with respect to the width direction of the film, diffraction peaks were observed by the transmission method.
  • the crystal size D angstrom in the ( ⁇ 105) plane direction, which is the diffraction crystal plane of the peak, was calculated according to Scherrer's formula and oriented in the MD direction.
  • the length of the crystal. D ⁇ / (B ⁇ b) cos ⁇
  • B diffraction peak half width (rad)
  • b 0.12 (rad)
  • Cu K ⁇ ray wavelength (1.5418 ⁇ )
  • Film thickness A tape-like sample (5 cm in the horizontal direction x 1 m in the vertical direction) continuous in the vertical direction was collected, and the thickness of 20 points was measured at a 1 cm pitch using an electronic micrometer (manufactured by Seiko EMM Co., Ltd., “Millitron 1240”). And it calculated
  • MOR-C The film was divided into five equal parts in the width direction, and square samples with a length of 100 mm in the longitudinal direction and width direction were collected at each position.
  • the MOR value of the obtained sample was measured using a microwave transmission type molecular orientation meter (manufactured by Oji Scientific Instruments, “MOA-6004”).
  • the MOR-C value was determined with a thickness correction of 50 ⁇ m, and an average value of 5 points was calculated.
  • the heat shrinkage rate at 150 ° C. of the film is measured at 100 mm intervals in the film width direction, the average value of three samples is rounded off to the third decimal place, and rounded to the second decimal place.
  • the values in the direction with larger values in the longitudinal direction and the width direction were used.
  • Thermal contraction rate (%) [(AB) / A] ⁇ 100
  • a new test tube is prepared, and only benzyl alcohol is added and processed in the same procedure, and samples when the time is 3 minutes, 5 minutes, and 7 minutes are designated as a, b, and c, respectively.
  • Titration Titration was performed using a 0.04 mol / l potassium hydroxide solution (ethanol solution) whose factor was previously known. The indicator used was phenol red, and the titration (ml) of the potassium hydroxide solution was determined with the end point at which the color changed from yellowish green to light red.
  • Breaking elongation retention rate [(breaking elongation after treatment) ⁇ 100] / (breaking elongation before treatment)
  • Thermal oxidation stability parameter (thermal stability parameter) (TS)
  • the film ([IV] i ) was frozen and ground to a powder of 20 mesh or less. This powder was vacuum-dried at 130 ° C. for 12 hours, and 300 mg of the powder was placed in a glass test tube having an inner diameter of about 8 mm and a length of about 140 mm and vacuum-dried at 70 ° C. for 12 hours.
  • [IV] f1 was measured after dipping in a salt bath at 230 ° C. and heating for 15 minutes under dry air with a drying tube containing silica gel attached to the top of the test tube.
  • TS was determined as follows.
  • [IV] i and [IV] f1 indicate IV (dl / g) before and after the heating test, respectively.
  • the freeze pulverization was performed using a freezer mill (Specks Corp., Model 6750). After putting about 2 g of a resin chip or film and a dedicated impactor in a dedicated cell, the cell is set in the apparatus, liquid nitrogen is filled into the apparatus and held for about 10 minutes, and then RATE10 (the impactor is about 1 second per second). Crushed for 5 minutes.
  • TS 0.245 ⁇ [IV] f1 -1.47- [IV] i -1.47 ⁇
  • the haze of the haze film was measured using a turbidimeter (Nippon Denshoku, NDH2000) according to JIS K7136.
  • a coating layer sample piece (size: about 50 ⁇ m ⁇ about 50 ⁇ m) molded into a film having a thickness of about 1 ⁇ m. Further, a sample piece (blank sample piece) was prepared in the same manner as described above for a PET resin having the same quality as the base film as a blank sample. The prepared sample piece was placed on a KBr plate, and an infrared absorption spectrum was measured by a microscopic transmission method under the following conditions.
  • the infrared absorption spectrum of the coating layer was determined as a difference spectrum between the infrared spectrum obtained from the coating layer sample piece and the spectrum of the blank sample piece.
  • Absorbance around 1460 cm -1 derived from an aliphatic polycarbonate component (A 1460) is 1460 and the value of the absorption peak height having an absorption maximum in the region of ⁇ 10 cm -1
  • the absorbance in the vicinity of 1530 cm -1 derived from urethane component (A 1530 ) is the value of the absorption peak height having an absorption maximum in the region of 1530 ⁇ 10 cm ⁇ 1 .
  • the baseline was a line connecting the hems on both sides of each maximum absorption peak.
  • Adhesiveness An easily adhesive polyester film for solar cells was prepared by cutting out 100 mm width ⁇ 100 mm length and EVA sheet cut out to 70 mm width ⁇ 90 mm length. A sample was prepared by stacking with the configuration of film (applied layer surface) / EVA / (applied layer surface) film described below and thermocompression bonding with a vacuum laminator under the following adhesive conditions. The produced sample was cut out to 20 mm width ⁇ 100 mm length, and then attached to a SUS plate, and the peel strength between the film layer and the EVA layer was measured with a tensile tester under the conditions described below. The peel strength was determined as the average value of the parts that were stably peeled after exceeding the maximum point.
  • the ranking was based on the following criteria.
  • PET resin 2-1 Production of PET-I
  • a slurry consisting of 86.4 parts by mass of terephthalic acid and 64.4 parts by mass of ethylene glycol was charged, and trioxide was used as a catalyst while stirring. 0.017 parts by mass of antimony and 0.16 parts by mass of triethylamine were added. Subsequently, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 3.5 kgf / cm 2 and 240 ° C.
  • the inside of the esterification reaction vessel was returned to normal pressure, and 0.071 part by mass of magnesium acetate tetrahydrate and then 0.014 part by mass of trimethyl phosphate were added. Furthermore, the temperature was raised to 260 ° C. over 15 minutes, and 0.012 part by mass of trimethyl phosphate and then 0.0036 part by mass of sodium acetate were added. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and subjected to a polycondensation reaction at 285 ° C.
  • PET resin (PET-I) had an intrinsic viscosity of 0.620 dl / g, an acid value of 14.5 eq / ton, and contained substantially no inert particles and internally precipitated particles.
  • PET-II After pre-crystallization of PET-I at 160 ° C., it was solid-phase polymerized in a nitrogen atmosphere at a temperature of 220 ° C. to obtain a PET resin having an intrinsic viscosity of 0.70 dl / g and an acid value of 10 eq / ton ( PET-II) was obtained.
  • PET-III Polyethylene terephthalate masterbatch pellets (inherent viscosity 0.62 dl / g) containing 1000 ppm of irregular-shaped massive silica particles having an average particle size of 2.3 ⁇ m were prepared in the same manner as PET-I.
  • PET-IV PET-III was pre-crystallized in advance at 160 ° C. and then solid-phase polymerized in a nitrogen atmosphere at a temperature of 220 ° C. to obtain a PET resin having an intrinsic viscosity of 0.71 dl / g and an acid value of 10 eq / ton ( PET-IV) was obtained.
  • the heating was stopped, the solution was immediately removed from the heat source, and the solution was cooled to 120 ° C. or less within 30 minutes while maintaining the nitrogen atmosphere.
  • the mole fraction of Irganox 1222 in the obtained solution was 40%, and the mole fraction of the compound whose structure changed from Irganox 1222 was 60%.
  • Esterification reaction and polycondensation It consists of three continuous esterification reaction tanks and three polycondensation reaction tanks, and has a high-speed stirrer in the transfer line from the third esterification reaction tank to the first polycondensation reaction tank.
  • a continuous polyester production apparatus equipped with an in-line mixer was used. 1 part by mass of high-purity terephthalic acid and 0.75 part by mass of ethylene glycol were continuously supplied to the slurry preparation tank to prepare a slurry.
  • the prepared slurry is continuously supplied to the esterification reaction layer, the first esterification tank has a reaction temperature of 250 ° C. and 110 kPa, the second esterification reaction tank has 260 ° C.
  • the third esterification reaction tank has 260 ° C., 105 kPa.
  • 0.025 parts by mass of ethylene glycol was continuously added to the second esterification reaction tank to obtain a polyester oligomer.
  • the oligomer was continuously transferred to a continuous polycondensation apparatus consisting of three reaction vessels.
  • the ethylene glycol solution of the aluminum compound and the ethylene glycol solution of the phosphorus compound prepared by the above method were added to the in-line mixer installed in the transfer line.
  • the initial polycondensation reaction tank is 265 ° C., 9 kPa
  • the intermediate polycondensation reaction tank is 265-268 ° C., 0.7 kPa
  • the final polycondensation reaction tank is 273 ° C., 13.3 Pa
  • the intrinsic viscosity is 0.630 dl.
  • PET-VI 5.0 eq / ton PET resin
  • Polyester film for solar cell 3-1 Production Example 1 (Production of film) A mixture of 50% by mass of PET resin (PET-II) and 50% by mass of (PET-IV) was used as a raw material for the layer (A). 100% by mass of PET resin (PET-II) was used as a raw material for the layer (B). These raw materials were put into separate extruders, mixed and melted at 285 ° C., and then joined in a molten state to form an A / B / A layer using a feed block. At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet.
  • the obtained unstretched sheet was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching.
  • the obtained uniaxially stretched film was led to a tenter, heated to 140 ° C., stretched to 4.0 times, fixed in width, heat-treated at 215 ° C. for 5 seconds, and further 210% in the width direction at 210 ° C.
  • Production Example 2 A polyester film for solar cells having a thickness of 100 ⁇ m (6/88/6 ⁇ m) was obtained in the same manner as in Production Example 1 except that the discharge amount and speed were adjusted.
  • Production Example 3 The film produced in Production Example 1 was passed through an offline dryer (5-zone temperature control, each zone length 3 m, width 2 m, non-contact, wind speed 7 m / min) at a maximum setting temperature of 170 ° C. and a speed of 30 m / min. In addition, in order to maintain planarity, it processed, controlling line tension, and obtained the polyester film for solar cells.
  • Production Example 4 The unstretched sheet obtained by the same method as in Production Example 1 was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C., stretched to 4.0 times, fixed in width, and subjected to heat treatment at 215 ° C. for 5 seconds. Further, the film was relaxed by 4% in the width direction at 210 ° C., and both ends of the film were cut at 170 ° C. Next, while the end portion was held with a pinch roll, the speed of the take-up roll was adjusted to perform a longitudinal relaxation treatment to obtain a polyester film for a solar cell.
  • Production Example 5 In Production Example 1, a polyester film for a solar cell having a thickness of 50 ⁇ m was obtained in the same manner as in Production Example 1 except that the longitudinal draw ratio was 3.7 times and the horizontal draw ratio was 3.8 times.
  • Production Example 6 A polyester film for a solar cell solar cell having a thickness of 50 ⁇ m was obtained in the same manner as in Production Example 1 except that both layers (A) and (B) were made 100% by mass of polyethylene terephthalate resin (PET-VI).
  • Production Example 7 (Preparation of coating solution) (Polymerization of urethane resin solution containing aliphatic polycarbonate polyol) In a reaction vessel, 43.75 parts by mass of 4,4-diphenylmethane diisocyanate, 12.85 parts by mass of dimethylolbutanoic acid, 153.41 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, And 84.00 mass parts of acetone was added as a solvent, and it stirred at 75 degreeC under nitrogen atmosphere for 3 hours.
  • the coating solution was applied to one side of a PET film by roll coating on a uniaxially oriented PET film that had been longitudinally stretched, and then dried at 80 ° C. for 20 seconds. In addition, it adjusted so that the application quantity after the final (after biaxial stretching) drying might be 0.15 g / m ⁇ 2 >. Subsequently, the film was stretched by a tenter in the same manner as in Example 1 to obtain a polyester film for a solar cell having a thickness of 50 ⁇ m.
  • the obtained film 100 mm width ⁇ 100 mm length, EVA sheet cut into 70 mm width ⁇ 90 mm length was prepared, stacked with the configuration of film (coating layer surface) / EVA / (coating layer surface) film described below, and the following with a vacuum laminator
  • a sample was prepared by thermocompression bonding under the described bonding conditions. The produced sample exhibited good adhesion even after being left in an environment of 85 ° C. and 85% RH for 1000 hours in a high-temperature and high-humidity tank.
  • Production Example 8 A 50 ⁇ m-thick polyester film for solar cells was obtained in the same manner as in Production Example 1 except that both layers (A) and (B) were changed to 100% by mass of polyethylene terephthalate resin (PET-I).
  • Production Example 9 A solar cell having a thickness of 50 ⁇ m was produced in the same manner as in Production Example 1 except that the longitudinal draw ratio was 3.0 times, the transverse draw ratio was 4.3 times, and the heat setting temperature in the tenter was 245 ° C. in Production Example 1. A polyester film was obtained.
  • Production Example 10 Manufacture of back sheets for solar cells
  • the solar cell polyester film / polyester film manufactured by Toyobo Co., Ltd., A4300 125 ⁇ m
  • manufactured example 1 solar cell polyester film was bonded by a dry laminating method to obtain a solar cell backsheet.
  • urethane resin 4-1 Preparation of urethane resin 4-1. Polymerization of urethane resin A-1 having aliphatic polycarbonate polyol as a constituent component 4,4-dicyclohexylmethane was added to a 4-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer.
  • urethane resin A-3 comprising aliphatic polycarbonate polyol as a constituent component 4,4-dicyclohexylmethane was added to a 4-neck flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer.
  • urethane resin A-5 containing aliphatic polycarbonate polyol as a constituent component
  • Polyhexamethylene carbonate diol having a number average molecular weight of 2,000 in water-soluble polyurethane resin (A-1) is changed to polyhexamethylene carbonate diol having a number average molecular weight of 5,000.
  • a water-soluble polyurethane resin solution (A-5) having a solid content of 35% by mass was obtained in the same manner except for the change.
  • Block Polyisocyanate Crosslinking Agent B-1 A polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material (Duranate (registered trademark) manufactured by Asahi Kasei Chemicals) in a flask equipped with a stirrer, a thermometer, and a reflux condenser. TPA) 52.21 parts by mass were added. To this, 20.72 parts by mass of polyethylene glycol monomethyl ether (number average molecular weight 1000) was added dropwise and held at 70 ° C. for 5 hours in a nitrogen atmosphere.
  • Block Polyisocyanate Crosslinking Agent B-2 A polyisocyanate compound having a biuret structure using hexamethylene diisocyanate as a raw material (Duranate 24A-100, manufactured by Asahi Kasei Chemicals) 52 in a flask equipped with a stirrer, a thermometer, and a reflux condenser. .54 parts by mass were added. To this, 19.78 parts by mass of polyethylene glycol monomethyl ether (number average molecular weight 1000) was added dropwise and held at 70 ° C. for 5 hours in a nitrogen atmosphere.
  • Block Polyisocyanate Crosslinking Agent B-3 A polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material (Duranate TPA, manufactured by Asahi Kasei Chemicals) in a flask equipped with a stirrer, a thermometer, and a reflux condenser 66. 04 parts by mass and 17.50 parts by mass of N-methylpyrrolidone were added. 25.19 parts by mass of 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) was added dropwise thereto, and the mixture was kept at 70 ° C. for 1 hour in a nitrogen atmosphere.
  • Duranate TPA manufactured by Asahi Kasei Chemicals
  • Block Polyisocyanate Crosslinking Agent B-4 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) of the block polyisocyanate aqueous dispersion (B-1) was converted to diethyl malonate (dissociation temperature: 120).
  • Block Polyisocyanate Crosslinking Agent B-5 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) of the block polyisocyanate aqueous dispersion (B-1) was converted to methyl ethyl ketoxime (dissociation temperature: 140 ° C.).
  • a block polyisocyanate aqueous dispersion (B-5) having a solid content of 40% by mass was obtained in the same manner except that the boiling point was changed to 152 ° C.).
  • Block Polyisocyanate Crosslinking Agent B-6 3,5-Dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) of block polyisocyanate aqueous dispersion (B-3) was converted to methyl ethyl ketoxime (dissociation temperature: 140 ° C.).
  • a block polyisocyanate aqueous dispersion (B-6) having a solid content of 40% by mass was obtained in the same manner except that the boiling point was changed to 152 ° C.).
  • PET resin 50% by mass of PET resin (PET-II) and 50% by mass of (PET-IV) was used as a raw material for the layer (A). 100% by mass of PET resin (PET-II) was used as a raw material for the layer (B). These raw materials were put into separate extruders, mixed and melted at 285 ° C., and then joined in a molten state to form an A / B / A layer using a feed block. At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet.
  • the obtained unstretched sheet was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching.
  • the coating solution that was allowed to stand at room temperature for 5 hours or more was applied to one side of a uniaxially stretched film obtained by a roll coating method, and then dried at 80 ° C. for 20 seconds.
  • the application quantity after the last drying (after biaxial stretching) might be set to 0.15 g / m ⁇ 2 > (coating layer thickness after drying 150 nm).
  • the easily adhesive polyester film for solar cells was obtained.
  • Production Example 12 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion was changed to the block polyisocyanate aqueous dispersion (B-5).
  • Example 13 An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the block polyisocyanate aqueous dispersion was changed to the block polyisocyanate aqueous dispersion (B-6).
  • Example 14 For a solar cell in the same manner as in Example 1 except that the block polyisocyanate aqueous dispersion was changed to a polyisocyanate aqueous dispersion having an isocyanurate structure (WT30-100, manufactured by Asahi Kasei Chemicals) using hexamethylene diisocyanate as a raw material. An easily adhesive polyester film was obtained.
  • WT30-100 manufactured by Asahi Kasei Chemicals
  • Production Example 15 Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells.
  • Polyurethane resin solution (A-1) 9.47% by mass
  • Block polyisocyanate aqueous dispersion (B-1) 1.89 mass% 0.59% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
  • Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Production Example 16 Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells. 54.75% by mass of water Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 12.99% by mass Block polyisocyanate aqueous dispersion (B-1) 1.52% by mass Particles 0.71% by mass (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Example 18 Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for solar cells.
  • Polyurethane resin solution (A-1) 3.25% by mass
  • Block polyisocyanate aqueous dispersion (B-1) 6.06% by mass Particles 0.71% by mass
  • Surfactant 0.03 mass% Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Production Example 20 An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to the polyurethane resin (A-2).
  • Production Example 21 An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to the polyurethane resin (A-3).
  • Production Example 22 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to the polyurethane resin (A-4).
  • Production Example 23 A reester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to polyurethane resin (A-5).
  • Production Example 24 An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to polyurethane resin (A-6).
  • Production Example 25 An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion (B-1) was changed to the block polyisocyanate aqueous dispersion (B-2).
  • Production Example 26 An easily adhesive polyester film for a solar cell was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion (B-1) was changed to the block polyisocyanate aqueous dispersion (B-3).
  • Production Example 27 An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion (B-1) was changed to the block polyisocyanate aqueous dispersion (B-4).
  • Production Example 28 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that PET resin pellets having an intrinsic viscosity of 0.69 g / dl that practically did not contain particles were used as the PET resin for the outer layer.
  • Production Example 29 A solar cell easy-adhesive polyester film was obtained in the same manner as in Production Example 11 except that the base layer thickness of the solar cell easy-adhesive polyester film was changed to 50 ⁇ m while keeping the ratio of each layer the same.
  • Production Example 30 A solar cell easy-adhesive polyester film was obtained in the same manner as in Production Example 29 except that the base layer thickness of the solar cell easy-adhesive polyester film was changed to 350 ⁇ m while maintaining the same ratio of each layer.
  • Production Example 31 Except having changed the coating liquid into the following, it carried out similarly to manufacture example 29, and obtained the easily adhesive polyester film for solar cells. 62.82% by mass of water Isopropanol 30.00% by mass Polyurethane resin solution (A-1) 5.67% by mass Block polyisocyanate aqueous dispersion (B-1) 1.13% by mass 0.35% by mass of particles (Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass) Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Production Example 32 Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells.
  • Surfactant 0.03 mass% (Silicon, solid content concentration of 100% by mass)
  • Production Example 33 The film produced in Production Example 11 was passed through the film with an offline dryer (5 zone temperature control, each zone length 3 m, width 2 m, non-contact, wind speed 7 m / min) at a maximum setting temperature of 170 ° C. and a speed of 30 m / min. . In addition, in order to maintain flatness, it processed, controlling line tension, and obtained the easily adhesive polyester film for solar cells.
  • an offline dryer 5 zone temperature control, each zone length 3 m, width 2 m, non-contact, wind speed 7 m / min
  • Production Example 34 An unstretched sheet obtained by the same method as in Production Example 11 was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C., stretched to 4.0 times, fixed in width, and subjected to heat treatment at 215 ° C. for 5 seconds. Further, the film was relaxed by 4% in the width direction at 210 ° C., and both ends of the film were cut at 170 ° C. Next, the gripping roll was adjusted while adjusting the speed of the take-up roll while holding the end with a pinch roll to obtain an easily adhesive polyester film for solar cells.
  • Production Example 35 In Production Example 11, a solar cell easy-adhesive polyester film was obtained in the same manner as in Production Example 11 except that the longitudinal draw ratio was 3.7 times and the horizontal draw ratio was 3.8 times.
  • Production Example 36 An easy-adhesive polyester film for a solar cell solar cell was obtained in the same manner as in Production Example 11, except that both layers (A) and (B) were changed to 100% by mass of polyethylene terephthalate resin (PET-VI).
  • PET-VI polyethylene terephthalate resin
  • Production Example 37 An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that both layers (A) and (B) were changed to 100% by mass of polyethylene terephthalate resin (PET-I).
  • PET-I polyethylene terephthalate resin
  • Production Example 38 In Production Example 11, a solar cell easy-adhesive polyester film was obtained in the same manner except that the longitudinal draw ratio was 3.0 times, the transverse draw ratio was 4.3 times, and the heat setting temperature in the tenter was 245 ° C. It was.
  • Production Example 39 Manufacture of front sheet for solar cell In Production Example 11, an easy-adhesive polyester film for solar cell was obtained in the same manner except that coating layers were formed on both surfaces of the film.
  • the front sheet for solar cells was obtained by apply
  • Tables 2 and 3 show the evaluation results of the easily adhesive polyester film for solar cell obtained.
  • the polyester film for solar cells of the present invention is excellent in hydrolysis resistance and processability, it is suitable for a solar cell constituent material such as a solar cell backside sealing sheet and a solar cell protective sheet. Moreover, since the easily adhesive polyester film for solar cells of the present invention has good hydrolysis resistance and is excellent in transparency and adhesiveness, it is used as a base film for solar cell members, particularly solar cell front sheets. Is preferred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The purpose of the present invention is to provide: a polyester film for a solar cell, which has excellent hydrolysis resistance and is rarely curled during processing; and an easily adhesible polyester film for a solar cell, which has good hydrolysis resistance and excellent adhesion properties and transparency; and a front sheet produced using the easily adhesible polyester film. This polyester film for a solar cell is characterized in that the lengths of crystals aligned in the lengthwise direction on face (-105) are 50 Å or longer as measured by a wide angle X-ray diffraction method, the film has an MOR value (MOR-C) of 1.0-2.0 when the thickness of the film is deemed as 50 μm, and the film has a density of 1.37-1.40 g/cm3. This easily adhesible polyester film for a solar cell comprises the above-mentioned polyester film for a solar cell and a coating layer that is mainly composed of a urethane resin and a block isocyanate and is formed on at least one surface of the polyester film.

Description

太陽電池用ポリエステルフィルム、太陽電池用易接着性ポリエステルフィルム及びそれを用いたフロントシートPolyester film for solar cell, easily adhesive polyester film for solar cell, and front sheet using the same
 本発明は、太陽電池裏面封止シート、太陽電池保護シート等の太陽電池構成材料に好適な太陽電池用ポリエステルフィルムに関し、さらに詳しくは耐加水分解性に優れ、加工時にカールが生じにくい太陽電池用ポリエステルフィルムに関する。また本発明は、太陽電池用易接着性ポリエステルフィルム及びそれを用いたフロントシートに関する。詳しくは、太陽電池の封止材に接する面に用いた際に、高温高湿下においても封止材との接着に優れ、且つ高い透明性を有する太陽電池用易接着性ポリエステルフィルム、及びそれを用いたフロントシートに関する。 The present invention relates to a solar cell polyester film suitable for a solar cell constituent material such as a solar cell backside sealing sheet and a solar cell protective sheet, and more specifically, for a solar cell that is excellent in hydrolysis resistance and hardly curls during processing. It relates to a polyester film. Moreover, this invention relates to the easily adhesive polyester film for solar cells, and a front sheet using the same. Specifically, when used on the surface of the solar cell in contact with the encapsulant, the easily adhesive polyester film for solar cells having excellent transparency and high transparency even under high temperature and high humidity, and the same It is related with the front seat using.
 近年、地球温暖化の原因となる石油エネルギーに代わるエネルギー手段として、太陽電池が注目を浴びており、その需要が高まっている。太陽電池は、太陽光のエネルギーを直接電気に換える太陽光発電システムである。太陽電池素子として、単結晶シリコン、多結晶シリコン、アモルファスシリコン等の半導体や、化合物系あるいは有機物系色素等が使用されている。一般的に、太陽電池素子は、数枚~数十枚の太陽電池素子を直列、並列に配線して、長期間(約20年以上)に亘って素子を保護するための種々のパッケージングが行われ、ユニット化されている。このパッケージに組み込まれたユニットを太陽電池モジュールと呼ぶ。 In recent years, solar cells have attracted attention as an alternative to petroleum energy, which causes global warming, and the demand for solar cells is increasing. A solar cell is a photovoltaic power generation system that directly converts solar energy into electricity. As solar cell elements, semiconductors such as single crystal silicon, polycrystalline silicon, and amorphous silicon, compound-based or organic dyes, and the like are used. Generally, a solar cell element has several packagings for protecting a device over a long period (about 20 years or more) by wiring several to several tens of solar cell elements in series and in parallel. Done and unitized. A unit incorporated in this package is called a solar cell module.
 ここで、一般的に太陽電池モジュールは、太陽光が当たる面がガラスで覆われ、その下の太陽電子素子は封止材で間隙を埋められ、裏面がバックシートと呼ばれる耐熱、耐候性プラスチック材料等の複数の層構成からなる保護シートで保護された構成になっている。太陽電池素子を充填する封止材としてはエチレン・酢酸ビニル共重合体樹脂(以下、EVA)、ポリビニルブチラール樹脂(以下、PVB)等のオレフィン系樹脂が用いられる。これらの封止材を用い、上記ガラス基板/封止材/太陽電池素子/封止材/バックシートの構成で重ね合わせ、真空ラミネーター等で加熱圧着することによりモジュールが作製される。封止材には、太陽電池素子を接着固定するとともに、外部からの湿気の侵入を防ぎ、太陽電池素子を保護する役割がある。 Here, in general, a solar cell module is a heat- and weather-resistant plastic material whose surface to which sunlight is applied is covered with glass, the solar electronic element under the surface is filled with a sealing material, and the back surface is called a back sheet It is the structure protected by the protective sheet which consists of several layer structures, such as these. As the sealing material for filling the solar cell element, an olefin resin such as ethylene / vinyl acetate copolymer resin (hereinafter EVA), polyvinyl butyral resin (hereinafter PVB) or the like is used. Using these sealing materials, a module is manufactured by superposing the glass substrate / sealing material / solar cell element / sealing material / back sheet and then heat-pressing with a vacuum laminator or the like. The sealing material has a role of adhering and fixing the solar cell element, preventing moisture from entering from the outside, and protecting the solar cell element.
 従来、太陽電池モジュールの表面保護部材としては、ガラスを用いることが一般的であった。近年、耐衝撃性や軽量化の点で、可とう性を有したポリエステル等のプラスチックフィルムへの関心が高まっている(特許文献1~5)。また、太陽電池モジュールの裏面を封止するバックシートの構成部材としても、安価でコスト的に有利なポリエステルフィルムが用いられるようになっている。 Conventionally, it has been common to use glass as a surface protection member of a solar cell module. In recent years, there has been an increasing interest in plastic films such as polyester having flexibility in terms of impact resistance and weight reduction (Patent Documents 1 to 5). Further, as a constituent member of the back sheet for sealing the back surface of the solar cell module, an inexpensive and cost-effective polyester film is used.
 しかしながら、ポリエステルフィルムを太陽電池部材として長期にわたり高温高湿下で使用すると、分子鎖中のエステル結合部位の加水分解が起こり、機械的強度が低下する問題が発生する。そのため、高温高湿環境や屋外での使用に限界がある。ポリエステルの加水分解は、ポリエステル分子鎖のカルボキシル末端濃度(酸価)が高いほど、加水分解が速く進行することが知られている。これまで、ポリエステルの耐加水分解性を高めるために、フィルム樹脂のカルボキシル末端濃度(酸価)を低く抑えるべく様々な検討が行われている(特許文献6、7)。また、劣化がある程度進んでも、機械的強度を大きく低下させないために、分子量が比較的高い(固有粘度が比較的高い)ポリエステルが用いられている(特許文献8~11)。 However, when a polyester film is used as a solar cell member under high temperature and high humidity for a long time, the ester bond site in the molecular chain is hydrolyzed, resulting in a problem that the mechanical strength is lowered. For this reason, there is a limit to use in high-temperature and high-humidity environments and outdoors. It is known that the hydrolysis of polyester proceeds faster as the carboxyl end concentration (acid value) of the polyester molecular chain is higher. Until now, in order to improve the hydrolysis resistance of polyester, various studies have been made to keep the carboxyl terminal concentration (acid value) of the film resin low (Patent Documents 6 and 7). In addition, polyesters having a relatively high molecular weight (relatively high intrinsic viscosity) are used in order not to greatly reduce the mechanical strength even if the deterioration has progressed to some extent (Patent Documents 8 to 11).
 また、フロントシートやバックシートの内層(太陽電池素子に面する側)を構成するポリエステルフィルムは、封止材との密着性が求められる。しかしながら、表面未処理のポリエステルフィルムでは、十分な接着性が得られず、改善することが求められている。ポリエステルフィルムの接着性を改善させる方法として、樹脂や架橋剤を含む接着層を設けることが提案されている(特許文献12~15)。 Also, the polyester film constituting the inner layer (the side facing the solar cell element) of the front sheet or the back sheet is required to have adhesiveness with the sealing material. However, the surface untreated polyester film cannot obtain sufficient adhesiveness and is required to be improved. As a method for improving the adhesion of the polyester film, it has been proposed to provide an adhesive layer containing a resin or a crosslinking agent (Patent Documents 12 to 15).
特開2010―186932号公報JP 2010-186932 A 特開2007―253463号公報JP 2007-253463 A 特開2006-261287号公報JP 2006-261287 A 特開平11-261085号公報JP-A-11-261085 特開2000-114565号公報JP 2000-114565 A 特開2007-150084号公報JP 2007-150084 A 特開2007-204538号公報JP 2007-204538 A 特開2002-134770号公報JP 2002-134770 A 特開2002-26354号公報JP 2002-26354 A 特開2006-270025号公報JP 2006-270025 A 特開2008-311680号公報JP 2008-31680 A 特開2006-152013号公報JP 2006-152013 A 特開2006-332091号公報JP 2006-332091 A 特開2007-48944号公報JP 2007-48944 A 特開2007-136911号公報JP 2007-136911 A
 上記特許文献で提案されたフィルムは、樹脂組成の改良により従来のポリエステルフィルムに比べ、耐加水分解性の向上が認められる。しかしながら、過酷な使用環境において長期間にわたる使用を継続したところ、これらのフィルムは当初の想定と異なり早期に破損する場合があった。さらに、ポリエステルフィルムを太陽電池部材として使用する場合は、封止材層やバリア層と貼り合せた積層体として用いられる。近年、生産性の向上から積層体作製時の加工温度が高温化しつつある。そのため、フィルムの熱寸法安定性に起因するカールやシワ等により、積層体の品位が低下するおそれがあった。 The film proposed in the above-mentioned patent document shows an improvement in hydrolysis resistance as compared with a conventional polyester film by improving the resin composition. However, when the film is used for a long period of time in a harsh usage environment, these films sometimes break early, unlike the initial assumption. Furthermore, when using a polyester film as a solar cell member, it is used as a laminated body bonded with a sealing material layer or a barrier layer. In recent years, the processing temperature at the time of producing a laminate is increasing due to the improvement in productivity. Therefore, the quality of the laminate may be deteriorated due to curling, wrinkles and the like due to the thermal dimensional stability of the film.
 そこで、本発明は、上記課題に鑑み、優れた耐加水分解性を有し、さらに加工時にカールが生じにくい太陽電池用ポリエステルフィルムを提供することを目的とする。 Therefore, in view of the above problems, an object of the present invention is to provide a solar cell polyester film that has excellent hydrolysis resistance and is less likely to curl during processing.
 さらに、太陽電池素子の光電変換効率の向上を図るため、太陽電池の前面に用いるフロントシートについては高い透明性が求められている。また、屋外で過酷な環境条件下で使用される太陽電池モジュールは、20年以上の長寿命化が期待されている。そのため、部材として用いられる封止材易接着フィルムにおいても、初期接着性だけでなく、高温高湿下でも長期間、接着性を保持することが必要である。しかしながら、封止材との接着性を向上させるために架橋剤を含む易接着層を設けた場合、透明性が低下する場合があった。 Furthermore, in order to improve the photoelectric conversion efficiency of the solar cell element, high transparency is required for the front sheet used on the front surface of the solar cell. In addition, solar cell modules that are used outdoors under severe environmental conditions are expected to have a lifetime of 20 years or longer. For this reason, not only the initial adhesiveness but also the high adhesiveness of the sealing material easy-adhesive film used as a member must be maintained for a long period of time even under high temperature and high humidity. However, when an easy-adhesion layer containing a cross-linking agent is provided in order to improve the adhesion with the sealing material, the transparency may be lowered.
 また、封止材には、生産性の向上や劣化防止の観点から、架橋剤、紫外線吸収剤等の添加剤を含む多様な組成物種が用いられる。そのため、用いる封止材により多様なパッケージング工程が採用されるようになってきている。例えば、スタンダードキュアタイプとされる封止材では、加熱圧着(例えば、90~130℃で5~10分)の仮接着後に、熱処理(例えば、140~160℃で30~50分)を行い、ゆっくりと封止材を硬化させる接着条件が採用される。一方、ファストキュアタイプとされる封止材では、短時間で加熱圧着(例えば、140~160℃で15~20分)を行い、急速に封止材を硬化させる接着条件が採用される。そのため、多様な封止材に対しても同程度の接着性を示す汎用性の高さだけでなく、多様な接着条件にも対応し得る汎用性の高い易接着性フィルムが望ましい。 In addition, various composition types including additives such as a crosslinking agent and an ultraviolet absorber are used for the sealing material from the viewpoint of improving productivity and preventing deterioration. Therefore, various packaging processes have been adopted depending on the sealing material used. For example, in the case of a sealing material that is a standard cure type, after temporary bonding by thermocompression bonding (for example, 5 to 10 minutes at 90 to 130 ° C.), heat treatment (for example, 30 to 50 minutes at 140 to 160 ° C.) is performed. Adhesive conditions that slowly cure the encapsulant are employed. On the other hand, in the case of a fast-cure type sealing material, an adhesive condition is employed in which heat-pressure bonding (for example, 15 to 20 minutes at 140 to 160 ° C.) is performed in a short time to rapidly cure the sealing material. Therefore, it is desirable to have a highly versatile and easy-to-adhere film that can cope with various bonding conditions as well as high versatility that shows the same degree of adhesion to various sealing materials.
 さらに、フロントシートやバックシート等の構成部材は、屋外の長期の使用にも耐えうる高い耐久性が求められる。ポリエステルフィルムの耐久性を向上させる方策としては、ポリエステル樹脂のカルボキシル末端濃度(酸価)を低く抑えたり、分子量が比較的高い(固有粘度が比較的高い)ポリエステル樹脂を用いたりすることが提案されている。しかし、そのような樹脂組成の改良を施したとしても、過酷な使用環境において長期間にわたる使用を継続したところ、これらのフィルムは当初の想定と異なり早期に破損する場合があった。 Furthermore, components such as front seats and back seats are required to have high durability that can withstand long-term outdoor use. As measures to improve the durability of the polyester film, it has been proposed to keep the carboxyl terminal concentration (acid value) of the polyester resin low, or to use a polyester resin having a relatively high molecular weight (relatively high intrinsic viscosity). ing. However, even if the resin composition is improved, when the film is used for a long period of time in a harsh usage environment, these films may be damaged earlier than originally assumed.
 本発明は上記課題に鑑み、優れた耐加水分解性を有し、封止材との接着性に優れ、且つ高い透明性を有する太陽電池用易接着性ポリエステルフィルムを提供することを目的とする。また、より好適には、本発明は高温高湿下における接着性の低下をほとんど引き起こさず、多様な封止材に対しても良好な接着性を有する太陽電池用易接着性ポリエステルフィルムを提供する。 In view of the above problems, an object of the present invention is to provide an easily-adhesive polyester film for solar cells having excellent hydrolysis resistance, excellent adhesion to a sealing material, and high transparency. . More preferably, the present invention provides an easily-adhesive polyester film for solar cells that hardly causes a decrease in adhesion under high temperature and high humidity and has good adhesion to various sealing materials. .
 太陽電池用ポリエステルフィルム
 本発明者が上記のように想定よりも早期に生じる破損の発生について検討したところ、これはフィルム面内の配向性と結晶性のバランスに起因することを見出した。つまり、配向性や結晶性のバランスが悪いと、カルボキシル末端濃度や固有粘度等のポリエステル樹脂物性が改良されても、樹脂がもつ本来の耐候性を発現できないことが分かった。さらに、ポリエステルフィルムの配向性及び結晶性を制御することで、太陽電池用途として優れた耐加水分解性を発揮するという驚くべき効果を見出した。
Polyester film for solar cell The present inventors have examined the occurrence of breakage that occurs earlier than expected as described above, and found that this is due to the balance between the in-plane orientation and crystallinity. In other words, it was found that if the balance of orientation and crystallinity is poor, the original weather resistance of the resin cannot be expressed even if the physical properties of the polyester resin such as carboxyl end concentration and intrinsic viscosity are improved. Furthermore, the surprising effect that the hydrolysis resistance outstanding as a solar cell use was exhibited by controlling the orientation and crystallinity of a polyester film was discovered.
 さらに、本発明者が鋭意検討を行った結果、驚くべきことに、ウレタン樹脂とブロックイソシアネートを主成分とし、前記ブロックイソシアネートの解離温度やブロック剤の沸点を調整した塗布液から塗布層を形成することにより、封止材との接着性が優れたものとなり、且つ高い透明性を保持できることを見出した。以上の知見をもとに、高い耐久性を有する太陽電池用ポリエステルフィルム、高い耐久性と密着性を高度に両立した太陽電池用易接着性ポリエステルフィルムを完成した。 Furthermore, as a result of intensive studies by the present inventor, surprisingly, a coating layer is formed from a coating liquid containing urethane resin and blocked isocyanate as main components and adjusting the dissociation temperature of the blocked isocyanate and the boiling point of the blocking agent. As a result, it has been found that the adhesiveness to the sealing material is excellent and high transparency can be maintained. Based on the above findings, we have completed a highly durable polyester film for solar cells and an easily adhesive polyester film for solar cells that have both high durability and high adhesion.
 本発明の太陽電池用ポリエステルフィルムは、広角X線回折法により測定した(-105面)における長手方向に配向した結晶の長さが50Å以上であり、フィルム厚みを50μmに換算したときのMORの値(MOR-C)が1.0~2.0であり、フィルムの密度が1.37~1.40g/cm3であることを特徴とする。前記フィルムの150℃における熱収縮率は、長手方向、幅方向ともに、-1.0%以上、3.0%以下であることが好ましく、より好ましくは-0.5%以上、0.5%以下である。フィルムを構成するポリエステルは、アルミニウム及び/又はその化合物と、フェノール部位を有するリン系化合物を含有する重縮合触媒を用いて重合されてなり、カルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、フィルムの固有粘度(IV)が0.60~0.90dl/gであることが好ましい。なお、MORは、molecular orientation ratioの略であり、MOR-Cはmolecular orientation ratio-correctionの略である。 The polyester film for solar cells of the present invention has a length of crystals oriented in the longitudinal direction in the (−105 plane) measured by wide-angle X-ray diffraction method of 50 mm or more, and the MOR value when the film thickness is converted to 50 μm. The value (MOR-C) is 1.0 to 2.0, and the density of the film is 1.37 to 1.40 g / cm 3 . The heat shrinkage rate at 150 ° C. of the film is preferably −1.0% or more and 3.0% or less in both the longitudinal direction and the width direction, more preferably −0.5% or more and 0.5%. It is as follows. The polyester constituting the film is polymerized using a polycondensation catalyst containing aluminum and / or a compound thereof and a phosphorus compound having a phenol moiety, and the carboxyl terminal concentration is 25 eq / ton or less of the polyester, The intrinsic viscosity (IV) of the film is preferably 0.60 to 0.90 dl / g. MOR is an abbreviation for molecular orientation ratio, and MOR-C is an abbreviation for molecular orientation ratio-correction.
 本発明の太陽電池用易接着性ポリエステルフィルムは、上記太陽電池用ポリエステルフィルムと、該ポリエステルフィルムの少なくとも片面に形成された塗布層を有し、前記塗布層が、ウレタン樹脂とブロックイソシアネートを主成分とする塗布液から形成されたものであり、前記ブロックイソシアネートの解離温度が130℃以下、且つ、ブロック剤の沸点が180℃以上であることを特徴とする。前記ウレタン樹脂は、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂が好ましい。前記塗布層の赤外分光スペクトルにおいて、脂肪族系ポリカーボネート成分由来の1460cm-1付近のピークの吸光度(A1460)とウレタン成分由来の1530cm-1付近のピークの吸光度(A1530)との比率(A1460/A1530)は、0.50~1.55であることが好ましい。前記塗布液中のウレタン樹脂とブロックイソシアネートの質量比(ウレタン樹脂/ブロックイソシアネート)は、1/9~9/1であることが好ましい。 The easily adhesive polyester film for solar cells of the present invention has the above-described polyester film for solar cells and a coating layer formed on at least one surface of the polyester film, and the coating layer is mainly composed of a urethane resin and a blocked isocyanate. The dissociation temperature of the said block isocyanate is 130 degrees C or less, and the boiling point of a blocking agent is 180 degrees C or more, It is characterized by the above-mentioned. The urethane resin is preferably a urethane resin containing an aliphatic polycarbonate polyol as a constituent component. In the infrared spectroscopic spectrum of the coating layer, the ratio of the absorbance at the peak near 1460 cm −1 derived from the aliphatic polycarbonate component (A 1460 ) to the absorbance at the peak near 1530 cm −1 derived from the urethane component (A 1530 ) ( A 1460 / A 1530 ) is preferably 0.50 to 1.55. The mass ratio of urethane resin to blocked isocyanate (urethane resin / block isocyanate) in the coating solution is preferably 1/9 to 9/1.
 本発明には、上記太陽電池用易接着性ポリエステルフィルムを含む太陽電池用フロントシートも含まれる。 The present invention also includes a solar cell front sheet including the above-described easily adhesive polyester film for solar cells.
 本発明の太陽電池用ポリエステルフィルムは、良好な耐加水分解性を有し、さらに加工時にカールが生じにくい。また、本発明の太陽電池用ポリエステルフィルムは良好な生産性をもって提供することができる。そのため太陽電池用部材として好適に適用し得る。
 本発明の太陽電池用易接着性ポリエステルフィルムは、良好な耐加水分解性を有し、封止材との接着性に優れ、且つ高い透明性を有する。さらに好適には多様な封止材・接着条件であっても強固な接着性を奏し、特に、高温高湿下での接着性(耐湿熱性)に優れる。そのため、本発明の太陽電池用易接着性ポリエステルフィルムをフロントシートの部材として用いた場合、高い光電変換効率を維持し、封止材との接着性が良好である。
The polyester film for solar cells of the present invention has good hydrolysis resistance and is less likely to curl during processing. Moreover, the polyester film for solar cells of the present invention can be provided with good productivity. Therefore, it can be suitably applied as a solar cell member.
The easily-adhesive polyester film for solar cells of the present invention has good hydrolysis resistance, excellent adhesion to a sealing material, and high transparency. More preferably, it exhibits strong adhesiveness even under various sealing materials and bonding conditions, and is particularly excellent in adhesiveness (humidity heat resistance) under high temperature and high humidity. Therefore, when the easily adhesive polyester film for solar cells of the present invention is used as a member of a front sheet, high photoelectric conversion efficiency is maintained and adhesiveness with a sealing material is good.
 本発明者は、前述のように、高温高湿の環境における長期にわたる使用により想定より早く生じるフィルムの破断が、フィルム面内における配向特性と結晶性のバランスに起因することを見出した。まず、配向特性のバランスについては、フィルム面内での配向特性に相違がある場合は、それに起因して面内方向での強度バランスに差異が生じる。そのため、加水分解が進行すると各方向(長手方向、幅方向)において略等速度に機械的強度が低下するため、初期状態における強度バランスの差異が相対的に大きなものとなる。これにより、フィルムの劣化によりフィルム面内での機械強度のバランスを失い、相対的に弱い部位からフィルムの破損が生じる。そのため、フィルムの耐久性の向上に当たっては、ポリエステル樹脂組成の改変だけでなく、フィルム面内における配向バランスが良いことが好ましい。特に、一般的になされる長手方向(MD方向)-幅方向(TD方向)の逐次二軸延伸法では、後段での幅方向(TD方向)の延伸軸に配向が残存しやすくなり、配向の差によるフィルム面内の機械的強度の差異が生じやすい。そのため、長手方向の配向特性を保持することが、フィルム面内の機械強度のバランスを制御するのに好適である。 As described above, the present inventor has found that the breakage of the film that occurs earlier than expected due to long-term use in a high-temperature and high-humidity environment is due to the balance between orientation characteristics and crystallinity in the film plane. First, regarding the balance of the orientation characteristics, if there is a difference in the orientation characteristics in the film plane, a difference in the intensity balance in the in-plane direction results. For this reason, as the hydrolysis proceeds, the mechanical strength decreases at a substantially constant speed in each direction (longitudinal direction and width direction), so that the difference in strength balance in the initial state becomes relatively large. Thereby, the deterioration of the film loses the balance of the mechanical strength in the film plane, and the film breaks from a relatively weak portion. Therefore, in order to improve the durability of the film, it is preferable not only to modify the polyester resin composition but also to have a good orientation balance in the film plane. In particular, in a generally performed sequential biaxial stretching method in the longitudinal direction (MD direction) -width direction (TD direction), the orientation tends to remain on the stretching axis in the subsequent width direction (TD direction). Differences in mechanical strength within the film surface due to differences are likely to occur. Therefore, maintaining the orientation characteristics in the longitudinal direction is suitable for controlling the balance of mechanical strength in the film plane.
 次に結晶性については、フィルム全体の結晶性が高くなると、加水分解による劣化が進行した場合に脆性が増し、フィルム破断が生じやすくなる。一方、フィルム全体の配向性が低くなると、絶対値としてのフィルム強度が弱くなり、太陽電池部材としての強度を保持できなくなる。そのため、フィルムとしては配向性を高く保持したまま、結晶性を低くすることが好ましい。フィルム中にはポリエステルの結晶態様として、主として延伸配向に起因し方向性を有する配向結晶と、主として加熱冷却に起因する熱結晶とがある。そこで、配向結晶を保持したまま、熱結晶を少なくすることで、フィルム全体として配向性を高く保持したまま、結晶性を低くすることにより結晶性のバランスを制御し、フィルムの耐久性の向上を図ることができる。 Next, regarding the crystallinity, when the crystallinity of the entire film increases, the brittleness increases when degradation due to hydrolysis proceeds, and the film breaks easily. On the other hand, when the orientation of the entire film is lowered, the film strength as an absolute value is weakened and the strength as a solar cell member cannot be maintained. Therefore, it is preferable to lower the crystallinity while keeping the orientation high. In the film, polyester crystal forms include oriented crystals having directionality mainly due to stretch orientation and thermal crystals mainly due to heating and cooling. Therefore, by reducing the number of thermal crystals while maintaining the orientation crystal, the balance of crystallinity is controlled by lowering the crystallinity while maintaining high orientation as the whole film, thereby improving the durability of the film. You can plan.
 すなわち、上記技術思想に基づく本発明の太陽電池用ポリエステルフィルムの特性は、広角X線回折法により測定した(-105面)における長手方向に配向した結晶の長さが50Å以上であり、フィルム厚みを50μmに換算したときのMORの値(MOR-C)が1.0~2.0であり、フィルムの密度が1.37~1.40g/cm3であることを特徴とする。 That is, the characteristics of the polyester film for solar cells of the present invention based on the above technical idea are that the length of the crystals oriented in the longitudinal direction in the (−105 plane) measured by wide-angle X-ray diffraction method is 50 mm or more, and the film thickness The MOR value (MOR-C) when converted to 50 μm is 1.0 to 2.0, and the density of the film is 1.37 to 1.40 g / cm 3 .
 前記太陽電池用ポリエステルフィルムは、広角X線回折法により測定した(-105)面における長手方向に配向した結晶の長さが50Å以上であり、好ましくは53Å以上、より好ましくは54Å以上である。(-105)面における長手方向(MD方向)の結晶サイズは、主として長手方向(MD方向)の延伸による配向結晶を示し、その結晶サイズは配向強度の大きさに依存する。よって、長手方向(MD方向)の(-105)面の結晶サイズが上記範囲である場合は、フィルム配向性が高く、太陽電池用部材としての特定の強度を有する。また、一般的になされる長手方向(MD方向)-幅方向(TD方向)の逐次二軸延伸法では、後段での幅方向(TD方向)の延伸軸に配向が残存しやすくなり、配向の差によるフィルム面内の機械的強度の差異が生じやすい。そのため、長手方向の配向性を上記範囲に保持することが、フィルム面内の機械強度のバランスを制御するのに好適である。なお、上記結晶の長さは60Å以下が好ましい、60Åより大きい場合は、幅方向の延伸が困難であり、製膜中の破断等により生産性が悪化する場合がある。上記結晶サイズを制御するためには、延伸倍率の大きさを大きくしたり、延伸温度を低くする等によりフィルムの配向強度を高くすることが好ましい。 The length of the crystal oriented in the longitudinal direction on the (−105) plane of the polyester film for solar cells measured by wide-angle X-ray diffraction is 50 mm or more, preferably 53 mm or more, more preferably 54 mm or more. The crystal size in the longitudinal direction (MD direction) on the (−105) plane mainly indicates oriented crystals by stretching in the longitudinal direction (MD direction), and the crystal size depends on the orientation strength. Therefore, when the crystal size of the (−105) plane in the longitudinal direction (MD direction) is in the above range, the film orientation is high and the solar cell member has a specific strength. Further, in the sequential biaxial stretching method in the longitudinal direction (MD direction) -width direction (TD direction) that is generally performed, the orientation tends to remain on the stretching axis in the width direction (TD direction) in the subsequent stage. Differences in mechanical strength within the film surface due to differences are likely to occur. Therefore, maintaining the orientation in the longitudinal direction within the above range is suitable for controlling the balance of the mechanical strength in the film plane. The length of the crystal is preferably 60 mm or less. When the crystal length is larger than 60 mm, stretching in the width direction is difficult, and productivity may be deteriorated due to breakage during film formation. In order to control the crystal size, it is preferable to increase the orientation strength of the film by increasing the stretching ratio or decreasing the stretching temperature.
 前記太陽電池用ポリエステルフィルムは、フィルム厚みを50μmに換算したときのMOR値(MOR-C)が、1.0~2.0であり、好ましくは1.3~1.8、より好ましくは1.4~1.7である。MOR-Cはフィルム長手方向と幅方向のバランスを示す指標である。フィルムのMOR-Cを上記範囲に制御し、フィルム面内の配向バランスを制御することは、長期の加水分解劣化試験における機械的強度や耐久性の維持に有効である。また、太陽電池部材として他の機能層との積層時に生じるカールの発生も抑制することができ、密着性の向上にも有効である。MOR-Cを上記範囲にする方法としては、延伸工程における長手方向(MD方向)と幅方向(TD方向)の延伸倍率の比を制御することが挙げられる。 The polyester film for solar cell has a MOR value (MOR-C) of 1.0 to 2.0, preferably 1.3 to 1.8, more preferably 1 when the film thickness is converted to 50 μm. .4 to 1.7. MOR-C is an index indicating the balance between the film longitudinal direction and the width direction. Controlling the MOR-C of the film within the above range and controlling the orientation balance in the film plane is effective in maintaining mechanical strength and durability in a long-term hydrolysis degradation test. In addition, curling that occurs when the solar cell member is laminated with another functional layer can be suppressed, which is effective in improving adhesion. As a method for bringing MOR-C into the above range, there may be mentioned controlling the ratio of the stretching ratio in the longitudinal direction (MD direction) and the width direction (TD direction) in the stretching step.
 前記太陽電池用ポリエステルフィルムは、フィルムの密度が1.370~1.400g/cm3であり、好ましくは1.375~1.398g/cm3、より好ましくは1.380~1.395g/cm3である。フィルムの密度は、フィルム全体としての結晶性を示す指標である。フィルム密度を上記範囲で比較的低く保持することより、加水分解による劣化が進行してもフィルムの破断が生じにくく、耐久性が保持される。延伸配向による配向結晶の結晶サイズを上記範囲に制御しながら、フィルム密度を上記範囲に制御するためには、熱結晶を抑制することが望ましい。フィルムの熱結晶は、フィルム製膜時の熱固定工程で成長しやすいため、フィルム密度を上記範囲にするには熱固定温度を低くすることが好ましい。なお、フィルムが後述する微粒子を含む場合、これらの微粒子を除いたポリエステル成分の密度を、フィルム密度とする。 The polyester film for solar cells has a film density of 1.370 to 1.400 g / cm 3 , preferably 1.375 to 1.398 g / cm 3 , more preferably 1.380 to 1.395 g / cm 3 . 3 . The density of the film is an index indicating the crystallinity of the entire film. By keeping the film density relatively low in the above range, the film is hardly broken even when deterioration due to hydrolysis proceeds, and durability is maintained. In order to control the film density to the above range while controlling the crystal size of the oriented crystal by stretching orientation to the above range, it is desirable to suppress thermal crystallization. Since the thermal crystal of the film is likely to grow in the heat setting step during film formation, it is preferable to lower the heat setting temperature in order to bring the film density to the above range. In addition, when a film contains the microparticles | fine-particles mentioned later, let the density of the polyester component except these microparticles | fine-particles be a film density.
 前記太陽電池用ポリエステルフィルムは、上記各特性を高度に両立させることにより、優れた耐及性を奏する。すなわち、上記特性が独立的に寄与するのはなく、いずれも不可欠に組み合わさることが本発明の優れた耐加水分解性にとって重要である。前記太陽電池用ポリエステルフィルムは、耐加水分解性の評価である105℃、100%RH、0.03MPa下、200時間での伸度保持率が、好ましくは65%以上、より好ましくは70%以上である。斯かる範囲にあることにより、太陽電池用ポリエステルフィルムは、屋外での長期使用に耐えうる高い耐加水分解性を奏することができる。 The above-mentioned polyester film for solar cells exhibits excellent durability by making the above properties highly compatible. That is, the above properties do not contribute independently, and it is important for the excellent hydrolysis resistance of the present invention that they are indispensably combined. The polyester film for solar cells has an elongation retention at 200 ° C., 100% RH, 0.03 MPa, and 200 hours, which is an evaluation of hydrolysis resistance, preferably 65% or more, more preferably 70% or more. It is. By being in such a range, the polyester film for solar cells can exhibit high hydrolysis resistance that can withstand long-term outdoor use.
 前記太陽電池用ポリエステルフィルムは、150℃における熱収縮率が、長手方向(MD方向、縦方向)及び幅方向(TD方向、横方向)ともに、-1.0%以上であることが好ましく、より好ましくは-0.5%以上であり、3.0%以下であることが好ましく、より好ましくは2.0%以下、さらに好ましくは1.8%以下である。また、例えば、高温での使用や高温加工での精密性等太陽電池部材としてより厳しい低熱収縮率が求められる場合、150℃における熱収縮率は、長手方向(MD方向、縦方向)及び幅方向(TD方向、横方向)ともに、-0.5%~0.5%であることが好ましい。これにより、粘着層等を形成する際等の加熱加工時や積層状態における、カールの発生等を抑制することができる。150℃の熱収縮率を上記範囲にする方法としては、延伸条件を制御する、もしくは熱固定工程において縦緩和処理、及び横緩和処理を施すことが挙げられる。 The solar cell polyester film preferably has a thermal shrinkage rate at 150 ° C. of −1.0% or more in both the longitudinal direction (MD direction and longitudinal direction) and the width direction (TD direction and lateral direction). Preferably, it is −0.5% or more, preferably 3.0% or less, more preferably 2.0% or less, and still more preferably 1.8% or less. In addition, for example, when a more severe low thermal shrinkage rate is required as a solar cell member such as use at high temperature and precision in high temperature processing, the thermal shrinkage rate at 150 ° C. is determined in the longitudinal direction (MD direction, longitudinal direction) and the width direction. Both (TD direction and lateral direction) are preferably −0.5% to 0.5%. Thereby, generation | occurrence | production of the curl etc. at the time of heat processing, such as the time of forming an adhesion layer etc., or a lamination state can be suppressed. Examples of the method for setting the heat shrinkage rate at 150 ° C. in the above range include controlling the stretching conditions or performing longitudinal relaxation treatment and lateral relaxation treatment in the heat setting step.
 前記太陽電池用ポリエステルフィルムの厚さは、10~500μmであることが好ましく、より好ましく15~400μm、さらに好ましくは20~250μmである。10μm未満では腰が無く取り扱いが困難である。また500μmを超えるとハンドリング性が低下し、取り扱いが困難となる。 The thickness of the polyester film for solar cells is preferably 10 to 500 μm, more preferably 15 to 400 μm, and still more preferably 20 to 250 μm. If it is less than 10 μm, there is no waist and it is difficult to handle. On the other hand, if it exceeds 500 μm, the handling property is lowered and the handling becomes difficult.
(ポリエステル)
 前記太陽電池用ポリエステルフィルムを構成するポリエステルとは、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のごとき芳香族ジカルボン酸又はそのエステルと、エチレングリコール、ジエチレングリコール、1、4-ブタンジオール、ネオペンチルグリコールのごときグリコールとを重縮合させて製造されるポリエステルである。これらのポリエステルは、芳香族ジカルボン酸とグリコールとを直接反応させる方法;芳香族ジカルボン酸のアルキルエステルとグリコールとをエステル交換反応させた後重縮合させる方法;芳香族ジカルボン酸のジグリコールエステルを重縮合させる方法;等によって製造することができる。このポリエステルは第三成分を共重合したものであっても良いが、耐久性の点からホモポリマーが好ましい。かかるポリエステルの代表例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等が挙げられる。
(polyester)
The polyester constituting the polyester film for solar cells is an aromatic dicarboxylic acid or ester thereof such as terephthalic acid, isophthalic acid or naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol or the like. Polyester produced by polycondensation with glycol. These polyesters are prepared by a method in which an aromatic dicarboxylic acid and a glycol are directly reacted; a method in which an alkyl ester of an aromatic dicarboxylic acid and a glycol are transesterified and then polycondensed; a diglycol ester of an aromatic dicarboxylic acid is subjected to a polycondensation. It can be produced by a method of condensation; This polyester may be a copolymer of the third component, but a homopolymer is preferred from the viewpoint of durability. Representative examples of such polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, and the like.
 前記ポリエステルの重縮合触媒としては、アンチモン及び/又はその化合物、チタン及び/又はその化合物、ゲルマニウム及び/又はその化合物、スズ及び/又はその化合物、アルミニウム及び/又はその化合物等を用いることができる。特に、熱酸化劣化の抑制には金属含有量が少ない方が有利であり、特に少量のアルミニウム及び/又はその化合物と助触媒であるリン化合物を併用し、重合活性を確保することが好ましい。さらにリン化合物はフェノール部位を持つことが好ましい。フェノール部位含有のリン化合物は、酸素下でラジカル機構により分解するポリエステル劣化を抑制する効果を有する。この機能を高めるためには、フェノール部位が立体的、電子的に安定化され、よりラジカルトラップ能を発現するヒンダードフェノール骨格を有することが好ましい。 As the polyester polycondensation catalyst, antimony and / or a compound thereof, titanium and / or a compound thereof, germanium and / or a compound thereof, tin and / or a compound thereof, aluminum and / or a compound thereof can be used. In particular, the suppression of thermal oxidative degradation is advantageous when the metal content is low, and it is particularly preferable to use a small amount of aluminum and / or a compound thereof and a phosphorus compound as a promoter to ensure polymerization activity. Further, the phosphorus compound preferably has a phenol moiety. The phosphorus compound containing a phenol moiety has an effect of suppressing polyester degradation that decomposes under a radical mechanism under oxygen. In order to enhance this function, it is preferable that the phenol moiety has a hindered phenol skeleton that is sterically and electronically stabilized and exhibits more radical trapping ability.
 また、ポリエステルを重合した後に、得られたポリエステルから触媒を除去するか、又はリン系化合物等の添加によって触媒を失活させることによって、ポリエステルの熱安定性をさらに高めることができる。 Further, after polymerizing the polyester, the thermal stability of the polyester can be further enhanced by removing the catalyst from the obtained polyester or deactivating the catalyst by adding a phosphorus compound or the like.
 ポリエステルの耐熱酸化の程度は、下記式により表される熱安定性パラメータ(TS)により示すことができる。高い熱安定性を奏する場合、ポリエステルの熱安定性パラメータ(TS)は、好ましくは0.25以下、より好ましくは0.20以下である。TSが上記範囲のポリエステルを用いることにより、フィルムを製造する際の溶融工程における熱安定性が優れたものとなり、高度な耐久性を奏することができる。 The degree of heat-resistant oxidation of polyester can be indicated by a thermal stability parameter (TS) represented by the following formula. When exhibiting high thermal stability, the thermal stability parameter (TS) of the polyester is preferably 0.25 or less, more preferably 0.20 or less. By using the polyester in which the TS falls within the above range, the thermal stability in the melting step when the film is produced is excellent, and high durability can be achieved.
 TSは下記方法により算出する。ポリエステル(固有粘度[IV]f)1gをガラス試験管に入れ、130℃で12時間真空乾燥する。次いで、非流通窒素雰囲気下で、300℃にて2時間溶融状態に維持した後、サンプルを取り出し冷凍粉砕する。それを真空乾燥後、固有粘度([IV]f)を測定する。例えば、ポリエステルがポリエチレンテレフタレートの場合には、次式により計算することができる。
TS=0.245×{[IV]f -1.47-[IV]i -1.47
TS is calculated by the following method. 1 g of polyester (intrinsic viscosity [IV] f ) is placed in a glass test tube and vacuum dried at 130 ° C. for 12 hours. Subsequently, after maintaining in a molten state at 300 ° C. for 2 hours under a non-circulating nitrogen atmosphere, the sample is taken out and frozen and pulverized. After it is vacuum dried, the intrinsic viscosity ([IV] f ) is measured. For example, when the polyester is polyethylene terephthalate, it can be calculated by the following formula.
TS = 0.245 × {[IV] f -1.47- [IV] i -1.47 }
 ポリエステルの重合中には、ジアルキレングリコールが副生する。太陽電池部材として長期間高温に曝されると、ジアルキレングリコールの影響により、耐久性が低下する場合がある。代表的なジアルキレングリコールとしてジエチレングリコールを例にすると、ジエチレングリコール量は、2.3モル%以下であることが好ましく、より好ましくは2.0モル%以下、さらに好ましくは1.8モル%以下である。ジエチレングリコール量を上記範囲にすることにより、耐熱安定性を高めることができ、乾燥時、成形時の分解によるカルボキシル末端濃度の増加(酸価の上昇)をより小さくすることが出来る。なお、ジエチレングリコール量は少ない方が良いが、ポリエステル製造の際のテレフタル酸のエステル化反応時、テレフタル酸ジメチルのエステル交換反応時に副反応物として生成するものであり、現実的には下限は1.0モル%、さらには1.2モル%である。 During the polymerization of polyester, dialkylene glycol is by-produced. When the solar cell member is exposed to a high temperature for a long time, the durability may be lowered due to the influence of dialkylene glycol. Taking diethylene glycol as an example of typical dialkylene glycol, the amount of diethylene glycol is preferably 2.3 mol% or less, more preferably 2.0 mol% or less, and even more preferably 1.8 mol% or less. . By making the amount of diethylene glycol within the above range, the heat resistance stability can be improved, and the increase in the carboxyl terminal concentration (the increase in acid value) due to decomposition during drying and molding can be further reduced. Although the amount of diethylene glycol is preferably small, it is produced as a by-product during the esterification reaction of terephthalic acid and the ester exchange reaction of dimethyl terephthalate during polyester production. It is 0 mol%, further 1.2 mol%.
 本発明では、太陽電池用ポリエステルフィルムの耐久性を付与するため、原料樹脂として固有粘度が0.60dl/g超のポリエステルを用いるのが好ましい。また、前記太陽電池用ポリエステルフィルムを構成するポリエステルの固有粘度は、0.60から0.90dl/gが好ましく、より好ましくは0.65から0.75dl/g、さらに好ましくは0.68から0.72dl/gである。フィルムの固有粘度が0.60dl/gより低い場合には、フィルムの耐加水分解性、耐熱性が劣る場合がある。また、0.90dl/gより高い場合には、生産性が悪化する場合がある。 In the present invention, in order to provide durability of the polyester film for solar cells, it is preferable to use a polyester having an intrinsic viscosity of more than 0.60 dl / g as a raw material resin. Moreover, the intrinsic viscosity of the polyester constituting the polyester film for solar cells is preferably 0.60 to 0.90 dl / g, more preferably 0.65 to 0.75 dl / g, and still more preferably 0.68 to 0. 72 dl / g. When the intrinsic viscosity of the film is lower than 0.60 dl / g, the hydrolysis resistance and heat resistance of the film may be inferior. Moreover, when it is higher than 0.90 dl / g, productivity may deteriorate.
 ポリエステルのカルボキシル末端は、自己触媒作用により加水分解を促進する作用がある。そのため、本発明の太陽電池用ポリエステルフィルムのカルボキシル末端濃度は、ポリエステルに対し25eq/ton以下であることが好ましい。カルボキシル末端濃度が25eq/ton以下であると、太陽電池用部材としての高度な耐加水分解性を好適に奏することができる。上記カルボキシル末端濃度は、ポリエステルに対して20eq/ton以下であることが好ましく、より好ましくは18eq/ton以下、さらに好ましくは16eq/ton以下である。カルボキシル末端濃度は低いことが好ましいが、生産性の点からは0.5eq/ton以上であることが好ましい。なお、ポリエステルのカルボキシル末端濃度の測定は、後述する滴定法、もしくはNMR法により測定することができる。 The carboxyl terminal of polyester has an action of promoting hydrolysis by autocatalysis. Therefore, it is preferable that the carboxyl terminal density | concentration of the polyester film for solar cells of this invention is 25 eq / ton or less with respect to polyester. When the carboxyl terminal concentration is 25 eq / ton or less, high hydrolysis resistance as a solar cell member can be suitably achieved. The carboxyl terminal concentration is preferably 20 eq / ton or less, more preferably 18 eq / ton or less, and still more preferably 16 eq / ton or less with respect to the polyester. The carboxyl terminal concentration is preferably low, but is preferably 0.5 eq / ton or more from the viewpoint of productivity. In addition, the measurement of the carboxyl terminal density | concentration of polyester can be measured by the titration method mentioned later or NMR method.
 ポリエステルフィルムのカルボキシル末端濃度を上記範囲にするには、原料樹脂として用いるポリエステルチップのカルボキシル末端濃度を25eq/ton未満にすることが好ましい。また、ポリエステルフィルムの固有粘度を上記範囲にするには、原料樹脂として用いるポリエステルチップの固有粘度を0.60dl/g以上とすることが好ましい。ポリエステルチップのカルボキシル末端濃度及び固有粘度を上記範囲にすることは、樹脂の重合条件を適宜選択することにより行うことができる。例えば、エステル化反応装置の構造等の製造装置要因や、エステル化反応槽に供給するスラリーのジカルボン酸とグリコールの組成比、エステル化反応温度、エステル化反応圧、エステル化反応時間等のエステル化反応条件もしくは固相重合条件等を適宜設定することにより行えばよい。特に、生産性の点から固相重合法は好適に採用しうる。さらに、ポリエステルチップの水分量を制御したり、溶融工程での樹脂温度を制御することが好ましい。また、エポキシ化合物やカルボジイミド化合物等によりポリエステルのカルボキシル末端を封鎖することも好ましい方法である。本発明のフィルムでは、バランスの取れた配向特性を有するため、ポリエステルのカルボキシル末端濃度及び固有粘度を上記範囲内とすることにより、良好な耐久性を保持することができる。 In order to set the carboxyl terminal concentration of the polyester film within the above range, the carboxyl terminal concentration of the polyester chip used as the raw material resin is preferably less than 25 eq / ton. Moreover, in order to make the intrinsic viscosity of a polyester film into the said range, it is preferable that the intrinsic viscosity of the polyester chip used as raw material resin shall be 0.60 dl / g or more. Setting the carboxyl terminal concentration and intrinsic viscosity of the polyester chip to the above ranges can be performed by appropriately selecting the polymerization conditions of the resin. For example, production equipment factors such as the structure of the esterification reaction apparatus, composition ratio of dicarboxylic acid and glycol in the slurry supplied to the esterification reaction tank, esterification reaction temperature, esterification reaction pressure, esterification reaction time, etc. What is necessary is just to set reaction conditions or solid-state polymerization conditions etc. suitably. In particular, the solid phase polymerization method can be suitably employed from the viewpoint of productivity. Furthermore, it is preferable to control the moisture content of the polyester chip or to control the resin temperature in the melting step. It is also a preferable method to block the carboxyl terminal of the polyester with an epoxy compound or a carbodiimide compound. Since the film of the present invention has balanced orientation characteristics, good durability can be maintained by setting the carboxyl terminal concentration and intrinsic viscosity of the polyester within the above ranges.
 本発明の太陽電池用ポリエステルフィルムには、易滑性を付与する目的で、微粒子を含有させても良い。含有させる微粒子としては、シリカ、カオリナイト、タルク、炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、酸化チタン、硫化亜鉛等が例示されるが特に限定されるものではない。 The polyester film for solar cells of the present invention may contain fine particles for the purpose of imparting slipperiness. Examples of the fine particles to be contained include silica, kaolinite, talc, calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, titanium oxide, and zinc sulfide, but are not particularly limited.
 フィルムに十分な易滑性を有する程度に粒子を添加すると、フィルム全体として透明性が低下する場合がある。そのため、太陽電池用ポリエステルフィルムは、3層以上の多層構造を有するものであって、滑り性の改善のための無機もしくは有機粒子を少なくとも最外層に含有させることも好ましい態様である。さらに、後述する太陽電池用易接着性ポリエステルフィルムにおいて、高い透明性が求められる場合は、基材となるポリエステルフィルムに粒子を含有させず、塗布層にのみ粒子を含有させる構成も好ましい。 If the particles are added to such an extent that the film has sufficient slipperiness, the transparency of the entire film may be lowered. Therefore, the polyester film for solar cells has a multilayer structure of three or more layers, and it is also a preferable aspect that at least the outermost layer contains inorganic or organic particles for improving slipperiness. Furthermore, in the easily adhesive polyester film for solar cells described later, when high transparency is required, a configuration in which particles are contained only in the coating layer without containing particles in the polyester film serving as a substrate is also preferable.
 前記微粒子は、その平均粒径が0.01μm以上、10μm以下であることが好ましく、より好ましくは0.05μm以上、8μm以下、最も好ましくは0.1μm以上、3μm以下である。なお、上記微粒子の平均粒径の測定は以下の方法により行う。走査型電子顕微鏡(SEM)で粒子の写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径(最も離れている2点間の距離)を測定し、その平均値を平均粒径(個数基準)とする。 The fine particles preferably have an average particle size of 0.01 μm or more and 10 μm or less, more preferably 0.05 μm or more and 8 μm or less, and most preferably 0.1 μm or more and 3 μm or less. The average particle size of the fine particles is measured by the following method. Take a picture of the particles with a scanning electron microscope (SEM), and at a magnification such that the size of one smallest particle is 2-5 mm, the maximum diameter of 300-500 particles (between the two most distant points) The average value is defined as the average particle size (number basis).
 また、微粒子の含有量としては、最外層を構成するポリエステル樹脂中に0.01質量%以上、5質量%以下が好ましく、より好ましくは0.05質量%以上、1質量%以下である。微粒子の含有量が0.01質量%より小さい場合、フィルムの易滑性が劣るため、工程中でロール等との間の摩擦によりキズが発生したり、後加工におけるハンドリング性が低下するため好ましくない。また、粒子の含有量が5質量%より多くなる場合は、ヘイズ値、フィルム表面粗さを好適範囲内に制御することが困難となるおそれがある。 The content of the fine particles is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.05% by mass or more and 1% by mass or less in the polyester resin constituting the outermost layer. When the content of the fine particles is smaller than 0.01% by mass, the film is less slippery, so that scratches are generated due to friction with a roll or the like in the process, and handling property in post-processing is decreased. Absent. Moreover, when content of particle | grains exceeds 5 mass%, there exists a possibility that it may become difficult to control a haze value and film surface roughness in a suitable range.
 また、太陽電池用フロントシートとしての耐候性を向上させるために、ポリエステルフィルム中に紫外線吸収剤を添加することも好ましい。この場合、フィルムの光線透過率(波長380nm)を20%以下とすることが好ましく、より好ましくは15%以下である。ここで、光線透過率は、フィルムの平面に対して垂直方向に測定したものであり、分光光度計(例えば、日立U-3500型)を用いて測定することができる。優れた耐候性を奏するためには、光線透過率(波長380nm)は低いことが好ましいが、大量に紫外線吸収剤を添加すると、紫外線吸収剤がフィルム表面にブリードアウトする場合がある。そのため、光線透過率(波長380nm)の下限は0.001%が好ましい。 It is also preferable to add an ultraviolet absorber in the polyester film in order to improve the weather resistance as a solar cell front sheet. In this case, the light transmittance (wavelength 380 nm) of the film is preferably 20% or less, and more preferably 15% or less. Here, the light transmittance is measured in a direction perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type). In order to exhibit excellent weather resistance, it is preferable that the light transmittance (wavelength 380 nm) is low, but when a large amount of the ultraviolet absorber is added, the ultraviolet absorber may bleed out to the film surface. Therefore, the lower limit of the light transmittance (wavelength 380 nm) is preferably 0.001%.
 前記紫外線吸収剤は、公知の物質を用いることができる。紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、環状イミノエステル系等、及びその組み合わせが挙げられるが、本発明の規定する吸光度の範囲であれば特に限定されない。耐久性の観点からはベンゾトリアゾール系、環状イミノエステル系が特に好ましい。2種以上の紫外線吸収剤を併用した場合には、別々の波長の紫外線を同時に吸収させることができるので、一層紫外線吸収効果を改善することができる。 A known substance can be used as the ultraviolet absorber. Examples of the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Examples of organic ultraviolet absorbers include benzotriazoles, benzophenones, cyclic iminoesters, and combinations thereof, but are not particularly limited as long as the absorbance is within the range defined by the present invention. From the viewpoint of durability, benzotriazole and cyclic imino ester are particularly preferable. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be further improved.
 この時マスターバッチの紫外線吸収剤濃度は紫外線吸収剤を均一に分散させ、且つ経済的に配合するために1~30質量%の濃度にするのが好ましく、特にブリードアウトの点からは添加剤濃度は低いことが好ましい。マスターバッチを作製する条件としては混練押出機を用い、押し出し温度はポリエステル原料の融点以上、290℃以下の温度で1~15分間で押し出すのが好ましい。290℃以上では紫外線吸収剤の減量が大きく、また、マスターバッチの粘度低下が大きくなる。押し出し温度1分以下では紫外線吸収剤の均一な混合が困難となる。この時、必要に応じて安定剤、色調調整剤、帯電防止剤を添加しても良い。 At this time, the concentration of the UV absorber in the master batch is preferably 1 to 30% by mass in order to uniformly disperse the UV absorber and economically blend it. Is preferably low. As a condition for producing the master batch, it is preferable to use a kneading extruder and to extrude at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. for 1 to 15 minutes. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. When the extrusion temperature is 1 minute or less, uniform mixing of the UV absorber becomes difficult. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
 さらに、必要に応じて、ポリエステル中に他の添加剤を含有させることができる。添加剤としては、例えば、蛍光増白剤、赤外線吸収色素、熱安定剤、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、界面活性剤等が挙げられる。酸化防止剤としては、芳香族アミン系、フェノール系等の酸化防止剤が使用可能である。安定剤としては、リン酸やリン酸エステル系等のリン系、イオウ系、アミン系等の安定剤が使用可能である。 Furthermore, if necessary, other additives can be contained in the polyester. Examples of the additive include a fluorescent brightening agent, an infrared absorbing dye, a heat stabilizer, an antioxidant, a light resistance agent, an antigelling agent, an organic wetting agent, an antistatic agent, and a surfactant. As the antioxidant, aromatic amine type, phenol type and the like antioxidants can be used. As the stabilizer, phosphorous, phosphoric acid ester and other phosphorous, sulfur and amine stabilizers can be used.
 本発明の太陽電池用ポリエステルフィルムの製造方法は任意であり、特に制限されるものではないが、例えば以下のようにして製造することが出来る。 The method for producing the polyester film for solar cells of the present invention is arbitrary and is not particularly limited. For example, it can be produced as follows.
 重合により得られたポリエステルチップを押出機で溶融し、ダイから樹脂をシート状に押し出し、冷却ロールで引き取ることにより未延伸フィルムを形成する。押出機内におけるポリエステル樹脂の最高温度は、280℃以上が好ましく、より好ましくは290℃以上である。溶融温度を上げることにより、押出機内での濾過時の背圧が低下し、良好な生産性を奏することができる。しかし、樹脂温度を310℃よりも高くした場合には、樹脂の熱劣化が進行するため好ましくない。よって、押出機内におけるポリエステル樹脂の最高温度は、310℃以下が好ましく、300℃以下がさらに好ましい。溶融温度が高すぎるとポリエステルの熱劣化が進行し、ポリエステルのカルボキシル末端濃度が上昇し、耐加水分解性が低下する場合がある。 The polyester chip obtained by polymerization is melted with an extruder, the resin is extruded from the die into a sheet shape, and taken out with a cooling roll to form an unstretched film. The maximum temperature of the polyester resin in the extruder is preferably 280 ° C or higher, more preferably 290 ° C or higher. By raising the melting temperature, the back pressure at the time of filtration in the extruder is lowered, and good productivity can be achieved. However, when the resin temperature is higher than 310 ° C., the thermal deterioration of the resin proceeds, which is not preferable. Therefore, the maximum temperature of the polyester resin in the extruder is preferably 310 ° C. or less, and more preferably 300 ° C. or less. If the melting temperature is too high, thermal degradation of the polyester proceeds, the carboxyl terminal concentration of the polyester increases, and the hydrolysis resistance may decrease.
 次に得られたフィルムの延伸方法について、説明する。逐次二軸延伸では、得られた未延伸フィルムを加熱ロールや非接触ヒーターで加熱した後、速度差をもったロール間で長手方向に延伸(ロール延伸)を行い、次いでクリップにて一軸延伸フィルムの両端部を把持し、オーブン内で加熱した後に幅方向に延伸を行い更に高い熱をかけて熱固定を行う(テンター延伸)。 Next, a method for stretching the obtained film will be described. In sequential biaxial stretching, the obtained unstretched film is heated with a heated roll or a non-contact heater, and then stretched in the longitudinal direction (roll stretching) between rolls having a speed difference, and then uniaxially stretched with a clip. After both ends are held and heated in an oven, the film is stretched in the width direction and heat-fixed by applying higher heat (tenter stretching).
 長手方向の延伸倍率は、3.0~4.5倍が好ましく、より好ましくは3.5~3.8倍である。長手方向の延伸温度は、90~110℃が好ましい。また、幅方向の延伸倍率は、3.2~4.8倍が好ましく、より好ましくは3.5~4.5倍である。幅方向の延伸温度は、120~150℃が好ましい。長手方向の延伸倍率と幅方向の延伸倍率との比は、(長手方向の延伸倍率)/(幅方向の延伸倍率)=0.8~1.0であることが好ましい。いずれにしても、上記範囲でフィルムとして前述の所定の特性を得られるよう適宜制御することが好ましい。 The draw ratio in the longitudinal direction is preferably 3.0 to 4.5 times, more preferably 3.5 to 3.8 times. The stretching temperature in the longitudinal direction is preferably 90 to 110 ° C. The draw ratio in the width direction is preferably 3.2 to 4.8 times, more preferably 3.5 to 4.5 times. The stretching temperature in the width direction is preferably 120 to 150 ° C. The ratio of the stretching ratio in the longitudinal direction to the stretching ratio in the width direction is preferably (stretching ratio in the longitudinal direction) / (stretching ratio in the width direction) = 0.8 to 1.0. In any case, it is preferable to appropriately control the film so as to obtain the aforementioned predetermined characteristics as a film within the above range.
 太陽電池部材として、より高度な熱寸法安定性が要求される場合は、縦緩和処理を施すことが望ましい。縦緩和処理の方法としては、公知の方法を用いることができるが、例えばテンターのクリップ間隔を徐々に狭くして縦緩和処理を行う方法(特公平4-028218号公報)や、テンターの内で端部に剃刀を入れ切断しクリップの影響を避けて緩和処理を行う方法(特公昭57-54290号公報)等が利用できる。また、オフラインで熱をかけ緩和させる方法を用いても良い。縦、横方向の熱収縮率については、-1.0%以上3.0%以下の範囲、更には-0.5%以上0.5%以下の範囲が好ましい。熱収縮率が-1.0%より小さい場合は、加工時にフィルムがたわみ問題となる。また、3.0%より大きい場合は、加工時の収縮が大きく、洗濯板状のシワが発生するため好ましくない。 When the solar cell member requires higher thermal dimensional stability, it is desirable to perform longitudinal relaxation treatment. As a method of longitudinal relaxation processing, a known method can be used. For example, a method of performing longitudinal relaxation processing by gradually narrowing the clip interval of the tenter (Japanese Patent Publication No. 4-028218), A method of performing relaxation treatment by inserting a razor at the end and avoiding the influence of the clip (Japanese Patent Publication No. 57-54290) can be used. Moreover, you may use the method of applying heat off-line and mitigating. The heat shrinkage in the vertical and horizontal directions is preferably in the range of −1.0% to 3.0%, more preferably in the range of −0.5% to 0.5%. If the heat shrinkage is less than -1.0%, the film becomes a problem of deflection during processing. On the other hand, if it is larger than 3.0%, the shrinkage during processing is large and wrinkle-like wrinkles are generated, which is not preferable.
 また、接着性、絶縁性、耐擦り傷性等の各種機能を付与するために、フィルム表面にコーティング法により高分子樹脂を被覆してもよい。また、被覆層にのみ無機及び/又は有機粒子を含有させて、易滑ポリエステルフィルムとしてもよい。さらに、無機蒸着層もしくはアルミ層を設け水蒸気バリア機能を付与したりすることもできる。 Further, in order to impart various functions such as adhesion, insulation, and scratch resistance, the film surface may be coated with a polymer resin by a coating method. Moreover, it is good also as a slippery polyester film by containing inorganic and / or organic particle | grains only in a coating layer. Furthermore, an inorganic vapor deposition layer or an aluminum layer can be provided to provide a water vapor barrier function.
 易接着性を奏する塗布層としては、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液により設けることが好ましい。また、後述するポリウレタン樹脂とブロックイソシアネートから形成される塗布層も好ましい態様である。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。このような塗布層は、フィルム製膜後(オフラインコート法)に設けてもよいし、フィルム製膜中(インラインコート法)に設けてもよいが、生産性の点からはフィルム製膜中に設けることが好ましい。 The coating layer exhibiting easy adhesion is preferably provided by an aqueous coating solution containing at least one of a water-soluble or water-dispersible copolymerized polyester resin, an acrylic resin, and a polyurethane resin. Moreover, the coating layer formed from the polyurethane resin and block isocyanate which are mentioned later is also a preferable aspect. Examples of these coating liquids include water-soluble or water-dispersible copolyester resin solutions, acrylic resin solutions, polyurethane resin solutions disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, and the like. Etc. Such a coating layer may be provided after film formation (offline coating method) or during film formation (inline coating method), but from the point of productivity, during film formation. It is preferable to provide it.
 本発明でいう太陽電池とは、太陽光、室内光等の入射光を取り込んで電気に変換し、当該電気を蓄えるシステムをいい、表面保護シート、高光線透過材、太陽電池素子、充填剤層および裏面封止シート等から構成される。用途によりフレキシブルな性状のものがある。 The solar cell referred to in the present invention refers to a system that takes in incident light such as sunlight and room light, converts it into electricity, and stores the electricity. Surface protection sheet, high light transmission material, solar cell element, filler layer And a back surface sealing sheet. There are flexible properties depending on the application.
 本発明の太陽電池用ポリエステルフィルムは、裏面封止シートや表面保護シート、フレキシブルな電子部材の張合材の基材フィルム(ベースフィルム)として用いることができる。特に、高い耐久性、長期熱安定性が求められる太陽電池裏面封止シートのベースフィルムとして好適である。太陽電池裏面封止シートとは、太陽電池の裏側の太陽電池モジュールの保護するものである。 The polyester film for a solar cell of the present invention can be used as a base film (base film) for a back surface sealing sheet, a surface protection sheet, or a bonding material for a flexible electronic member. In particular, it is suitable as a base film for a solar cell backside sealing sheet that requires high durability and long-term thermal stability. The solar cell back surface sealing sheet protects the solar cell module on the back side of the solar cell.
 本発明の太陽電池裏面封止用ポリエステルフィルムは、単独または2枚以上を貼り合わせて、太陽電池裏面封止シートとして使用することができる。本発明の太陽電池裏面封止シートには、水蒸気バリア性を付与する目的で、水蒸気バリア性を有するフィルムやアルミ箔等を積層することができる。バリア性フィルムとしては、ポリフッ化ビニリデンコートフィルム、酸化ケイ素蒸着フィルム、酸化アルミニウム蒸着フィルム、アルミニウム蒸着フィルム等を用いることができる。これらは、本発明の太陽電池用ポリエステルフィルムに接着層を介して、または直接積層したり、サンドイッチ構造をとる形態で用いたりすることができる。 The polyester film for solar cell back surface sealing of the present invention can be used as a solar cell back surface sealing sheet, either alone or in combination. The solar cell backside sealing sheet of the present invention may be laminated with a film having water vapor barrier properties, an aluminum foil or the like for the purpose of imparting water vapor barrier properties. As the barrier film, a polyvinylidene fluoride coating film, a silicon oxide vapor deposition film, an aluminum oxide vapor deposition film, an aluminum vapor deposition film, or the like can be used. These can be laminated on the polyester film for solar cell of the present invention via an adhesive layer or directly, or can be used in the form of a sandwich structure.
 太陽電池用易接着性ポリエステルフィルム
(塗布層)
 本発明の太陽電池用易接着性ポリエステルフィルムは、前記太陽電池用ポリエステルフィルムを基材として、ウレタン樹脂と、解離温度が130℃以下、且つ、ブロック剤の沸点が180℃以上であるブロックイソシアネートを主成分とする塗布液から形成された塗布層を有することが重要である。ここで、「主成分」とは、塗布液に含まれる全固形成分中として50質量%以上、より好ましくは70質量%以上含有することを意味する。
Easy-adhesive polyester film for solar cells (coating layer)
The easy-adhesive polyester film for solar cells of the present invention comprises a urethane resin and a blocked isocyanate having a dissociation temperature of 130 ° C. or lower and a blocking agent having a boiling point of 180 ° C. or higher, based on the polyester film for solar cells. It is important to have a coating layer formed from a coating solution as a main component. Here, the “main component” means that it is contained in an amount of 50% by mass or more, more preferably 70% by mass or more as a total solid component contained in the coating solution.
 易接着性を付与するために、柔軟なウレタン樹脂が好適に用いられる。従来、塗布層の密着性を向上させる点から架橋構造を積極的に導入し、強硬な塗布層にすることが望ましいと考えられていた。そこで、架橋剤としては、イソシアネートが用いられる場合があるが、反応性が高いため水系の塗布液中で水と反応して架橋反応性を喪失したり、ウレタン樹脂と反応し、凝集物が生じやすい傾向がある。そのため、いわゆるポットライフが短く、長期間安定的に塗工することは困難である。そこで、熱付加により解離するブロック剤で官能基をブロックしたイソシアネートが用いられる場合がある。しかしながら、未解離のブロック剤の影響により、高い密着性が要求される場合は十分な接着性が得られない場合があった。
 さらに、ブロックイソシアネートの種類によってはポリエステルフィルムの透明性が悪くなる場合があった。これは、解離したブロック剤が高温により揮発する際に、塗布面に微小な凹凸状のピンホールが形成されるためと考えられる。
In order to provide easy adhesion, a flexible urethane resin is preferably used. Conventionally, from the point of improving the adhesion of the coating layer, it was considered desirable to introduce a cross-linked structure positively to make a strong coating layer. Therefore, isocyanate may be used as a cross-linking agent, but because of its high reactivity, it reacts with water in an aqueous coating solution to lose cross-linking reactivity or reacts with a urethane resin to produce aggregates. It tends to be easy. Therefore, the so-called pot life is short, and it is difficult to stably apply for a long time. Therefore, an isocyanate having a functional group blocked with a blocking agent that is dissociated by thermal addition may be used. However, due to the influence of the undissociated blocking agent, sufficient adhesion may not be obtained when high adhesion is required.
Further, depending on the type of blocked isocyanate, the transparency of the polyester film may be deteriorated. This is considered to be because minute uneven pinholes are formed on the coated surface when the dissociated blocking agent volatilizes at a high temperature.
 本発明者が鋭意検討した結果、ウレタン樹脂と、解離温度が130℃以下、且つ、ブロック剤の沸点が180℃以上であるブロックイソシアネートを主成分とする塗布液を採用することにより、優れた密着性と高い透明性とが得られることを見出した。すなわち、解離温度が上記温度を超える場合は、熱付加によるブロック剤の解離が不十分となり十分な架橋構造が得られず密着性、特に耐湿熱性が低下するものと考えられる。また、ブロック剤の沸点が上記温度を下回る場合は、塗布層に残存したブロック剤が熱付加により揮発し、塗布外観が低下するものと考えられる。
 本発明の太陽電池用易接着性ポリエステルフィルムの構成を以下に詳細する。
As a result of intensive studies by the present inventor, excellent adhesion can be obtained by employing a coating liquid mainly composed of a urethane resin and a blocked isocyanate having a dissociation temperature of 130 ° C. or lower and a blocking agent having a boiling point of 180 ° C. or higher. And found that high transparency and high transparency can be obtained. That is, when the dissociation temperature exceeds the above temperature, it is considered that the dissociation of the blocking agent due to heat addition is insufficient, and a sufficient cross-linked structure cannot be obtained, resulting in a decrease in adhesion, particularly moist heat resistance. Moreover, when the boiling point of a blocking agent is less than the said temperature, it is thought that the blocking agent which remained in the application layer volatilizes by heat addition, and an application | coating external appearance falls.
The structure of the easily adhesive polyester film for solar cells of the present invention is described in detail below.
(ウレタン樹脂)
 前記ウレタン樹脂は、構成成分として、少なくともポリオール成分、ポリイソシアネート成分を含み、さらに必要に応じて鎖延長剤を含む。前記ウレタン樹脂は、これら構成成分が主としてウレタン結合により共重合された高分子化合物である。
(Urethane resin)
The urethane resin contains at least a polyol component and a polyisocyanate component as constituent components, and further contains a chain extender as necessary. The urethane resin is a polymer compound in which these constituent components are copolymerized mainly by urethane bonds.
 ポリオール成分としては、多価カルボン酸(例えば、マロン酸、コハク酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等)又はそれらの酸無水物と多価アルコール(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等)の反応から得られるポリエステルポリオール類、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等ポリエーテルポリオール類、ポリカーボネートポリオール類やポリオレフィンポリオール類、アクリルポリオール類等が挙げられる。なかでも、前記ウレタン樹脂の構成成分であるポリオール成分には、耐熱、耐加水分解性に優れる脂肪族系ポリカーボネートポリオールを含有することが好ましい。太陽光による黄変防止の点からは、脂肪族系ポリカーボネートポリオールを用いることが好ましい。なお、これらウレタン樹脂の構成成分は、核磁気共鳴分析等により特定することが可能である。 Examples of the polyol component include polyvalent carboxylic acids (for example, malonic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or acid anhydrides thereof and polyhydric alcohols (for example, Reaction of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, neopentylglycol, 1,6-hexanediol, etc.) Polyester polyols, polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and other polyether polyols obtained from Triol compounds and polyolefin polyols, and acrylic polyols, and the like. Especially, it is preferable to contain the aliphatic polycarbonate polyol which is excellent in heat resistance and hydrolysis resistance in the polyol component which is a structural component of the said urethane resin. From the viewpoint of preventing yellowing due to sunlight, it is preferable to use an aliphatic polycarbonate polyol. In addition, the structural component of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.
 ウレタン樹脂の構成成分として脂肪族系ポリカーボネート成分を含む場合は、封止材との接着性の点から、塗布層の赤外分光法による測定される脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)の比率(A1460/A1530)を0.50~1.55とすることが好ましい。 When an aliphatic polycarbonate component is included as a constituent component of the urethane resin, from the viewpoint of adhesiveness with the sealing material, the vicinity of 1460 cm −1 derived from the aliphatic polycarbonate component measured by infrared spectroscopy of the coating layer is used. The ratio (A 1460 / A 1530 ) between the absorbance (A 1460 ) and the absorbance (A 1530 ) near 1530 cm −1 derived from the urethane component is preferably 0.50 to 1.55.
 従来の技術常識では、塗布層の耐久性を向上させる点からは塗布層形成において剛直で強硬な塗布層にすることが望ましいと考えられていた。しかし、本発明では、脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂において赤外分光法による吸光度を一定の範囲に制御することで、強固な接着性を奏し、且つ高温高湿熱下での接着性をより好適に向上させ得る。このような構成により、接着性を向上させることの機序はよくわからないが、本発明者は次のように考えている。 In the conventional technical common sense, from the point of improving the durability of the coating layer, it was considered desirable to make the coating layer rigid and strong in forming the coating layer. However, in the present invention, by controlling the absorbance by infrared spectroscopy within a certain range in a polyurethane resin containing aliphatic polycarbonate polyol as a constituent component, it exhibits strong adhesion and adhesion under high temperature and high humidity heat. The property can be improved more suitably. Although the mechanism of improving adhesiveness with such a configuration is not well understood, the present inventor thinks as follows.
 例えば、モジュールのパッケージングに際して、表面保護材/封止材/塗布層を有するポリエステルフィルム(塗布層)を積層した構成で、高温で加熱圧着が行われる。この際、高温接着時のポリエステルフィルムの熱収縮により、ポリエステルフィルム(塗布層)と封止材の間に応力が生じる。特に、斯かる応力の発生も多様な封止材の種類・接着条件によって変化し得る。特に、高い温度が長時間かかるスタンダードキュアタイプでは、フィルムの熱収縮に伴う応力変化が大きくなる。その結果、上記応力が緩和し切れず、封止材との接着性が低下すると考えられる。さらに、斯かる積層体を高温高湿下においた場合、加水分解により、塗布層の劣化が進行する。その結果、上記応力に耐え切れず、封止材が剥離し、高温高湿下での接着性が低下すると考えられる。そのため、封止材との強固な密着性や高温高湿下での接着性を高度に保持するためには、単に塗布層を強固に架橋することで耐久性を付与するのではなく、耐熱、耐加水分解性を保持した成分で、且つ、上記応力に耐えうる柔軟性を備えることが望ましいと考えられる。しかし、単に柔軟性を有するだけでは、ファストキュアタイプのように短時間で高温加熱圧着させる場合、塗布層に部分的に溶解した封止材が侵食し、特に高温高湿処理後のポリエステルフィルム基材との接着性が低下すると考えられる。そのためこれら相反する特性を両立させることが最も望ましい。 For example, when packaging a module, thermocompression bonding is performed at a high temperature in a configuration in which a polyester film (coating layer) having a surface protective material / sealing material / coating layer is laminated. Under the present circumstances, stress arises between a polyester film (coating layer) and a sealing material by the thermal contraction of the polyester film at the time of high temperature adhesion. In particular, the generation of such stress can also vary depending on various types of sealing materials and bonding conditions. In particular, in a standard cure type in which a high temperature takes a long time, the stress change accompanying the heat shrinkage of the film becomes large. As a result, it is considered that the stress is not completely relaxed and the adhesiveness with the sealing material is lowered. Furthermore, when such a laminated body is placed under high temperature and high humidity, degradation of the coating layer proceeds due to hydrolysis. As a result, it is considered that the stress cannot be withstood, the sealing material is peeled off, and the adhesiveness under high temperature and high humidity is lowered. Therefore, in order to maintain high adhesion to the sealing material and high adhesiveness under high temperature and high humidity, instead of simply imparting durability by firmly crosslinking the coating layer, heat resistance, It is considered desirable to have a component that retains hydrolysis resistance and to be flexible enough to withstand the stress. However, if it is simply flexible, when it is subjected to high-temperature thermocompression bonding in a short time as in the fast cure type, the sealing material partially dissolved in the coating layer will be eroded, especially the polyester film base after high-temperature and high-humidity treatment. It is considered that the adhesiveness with the material is lowered. Therefore, it is most desirable to make these conflicting characteristics compatible.
 脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤を主成分とする場合、赤外分光法による測定される脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)とウレタン成分由来の1530cm-1付近の吸光度(A1530)の比率(A1460/A1530)が0.50~1.55とすることで、上記特性をより好適に両立させうる。すなわち、耐加水分解性を有する脂肪族ポリカーボネート成分と、強硬性を奏するウレタン成分を所定の割合で共存させ、さらに架橋剤を添加することで、上記特性の両立を図るものである。これにより、高温での熱接着時のフィルムの熱収縮による応力を緩和することができるため、様々な封止材・接着条件であっても強固な接着性を得ることができる。また、その後の高温高湿の環境下でも、耐熱、耐加水分解性を保持しているため、塗布層の劣化を防止できる。 In the case where the main component is a urethane resin having an aliphatic polycarbonate polyol as a constituent component and a crosslinking agent, the absorbance (A 1460 ) around 1460 cm −1 derived from the aliphatic polycarbonate component measured by infrared spectroscopy and the urethane component By setting the ratio (A 1460 / A 1530 ) of the absorbance (A 1530 ) near 1530 cm −1 derived from 0.50 to 1.55, the above characteristics can be achieved more suitably. That is, the above characteristics can be achieved by coexisting an aliphatic polycarbonate component having hydrolysis resistance and a urethane component exhibiting toughness at a predetermined ratio and further adding a crosslinking agent. Thereby, since the stress due to the thermal contraction of the film at the time of thermal bonding at high temperature can be relieved, strong adhesiveness can be obtained even under various sealing materials and bonding conditions. Moreover, since the heat resistance and hydrolysis resistance are maintained even in a subsequent environment of high temperature and high humidity, the coating layer can be prevented from deteriorating.
 ここで、1460cm-1付近の吸光度(A1460)は、脂肪族系ポリカーボネート成分に含まれるメチレン基のC-H結合に特有の変角振動に由来する。よって、1460cm-1付近の吸光度(A1460)の大きさは、塗布層に存在するウレタン樹脂を構成する脂肪族系ポリカーボネートポリオール成分量に依存する。一方、1530cm-1付近の吸光度(A1530)は、ウレタン成分に含まれるN-H結合に特有の変角振動に由来する。よって、1530cm-1付近の吸光度(A1530)の大きさは塗布層に存在するウレタン樹脂を構成するウレタン成分量に依存する。そのため、これらの吸光度比率(A1460/A1530)は、それぞれ異なる特性を有する両成分を特定の割合で共存していることを示すものである。本発明では、前記比率(A1460/A1530)が0.50~1.55であることが好ましい。前記比率(A1460/A1530)の下限は、好ましくは0.60であり、より好ましくは0.70である。また、前記比率(A1460/A1530)の上限は、好ましくは1.45であり、より好ましくは1.35、さらに好ましくは1.25である。前記比率(A1460/A1530)が、0.50未満の場合は、強硬なウレタン成分が多くなりすぎ、塗布層の応力緩和が低下するため耐湿熱性が低下する場合がある。また、前記比率(A1460/A1530)が、1.55を超える場合は、柔軟な脂肪族系ポリカーボネートの脂肪族成分が多くなりすぎ、塗布層の強度が低下するため塗膜強度や耐湿熱性が低下する場合がある。 Here, the absorbance around 1460 cm −1 (A 1460 ) is derived from the bending vibration unique to the CH bond of the methylene group contained in the aliphatic polycarbonate component. Therefore, the magnitude of the absorbance (A 1460 ) near 1460 cm −1 depends on the amount of the aliphatic polycarbonate polyol component constituting the urethane resin present in the coating layer. On the other hand, the absorbance (A 1530 ) in the vicinity of 1530 cm −1 is derived from the bending vibration specific to the N—H bond contained in the urethane component. Therefore, the magnitude of the absorbance (A 1530 ) near 1530 cm −1 depends on the amount of the urethane component constituting the urethane resin present in the coating layer. Therefore, these absorbance ratios (A 1460 / A 1530 ) indicate that both components having different characteristics coexist in a specific ratio. In the present invention, the ratio (A 1460 / A 1530 ) is preferably 0.50 to 1.55. The lower limit of the ratio (A 1460 / A 1530 ) is preferably 0.60, and more preferably 0.70. The upper limit of the ratio (A 1460 / A 1530 ) is preferably 1.45, more preferably 1.35, and even more preferably 1.25. When the ratio (A 1460 / A 1530 ) is less than 0.50, the amount of the hard urethane component is excessive, and the stress relaxation of the coating layer is lowered, so that the heat and humidity resistance may be lowered. In addition, when the ratio (A 1460 / A 1530 ) exceeds 1.55, the aliphatic component of the flexible aliphatic polycarbonate is excessively increased, and the strength of the coating layer is lowered. May decrease.
 脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオール等が挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。前記ウレタン樹脂の構成成分である脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等のジオール類の1種又は2種以上と、例えば、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、ホスゲン等のカーボネート類とを反応させることにより得られる脂肪族系ポリカーボネートジオール等が挙げられる。 Examples of the aliphatic polycarbonate polyol include an aliphatic polycarbonate diol and an aliphatic polycarbonate triol, and an aliphatic polycarbonate diol can be preferably used. Examples of the aliphatic polycarbonate diol that is a component of the urethane resin include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1 , 5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedi Examples thereof include aliphatic polycarbonate diols obtained by reacting one or more diols such as methanol with carbonates such as dimethyl carbonate, diphenyl carbonate, ethylene carbonate, and phosgene.
 脂肪族系ポリカーボネートジオールの数平均分子量としては、好ましくは1500~4000であり、より好ましくは2000~3000である。脂肪族系ポリカーボネートジオールの数平均分子量が小さい場合は、相対的にウレタン樹脂を構成する脂肪族系ポリカーボネート成分の比率が小さくなる。そのため、前記比率(A1460/A1530)を前述の範囲にするためには、脂肪族系ポリカーボネートジオールの数平均分子量を上記範囲で制御することが好ましい。脂肪族系ポリカーボネートジオールの数平均分子量が大きいと、脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)が増加し、脂肪族成分が増加してしまうため、接着性や高温高湿処理後の強度が低下する場合がある。脂肪族系ポリカーボネートジオールの数平均分子量が小さいと強硬なウレタン成分が増加し、基材の熱収縮による応力を緩和できなくなり、接着性が低下する場合がある。 The number average molecular weight of the aliphatic polycarbonate diol is preferably 1500 to 4000, more preferably 2000 to 3000. When the number average molecular weight of the aliphatic polycarbonate diol is small, the ratio of the aliphatic polycarbonate component constituting the urethane resin is relatively small. Therefore, in order to make the ratio (A 1460 / A 1530 ) within the above range, it is preferable to control the number average molecular weight of the aliphatic polycarbonate diol within the above range. When the number average molecular weight of the aliphatic polycarbonate diol is large, the absorbance (A 1460 ) around 1460 cm −1 derived from the aliphatic polycarbonate component increases and the aliphatic component increases. The strength after processing may be reduced. When the number average molecular weight of the aliphatic polycarbonate diol is small, a strong urethane component increases, and stress due to thermal shrinkage of the base material cannot be relieved, and adhesiveness may be lowered.
 前記ウレタン樹脂の構成成分であるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香族ジイソシアネート類;イソホロンジイソシアネート、4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類;ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類;あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。芳香族イソシアネートを使用した場合、黄変の問題があり、好ましくない場合がある。また、脂肪族系と比較して、強硬な塗膜になるため、基材の熱収縮による応力を緩和できなくなり、接着性が低下する場合がある。 Examples of the polyisocyanate that is a component of the urethane resin include aromatic diisocyanates such as xylylene diisocyanate; alicyclic rings such as isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and 1,3-bis (isocyanatomethyl) cyclohexane. Diisocyanates of formula; aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate; or polyisocyanates obtained by adding these compounds in advance with trimethylolpropane or the like in a single or plural form. . When aromatic isocyanate is used, there is a problem of yellowing, which may not be preferable. Moreover, since it becomes a hard coating film compared with an aliphatic type | system | group, it becomes impossible to relieve | moderate the stress by the heat shrink of a base material, and adhesiveness may fall.
 前記鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のグリコール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類;エチレンジアミン、ヘキサメチレンジアミン、ピペラジン等のジアミン類;モノエタノールアミン、ジエタノールアミン等のアミノアルコール類;チオジエチレングルコール等のチオジグリコール類;あるいは水が挙げられる。ただし、主鎖の短い鎖延長剤を用いると、ウレタン成分由来の1530cm-1付近の吸光度(A1530)が増し、塗布層の柔軟性が低下する場合がある。よって、鎖延長剤としては主鎖の長いものが好ましい。また、塗布層に柔軟性を付与する点では、脂肪族系で主鎖の炭素数が4~10の長さのジオールやジアミンの鎖延長剤が好ましい。これらの点から、本発明に用いる鎖延長剤としては、1,4-ブタンジオール、1,6-ヘキサンジオール、ヘキサメチレンジアミン等が好適である。すなわち、ウレタン成分由来の1530cm-1付近の吸光度の低下を防ぐために、1,4-ブタンジオール、1,6-ヘキサンジオール、ヘキサメチレンジアミン等の直鎖で分子量の大きいものが好ましい。 Examples of the chain extender include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, and 1,6-hexanediol; polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol; ethylenediamine Diamines such as hexamethylenediamine and piperazine; aminoalcohols such as monoethanolamine and diethanolamine; thiodiglycols such as thiodiethylene glycol; or water. However, when a chain extender having a short main chain is used, the absorbance (A 1530 ) in the vicinity of 1530 cm −1 derived from the urethane component increases, and the flexibility of the coating layer may decrease. Therefore, a chain extender having a long main chain is preferable. From the viewpoint of imparting flexibility to the coating layer, a chain extender of diol or diamine having a length of 4 to 10 carbon atoms in the main chain is preferable. From these points, 1,4-butanediol, 1,6-hexanediol, hexamethylenediamine and the like are preferable as the chain extender used in the present invention. That is, in order to prevent a decrease in absorbance in the vicinity of 1530 cm −1 derived from the urethane component, straight chain and high molecular weight materials such as 1,4-butanediol, 1,6-hexanediol, and hexamethylenediamine are preferable.
 本発明の塗布層は、水系の塗布液を用い後述のインラインコート法により設けることが好ましい。そのため、本発明のウレタン樹脂は水溶性であることが望ましい。なお、前記の「水溶性」とは、水、又は水溶性の有機溶剤を50質量%未満含む水溶液に対して溶解することを意味する。 The coating layer of the present invention is preferably provided by an in-line coating method described later using an aqueous coating solution. Therefore, it is desirable that the urethane resin of the present invention is water-soluble. In addition, said "water-soluble" means melt | dissolving with respect to water or the aqueous solution containing less than 50 mass% of water-soluble organic solvents.
 ウレタン樹脂に水溶性を付与させるためには、ウレタン分子骨格中にスルホン酸(塩)基又はカルボン酸(塩)基を導入(共重合)することができる。スルホン酸(塩)基は強酸性であり、その吸湿性能により耐湿性を維持するのが困難な場合があるので、弱酸性であるカルボン酸(塩)基を導入するのが好適である。また、ポリオキシアルキレン基等のノニオン性基を導入することもできる。 In order to impart water solubility to the urethane resin, a sulfonic acid (salt) group or a carboxylic acid (salt) group can be introduced (copolymerized) into the urethane molecular skeleton. Since the sulfonic acid (salt) group is strongly acidic and it may be difficult to maintain moisture resistance due to its hygroscopic performance, it is preferable to introduce a weakly acidic carboxylic acid (salt) group. Moreover, nonionic groups, such as a polyoxyalkylene group, can also be introduce | transduced.
 ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入し、塩形成剤により中和する。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等のトリアルキルアミン類;N-メチルモルホリン、N-エチルモルホリン等のN-アルキルモルホリン類;N-ジメチルエタノールアミン、N-ジエチルエタノールアミン等のN-ジアルキルアルカノールアミン類;等が挙げられる。これらは単独で使用できるし、2種以上併用することもできる。 In order to introduce a carboxylic acid (salt) group into a urethane resin, for example, as a polyol component, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid is introduced as a copolymer component to form a salt. Neutralize with an agent. Specific examples of the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine and tri-n-butylamine; N such as N-methylmorpholine and N-ethylmorpholine. -Alkylmorpholines; N-dialkylalkanolamines such as N-dimethylethanolamine and N-diethylethanolamine; and the like. These can be used alone or in combination of two or more.
 水溶性を付与するためにカルボン酸(塩)基を有するポリオール化合物を共重合成分として用いる場合、ウレタン樹脂中のカルボン酸(塩)基を有するポリオール化合物の組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%としたとき、3~60モル%であることが好ましく、より好ましくは5~40モル%である。前記組成モル比が3モル%未満の場合は、水分散性が困難になる場合がある。また、前記組成モル比が60モル%を超える場合は、耐水性が低下するため耐湿熱性が低下する場合がある。 When a polyol compound having a carboxylic acid (salt) group is used as a copolymerization component in order to impart water solubility, the composition molar ratio of the polyol compound having a carboxylic acid (salt) group in the urethane resin is the total poly of the urethane resin. When the isocyanate component is 100 mol%, it is preferably 3 to 60 mol%, more preferably 5 to 40 mol%. If the composition molar ratio is less than 3 mol%, water dispersibility may be difficult. Moreover, when the said composition molar ratio exceeds 60 mol%, since water resistance falls, moist heat resistance may fall.
 本発明のウレタン樹脂のガラス転移温度は0℃未満が好ましく、より好ましくは-5℃未満である。ガラス転移温度が0℃未満の場合は、加圧接着の際に部分的に溶融したEVAやPVB等のオレフィン樹脂と粘度が近くなり、部分的混合による強固な接着性の向上に寄与し、塗布層の応力緩和の点から好適な柔軟性を奏しやすく好ましい。 The glass transition temperature of the urethane resin of the present invention is preferably less than 0 ° C, more preferably less than -5 ° C. When the glass transition temperature is less than 0 ° C., the viscosity is close to that of partially melted olefin resin such as EVA or PVB at the time of pressure bonding, contributing to the improvement of strong adhesion by partial mixing. From the viewpoint of stress relaxation of the layer, it is preferable that suitable flexibility is easily obtained.
 前記ウレタン樹脂には高温高湿後の接着性を向上させるために、樹脂自体に架橋基を導入しても良い。塗布液の経時安定性や架橋密度向上効果からシラノール基が好ましい。 In order to improve the adhesiveness after high temperature and high humidity, a crosslinking group may be introduced into the resin itself. A silanol group is preferred from the viewpoint of the stability over time of the coating solution and the effect of improving the crosslinking density.
 前記ウレタン樹脂以外の樹脂を、接着性を向上させるために含有させても良い。例えば、ポリエーテル、又は、ポリエステルを構成成分とするウレタン樹脂、アクリル樹脂、ポリエステル樹脂等が挙げられる。 A resin other than the urethane resin may be contained in order to improve the adhesiveness. For example, a urethane resin, an acrylic resin, a polyester resin, or the like containing polyether or polyester as a constituent component may be used.
(ブロックイソシアネート)
 本発明において、塗布液中に解離温度が130℃以下、且つ、ブロック剤の沸点が180℃以上であるブロックイソシアネートを含有させる必要がある。ブロックイソシアネートはポリイソシアネートとブロック剤を反応させることで得られる。なお、解離温度、沸点は示差熱分析により測定することができる。
(Block isocyanate)
In the present invention, it is necessary to contain a blocked isocyanate having a dissociation temperature of 130 ° C. or lower and a blocking agent having a boiling point of 180 ° C. or higher in the coating solution. The blocked isocyanate can be obtained by reacting a polyisocyanate and a blocking agent. The dissociation temperature and boiling point can be measured by differential thermal analysis.
 ブロックイソシアネートの解離温度は130℃以下であり、125℃以下がより好ましく、120℃以下がさらに好ましい。ブロック剤は塗布液の塗布後の乾燥工程やインラインコート法の場合はフィルム製膜工程における熱付加により官能基と解離し、再生イソシアネート基が生成される。そのため、ウレタン樹脂等との架橋反応が進行し、接着性が向上する。ブロックイソシアネートの解離温度が上記温度以下である場合は、ブロック剤の解離が十分進行するため、接着性、特に耐湿熱性が良好となる。解離温度は、塗布液の安定化のため室温以上であれば特に限定しないが、50℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。 The dissociation temperature of the blocked isocyanate is 130 ° C or lower, more preferably 125 ° C or lower, and further preferably 120 ° C or lower. In the case of a drying step after application of the coating solution or an in-line coating method, the blocking agent is dissociated from the functional group by heat addition in the film forming step, and a regenerated isocyanate group is generated. Therefore, a crosslinking reaction with a urethane resin or the like proceeds, and the adhesiveness is improved. When the dissociation temperature of the blocked isocyanate is equal to or lower than the above temperature, the dissociation of the blocking agent proceeds sufficiently, so that the adhesiveness, particularly the moist heat resistance is improved. The dissociation temperature is not particularly limited as long as it is room temperature or higher for stabilization of the coating solution, but is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher.
 ブロック剤は活性水素を分子内に1個有する化合物が好適に用いられる。この場合、解離温度を上記のように比較的低くするためには、高い電子密度が得られるブロック剤を採用することが好ましい。例えば、分子内に複素環やそれに類似した構造を有するブロック剤等が好適に用いられる。 As the blocking agent, a compound having one active hydrogen in the molecule is preferably used. In this case, in order to make the dissociation temperature relatively low as described above, it is preferable to employ a blocking agent capable of obtaining a high electron density. For example, a blocking agent having a heterocyclic ring or a similar structure in the molecule is preferably used.
 ブロック剤の沸点は180℃以上であり、好ましくは190℃以上、より好ましくは200℃以上、さらに好ましくは210℃以上である。ブロック剤の沸点が高い程、塗布液の塗布後の乾燥工程やインラインコート法を採用した場合のフィルム製膜工程における熱付加において、ブロック剤の揮発が低減され、微小な塗布面凹凸の発生が抑制され、フィルムの透明性が向上する。ブロック剤の沸点の上限は特に限定しないが、生産性の点から300℃程度である。沸点は分子量と関係するため、ブロック剤の沸点を高くするためには、分子量の大きなブロック剤を用いることが好ましい。ブロック剤の分子量は50以上が好ましく、60以上がより好ましく、80以上がさらに好ましい。 The boiling point of the blocking agent is 180 ° C or higher, preferably 190 ° C or higher, more preferably 200 ° C or higher, and further preferably 210 ° C or higher. The higher the boiling point of the blocking agent, the lower the volatilization of the blocking agent and the occurrence of fine irregularities on the coated surface in the heat application in the drying process after application of the coating liquid and the film formation process when the in-line coating method is adopted. It is suppressed and the transparency of the film is improved. The upper limit of the boiling point of the blocking agent is not particularly limited, but is about 300 ° C. from the viewpoint of productivity. Since the boiling point is related to the molecular weight, it is preferable to use a blocking agent having a large molecular weight in order to increase the boiling point of the blocking agent. The molecular weight of the blocking agent is preferably 50 or more, more preferably 60 or more, and still more preferably 80 or more.
 前記ブロックイソシアネートに用いる解離温度が130℃以下、且つ、ブロック剤の沸点が180℃以上であるブロック剤としては、重亜硫酸ソーダ等の重亜硫酸塩系化合物;3,5-ジメチルピラゾール、3-メチルピラゾール、4-ブロモー3,5-ジメチルピラゾール、4-ニトロー3,5-ジメチルピラゾール等のピラゾール系化合物;マロン酸ジエステル(マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-ブチル、マロン酸ジ2-エチルヘキシル)等の活性メチレン系;1,2,4-トリアゾール等のトリアゾール系化合物;が挙げられる。なかでも、耐湿熱性、黄変の点から、ピラゾール系化合物が好ましい。 Examples of the blocking agent having a dissociation temperature of 130 ° C. or lower used for the blocked isocyanate and a boiling point of the blocking agent of 180 ° C. or higher include bisulfite compounds such as sodium bisulfite; 3,5-dimethylpyrazole, 3-methyl Pyrazole compounds such as pyrazole, 4-bromo-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole; malonic acid diester (dimethyl malonate, diethyl malonate, di-n-butyl malonate, di2 malonate) Active methylenes such as -ethylhexyl); triazoles such as 1,2,4-triazole. Of these, pyrazole compounds are preferred from the viewpoints of heat and humidity resistance and yellowing.
 前記ブロックイソシアネートの前駆体であるポリイソシアネートは、ジイソシアネートを導入して得られる。ポリイソシアネートとしては、例えば、ジイソシアネートのウレタント変性体、アロファネート変性体、ウレア変性体、ビウレット変性体、ウレトジオン変性体、ウレトイミン変性体、イソシアヌレート変性体、カルボジイミド変性体等が挙げられる。 The polyisocyanate that is a precursor of the blocked isocyanate is obtained by introducing diisocyanate. Examples of the polyisocyanate include diisocyanate urethane-modified products, allophanate-modified products, urea-modified products, biuret-modified products, uretdione-modified products, uretoimine-modified products, isocyanurate-modified products, and carbodiimide-modified products.
 ジイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,4-ナフチレンジイソシアネート、フェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4’-ジイソシアネート、2,2’-ジフェニルプロパン-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、3,3’-ジメトキシジフェニル-4,4’-ジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート類;イソホロンジイソシアネート、4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類;ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類;等が挙げられる。透明性、接着性、耐湿熱性の点から、脂肪族、脂環式イソシアネートやこれらの変性体が好ましい。芳香族イソシアネートを使用した場合、黄変の問題があり、高い透明性が要求されるフロントシート用としては、好ましくない場合がある。また、脂肪族系と比較して、強硬な塗膜になるため、封止材等の収縮、膨潤による応力を緩和できなくなり、密着性が低下する場合がある。 Diisocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 1,5-naphthylene diene Isocyanate, 1,4-naphthylene diisocyanate, phenylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4 '-Diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, 3,3'-dimethoxydiphenyl-4 Aromatic diisocyanates such as 4'-diisocyanate and xylylene diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane; hexamethylene diisocyanate, 2, Aliphatic diisocyanates such as 2,4-trimethylhexamethylene diisocyanate; From the viewpoints of transparency, adhesiveness, and heat and humidity resistance, aliphatic and alicyclic isocyanates and modified products thereof are preferred. When an aromatic isocyanate is used, there is a problem of yellowing, which may not be preferable for a front sheet that requires high transparency. Moreover, since it becomes a hard coating film compared with an aliphatic type | system | group, it becomes impossible to relieve | moderate the stress by shrinkage | contraction and swelling of a sealing material etc., and adhesiveness may fall.
 前記ブロックイソシアネートは、水溶性、又は、水分散性を付与するために前駆体であるポリイソシアネートに親水基を導入することが好ましい。親水基としては、(1)ジアルキルアミノアルコールの四級アンモニウム塩やジアルキルアミノアルキルアミンの四級アンモニウム塩等、(2)スルホン酸塩、カルボン酸塩、リン酸塩等、(3)アルコキシ基で片末端封鎖されたポリエチレングリコール、ポリプロピレングリコール等が挙げられる。親水性部位を導入した場合は(1)カチオン性、(2)アニオン性、(3)ノニオン性となる。なかでも、水溶性樹脂はアニオン性のものが多いため、容易に相溶できるアニオン性やノニオン性のものが好ましい。また、アニオン性のものは樹脂との相溶性に優れ、ノニオン性のものはイオン性の親水基をもたないため、耐湿熱性を向上させるためにも好ましい。また、アニオン性やカチオン性のものは樹脂と凝集、もしくは自己凝集し、透明性や外観性に影響する場合があるため、上記のなかでもノニオン性のものがより好ましい。 It is preferable that the blocked isocyanate introduces a hydrophilic group to the precursor polyisocyanate in order to impart water solubility or water dispersibility. Hydrophilic groups include (1) quaternary ammonium salts of dialkylamino alcohols and quaternary ammonium salts of dialkylaminoalkylamines, (2) sulfonates, carboxylates, phosphates, etc. (3) alkoxy groups One end-capped polyethylene glycol, polypropylene glycol and the like can be mentioned. When a hydrophilic site is introduced, it becomes (1) cationic, (2) anionic, and (3) nonionic. Especially, since many water-soluble resins are anionic, the anionic and nonionic thing which can be easily compatible is preferable. In addition, anionic ones are excellent in compatibility with the resin, and nonionic ones do not have an ionic hydrophilic group, so that they are preferable for improving the heat and moisture resistance. In addition, anionic and cationic ones aggregate with the resin or self-aggregate and may affect the transparency and appearance, and among these, nonionic ones are more preferable.
 アニオン性の親水基としては、ポリイソシアネートに導入するための水酸基、親水性を付与するためのカルボン酸基を有するものが好ましい。例えば、グリコール酸、乳酸、酒石酸、クエン酸、オキシ酪酸、オキシ吉草酸、ヒドロキシピバリン酸、ジメチロール酢酸、ジメチロールプロピオン酸、ジメチロールブタン酸、カルボン酸基を有するポリカプロラクトンが挙げられる。カルボン酸基を中和するには、有機アミン化合物が好ましい。有機アミン化合物としては、例えば、アンモニア、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、2-エチルヘキシルアミン、シクロヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、エチレンジアミン等の炭素数1から20の直鎖状、分岐状の1,2又は3級アミン;モルホリン、N-アルキルモルホリン、ピリジン等の環状アミン;モノイソプロパノールアミン、メチルエタノールアミン、メチルイソプロパノールアミン、ジメチルエタノールアミン、ジイソプロパノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチルエタノールアミン、トリエタノールアミン等の水酸基含有アミン;等が挙げられる。 As the anionic hydrophilic group, those having a hydroxyl group for introduction into polyisocyanate and a carboxylic acid group for imparting hydrophilicity are preferable. Examples include glycolic acid, lactic acid, tartaric acid, citric acid, oxybutyric acid, oxyvaleric acid, hydroxypivalic acid, dimethylolacetic acid, dimethylolpropionic acid, dimethylolbutanoic acid, and polycaprolactone having a carboxylic acid group. An organic amine compound is preferable for neutralizing the carboxylic acid group. Examples of the organic amine compound include ammonia, methylamine, ethylamine, propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, C1-C20 linear, branched 1, 2 or tertiary amines such as triisopropylamine, tributylamine and ethylenediamine; cyclic amines such as morpholine, N-alkylmorpholine and pyridine; monoisopropanolamine and methylethanol Amine, methylisopropanolamine, dimethylethanolamine, diisopropanolamine, diethanolamine, triethanolamine, diethylethanol Amine, hydroxyl group-containing amines such as triethanolamine; and the like.
 ノニオン性の親水基としては、アルコキシ基で片末端封鎖されたポリエチレングリコール、ポリプロピレングリコールのエチレンオキサイド及び/又はプロピレンオキサイドの繰り返し単位が3~50のものが好ましく、より好ましくは5~30である。繰り返し単位が小さい場合は、樹脂との相溶性が悪くなり、ヘイズが上昇し、大きい場合は、高温高湿下の接着性が低下する場合がある。 The nonionic hydrophilic group is preferably one having 3 to 50 repeating units of polyethylene glycol, polypropylene glycol having ethylene oxide and / or propylene oxide capped at one end with an alkoxy group, more preferably 5 to 30. When the repeating unit is small, the compatibility with the resin is deteriorated and the haze is increased. When the repeating unit is large, the adhesiveness under high temperature and high humidity may be decreased.
 前記ブロックイソシアネートの水分散性向上のために、塗布液にノニオン系、アニオン系、カチオン系、両性の界面活性剤を添加することができる。界面活性剤としては、例えばポリエチレングリコール、多価アルコール脂肪酸エステル等のノニオン系界面活性剤;脂肪酸塩、アルキル硫酸エステル、アルキルベンゼンスルホン酸塩、スルホコハク酸塩、アルキルリン酸塩等のアニオン系界面活性剤;アルキルアミン塩、アルキルベタイン等のカチオン系界面活性剤;カルボン酸アミン塩、スルホン酸アミン塩、硫酸エステル塩等の両性界面活性剤;等が挙げられる。 In order to improve the water dispersibility of the blocked isocyanate, nonionic, anionic, cationic, and amphoteric surfactants can be added to the coating solution. Examples of the surfactant include nonionic surfactants such as polyethylene glycol and polyhydric alcohol fatty acid esters; anionic surfactants such as fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, sulfosuccinates, and alkyl phosphates. And cationic surfactants such as alkylamine salts and alkylbetaines; amphoteric surfactants such as carboxylic acid amine salts, sulfonic acid amine salts, and sulfate ester salts.
 また、塗布液には水以外にも水溶性の有機溶剤を含有することができる。例えば、反応に使用した有機溶剤やそれを除去し、別の有機溶剤を添加することもできる。 In addition, the coating solution can contain a water-soluble organic solvent in addition to water. For example, the organic solvent used in the reaction or it can be removed and another organic solvent can be added.
 塗布液中のウレタン樹脂とブロックイソシアネートの質量比(ウレタン樹脂/ブロックイソシアネート)は1/9~9/1が好ましく、1/9~8/2がより好ましく、2/8~6/4がさらに好ましい。また、塗布液の固形成分中のブロックイソシアネートの含有量としては、5質量%以上90質量%以下が好ましく、より好ましくは20質量%以上80質量%以下である。ブロックイソシアネートの含有量が少ない場合には、塗布層の耐溶剤性及び高温高湿下での密着性が低下し、多い場合には、塗布層の樹脂の柔軟性が低下し、常温、高温高湿下での密着性が低下する。ブロックイソシアネートは2種類以上を組み合わせても良いし、2種類以上のブロック剤を組合せも良い。その際は、少なくとも1種のブロックイソシアネートは本発明の規定を満足する必要がある。 The mass ratio of urethane resin to blocked isocyanate (urethane resin / block isocyanate) in the coating solution is preferably 1/9 to 9/1, more preferably 1/9 to 8/2, and further 2/8 to 6/4. preferable. Moreover, as content of the block isocyanate in the solid component of a coating liquid, 5 to 90 mass% is preferable, More preferably, it is 20 to 80 mass%. When the content of the blocked isocyanate is low, the solvent resistance of the coating layer and the adhesiveness under high temperature and high humidity decrease, and when it is high, the flexibility of the resin of the coating layer decreases, and the high temperature and high temperature Adhesion under humidity decreases. Two or more types of blocked isocyanates may be combined, or two or more types of blocking agents may be combined. In that case, at least one blocked isocyanate must satisfy the provisions of the present invention.
 本発明において、塗布層の強度を向上させるために、2種類の架橋剤を混合させても良い。混合させる架橋剤としては、メラミン系、エポキシ系、カルボジイミド系、オキサゾリン系等が挙げられる。塗布液の経時安定性、高温高湿処理下の密着性向上効果からカルボジイミド系、オキサゾリン系が好ましい。また、架橋反応を促進させるため、触媒等が必要に応じて適宜使用される。 In the present invention, two kinds of crosslinking agents may be mixed in order to improve the strength of the coating layer. Examples of the crosslinking agent to be mixed include melamine, epoxy, carbodiimide, and oxazoline. A carbodiimide type and an oxazoline type are preferable from the viewpoint of the stability over time of the coating solution and the effect of improving the adhesion under high temperature and high humidity treatment. Moreover, in order to promote a crosslinking reaction, a catalyst etc. are used suitably as needed.
(添加剤)
 本発明において、塗布層中に粒子を含有させることもできる。粒子は、(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、二酸化チタン、二酸化ジルコニウム、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の無機粒子、(2)アクリルあるいはメタクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられる。
(Additive)
In the present invention, particles may be contained in the coating layer. The particles are (1) silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, barium sulfate, carbon black, zinc oxide, zinc sulfate, zinc carbonate, titanium dioxide, zirconium dioxide, satin white, Inorganic particles such as aluminum silicate, diatomaceous earth, calcium silicate, aluminum hydroxide, hydrous halloysite, magnesium carbonate, magnesium hydroxide, (2) acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, Styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / isoprene, methyl methacrylate / butyl methacrylate, melamine, polycarbonate, urea, epoxy, urethane Phenolic, diallyl phthalate, and organic particles of a polyester or the like.
 前記粒子は、平均粒径が1~500nmのものが好適である。平均粒子径は特に限定されないが、フィルムの透明性を維持する点から1~100nmであれば好ましい。前記粒子は、平均粒径の異なる粒子を2種類以上含有させても良い。なお、上記の平均粒径(個数基準)は、透過型電子顕微鏡(TEM)を用いて、倍率12万倍で積層フィルムの断面を撮影し、塗布層の断面に存在する10個以上の粒子の最大径を測定し、それらの平均値として求めることができる。 The particles preferably have an average particle diameter of 1 to 500 nm. The average particle size is not particularly limited, but is preferably 1 to 100 nm from the viewpoint of maintaining the transparency of the film. The particles may contain two or more kinds of particles having different average particle diameters. The average particle size (on the basis of the number) is obtained by photographing a cross section of the laminated film at a magnification of 120,000 using a transmission electron microscope (TEM), and measuring 10 or more particles present in the cross section of the coating layer. The maximum diameter can be measured and obtained as an average value thereof.
 粒子の含有量としては、0.5質量%以上20質量%以下が好ましい。少ない場合は、十分な耐ブロッキング性を得ることができない。また、耐スクラッチ性が悪化してしまう。多い場合は、塗膜強度が低下する。 The particle content is preferably 0.5% by mass or more and 20% by mass or less. When the amount is small, sufficient blocking resistance cannot be obtained. In addition, the scratch resistance is deteriorated. When the amount is large, the coating film strength decreases.
 塗布層には、コート時のレベリング性の向上、コート液の脱泡を目的に界面活性剤を含有させることもできる。界面活性剤は、カチオン系、アニオン系、ノニオン系等いずれのものでも構わないが、シリコン系、アセチレングリコール系又はフッ素系界面活性剤が好ましい。これらの界面活性剤は、封止材との接着性を損なわない程度の範囲、例えば、塗布液中に0.005~0.5質量%の範囲で含有させることが好ましい。 The coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution. The surfactant may be any of cationic, anionic, nonionic, etc., but is preferably a silicon-based, acetylene glycol-based or fluorine-based surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the sealing material, for example, in the range of 0.005 to 0.5% by mass in the coating solution.
 塗布層に他の機能性を付与するために、封止材との接着性を損なわない程度の範囲で、各種の添加剤を含有させても構わない。前記添加剤としては、例えば、蛍光染料、蛍光増白剤、可塑剤、紫外線吸収剤、顔料分散剤、抑泡剤、消泡剤、防腐剤、帯電防止剤等が挙げられる。 In order to impart other functionality to the coating layer, various additives may be contained within a range that does not impair the adhesion with the sealing material. Examples of the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.
 本発明において、ポリエステルフィルム上に塗布層を設ける方法としては、溶媒、前記ウレタン樹脂、前記ブロックイソシアネート及び必要に応じて粒子等を含有する塗布液をポリエステルフィルムに塗布、乾燥する方法が挙げられる。溶媒として、トルエン等の有機溶剤、水、あるいは水と水溶性の有機溶剤の混合系が挙げられるが、好ましくは、環境問題の点から水単独あるいは水に水溶性の有機溶剤を混合したものが好ましい。 In the present invention, as a method of providing a coating layer on a polyester film, a method of coating a polyester film with a coating solution containing a solvent, the urethane resin, the blocked isocyanate and, if necessary, particles, and the like, and drying can be mentioned. Examples of the solvent include organic solvents such as toluene, water, and a mixed system of water and a water-soluble organic solvent. Preferably, water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.
 塗布層は、製膜したフィルムもしくはフィルム製造工程の任意の段階で、ポリエステルフィルムの少なくとも片面に、塗布液を塗布し、形成する。特に、ブロック剤の解離のために高い熱付加が可能なフィルム製造工程での塗布(インラインコート法)が好ましい。塗布層はポリエステルフィルムの両面に形成させても特に問題はない。塗布液中の樹脂組成物の固形分濃度は、2~35質量%であることが好ましく、特に好ましくは4~15質量%である。 The coating layer is formed by coating a coating solution on at least one surface of the polyester film at any stage of the formed film or the film manufacturing process. In particular, coating (in-line coating method) in a film production process capable of high heat addition for dissociation of the blocking agent is preferable. There is no particular problem even if the coating layer is formed on both sides of the polyester film. The solid content concentration of the resin composition in the coating solution is preferably 2 to 35% by mass, and particularly preferably 4 to 15% by mass.
 塗布液をポリエステルフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、等が挙げられる。これらの方法を単独で、あるいは組み合わせて塗工する。 Any known method can be used as a method for applying the coating liquid to the polyester film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
 インラインコート法による場合、塗布層は未延伸あるいは一軸延伸後のポリエステルフィルムに前記塗布液を塗布、乾燥した後、少なくとも一軸方向に延伸し、次いで熱処理を行って形成させる。 In the case of the in-line coating method, the coating layer is formed by applying the coating solution to an unstretched or uniaxially stretched polyester film, drying it, stretching in at least a uniaxial direction, and then performing a heat treatment.
 本発明において、最終的に得られる塗布層の厚みは、好ましくは10~3000nm、より好ましくは10~1000nm、さらに好ましくは10~500nm、特に好ましくは10~400nmである。また、塗布層の乾燥後の塗布量は、好ましくは0.01~3g/m2、より好ましくは0.01~1g/m2、さらに好ましくは0.01~0.5g/m2、特に好ましくは0.01~0.4g/m2である。塗布層の塗布量が0.01g/m2未満であると、接着性に対する効果がほとんどなくなる。一方、塗布量が3g/m2を超えると、耐ブロッキング性が低下してしまう。 In the present invention, the thickness of the coating layer finally obtained is preferably 10 to 3000 nm, more preferably 10 to 1000 nm, still more preferably 10 to 500 nm, and particularly preferably 10 to 400 nm. The coating amount of the coating layer after drying is preferably 0.01 to 3 g / m 2 , more preferably 0.01 to 1 g / m 2 , still more preferably 0.01 to 0.5 g / m 2 , and particularly Preferably, it is 0.01 to 0.4 g / m 2 . When the coating amount of the coating layer is less than 0.01 g / m 2 , the effect on the adhesiveness is almost lost. On the other hand, when the coating amount exceeds 3 g / m 2 , the blocking resistance is lowered.
 前記ブロックイソシアネートのブロック剤が、熱付加により容易に解離するために、フィルムの熱処理の際のテンター内の最高温度及び熱処理時間は160℃以上、1秒以上が好ましく、180℃以上、5秒以上がより好ましい。また、ブロック剤の揮発を好適に抑制するために、熱処理の際のテンター内の最高温度及び熱処理時間は250℃以下、60秒以下が好ましく、240℃以下、50秒以下がより好ましい。なお、上記熱処理時間は延伸後におけるテンター内の熱処理ゾーンから冷却ゾーンまでの滞在時間をいう。 In order for the blocking agent of the blocked isocyanate to be easily dissociated by heat addition, the maximum temperature and heat treatment time in the tenter during heat treatment of the film is preferably 160 ° C. or higher, preferably 1 second or longer, 180 ° C. or higher, 5 seconds or longer. Is more preferable. In order to suitably suppress volatilization of the blocking agent, the maximum temperature in the tenter and the heat treatment time during heat treatment are preferably 250 ° C. or less and 60 seconds or less, and more preferably 240 ° C. or less and 50 seconds or less. In addition, the said heat processing time says the residence time from the heat processing zone in a tenter after extending | stretching to a cooling zone.
 前記太陽電池用易接着性ポリエステルフィルムにおいて、基材となるポリエステルフィルムの厚さは、特に限定されないが、20~500μmが好ましく、より好ましくは25~450μm、さらに好ましくは30~300μmである。基材厚さが薄いと、熱収縮の影響が大きく、高温高湿処理後の接着性が低下する場合があり、厚いとロールとして巻き取りができなくなってしまう。 In the easily adhesive polyester film for solar cells, the thickness of the polyester film as a substrate is not particularly limited, but is preferably 20 to 500 μm, more preferably 25 to 450 μm, and further preferably 30 to 300 μm. If the substrate thickness is thin, the influence of heat shrinkage is large, and the adhesiveness after the high-temperature and high-humidity treatment may be reduced. If it is thick, it cannot be wound as a roll.
 前記太陽電池用易接着性ポリエステルフィルムをフロントシートとして用いる際には、光電変換効率の点からフィルムの透明性は高いことが望ましい。フィルムのヘイズは、好ましくは5.0%未満、より好ましくは4.5%未満、さらに好ましくは4.3%以下である。 When using the easily adhesive polyester film for solar cells as a front sheet, it is desirable that the transparency of the film is high from the viewpoint of photoelectric conversion efficiency. The haze of the film is preferably less than 5.0%, more preferably less than 4.5%, and still more preferably 4.3% or less.
(太陽電池用フロントシート)
 本発明の太陽電池用フロントシートは、前記太陽電池用易接着性ポリエステルフィルムを構成部材とする。特に、封止材と直接的に接する最表層に用いることが好ましい。斯かる構成により本発明の太陽電池用バックシートは封止材との強固な密着性を奏することができ、長期にわたる過酷な環境下においても良好な密着性を奏する。そのため、太陽電池素子の防湿性保持やバリア性向上に寄与しうる。
(Front sheet for solar cells)
The front sheet for solar cells of the present invention comprises the above-mentioned easily adhesive polyester film for solar cells as a constituent member. In particular, it is preferably used for the outermost layer that is in direct contact with the sealing material. With such a configuration, the back sheet for a solar cell of the present invention can exhibit strong adhesion with a sealing material, and exhibits excellent adhesion even under a severe environment over a long period of time. Therefore, it can contribute to moisture proof maintenance and barrier property improvement of the solar cell element.
 本発明の太陽電池用フロントシートの態様としては、例えば、前記太陽電池用易接着性ポリエステルフィルム/接着剤/金属箔又は金属系薄膜層を有するフィルム/接着剤/ハードコート層といった構成や、前記太陽電池用易接着性ポリエステルフィルム/接着剤/ハードコート層といった構成が例示される。また前記太陽電池用易接着性ポリエステルフィルムは、両面に前記塗布層を有する構成であっても構わない。この場合、接着剤層を新たに設けることなく、好適に積層加工を施すことができる。前記塗布層は封止材以外の構成(例えば、ハードコート層等)とも良好な接着性を奏しうる。ここで金属箔又は金属系薄膜層を有するフィルムとしては、水蒸気バリア性を有するものが好適に用いることができる。 As an aspect of the solar cell front sheet of the present invention, for example, a configuration such as the above-mentioned easily adhesive polyester film for solar cells / adhesive / metal foil or a film having a metal-based thin film layer / adhesive / hard coat layer, Examples of the configuration include an easily adhesive polyester film for solar cells / adhesive / hard coat layer. Moreover, the structure which has the said coating layer on both surfaces may be sufficient as the said easily-adhesive polyester film for solar cells. In this case, the lamination process can be suitably performed without newly providing an adhesive layer. The coating layer can exhibit good adhesion with a configuration other than the sealing material (for example, a hard coat layer). Here, as the film having a metal foil or a metal thin film layer, a film having a water vapor barrier property can be suitably used.
 前記金属の種類としてはアルミニウム、錫、マグネシウム、銀、ステンレス等が挙げられるが中でもアルミニウム、銀が比較的高い反射率を有し、工業的に入手しやすいため好適である。金属層は金属箔をして使用しても良いし、ポリエステルフィルム等に薄膜として積層してもよい。これら金属を薄膜として積層する方法としては真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ気相成長法(CVD)等を用いることができる。 Examples of the metal include aluminum, tin, magnesium, silver, and stainless steel. Among them, aluminum and silver are preferable because they have a relatively high reflectance and are easily available industrially. The metal layer may be used as a metal foil, or may be laminated as a thin film on a polyester film or the like. As a method of laminating these metals as a thin film, a vacuum deposition method, a sputtering method, an ion plating method, a plasma vapor deposition method (CVD), or the like can be used.
 ハードコート層には耐候性を向上させるために紫外線吸収剤を添加することも好ましい態様である。また、最外層に防汚層や反射防止層等を設けることは、太陽電池素子に入射する光線量を増加させ、光電変換効率を向上させる上で好ましい態様である。 It is also a preferable aspect that an ultraviolet absorber is added to the hard coat layer in order to improve the weather resistance. In addition, providing an antifouling layer, an antireflection layer, or the like as the outermost layer is a preferable aspect in increasing the amount of light incident on the solar cell element and improving the photoelectric conversion efficiency.
 また、本発明の太陽電池用易接着性ポリエステルフィルムは太陽電池バックシートの最内層(封止材と接する側の層)としても好適に用いることができる。 Moreover, the easily adhesive polyester film for solar cells of the present invention can also be suitably used as the innermost layer (layer on the side in contact with the sealing material) of the solar cell backsheet.
(太陽電池用バックシート)
 前記太陽電池用易接着性ポリエステルフィルムは、太陽電池用バックシートの構成部材とすることもできる。特に、封止材と直接的に接する最表層に用いることが好ましい。斯かる構成により太陽電池用バックシートは封止材との強固な密着性を奏することができ、長期にわたる過酷な環境下においても良好な密着性を奏する。そのため、太陽電池素子の防湿性保持やバリア性向上に寄与しうる。
(Back sheet for solar cell)
The easy-adhesive polyester film for solar cells can be used as a constituent member of a back sheet for solar cells. In particular, it is preferably used for the outermost layer that is in direct contact with the sealing material. With such a configuration, the solar cell backsheet can exhibit strong adhesion to the sealing material, and can exhibit good adhesion even under a severe environment for a long period of time. Therefore, it can contribute to moisture proof maintenance and barrier property improvement of the solar cell element.
 太陽電池用バックシートの態様としては、例えば、前記太陽電池用易接着性ポリエステルフィルム/接着剤/金属箔又は金属系薄膜層を有するフィルム/接着剤/ポリフッ化ビニルフイルム又はポリエステル系高耐久防湿フィルムといった構成が例示される。また前記太陽電池用易接着性ポリエステルフィルムは、両面に前記塗布層を有する構成であっても構わない。本発明の塗布層は封止材以外の構成とも良好な接着性を奏しうる。ここで金属箔又は金属系薄膜層を有するフィルムとしては、水蒸気バリア性を有するものが好適に用いることができる。 Examples of the back sheet for solar cell include, for example, the above-mentioned easily adhesive polyester film for solar cell / adhesive / metal foil or film having a metal thin film layer / adhesive / polyvinyl fluoride film or polyester-based highly durable moisture-proof film. Such a configuration is exemplified. Moreover, the structure which has the said coating layer on both surfaces may be sufficient as the said easily-adhesive polyester film for solar cells. The coating layer of the present invention can exhibit good adhesiveness with configurations other than the sealing material. Here, as the film having a metal foil or a metal thin film layer, a film having a water vapor barrier property can be suitably used.
(太陽電池モジュール)
 太陽電池モジュールは、例えば、配線を配設した光起電力素子としての太陽電池素子と、太陽電池素子を挟むように介在する封止材と、本発明の太陽電池フロントシートやバックシートを用いて構成される。封止材としては、エチレン・酢酸ビニル共重合体やポリビニルブチラール樹脂等のオレフィン樹脂が好適に用いられる。特に、本発明の塗布層は上記のような柔軟性を有しているためエチレン・酢酸ビニル共重合体やポリビニルブチラール樹脂といった封止材と良好な接着性を奏することができる。
(Solar cell module)
The solar cell module uses, for example, a solar cell element as a photovoltaic element provided with wiring, a sealing material interposed so as to sandwich the solar cell element, and the solar cell front sheet or back sheet of the present invention. Composed. As the sealing material, an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is preferably used. In particular, since the coating layer of the present invention has such flexibility, it can exhibit good adhesiveness with a sealing material such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin.
 封止材としては、ラミネート工程による加熱圧着後に別ラインに設けたオーブンでのキュア工程により硬化反応をさせるスタンダードキュアタイプと、ラミネート工程でのラミネーター内部で硬化反応をさせるファストキュアタイプとに分類されるが、いずれも適用しうる。特に、本発明の塗布層はこれらいずれのタイプにおいても好適な密着性を奏するこができ、高い汎用性を有する。 Sealing materials are classified into a standard cure type that cures by a curing process in an oven provided in a separate line after thermocompression bonding in the laminating process, and a fast cure type that cures inside the laminator in the laminating process. However, either can be applied. In particular, the coating layer of the present invention can exhibit suitable adhesion in any of these types and has high versatility.
 封止材の主成分としては、エチレン・酢酸ビニル共重合体やポリビニルブチラール樹脂等のオレフィン樹脂が用いられる。なお、ここで、「主成分」とは、封止材のうち50質量%以上、より好ましくは70質量%以上含有することを意味する。封止材には、例えば、架橋反応を進行させるための架橋剤や反応開始材等が添加される。例えば、熱架橋を行う場合は、2,5-ジメチルヘキサン-2,5-ジハイドロキシパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン等の有機過酸化物が用いられる。また、光硬化を行う場合には、ベンゾフェノン、オルソベンゾイル安息香酸メチルやベンゾインエーテル等の光増感剤が用いられる。さらに、ガラス基板との接着を考慮してシランカップリング剤も配合しても良い。接着性及び硬化を促進する目的で、エポキシ基含有化合物を配合してもよい。エポキシ基含有化合物としては、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、アクリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等のエポキシ基含有化合物が用いられる。 As the main component of the sealing material, an olefin resin such as an ethylene / vinyl acetate copolymer or a polyvinyl butyral resin is used. Here, the “main component” means that 50% by mass or more, more preferably 70% by mass or more of the sealing material is contained. For example, a crosslinking agent or a reaction initiator for causing the crosslinking reaction to proceed is added to the sealing material. For example, when thermal crosslinking is performed, 2,5-dimethylhexane-2,5-dihydroxyperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, di- Organic peroxides such as t-butyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane are used. When photocuring is performed, a photosensitizer such as benzophenone, methyl orthobenzoylbenzoate or benzoin ether is used. Furthermore, a silane coupling agent may be blended in consideration of adhesion to the glass substrate. For the purpose of promoting adhesion and curing, an epoxy group-containing compound may be blended. Epoxy group-containing compounds include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, acrylic glycidyl ether, 2-ethylhexyl glycidyl ether, etc. A compound is used.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.
1.評価方法
1-1.ポリエステル原料・フィルムの固有粘度(IV)
 ポリエステル原料又はフィルムを、フェノール/1,1,2,2-テトラクロロエタンの6/4(質量比)混合溶媒を使用して溶解し、温度30℃にて測定した。
1. Evaluation method 1-1. Polyester raw material / Intrinsic viscosity of film (IV)
The polyester raw material or film was dissolved using a 6/4 (mass ratio) mixed solvent of phenol / 1,1,2,2-tetrachloroethane and measured at a temperature of 30 ° C.
1-2.ガラス転移温度
 JIS K7121に準拠し、示差走査熱量計(セイコーインスツルメンツ社製、「DSC6200」)を使用して、DSC曲線からガラス転移開始温度を求めた。
1-2. Glass transition temperature Based on JIS K7121, the glass transition start temperature was calculated | required from the DSC curve using the differential scanning calorimeter (The Seiko Instruments company make, "DSC6200").
1-3.長手方向(MD方向)に配向した結晶の長さ
 フィルムを約50μm以上の厚さに積層したものをX線回折用試料とし、X線回析装置(理学電機社製)の試料ホルダーに、フィルムのMD方向に垂直な面内を測定するように試料を設置した。フィルムの幅方向に対するX線の入射角を変えながら、透過法で回析ピークを観測した。このとき、2θが約43°の回析ピークから、同ピークの回析結晶面である(-105)面方向の結晶サイズD(オングストローム)を、シェラーの式に従って算出し、MD方向に配向した結晶の長さとした。
D=λ/(B-b)cosθ
ここで、B:回析ピーク半価幅(rad)、b=0.12(rad)、λ:CuのKα線波長(1.5418オングストローム)
1-3. The length of the crystal oriented in the longitudinal direction (MD direction) A film laminated to a thickness of about 50 μm or more is used as a sample for X-ray diffraction, and the film is placed on the sample holder of an X-ray diffraction apparatus (manufactured by Rigaku Corporation) A sample was placed so as to measure in a plane perpendicular to the MD direction. While changing the incident angle of X-rays with respect to the width direction of the film, diffraction peaks were observed by the transmission method. At this time, from the diffraction peak at 2θ of about 43 °, the crystal size D (angstrom) in the (−105) plane direction, which is the diffraction crystal plane of the peak, was calculated according to Scherrer's formula and oriented in the MD direction. The length of the crystal.
D = λ / (B−b) cos θ
Here, B: diffraction peak half width (rad), b = 0.12 (rad), λ: Cu Kα ray wavelength (1.5418 Å)
1-4.フィルム厚み
 縦方向に連続したテープ状サンプル(横方向5cm×縦方向1m)を採取し、電子マイクロメータ(セイコーイーエム社製、「ミリトロン1240」)を用いて、1cmピッチで20点の厚みを測定し、その平均値として求めた。
1-4. Film thickness A tape-like sample (5 cm in the horizontal direction x 1 m in the vertical direction) continuous in the vertical direction was collected, and the thickness of 20 points was measured at a 1 cm pitch using an electronic micrometer (manufactured by Seiko EMM Co., Ltd., “Millitron 1240”). And it calculated | required as the average value.
1-5.MOR-C
 フィルムを幅方向に5等分し、それぞれの位置で長手方向、幅方向が100mmの正方形サンプルを採取した。得られたサンプルを、マイクロ波透過型分子配向計(王子計測機器社製、「MOA-6004」)を用いて、MOR値を測定した。厚み補正を50μmとしてMOR-C値を求め、5点の平均値を算出した。
1-5. MOR-C
The film was divided into five equal parts in the width direction, and square samples with a length of 100 mm in the longitudinal direction and width direction were collected at each position. The MOR value of the obtained sample was measured using a microwave transmission type molecular orientation meter (manufactured by Oji Scientific Instruments, “MOA-6004”). The MOR-C value was determined with a thickness correction of 50 μm, and an average value of 5 points was calculated.
1-6.ポリエステルフィルムの密度
 JIS K 7112に準じて、密度勾配管を用いて25℃で測定した。
1-6. Density of polyester film The density was measured at 25 ° C. using a density gradient tube according to JIS K7112.
1-7.150℃におけるフィルムの熱収縮率(HS150)
 フィルムを幅10mm、長さ250mmのサイズに長辺(250mm)がそれぞれ長手方向、幅方向と一致する方向に沿ってカットし、試験片を作製した。試験片に、2点の印を約200mm間隔となるようにつけ、5gの一定張力下でこれら2点の間隔Aを測った。続いて、試験片を、無荷重で、150℃の雰囲気のオーブン中で30分間放置した。フィルムをオーブンから取り出し、室温まで冷却した後、5gの一定張力下で印の間隔Bを求め、以下の式により熱収縮率を求めた。なお、フィルムの150℃における熱収縮率は、フィルム幅方向に100mm間隔で測定し、サンプル3点の平均値を小数第3位の桁で四捨五入し、小数第2位の桁に丸め使用し、長手方向、幅方向で値の大きい方向の値を用いた。
 熱収縮率(%)=[(A-B)/A]×100
1-7. Thermal shrinkage of film at 150 ° C. (HS150)
The film was cut into a size having a width of 10 mm and a length of 250 mm along the direction in which the long side (250 mm) coincided with the longitudinal direction and the width direction, respectively, to prepare a test piece. The test piece was marked with two marks at intervals of about 200 mm, and the distance A between these two points was measured under a constant tension of 5 g. Subsequently, the test piece was left in an oven at 150 ° C. for 30 minutes with no load. The film was taken out of the oven and cooled to room temperature, and then the mark interval B was determined under a constant tension of 5 g, and the thermal shrinkage was determined by the following equation. In addition, the heat shrinkage rate at 150 ° C. of the film is measured at 100 mm intervals in the film width direction, the average value of three samples is rounded off to the third decimal place, and rounded to the second decimal place. The values in the direction with larger values in the longitudinal direction and the width direction were used.
Thermal contraction rate (%) = [(AB) / A] × 100
1-8.カルボキシル末端濃度(AV)
 フィルム及び原料ポリエステル樹脂について、下記の方法で測定した。
i.試料の調製
 フィルム又は原料ポリエステル樹脂を粉砕し、70℃で24時間真空乾燥を行った後、天秤を用いて0.20±0.0005gの範囲となるように秤量した。このときの質量をW(g)とした。試験管にベンジルアルコール10mlと秤量した試料を加え、試験管を205℃に加熱したベンジルアルコール浴に浸し、ガラス棒で攪拌しながら試料を溶解した。溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれA,B,Cとした。次いで、新たに試験管を用意し、ベンジルアルコールのみ入れ、同様の手順で処理し、時間を3分間、5分間、7分間としたときのサンプルをそれぞれa,b,cとする。
ii.滴定
 予めファクターの分かっている0.04mol/l水酸化カリウム溶液(エタノール溶液)を用いて滴定した。指示薬はフェノールレッドを用い、黄緑色から淡紅色に変化したところを終点とし、水酸化カリウム溶液の滴定量(ml)を求めた。サンプルA,B,Cの滴定量をXA,XB,XC(ml)とし、サンプルa,b,cの滴定量をXa,Xb,Xc(ml)とした。
iii.カルボキシル末端濃度の算出
 各溶解時間に対しての滴定量XA,XB,XCを用いて、最小2乗法により、溶解時間0分での滴定量V(ml)を求めた。同様にXa,Xb,Xcを用いて、滴定量V0(ml)を求めた。次いで、次式に従いカルボキシル末端濃度を求めた。
 カルボキシル末端濃度(eq/ton)=[(V-V0)×0.04×NF×1000]/W
NF:0.04mol/l水酸化カリウム溶液のファクター
1-8. Carboxyl terminal concentration (AV)
The film and the raw material polyester resin were measured by the following method.
i. Preparation of sample The film or the raw material polyester resin was pulverized, vacuum-dried at 70 ° C. for 24 hours, and then weighed using a balance so that the range was 0.20 ± 0.0005 g. The mass at this time was defined as W (g). A sample weighed with 10 ml of benzyl alcohol was added to the test tube, the test tube was immersed in a benzyl alcohol bath heated to 205 ° C., and the sample was dissolved while stirring with a glass rod. Samples with dissolution times of 3 minutes, 5 minutes, and 7 minutes were designated as A, B, and C, respectively. Next, a new test tube is prepared, and only benzyl alcohol is added and processed in the same procedure, and samples when the time is 3 minutes, 5 minutes, and 7 minutes are designated as a, b, and c, respectively.
ii. Titration Titration was performed using a 0.04 mol / l potassium hydroxide solution (ethanol solution) whose factor was previously known. The indicator used was phenol red, and the titration (ml) of the potassium hydroxide solution was determined with the end point at which the color changed from yellowish green to light red. Samples A, B, and C were titrated as XA, XB, and XC (ml), and samples a, b, and c were titrated as Xa, Xb, and Xc (ml).
iii. Calculation of carboxyl terminal concentration Titration volume V (ml) at a dissolution time of 0 minutes was determined by the least square method using titration volumes XA, XB, and XC for each dissolution time. Similarly, titration volume V0 (ml) was determined using Xa, Xb, and Xc. Subsequently, the carboxyl terminal concentration was calculated | required according to following Formula.
Carboxyl terminal concentration (eq / ton) = [(V−V0) × 0.04 × NF × 1000] / W
NF: Factor of 0.04 mol / l potassium hydroxide solution
1-9.ジエチレングリコール含量(DEG)
 ポリエステル0.1gをメタノール2ml中で250℃で加熱分解した後、ガスクロマトグラフィーにより定量して求めた。
1-9. Diethylene glycol content (DEG)
After 0.1 g of polyester was thermally decomposed at 250 ° C. in 2 ml of methanol, it was quantitatively determined by gas chromatography.
1-10.耐加水分解性
i.サンプル処理
 JIS C-60068-2-66で規格化されているHAST(Highly Accelerated temperature and humidity Stress Test)を行った。機器はエスペック社製EHS-221を用い、105℃、100%Rh、0.03MPa下の条件で行った。
 フィルムを70mm×190mmにカットし、治具を用いてフィルムを設置した。各フィルムは各々が接触しない距離を保ち設置した。105℃、100%Rh、0.03MPaの条件下で200時間処理を行った。
1-10. Hydrolysis resistance i. Sample processing HAST (Highly Accelerated Temperature and Humidity Stress Test) standardized in JIS C-60068-2-66 was performed. The equipment was EHS-221 manufactured by ESPEC Co., Ltd. under the conditions of 105 ° C., 100% Rh, 0.03 MPa.
The film was cut into 70 mm × 190 mm, and the film was placed using a jig. Each film was placed at a distance where it did not touch. The treatment was performed for 200 hours under the conditions of 105 ° C., 100% Rh, 0.03 MPa.
ii.破断伸度保持率
 耐加水分解性の評価は、破断伸び保持率で行った。それぞれの処理前、処理後の破断伸びをJIS C 2318-1997 5.3.31(引張強さ及び伸び率)に準拠して測定し、下記式に従い破断伸度保持率を算出した。
 破断伸度保持率(%)=〔(処理後の破断伸び)×100〕/(処理前の破断伸び)
ii. Breaking elongation retention rate The hydrolysis resistance was evaluated by the breaking elongation retention rate. The breaking elongation before and after each treatment was measured according to JIS C 2318-1997 5.3.31 (tensile strength and elongation), and the elongation at break was calculated according to the following formula.
Breaking elongation retention rate (%) = [(breaking elongation after treatment) × 100] / (breaking elongation before treatment)
1-11.熱酸化安定性パラメータ(熱安定性パラメータ)(TS)
 フィルム([IV]i)を冷凍粉砕して20メッシュ以下の粉末にした。この粉末を130℃で12時間真空乾燥し、粉末300mgを内径約8mm、長さ約140mmのガラス試験管に入れ70℃で12時間真空乾燥した。次いで、シリカゲルを入れた乾燥管を試験管上部につけて乾燥した空気下で、230℃の塩バスに浸漬して15分間加熱した後の[IV]f1を測定した。
 TSは、下記のように求めた。ただし、[IV]i及び[IV]f1はそれぞれ加熱試験前と加熱試験後のIV(dl/g)を指す。冷凍粉砕は、フリーザーミル(米国スペックス社製、6750型)を用いて行った。専用セルに約2gのレジンチップ又はフィルムと専用のインパクターを入れた後、セルを装置にセットし液体窒素を装置に充填して約10分間保持し、次いでRATE10(インパクターが1秒間に約20回前後する)で5分間粉砕を行った。
TS=0.245{[IV]f1 -1.47-[IV]i -1.47 }
1-11. Thermal oxidation stability parameter (thermal stability parameter) (TS)
The film ([IV] i ) was frozen and ground to a powder of 20 mesh or less. This powder was vacuum-dried at 130 ° C. for 12 hours, and 300 mg of the powder was placed in a glass test tube having an inner diameter of about 8 mm and a length of about 140 mm and vacuum-dried at 70 ° C. for 12 hours. Next, [IV] f1 was measured after dipping in a salt bath at 230 ° C. and heating for 15 minutes under dry air with a drying tube containing silica gel attached to the top of the test tube.
TS was determined as follows. However, [IV] i and [IV] f1 indicate IV (dl / g) before and after the heating test, respectively. The freeze pulverization was performed using a freezer mill (Specks Corp., Model 6750). After putting about 2 g of a resin chip or film and a dedicated impactor in a dedicated cell, the cell is set in the apparatus, liquid nitrogen is filled into the apparatus and held for about 10 minutes, and then RATE10 (the impactor is about 1 second per second). Crushed for 5 minutes.
TS = 0.245 {[IV] f1 -1.47- [IV] i -1.47 }
1-12.ヘイズ
 フィルムのヘイズは、JIS K 7136に準拠し、濁度計(日本電色製、NDH2000)を用いて測定した。
1-12. The haze of the haze film was measured using a turbidimeter (Nippon Denshoku, NDH2000) according to JIS K7136.
1-13.赤外分光法による吸光度測定
 塗布層を削り取り、約1mgの試料を採取した。採取した試料に圧力をかけ、厚み約1μmのフィルム状に成型した塗布層試料片(大きさ:約50μm×約50μm)を作製した。さらに、ブランク試料として基材フィルムと同質のPET樹脂についても前記手順と同様にして試料片(ブランク試料片)を作製した。
 作製した試料片をKBr板上に載せ、下記条件の顕微透過法により赤外吸収スペクトルを測定した。塗布層の赤外吸収スペクトルは、塗布層試料片から得た赤外分光スペクトルとブランク試料片のスペクトルとの差スペクトルとして求めた。
 脂肪族系ポリカーボネート成分由来の1460cm-1付近の吸光度(A1460)は1460±10cm-1の領域に吸収極大をもつ吸収ピーク高さの値とし、ウレタン成分由来の1530cm-1付近の吸光度(A1530)は1530±10cm-1の領域に吸収極大をもつ吸収ピーク高さの値とした。なお、ベースラインはそれぞれの極大吸収のピークの両側の裾を結ぶ線とした。得られた吸光度から下記式により吸光度比率を求めた。
(吸光度比率)=A1460/A1530
1-13. Absorbance measurement by infrared spectroscopy The coating layer was scraped off and a sample of about 1 mg was collected. A pressure was applied to the collected sample to prepare a coating layer sample piece (size: about 50 μm × about 50 μm) molded into a film having a thickness of about 1 μm. Further, a sample piece (blank sample piece) was prepared in the same manner as described above for a PET resin having the same quality as the base film as a blank sample.
The prepared sample piece was placed on a KBr plate, and an infrared absorption spectrum was measured by a microscopic transmission method under the following conditions. The infrared absorption spectrum of the coating layer was determined as a difference spectrum between the infrared spectrum obtained from the coating layer sample piece and the spectrum of the blank sample piece.
Absorbance around 1460 cm -1 derived from an aliphatic polycarbonate component (A 1460) is 1460 and the value of the absorption peak height having an absorption maximum in the region of ± 10 cm -1, the absorbance in the vicinity of 1530 cm -1 derived from urethane component (A 1530 ) is the value of the absorption peak height having an absorption maximum in the region of 1530 ± 10 cm −1 . The baseline was a line connecting the hems on both sides of each maximum absorption peak. The absorbance ratio was determined from the obtained absorbance by the following formula.
(Absorbance ratio) = A 1460 / A 1530
(測定条件)
装置:FT-IR分析装置(SPECTRA TECH社製、「IRμs/SIRM」)
検出器:MCT
分解能:4cm-1
積算回数:128回
(Measurement condition)
Apparatus: FT-IR analyzer (manufactured by SPECTRA TECH, “IRμs / SIRM”)
Detector: MCT
Resolution: 4cm -1
Integration count: 128 times
1-14.カール
 バックシートを作製後、10cm×10cmに切り出したフィルムをオーブンにて80℃で10分加熱を行った。取り出したバックシートを平面台の上におき、浮き上がった部分の最大値を測定する。浮き上がりが1.0cm以下のものを「A」、1.0cmより大きいものを「B」とした。
1-14. After producing the curled back sheet, the film cut out to 10 cm × 10 cm was heated in an oven at 80 ° C. for 10 minutes. The taken back sheet is placed on a flat table, and the maximum value of the raised part is measured. A sample having a lift of 1.0 cm or less was designated as “A”, and a sample having a lift of 1.0 cm or less was designated as “B”.
1-15.接着性
 太陽電池用易接着性ポリエステルフィルムを100mm幅×100mm長、EVAシートを70mm幅×90mm長に切り出したものをそれぞれ用意した。フィルム(塗布層面)/下記記載のEVA/(塗布層面)フィルムの構成で重ね、真空ラミネーターで下記記載の接着条件で加熱圧着し、サンプルを作製した。作製したサンプルを20mm幅×100mm長に切り出した後、SUS板に貼りつけ、下記記載の条件で引張り試験機でフィルム層とEVA層の剥離強度を測定した。剥離強度は極大点を超えた後に安定して剥離している部分の平均値として求めた。下記の基準でランク分けした。
   A:100N/20mm以上、又は、フィルムの材破
   B:75N/20mm以上、100N/20mm未満
   C:50N/20mm以上、75N/20mm未満
   D:50N/20mm未満
1-15. Adhesiveness An easily adhesive polyester film for solar cells was prepared by cutting out 100 mm width × 100 mm length and EVA sheet cut out to 70 mm width × 90 mm length. A sample was prepared by stacking with the configuration of film (applied layer surface) / EVA / (applied layer surface) film described below and thermocompression bonding with a vacuum laminator under the following adhesive conditions. The produced sample was cut out to 20 mm width × 100 mm length, and then attached to a SUS plate, and the peel strength between the film layer and the EVA layer was measured with a tensile tester under the conditions described below. The peel strength was determined as the average value of the parts that were stably peeled after exceeding the maximum point. The ranking was based on the following criteria.
A: 100 N / 20 mm or more, or material breakage of film B: 75 N / 20 mm or more, less than 100 N / 20 mm C: 50 N / 20 mm or more, less than 75 N / 20 mm D: less than 50 N / 20 mm
(サンプル作製条件)
装置:真空ラミネーター(エヌ・ピー・シー社製、LM-30×30型)
加圧:1気圧
EVA:
 A.スタンダードキュアタイプ
 A-I.サンビック製 Urtla Pearl PV(0.4μm)
    ラミネート工程:100℃(真空5分、真空加圧5分)
    キュア工程:熱処理150℃(常圧45分)
 A-II.三井ファブロ製 ソーラーエバ SC4(0.4μm)
    ラミネート工程:130℃(真空5分、真空加圧5分)
    キュア工程:150℃(常圧45分)
 B.ファストキュアタイプ
 B-I.サンビック製 Urtla Pearl PV(0.45μm)
    ラミネート工程:135℃(真空5分、真空加圧15分)
 B-II.三井ファブロ製 ソーラーエバ RC02B(0.45μm)
    ラミネート工程:150℃(真空5分、真空加圧15分)
(Sample preparation conditions)
Apparatus: Vacuum laminator (NPC, LM-30 × 30 type)
Pressurization: 1 atm EVA:
A. Standard cure type AI. Sunvik Ultra Pearl PV (0.4μm)
Lamination process: 100 ° C. (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: Heat treatment 150 ° C (normal pressure 45 minutes)
A-II. Mitsui Fabro Solar EVA SC4 (0.4μm)
Lamination process: 130 ° C (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: 150 ° C (45 minutes at normal pressure)
B. Fast cure type BI. Sunvik Ultra Pearl PV (0.45μm)
Lamination process: 135 ° C (vacuum 5 minutes, vacuum pressure 15 minutes)
B-II. Mitsui Fabro Solar Eva RC02B (0.45μm)
Lamination process: 150 ° C. (vacuum 5 minutes, vacuum pressure 15 minutes)
(測定条件)
装置:テンシロン(東洋BALDWIN社製、RTM-100)
剥離速度:200mm/分
剥離角度:180度
(Measurement condition)
Device: Tensilon (Toyo BALDWIN, RTM-100)
Peeling speed: 200 mm / min Peeling angle: 180 degrees
1-16.耐湿熱性
 太陽電池用易接着性ポリエステルフィルムを、恒温恒湿槽中で85℃、85%RHの環境下1000時間放置した。次いで、フィルムを取りだし、室温常湿で24時間放置した。その後、前記(15)と同様の方法で剥離強度を測定し、下記の基準でランク分けをした。
   A:100N/20mm以上、又は、フィルムの材破
   B:75N/20mm以上、100N/20mm未満
   C:50N/20mm以上、75N/20mm未満
   D:50N/20mm未満
1-16. Moisture and heat resistance The easy-adhesive polyester film for solar cells was left in a constant temperature and humidity chamber at 85 ° C. and 85% RH for 1000 hours. Next, the film was taken out and allowed to stand at room temperature and humidity for 24 hours. Thereafter, the peel strength was measured by the same method as in (15) above, and ranked according to the following criteria.
A: 100 N / 20 mm or more, or material breakage of film B: 75 N / 20 mm or more, less than 100 N / 20 mm C: 50 N / 20 mm or more, less than 75 N / 20 mm D: less than 50 N / 20 mm
2.PET樹脂の製造
2-1.PET-Iの製造
 エステル化反応缶を昇温し、200℃に到達した時点で、テレフタル酸86.4質量部及びエチレングリコール64.4質量部からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモンを0.017質量部及びトリエチルアミンを0.16質量部添加した。次いで、加圧昇温を行いゲージ圧3.5kgf/cm2、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシウム4水和物0.071質量部、次いでリン酸トリメチル0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部、次いで酢酸ナトリウム0.0036質量部を添加した。15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、減圧下260℃から280℃へ徐々に昇温し、285℃で重縮合反応を行った。
2. 2. Production of PET resin 2-1. Production of PET-I When the temperature of the esterification reactor reached 200 ° C., a slurry consisting of 86.4 parts by mass of terephthalic acid and 64.4 parts by mass of ethylene glycol was charged, and trioxide was used as a catalyst while stirring. 0.017 parts by mass of antimony and 0.16 parts by mass of triethylamine were added. Subsequently, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 3.5 kgf / cm 2 and 240 ° C. Thereafter, the inside of the esterification reaction vessel was returned to normal pressure, and 0.071 part by mass of magnesium acetate tetrahydrate and then 0.014 part by mass of trimethyl phosphate were added. Furthermore, the temperature was raised to 260 ° C. over 15 minutes, and 0.012 part by mass of trimethyl phosphate and then 0.0036 part by mass of sodium acetate were added. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C. to 280 ° C. under reduced pressure, and subjected to a polycondensation reaction at 285 ° C.
 重縮合反応終了後、フィルター(ナスロン社製、95%カット径が5μm)で濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたPET樹脂(PET-I)の固有粘度は0.620dl/gであり、酸価は14.5eq/tonであり、不活性粒子及び内部析出粒子は実質上含有していなかった。 After completion of the polycondensation reaction, filtration is performed with a filter (manufactured by Naslon, 95% cut diameter is 5 μm), extruded into a strand form from a nozzle, and cooled with cooling water that has been previously filtered (pore diameter: 1 μm or less). , Solidified and cut into pellets. The obtained PET resin (PET-I) had an intrinsic viscosity of 0.620 dl / g, an acid value of 14.5 eq / ton, and contained substantially no inert particles and internally precipitated particles.
2-2.PET-IIの製造
 PET-Iを予め160℃で予備結晶化させた後、温度220℃の窒素雰囲気下で固相重合し、固有粘度0.70dl/g、酸価10eq/tonのPET樹脂(PET-II)を得た。
2-2. Production of PET-II After pre-crystallization of PET-I at 160 ° C., it was solid-phase polymerized in a nitrogen atmosphere at a temperature of 220 ° C. to obtain a PET resin having an intrinsic viscosity of 0.70 dl / g and an acid value of 10 eq / ton ( PET-II) was obtained.
2-3.PET-IIIの製造
 PET-Iと同様の方法で、平均粒径2.3μmの不定形塊状シリカ粒子を1000ppm含有したポリエチレンテレフタレートのマスターバッチペレット(固有粘度0.62dl/g)を作製した。
2-3. Production of PET-III Polyethylene terephthalate masterbatch pellets (inherent viscosity 0.62 dl / g) containing 1000 ppm of irregular-shaped massive silica particles having an average particle size of 2.3 μm were prepared in the same manner as PET-I.
2-4.PET-IVの製造
 PET-IIIを予め160℃で予備結晶化させた後、温度220℃の窒素雰囲気下で固相重合し、固有粘度0.71dl/g、酸価10eq/tonのPET樹脂(PET-IV)を得た。
2-4. Production of PET-IV PET-III was pre-crystallized in advance at 160 ° C. and then solid-phase polymerized in a nitrogen atmosphere at a temperature of 220 ° C. to obtain a PET resin having an intrinsic viscosity of 0.71 dl / g and an acid value of 10 eq / ton ( PET-IV) was obtained.
2-5.PET-Vの製造
I.重縮合触媒溶液の調製
(1)リン化合物のエチレングリコール溶液の調製
 窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物としてIrganox(登録商標)1222(チバ・スペシャルティーケミカルズ社製)を200g加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。得られた溶液中のIrganox1222のモル分率は40%、Irganox1222から構造変化した化合物のモル分率は60%であった。
2-5. Production of PET-V Preparation of polycondensation catalyst solution (1) Preparation of ethylene glycol solution of phosphorus compound To a flask equipped with a nitrogen introduction tube and a cooling tube, 2.0 liters of ethylene glycol was added at room temperature and normal pressure, and then stirred at 200 rpm in a nitrogen atmosphere. Meanwhile, 200 g of Irganox (registered trademark) 1222 (manufactured by Ciba Specialty Chemicals) was added as a phosphorus compound. Further, 2.0 liters of ethylene glycol was added, the temperature was raised by changing the jacket temperature setting to 196 ° C., and the mixture was stirred under reflux for 60 minutes from the time when the internal temperature reached 185 ° C. or higher. Thereafter, the heating was stopped, the solution was immediately removed from the heat source, and the solution was cooled to 120 ° C. or less within 30 minutes while maintaining the nitrogen atmosphere. The mole fraction of Irganox 1222 in the obtained solution was 40%, and the mole fraction of the compound whose structure changed from Irganox 1222 was 60%.
(2)アルミニウム化合物の水溶液の調製
 冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム200gを純水とのスラリーとして加えた。さらに全体として10.0リットルとなるよう純水を追加して常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷し水溶液を得た。
(2) Preparation of aqueous solution of aluminum compound After adding 5.0 liters of pure water to a flask equipped with a cooling tube at room temperature and normal pressure, 200 g of basic aluminum acetate as a slurry with pure water while stirring at 200 rpm added. Further, pure water was added so as to be 10.0 liters as a whole, and the mixture was stirred at room temperature and normal pressure for 12 hours. Thereafter, the jacket temperature was changed to 100.5 ° C., the temperature was raised, and the mixture was stirred under reflux for 3 hours from the time when the internal temperature reached 95 ° C. or higher. Stirring was stopped and the mixture was allowed to cool to room temperature to obtain an aqueous solution.
(3)アルミニウム化合物のエチレングリコール混合溶液の調製
 上記方法で得たアルミニウム化合物水溶液に等容量のエチレングリコールを加え、室温で30分間攪拌した。その後、内温80~90℃にコントロールし、徐々に減圧して、到達27hPaとして、数時間攪拌しながら系から水を留去し、20g/lのアルミニウム化合物のエチレングリコール溶液を得た。得られたアルミニウム溶液の27Al-NMRスペクトルのピーク積分値比は2.2であった。
(3) Preparation of ethylene glycol mixed solution of aluminum compound An equal volume of ethylene glycol was added to the aluminum compound aqueous solution obtained by the above method, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the internal temperature was controlled at 80 to 90 ° C., and the pressure was gradually reduced to reach 27 hPa, and water was distilled off from the system while stirring for several hours to obtain an ethylene glycol solution of an aluminum compound of 20 g / l. The peak integration value ratio of 27 Al-NMR spectrum of the obtained aluminum solution was 2.2.
II.エステル化反応及び重縮合
 3基の連続エステル化反応槽及び3基の重縮合反応槽よりなり、且つ第3エステル化反応槽から第1重縮合反応槽への移送ラインに、高速攪拌器を有するインラインミキサーが設置された連続式ポリエステル製造装置を用いた。高純度テレフタル酸1質量部、エチレングリコール0.75質量部をスラリー調製槽に連続的に供給し、スラリーを調整した。調製されスラリーをエステル化反応層へ連続的に供給し、第1エステル化槽が反応温度250℃、110kPa、第2エステル化反応槽が260℃、105kPa、第3エステル化反応槽が260℃、105kPaとした。同時に、第2エステル化反応槽にエチレングルコール0.025質量部を連続的に投入しポリエステルオリゴマーを得た。該オリゴマーを3基の反応槽よりなる連続重縮合装置に連続的に移送した。この際、移送ラインに設置されたインラインミキサーに上記方法で調製したアルミニウム化合物のエチレングリコール溶液及びリン化合物のエチレングリコール溶液を添加した。なお、それぞれポリエステル中の酸成分に対してアルミニウム原子及びリン原子として0.015モル%及び0.036モル%となるように攪拌式のミキサーで攪拌しながら連続的に添加した。初期重縮合反応槽を265℃、9kPa、中期重縮合反応槽を265~268℃、0.7kPa、最終重縮合反応槽を273℃、13.3Paとして重縮合を行い、固有粘度が0.630dl/g、カルボキシル末端濃度が10.5eq/tonのPET樹脂(PET-V)を得た。
II. Esterification reaction and polycondensation It consists of three continuous esterification reaction tanks and three polycondensation reaction tanks, and has a high-speed stirrer in the transfer line from the third esterification reaction tank to the first polycondensation reaction tank. A continuous polyester production apparatus equipped with an in-line mixer was used. 1 part by mass of high-purity terephthalic acid and 0.75 part by mass of ethylene glycol were continuously supplied to the slurry preparation tank to prepare a slurry. The prepared slurry is continuously supplied to the esterification reaction layer, the first esterification tank has a reaction temperature of 250 ° C. and 110 kPa, the second esterification reaction tank has 260 ° C. and 105 kPa, the third esterification reaction tank has 260 ° C., 105 kPa. At the same time, 0.025 parts by mass of ethylene glycol was continuously added to the second esterification reaction tank to obtain a polyester oligomer. The oligomer was continuously transferred to a continuous polycondensation apparatus consisting of three reaction vessels. At this time, the ethylene glycol solution of the aluminum compound and the ethylene glycol solution of the phosphorus compound prepared by the above method were added to the in-line mixer installed in the transfer line. In addition, it added continuously, stirring with a stirring mixer so that it might become 0.015 mol% and 0.036 mol% as an aluminum atom and a phosphorus atom with respect to the acid component in polyester, respectively. The initial polycondensation reaction tank is 265 ° C., 9 kPa, the intermediate polycondensation reaction tank is 265-268 ° C., 0.7 kPa, the final polycondensation reaction tank is 273 ° C., 13.3 Pa, and the intrinsic viscosity is 0.630 dl. PET resin (PET-V) having a carboxyl terminal concentration of 10.5 eq / ton was obtained.
2-6.PET-VIの製造
 PET-Vを、回転型真空重合装置を用い、0.5mmHgの減圧下、220℃で時間を変えて固相重合を行い、固有粘度が0.72dl/g、カルボキシル末端濃度が5.0eq/tonのPET樹脂(PET-VI)を作製した。
2-6. Production of PET-VI Using a rotary vacuum polymerization apparatus, PET-V was subjected to solid phase polymerization at a reduced pressure of 0.5 mmHg at 220 ° C. for various times, with an intrinsic viscosity of 0.72 dl / g and a carboxyl end concentration. Produced a 5.0 eq / ton PET resin (PET-VI).
3.太陽電池用ポリエステルフィルム
3-1.製造例1
(フィルムの作製)
 PET樹脂(PET-II)50質量%と、(PET-IV)50質量%とを混合したものを(A)層の原料とした。PET樹脂(PET-II)100質量%を(B)層の原料とした。これらの原料を、それぞれ別々の押出機に投入し、285℃で混合、溶融し、続いてフィードブロックを用い、A/B/A層となるように溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT-ダイを用いて30℃に調節された冷却ドラム上に押し出し、未延伸シートを作製した。
3. 3. Polyester film for solar cell 3-1. Production Example 1
(Production of film)
A mixture of 50% by mass of PET resin (PET-II) and 50% by mass of (PET-IV) was used as a raw material for the layer (A). 100% by mass of PET resin (PET-II) was used as a raw material for the layer (B). These raw materials were put into separate extruders, mixed and melted at 285 ° C., and then joined in a molten state to form an A / B / A layer using a feed block. At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet.
(2軸延伸フィルムの作製)
 得られた未延伸シートを、加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して3.3倍のロール延伸を行った。得られた1軸延伸フィルムをテンターに導き、140℃に加熱して4.0倍に横延伸し、幅固定して215℃で5秒間の熱処理を施し、更に210℃で幅方向に4%緩和させることにより、厚み50μm(A/B/A=3/44/3μm)の太陽電池用ポリエステルフィルムを得た。
(Production of biaxially stretched film)
The obtained unstretched sheet was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C., stretched to 4.0 times, fixed in width, heat-treated at 215 ° C. for 5 seconds, and further 210% in the width direction at 210 ° C. By relaxing, a polyester film for solar cells having a thickness of 50 μm (A / B / A = 3/44/3 μm) was obtained.
3-2.製造例2
 吐出量と速度を調整した以外は、製造例1と同じ方法で厚み100μm(6/88/6μm)の太陽電池用ポリエステルフィルムを得た。
3-2. Production Example 2
A polyester film for solar cells having a thickness of 100 μm (6/88/6 μm) was obtained in the same manner as in Production Example 1 except that the discharge amount and speed were adjusted.
3-3.製造例3
 製造例1で作製したフィルムを、オフラインのドライヤー(5ゾーン温度制御、各ゾーン長3m、幅2m、非接触、風速7m/min)で最高設定温度170℃、速度30m/minで通した。なお、平面性を保つため、ラインテンションをコントロールしながら処理を行い、太陽電池用ポリエステルフィルムを得た。
3-3. Production Example 3
The film produced in Production Example 1 was passed through an offline dryer (5-zone temperature control, each zone length 3 m, width 2 m, non-contact, wind speed 7 m / min) at a maximum setting temperature of 170 ° C. and a speed of 30 m / min. In addition, in order to maintain planarity, it processed, controlling line tension, and obtained the polyester film for solar cells.
3-4.製造例4
 製造例1と同様の方法で得られた未延伸シートを、加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して3.3倍のロール延伸を行った。得られた1軸延伸フィルムをテンターに導き、140℃に加熱して4.0倍に横延伸し、幅固定して215℃で5秒間の熱処理を施した。更に210℃で幅方向に4%緩和させ、さらに170℃でフィルムの両端部をカットした。次いで、端部をピンチロールで把持しながら引き取りロールの速度を調整して縦方向の弛緩処理を行い、太陽電池用ポリエステルフィルムを得た。
3-4. Production Example 4
The unstretched sheet obtained by the same method as in Production Example 1 was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C., stretched to 4.0 times, fixed in width, and subjected to heat treatment at 215 ° C. for 5 seconds. Further, the film was relaxed by 4% in the width direction at 210 ° C., and both ends of the film were cut at 170 ° C. Next, while the end portion was held with a pinch roll, the speed of the take-up roll was adjusted to perform a longitudinal relaxation treatment to obtain a polyester film for a solar cell.
3-5.製造例5
 製造例1において、縦方向の延伸倍率を3.7倍、横の延伸倍率を3.8倍とした以外は製造例1と同様の方法で、厚み50μmの太陽電池用ポリエステルフィルムを得た。
3-5. Production Example 5
In Production Example 1, a polyester film for a solar cell having a thickness of 50 μm was obtained in the same manner as in Production Example 1 except that the longitudinal draw ratio was 3.7 times and the horizontal draw ratio was 3.8 times.
3-6.製造例6
 (A)、(B)層共にポリエチレンテレフタレート樹脂(PET-VI)100質量%とした以外は製造例1と同様の方法で、厚み50μmの太陽電池太陽電池用ポリエステルフィルムを得た。
3-6. Production Example 6
A polyester film for a solar cell solar cell having a thickness of 50 μm was obtained in the same manner as in Production Example 1 except that both layers (A) and (B) were made 100% by mass of polyethylene terephthalate resin (PET-VI).
3-7.製造例7
(塗布液の調合)
(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂溶液の重合)
 反応容器に、4,4-ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌した。この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトン及び水の一部を除去することにより、固形分35質量%の水溶性ポリウレタン樹脂溶液Iを調製した。得られたポリウレタン樹脂のガラス転移温度は-30℃であった。
(塗布液)
 下記の塗剤を混合し、塗布液を作製した。
水                       55.86質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液I             13.52質量%
粒子                       0.59質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
3-7. Production Example 7
(Preparation of coating solution)
(Polymerization of urethane resin solution containing aliphatic polycarbonate polyol)
In a reaction vessel, 43.75 parts by mass of 4,4-diphenylmethane diisocyanate, 12.85 parts by mass of dimethylolbutanoic acid, 153.41 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, And 84.00 mass parts of acetone was added as a solvent, and it stirred at 75 degreeC under nitrogen atmosphere for 3 hours. After the temperature of the reaction solution was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. 450 g of water was added, the temperature was adjusted to 25 ° C., and the polyurethane prepolymer solution was added and dispersed in water while stirring and mixing at 2000 min −1 . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution I having a solid content of 35% by mass. The glass transition temperature of the obtained polyurethane resin was −30 ° C.
(Coating solution)
The following coating agents were mixed to prepare a coating solution.
Water 55.86% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution I 13.52% by mass
0.59% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
 製造例1において、縦延伸を終えた一軸配向PETフィルムに、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/m2になるように調整した。引き続いて、テンターで、実施例1と同様の方法で延伸を行い厚み50μmの太陽電池用ポリエステルフィルムを得た。 In Production Example 1, the coating solution was applied to one side of a PET film by roll coating on a uniaxially oriented PET film that had been longitudinally stretched, and then dried at 80 ° C. for 20 seconds. In addition, it adjusted so that the application quantity after the final (after biaxial stretching) drying might be 0.15 g / m < 2 >. Subsequently, the film was stretched by a tenter in the same manner as in Example 1 to obtain a polyester film for a solar cell having a thickness of 50 μm.
 得られたフィルム100mm幅×100mm長、EVAシートを70mm幅×90mm長に切り出したもの用意し、フィルム(塗布層面)/下記記載のEVA/(塗布層面)フィルムの構成で重ね、真空ラミネーターで下記記載の接着条件で加熱圧着し、サンプルを作製した。作製したサンプルは、高温高湿槽中で85℃、85%RHの環境下1000時間放置した後においても良好な接着性を奏していた。 The obtained film 100 mm width × 100 mm length, EVA sheet cut into 70 mm width × 90 mm length was prepared, stacked with the configuration of film (coating layer surface) / EVA / (coating layer surface) film described below, and the following with a vacuum laminator A sample was prepared by thermocompression bonding under the described bonding conditions. The produced sample exhibited good adhesion even after being left in an environment of 85 ° C. and 85% RH for 1000 hours in a high-temperature and high-humidity tank.
装置:真空ラミネーター エヌ・ピー・シー社製 LM-30×30型
加圧:1気圧
EVA:サンビック製 Urtla Pearl PV(0.4μm)
ラミネート工程:100℃(真空5分、真空加圧5分)
キュア工程:熱処理150℃(常圧45分)
Apparatus: Vacuum laminator LM-30 × 30 type, pressurization: 1 atm EVA: Sanbic Ultra Pearl PV (0.4 μm)
Lamination process: 100 ° C. (vacuum 5 minutes, vacuum pressurization 5 minutes)
Cure process: Heat treatment 150 ° C (normal pressure 45 minutes)
3-8.製造例8
 (A)、(B)層共にポリエチレンテレフタレート樹脂(PET-I)100質量%とした以外は製造例1と同様の方法で、厚み50μmの太陽電池用ポリエステルフィルムを得た。
3-8. Production Example 8
A 50 μm-thick polyester film for solar cells was obtained in the same manner as in Production Example 1 except that both layers (A) and (B) were changed to 100% by mass of polyethylene terephthalate resin (PET-I).
3-9.製造例9
 製造例1において、縦延伸倍率を3.0倍、横延伸倍率を4.3倍、テンターでの熱固定温度を245℃とした以外は製造例1と同様の方法で、厚み50μmの太陽電池用ポリエステルフィルムを得た。
3-9. Production Example 9
A solar cell having a thickness of 50 μm was produced in the same manner as in Production Example 1 except that the longitudinal draw ratio was 3.0 times, the transverse draw ratio was 4.3 times, and the heat setting temperature in the tenter was 245 ° C. in Production Example 1. A polyester film was obtained.
 得られた太陽電池用ポリエステルフィルムの評価結果を表1に示した。 The evaluation results of the obtained polyester film for solar cells are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
3-10.製造例10
(太陽電池用バックシートの製造)
 製造例1の太陽電池用ポリエステルフィルム/ポリエステルフィルム(東洋紡績社製、A4300 125μm)/製造例1の太陽電池用ポリエステルフィルムの構成で、ドライラミネート法で接着し、太陽電池用バックシートを得た。
ドライラミネート用接着剤
 タケラックA-315(三井化学製)/タケネートA-10(三井化学製)=9/1(固形分比)
3-10. Production Example 10
(Manufacture of back sheets for solar cells)
The solar cell polyester film / polyester film (manufactured by Toyobo Co., Ltd., A4300 125 μm) / manufactured example 1 solar cell polyester film was bonded by a dry laminating method to obtain a solar cell backsheet. .
Adhesive for dry lamination Takelac A-315 (Mitsui Chemicals) / Takenate A-10 (Mitsui Chemicals) = 9/1 (solid content ratio)
4.ウレタン樹脂の調製
4-1.脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-1の重合
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトン及び水の一部を除去することにより、固形分35質量%の水溶性ポリウレタン樹脂溶液(A-1)を調製した。得られたポリウレタン樹脂(A-1)のガラス転移温度は-30℃であった。
4). Preparation of urethane resin 4-1. Polymerization of urethane resin A-1 having aliphatic polycarbonate polyol as a constituent component 4,4-dicyclohexylmethane was added to a 4-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer. 43.75 parts by mass of diisocyanate, 12.85 parts by mass of dimethylolbutanoic acid, 153.41 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent And stirred at 75 ° C. for 3 hours under a nitrogen atmosphere to confirm that the reaction solution reached a predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and stirred and mixed at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-1) having a solid content of 35% by mass. The obtained polyurethane resin (A-1) had a glass transition temperature of −30 ° C.
4-2.脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-2の重合
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート29.14質量部、ジメチロールブタン酸7.57質量部、数平均分子量3000のポリヘキサメチレンカーボネートジオール173.29質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン5.17質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトン及び水の一部を除去することにより、固形分35質量%の水溶性ポリウレタン樹脂溶液(A-2)を調製した。
4-2. Polymerization of Urethane Resin A-2 Containing Aliphatic Polycarbonate Polyol As a 4-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer, 4,4-dicyclohexylmethane 29.14 parts by mass of diisocyanate, 7.57 parts by mass of dimethylolbutanoic acid, 173.29 parts by mass of polyhexamethylene carbonate diol having a number average molecular weight of 3000, 0.03 parts by mass of dibutyltin dilaurate, and 84.00 parts by mass of acetone as a solvent And stirred at 75 ° C. for 3 hours under a nitrogen atmosphere to confirm that the reaction solution reached a predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 5.17 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and stirred and mixed at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-2) having a solid content of 35% by mass.
4-3.脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-3の重合
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート43.75質量部、ジメチロールブタン酸11.12質量部、ヘキサンジオール1.97質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール143.40質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトン及び水の一部を除去することにより、固形分35質量%の水溶性ポリウレタン樹脂溶液(A-3)を調製した。
4-3. Polymerization of urethane resin A-3 comprising aliphatic polycarbonate polyol as a constituent component 4,4-dicyclohexylmethane was added to a 4-neck flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, and thermometer. 43.75 parts by weight of diisocyanate, 11.12 parts by weight of dimethylolbutanoic acid, 1.97 parts by weight of hexanediol, 143.40 parts by weight of polyhexamethylene carbonate diol having a number average molecular weight of 2000, 0.03 parts by weight of dibutyltin dilaurate, and 84.00 parts by mass of acetone was added as a solvent, and the mixture was stirred at 75 ° C. for 3 hours under a nitrogen atmosphere to confirm that the reaction solution reached a predetermined amine equivalent. Next, after the temperature of this reaction liquid was lowered to 40 ° C., 8.77 parts by mass of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and stirred and mixed at 2000 min −1 , the polyurethane prepolymer solution was added and dispersed in water. . Thereafter, a part of acetone and water was removed under reduced pressure to prepare a water-soluble polyurethane resin solution (A-3) having a solid content of 35% by mass.
4-4.脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-4の重合
 水溶性ポリウレタン樹脂(A-1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを、数平均分子量1000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35質量%の水溶性ポリウレタン樹脂溶液(A-4)を得た。
4-4. Polymerization of urethane resin A-4 containing aliphatic polycarbonate polyol as a constituent component Polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) is changed to polyhexamethylene carbonate diol having a number average molecular weight of 1000. A water-soluble polyurethane resin solution (A-4) having a solid content of 35% by mass was obtained in the same manner except for the change.
4-5.脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A-5の重合
 水溶性ポリウレタン樹脂(A-1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを、数平均分子量5000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35質量%の水溶性ポリウレタン樹脂溶液(A-5)を得た。
4-5. Polymerization of urethane resin A-5 containing aliphatic polycarbonate polyol as a constituent component Polyhexamethylene carbonate diol having a number average molecular weight of 2,000 in water-soluble polyurethane resin (A-1) is changed to polyhexamethylene carbonate diol having a number average molecular weight of 5,000. A water-soluble polyurethane resin solution (A-5) having a solid content of 35% by mass was obtained in the same manner except for the change.
4-6.ポリエステルポリオールを構成成分とするウレタン樹脂A-6の重合
 水溶性ポリウレタン樹脂(A-1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを、数平均分子量2000のポリエステルジオールに変更した以外は、同様の方法で固形分35質量%の水溶性ポリウレタン樹脂溶液(A-6)を得た。
4-6. Polymerization of Urethane Resin A-6 Containing Polyester Polyol Same as above except that polyhexamethylene carbonate diol having a number average molecular weight of 2000 in the water-soluble polyurethane resin (A-1) is changed to a polyester diol having a number average molecular weight of 2000 Thus, a water-soluble polyurethane resin solution (A-6) having a solid content of 35% by mass was obtained.
5.ブロックイソシアネートの調製
5-1.ブロックポリイソシアネート架橋剤B-1の合成
 撹拌機、温度計、還流冷却管を備えたフラスコに、ヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネート(登録商標)TPA)52.21質量部を入れた。これにポリエチレングリコールモノメチルエーテル(数平均分子量1000)20.72質量部を滴下し、窒素雰囲気下、70℃で5時間保持した。その後、3,5-ジメチルピラゾール(解離温度:120℃、沸点:218℃)27.08質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、ジプロピレングリコールジメチルエーテル25質量部、水125質量部を加え、30℃で高速攪拌し、固形分40質量%のブロックポリイソシアネート水分散液(B-1)を得た。
5. Preparation of blocked isocyanate 5-1. Synthesis of Block Polyisocyanate Crosslinking Agent B-1 A polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material (Duranate (registered trademark) manufactured by Asahi Kasei Chemicals) in a flask equipped with a stirrer, a thermometer, and a reflux condenser. TPA) 52.21 parts by mass were added. To this, 20.72 parts by mass of polyethylene glycol monomethyl ether (number average molecular weight 1000) was added dropwise and held at 70 ° C. for 5 hours in a nitrogen atmosphere. Thereafter, 27.08 parts by mass of 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) was added dropwise. After measuring the infrared spectrum of the reaction solution and confirming that the absorption of the isocyanate group had disappeared, 25 parts by mass of dipropylene glycol dimethyl ether and 125 parts by mass of water were added, and the mixture was stirred at 30 ° C. at a high speed. A block polyisocyanate aqueous dispersion (B-1) was obtained.
5-2.ブロックポリイソシアネート架橋剤B-2の合成
 撹拌機、温度計、還流冷却管を備えたフラスコに、ヘキサメチレンジイソシアネートを原料としたビウレット構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネート24A-100)52.54質量部を入れた。これにポリエチレングリコールモノメチルエーテル(数平均分子量 1000)19.78質量部を滴下し、窒素雰囲気下、70℃で5時間保持した。その後、3,5-ジメチルピラゾール(解離温度:120℃、沸点:218℃)27.67質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、ジプロピレングリコールジメチルエーテル25質量部、水125質量部を加え、30℃で高速攪拌し、固形分40質量%のブロックポリイソシアネート水分散液(B-2)を得た。
5-2. Synthesis of Block Polyisocyanate Crosslinking Agent B-2 A polyisocyanate compound having a biuret structure using hexamethylene diisocyanate as a raw material (Duranate 24A-100, manufactured by Asahi Kasei Chemicals) 52 in a flask equipped with a stirrer, a thermometer, and a reflux condenser. .54 parts by mass were added. To this, 19.78 parts by mass of polyethylene glycol monomethyl ether (number average molecular weight 1000) was added dropwise and held at 70 ° C. for 5 hours in a nitrogen atmosphere. Thereafter, 27.67 parts by mass of 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) was added dropwise. After measuring the infrared spectrum of the reaction solution and confirming that the absorption of the isocyanate group had disappeared, 25 parts by mass of dipropylene glycol dimethyl ether and 125 parts by mass of water were added, and the mixture was stirred at 30 ° C. at a high speed. A block polyisocyanate aqueous dispersion (B-2) was obtained.
5-3.ブロックポリイソシアネート架橋剤B-3の合成
 撹拌機、温度計、還流冷却管を備えたフラスコに、ヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)66.04質量部、N-メチルピロリドン17.50質量部を入れた。これに3,5-ジメチルピラゾール(解離温度:120℃、沸点:218℃)25.19質量部を滴下し、窒素雰囲気下、70℃で1時間保持した。その後、ジメチロールプロパン酸5.27質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、N,N-ジメチルエタノールアミン5.59質量部、水132.5質量部を加え、固形分40質量%のブロックポリイソシアネート水分散液(B-3)を得た。
5-3. Synthesis of Block Polyisocyanate Crosslinking Agent B-3 A polyisocyanate compound having an isocyanurate structure using hexamethylene diisocyanate as a raw material (Duranate TPA, manufactured by Asahi Kasei Chemicals) in a flask equipped with a stirrer, a thermometer, and a reflux condenser 66. 04 parts by mass and 17.50 parts by mass of N-methylpyrrolidone were added. 25.19 parts by mass of 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) was added dropwise thereto, and the mixture was kept at 70 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, 5.27 parts by mass of dimethylolpropanoic acid was added dropwise. After measuring the infrared spectrum of the reaction solution and confirming that the absorption of the isocyanate group disappeared, 5.59 parts by mass of N, N-dimethylethanolamine and 132.5 parts by mass of water were added, and the solid content was 40% by mass. A block polyisocyanate aqueous dispersion (B-3) was obtained.
5-4.ブロックポリイソシアネート架橋剤B-4の合成
 ブロックポリイソシアネート水分散液(B-1)の3,5-ジメチルピラゾール(解離温度:120℃、沸点:218℃)を、マロン酸ジエチル(解離温度:120℃、沸点199℃)に変更した以外は、同様の方法で固形分40質量%のブロックポリイソシアネート水分散液(B-4)を得た。
5-4. Synthesis of Block Polyisocyanate Crosslinking Agent B-4 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) of the block polyisocyanate aqueous dispersion (B-1) was converted to diethyl malonate (dissociation temperature: 120). A block polyisocyanate aqueous dispersion (B-4) having a solid content of 40% by mass was obtained in the same manner except that the temperature was changed to 0 ° C. and a boiling point of 199 ° C.
5-5.ブロックポリイソシアネート架橋剤B-5の合成
 ブロックポリイソシアネート水分散液(B-1)の3,5-ジメチルピラゾール(解離温度:120℃、沸点:218℃)を、メチルエチルケトオキシム(解離温度:140℃、沸点:152℃)に変更した以外は、同様の方法で固形分40質量%のブロックポリイソシアネート水分散液(B-5)を得た。
5-5. Synthesis of Block Polyisocyanate Crosslinking Agent B-5 3,5-dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) of the block polyisocyanate aqueous dispersion (B-1) was converted to methyl ethyl ketoxime (dissociation temperature: 140 ° C.). A block polyisocyanate aqueous dispersion (B-5) having a solid content of 40% by mass was obtained in the same manner except that the boiling point was changed to 152 ° C.).
5-6.ブロックポリイソシアネート架橋剤B-6の合成
 ブロックポリイソシアネート水分散液(B-3)の3,5-ジメチルピラゾール(解離温度:120℃、沸点:218℃)を、メチルエチルケトオキシム(解離温度:140℃、沸点:152℃)に変更した以外は、同様の方法で固形分40質量%のブロックポリイソシアネート水分散液(B-6)を得た。
5-6. Synthesis of Block Polyisocyanate Crosslinking Agent B-6 3,5-Dimethylpyrazole (dissociation temperature: 120 ° C., boiling point: 218 ° C.) of block polyisocyanate aqueous dispersion (B-3) was converted to methyl ethyl ketoxime (dissociation temperature: 140 ° C.). A block polyisocyanate aqueous dispersion (B-6) having a solid content of 40% by mass was obtained in the same manner except that the boiling point was changed to 152 ° C.).
6.太陽電池用易接着性ポリエステルフィルム
6-1.製造例11
(1)塗布液の調整
 下記の塗剤を混合し、塗布液を作製した。
水                       55.62質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         11.29質量%
ブロックポリイソシアネート水分散液(B-1)   2.26質量%
粒子                       0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子                       0.07質量%
 (平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.05質量%
 (シリコン系、固形分濃度100質量%)
6). 6. Easy adhesive polyester film for solar cell 6-1. Production Example 11
(1) Adjustment of coating liquid The following coating agent was mixed and the coating liquid was produced.
Water 55.62% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 11.29% by mass
Block polyisocyanate aqueous dispersion (B-1) 2.26% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
0.07% by mass of particles
(Silica sol with an average particle size of 450 nm, solid content concentration of 40% by mass)
Surfactant 0.05% by mass
(Silicon, solid content concentration of 100% by mass)
(2)太陽電池用易接着性ポリエステルフィルムの製造
 PET樹脂(PET-II)50質量%と、(PET-IV)50質量%とを混合したものを(A)層の原料とした。PET樹脂(PET-II)100質量%を(B)層の原料とした。これらの原料を、それぞれ別々の押出機に投入し、285℃で混合、溶融し、続いてフィードブロックを用い、A/B/A層となるように溶融状態で接合した。このとき、A層とB層の吐出量比率は、ギアポンプを用いて制御した。次いでT-ダイを用いて30℃に調節された冷却ドラム上に押し出し、未延伸シートを作製した。
(2) Production of Easy Adhesive Polyester Film for Solar Cell A mixture of 50% by mass of PET resin (PET-II) and 50% by mass of (PET-IV) was used as a raw material for the layer (A). 100% by mass of PET resin (PET-II) was used as a raw material for the layer (B). These raw materials were put into separate extruders, mixed and melted at 285 ° C., and then joined in a molten state to form an A / B / A layer using a feed block. At this time, the discharge rate ratio of the A layer and the B layer was controlled using a gear pump. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet.
 得られた未延伸シートを、加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して3.3倍のロール延伸を行った。次いで、室温で5時間以上静置した前記塗布液を、ロールコート法で得られた1軸延伸フィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/m2(乾燥後の塗布層厚み150nm)になるように調整した。さらに、テンターに導き、140℃に加熱して4.0倍に横延伸し、幅固定して215℃で5秒間の熱処理を施し、更に210℃で幅方向に4%緩和させることにより、厚み100μm(A/B/A=6/88/6μm)太陽電池用易接着性ポリエステルフィルムを得た。 The obtained unstretched sheet was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching. Next, the coating solution that was allowed to stand at room temperature for 5 hours or more was applied to one side of a uniaxially stretched film obtained by a roll coating method, and then dried at 80 ° C. for 20 seconds. In addition, it adjusted so that the application quantity after the last drying (after biaxial stretching) might be set to 0.15 g / m < 2 > (coating layer thickness after drying 150 nm). Further, the film is led to a tenter, heated to 140 ° C., stretched to 4.0 times, fixed in width, subjected to heat treatment at 215 ° C. for 5 seconds, and further relaxed by 4% in the width direction at 210 ° C. 100 micrometer (A / B / A = 6/88 / 6micrometer) The easily adhesive polyester film for solar cells was obtained.
6-2.製造例12
 ブロックポリイソシアネート水分散液を、ブロックポリイソシアネート水分散液(B-5)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-2. Production Example 12
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion was changed to the block polyisocyanate aqueous dispersion (B-5).
6-3.製造例13
 ブロックポリイソシアネート水分散液を、ブロックポリイソシアネート水分散液(B-6)に変更した以外は実施例1と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-3. Production Example 13
An easily adhesive polyester film for solar cells was obtained in the same manner as in Example 1 except that the block polyisocyanate aqueous dispersion was changed to the block polyisocyanate aqueous dispersion (B-6).
6-4.製造例14
 ブロックポリイソシアネート水分散液を、ヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート水分散液(旭化成ケミカルズ製、WT30-100)に変更した以外は実施例1と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-4. Production Example 14
For a solar cell in the same manner as in Example 1 except that the block polyisocyanate aqueous dispersion was changed to a polyisocyanate aqueous dispersion having an isocyanurate structure (WT30-100, manufactured by Asahi Kasei Chemicals) using hexamethylene diisocyanate as a raw material. An easily adhesive polyester film was obtained.
6-5.製造例15
 塗布液を、下記に変更したこと以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
水                       58.02質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          9.47質量%
ブロックポリイソシアネート水分散液(B-1)   1.89質量%
粒子                       0.59質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
6-5. Production Example 15
Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells.
Water 58.02% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 9.47% by mass
Block polyisocyanate aqueous dispersion (B-1) 1.89 mass%
0.59% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
6-6.製造例16
 塗布液を、下記に変更したこと以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
水                       54.75質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         12.99質量%
ブロックポリイソシアネート水分散液(B-1)   1.52質量%
粒子                       0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
6-6. Production Example 16
Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells.
54.75% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 12.99% by mass
Block polyisocyanate aqueous dispersion (B-1) 1.52% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
6-7.製造例17
 塗布液を、下記に変更したこと以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
水                       57.35質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          8.12質量%
ブロックポリイソシアネート水分散液(B-1)   3.79質量%
粒子                       0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
6-7. Production Example 17
Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells.
Water 57.35% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 8.12% by mass
Block polyisocyanate aqueous dispersion (B-1) 3.79% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
6-8.製造例18
 塗布液を、下記に変更したこと以外は実施例1と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
水                       59.95質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          3.25質量%
ブロックポリイソシアネート水分散液(B-1)   6.06質量%
粒子                       0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
6-8. Production Example 18
Except having changed the coating liquid into the following, it carried out similarly to Example 1, and obtained the easily adhesive polyester film for solar cells.
Water 59.95% by mass
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 3.25% by mass
Block polyisocyanate aqueous dispersion (B-1) 6.06% by mass
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
6-9.製造例19
 塗布液を、下記に変更したこと以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
水                       60.82質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          1.62質量%
ブロックポリイソシアネート水分散液(B-1)   6.82質量%
粒子                       0.71質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
6-9. Production Example 19
Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells.
60.82% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 1.62% by mass
Block polyisocyanate aqueous dispersion (B-1) 6.82 mass%
Particles 0.71% by mass
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
6-10.製造例20
 ポリウレタン樹脂を、ポリウレタン樹脂(A-2)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-10. Production Example 20
An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to the polyurethane resin (A-2).
6-11.製造例21
 ポリウレタン樹脂を、ポリウレタン樹脂(A-3)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-11. Production Example 21
An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to the polyurethane resin (A-3).
6-12.製造例22
 ポリウレタン樹脂を、ポリウレタン樹脂(A-4)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-12. Production Example 22
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to the polyurethane resin (A-4).
6-13.製造例23
 ポリウレタン樹脂を、ポリウレタン樹脂(A-5)に変更した以外は製造例11と同様にして、太陽電池用リエステルフィルムを得た。
6-13. Production Example 23
A reester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to polyurethane resin (A-5).
6-14.製造例24
 ポリウレタン樹脂を、ポリウレタン樹脂(A-6)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-14. Production Example 24
An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the polyurethane resin was changed to polyurethane resin (A-6).
6-15.製造例25
 ブロックポリイソシアネート水分散液(B-1)を、ブロックポリイソシアネート水分散液(B-2)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-15. Production Example 25
An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion (B-1) was changed to the block polyisocyanate aqueous dispersion (B-2).
6-16.製造例26
 ブロックポリイソシアネート水分散液(B-1)を、ブロックポリイソシアネート水分散液(B-3)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-16. Production Example 26
An easily adhesive polyester film for a solar cell was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion (B-1) was changed to the block polyisocyanate aqueous dispersion (B-3).
6-17.製造例27
 ブロックポリイソシアネート水分散液(B-1)を、ブロックポリイソシアネート水分散液(B-4)に変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-17. Production Example 27
An easily adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that the block polyisocyanate aqueous dispersion (B-1) was changed to the block polyisocyanate aqueous dispersion (B-4).
6-18.製造例28
 外層用のPET樹脂として、実施的に粒子を含有しない固有粘度0.69g/dlのPET樹脂ペレットを用いた以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-18. Production Example 28
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that PET resin pellets having an intrinsic viscosity of 0.69 g / dl that practically did not contain particles were used as the PET resin for the outer layer.
6-19.製造例29
 各層の比率を同じにしつつ、太陽電池用易接着性ポリエステルフィルムの基材厚みを50μmに変更した以外は製造例11と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-19. Production Example 29
A solar cell easy-adhesive polyester film was obtained in the same manner as in Production Example 11 except that the base layer thickness of the solar cell easy-adhesive polyester film was changed to 50 μm while keeping the ratio of each layer the same.
6-20.製造例30
 各層の比率を同じにしつつ、太陽電池用易接着性ポリエステルフィルムの基材厚みを350μmに変更した以外は製造例29と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
6-20. Production Example 30
A solar cell easy-adhesive polyester film was obtained in the same manner as in Production Example 29 except that the base layer thickness of the solar cell easy-adhesive polyester film was changed to 350 μm while maintaining the same ratio of each layer.
6-21.製造例31
 塗布液を、下記に変更したこと以外は製造例29と同様にして、太陽電池用易接着性ポリエステルフィルムを得た。
水                       62.82質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)          5.67質量%
ブロックポリイソシアネート水分散液(B-1)   1.13質量%
粒子                       0.35質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
6-21. Production Example 31
Except having changed the coating liquid into the following, it carried out similarly to manufacture example 29, and obtained the easily adhesive polyester film for solar cells.
62.82% by mass of water
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 5.67% by mass
Block polyisocyanate aqueous dispersion (B-1) 1.13% by mass
0.35% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
6-22.製造例32
 塗布液を、下記に変更したこと以外は製造例11と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水                       45.99質量%
イソプロパノール                30.00質量%
ポリウレタン樹脂溶液(A-1)         18.99質量%
ブロックポリイソシアネート水分散液(B-1)   3.80質量%
粒子                       1.19質量%
 (平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤                    0.03質量%
 (シリコン系、固形分濃度100質量%)
6-22. Production Example 32
Except having changed the coating liquid into the following, it carried out similarly to manufacture example 11, and obtained the easily adhesive polyester film for solar cells.
Water 45.9 mass%
Isopropanol 30.00% by mass
Polyurethane resin solution (A-1) 18.99% by mass
Block polyisocyanate aqueous dispersion (B-1) 3.80 mass%
1.19% by mass of particles
(Silica sol with an average particle size of 40 nm, solid content concentration of 40% by mass)
Surfactant 0.03 mass%
(Silicon, solid content concentration of 100% by mass)
6-23.製造例33
 製造例11で作製したフィルムを、オフラインのドライヤー(5ゾーン温度制御、各ゾーン長3m、幅2m、非接触、風速7m/min)で最高設定温度170℃、速度30m/minでフィルムを通した。なお、平面性を保つため、ラインテンションをコントロールしながら処理を行い、太陽電池用易接着性ポリエステルフィルムを得た。
6-23. Production Example 33
The film produced in Production Example 11 was passed through the film with an offline dryer (5 zone temperature control, each zone length 3 m, width 2 m, non-contact, wind speed 7 m / min) at a maximum setting temperature of 170 ° C. and a speed of 30 m / min. . In addition, in order to maintain flatness, it processed, controlling line tension, and obtained the easily adhesive polyester film for solar cells.
6-24.製造例34
 製造例11と同様の方法で得られた未延伸シートを、加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して3.3倍のロール延伸を行った。得られた1軸延伸フィルムをテンターに導き、140℃に加熱して4.0倍に横延伸し、幅固定して215℃で5秒間の熱処理を施した。更に210℃で幅方向に4%緩和させ、さらに170℃でフィルムの両端部をカットした。次いで、端部をピンチロールで把持しながら引き取りロールの速度を調整して縦方向の弛緩処理を行い、太陽電池用易接着性ポリエステルフィルムを得た。
6-24. Production Example 34
An unstretched sheet obtained by the same method as in Production Example 11 was uniformly heated to 75 ° C. using a heating roll, and heated to 100 ° C. with a non-contact heater to perform 3.3-fold roll stretching. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C., stretched to 4.0 times, fixed in width, and subjected to heat treatment at 215 ° C. for 5 seconds. Further, the film was relaxed by 4% in the width direction at 210 ° C., and both ends of the film were cut at 170 ° C. Next, the gripping roll was adjusted while adjusting the speed of the take-up roll while holding the end with a pinch roll to obtain an easily adhesive polyester film for solar cells.
6-25.製造例35
 製造例11において、縦方向の延伸倍率を3.7倍、横の延伸倍率を3.8倍とした以外は製造例11と同様の方法で、太陽電池用易接着性ポリエステルフィルムを得た。
6-25. Production Example 35
In Production Example 11, a solar cell easy-adhesive polyester film was obtained in the same manner as in Production Example 11 except that the longitudinal draw ratio was 3.7 times and the horizontal draw ratio was 3.8 times.
6-26.製造例36
 (A)、(B)層共にポリエチレンテレフタレート樹脂(PET-VI)100質量%とした以外は製造例11と同様の方法で、太陽電池太陽電池用易接着性ポリエステルフィルムを得た。
6-26. Production Example 36
An easy-adhesive polyester film for a solar cell solar cell was obtained in the same manner as in Production Example 11, except that both layers (A) and (B) were changed to 100% by mass of polyethylene terephthalate resin (PET-VI).
6-27.製造例37
 (A)、(B)層共にポリエチレンテレフタレート樹脂(PET-I)100質量%とした以外は製造例11と同様の方法で、太陽電池用易接着性ポリエステルフィルムを得た。
6-27. Production Example 37
An easy-adhesive polyester film for solar cells was obtained in the same manner as in Production Example 11 except that both layers (A) and (B) were changed to 100% by mass of polyethylene terephthalate resin (PET-I).
6-28.製造例38
 製造例11において、縦延伸倍率を3.0倍、横延伸倍率を4.3倍、テンターでの熱固定温度を245℃とした以外は同様の方法で太陽電池用易接着性ポリエステルフィルムを得た。
6-28. Production Example 38
In Production Example 11, a solar cell easy-adhesive polyester film was obtained in the same manner except that the longitudinal draw ratio was 3.0 times, the transverse draw ratio was 4.3 times, and the heat setting temperature in the tenter was 245 ° C. It was.
6-29.製造例39
 太陽電池用フロントシートの製造
 製造例11において、フィルムの両面に塗布層を形成した以外は同様にして太陽電池用易接着性ポリエステルフィルムを得た。得られた太陽電池用易接着性ポリエステルフィルムの片面に紫外線硬化性アクリレートを塗布・硬化しハードコート層(5μm)を形成することで、太陽電池用フロントシートを得た。
6-29. Production Example 39
Manufacture of front sheet for solar cell In Production Example 11, an easy-adhesive polyester film for solar cell was obtained in the same manner except that coating layers were formed on both surfaces of the film. The front sheet for solar cells was obtained by apply | coating and hardening | curing ultraviolet curable acrylate on the single side | surface of the obtained easily adhesive polyester film for solar cells, and forming a hard-coat layer (5 micrometers).
 得られた太陽電池用易接着性ポリエステルフィルムの評価結果を表2、3に示した。 Tables 2 and 3 show the evaluation results of the easily adhesive polyester film for solar cell obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の太陽電池用ポリエステルフィルムは、耐加水分解性と加工性に優れるため、太陽電池裏面封止シート、太陽電池保護シート等太陽電池構成材料に好適である。また、本発明の太陽電池用易接着性ポリエステルフィルムは、良好な耐加水分解性を有し、透明性及び接着性に優れるため、太陽電池用部材、特に太陽電池用フロントシートの基材フィルムとして好適である。 Since the polyester film for solar cells of the present invention is excellent in hydrolysis resistance and processability, it is suitable for a solar cell constituent material such as a solar cell backside sealing sheet and a solar cell protective sheet. Moreover, since the easily adhesive polyester film for solar cells of the present invention has good hydrolysis resistance and is excellent in transparency and adhesiveness, it is used as a base film for solar cell members, particularly solar cell front sheets. Is preferred.

Claims (9)

  1.  広角X線回折法により測定した(-105面)における長手方向に配向した結晶の長さが50Å以上であり、
     フィルム厚みを50μmに換算したときのMORの値(MOR-C)が1.0~2.0であり、
     フィルムの密度が1.37~1.40g/cm3であることを特徴とする太陽電池用ポリエステルフィルム。
    The length of the crystal oriented in the longitudinal direction in the (−105 plane) measured by wide-angle X-ray diffraction method is 50 mm or more,
    When the film thickness is converted to 50 μm, the MOR value (MOR-C) is 1.0 to 2.0,
    A polyester film for solar cells, wherein the density of the film is 1.37 to 1.40 g / cm 3 .
  2.  フィルムの150℃における熱収縮率が、長手方向、幅方向ともに、-1.0%以上、3.0%以下である請求項1に記載の太陽電池用ポリエステルフィルム。 The polyester film for solar cells according to claim 1, wherein the film has a thermal shrinkage rate at 150 ° C of -1.0% or more and 3.0% or less in both the longitudinal direction and the width direction.
  3.  フィルムの150℃における熱収縮率が、長手方向、幅方向ともに、-0.5%以上、0.5%以下である請求項1に記載の太陽電池用ポリエステルフィルム。 2. The polyester film for solar cells according to claim 1, wherein the film has a thermal shrinkage rate at 150 ° C. of −0.5% or more and 0.5% or less in both the longitudinal direction and the width direction.
  4.  フィルムを構成するポリエステルが、
     アルミニウム及び/又はその化合物と、フェノール部位を有するリン系化合物を含有する重縮合触媒を用いて重合されてなり、
     カルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、
     フィルムの固有粘度(IV)が0.60~0.90dl/gである請求項1~3のいずれか1項に記載の太陽電池用ポリエステルフィルム。
    The polyester that makes up the film
    Polymerized using a polycondensation catalyst containing aluminum and / or a compound thereof and a phosphorus compound having a phenol moiety,
    The carboxyl end concentration is 25 eq / ton or less with respect to the polyester,
    The polyester film for solar cells according to any one of claims 1 to 3, wherein the intrinsic viscosity (IV) of the film is 0.60 to 0.90 dl / g.
  5.  請求項1~4のいずれか1項に記載の太陽電池用ポリエステルフィルムと、該ポリエステルフィルムの少なくとも片面に形成された塗布層を有し、
     前記塗布層が、ウレタン樹脂とブロックイソシアネートを主成分とする塗布液から形成されたものであり、
     前記ブロックイソシアネートの解離温度が130℃以下、且つ、ブロック剤の沸点が180℃以上であることを特徴とする太陽電池用易接着性ポリエステルフィルム。
    A polyester film for solar cells according to any one of claims 1 to 4, and a coating layer formed on at least one side of the polyester film,
    The coating layer is formed from a coating liquid mainly composed of urethane resin and blocked isocyanate,
    The easily adhesive polyester film for solar cells, wherein the dissociation temperature of the blocked isocyanate is 130 ° C or lower, and the boiling point of the blocking agent is 180 ° C or higher.
  6.  前記ウレタン樹脂が、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂である請求項5に記載の太陽電池用易接着性ポリエステルフィルム。 6. The easily adhesive polyester film for solar cell according to claim 5, wherein the urethane resin is a urethane resin containing an aliphatic polycarbonate polyol as a constituent component.
  7.  前記塗布層の赤外分光スペクトルにおいて、脂肪族系ポリカーボネート成分由来の1460cm-1付近のピークの吸光度(A1460)とウレタン成分由来の1530cm-1付近のピークの吸光度(A1530)との比率(A1460/A1530)が、0.50~1.55である請求項6に記載の太陽電池用易接着性ポリエステルフィルム。 In the infrared spectroscopic spectrum of the coating layer, the ratio of the absorbance at the peak near 1460 cm −1 derived from the aliphatic polycarbonate component (A 1460 ) to the absorbance at the peak near 1530 cm −1 derived from the urethane component (A 1530 ) ( The easily adhesive polyester film for solar cells according to claim 6, wherein A 1460 / A 1530 ) is 0.50 to 1.55.
  8.  前記塗布液中のウレタン樹脂とブロックイソシアネートの質量比(ウレタン樹脂/ブロックイソシアネート)が、1/9~9/1である請求項5~7のいずれか1項に記載の太陽電池用易接着性ポリエステルフィルム。 The solar cell easy adhesion property according to any one of claims 5 to 7, wherein a mass ratio of the urethane resin to the blocked isocyanate (urethane resin / block isocyanate) in the coating solution is 1/9 to 9/1. Polyester film.
  9.  請求項5~8のいずれか1項に記載の太陽電池用易接着性ポリエステルフィルムを含むことを特徴とする太陽電池用フロントシート。 A solar cell front sheet comprising the easily adhesive polyester film for solar cells according to any one of claims 5 to 8.
PCT/JP2011/070404 2010-09-08 2011-09-07 Polyester film for solar cell, and easily adhesible polyester film for solar cell and front sheet equipped with the film WO2012033141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011541425A JP6068802B2 (en) 2010-09-08 2011-09-07 Polyester film for solar cell, easily adhesive polyester film for solar cell, and front sheet using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010200796 2010-09-08
JP2010-200796 2010-09-08
JP2011-026011 2011-02-09
JP2011026011 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012033141A1 true WO2012033141A1 (en) 2012-03-15

Family

ID=45810737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070404 WO2012033141A1 (en) 2010-09-08 2011-09-07 Polyester film for solar cell, and easily adhesible polyester film for solar cell and front sheet equipped with the film

Country Status (2)

Country Link
JP (1) JP6068802B2 (en)
WO (1) WO2012033141A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035362A (en) * 2012-08-07 2014-02-24 Toyobo Co Ltd Easily-adhesive polyester film
JP2014156528A (en) * 2013-02-15 2014-08-28 Toray Ind Inc Process for producing polyester composition
US20150040977A1 (en) * 2012-03-30 2015-02-12 3M Innovative Properties Company Backsheet film with improved hydrolytic stability
JP2015098548A (en) * 2013-11-20 2015-05-28 三菱樹脂株式会社 Method for producing polyester film
JP2016132707A (en) * 2015-01-19 2016-07-25 三菱樹脂株式会社 Laminated polyester film
JP2016137678A (en) * 2015-01-29 2016-08-04 凸版印刷株式会社 Film laminate, and package obtained by using the laminate
US9897857B2 (en) 2010-06-22 2018-02-20 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
US10054816B2 (en) 2009-11-12 2018-08-21 Toyo Boseki Kabushiki Kaisha Method for improving visibility of liquid crystal display device, and liquid crystal display device using same
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
US10180597B2 (en) 2011-05-18 2019-01-15 Toyobo Co., Ltd. Liquid crystal display device, polarizing plate, and polarizer protection film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230114483A (en) * 2022-01-25 2023-08-01 주식회사 엘지화학 A polybutyleneadipate terephthalate resin composition and a method for preparing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158633A (en) * 1988-12-12 1990-06-19 Diafoil Co Ltd Laminated film
JPH05230237A (en) * 1992-02-25 1993-09-07 Toyobo Co Ltd Biaxially oriented polyester film
JPH1044587A (en) * 1996-08-05 1998-02-17 Toyobo Co Ltd Support for ink jet recording
JPH11236538A (en) * 1997-03-14 1999-08-31 Tdk Corp Hot melt material, laminate, and its production
JP2002220449A (en) * 2000-11-21 2002-08-09 Toyobo Co Ltd Polymerization catalyst for polyester, polyester produced by using the same and method for producing polyester
JP2005186364A (en) * 2003-12-25 2005-07-14 Toyobo Co Ltd Laminated polyester film for forming and formed member obtained by forming the same
JP2007204538A (en) * 2006-01-31 2007-08-16 Mitsubishi Polyester Film Copp Polyester film for sealing-up reverse face of solar cell
WO2007105306A1 (en) * 2006-03-14 2007-09-20 Toray Industries, Inc. Polyester resin sheet for solar cell, laminate thereof, solar cell backside protection sheet, and module
JP2011140530A (en) * 2010-01-05 2011-07-21 Toyobo Co Ltd Easily-adhesive polyester film for solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239579A (en) * 2000-02-28 2001-09-04 Toyobo Co Ltd Biaxially oriented polyester film for insert molding
JP2009269302A (en) * 2008-05-08 2009-11-19 Toyobo Co Ltd Easily adhesive and biaxially oriented polyester film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158633A (en) * 1988-12-12 1990-06-19 Diafoil Co Ltd Laminated film
JPH05230237A (en) * 1992-02-25 1993-09-07 Toyobo Co Ltd Biaxially oriented polyester film
JPH1044587A (en) * 1996-08-05 1998-02-17 Toyobo Co Ltd Support for ink jet recording
JPH11236538A (en) * 1997-03-14 1999-08-31 Tdk Corp Hot melt material, laminate, and its production
JP2002220449A (en) * 2000-11-21 2002-08-09 Toyobo Co Ltd Polymerization catalyst for polyester, polyester produced by using the same and method for producing polyester
JP2005186364A (en) * 2003-12-25 2005-07-14 Toyobo Co Ltd Laminated polyester film for forming and formed member obtained by forming the same
JP2007204538A (en) * 2006-01-31 2007-08-16 Mitsubishi Polyester Film Copp Polyester film for sealing-up reverse face of solar cell
WO2007105306A1 (en) * 2006-03-14 2007-09-20 Toray Industries, Inc. Polyester resin sheet for solar cell, laminate thereof, solar cell backside protection sheet, and module
JP2011140530A (en) * 2010-01-05 2011-07-21 Toyobo Co Ltd Easily-adhesive polyester film for solar cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948764B2 (en) 2009-11-12 2021-03-16 Keio University Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
US10054816B2 (en) 2009-11-12 2018-08-21 Toyo Boseki Kabushiki Kaisha Method for improving visibility of liquid crystal display device, and liquid crystal display device using same
US10503016B2 (en) 2010-06-22 2019-12-10 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
US9897857B2 (en) 2010-06-22 2018-02-20 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
US10180597B2 (en) 2011-05-18 2019-01-15 Toyobo Co., Ltd. Liquid crystal display device, polarizing plate, and polarizer protection film
US10175494B2 (en) 2011-05-18 2019-01-08 Toyobo Co., Ltd. Polarizing plate suitable for liquid crystal display device capable of displaying three-dimensional images, and liquid crystal display device
US20150040977A1 (en) * 2012-03-30 2015-02-12 3M Innovative Properties Company Backsheet film with improved hydrolytic stability
EP2830880A4 (en) * 2012-03-30 2015-11-04 3M Innovative Properties Co Backsheet film with improved hydrolytic stability
JP2014035362A (en) * 2012-08-07 2014-02-24 Toyobo Co Ltd Easily-adhesive polyester film
JP2014156528A (en) * 2013-02-15 2014-08-28 Toray Ind Inc Process for producing polyester composition
JP2015098548A (en) * 2013-11-20 2015-05-28 三菱樹脂株式会社 Method for producing polyester film
JP2016132707A (en) * 2015-01-19 2016-07-25 三菱樹脂株式会社 Laminated polyester film
JP2016137678A (en) * 2015-01-29 2016-08-04 凸版印刷株式会社 Film laminate, and package obtained by using the laminate

Also Published As

Publication number Publication date
JP6068802B2 (en) 2017-01-25
JPWO2012033141A1 (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP6068802B2 (en) Polyester film for solar cell, easily adhesive polyester film for solar cell, and front sheet using the same
JP6056916B2 (en) Easy-adhesive polyester film for solar cell and front sheet using the same
US10896987B2 (en) Sealing sheet for back surface of solar cell, and solar cell module
TWI409171B (en) Highly adhesive polyester film for solar cell
JP6056917B2 (en) Easy-adhesive polyester film for solar cell and back sheet using the same
EP2565936B1 (en) Laminated polyester film as protective material for rear surface of solar cell
CN113423574B (en) Laminated polyester film
JP5651954B2 (en) Easy-adhesive polyester film for solar cells
WO2012043000A1 (en) Polyester film for protective material for back surface of solar battery
JP5288068B1 (en) White polyester film for solar cell, solar cell back surface sealing sheet and solar cell module using the same
EP2990200A1 (en) Biaxially oriented laminate polyester film and optical laminate film
JP5594082B2 (en) Easy-adhesive white polyester film for solar cell and back sheet using the same
JP5728986B2 (en) Easy-adhesive polyester film
JP4803317B2 (en) Easy-adhesive polyester film for solar cell and back sheet using the same
JP2012064927A (en) Easily adhesive black polyester film for solar battery and back sheet using the same
JP2011139036A (en) Easily bondable white polyester film for solar cell, and back sheet using the same
JP6111525B2 (en) Solar cell backside sealing sheet and solar cell module
JP2011139035A (en) Easily bondable polyester film for solar cell, and back sheet using the same
JP6372194B2 (en) Easy-adhesive polyester film for solar cell and back sheet using the same
JP2015185687A (en) Back sheet member for solar batteries, method for manufacturing the same, back sheet for solar batteries, and solar battery module
JP2012064926A (en) Easily adhesive black polyester film for solar battery and back sheet using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011541425

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823615

Country of ref document: EP

Kind code of ref document: A1