WO2012033083A1 - Magnesium recovery method and magnesium recovery apparatus - Google Patents

Magnesium recovery method and magnesium recovery apparatus Download PDF

Info

Publication number
WO2012033083A1
WO2012033083A1 PCT/JP2011/070236 JP2011070236W WO2012033083A1 WO 2012033083 A1 WO2012033083 A1 WO 2012033083A1 JP 2011070236 W JP2011070236 W JP 2011070236W WO 2012033083 A1 WO2012033083 A1 WO 2012033083A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
electrolyzed water
magnesium
seawater
Prior art date
Application number
PCT/JP2011/070236
Other languages
French (fr)
Japanese (ja)
Inventor
達志 岩本
健一 赤嶺
純一 奥山
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to AU2011299918A priority Critical patent/AU2011299918B2/en
Priority to GB1306089.2A priority patent/GB2497256A/en
Priority to CA2810648A priority patent/CA2810648C/en
Priority to US13/820,630 priority patent/US20130161200A1/en
Priority to SG2013017231A priority patent/SG188458A1/en
Publication of WO2012033083A1 publication Critical patent/WO2012033083A1/en
Priority to NO20130459A priority patent/NO20130459A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/18Alkaline earth metal compounds or magnesium compounds
    • C25B1/20Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method for recovering magnesium from seawater by electrolysis of seawater and an apparatus therefor.
  • This application claims priority based on Japanese Patent Application No. 2010-203353 for which it applied to Japan on September 10, 2010, and uses the content here.
  • magnesium with high specific strength has been attracting attention as a next-generation structural material, and demand is expected to increase in the future.
  • magnesium smelted mainly from minerals is unevenly distributed in a limited area, and in order to secure a stable supply together in the future, it is desirable to establish a procurement method other than importing magnesium.
  • magnesium exists as a mineral and also in seawater. Therefore, if magnesium can be recovered from seawater, it will greatly contribute to the stable supply of magnesium. On the other hand, when a large amount of magnesium is recovered from seawater, there is a possibility of placing a burden on the environment, such as changing the composition of seawater. Therefore, the recovery of magnesium from seawater must be done without burdening the environment.
  • Patent Document 1 discloses an electrolytic cell that obtains fresh water, chlorine gas, and magnesium hydroxide from seawater.
  • Patent Document 2 electrolyzes the pH of deep ocean water or adds an alkali to adjust the pH.
  • a method is shown in which a hydroxide such as Mg and Ca is precipitated and recovered as a precipitate.
  • the present invention provides a magnesium recovery method and a magnesium recovery apparatus that can recover magnesium from seawater without imposing a burden on the environment.
  • the present invention electrolyzes seawater, separates anode electrolyzed water and cathode electrolyzed water generated by electrolysis of seawater, adjusts the pH by introducing an alkaline material into the anode electrolyzed water, and magnesium in the cathode electrolyzed water Is collected as magnesium hydroxide, recovered, and the anode electrolyzed water after pH adjustment and the cathode electrolyzed water after magnesium hydroxide recovery are merged to release the same pH as seawater.
  • the alkali material is preferably waste concrete.
  • iron which is a soluble metal, for the anode-side electrode, and to dissolve iron ions in the anode electrolyzed water during the seawater electrolysis process.
  • the present invention is produced by an electrolytic cell having an anode and a cathode, a diaphragm partitioning the inside of the electrolytic cell into an anode side region including the anode and a cathode side region including the cathode, and the anode side region.
  • a first treatment tank for storing the anode electrolyzed water a second treatment tank for storing the cathode electrolyzed water generated in the cathode side region, a power supply device for supplying power to the anode and the cathode, and the first treatment
  • An alkali material charging device for charging an alkali material into the tank; and a recovery means for recovering the magnesium hydroxide precipitated in the second processing tank.
  • the drainage from the first processing tank and the second processing tank The present invention relates to a magnesium recovery apparatus that joins drainage and discharges it with a pH equivalent to that of seawater.
  • the power supply device has at least one of a solar cell, a fuel cell, a wind power generator, a wave power generator, an ocean temperature difference power generation device, and a solar thermal power generation device.
  • the power supply device preferably includes a fuel cell that uses hydrogen gas generated on the cathode side and oxygen gas generated on the anode side.
  • the alkali material input from the alkali material input device is waste concrete.
  • the anode contains iron as a consumable electrode, and the consumable electrode dissolves iron ions.
  • magnesium recovery method of the present invention seawater is electrolyzed, anode electrolyzed water and cathode electrolyzed water generated by seawater electrolysis are separated, and an alkaline material is added to the anode electrolyzed water to adjust the pH, Magnesium is precipitated and recovered as magnesium hydroxide in the cathode electrolyzed water, and the anode electrolyzed water after pH adjustment and the cathode electrolyzed water after magnesium hydroxide recovery are combined and discharged at a pH equivalent to seawater. Therefore, according to the present invention, magnesium can be recovered from seawater without placing a burden on the environment.
  • industrial waste can be treated together by using the alkali material as waste concrete.
  • iron which is a soluble metal for the anode side electrode iron ions are dissolved in the anode electrolyzed water during the seawater electrolysis process, and iron ions which are phytoplankton nutrients are submerged in the sea. To be supplied. As a result, reproduction of phytoplankton is promoted, and carbon dioxide gas can be fixed by phytoplankton.
  • an electrolytic cell having an anode and a cathode, a diaphragm partitioning the inside of the electrolytic cell into an anode side region including the anode and a cathode side region including the cathode, A first treatment tank for storing anode electrolyzed water generated in the anode side region, a second treatment tank for storing cathode electrolyzed water generated in the cathode side region, and a power supply device for supplying power to the anode and cathode And an alkali material charging device for charging an alkali material into the first treatment tank, and a recovery means for collecting magnesium hydroxide precipitated in the second treatment tank, and the waste water from the first treatment tank, By combining the waste water from the second treatment tank, waste water having a pH equivalent to that of seawater is discharged. Therefore, magnesium can be recovered from seawater without placing a burden on the environment.
  • the power supply apparatus has at least one of a solar cell, a fuel cell, a wind power generator, a wave power generator, an ocean temperature difference power generation device, and a solar thermal power generation device. Magnesium can be recovered without imposing a burden.
  • the power supply device includes a fuel cell that uses hydrogen gas generated on the cathode side and oxygen gas generated on the anode side.
  • the part is again used for seawater electrolysis. Therefore, energy saving can be achieved.
  • waste concrete that is industrial waste can be treated together by using waste alkali as the alkali material thrown from the alkali material throwing device.
  • the consumable electrode dissolves iron ions, so iron ions that are phytoplankton nutrients are supplied into the sea. As a result, the reproduction of phytoplankton is promoted, and the excellent effect that carbon dioxide gas can be fixed by phytoplankton is exhibited.
  • the present embodiment is a graph showing the in cathode current density and CaCO 3 and Mg (OH) 2 precipitation ratio. It is a block diagram which shows the material balance in the Example of this invention. It is a schematic block diagram which shows the magnesium collection
  • 1 is an electrolytic cell
  • 2 is a first treatment tank
  • 3 is a second treatment tank.
  • the electrolytic cell 1 has an electrolytic treatment container 4 made of a corrosion resistant material such as stainless steel, and the electrolytic treatment container 4 has an inlet 5 at the upstream end and an outlet 6 at the downstream end. Seawater 7 flowing in from the inflow port 5 flows uniformly through the inside of the electrolytic treatment container 4 and flows out from the outflow port 6.
  • the electrolytic treatment container 4 may be submerged in water, and the seawater 7 may be circulated inside the electrolytic treatment container 4 by using a sea current, or a screw or the like is provided at the inlet 5 and the screw is rotated by a motor.
  • the seawater 7 may be formed by using a pump or the like and supplied to the inlet 5.
  • a diaphragm 8 is provided inside the electrolytic treatment container 4 along the flow direction of seawater.
  • the diaphragm 8 partitions the inside of the electrolytic treatment container 4 into two, and as a result, a flow of seawater 7 separated by the diaphragm 8 is formed in the electrolytic treatment container 4.
  • the diaphragm 8 is made of a material and a structure through which an electric current is passed so that the separated flows do not mix or the mixing is suppressed.
  • a tiled unglazed plate or a synthetic resin porous sheet is used.
  • a positive electrode (anode) 9 is provided along the upper wall surface of the electrolytic treatment container 4, a negative electrode (cathode) 11 is provided along the lower wall surface, and the anode 9 and the cathode 11 are connected to the positive electrode and the negative electrode of the power supply device 12, respectively. Connecting. Therefore, the inside of the electrolytic processing container 4 is partitioned by the diaphragm 8, so that the anode side region 9 a and the cathode side region 11 a are formed in the electrolytic processing container 4.
  • the power supply source of the power supply device 12 is arbitrary, the power supply source using natural energy, such as solar power generation, wind power generation, wave power generation, ocean temperature difference power generation, solar thermal power generation, or fuel in which emissions are harmless A battery is preferred. Moreover, a composite apparatus using two or more of power generation sources such as solar power generation, wind power generation, wave power generation, ocean temperature difference power generation, solar thermal power generation, and fuel cell may be used. Further, when power can be supplied from the power plant, the surplus power at night may be used.
  • an insoluble metal such as titanium or a porous plate bucket (consumable electrode storage container) in which a soluble metal is charged as the consumable electrode material 13 is used.
  • iron is preferable as the consumable electrode material 13 to be charged. Not only is iron readily available as a waste material, but dissolved iron ions are nutrients for the growth of phytoplankton. As a result, phytoplankton is propagated by supplying iron ions into seawater, and carbon dioxide fixation by phytoplankton can also be expected.
  • the cathode 11 is made of titanium plated with platinum. Further, a hydrogen recovery device 14 is provided in the vicinity of or opposite to the cathode 11, and the hydrogen recovery device 14 recovers hydrogen gas generated on the cathode 11 side. Seawater (anode electrolyzed water 7a) flowing through the anode 9 side (anode side region 9a) is guided to the first treatment tank 2, and seawater (cathode electrolyzed water 7b) flowing through the cathode 11 side (cathode side region 1 1 a). ) Is guided to the second treatment tank 3.
  • the first treatment tank 2 has a waste concrete charging device 15, and concrete, which is a waste, is charged into the first treatment tank 2 by the waste concrete charging device 15.
  • the waste concrete to be added is preferably pulverized and has a large surface area, and further preferably is one from which aggregates such as sand and stone have been removed.
  • Hydrogen gas recovered in the seawater 7 is supplied to the second treatment tank 3 as a reducing agent for the fuel cell. Further, in the second treatment tank 3, precipitated Mg (OH) 2 is precipitated, and the precipitated Mg (OH) 2 is recovered.
  • the anode electrolyzed water 7a flowing out from the first treatment plant 2 and the cathode electrolyzed water 7b flowing out from the second treatment tank 3 are merged, and after pH is adjusted, discharged into the sea.
  • seawater electrolysis occurs, and the following reactions (1) and (2) mainly occur on the cathode 11 side. .
  • cathode current density Dk increases, the deposition ratio of Mg (OH) 2 increases, and the deposition of Mg (OH) 2 occurs when the cathode current density Dk exceeds 2 (A / m 2 ). It becomes saturated. Note that, until the cathode current density Dk is 2 (A / m 2 ), the precipitation of CaCO 3 gradually decreases and the precipitation of Mg (OH) 2 gradually increases. Therefore, cathode - by controlling the de current density Dk, CaCO 3 and Mg (OH) 2 precipitation ratio control, or it is possible to CaCO 3 and Mg (OH) 2 selective precipitation.
  • the cathode electrolyzed water 7b is stored in the second treatment tank 3 with Mg (OH) 2 precipitated.
  • the precipitated Mg (OH) 2 is precipitated in the second treatment tank 3, and the precipitate is recovered by the precipitate recovery means 16.
  • oxygen gas is generated on the anode 9 side and hydrogen gas is generated on the cathode 11 side.
  • the generated hydrogen gas is recovered by the hydrogen recovery device 14, and when a fuel cell is used for the power supply device 12, it is supplied to the fuel cell as a reducing agent.
  • the anode electrolyzed water 7a flowing into the first treatment tank 2 is acidified by 2H + . Therefore, when waste concrete (Ca (OH) 2 ) is introduced into the first treatment tank 2, the acid seawater is neutralized by the waste concrete as shown in the following formula. Ca (OH) 2 + 2H + ⁇ Ca 2+ + 2H 2 O (5)
  • the seawater neutralized in the 1st processing tank 2 joins the seawater which flows out of the 2nd processing tank 3, and is discharged in the sea.
  • the pH of the seawater after merging is about 8.0, that is, equivalent to the pH of the seawater. It is adjusted so that
  • Mg (OH) 2 can be recovered continuously, and since waste concrete is used in the fixing process, industrial waste can be processed in parallel. Furthermore, since the seawater discharged after the recovery of Mg (OH) 2 is equivalent to the pH of natural seawater, there is no burden on the environment. In addition, iron ions dissolved in the electrolysis process propagate phytoplankton, which contributes to fixation of carbon dioxide.
  • oxygen gas is generated on the anode 9 side and hydrogen gas is generated on the cathode 11 side in the process of seawater electrolysis.
  • oxygen gas and hydrogen gas are supplied to the fuel cell and used as fuel for power generation.
  • the electrolytic reaction is changed by changing the cathode current density Dk, and the electrolytic reaction is promoted by increasing the cathode current density Dk. Therefore, by controlling the cathode current density Dk, it is possible to control the pH on the anode 9 side and the cathode 11 side in the process of recovering Mg (OH) 2 .
  • the pH of the cathode electrolyzed water 7b is adjusted to about 10 to 11 by electrolysis, and all Ca 2+ and Mg 2+ in seawater are precipitated. At this time, the pH of the anode electrolyzed water 7a is about 3 to 4.
  • the cathode current density Dk is set to 2 [A / m 2 ] or more.
  • Mg (OH) 2 precipitated in the second treatment tank 3 is collected.
  • the pH of the cathode electrolyzed water 7b flowing out from the second treatment tank 3 is about 10-11.
  • waste concrete is introduced, and the pH of the anode electrolyzed water 7 a flowing out from the first treatment tank 2 is adjusted to about 4 to 5.
  • the pH of the anodic electrolyzed water 7a flowing out is an example, and when the anodic electrolyzed water 7a and the cathodic electrolyzed water 7b are merged, the amount of the waste concrete input is set so that the pH becomes 8.0 to 8.2. adjust.
  • Mg (OH) 2 can be recovered while discharging the wastewater without changing the physical characteristics of the seawater. Therefore, there is no load on the environment.
  • Mg metal By refining the collected Mg (OH) 2 , Mg metal can be produced.
  • waste concrete is used as the neutralizing agent for the anode electrolyzed water 7a.
  • the neutralizing agent may be any waste having an alkaline property such as coal ash generated at a thermal power plant.
  • seawater electrolysis was performed while flowing seawater in the electrolytic cell 1, but an open / close valve was provided at each of the inlet 5 and outlet 6, and seawater electrolysis was performed with the inlet 5 and outlet 6 closed. It is good also as a batch type which replaces the seawater in the electrolytic cell 1 after electrolytic treatment.
  • FIG. 4 shows an outline of the Mg (OH) 2 recovery apparatus according to the embodiment of the present invention.
  • FIG. 4 the same components as those shown in FIG. In the embodiment shown in FIG. 4, a fuel cell 18 is shown as a power generation source.
  • This apparatus is provided with a hydrogen gas recovery line 21 that recovers hydrogen gas generated on the hydrogen recovery device 14 side of the electrolytic cell 1 and supplies it to the fuel cell 18, and oxygen generated on the anode 9 side of the electrolytic cell 1.
  • An oxygen gas recovery line 22 that recovers gas and supplies it to the fuel cell 18 is provided.
  • the hydrogen gas recovery line 21 and the oxygen gas recovery line 22 have gas flow rate adjusting blowers 23 and 24, respectively, to adjust the flow rates of oxygen gas and hydrogen gas supplied to the fuel cell 18.
  • the power generated by the fuel cell 18 is stored in the power supply device 12, and the supply of the stored power is controlled so that the cathode 11 has a predetermined cathode current density Dk. Note that the power shortage in the amount of power generated by the fuel cell 18 is supplemented by power from solar power generation, power from wind power generation or wave power generation, or power from a power plant.
  • the electrolysis tank 1 is connected with a seawater supply line 25, a waste concrete tank 26 (corresponding to the first treatment tank 2), and a recovery tank 27 (corresponding to the second treatment tank 3).
  • the waste concrete tank 26 is supplied with acidic water which is the anode electrolyzed water 7a, and the waste concrete is supplied, and the pH is adjusted so as to be weakly acidic water, and then discharged.
  • the recovery tank 27 is supplied with alkaline water that is cathode electrolyzed water 7b containing Mg (OH) 2 .
  • the Mg (OH) 2 precipitated in the collection tank 27 is collected, and the cathode electrolyzed water 7b (alkali water) from which the Mg (OH) 2 has been removed is discharged from the collection tank 27.
  • the acid water discharged from the waste concrete tank 26 and the alkaline water discharged from the recovery tank 27 are merged and then discharged from the recovery device to the ocean.
  • the pH of the wastewater is adjusted by combining the acidic water and the alkaline water.
  • the pH of the wastewater is equivalent to the pH of the seawater when it is finally discharged from the recovery device, which places a burden on the environment. There is nothing.
  • 31 is a pump for feeding seawater to the electrolytic cell 1
  • 32 is a pump for feeding the cathode electrolyzed water 7b to the recovery tank 27
  • 33 is a pump for draining from the waste concrete tank 26
  • 34 is Pumps for draining from the collection tank 27 are shown.

Abstract

In this magnesium recovery method and this magnesium recovery apparatus, anodically electrolyzed water (7a) and cathodically electrolyzed water (7b) both generated by the electrolysis of seawater are separated from each other, an alkaline material is introduced into the anodically electrolyzed water to adjust the pH value of the anodically electrolyzed water, magnesium is allowed to precipitate in the cathodically electrolyzed water in the form of magnesium hydroxide and is then recovered, the pH-adjusted anodically electrolyzed water and the cathodically electrolyzed water after the fixing of a carbonate salt are joined together, and the joined solution is adjusted to the same pH value as that of seawater and is then discharged. In this manner, magnesium can be recovered from seawater while minimizing an environmental load.

Description

マグネシウム回収方法及びマグネシウム回収装置Magnesium recovery method and magnesium recovery device
 本発明は、海水の電気分解により海水中からマグネシウムを回収する方法、及びその装置に関する。
 本願は、2010年9月10日に日本に出願された特願2010-203353号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for recovering magnesium from seawater by electrolysis of seawater and an apparatus therefor.
This application claims priority based on Japanese Patent Application No. 2010-203353 for which it applied to Japan on September 10, 2010, and uses the content here.
 近年、比強度の高いマグネシウムは次世代の構造材として注目され、今後需要が増大していくと予想されている。しかしながら、主に鉱物から製錬されているマグネシウムは限られた地域に偏在しており、将来共に安定した供給を確保する為には、マグネシウムの輸入以外の調達方法の確立も望まれる。 In recent years, magnesium with high specific strength has been attracting attention as a next-generation structural material, and demand is expected to increase in the future. However, magnesium smelted mainly from minerals is unevenly distributed in a limited area, and in order to secure a stable supply together in the future, it is desirable to establish a procurement method other than importing magnesium.
 周知の様に、マグネシウムは鉱物として存在すると共に海水にも含まれている。従って、海水からマグネシウムを回収できれば、マグネシウムの安定供給に大きく寄与する。一方、海水からマグネシウムを大量に回収した場合、海水の組成を変化させる等、環境に負荷を掛ける可能性がある。従って、海水からのマグネシウム回収は、環境に負担を掛けることなく行わなければならない。 As is well known, magnesium exists as a mineral and also in seawater. Therefore, if magnesium can be recovered from seawater, it will greatly contribute to the stable supply of magnesium. On the other hand, when a large amount of magnesium is recovered from seawater, there is a possibility of placing a burden on the environment, such as changing the composition of seawater. Therefore, the recovery of magnesium from seawater must be done without burdening the environment.
 尚、特許文献1には、海水から淡水と塩素ガスと水酸化マグネシウムを得る電解槽が示されており、特許文献2には海洋深層水のpHを電気分解、又はアルカリを添加させてpHを上昇させ、Mg、Ca等の水酸化物を析出させ、沈殿物として回収する方法が示されている。 Patent Document 1 discloses an electrolytic cell that obtains fresh water, chlorine gas, and magnesium hydroxide from seawater. Patent Document 2 electrolyzes the pH of deep ocean water or adds an alkali to adjust the pH. A method is shown in which a hydroxide such as Mg and Ca is precipitated and recovered as a precipitate.
特開昭51-77586号公報JP-A-51-77586 特開2007-167786号公報JP 2007-167786 A
 本発明は斯かる実情に鑑み、環境に負担を掛けることなく、海水からマグネシウムの回収が行えるマグネシウム回収方法及びマグネシウム回収装置を提供する。 In view of such circumstances, the present invention provides a magnesium recovery method and a magnesium recovery apparatus that can recover magnesium from seawater without imposing a burden on the environment.
 本発明は、海水を電解し、海水の電解により生成されたアノード電解水とカソード電解水とを分離し、前記アノード電解水にアルカリ材を投入してpHを調整し、前記カソード電解水中にマグネシウムを水酸化マグネシウムとして析出させて回収し、pH調整後のアノード電解水と水酸化マグネシウム回収後のカソード電解水とを合流させ、海水と同等のpHとして放流するマグネシウム回収方法に係る。 The present invention electrolyzes seawater, separates anode electrolyzed water and cathode electrolyzed water generated by electrolysis of seawater, adjusts the pH by introducing an alkaline material into the anode electrolyzed water, and magnesium in the cathode electrolyzed water Is collected as magnesium hydroxide, recovered, and the anode electrolyzed water after pH adjustment and the cathode electrolyzed water after magnesium hydroxide recovery are merged to release the same pH as seawater.
 この場合、前記アルカリ材は廃コンクリートであることが望ましい。又、アノード側電極に溶解性金属である鉄を使用し、海水電解過程で鉄イオンをアノード電解水に溶解させることが望ましい。 In this case, the alkali material is preferably waste concrete. Moreover, it is desirable to use iron, which is a soluble metal, for the anode-side electrode, and to dissolve iron ions in the anode electrolyzed water during the seawater electrolysis process.
 又、本発明は、アノードとカソードとを有する電解槽と、電解槽の内部を、前記アノードを含むアノード側領域と前記カソードを含むカソード側領域とに仕切る隔膜と、前記アノード側領域で生成されたアノード電解水を貯溜する第1処理槽と、前記カソード側領域で生成されたカソード電解水を貯溜する第2処理槽と、前記アノード及びカソードに電力を供給する電源装置と、前記第1処理槽にアルカリ材を投入するアルカリ材投入装置と、前記第2処理槽に沈殿した水酸化マグネシウムを回収する回収手段とを具備し、前記第1処理槽からの排水と前記第2処理槽からの排水とを合流し、pHが海水のpHと同等として放流するマグネシウム回収装置に係る。 Further, the present invention is produced by an electrolytic cell having an anode and a cathode, a diaphragm partitioning the inside of the electrolytic cell into an anode side region including the anode and a cathode side region including the cathode, and the anode side region. A first treatment tank for storing the anode electrolyzed water, a second treatment tank for storing the cathode electrolyzed water generated in the cathode side region, a power supply device for supplying power to the anode and the cathode, and the first treatment An alkali material charging device for charging an alkali material into the tank; and a recovery means for recovering the magnesium hydroxide precipitated in the second processing tank. The drainage from the first processing tank and the second processing tank The present invention relates to a magnesium recovery apparatus that joins drainage and discharges it with a pH equivalent to that of seawater.
 この場合、前記電源装置は、太陽電池、燃料電池、風力発電機、波力発電機、海洋温度差発電装置、太陽熱発電装置の少なくとも1つを有することが望ましい。又、前記電源装置は、前記カソード側で発生した水素ガスと前記アノード側で発生した酸素ガスを使用する燃料電池を含むことが望ましい。又、前記アルカリ材投入装置から投入されるアルカリ材は、廃コンクリートであることが望ましい。更に又、前記アノードは、消耗電極としての鉄を含み、前記消耗電極は鉄イオンを溶解することが望ましい。 In this case, it is desirable that the power supply device has at least one of a solar cell, a fuel cell, a wind power generator, a wave power generator, an ocean temperature difference power generation device, and a solar thermal power generation device. The power supply device preferably includes a fuel cell that uses hydrogen gas generated on the cathode side and oxygen gas generated on the anode side. Moreover, it is desirable that the alkali material input from the alkali material input device is waste concrete. Furthermore, it is preferable that the anode contains iron as a consumable electrode, and the consumable electrode dissolves iron ions.
 本発明のマグネシウム回収方法によれば、海水を電解し、海水の電解により生成されたアノード電解水とカソード電解水とを分離し、前記アノード電解水にアルカリ材を投入してpHを調整し、前記カソード電解水中にマグネシウムを水酸化マグネシウムとして析出させて回収し、pH調整後のアノード電解水と水酸化マグネシウム回収後のカソード電解水とを合流させ、海水と同等のpHとして放流する。そのため、本発明によれば、環境に負担を掛けることなく海水からマグネシウムを回収できる。 According to the magnesium recovery method of the present invention, seawater is electrolyzed, anode electrolyzed water and cathode electrolyzed water generated by seawater electrolysis are separated, and an alkaline material is added to the anode electrolyzed water to adjust the pH, Magnesium is precipitated and recovered as magnesium hydroxide in the cathode electrolyzed water, and the anode electrolyzed water after pH adjustment and the cathode electrolyzed water after magnesium hydroxide recovery are combined and discharged at a pH equivalent to seawater. Therefore, according to the present invention, magnesium can be recovered from seawater without placing a burden on the environment.
 又、本発明のマグネシウム回収方法において、前記アルカリ材を廃コンクリートとすることにより、産業廃棄物の処理を併せて行うことができる。 Moreover, in the magnesium recovery method of the present invention, industrial waste can be treated together by using the alkali material as waste concrete.
 又、本発明のマグネシウム回収方法において、アノード側電極に溶解性金属である鉄を使用することにより、海水電解過程で鉄イオンがアノード電解水に溶解され、植物プランクトンの栄養素である鉄イオンが海中に供給される。その結果、植物プランクトンの繁殖が促進され、植物プランクトンによる炭酸ガスの固定化が図れる。 Further, in the magnesium recovery method of the present invention, by using iron which is a soluble metal for the anode side electrode, iron ions are dissolved in the anode electrolyzed water during the seawater electrolysis process, and iron ions which are phytoplankton nutrients are submerged in the sea. To be supplied. As a result, reproduction of phytoplankton is promoted, and carbon dioxide gas can be fixed by phytoplankton.
 又、本発明のマグネシウム回収装置によれば、アノードとカソードとを有する電解槽と、電解槽の内部を、前記アノードを含むアノード側領域と前記カソードを含むカソード側領域とに仕切る隔膜と、前記アノード側領域で生成されたアノード電解水を貯溜する第1処理槽と、前記カソード側領域で生成されたカソード電解水を貯溜する第2処理槽と、前記アノード及びカソードに電力を供給する電源装置と、前記第1処理槽にアルカリ材を投入するアルカリ材投入装置と、前記第2処理槽に沈殿した水酸化マグネシウムを回収する回収手段とを具備し、前記第1処理槽からの排水と前記第2処理槽からの排水とを合流させることにより、pHが海水のpHと同等の排水が放流される。そのため、環境に負担を掛けることなく海水からマグネシウムを回収できる。 Further, according to the magnesium recovery apparatus of the present invention, an electrolytic cell having an anode and a cathode, a diaphragm partitioning the inside of the electrolytic cell into an anode side region including the anode and a cathode side region including the cathode, A first treatment tank for storing anode electrolyzed water generated in the anode side region, a second treatment tank for storing cathode electrolyzed water generated in the cathode side region, and a power supply device for supplying power to the anode and cathode And an alkali material charging device for charging an alkali material into the first treatment tank, and a recovery means for collecting magnesium hydroxide precipitated in the second treatment tank, and the waste water from the first treatment tank, By combining the waste water from the second treatment tank, waste water having a pH equivalent to that of seawater is discharged. Therefore, magnesium can be recovered from seawater without placing a burden on the environment.
 又、本発明のマグネシウム回収装置において、前記電源装置が、太陽電池、燃料電池、風力発電機、波力発電機、海洋温度差発電装置、太陽熱発電装置の少なくとも1つを有することにより、環境に負担を掛けることなく、マグネシウムの回収が可能となる。 Further, in the magnesium recovery apparatus of the present invention, the power supply apparatus has at least one of a solar cell, a fuel cell, a wind power generator, a wave power generator, an ocean temperature difference power generation device, and a solar thermal power generation device. Magnesium can be recovered without imposing a burden.
 又、本発明のマグネシウム回収装置において、前記電源装置が、前記カソード側で発生した水素ガスと前記アノード側で発生した酸素ガスを使用する燃料電池を含むことにより、海水電解に消費した電力の一部が再び海水電解に使用される。そのため、省エネルギ化が図れる。 In the magnesium recovery apparatus of the present invention, the power supply device includes a fuel cell that uses hydrogen gas generated on the cathode side and oxygen gas generated on the anode side. The part is again used for seawater electrolysis. Therefore, energy saving can be achieved.
 又、本発明のマグネシウム回収装置において、前記アルカリ材投入装置から投入されるアルカリ材を廃コンクリートとすることにより、産業廃棄物である廃コンクリートの処理を併せて行うことができる。 Also, in the magnesium recovery apparatus of the present invention, waste concrete that is industrial waste can be treated together by using waste alkali as the alkali material thrown from the alkali material throwing device.
 又、本発明のマグネシウム回収装置において、前記アノードが消耗電極としての鉄を含む場合、前記消耗電極は鉄イオンを溶解するので、植物プランクトンの栄養素である鉄イオンが海中に供給される。その結果、植物プランクトンの繁殖が促進され、植物プランクトンによる炭酸ガスの固定化が図れるという優れた効果を発揮する。 Moreover, in the magnesium recovery apparatus of the present invention, when the anode contains iron as a consumable electrode, the consumable electrode dissolves iron ions, so iron ions that are phytoplankton nutrients are supplied into the sea. As a result, the reproduction of phytoplankton is promoted, and the excellent effect that carbon dioxide gas can be fixed by phytoplankton is exhibited.
本発明の実施例の概念図である。It is a conceptual diagram of the Example of this invention. 本実施例に於けるカソード電流密度とCaCO及びMg(OH)の析出比率を示すグラフである。The present embodiment is a graph showing the in cathode current density and CaCO 3 and Mg (OH) 2 precipitation ratio. 本発明の実施例に於ける物質収支を示すブロック図である。It is a block diagram which shows the material balance in the Example of this invention. 本発明の実施例に係るマグネシウム回収装置を示す概略ブロック図である。It is a schematic block diagram which shows the magnesium collection | recovery apparatus based on the Example of this invention.
 以下、図面を参照しつつ本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 先ず、図1に於いて、本発明の実施例の原理を説明する。 First, the principle of the embodiment of the present invention will be described with reference to FIG.
 図1中、1は電解槽、2は第1処理槽、3は第2処理槽を示している。 In FIG. 1, 1 is an electrolytic cell, 2 is a first treatment tank, and 3 is a second treatment tank.
 電解槽1は、耐腐食性材料、例えばステンレス鋼製の電解処理容器4を有し、電解処理容器4は上流端に流入口5、下流端に流出口6を有する。流入口5から流入した海水7は、電解処理容器4の内部を一様に流れて流出口6から流出する。 The electrolytic cell 1 has an electrolytic treatment container 4 made of a corrosion resistant material such as stainless steel, and the electrolytic treatment container 4 has an inlet 5 at the upstream end and an outlet 6 at the downstream end. Seawater 7 flowing in from the inflow port 5 flows uniformly through the inside of the electrolytic treatment container 4 and flows out from the outflow port 6.
 海水7の流れを形成する手段としては、種々の手段が採用される。例えば、電解処理容器4を水中に没し、海流を利用し電解処理容器4の内部に海水7を流通させてもよく、或は流入口5にスクリュー等を設け、このスクリューをモータで回転する等して水流を形成してもよく、或は、ポンプ等により海水7を取水し、流入口5に供給してもよい。 As the means for forming the flow of the seawater 7, various means are adopted. For example, the electrolytic treatment container 4 may be submerged in water, and the seawater 7 may be circulated inside the electrolytic treatment container 4 by using a sea current, or a screw or the like is provided at the inlet 5 and the screw is rotated by a motor. The seawater 7 may be formed by using a pump or the like and supplied to the inlet 5.
 電解処理容器4の内部には、海水の流れ方向に沿って隔膜8が設けられている。隔膜8は電解処理容器4の内部を2つに仕切り、その結果、電解処理容器4内には隔膜8によって分離された海水7の流れが形成される。 A diaphragm 8 is provided inside the electrolytic treatment container 4 along the flow direction of seawater. The diaphragm 8 partitions the inside of the electrolytic treatment container 4 into two, and as a result, a flow of seawater 7 separated by the diaphragm 8 is formed in the electrolytic treatment container 4.
 隔膜8には、電流を通し、分離された流れが混合しない様な、又は混合することを抑制する材質及び構造が用いられる。例えば、タイル状の素焼の板を敷き並べたもの、或は合成樹脂製の多孔質シート等が用いられる。 The diaphragm 8 is made of a material and a structure through which an electric current is passed so that the separated flows do not mix or the mixing is suppressed. For example, a tiled unglazed plate or a synthetic resin porous sheet is used.
 隔膜8により電解処理容器4内部を仕切る場合、上下に仕切る、左右に仕切る、同心円伏に仕切る等、種々の形態が考えられるが、以下は、電解処理容器4内部が隔膜8によって上下に仕切られた場合を説明する。 When the inside of the electrolytic treatment container 4 is partitioned by the diaphragm 8, various forms such as partitioning up and down, partitioning left and right, and concentric circles are conceivable. However, the inside of the electrolytic treatment container 4 is partitioned vertically by the diaphragm 8 below. The case will be described.
 電解処理容器4の上壁面に沿って+電極(アノード)9を設け、下壁面に沿って-電極(カソード)11を設け、アノード9、カソード11を電源装置12のそれぞれ+極、-極に接続する。従って、隔膜8により電解処理容器4内が仕切られることで、電解処理容器4内にアノード側領域9aとカソード側領域11aが形成される。 A positive electrode (anode) 9 is provided along the upper wall surface of the electrolytic treatment container 4, a negative electrode (cathode) 11 is provided along the lower wall surface, and the anode 9 and the cathode 11 are connected to the positive electrode and the negative electrode of the power supply device 12, respectively. Connecting. Therefore, the inside of the electrolytic processing container 4 is partitioned by the diaphragm 8, so that the anode side region 9 a and the cathode side region 11 a are formed in the electrolytic processing container 4.
 電源装置12の電力供給源は任意であるが、太陽光発電、風力発電、波力発電、海洋温度差発電、太陽熱発電等自然エネルギを利用した電力供給源、或は排出物が無害である燃料電池であることが好ましい。又、太陽光発電、風力発電、波力発電、海洋温度差発電、太陽熱発電、燃料電池等の2以上を電力供給源とした複合装置が用いられてもよい。更に、発電所から電力の供給が受けられる場合は、夜間の余剰電力を利用してもよい。 Although the power supply source of the power supply device 12 is arbitrary, the power supply source using natural energy, such as solar power generation, wind power generation, wave power generation, ocean temperature difference power generation, solar thermal power generation, or fuel in which emissions are harmless A battery is preferred. Moreover, a composite apparatus using two or more of power generation sources such as solar power generation, wind power generation, wave power generation, ocean temperature difference power generation, solar thermal power generation, and fuel cell may be used. Further, when power can be supplied from the power plant, the surplus power at night may be used.
 アノード9としては、チタン等の不溶性金属の網目状或は多孔板のバケット(消耗電極収納容器)に溶解性金属を消耗電極材13として投入したものが用いられる。尚、投入する消耗電極材13として、鉄が好ましい。鉄は廃材として容易に入手し得るのみならず、溶解した鉄イオンは、植物プランクトンが繁殖する為の栄養素である。その結果、海水中に鉄イオンが供給されることで、植物プランクトンが繁殖し、植物プランクトンによる炭酸ガス固定化も期待できる。 As the anode 9, an insoluble metal such as titanium or a porous plate bucket (consumable electrode storage container) in which a soluble metal is charged as the consumable electrode material 13 is used. Note that iron is preferable as the consumable electrode material 13 to be charged. Not only is iron readily available as a waste material, but dissolved iron ions are nutrients for the growth of phytoplankton. As a result, phytoplankton is propagated by supplying iron ions into seawater, and carbon dioxide fixation by phytoplankton can also be expected.
 カソード11には、チタンに白金メッキしたもの等が用いられる。又、カソード11の近傍、或はカソード11に対向して水素回収装置14が設けられ、水素回収装置14はカソード11側で発生した水素ガスを回収する。アノード9側(アノード側領域9a)を流通した海水(アノード電解水7a)は、第1処理槽2に導かれ、カソード11側(カソード側領域1 1 a)を流通した海水(カソード電解水7b)は、第2処理槽3に導かれる。 The cathode 11 is made of titanium plated with platinum. Further, a hydrogen recovery device 14 is provided in the vicinity of or opposite to the cathode 11, and the hydrogen recovery device 14 recovers hydrogen gas generated on the cathode 11 side. Seawater (anode electrolyzed water 7a) flowing through the anode 9 side (anode side region 9a) is guided to the first treatment tank 2, and seawater (cathode electrolyzed water 7b) flowing through the cathode 11 side (cathode side region 1 1 a). ) Is guided to the second treatment tank 3.
 第1処理槽2は、廃コンクリート投入装置15を有しており、廃コンクリート投入装置15により廃棄物であるコンクリートが第1処理槽2内に投入される。尚、投入する廃コンクリートは、粉砕され表面積が大きくなったものが好ましく、更に、砂、石等の骨材が除去されたものであれば、尚好ましい。 The first treatment tank 2 has a waste concrete charging device 15, and concrete, which is a waste, is charged into the first treatment tank 2 by the waste concrete charging device 15. The waste concrete to be added is preferably pulverized and has a large surface area, and further preferably is one from which aggregates such as sand and stone have been removed.
 第2処理槽3には、海水7で回収された水素ガスが燃料電池の還元剤として供給される。又、第2処理槽3では、析出したMg(OH)を沈殿させ、沈殿したMg(OH)を回収する。第1処理植2から流出するアノード電解水7aと、第2処理槽3から流出するカソード電解水7bは合流され、pHが調整された後、海中に放流される。 Hydrogen gas recovered in the seawater 7 is supplied to the second treatment tank 3 as a reducing agent for the fuel cell. Further, in the second treatment tank 3, precipitated Mg (OH) 2 is precipitated, and the precipitated Mg (OH) 2 is recovered. The anode electrolyzed water 7a flowing out from the first treatment plant 2 and the cathode electrolyzed water 7b flowing out from the second treatment tank 3 are merged, and after pH is adjusted, discharged into the sea.
 以下、本実施例の作用について説明する。 Hereinafter, the operation of this embodiment will be described.
 アノード9、カソード11間に電圧を印加し、アノード9、カソード11間に通電させることで、海水の電気分解が起り、カソード11側で主として下記(1)及び(2)式の反応が起る。 By applying a voltage between the anode 9 and the cathode 11 and energizing between the anode 9 and the cathode 11, seawater electrolysis occurs, and the following reactions (1) and (2) mainly occur on the cathode 11 side. .
O+1/2O+2e→2OH―             (1)
2HO+2e→2OH+H2          (2)
H 2 O + 1 / 2O 2 + 2e - → 2OH - (1)
2H 2 O + 2e → 2OH + H 2 (2)
 従って、OH(水酸イオン)が発生する為、カソード側では海水(カソード電解水7b)のpHが上昇し、図2で示す様に、CaCO及びMg(OH)が生成する。又、カソード11の単位面積当りの通電量をカソード電流密度Dk(A/m)とすると、カソ-ド電流密度DkとCaCO及びMg(OH)の析出比率は、図2に示される様になる。すなわち、カソード電流密度Dkが高くなると、Mg(OH)の析出比が大きくなり、又、Mg(OH)の析出は、カソード電流密度Dkが2(A/m)を超えたところで、飽和状態となる。尚、カソード電流密度Dkが2(A/m)迄は、CaCOの析出は漸次減少し、Mg(OH)の析出は漸次増大する。そのため、カソ-ド電流密度Dkをコントロールすることで、CaCO及びMg(OH)の析出比率のコントロール、或はCaCO及びMg(OH)の選択的な析出が可能となる。 Therefore, since OH (hydroxide ion) is generated, the pH of seawater (cathode electrolyzed water 7b) rises on the cathode side, and CaCO 3 and Mg (OH) 2 are generated as shown in FIG. Further, when the current amount per unit area of the cathode 11 and the cathode current density Dk (A / m 2), cathode - de current density Dk and CaCO 3 and Mg (OH) 2 precipitation ratios are shown in Figure 2 It becomes like. That is, as the cathode current density Dk increases, the deposition ratio of Mg (OH) 2 increases, and the deposition of Mg (OH) 2 occurs when the cathode current density Dk exceeds 2 (A / m 2 ). It becomes saturated. Note that, until the cathode current density Dk is 2 (A / m 2 ), the precipitation of CaCO 3 gradually decreases and the precipitation of Mg (OH) 2 gradually increases. Therefore, cathode - by controlling the de current density Dk, CaCO 3 and Mg (OH) 2 precipitation ratio control, or it is possible to CaCO 3 and Mg (OH) 2 selective precipitation.
 従って、カソード電流密度Dkを高く設定して電気分解を行うことで、即ち図2によれば、カソード電流密度Dkを2[A/m]以上で海水の電気分解を行うことで、析出物の殆どを略Mg(OH)とすることができる. Therefore, by performing electrolysis with the cathode current density Dk set high, that is, according to FIG. 2, by performing electrolysis of seawater with a cathode current density Dk of 2 [A / m 2 ] or more, precipitates Most of this can be made approximately Mg (OH) 2 .
 カソード電解水7bはMg(OH)を析出した状態で、第2処理槽3に貯溜される。析出したMg(OH)は第2処理槽3で沈殿し、沈殿物は沈殿物回収手段16により回収される。 The cathode electrolyzed water 7b is stored in the second treatment tank 3 with Mg (OH) 2 precipitated. The precipitated Mg (OH) 2 is precipitated in the second treatment tank 3, and the precipitate is recovered by the precipitate recovery means 16.
 上記海水電解の過程で、アノード9側には酸素ガスが発生し、カソード11側では水素ガスが発生する。発生した水素ガスは水素回収装置14で回収され、電源装置12に燃料電池が用いられている場合、燃料電池に還元剤として供給される。 In the seawater electrolysis process, oxygen gas is generated on the anode 9 side and hydrogen gas is generated on the cathode 11 side. The generated hydrogen gas is recovered by the hydrogen recovery device 14, and when a fuel cell is used for the power supply device 12, it is supplied to the fuel cell as a reducing agent.
 次に、アノード9側に、消耗電極材13として鉄を用いた場合、以下の反応が起り、鉄が溶解する。更に、鉄イオンの加水分解により、水酸化第1鉄が生じると共にHが生成するので、アノード9側の海水(アノード電解水7a)のpHが低下する。 Next, when iron is used as the consumable electrode material 13 on the anode 9 side, the following reaction occurs and iron is dissolved. Furthermore, hydrolysis of iron ions produces ferrous hydroxide and H + , thereby lowering the pH of seawater (anode electrolyzed water 7a) on the anode 9 side.
 Fe→Fe2++2e-                         (3)
 Fe2++2HO→Fe(OH)+2H+            (4)
Fe → Fe 2+ + 2e (3)
Fe 2+ + 2H 2 O → Fe (OH) 2 + 2H + (4)
 第1処理槽2に流入するアノード電解水7aは2H+により酸性となっている。そこで、第1処理槽2に廃コンクリート(Ca(OH))を投入すると、下式の通り廃コンクリートにより酸性海水が中和される。
Ca(OH)+2H →Ca2++2HO             (5)
The anode electrolyzed water 7a flowing into the first treatment tank 2 is acidified by 2H + . Therefore, when waste concrete (Ca (OH) 2 ) is introduced into the first treatment tank 2, the acid seawater is neutralized by the waste concrete as shown in the following formula.
Ca (OH) 2 + 2H + → Ca 2+ + 2H 2 O (5)
 尚、アノード9に不溶解性の金属を使用した場合、或は高電流密度で海水の電気分解を行うと、塩素Clが発生し、Clの発生に伴い、HCl、HClOが発生する。HClは強酸性であり、又、HClOは生物に有害な物質である為、なるべくHCl、HClOの発生を抑制する様な電流密度で電気分解する。しかし、上記した様に、アノード電解水7aには、廃コンクリート(Ca(OH))が投入されるので、 When an insoluble metal is used for the anode 9 or when electrolysis of seawater is performed at a high current density, chlorine Cl 2 is generated, and HCl and HClO are generated as Cl 2 is generated. Since HCl is strongly acidic and HClO is a harmful substance to living organisms, it is electrolyzed with a current density that suppresses the generation of HCl and HClO as much as possible. However, as described above, since the waste concrete (Ca (OH) 2 ) is put into the anode electrolyzed water 7a,
Ca(OH)+HC1→CaC1+2HO            (6)
の反応によりHClは中和される。
Ca (OH) 2 + HC1 → CaC1 2 + 2H 2 O (6)
HCl is neutralized by this reaction.
 そして、第1処理槽2で中和処理された海水が第2処理槽3から流出される海水と合流して海中に放流される。この場合、アノード電解水7aに溶解させるコンクリートの量及びカソード電解水7bに吹込む炭酸ガスの量を制御することで、合流後の海水のpHが8.0程度、即ち海水のpHと同等となる様に調整される。 And the seawater neutralized in the 1st processing tank 2 joins the seawater which flows out of the 2nd processing tank 3, and is discharged in the sea. In this case, by controlling the amount of concrete dissolved in the anode electrolyzed water 7a and the amount of carbon dioxide gas blown into the cathode electrolyzed water 7b, the pH of the seawater after merging is about 8.0, that is, equivalent to the pH of the seawater. It is adjusted so that
 従って、本発明によれば、Mg(OH)の回収を連続的に行え、しかも固定処理過程で廃コンクリートを使用するので、産業廃棄物の処理を並行して行える。更にMg(OH)の回収後に放流される海水は、自然の海水のpHと同等であるので、環境に負担を掛けることがない。又、電気分解の過程で溶解した鉄イオンは、植物プランクトンを繁殖させるので、炭酸ガスの固定にも寄与する。 Therefore, according to the present invention, Mg (OH) 2 can be recovered continuously, and since waste concrete is used in the fixing process, industrial waste can be processed in parallel. Furthermore, since the seawater discharged after the recovery of Mg (OH) 2 is equivalent to the pH of natural seawater, there is no burden on the environment. In addition, iron ions dissolved in the electrolysis process propagate phytoplankton, which contributes to fixation of carbon dioxide.
 上記した様に、海水電解の過程で、アノード9側には酸素ガスが発生し、カソード11側では水素ガスが発生する。電源装置12に燃料電池が用いられている場合は、酸素ガス及び水素ガスは燃料電池に供給され、発電の燃料とされる。 As described above, oxygen gas is generated on the anode 9 side and hydrogen gas is generated on the cathode 11 side in the process of seawater electrolysis. When a fuel cell is used for the power supply device 12, oxygen gas and hydrogen gas are supplied to the fuel cell and used as fuel for power generation.
 次に、図3を参照して、上記実施例に於ける物質の収支例について説明する。尚、図3中、図1中で示したものと同等のものには同符号を付してある。 Next, an example of material balance in the above embodiment will be described with reference to FIG. In FIG. 3, the same components as those shown in FIG.
 カソード電流密度Dkを変化させることで、電解反応が変化し、カソード電流密度Dkを増大させることで、電解反応が促進される。従って、カソード電流密度Dkを制御することで、Mg(OH)の回収処理過程に於ける、アノード9側及びカソード11側でのpHの制御が可能となる。 The electrolytic reaction is changed by changing the cathode current density Dk, and the electrolytic reaction is promoted by increasing the cathode current density Dk. Therefore, by controlling the cathode current density Dk, it is possible to control the pH on the anode 9 side and the cathode 11 side in the process of recovering Mg (OH) 2 .
 先ず電解により、カソード電解水7bのpHを10~11程度とし、海水中のCa2+及びMg2+を全て沈殿させる。この時アノード電解水7aのpHは3~4程度となる。尚、Mg(OH)の回収を効率よく行う為に、カソード電流密度Dkを2 [A/m]以上とする。 First, the pH of the cathode electrolyzed water 7b is adjusted to about 10 to 11 by electrolysis, and all Ca 2+ and Mg 2+ in seawater are precipitated. At this time, the pH of the anode electrolyzed water 7a is about 3 to 4. In order to efficiently recover Mg (OH) 2 , the cathode current density Dk is set to 2 [A / m 2 ] or more.
 又、第2処理槽3で沈殿したMg(OH)の回収を行う。第2処理槽3から流出するカソード電解水7bのpHは10~11程度となる。第1処理槽2では廃コンクリートが投入され、第1処理槽2から流出するアノード電解水7aのpHが4~5程度となる様に調整する。尚、流出するアノード電解水7aのpHは一例であり、アノード電解水7a、カソード電解水7bを合流させた場合にpHが8.0~8.2となる様に前記廃コンクリートの投入量を調整する。そして、放流される排水のpHを8.0~8.2とすることで、海水の物理特性を変化させることなく排水を放流しつつ、Mg(OH)の回収が行える。従って、環境に負荷を掛けることがない。 Further, Mg (OH) 2 precipitated in the second treatment tank 3 is collected. The pH of the cathode electrolyzed water 7b flowing out from the second treatment tank 3 is about 10-11. In the first treatment tank 2, waste concrete is introduced, and the pH of the anode electrolyzed water 7 a flowing out from the first treatment tank 2 is adjusted to about 4 to 5. The pH of the anodic electrolyzed water 7a flowing out is an example, and when the anodic electrolyzed water 7a and the cathodic electrolyzed water 7b are merged, the amount of the waste concrete input is set so that the pH becomes 8.0 to 8.2. adjust. By setting the pH of the discharged wastewater to 8.0 to 8.2, Mg (OH) 2 can be recovered while discharging the wastewater without changing the physical characteristics of the seawater. Therefore, there is no load on the environment.
 回収されたMg(OH)を精錬することで、Mg地金を生産することができる。 By refining the collected Mg (OH) 2 , Mg metal can be produced.
 尚上記実施例では、アノード電解水7aの中和剤として、廃コンクリートを使用したが、中和剤は、火力発電所で発生した石炭灰等、アルカリ性を有する廃棄物であればよい。 In the above embodiment, waste concrete is used as the neutralizing agent for the anode electrolyzed water 7a. However, the neutralizing agent may be any waste having an alkaline property such as coal ash generated at a thermal power plant.
 上記実施例では、電解槽1内に海水を流動させつつ海水電解を行ったが、流入口5、流出口6にそれぞれ開閉弁を設け、海水電解を流入口5、流出口6を閉じた状態で行い、電解処理後は電解槽1内の海水を入替えるバッチ式としてもよい。 In the above embodiment, seawater electrolysis was performed while flowing seawater in the electrolytic cell 1, but an open / close valve was provided at each of the inlet 5 and outlet 6, and seawater electrolysis was performed with the inlet 5 and outlet 6 closed. It is good also as a batch type which replaces the seawater in the electrolytic cell 1 after electrolytic treatment.
 図4は、本発明の実施例に係るMg(OH)回収装置の概略を示している。 FIG. 4 shows an outline of the Mg (OH) 2 recovery apparatus according to the embodiment of the present invention.
 尚、図4中、図1中で示したものと同等のものには同符号を付してある。又、図4で示す実施例では、発電源として燃料電池18を示している。 In FIG. 4, the same components as those shown in FIG. In the embodiment shown in FIG. 4, a fuel cell 18 is shown as a power generation source.
 この装置には、電解槽1の水素回収装置14側で発生する水素ガスを回収し、燃料電池18に供給する水素ガス回収ライン21が設けられると共に、電解槽1のアノード9側で発生する酸素ガスを回収し、燃料電池18に供給する酸素ガス回収ライン22が設けられる。水素ガス回収ライン21、酸素ガス回収ライン22はそれぞれガス流量調整ブロワ23,24を有しており、燃料電池18に供給する酸素ガス、水素ガスの流量を調整する。 This apparatus is provided with a hydrogen gas recovery line 21 that recovers hydrogen gas generated on the hydrogen recovery device 14 side of the electrolytic cell 1 and supplies it to the fuel cell 18, and oxygen generated on the anode 9 side of the electrolytic cell 1. An oxygen gas recovery line 22 that recovers gas and supplies it to the fuel cell 18 is provided. The hydrogen gas recovery line 21 and the oxygen gas recovery line 22 have gas flow rate adjusting blowers 23 and 24, respectively, to adjust the flow rates of oxygen gas and hydrogen gas supplied to the fuel cell 18.
 燃料電池18で発電された電力は、電源装置12で蓄電され、蓄電した電力の供給は、カソード11に於いて所定のカソード電流密度Dkとなる様に制御される。尚、燃料電池18の発電量で不足する電力は、太陽光発電による電力、或は風力発電、或は波力発電による電力、或は発電所からの電力によって補充される。 The power generated by the fuel cell 18 is stored in the power supply device 12, and the supply of the stored power is controlled so that the cathode 11 has a predetermined cathode current density Dk. Note that the power shortage in the amount of power generated by the fuel cell 18 is supplemented by power from solar power generation, power from wind power generation or wave power generation, or power from a power plant.
 電解槽1には海水供給ライン25、廃コンクリート槽26(第1処理槽2に相当)、及び回収槽27(第2処理槽3に相当)が接続される。 The electrolysis tank 1 is connected with a seawater supply line 25, a waste concrete tank 26 (corresponding to the first treatment tank 2), and a recovery tank 27 (corresponding to the second treatment tank 3).
 廃コンクリート槽26にはアノード電解水7aである酸性水が供給されると共に廃コンクリートが投入され、弱酸性水となる様にpHが調整されて排出される。 The waste concrete tank 26 is supplied with acidic water which is the anode electrolyzed water 7a, and the waste concrete is supplied, and the pH is adjusted so as to be weakly acidic water, and then discharged.
 回収槽27には、Mg(OH)を含むカソード電解水7bであるアルカリ水が供給される。回収槽27で沈殿したMg(OH)は回収され、Mg(OH)が除去されたカソード電解水7b(アルカリ水)が回収槽27より排出される。 The recovery tank 27 is supplied with alkaline water that is cathode electrolyzed water 7b containing Mg (OH) 2 . The Mg (OH) 2 precipitated in the collection tank 27 is collected, and the cathode electrolyzed water 7b (alkali water) from which the Mg (OH) 2 has been removed is discharged from the collection tank 27.
 廃コンクリート槽26から排出された酸性水及び回収槽27から排出されたアルカリ水は合流された後、回収装置から海洋に排出される。酸性水及びアルカリ水が合流されることで、排水のpHが調整され、その結果、最終的に回収装置から放流される状態では、排水のpHが海水のpHと同等となり、環境に負荷を掛けることはない。 The acid water discharged from the waste concrete tank 26 and the alkaline water discharged from the recovery tank 27 are merged and then discharged from the recovery device to the ocean. The pH of the wastewater is adjusted by combining the acidic water and the alkaline water. As a result, the pH of the wastewater is equivalent to the pH of the seawater when it is finally discharged from the recovery device, which places a burden on the environment. There is nothing.
 尚、図4中、31は海水を電解槽1に送給するポンプ、32はカソード電解水7bを回収槽27に送給するポンプ、33は廃コンクリート槽26から排水する為のポンプ、34は回収槽27から排水する為のポンプをそれぞれ示している。 In FIG. 4, 31 is a pump for feeding seawater to the electrolytic cell 1, 32 is a pump for feeding the cathode electrolyzed water 7b to the recovery tank 27, 33 is a pump for draining from the waste concrete tank 26, 34 is Pumps for draining from the collection tank 27 are shown.
 本発明によれば、環境への負担を最小限に留めつつ、海水からマグネシウムを回収することが可能なマグネシウム回収方法及びマグネシウム回収装置を提供することができる。 According to the present invention, it is possible to provide a magnesium recovery method and a magnesium recovery apparatus that can recover magnesium from seawater while minimizing the burden on the environment.
1 電解槽、2 第1処理槽、3 第2処理槽、4 電解処理容器、5 流入口、7 海水、7a アノード電解水、7b カソード電解水、8 隔膜、9 アノード、9a アノード側領域、11 カソード、11a カソード側領域、12 電源装置、13 消耗電極材、14 水素回収装置、15 廃コンクリート投入装置、16 炭酸ガス吹込み装置、18 燃料電池、21 水素ガス回収ライン、22 酸素ガス回収ライン、26 廃コンクリート槽、27 回収塔 1 electrolysis tank, 2 first treatment tank, 3nd treatment tank, 4 electrolysis treatment vessel, 5 inlet, 7 seawater, 7a anode electrolyzed water, 7b cathode electrolyzed water, 8 diaphragm, 9 anode, 9a anode side region, 11 Cathode, 11a cathode side region, 12 power supply device, 13 consumable electrode material, 14 hydrogen recovery device, 15 waste concrete charging device, 16 carbon dioxide gas blowing device, 18 fuel cell, 21 hydrogen gas recovery line, 22 oxygen gas recovery line, 26 Waste concrete tank, 27 recovery tower

Claims (8)

  1.  海水を電解し、海水の電解により生成されたアノード電解水とカソード電解水とを分離し、前記アノード電解水にアルカリ材を投入してpH調整し、前記カソード電解水中にマグネシウムを水酸化マグネシウムとして析出させて回収し、pH調整後のアノード電解水と水酸化マグネシウム回収後のカソード電解水とを合流させ、海水と同等のpHとして放流するマグネシウム回収方法。 Seawater is electrolyzed, anode electrolyzed water and cathode electrolyzed water generated by seawater electrolysis are separated, an alkaline material is added to the anode electrolyzed water, pH is adjusted, and magnesium is converted into magnesium hydroxide in the cathode electrolyzed water. A magnesium recovery method in which the anode electrolyzed water after pH adjustment and the cathode electrolyzed water after magnesium hydroxide recovery are merged and discharged as a pH equivalent to seawater.
  2.  前記アルカリ材は廃コンクリートである請求項1のマグネシウム回収方法。 The magnesium recovery method according to claim 1, wherein the alkali material is waste concrete.
  3.  アノード側電極に溶解性金属である鉄を使用し、海水電解過程で鉄イオンをアノード電解水に溶解させる請求項1のマグネシウム回収方法。 The magnesium recovery method according to claim 1, wherein iron, which is a soluble metal, is used for the anode side electrode, and iron ions are dissolved in the anode electrolyzed water during the seawater electrolysis process.
  4.  アノードとカソードとを有する電解槽と、この電解槽の内部を、前記アノードを含むアノード側領域と前記カソードを含むカソード側領域とに仕切る隔膜と、前記アノード側領域で生成されたアノード電解水を貯溜する第1処理槽と、前記カソード側領域で生成されたカソード電解水を貯溜する第2処理槽と、前記アノード、カソードに電力を供給する電源装置と、前記第1処理槽にアルカリ材を投入するアルカリ材投入装置と、前記第2処理槽に沈殿した水酸化マグネシウムを回収する回収手段とを具備し、前記第1処理槽からの排水と前記第2処理槽からの排水とを合流し、pHが海水のpHと同等として放流するマグネシウム回収装置。 An electrolytic cell having an anode and a cathode, a diaphragm partitioning the inside of the electrolytic cell into an anode side region including the anode and a cathode side region including the cathode, and anode electrolyzed water generated in the anode side region A first processing tank for storing; a second processing tank for storing the cathode electrolyzed water generated in the cathode side region; a power supply for supplying power to the anode and the cathode; and an alkali material for the first processing tank. An alkali material charging device to be charged; and a recovery means for recovering magnesium hydroxide precipitated in the second treatment tank. The waste water from the first treatment tank and the waste water from the second treatment tank are joined together. , A magnesium recovery device that discharges as pH equal to that of seawater.
  5.  前記電源装置は、太陽電池、燃料電池、風力発電機、波力発電機、海洋温度差発電装置、太陽熱発電装置の少なくとも1つを有する請求項4のマグネシウム回収装置。 The magnesium recovery apparatus according to claim 4, wherein the power supply device includes at least one of a solar cell, a fuel cell, a wind power generator, a wave power generator, an ocean temperature difference power generation device, and a solar thermal power generation device.
  6.  前記電源装置は、前記カソード側で発生した水素ガスと前記アノード側で発生した酸素ガスを使用する燃料電池を含む請求項4のマグネシウム回収装置。 The magnesium recovery apparatus according to claim 4, wherein the power supply device includes a fuel cell using hydrogen gas generated on the cathode side and oxygen gas generated on the anode side.
  7.  前記アルカリ材投入装置から投入されるアルカリ材は廃コンクリートである請求項4のマグネシウム回収装置。 The magnesium recovery apparatus according to claim 4, wherein the alkali material input from the alkali material input apparatus is waste concrete.
  8.  前記アノードは、消耗電極としての鉄を含み、前記消耗電極は鉄イオンを溶解する請求項4のマグネシウム回収装置。 The magnesium recovery apparatus according to claim 4, wherein the anode contains iron as a consumable electrode, and the consumable electrode dissolves iron ions.
PCT/JP2011/070236 2010-09-10 2011-09-06 Magnesium recovery method and magnesium recovery apparatus WO2012033083A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2011299918A AU2011299918B2 (en) 2010-09-10 2011-09-06 Magnesium recovery method and magnesium recovery apparatus
GB1306089.2A GB2497256A (en) 2010-09-10 2011-09-06 Magnesium recovery method and magnesium recovery apparatus
CA2810648A CA2810648C (en) 2010-09-10 2011-09-06 Magnesium recovery method and magnesium recovery apparatus
US13/820,630 US20130161200A1 (en) 2010-09-10 2011-09-06 Magnesium recovery method and magnesium recovery apparatus
SG2013017231A SG188458A1 (en) 2010-09-10 2011-09-06 Magnesium recovery method and magnesium recovery apparatus
NO20130459A NO20130459A1 (en) 2010-09-10 2013-04-05 Process and apparatus for producing magnesium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-203353 2010-09-10
JP2010203353A JP5824793B2 (en) 2010-09-10 2010-09-10 Magnesium recovery method and magnesium recovery device

Publications (1)

Publication Number Publication Date
WO2012033083A1 true WO2012033083A1 (en) 2012-03-15

Family

ID=45810681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070236 WO2012033083A1 (en) 2010-09-10 2011-09-06 Magnesium recovery method and magnesium recovery apparatus

Country Status (8)

Country Link
US (1) US20130161200A1 (en)
JP (1) JP5824793B2 (en)
AU (1) AU2011299918B2 (en)
CA (1) CA2810648C (en)
GB (1) GB2497256A (en)
NO (1) NO20130459A1 (en)
SG (1) SG188458A1 (en)
WO (1) WO2012033083A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499880B2 (en) 2015-03-06 2016-11-22 Battelle Memorial Institute System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines
KR101710283B1 (en) * 2015-11-11 2017-03-08 고려대학교 산학협력단 Highly selective magnesium recovery apparatus and Highly selective magnesium recovery method using thereof
CN107164777B (en) * 2017-05-12 2019-01-25 中国科学院过程工程研究所 A kind of method of film electrolysis separating magnesium and enriching lithium from salt lake brine with high magnesium-lithium ratio
US10968126B2 (en) 2017-07-07 2021-04-06 Katz Water Tech, Llc Pretreatment of produced water to facilitate improved metal extraction
US11305228B2 (en) 2019-08-29 2022-04-19 Kenji SORIMACHI Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and fixed carbon dioxide production apparatus
JP7008305B2 (en) * 2020-01-22 2022-01-25 健司 反町 How to fix carbon dioxide and how to make fixed carbon dioxide
CN113439071A (en) * 2020-01-22 2021-09-24 反町健司 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and device for fixing carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177385A (en) * 1985-01-30 1986-08-09 Mitsui Eng & Shipbuild Co Ltd Production of magnesium hydroxide
JPH04325391A (en) * 1991-04-08 1992-11-13 Un Zee Cho Solar heated fuel self-feed type wide deck multi-leg ship
JPH0928234A (en) * 1995-07-19 1997-02-04 Tomoji Tanaka Cultured fish tank
JP2005262158A (en) * 2004-03-22 2005-09-29 Shimizu Corp Concrete regenerated fine powder and neutralization method
JP2009262124A (en) * 2008-03-31 2009-11-12 Kobelco Eco-Solutions Co Ltd Method and apparatus for purification treatment of metal component-containing water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891320A (en) * 1996-03-11 1999-04-06 Wurzburger; Stephen R. Soluble magnesium hydroxide
US6190530B1 (en) * 1999-04-12 2001-02-20 International Business Machines Corporation Anode container, electroplating system, method and plated object
US6375825B1 (en) * 1999-10-28 2002-04-23 Chemical Products Corporation Process for the production of alkaline earth hydroxide
JP2007098352A (en) * 2005-10-07 2007-04-19 Kido Toshihiro Functional water making apparatus and functional water making method
US8177946B2 (en) * 2007-08-09 2012-05-15 Lawrence Livermore National Security, Llc Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177385A (en) * 1985-01-30 1986-08-09 Mitsui Eng & Shipbuild Co Ltd Production of magnesium hydroxide
JPH04325391A (en) * 1991-04-08 1992-11-13 Un Zee Cho Solar heated fuel self-feed type wide deck multi-leg ship
JPH0928234A (en) * 1995-07-19 1997-02-04 Tomoji Tanaka Cultured fish tank
JP2005262158A (en) * 2004-03-22 2005-09-29 Shimizu Corp Concrete regenerated fine powder and neutralization method
JP2009262124A (en) * 2008-03-31 2009-11-12 Kobelco Eco-Solutions Co Ltd Method and apparatus for purification treatment of metal component-containing water

Also Published As

Publication number Publication date
CA2810648C (en) 2016-01-12
CA2810648A1 (en) 2012-03-15
JP5824793B2 (en) 2015-12-02
AU2011299918A1 (en) 2013-05-02
US20130161200A1 (en) 2013-06-27
NO20130459A1 (en) 2013-04-16
GB201306089D0 (en) 2013-05-22
SG188458A1 (en) 2013-04-30
GB2497256A (en) 2013-06-05
AU2011299918B2 (en) 2014-09-04
JP2012057230A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5609439B2 (en) Carbon dioxide fixing method and carbon dioxide fixing device
WO2012033083A1 (en) Magnesium recovery method and magnesium recovery apparatus
CN108675403B (en) Method for recovering nitrogen and phosphorus in sewage through electrochemical struvite crystallization
CN206940502U (en) A kind of electrochemical desalting water softening device of efficiently spontaneous crystallization
JP4600924B2 (en) Hydrogen recovery type electrolytic water quality improvement device
CN105585182A (en) Ballast water treatment equipment
KR102207458B1 (en) A fresh water system capable of producing hydrogen gas
CN100500586C (en) Apparatus for electrolysis method water treatment
CN105329988A (en) Electrolytic bath for treating high-salt industrial waste water by combining Fenton method with bipolar membrane technology
CN114804304A (en) Method for recovering phosphorus in sewage by electrolysis
KR20210010937A (en) A fresh water system capable of producing hydrogen gas
CN107253782A (en) A kind of ferrikinetics electrochemistry Fenton method for treating water and device
CN205204884U (en) Handle many diaphragm electrolysis of multi -electrode groove of high salt industrial waste water
CN205367823U (en) Fenton method combines high salt industrial waste water electrolysis trough of bipolar membrane technical process
CN105036423A (en) Electrolytic treatment system of ship domestic sewage
CN203613055U (en) Treatment device for wastewater with high salinity and chlorine
KR20220078185A (en) Seawater electrolytic apparatus and a system interworiking between the apparatus and fuel cell
TWI755644B (en) A method for removing ammonia nitrogen from waste water
CN216550748U (en) Utilize concentrated water electrolysis of reverse osmosis to prepare sodium hypochlorite's hypochlorite generator
CN204111486U (en) A kind of equipment processing coal bed gas produced water
CN212198853U (en) Desulfurization wastewater full electric drive processing system of coal-fired power plant
Wang et al. Na+ migration facilitated separation of hydrogen and hydroxide for efficient hardness removal via an integrated electrochemical precipitation approach
CN104402149A (en) Equipment and technology for processing extracted water from coalbed methane
CN117776467A (en) Electrochemical reaction device and method for recycling phosphorus in sludge
CN116986679A (en) Method for degrading flotation collector in potassium salt flotation process by electrocatalytic method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13820630

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2810648

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1306089

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110906

WWE Wipo information: entry into national phase

Ref document number: 1306089.2

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2011299918

Country of ref document: AU

Date of ref document: 20110906

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11823558

Country of ref document: EP

Kind code of ref document: A1