WO2012033006A1 - Method for producing detergent particle group - Google Patents

Method for producing detergent particle group Download PDF

Info

Publication number
WO2012033006A1
WO2012033006A1 PCT/JP2011/069978 JP2011069978W WO2012033006A1 WO 2012033006 A1 WO2012033006 A1 WO 2012033006A1 JP 2011069978 W JP2011069978 W JP 2011069978W WO 2012033006 A1 WO2012033006 A1 WO 2012033006A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
mass
particle group
detergent particle
detergent
Prior art date
Application number
PCT/JP2011/069978
Other languages
French (fr)
Japanese (ja)
Inventor
窪田輝夫
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201180042893.0A priority Critical patent/CN103108947B/en
Publication of WO2012033006A1 publication Critical patent/WO2012033006A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions

Definitions

  • the present invention relates to a method for producing detergent particles.
  • the fluidity of the detergent particles constituting the powder detergent is an important physical property from the viewpoints of improvement in productivity and ease of use, and there is a demand for detergent particles with high fluidity.
  • the fluidity is, for example, the time required for 100 ml of powder to flow down in a bulk density measuring device defined in JIS K3362. If the fluidity is high, the time required for filling the detergent can be shortened, so that the productivity is improved.
  • WO-A 2006/013982 (corresponding to JP-A 2006-137925 and EP-A 1788071) was obtained by mixing a surfactant composition containing water and a specific anionic surfactant with base granules.
  • a method for producing a mononuclear detergent particle group in which a mixture is surface-modified with a fine powder is disclosed.
  • WO-A 2005/083049 is a three-way cleaning of an anionic detersive surfactant, a nonionic detersive surfactant, and a cationic detersive surfactant.
  • Granular laundry detergent compositions are disclosed that contain a surfactant system and contain little or no zeolite builders and phosphate builders. Further, as prior art relating to detergent particles obtained by loading a base granule with a surfactant and a method for producing the same, WO-A99 / 029830 (corresponding to EP-A0996982) and WO-A00 / 023560 (EP- (Corresponding to A1041139) Summary of invention
  • the present invention relates to a method for producing detergent particles, comprising the following steps (A) to (C).
  • a slurry that may contain an insoluble inorganic salt is spray-dried, and contains 25 to 80% by mass of sodium carbonate, 0 to 30% by mass of a water-insoluble inorganic salt, and 2 to 25% by mass of an acrylic acid type polymer, and has surface activity.
  • the present invention relates to a method for producing detergent particles comprising the following steps (A) to (C).
  • the present invention provides a detergent particle group obtained by the above production method, a method of washing a textile product using the detergent particle group obtained by the above production method, or a fiber of the detergent particle group obtained by the above production method. Provide use for product cleaning.
  • the present invention provides a method capable of producing a detergent particle group excellent in fluidity with a high yield, particularly a method capable of producing a detergent particle group containing a nonionic surfactant with a high yield.
  • the present inventor has conducted various studies on methods for obtaining a powder detergent particle group having excellent fluidity, and found that a powder detergent particle group having excellent fluidity can be obtained by a very simple production method, thereby increasing production efficiency. As a result, the present invention was useful as a final product.
  • the present invention there is provided a method capable of producing a detergent particle group excellent in fluidity. Furthermore, the present invention also provides a method for producing detergent particles having excellent fluidity even when the blending amount of water-insoluble inorganic salts conventionally used as surface modifiers such as zeolite is reduced. is there. In addition, the present invention does not require a surface modification step, and produces a detergent particle group having excellent fluidity.
  • the step (A) is an acrylic acid type polymer in which the proportion of the structural unit of acrylic acid or a salt thereof is 90 to 100 mol% with respect to all the monomer structural units constituting sodium carbonate and the polymer
  • the slurry containing polyacrylic acid or a salt thereof and water, which may contain a water-insoluble inorganic salt is spray-dried to obtain 25-80% by mass of sodium carbonate, 0-30% by mass of the water-insoluble inorganic salt
  • a base granule containing 2 to 25% by mass of polyacrylic acid or a salt thereof and having a surfactant content of 2% by mass or less.
  • Water-insoluble with respect to the water-insoluble inorganic salt used in the step (A) means that the amount dissolved in 100 g of ion-exchanged water at 20 ° C. is 1 g or less.
  • the water-insoluble inorganic salt preferably has an average primary particle size of 0.1 to 20 ⁇ m.
  • crystalline or amorphous aluminosilicate, silicon dioxide, hydrated silicate compound Although there are clay compounds such as pearlite and bentonite, crystalline or amorphous aluminosilicates, silicon dioxide and hydrated silicate compounds are preferred, and crystalline aluminosilicates are particularly preferred.
  • zeolite known as crystalline aluminosilicate is compounded as a sequestering agent, and clay compound is blended as a flexible substrate.
  • the final density of the finally obtained detergent particles can be increased, and the particle strength can be increased. May be a constituent.
  • excellent fluidity can be obtained with little influence on strength reduction.
  • the acrylic acid type polymer of the present invention is a structural unit in which the main structural unit constituting the polymer is derived from a monomer of acrylic acid or a salt thereof. Therefore, the acrylic acid type polymer can also be expressed as an acrylic acid homopolymer, an acrylic acid copolymer, or a salt thereof.
  • the proportion of the constituent units from the acrylic acid monomer in the monomer constituent units of the acrylic acid type polymer is 90 to 100 mol%.
  • the proportion of acrylic acid monomer constituent units in the monomer constituent units of the acrylic acid type polymer is preferably 95 to 100 mol%, more preferably 97 to 100 mol%, and the proportion is 100 mol% of polyacrylic acid (A homopolymer of acrylic acid) is even more preferable.
  • the acrylic acid type polymer may be a salt of an alkali metal or the like.
  • an acrylic acid type polymer containing a large amount of acrylic acid or a salt thereof as a monomer constituent unit of the polymer a detergent particle group having excellent powder physical properties can be obtained.
  • the monomer constituent unit other than the constituent unit of acrylic acid or a salt thereof constituting the acrylic acid type polymer is a constituent unit derived from a monomer copolymerizable with acrylic acid or a salt thereof, and the effect of the present invention is impaired.
  • a monomer other than acrylic acid or a salt thereof for constituting the acrylic acid type polymer a nonionic monomer and / or an anionic monomer, and further an anionic monomer are preferable.
  • anionic monomers include sulfonic acid monomers such as allyl sulfonic acid, vinyl sulfonic acid, and methallyl sulfonic acid, and carboxylic acid monomers other than acrylic acid such as maleic acid, methacrylic acid, and itaconic acid.
  • the acrylic acid type copolymer of the present invention is preferably an acrylic acid copolymer which is a copolymer of acrylic acid and allylsulfonic acid or maleic acid or a salt of the copolymer.
  • the acrylic acid type polymer of the present invention is preferably polyacrylic acid or a salt thereof which is a homopolymer of acrylic acid.
  • the acrylic acid type polymer preferably polyacrylic acid or a salt thereof, those having a weight average molecular weight of 100 to 80,000, more than 2000 and having 10 or more carboxyl groups are more preferable. Accordingly, the weight average molecular weight of the acrylic acid type polymer, preferably polyacrylic acid or a salt thereof is preferably 2000 to 80000.
  • the salt of acrylic acid type polymer, preferably polyacrylic acid is preferably an alkali metal salt, more preferably a sodium salt. You may mix
  • the weight average molecular weight can be measured by gel permeation chromatography using a mixed solution of acetonitrile and water (phosphate buffer) as a developing solvent and polyethylene glycol as a standard substance.
  • the base granule is prepared by spray drying a slurry containing sodium carbonate, an acrylic acid type polymer, preferably polyacrylic acid or a salt thereof, and water, and optionally a water-insoluble inorganic salt.
  • builders generally used in garment detergents for example, sequestering agents such as citrate and sodium tripolyphosphate, alkaline agents such as potassium carbonate and alkali metal silicate, crystals
  • base materials having both sequestering ability and alkaline ability such as basic silicates and / or other bases generally used in detergent compositions, for example, known in the field of detergents for clothing
  • Surfactants acrylic acid maleic acid copolymers other than the above-mentioned acrylic acid type polymers
  • anti-contamination agents such as carboxymethyl cellulose
  • inorganic powders such as sodium sulfate, sodium sulfite, and sodium chloride
  • fluorescent whitening agents and fragrances.
  • the base granule preferably has a phosphate builder content of 5% by mass or less, and more preferably contains substantially no phosphate builder.
  • the base granule contains a crystalline aluminosilicate such as zeolite as a water-insoluble inorganic salt
  • the water content in the base granule after spray drying is 12 mass in the base granule from the viewpoint of increasing the action of adsorbing the water of the zeolite. % Or less is preferable, 6 mass% or less is more preferable, and 3 mass% or less is still more preferable.
  • the conditions (temperature, spray drying apparatus, spraying method, drying method, etc.) for spray drying the slurry for preparing the base granule may be any known method, and are not particularly limited.
  • the base granule obtained in step (A) is 25 to 80% by weight of sodium carbonate, preferably 30 to 75% by weight, more preferably 45 to 70% by weight, and 0 to 30% by weight of water-insoluble inorganic salt, preferably An acrylic acid type polymer in which the proportion of the constituent units of acrylic acid or a salt thereof is 90 to 100% by mass, more preferably 0 to 5% by mass, more preferably 0 to 5% by mass, The polyacrylic acid or a salt thereof is preferably contained in an amount of 2 to 25% by mass, preferably 3 to 20% by mass, more preferably 6 to 15% by mass.
  • the surfactant content is 2% by mass or less, preferably 1% by mass or less, and more preferably 0.1% by mass.
  • the remainder of the base granule excluding water is preferably an alkali metal sulfate or alkali metal sulfite, and more preferably sodium sulfate.
  • the content of alkali metal sulfate is preferably 10 to 40% by mass in the base granule
  • the content of alkali metal sulfite is preferably 0 to 2% by mass in the base granule.
  • the pore volume of the base granule produced in the cocoon step (A) is preferably 0.2 mL / 1 g or more, more preferably 0.3 mL / 1 g or more.
  • the average pore diameter is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less. Within this range, aggregation of the base granules is suppressed, which is suitable for maintaining the mononuclearity of the particles in the detergent particle group.
  • the measuring method of the pore volume and the average pore diameter is as follows.
  • the pore volume is in the range of 0.01 ⁇ m to 4 ⁇ m. It is a certain pore volume, and the average pore diameter means the mode diameter of the pore volume distribution (the pore diameter having the largest pore volume in the obtained pore volume distribution).
  • the particle strength is preferably 50 to 2000 kg / cm 2 , more preferably 100 to 1500 kg / cm 2 , and particularly preferably 150 to 1000 kg / cm 2 . Within this range, the base granule group exhibits good disintegration properties, and a detergent particle group having good high-speed solubility can be obtained.
  • the method for measuring the particle strength is as follows.
  • the bulk density of the base granule is preferably 200 to 900 g / L, more preferably 300 to 800 g / L, still more preferably 350 to 700 g / L, and particularly preferably 400 to 600 g / L.
  • the bulk density is measured by a method defined by JIS K K 3362: 2008.
  • the average particle size of the base granule is preferably 150 to 500 ⁇ m, more preferably 180 to 300 ⁇ m.
  • the average particle size is determined by shaking the mass for 5 minutes using a standard sieve of JIS Z 8801: 2006 (mesh opening 2000-125 ⁇ m, see Appendix Tables 1 and 2 of JIS K 3622: 2008), The median diameter is calculated from the rate.
  • the step (B) comprises a surfactant composition containing a total of 50 to 80% by weight of the surfactant, 15% by weight or more of the nonionic surfactant and 20 to 50% by weight of water.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants, and nonionic surfactants and anionic surfactants are preferred.
  • nonionic surfactant a nonionic surfactant having a melting point at 30 ° C. or lower is preferable.
  • the melting point of the nonionic surfactant is preferably 30 ° C. or lower, more preferably 25 ° C. or lower, and further preferably 22 ° C. or lower.
  • nonionic surfactant examples include polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ether, alkyl (polyoxyalkylene) polyglycoside, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene glycol fatty acid ester, polyoxyethylene- Polyoxypropylene-polyoxyethylene alkyl ether, polyoxyethylene-polyoxypropylene-block polymer, and polyoxyalkylene alkylol (fatty acid) amide are preferred.
  • the alkyl group of the nonionic surfactant is preferably an alkyl group having 8 to 22 carbon atoms.
  • the nonionic surfactant is preferably a polyoxyalkylene alkyl ether having an alkyl group having 8 to 22 carbon atoms, and further having an alkyl group having 10 to 14 carbon atoms, and an average addition mole of an oxyalkylene group containing an oxyethylene group.
  • Polyoxyalkylene alkyl ethers having a number of 4 to 25 mol, more preferably 4 to 21 mol, and further 4 to 12 mol are preferred.
  • the oxyalkylene group other than the oxyethylene group is preferably an oxypropylene group.
  • the average addition moles of oxyalkylene groups those having an addition mole number of oxypropylene groups of 0 to 3 and an average addition mole number of oxyethylene groups of 4 to 22 are preferred.
  • the addition order of the oxypropylene group and the oxyethylene group may be random or block.
  • a polyoxyalkylene alkyl ether obtained by adding 4 to 12 mol (preferably 6 to 10 mol) of alkylene oxide to an alcohol having 10 to 14 carbon atoms is preferable.
  • the alkylene oxide include ethylene oxide and propylene oxide, and ethylene oxide is preferable.
  • More preferred nonionic surfactants are polyoxyethylene alkyl ethers in which the alkyl group has 10 to 14 carbon atoms, and the average added mole number of oxyethylene groups is 4 to 12 moles, more preferably 6 to 10 moles. .
  • a compound obtained by subjecting such an alcohol to block polymerization or random polymerization of ethylene oxide, propylene oxide, and, if necessary, ethylene oxide is also preferable.
  • EPE nonion is preferable.
  • a nonionic surfactant may be used independently and may use 2 or more types together.
  • the melting point of the nonionic surfactant is measured using a Mettler FP81 (manufactured by Mettler Instruments Inc. AG) of an FP800 thermosystem at a temperature rising rate of 0.2 ° C./min.
  • anionic surfactant examples include sulfuric acid ester salts of alcohols having 10 to 18 carbon atoms, sulfuric acid ester salts of alkoxylated products of alcohols having 8 to 20 carbon atoms, alkylbenzene sulfonates, paraffin sulfonates, ⁇ -olefin sulfonic acids Salts, ⁇ -sulfo fatty acid salts, ⁇ -sulfo fatty acid alkyl ester salts or fatty acid salts are preferred.
  • a linear alkylbenzene sulfonate having an alkyl chain with 10 to 14 carbon atoms, more preferably 12 to 14 carbon atoms is preferred, and alkali metals and amines are preferred as the counter ion, particularly sodium and / or Or potassium, monoethanolamine, and diethanolamine are preferable.
  • cation surfactant examples include quaternary ammonium salts such as alkyltrimethylammonium salts.
  • amphoteric surfactants examples include carbobetaine type and sulfobetaine type.
  • the surfactant in step (B) contains both a nonionic surfactant and an anionic surfactant
  • the mass ratio of the nonionic surfactant / anionic surfactant is obtained by detergency and foaming. From the viewpoint of the fluidity of the detergent particles, 10/1 to 1/3 is preferable, 5/1 to 1/2 is more preferable, and 4/1 to 1/1 is still more preferable.
  • the content of the surfactant in the surfactant composition is 50 to 80% by mass, preferably 55 to 75% by mass, and in the surfactant concentration range, the nonionic interface in the surfactant composition
  • the content of the activator is 15% by mass or more, and preferably 30% by mass or more.
  • the water content in the surfactant composition is 20 to 50% by mass, preferably 25 to 45% by mass.
  • the surfactant composition may contain components other than the surfactant and water, but the total content of the surfactant and water is 80 to 99.99% by mass, more preferably 90 to 99.9% by mass. % Is preferred.
  • a fatty acid salt when a fatty acid salt is blended as a surfactant, at least one selected from sodium and potassium salts of saturated fatty acids having 12 to 20 carbon atoms is preferable.
  • the content of the fatty acid salt is preferably 0.5 to 10% by mass in the surfactant composition, more preferably 1 to 1% after satisfying the mass ratio of the nonionic surfactant / anionic surfactant. 7.5% by mass.
  • a nonionic compound having a polyoxyalkylene group (excluding the nonionic surfactant) may be contained.
  • nonionic compounds include (i) polyoxyalkylene having an oxyalkylene group having 2 to 5 carbon atoms and a weight average molecular weight of 3000 to 30000, and (ii) a weight average molecular weight of 3000 to 30000.
  • one or more compounds selected from polyoxyalkylene alkyl ethers (wherein the alkyl group has 1 to 4 carbon atoms).
  • Particularly preferred examples of the nonionic compound include polyethylene glycol, polypropylene glycol, and polyoxyethylene methyl ether.
  • the molecular weight of the nonionic compound can be measured in the same manner as the above acrylic acid type polymer, but if there is a problem in the measurement, it can be measured using the light scattering method, and dynamic light scattering can be performed. Measure using a photometer (DLS-8000 series, manufactured by Otsuka Electronics Co., Ltd.).
  • the base granule obtained in the step (A) and the surfactant composition obtained in the step (B) are substantially converted into the form of the base granule. It is the process of mixing while maintaining.
  • the surfactant composition and the base granule are uniformly mixed, whereby a detergent particle group having powder physical properties described later can be easily produced.
  • the mixing ratio of the surfactant composition and the base granule is preferably the surfactant composition with respect to 100 parts by mass of the base granule from the viewpoint of detergency and fluidity of the resulting detergent particles.
  • the amount is 25 to 60 parts by mass, more preferably 30 to 55 parts by mass, and most preferably 35 to 50 parts by mass.
  • the preferable requirements on the structure of the base granule and the surfactant composition for example, the definition of preferable compounds and content, are effective in the mixing ratio of the step (C), and are also more preferable requirements.
  • the mixer for mixing the surfactant composition and the base granule used in the step (C) includes, for example, a nozzle for adding the surfactant composition and a jacket for controlling the temperature in the mixer. Those are preferred.
  • the mixing conditions in the cocoon step (C) are selected so that the morphology of the base granules is substantially maintained, i.e., does not collapse.
  • the stirring blade is preferably 0.5 to 8, more preferably 0.8 to 4, and still more preferably 0.5 to 2.
  • the fluid number of the stirring blade is preferably 0.1 to 4, more preferably 0.15 to 2.
  • the fluid number of the stirring blade is preferably 0.05 to 4, more preferably 0.1 to 2.
  • the mixer which comprises a stirring blade and a crushing blade.
  • it has conventionally been customary to rotate the crushing blade at a high speed in order to promote mixing.
  • it is preferable not to rotate the crushing blade substantially from the viewpoint of suppressing the collapse of the base granules.
  • the fact that the crushing blade is not substantially rotated means that the crushing blade is not rotated at all, or in view of the shape, size, etc. of the crushing blade, the retention of various raw materials in the vicinity of the crushing blade is prevented within the range where the base granule is not collapsed. This means that the crushing blade is rotated for the purpose.
  • the fluid number is preferably 200 or less, more preferably 100 or less, and when it is intermittently rotated, the fluid number is not particularly limited. By mixing under such conditions, a mixture can be obtained without substantially breaking the base granules.
  • the fact that the form of the base granule is not substantially maintained or collapsed means that 70% by number or more of the base granule maintains the form in the mixture.
  • a method of observing particles after extracting a soluble component of the obtained mixture using an organic solvent can be mentioned.
  • Fluid number V 2 / (R ⁇ g)
  • V peripheral speed [m / s] at the tip of the stirring blade or crushing blade
  • R Rotating radius of stirring blade or crushing blade
  • g Gravity acceleration [m / s 2 ]
  • powder raw materials other than the base granules can be blended if desired.
  • the blending amount is preferably 30 parts by mass or less, more preferably 15 parts by mass or less with respect to 100 parts by mass of the base granule from the viewpoint of solubility.
  • the powder raw material other than the base granule referred to in the present specification means a powder cleaning strength enhancer or oil absorbent at room temperature.
  • bases showing sequestering ability such as zeolite and citrate
  • bases showing alkaline ability such as sodium carbonate and potassium carbonate
  • sequestering ability and alkaline ability such as crystalline silicate
  • bases and the like and amorphous silica, amorphous aluminosilicate, clay mineral and the like having low sequestering ability but high oil absorption ability.
  • water-insoluble inorganic salts such as 0.1 to 20 ⁇ m water-insoluble inorganic salt zeolite, silica and clay minerals are added as fine powders, so that the water-insoluble Inorganic salts can be used as surface modifiers for detergent particles.
  • the fluidity of the detergent particles can be improved by the surface modifier. This is particularly effective when a liquid surfactant such as a nonionic surfactant is used.
  • excellent powder fluidity can be obtained even if these water-insoluble inorganic salts are intentionally reduced in the amount of the surface modifier or even if no surface modifier is used.
  • the detergent particle group of the present invention does not exclude the blending of these water-insoluble inorganic salts after the step (C), but the water-insoluble inorganic salt blended simultaneously with the step (C) or after the step (C) In the detergent particle group, it may be 5% by mass or less, and further 2% by mass or less, and in particular, excellent powder physical properties can be obtained even if not substantially contained as a surface modifier.
  • the temperature inside the apparatus at the time of mixing is preferably a temperature at which the surfactant composition and the base granule can be efficiently mixed while substantially suppressing the collapse of the base granule.
  • the pour point or higher of the surfactant composition to be mixed is preferable, the pour point of 10 ° C or higher is more preferable, and the pour point of 20 ° C or higher is particularly preferable.
  • the mixing time is preferably about 2 to 10 minutes.
  • the in-machine temperature can be adjusted by flowing cold water or hot water through a jacket or the like. Therefore, the apparatus used for mixing preferably has a structure with a jacket.
  • the mixing method of the surfactant composition and the base granule may be a batch type or a continuous type. When mixing batchwise, it is preferable to add the surfactant composition after the base granule is previously charged in the mixer.
  • the temperature of the surfactant composition to be supplied is preferably 70 ° C. or less, more preferably 60 ° C. or less, from the viewpoint of the stability of the surfactant composition.
  • the mixing blade shape is a paddle type mixer.
  • a mixer having a shaft, and mixing the powder by attaching a stirring blade to the shaft for example, Henschel mixer (manufactured by Mitsui Miike Chemical Co., Ltd.), high speed mixer (manufactured by Fukae Kogyo Co., Ltd.), vertical granule Rator (Powrec Co., Ltd.), Redige Mixer (Matsubo Co., Ltd.), Proshear Mixer (Pacific Kiko Co., Ltd.), TSK-MTI Mixer (Tsukishima Kikai Co., Ltd.), JP 10-296064 (2) Cylindrical, semi-cylindrical, or conical fixed containers, such as mixing apparatuses described in Japanese Laid-Open Patent Publication No.
  • ⁇ ⁇ Detergent particles can be obtained by the production method including the steps (A) to (C).
  • the content of the water-insoluble inorganic salt is preferably 5% by mass or less, and more preferably substantially free of the water-insoluble inorganic salt.
  • the detergent particle group produced according to the present invention preferably has a phosphate builder content of 5% by mass or less, and more preferably contains substantially no phosphate builder.
  • the present invention is suitable as a method for producing detergent particles for textiles such as clothing.
  • the individual detergent particles of the detergent particles produced according to the present invention are preferably mononuclear detergent particles.
  • the mononuclear detergent particles refer to detergent particles manufactured using base granules as a core, and substantially having one base granule as a core in one detergent particle.
  • the particle growth degree defined by the following formula can be used as an index representing the mononuclearity of the detergent particles.
  • the mononuclear detergent particles referred to herein have a particle growth degree of 1.5 or less, preferably 1.4 or less, more preferably 1.3 or less.
  • the lower limit is not particularly limited but is preferably 1.0 or more.
  • Particle growth degree [average particle diameter of detergent particles obtained by step (C)] / [average particle diameter of base granules]
  • Such mononuclear detergent particles have the advantage that the particle size distribution is sharp without the formation of particles outside the desired particle size range (aggregated particles) because aggregation between particles is suppressed.
  • the detergent particle group produced according to the present invention preferably has the following physical properties.
  • the physical properties of the detergent particle group are measured using the particle group that has passed through a sieve having an opening of 1180 ⁇ m (excluding the yield). The measurement of yield, fluidity, and bulk density is performed between 10 and 20 minutes after the production of the particles. The average particle size, caking resistance (passage rate), and stain resistance of nonionic surfactants are evaluated using samples stored at 20 to 30 ° C. for 1 to 3 days in a sealed container. To do.
  • the yield of the soot detergent particle group is calculated by dividing the mass of the sample that has passed through the sieve having an opening of 1180 ⁇ m by the mass of the entire sample.
  • the yield is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the average particle diameter of the soot detergent particle group is preferably 150 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 150 to 500 ⁇ m, still more preferably 180 to 350 ⁇ m.
  • the bulk density of the soot detergent particle group is preferably 300 to 1000 g / L, more preferably 400 to 900 g / L, still more preferably 450 to 850 g / L, and particularly preferably 500 to 800 g / L.
  • a surfactant is added to the spray-dried slurry at 2% by mass or less to lower the bulk density of the base granule.
  • a method of blending a powder raw material having a lower bulk density than the base granule as a powder raw material other than the granule or reducing the amount of the surfactant composition mixed with the base granule can be used.
  • the fluidity of the detergent particles is preferably 10 seconds or less, more preferably 8 seconds or less, and even more preferably 7 seconds or less as the flow time.
  • the flow time is 100 mL from a hopper for measuring bulk density specified by JIS K3362, that is, a funnel (also called a hopper) shown as an example of an apparent density measuring device in the section of apparent density of JIS K3362: 2008. This is the time required for the detergent particles to flow out.
  • the caking resistance and the stain resistance of the nonionic surfactant are evaluated as follows. Using a filter paper (No. 2 manufactured by ADVANTEC), make a box without a top with a length of 10.2 cm, a width of 6.2 cm, and a height of 4 cm, and fix the four corners with a stapler. In advance, two lines are drawn with an oil marker on the diagonal line of the bottom portion to intersect. A 200 m sample is placed in this box, sealed in an acrylic case, and left in a thermostatic oven at a temperature of 30 ° C. for 7 days to determine caking resistance and non-ionic surfactant stain resistance.
  • a filter paper No. 2 manufactured by ADVANTEC
  • Judgment of the nonionic surfactant is performed by visually observing the bleeding of the oily marker drawn on the bottom after the sample is discharged.
  • the evaluation is 1 to 5 ranks, and the status of each rank is as follows. Rank 1: There is no blur. Rank 2: Part of the line bleeds and cilia appear. Rank 3: The line bleeds almost entirely, and the average line thickness is less than 2.0 times. Rank 4: The whole line The average line thickness is 2.0 times or more and less than 3.0 times. Rank 5: The entire line is blurred and the average line thickness is 3.0 times or more. In the invention, the evaluation of the degree of bleeding is that of ranks 1 and 2.
  • the detergent particles produced according to the present invention may be a part or all of the particles constituting the powder detergent as the final product.
  • the detergent particle group produced according to the present invention is a particle group that becomes a powder detergent as the final product by being mixed with other detergent particle groups. Composed. That is, the detergent particle group produced according to the present invention can be used as a powder detergent itself, while it may be used as particles constituting a part of the powder detergent. Therefore, the present invention is also suitable as a method for producing detergent particle groups (in this case, “detergent particle groups” in this specification can be read as “detergent particle groups”).
  • particles mixed with the detergent particles produced according to the present invention mainly include, for example, cleaning aid particles, enzyme particles such as protease, amylase, cellulase and lipase, percarbonate and perborate.
  • Examples include alkali agent particles obtained by granulating an alkali agent. Functional particles may be blended.
  • the functional particles include softener particles obtained by granulating a softening property clay material such as bentonite, fragrance particles mainly containing a fragrance component, and silicone such as dimethylsiloxane.
  • Antifoaming agent particles containing an antifoaming substance such as Moreover, you may mix with the surfactant particle
  • the base granules used in Examples 1 to 26 and Comparative Examples 1 to 11 were produced by the following procedure [Step (A)].
  • This slurry was sprayed at a spray pressure of 25 kg / cm 2 from a pressure spray nozzle installed near the top of the spray drying tower.
  • the hot gas supplied to the spray drying tower was supplied at a temperature of 225 ° C. from the bottom of the tower, and was discharged at 105 ° C. from the top of the tower.
  • the moisture in the base granule was as shown in Tables 1-3.
  • Example 27 The base granule used in Example 27 was produced by the following procedure [Step (A)].
  • This slurry was sprayed at a spraying pressure of 35 kg / cm 2 from a pressure spray nozzle installed near the top of the spray drying tower.
  • the hot gas supplied to the spray-drying tower was supplied at a temperature of 235 ° C. from the bottom of the tower and discharged at 112 ° C. from the top of the tower.
  • the water content in the base granules was as shown in Table 1.
  • the physical properties of the obtained base granules are all from 198 ⁇ m to 243 ⁇ m in average particle size, 480 g / L to 540 g / L in bulk density, 250 gf to 550 gf in particle strength, and 0.33 mL / g to 0.56 mL in pore volume. / G, and the pore diameter was in the range of 0.25 ⁇ m to 0.62 ⁇ m.
  • the surfactant compositions used in Examples 1 to 6 and Comparative Examples 3 to 4 were prepared by mixing a nonionic surfactant and water at a mass ratio shown in Tables 1 and 3 and adjusting the temperature to 60 ° C. I got it.
  • the surfactant compositions used in Examples 7, 11 to 26 and Comparative Examples 5 to 11 were prepared by using an anionic surfactant (LAS-Na, AS-Na, ES) having an effective content of 50% in a nonionic surfactant. (-Na or ⁇ -SFE) aqueous solution and predetermined water were added and mixed so as to have mass ratios described in Tables 1 to 3. The temperature was adjusted to 60 ° C. However, in Example 13 and Comparative Examples 5 to 6, water was adjusted by evaporating water at 60 ° C. after the production. In addition, Example 23 was prepared by neutralizing a fatty acid with 48% caustic soda in a surfactant composition. Furthermore, Example 24 was prepared by adding a predetermined amount of polyethylene glycol. Examples 8 to 10 were obtained by mixing a nonionic surfactant with an anionic surfactant aqueous solution having an effective content of 30% at a mass ratio shown in Table 1 and adjusting the temperature to 60 ° C.
  • an anionic surfactant LAS-N
  • Comparative Example 1 was used separately without mixing the nonionic surfactant and water. Each temperature was adjusted to 60 ° C.
  • Comparative Example 2 a nonionic surfactant and an anionic surfactant aqueous solution having an effective content of 50% were used separately without mixing. Each temperature was adjusted to 60 ° C.
  • Step (C) of Examples 1 to 27 and Comparative Examples 3 to 11 were performed as follows. 100 parts by weight of the base granule group preheated to 50 ° C. was put into a Redige mixer (manufactured by Matsubo Co., Ltd., with a 20 L jacket) and the main shaft (the number of rotations of the main shaft: 80 r / min, the fluid number of the stirring blades: 1.07) ) Started rotating. The chopper (with crushing blades) was not rotated, and hot water at 60 ° C. was passed through the jacket at 10 L / min. After stirring for 1 minute by rotation of the main shaft, the surfactant composition at 60 ° C. is added over 2 minutes so as to be the parts by mass shown in Tables 1 to 3, and then mixed for 6 minutes and then discharged. did. The physical properties of the obtained detergent particles were as shown in Tables 1 to 3.
  • Step (C) of Comparative Example 1 was performed as follows. 100 parts by weight of the base granule group preheated to 50 ° C. was put into a Redige mixer (manufactured by Matsubo Co., Ltd., with a 20 L jacket) and the main shaft (the number of rotations of the main shaft: 80 r / min, the fluid number of the stirring blades: 1.07) ) Started rotating. The chopper (with crushing blades) was not rotated, and hot water at 60 ° C. was passed through the jacket at 10 L / min. After stirring for 1 minute by rotation of the main shaft, a nonionic surfactant at 60 ° C. is added over 1 minute so as to be the mass part shown in Table 3, and then water at 60 ° C. is added over 1 minute. Then, after mixing for 6 minutes, it was discharged. The physical properties of the resulting detergent particles are as shown in Table 3.
  • the process (C) of the comparative example 2 was performed as follows. 100 parts by weight of the base granule group preheated to 50 ° C. was put into a Redige mixer (manufactured by Matsubo Co., Ltd., with a 20 L jacket) and the main shaft (the number of rotations of the main shaft: 80 r / min, the fluid number of the stirring blades: 1.07) ) Started rotating. The chopper (with crushing blades) was not rotated, and hot water at 60 ° C. was passed through the jacket at 10 L / min. After stirring for 1 minute by rotation of the main shaft, a nonionic surfactant at 60 ° C.
  • EO ethylene oxide
  • Nonionic surfactant 2 It has 12 to 14 carbon atoms.
  • Non-ionic surfactant with an average of 21 moles of EO added to a primary alcohol 9 moles of EO, 2 moles of propylene oxide, and 9 moles of EO on a primary alcohol with 12 to 14 carbon atoms
  • Block addition in order ⁇ LAS-Na: Alkyl group linear sodium alkylbenzene sulfonate having 12 to 14 carbon atoms
  • AS-Na Alkyl sulfate sodium salt having 12 to 16 carbon atoms in alkyl group
  • ES-Na Alkyl Polyoxyethylene alkyl ether sulfate Na salt / ⁇ -SFE having 12 to 14 carbon atoms and an average EO addition mole number of 2: ⁇ -sulfo fatty acid methyl ester sodium having 12 to 14 carbon atoms in the kill group
  • Fatty acid sodium manufactured by Kao Corporation, trade name: Lunac L55 neutralized with 48% caustic soda

Abstract

The invention is a method for producing a detergent particle group, comprising: a step (A) of preparing base granules in which the contents of sodium carbonate, a water-insoluble inorganic salt, an acrylic acid-based polymer, and a surfactant fall within specific ranges, respectively, by spray-drying a slurry containing sodium carbonate, an acrylic acid-based polymer in which the ratio of the constituent unit of acrylic acid or a salt thereof to the total monomer constituent units constituting the polymer is from 90 to 100% by mole, and water, and optionally containing a water-insoluble inorganic salt; a step (B) of preparing a surfactant composition containing a surfactant including a predetermined amount of a nonionic surfactant and water in amounts within specific ranges; and a step (C) of mixing the base granules obtained in the step (A) and the surfactant composition obtained in the step (B) while substantially maintaining the form of the base granules.

Description

洗剤粒子群の製造方法Method for producing detergent particles
  本発明は、洗剤粒子群の製造方法に関する。
背景技術
The present invention relates to a method for producing detergent particles.
Background art
  粉末洗剤を構成する洗剤粒子群の流動性は、生産性の向上、使いやすさなど観点から重要な物性であり、流動性の高い洗剤粒子群が求められている。ここで流動性とは、例えば、JIS K3362に既定された嵩密度測定装置において、100mlの粉末が流れ落ちるのに要する時間である。流動性が高ければ洗剤の充填に要する時間が短縮できるため、生産性が向上する。 The fluidity of the detergent particles constituting the powder detergent is an important physical property from the viewpoints of improvement in productivity and ease of use, and there is a demand for detergent particles with high fluidity. Here, the fluidity is, for example, the time required for 100 ml of powder to flow down in a bulk density measuring device defined in JIS K3362. If the fluidity is high, the time required for filling the detergent can be shortened, so that the productivity is improved.
  一般に、衣料用の粉末洗剤では、界面活性剤は陰イオン性界面活性剤を主体とする配合が中心であり、そのような配合系での流動性の向上が種々提案されている。WO―A2006/013982(JP-A2006-137925及びEP―A1788071に対応する)には、水と特定の陰イオン性界面活性剤とを含む界面活性剤組成物とベース顆粒とを混合して得た混合物を微粉体で表面改質する、単核性洗剤粒子群の製造方法が開示されている。また、WO―A2005/083049(JP-A2007-522330に対応する)には、アニオン性洗浄性界面活性剤、非イオン性洗浄性界面活性剤、及びカチオン性洗浄性界面活性剤の3元の洗浄性界面活性剤系を含み、ゼオライトビルダー類とリン酸塩ビルダー類とを少量含むか又は全く含まない粒状洗濯洗剤組成物が開示されている。またベース顆粒に界面活性剤を担持させることで得られる洗剤粒子及びその製造方法に関する先行技術としては、例えば、WO―A99/029830(EP―A0969082に対応する)及びWO―A00/023560(EP―A1041139に対応する)
発明の要約
In general, in powder detergents for clothing, surfactants are mainly formulated with an anionic surfactant as the main component, and various improvements in fluidity in such a blended system have been proposed. WO-A 2006/013982 (corresponding to JP-A 2006-137925 and EP-A 1788071) was obtained by mixing a surfactant composition containing water and a specific anionic surfactant with base granules. A method for producing a mononuclear detergent particle group in which a mixture is surface-modified with a fine powder is disclosed. WO-A 2005/083049 (corresponding to JP-A 2007-522330) is a three-way cleaning of an anionic detersive surfactant, a nonionic detersive surfactant, and a cationic detersive surfactant. Granular laundry detergent compositions are disclosed that contain a surfactant system and contain little or no zeolite builders and phosphate builders. Further, as prior art relating to detergent particles obtained by loading a base granule with a surfactant and a method for producing the same, WO-A99 / 029830 (corresponding to EP-A0996982) and WO-A00 / 023560 (EP- (Corresponding to A1041139)
Summary of invention
  本発明は、下記工程(A)~(C)を含む、洗剤粒子群の製造方法に関する。
工程(A):炭酸ナトリウム、ポリマーを構成している全モノマー構成単位に対するアクリル酸又はその塩の構成単位が占める割合が90~100モル%であるアクリル酸型ポリマー、及び水を含有し、水不溶性無機塩を含有してもよいスラリーを噴霧乾燥して、炭酸ナトリウム25~80質量%、水不溶性無機塩0~30質量%、及びアクリル酸型ポリマー2~25質量%を含有し、界面活性剤の含有量が2質量%以下であるベース顆粒を調製する工程、
工程(B):界面活性剤を合計で50~80質量%、非イオン界面活性剤を15質量%以上及び水を20~50質量%含有する界面活性剤組成物を調製する工程、
工程(C):工程(A)で得られたベース顆粒と、工程(B)で得られた界面活性剤組成物とを、前記ベース顆粒の形態を実質的に維持しつつ混合する工程。
The present invention relates to a method for producing detergent particles, comprising the following steps (A) to (C).
Step (A): Sodium carbonate, an acrylic acid type polymer in which the proportion of the constituent units of acrylic acid or a salt thereof with respect to all monomer constituent units constituting the polymer is 90 to 100 mol%, and water, A slurry that may contain an insoluble inorganic salt is spray-dried, and contains 25 to 80% by mass of sodium carbonate, 0 to 30% by mass of a water-insoluble inorganic salt, and 2 to 25% by mass of an acrylic acid type polymer, and has surface activity. A step of preparing a base granule having an agent content of 2% by mass or less,
Step (B): a step of preparing a surfactant composition containing a total of 50 to 80% by weight of the surfactant, 15% by weight or more of the nonionic surfactant and 20 to 50% by weight of water,
Step (C): A step of mixing the base granule obtained in the step (A) and the surfactant composition obtained in the step (B) while substantially maintaining the form of the base granule.
 更に、本発明は、下記工程(A)~(C)を含む、洗剤粒子群の製造方法に関する。
工程(A):炭酸ナトリウム、ポリアクリル酸又はその塩、及び水を含有し、水不溶性無機塩を含有してもよいスラリーを噴霧乾燥して、炭酸ナトリウム25~80質量%、水不溶性無機塩0~30質量%、及びポリアクリル酸又はその塩2~25質量%を含有し、界面活性剤の含有量が2質量%以下であるベース顆粒を調製する工程、
工程(B):界面活性剤を合計で50~80質量%、非イオン界面活性剤を15質量%以上及び水を20~50質量%含有する界面活性剤組成物を調製する工程、
工程(C):工程(A)で得られたベース顆粒と、工程(B)で得られた界面活性剤組成物とを、前記ベース顆粒の形態を実質的に維持しつつ混合する工程。
 さらに、本発明は、上記製造方法によって得られた洗剤粒子群、上記製造方法によって得られた洗剤粒子群を用いて、繊維製品を洗浄する方法または上記製造方法によって得られた洗剤粒子群の繊維製品の洗浄への用途を提供する。
発明の詳細な説明
Furthermore, the present invention relates to a method for producing detergent particles comprising the following steps (A) to (C).
Step (A): A slurry containing sodium carbonate, polyacrylic acid or a salt thereof, and water, which may contain a water-insoluble inorganic salt, is spray-dried to obtain 25 to 80% by mass of sodium carbonate, a water-insoluble inorganic salt. A step of preparing a base granule containing 0 to 30% by mass and 2 to 25% by mass of polyacrylic acid or a salt thereof and having a surfactant content of 2% by mass or less;
Step (B): a step of preparing a surfactant composition containing a total of 50 to 80% by weight of the surfactant, 15% by weight or more of the nonionic surfactant and 20 to 50% by weight of water,
Step (C): A step of mixing the base granule obtained in the step (A) and the surfactant composition obtained in the step (B) while substantially maintaining the form of the base granule.
Furthermore, the present invention provides a detergent particle group obtained by the above production method, a method of washing a textile product using the detergent particle group obtained by the above production method, or a fiber of the detergent particle group obtained by the above production method. Provide use for product cleaning.
Detailed Description of the Invention
  従来、粉末洗剤の流動性を高めるためには、ゼオライトなどの水不溶性無機粉体で洗剤粒子の表面を被覆することで表面を改質する方法が一般的に行われている。しかしながら界面活性剤として例えば非イオン界面活性剤などの液状性の高い界面活性剤を配合する場合、該界面活性剤の含有量が高まるにつれて流動性に優れる洗剤粒子群を製造することが難しくなる。対応策としては、先の表面改質に加えて、例えば非晶質シリカなどの吸油性担体や多孔性の噴霧乾燥粒子などを用いることで吸油能を高めて粉末物性を整える方法が提案されているが、製造時の収率性を高めるために、より優れた流動性の洗剤粒子が求められている。 Conventionally, in order to improve the fluidity of a powder detergent, a method of modifying the surface by coating the surface of the detergent particles with a water-insoluble inorganic powder such as zeolite is generally performed. However, when a highly liquid surfactant such as a nonionic surfactant is blended as the surfactant, it becomes difficult to produce a detergent particle group having excellent fluidity as the surfactant content increases. As a countermeasure, in addition to the previous surface modification, a method has been proposed in which, for example, an oil-absorbing carrier such as amorphous silica or porous spray-dried particles is used to increase the oil-absorbing ability and adjust the powder physical properties. However, in order to increase the yield in production, there is a demand for more fluid detergent particles.
  本発明は、流動性に優れた洗剤粒子群を収率よく製造できる方法、特には非イオン界面活性剤を配合する洗剤粒子群を収率よく製造できる方法を提供する。 The present invention provides a method capable of producing a detergent particle group excellent in fluidity with a high yield, particularly a method capable of producing a detergent particle group containing a nonionic surfactant with a high yield.
  本発明者は、流動性に優れた粉末洗剤粒子群が得られる方法について種々検討したところ、非常に簡易な製造方法で流動性に優れる粉末洗剤粒子群が得られることを見出し、製造効率を高めるだけでなく、最終製品としても有用な本発明に至った。 The present inventor has conducted various studies on methods for obtaining a powder detergent particle group having excellent fluidity, and found that a powder detergent particle group having excellent fluidity can be obtained by a very simple production method, thereby increasing production efficiency. As a result, the present invention was useful as a final product.
  本発明によれば、流動性に優れた洗剤粒子群を製造できる方法が提供される。更には、本発明では、ゼオライト等、従来表面改質剤として用いられてきた水不溶性無機塩の配合量を低減しても流動性に優れた洗剤粒子群を製造する方法もまた提供するものである。また、本発明は表面改質工程を実質上行わなくてもよく、流動性に優れた洗剤粒子群を製造する。 According to the present invention, there is provided a method capable of producing a detergent particle group excellent in fluidity. Furthermore, the present invention also provides a method for producing detergent particles having excellent fluidity even when the blending amount of water-insoluble inorganic salts conventionally used as surface modifiers such as zeolite is reduced. is there. In addition, the present invention does not require a surface modification step, and produces a detergent particle group having excellent fluidity.
<工程(A)>
  本発明の製造方法において、工程(A)は、炭酸ナトリウム、ポリマーを構成している全モノマー構成単位に対するアクリル酸又はその塩の構成単位が占める割合が90~100モル%であるアクリル酸型ポリマー、好ましくはポリアクリル酸又はその塩、及び水を含有し、水不溶性無機塩を含有してもよいスラリーを噴霧乾燥して、炭酸ナトリウム25~80質量%、水不溶性無機塩0~30質量%、及びポリアクリル酸又はその塩2~25質量%を含有し、界面活性剤の含有量が2質量%以下であるベース顆粒を調製する工程である。
<Process (A)>
In the production method of the present invention, the step (A) is an acrylic acid type polymer in which the proportion of the structural unit of acrylic acid or a salt thereof is 90 to 100 mol% with respect to all the monomer structural units constituting sodium carbonate and the polymer Preferably, the slurry containing polyacrylic acid or a salt thereof and water, which may contain a water-insoluble inorganic salt, is spray-dried to obtain 25-80% by mass of sodium carbonate, 0-30% by mass of the water-insoluble inorganic salt And a base granule containing 2 to 25% by mass of polyacrylic acid or a salt thereof and having a surfactant content of 2% by mass or less.
  工程(A)で用いる水不溶性無機塩に関して「水不溶性」とは、20℃のイオン交換水100gに対する溶解量が1g以下であることをいう。 “Water-insoluble” with respect to the water-insoluble inorganic salt used in the step (A) means that the amount dissolved in 100 g of ion-exchanged water at 20 ° C. is 1 g or less.
  本発明では水不溶性無機塩としては、1次粒子の平均粒径が0.1~20μmのものが好ましく、例えば、結晶性もしくは非晶質のアルミノ珪酸塩や、二酸化珪素、水和珪酸化合物、パーライト、ベントナイト等の粘土化合物等があるが、結晶性もしくは非晶質のアルミノ珪酸塩や、二酸化珪素、水和珪酸化合物が好適であり、中でも結晶性アルミノ珪酸塩が好ましい。水不溶性無機塩のうち結晶性アルミノ珪酸塩として知られているゼオライトは金属イオン封鎖剤として、粘土化合物は柔軟基材として配合される。また、ベース顆粒中に水不溶性無機塩を含有することで、最終的に得られる洗剤粒子の真密度を高め、粒子強度を高めることができる一方で、場合によっては冷水溶解時の水不溶分の構成成分となることもある。しかしながら本発明の製造方法によれば、ベース顆粒内の水不溶性無機塩の割合を制限しても、強度低下への影響が少なく優れた流動性が得られる。 In the present invention, the water-insoluble inorganic salt preferably has an average primary particle size of 0.1 to 20 μm. For example, crystalline or amorphous aluminosilicate, silicon dioxide, hydrated silicate compound, Although there are clay compounds such as pearlite and bentonite, crystalline or amorphous aluminosilicates, silicon dioxide and hydrated silicate compounds are preferred, and crystalline aluminosilicates are particularly preferred. Among water-insoluble inorganic salts, zeolite known as crystalline aluminosilicate is compounded as a sequestering agent, and clay compound is blended as a flexible substrate. In addition, by including a water-insoluble inorganic salt in the base granule, the final density of the finally obtained detergent particles can be increased, and the particle strength can be increased. May be a constituent. However, according to the production method of the present invention, even if the ratio of the water-insoluble inorganic salt in the base granule is limited, excellent fluidity can be obtained with little influence on strength reduction.
 本発明のアクリル酸型ポリマーは、ポリマーを構成している主たる構成単位が、アクリル酸又はその塩のモノマーに由来する構造単位である。従ってアクリル酸型ポリマーは、アクリル酸ホモポリマー、アクリル酸コポリマー又はそれらの塩と表現することもできる。本発明では、アクリル酸型ポリマーのモノマー構成単位のうちアクリル酸モノマーからの構成単位が占める割合が90~100モル%である。アクリル酸型ポリマーのモノマー構成単位のうちアクリル酸モノマーの構成単位が占める割合は、好ましくは95~100モル%、より好ましくは97~100モル%であり、該割合が100モル%のポリアクリル酸(アクリル酸のホモポリマー)がより更に好ましい。アクリル酸型ポリマーは、アルカリ金属等による塩であってもよい。アクリル酸又はその塩をポリマーのモノマー構成単位として多く含むアクリル酸型ポリマーを用いることで、優れた粉末物性を有する洗剤粒子群を得ることができる。 The acrylic acid type polymer of the present invention is a structural unit in which the main structural unit constituting the polymer is derived from a monomer of acrylic acid or a salt thereof. Therefore, the acrylic acid type polymer can also be expressed as an acrylic acid homopolymer, an acrylic acid copolymer, or a salt thereof. In the present invention, the proportion of the constituent units from the acrylic acid monomer in the monomer constituent units of the acrylic acid type polymer is 90 to 100 mol%. The proportion of acrylic acid monomer constituent units in the monomer constituent units of the acrylic acid type polymer is preferably 95 to 100 mol%, more preferably 97 to 100 mol%, and the proportion is 100 mol% of polyacrylic acid (A homopolymer of acrylic acid) is even more preferable. The acrylic acid type polymer may be a salt of an alkali metal or the like. By using an acrylic acid type polymer containing a large amount of acrylic acid or a salt thereof as a monomer constituent unit of the polymer, a detergent particle group having excellent powder physical properties can be obtained.
 アクリル酸型ポリマーを構成しているアクリル酸又はその塩の構成単位以外のモノマー構成単位としては、アクリル酸又はその塩と共重合可能なモノマーに由来する構成単位であり、本発明の効果を損なわず、アクリル酸のカルボン酸基を修飾しないものが選ばれる。アクリル酸型ポリマーを構成するための、アクリル酸又はその塩以外のモノマーとしては、非イオン性モノマー及び/又はアニオン性モノマー、更にアニオン性モノマーが好ましい。アニオン性モノマーとしては、具体的にはアリルスルホン酸、ビニルスルホン酸、メタリルスルホン酸等のスルホン酸系モノマーや、マレイン酸、メタクリル酸、イタコン酸等などのアクリル酸以外のカルボン酸系モノマーを挙げることができる。更には、本発明のアクリル酸型コポリマーは、アクリル酸とアリルスルホン酸又はマレイン酸とのコポリマー又はそのコポリマーの塩であるアクリル酸コポリマーが好ましい。特に本発明のアクリル酸型ポリマーは、アクリル酸のホモポリマーであるポリアクリル酸又はその塩が好ましい。
  また、アクリル酸型ポリマー、好ましくはポリアクリル酸又はその塩としては、重量平均分子量100~80000、更に2000以上であって且つカルボキシル基を10個以上有するものがさらに好ましい。従って、アクリル酸型ポリマー、好ましくはポリアクリル酸又はその塩の重量平均分子量は、2000~80000が好ましい。アクリル酸型ポリマー、好ましくはポリアクリル酸の塩はアルカリ金属塩が好ましく、ナトリウム塩がより好ましい。噴霧乾燥用スラリーに酸又は部分中和物として配合し、スラリー中で中和してもよい。重量平均分子量はゲルパーミエーションクロマトグラフィーにより、アセトニトリルと水の混合溶液(リン酸緩衝液)を展開溶媒とし、ポリエチレングリコールを標準物質として測定することができる。
The monomer constituent unit other than the constituent unit of acrylic acid or a salt thereof constituting the acrylic acid type polymer is a constituent unit derived from a monomer copolymerizable with acrylic acid or a salt thereof, and the effect of the present invention is impaired. First, one that does not modify the carboxylic acid group of acrylic acid is selected. As a monomer other than acrylic acid or a salt thereof for constituting the acrylic acid type polymer, a nonionic monomer and / or an anionic monomer, and further an anionic monomer are preferable. Specific examples of anionic monomers include sulfonic acid monomers such as allyl sulfonic acid, vinyl sulfonic acid, and methallyl sulfonic acid, and carboxylic acid monomers other than acrylic acid such as maleic acid, methacrylic acid, and itaconic acid. Can be mentioned. Furthermore, the acrylic acid type copolymer of the present invention is preferably an acrylic acid copolymer which is a copolymer of acrylic acid and allylsulfonic acid or maleic acid or a salt of the copolymer. In particular, the acrylic acid type polymer of the present invention is preferably polyacrylic acid or a salt thereof which is a homopolymer of acrylic acid.
As the acrylic acid type polymer, preferably polyacrylic acid or a salt thereof, those having a weight average molecular weight of 100 to 80,000, more than 2000 and having 10 or more carboxyl groups are more preferable. Accordingly, the weight average molecular weight of the acrylic acid type polymer, preferably polyacrylic acid or a salt thereof is preferably 2000 to 80000. The salt of acrylic acid type polymer, preferably polyacrylic acid is preferably an alkali metal salt, more preferably a sodium salt. You may mix | blend with the slurry for spray-drying as an acid or a partially neutralized material, and you may neutralize in a slurry. The weight average molecular weight can be measured by gel permeation chromatography using a mixed solution of acetonitrile and water (phosphate buffer) as a developing solvent and polyethylene glycol as a standard substance.
  前記ベース顆粒は、炭酸ナトリウム、アクリル酸型ポリマー、好ましくはポリアクリル酸又はその塩、及び水、更に必要により水不溶性無機塩を含有するスラリーを噴霧乾燥することによって調製される。 The base granule is prepared by spray drying a slurry containing sodium carbonate, an acrylic acid type polymer, preferably polyacrylic acid or a salt thereof, and water, and optionally a water-insoluble inorganic salt.
  これらの成分以外にも、例えば、一般的に衣料用洗剤に用いられるビルダー、例えば、クエン酸塩、トリポリリン酸ナトリウム等の金属イオン封鎖剤や、炭酸カリウム、アルカリ金属珪酸塩等のアルカリ剤、結晶性珪酸塩等の金属イオン封鎖能・アルカリ能をいずれも有する基材等のうち1種以上及び/又は洗剤組成物に一般的に用いられるその他の基剤、例えば、衣料用洗剤の分野で公知の界面活性剤、前記アクリル酸型ポリマー以外のアクリル酸マレイン酸コポリマーやカルボキシルメチルセルロース等の再汚染防止剤、硫酸ナトリウム、亜硫酸ナトリウム、塩化ナトリウム等の無機粉末、蛍光増白剤、香料等を適宣配合することができる。しかしながら、ベース顆粒はリン酸系ビルダーの含有量が5質量%以下であることが好ましく、リン酸系ビルダーを実質的に含有しないことがより好ましい。 In addition to these components, for example, builders generally used in garment detergents, for example, sequestering agents such as citrate and sodium tripolyphosphate, alkaline agents such as potassium carbonate and alkali metal silicate, crystals One or more of base materials having both sequestering ability and alkaline ability such as basic silicates and / or other bases generally used in detergent compositions, for example, known in the field of detergents for clothing Surfactants, acrylic acid maleic acid copolymers other than the above-mentioned acrylic acid type polymers, anti-contamination agents such as carboxymethyl cellulose, inorganic powders such as sodium sulfate, sodium sulfite, and sodium chloride, fluorescent whitening agents, and fragrances. Can be blended. However, the base granule preferably has a phosphate builder content of 5% by mass or less, and more preferably contains substantially no phosphate builder.
  ベース顆粒が水不溶性無機塩としてゼオライト等の結晶性アルミノ珪酸塩を含有する場合、噴霧乾燥後のベース顆粒中の水分は、ゼオライトの水を吸着する作用を大きくする観点から、ベース顆粒中12質量%以下が好ましく、6質量%以下がより好ましく、3質量%以下が更に好ましい。
 なお、前記ベース顆粒を調製するためのスラリーを噴霧乾燥する際の条件(温度、噴霧乾燥装置、噴霧方法、乾燥方法等)は、公知の方法であればよく、特に限定はない。
When the base granule contains a crystalline aluminosilicate such as zeolite as a water-insoluble inorganic salt, the water content in the base granule after spray drying is 12 mass in the base granule from the viewpoint of increasing the action of adsorbing the water of the zeolite. % Or less is preferable, 6 mass% or less is more preferable, and 3 mass% or less is still more preferable.
The conditions (temperature, spray drying apparatus, spraying method, drying method, etc.) for spray drying the slurry for preparing the base granule may be any known method, and are not particularly limited.
  工程(A)で得られるベース顆粒は、炭酸ナトリウムを25~80質量%、好ましくは30~75質量%、より好ましくは45~70質量%、水不溶性無機塩を0~30質量%、好ましくは0~15質量%、より好ましくは0~5質量%、ポリマーを構成している全モノマー構成単位に対するアクリル酸又はその塩の構成単位が占める割合が90~100モル%であるアクリル酸型ポリマー、好ましくはポリアクリル酸又はその塩を2~25質量%、好ましくは3~20質量%、より好ましくは6~15質量%含有する。また、界面活性剤の含有量は2質量%以下、好ましくは1質量%以下、より好ましくは0.1質量%である。この範囲は、流動性に優れた洗剤粒子群を得る観点から好ましい。なお、水を除いたベース顆粒の残部は、アルカリ金属硫酸塩及びアルカリ金属亜硫酸塩が好ましく、特には硫酸ナトリウムであることがより好ましい。具体的には、前記ベース顆粒の各成分及び濃度範囲(好ましい濃度範囲であってもよい)に追加的に、アルカリ金属硫酸塩の含有量は、ベース顆粒中、好ましくは10~40質量%、アルカリ金属亜硫酸塩の含有量は、ベース顆粒中、好ましくは0~2質量%である。 The base granule obtained in step (A) is 25 to 80% by weight of sodium carbonate, preferably 30 to 75% by weight, more preferably 45 to 70% by weight, and 0 to 30% by weight of water-insoluble inorganic salt, preferably An acrylic acid type polymer in which the proportion of the constituent units of acrylic acid or a salt thereof is 90 to 100% by mass, more preferably 0 to 5% by mass, more preferably 0 to 5% by mass, The polyacrylic acid or a salt thereof is preferably contained in an amount of 2 to 25% by mass, preferably 3 to 20% by mass, more preferably 6 to 15% by mass. The surfactant content is 2% by mass or less, preferably 1% by mass or less, and more preferably 0.1% by mass. This range is preferable from the viewpoint of obtaining a detergent particle group excellent in fluidity. In addition, the remainder of the base granule excluding water is preferably an alkali metal sulfate or alkali metal sulfite, and more preferably sodium sulfate. Specifically, in addition to each component and concentration range (which may be a preferable concentration range) of the base granule, the content of alkali metal sulfate is preferably 10 to 40% by mass in the base granule, The content of alkali metal sulfite is preferably 0 to 2% by mass in the base granule.
  工程(A)で製造されるベース顆粒の細孔容積は、好ましくは0.2mL/1g以上、より好ましくは0.3mL/1g以上である。また、平均細孔径は、好ましくは1μm以下、より好ましくは0.8μm以下である。この範囲において、ベース顆粒同士の凝集が抑制され、洗剤粒子群中の粒子の単核性を維持するのに好適である。細孔容積と平均細孔径の測定法は、下記の通りである。 The pore volume of the base granule produced in the cocoon step (A) is preferably 0.2 mL / 1 g or more, more preferably 0.3 mL / 1 g or more. The average pore diameter is preferably 1 μm or less, more preferably 0.8 μm or less. Within this range, aggregation of the base granules is suppressed, which is suitable for maintaining the mononuclearity of the particles in the detergent particle group. The measuring method of the pore volume and the average pore diameter is as follows.
  水銀ポロシメーター(島津製作所(株)製「SHIMADZU製ポアサイザ9320」)で測定されるベース顆粒内部の細孔径あたりの細孔容積の分布から測定され、細孔容積とは0.01μm~4μmの範囲にある細孔容積のことであり、平均細孔径とは、細孔容積分布のモード径(得られる細孔容積分布中、最大の細孔容積を有する細孔径)のことをいう。 Measured from the distribution of pore volume per pore diameter inside the base granule measured by a mercury porosimeter (“SHIMADZU pore sizer 9320” manufactured by Shimadzu Corporation). The pore volume is in the range of 0.01 μm to 4 μm. It is a certain pore volume, and the average pore diameter means the mode diameter of the pore volume distribution (the pore diameter having the largest pore volume in the obtained pore volume distribution).
  また、粒子強度は好ましくは50~2000kg/cm2、より好ましくは100~1500kg/cm2、特に好ましくは150~1000kg/cm2である。この範囲において、ベース顆粒群が良好な崩壊性を呈し、良好な高速溶解性を有する洗剤粒子群が得られる。粒子強度の測定法は、下記の通りである。 The particle strength is preferably 50 to 2000 kg / cm 2 , more preferably 100 to 1500 kg / cm 2 , and particularly preferably 150 to 1000 kg / cm 2 . Within this range, the base granule group exhibits good disintegration properties, and a detergent particle group having good high-speed solubility can be obtained. The method for measuring the particle strength is as follows.
  内径3cm×高さ8cmの円柱状の容器に、試料20gを入れ、30回タッピング(筒井理化学器械(株)、TVP1型タッピング式密充填カサ密度測定器、タッピング条件;周期36回/分、60mmの高さから自由落下)を行い、その時の試料高さ(初期試料高さ)を測定する。その後、加圧試験機にて容器内に保持した試料の上端面全体を10mm/minの速度で加圧し、荷重-変位曲線の測定を行い、変位率が5%以下での直線部における傾きに初期試料高さをかけ、加圧面積で除した値を粒子強度とする。 20 g of sample is put into a cylindrical container having an inner diameter of 3 cm and a height of 8 cm, and tapping 30 times (Tsutsui Rikenki Co., Ltd., TVP1 type tapping type close-packed dense density measuring instrument, tapping condition; period 36 times / min, 60 mm The sample height at that time (initial sample height) is measured. Thereafter, the entire upper end surface of the sample held in the container with a pressure tester is pressurized at a speed of 10 mm / min, and a load-displacement curve is measured, and the slope of the linear portion with a displacement rate of 5% or less is obtained. The value obtained by multiplying the initial sample height and dividing by the pressurized area is taken as the particle strength.
  また、ベース顆粒の嵩密度は、200~900g/Lが好ましく、300~800g/Lがより好ましく、350~700g/Lが更に好ましく、400~600g/Lが特に好ましい。嵩密度は、JIS K 3362:2008により規定された方法で測定する。 The bulk density of the base granule is preferably 200 to 900 g / L, more preferably 300 to 800 g / L, still more preferably 350 to 700 g / L, and particularly preferably 400 to 600 g / L. The bulk density is measured by a method defined by JIS K K 3362: 2008.
  また、ベース顆粒の平均粒径は、150~500μmが好ましく、180~300μmがより好ましい。平均粒径は、JIS Z 8801:2006の標準篩(目開き2000~125μm、JIS K 3362:2008の付表1及び2を参照)を用いて5分間振動させた後、篩目のサイズによる質量分率からメジアン径を算出する。 The average particle size of the base granule is preferably 150 to 500 μm, more preferably 180 to 300 μm. The average particle size is determined by shaking the mass for 5 minutes using a standard sieve of JIS Z 8801: 2006 (mesh opening 2000-125 μm, see Appendix Tables 1 and 2 of JIS K 3622: 2008), The median diameter is calculated from the rate.
<工程(B)>
  本発明の製造方法において、工程(B)は、界面活性剤を合計で50~80質量%、非イオン界面活性剤を15質量%以上及び水を20~50質量%含有する界面活性剤組成物を調製する工程である。
<Process (B)>
In the production method of the present invention, the step (B) comprises a surfactant composition containing a total of 50 to 80% by weight of the surfactant, 15% by weight or more of the nonionic surfactant and 20 to 50% by weight of water. Is a step of preparing
  界面活性剤は、非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤が挙げられ、非イオン界面活性剤、陰イオン界面活性剤が好ましい。 Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants, and nonionic surfactants and anionic surfactants are preferred.
  非イオン界面活性剤としては、30℃以下に融点を有する非イオン界面活性剤が好ましい。非イオン界面活性剤の融点は、好ましくは30℃以下、より好ましくは25℃以下、更に好ましくは22℃以下である。非イオン界面活性剤としては、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、アルキル(ポリオキシアルキレン)ポリグリコシド、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレングリコール脂肪酸エステル、ポリオキシエチレン-ポリオキシプロピレン-ポリオキシエチレンアルキルエーテル、ポリオキシエチレン-ポリオキシプロピレン-ブロックポリマー、ポリオキシアルキレンアルキロール(脂肪酸)アミドが好ましい。非イオン界面活性剤のアルキル基は炭素数8~22のアルキル基が好ましい。 As the nonionic surfactant, a nonionic surfactant having a melting point at 30 ° C. or lower is preferable. The melting point of the nonionic surfactant is preferably 30 ° C. or lower, more preferably 25 ° C. or lower, and further preferably 22 ° C. or lower. Examples of the nonionic surfactant include polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ether, alkyl (polyoxyalkylene) polyglycoside, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene glycol fatty acid ester, polyoxyethylene- Polyoxypropylene-polyoxyethylene alkyl ether, polyoxyethylene-polyoxypropylene-block polymer, and polyoxyalkylene alkylol (fatty acid) amide are preferred. The alkyl group of the nonionic surfactant is preferably an alkyl group having 8 to 22 carbon atoms.
 非イオン界面活性剤は、ポリオキシアルキレンアルキルエーテルが好ましく、炭素数8~22のアルキル基、更には炭素数10~14のアルキル基を有し、オキシエチレン基を含むオキシアルキレン基の平均付加モル数が4~25モル、更には4~21モル、更には4~12モルであるポリオキシアルキレンアルキルエーテルが好ましい。オキシエチレン基以外のオキシアルキレン基はオキシプロピレン基が好ましい。オキシアルキレン基の平均付加モル数のうち、オキシプロピレン基の付加モル数が0~3であり、オキシエチレン基の平均付加モル数が4~22のものが好ましい。オキシプロピレン基とオキシエチレン基の付加順序はランダム、ブロックであってもよい。 The nonionic surfactant is preferably a polyoxyalkylene alkyl ether having an alkyl group having 8 to 22 carbon atoms, and further having an alkyl group having 10 to 14 carbon atoms, and an average addition mole of an oxyalkylene group containing an oxyethylene group. Polyoxyalkylene alkyl ethers having a number of 4 to 25 mol, more preferably 4 to 21 mol, and further 4 to 12 mol are preferred. The oxyalkylene group other than the oxyethylene group is preferably an oxypropylene group. Among the average addition moles of oxyalkylene groups, those having an addition mole number of oxypropylene groups of 0 to 3 and an average addition mole number of oxyethylene groups of 4 to 22 are preferred. The addition order of the oxypropylene group and the oxyethylene group may be random or block.
 本発明の非イオン界面活性剤として、炭素数10~14のアルコールにアルキレンオキシドが4~12モル(好ましくは6~10モル)付加したポリオキシアルキレンアルキルエーテルが好ましい。ここで、アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド等が挙げられ、好ましくはエチレンオキシドである。より好ましい非イオン界面活性剤は、アルキル基の炭素数が10~14であり、オキシエチレン基の平均付加モル数が4~12モル、更には6~10モルであるポリオキシエチレンアルキルエーテルである。 As the nonionic surfactant of the present invention, a polyoxyalkylene alkyl ether obtained by adding 4 to 12 mol (preferably 6 to 10 mol) of alkylene oxide to an alcohol having 10 to 14 carbon atoms is preferable. Here, examples of the alkylene oxide include ethylene oxide and propylene oxide, and ethylene oxide is preferable. More preferred nonionic surfactants are polyoxyethylene alkyl ethers in which the alkyl group has 10 to 14 carbon atoms, and the average added mole number of oxyethylene groups is 4 to 12 moles, more preferably 6 to 10 moles. .
  また、溶解性、特に低温における溶解性の点から、かかるアルコールにエチレンオキシド、プロピレンオキシド、更に要すればエチレンオキシドがブロック重合又はランダム重合されてなる化合物も好ましい。その中でもEPEノニオンが好ましい。非イオン界面活性剤は単独で用いてもよく、2種以上を併用してもよい。 In addition, from the viewpoint of solubility, particularly solubility at low temperatures, a compound obtained by subjecting such an alcohol to block polymerization or random polymerization of ethylene oxide, propylene oxide, and, if necessary, ethylene oxide is also preferable. Among these, EPE nonion is preferable. A nonionic surfactant may be used independently and may use 2 or more types together.
  なお、非イオン界面活性剤の融点は、FP800サーモシステムのメトラーFP81(Mettler Instrumente AG製)を用い、昇温速度0.2℃/minで測定される。 Note that the melting point of the nonionic surfactant is measured using a Mettler FP81 (manufactured by Mettler Instruments Inc. AG) of an FP800 thermosystem at a temperature rising rate of 0.2 ° C./min.
  陰イオン界面活性剤としては、炭素数10~18のアルコールの硫酸エステル塩、炭素数8~20のアルコールのアルコキシル化物の硫酸エステル塩、アルキルベンゼンスルホン酸塩、パラフィンスルホン酸塩、α-オレフィンスルホン酸塩、α-スルホ脂肪酸塩、α-スルホ脂肪酸アルキルエステル塩又は脂肪酸塩が好ましい。本発明では特に、アルキル鎖の炭素数が10~14の、より好ましくは12~14の直鎖アルキルベンゼンスルホン酸塩が好ましく、対イオンとしては、アルカリ金属類やアミン類が好ましく、特にナトリウム及び/又はカリウム、モノエタノールアミン、ジエタノールアミンが好ましい。 Examples of the anionic surfactant include sulfuric acid ester salts of alcohols having 10 to 18 carbon atoms, sulfuric acid ester salts of alkoxylated products of alcohols having 8 to 20 carbon atoms, alkylbenzene sulfonates, paraffin sulfonates, α-olefin sulfonic acids Salts, α-sulfo fatty acid salts, α-sulfo fatty acid alkyl ester salts or fatty acid salts are preferred. In the present invention, a linear alkylbenzene sulfonate having an alkyl chain with 10 to 14 carbon atoms, more preferably 12 to 14 carbon atoms is preferred, and alkali metals and amines are preferred as the counter ion, particularly sodium and / or Or potassium, monoethanolamine, and diethanolamine are preferable.
  陽イオン界面活性剤としては、アルキルトリメチルアンモニウム塩等の第4アンモニウム塩等が挙げられる。 Examples of the cation surfactant include quaternary ammonium salts such as alkyltrimethylammonium salts.
  両性界面活性剤としては、カルボベタイン型、スルホベタイン型等が例示される。 Examples of amphoteric surfactants include carbobetaine type and sulfobetaine type.
  工程(B)の界面活性剤が、非イオン界面活性剤及び陰イオン界面活性剤の両方を含む場合、非イオン界面活性剤/陰イオン界面活性剤の質量比は、洗浄性や泡立ち及び得られる洗剤粒子群の流動性の観点から、10/1~1/3が好ましく、5/1~1/2がより好ましく、4/1~1/1が更に好ましい。 When the surfactant in step (B) contains both a nonionic surfactant and an anionic surfactant, the mass ratio of the nonionic surfactant / anionic surfactant is obtained by detergency and foaming. From the viewpoint of the fluidity of the detergent particles, 10/1 to 1/3 is preferable, 5/1 to 1/2 is more preferable, and 4/1 to 1/1 is still more preferable.
  界面活性剤組成物中の界面活性剤の含有量は、50~80質量%であり、55~75質量%が好ましく、且つ該界面活性剤濃度範囲において、界面活性剤組成物中の非イオン界面活性剤の含有量は、15質量%以上であり、30質量%以上が好ましい。界面活性剤組成物中の水の含有量は、20~50質量%であり、25~45質量%が好ましい。界面活性剤組成物は、界面活性剤と水以外の成分を含有していてもよいが、界面活性剤と水の含有量の合計が80~99.99質量%、更に90~99.9質量%であることが好ましい。 The content of the surfactant in the surfactant composition is 50 to 80% by mass, preferably 55 to 75% by mass, and in the surfactant concentration range, the nonionic interface in the surfactant composition The content of the activator is 15% by mass or more, and preferably 30% by mass or more. The water content in the surfactant composition is 20 to 50% by mass, preferably 25 to 45% by mass. The surfactant composition may contain components other than the surfactant and water, but the total content of the surfactant and water is 80 to 99.99% by mass, more preferably 90 to 99.9% by mass. % Is preferred.
  また、界面活性剤として脂肪酸塩を配合する場合は、炭素数12~20の飽和脂肪酸のナトリウム、カリウム塩から選ばれる1種以上が好ましい。脂肪酸塩の含有量は、前記非イオン界面活性剤/陰イオン界面活性剤の質量比率を満たした上で、界面活性剤組成物中に好ましくは0.5~10質量%、より好ましくは1~7.5質量%である。 In addition, when a fatty acid salt is blended as a surfactant, at least one selected from sodium and potassium salts of saturated fatty acids having 12 to 20 carbon atoms is preferable. The content of the fatty acid salt is preferably 0.5 to 10% by mass in the surfactant composition, more preferably 1 to 1% after satisfying the mass ratio of the nonionic surfactant / anionic surfactant. 7.5% by mass.
  界面活性剤と水以外の成分としては、ポリオキシアルキレン基を有する非イオン性化合物(非イオン界面活性剤を除く)を含有させてもよい。かかる非イオン性化合物としては、(i)オキシアルキレン基が炭素数2~5のオキシアルキレン基であって重量平均分子量が3000~30000のポリオキシアルキレン、及び(ii)重量平均分子量が3000~30000のポリオキシアルキレンアルキルエーテル(アルキル基の炭素数は1~4)から選ばれる1種以上の化合物が挙げられる。前記非イオン性化合物としては、特にポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンメチルエーテルが好ましい例として挙げられる。なお、非イオン性化合物の分子量は、前記のアクリル酸型ポリマーと同様にして測定することができるが、測定に支障がある場合は、光散乱法を用いて測定することができ、ダイナミック光散乱光度計(DLS-8000シリーズ、大塚電子株式会社製など)を用いて測定する。 成分 As a component other than the surfactant and water, a nonionic compound having a polyoxyalkylene group (excluding the nonionic surfactant) may be contained. Examples of such nonionic compounds include (i) polyoxyalkylene having an oxyalkylene group having 2 to 5 carbon atoms and a weight average molecular weight of 3000 to 30000, and (ii) a weight average molecular weight of 3000 to 30000. And one or more compounds selected from polyoxyalkylene alkyl ethers (wherein the alkyl group has 1 to 4 carbon atoms). Particularly preferred examples of the nonionic compound include polyethylene glycol, polypropylene glycol, and polyoxyethylene methyl ether. The molecular weight of the nonionic compound can be measured in the same manner as the above acrylic acid type polymer, but if there is a problem in the measurement, it can be measured using the light scattering method, and dynamic light scattering can be performed. Measure using a photometer (DLS-8000 series, manufactured by Otsuka Electronics Co., Ltd.).
  前記脂肪酸塩、ポリエチレングリコール等を含有することで、非イオン界面活性剤のシミ出し抑制と耐ケーキング性向上を、より効果的にすることができる。 で By containing the fatty acid salt, polyethylene glycol, and the like, it is possible to more effectively improve the anti-bleeding and non-caking resistance of the nonionic surfactant.
<工程(C)>
  本発明の製造方法において、工程(C)は、工程(A)で得られたベース顆粒と、工程(B)で得られた界面活性剤組成物とを、前記ベース顆粒の形態を実質的に維持しつつ混合する工程である。工程(C)において、界面活性剤組成物とベース顆粒とが均質に混合されることで、後述する粉末物性を有する洗剤粒子群を容易に製造することができる。
<Process (C)>
In the production method of the present invention, in the step (C), the base granule obtained in the step (A) and the surfactant composition obtained in the step (B) are substantially converted into the form of the base granule. It is the process of mixing while maintaining. In the step (C), the surfactant composition and the base granule are uniformly mixed, whereby a detergent particle group having powder physical properties described later can be easily produced.
  工程(C)において、界面活性剤組成物とベース顆粒の混合比率は、ベース顆粒100質量部に対し、洗浄力と得られる洗剤粒子群の流動性の観点から、界面活性剤組成物が好ましくは25~60質量部、より好ましくは30~55質量部、最も好ましくは35~50質量部である。なお前記ベース顆粒及び界面活性剤組成物の構成上の好ましい要件、例えば好ましい化合物や含有量の規定は、工程(C)の混合比率において有効であり、更に好ましい要件でもある。 In the step (C), the mixing ratio of the surfactant composition and the base granule is preferably the surfactant composition with respect to 100 parts by mass of the base granule from the viewpoint of detergency and fluidity of the resulting detergent particles. The amount is 25 to 60 parts by mass, more preferably 30 to 55 parts by mass, and most preferably 35 to 50 parts by mass. In addition, the preferable requirements on the structure of the base granule and the surfactant composition, for example, the definition of preferable compounds and content, are effective in the mixing ratio of the step (C), and are also more preferable requirements.
  工程(C)で用いる、界面活性剤組成物とベース顆粒を混合するための混合機は例えば、界面活性剤組成物を添加するためのノズルや混合機内の温度を制御するためにジャケットを備えたものが好ましい。 The mixer for mixing the surfactant composition and the base granule used in the step (C) includes, for example, a nozzle for adding the surfactant composition and a jacket for controlling the temperature in the mixer. Those are preferred.
  工程(C)における混合条件はベース顆粒の形態を実質的に維持する、即ち、崩壊せしめない混合条件を選択する。例えば、攪拌翼を具備する混合機を用いる場合、水溶性無機塩の崩壊を抑制させる観点及び混合効率の観点から、機内に具備された攪拌翼の混合羽根の形状がパドル型の場合は該攪拌翼のフルード数が好ましくは0.5~8、より好ましくは0.8~4、更に好ましくは0.5~2である。また、混合羽根の形状がスクリュー型の場合は、該攪拌翼のフルード数が好ましくは0.1~4、より好ましくは0.15~2である。また、混合羽根の形状がリボン型の場合は、該攪拌翼のフルード数が好ましくは0.05~4、より好ましくは0.1~2である。 The mixing conditions in the cocoon step (C) are selected so that the morphology of the base granules is substantially maintained, i.e., does not collapse. For example, when using a mixer equipped with a stirring blade, from the viewpoint of suppressing the collapse of the water-soluble inorganic salt and from the viewpoint of mixing efficiency, if the shape of the mixing blade of the stirring blade provided in the machine is a paddle type, the stirring The fluid number of the blade is preferably 0.5 to 8, more preferably 0.8 to 4, and still more preferably 0.5 to 2. In the case where the shape of the mixing blade is a screw type, the fluid number of the stirring blade is preferably 0.1 to 4, more preferably 0.15 to 2. When the mixing blade has a ribbon shape, the fluid number of the stirring blade is preferably 0.05 to 4, more preferably 0.1 to 2.
  さらに、攪拌翼及び解砕翼を具備する混合機を用いてもよい。かかる混合機を用いてベース顆粒と界面活性剤組成物を混合する場合、従来では混合を促進する点から該解砕翼を高速回転させることが慣例であった。しかしながら、本発明の場合、ベース顆粒の崩壊を抑制する観点から、解砕翼を実質的に回転させないことが好ましい。解砕翼を実質的に回転させないとは、該解砕翼を全く回転させないこと、又は該解砕翼の形状、大きさ等を鑑みて、ベース顆粒を崩壊させない範囲内で、該解砕翼近傍の各種原料の滞留を防止する目的で該解砕翼を回転させることをいう。具体的には連続的に該解砕翼を回転させる場合はフルード数として200以下が好ましく、より好ましくは100以下、間欠的に回転させる場合、フルード数は特に制限されない。このような条件で混合することにより、ベース顆粒を実質的に崩壊させることなく混合物を得ることができる。 Furthermore, you may use the mixer which comprises a stirring blade and a crushing blade. When mixing the base granule and the surfactant composition using such a mixer, it has conventionally been customary to rotate the crushing blade at a high speed in order to promote mixing. However, in the case of the present invention, it is preferable not to rotate the crushing blade substantially from the viewpoint of suppressing the collapse of the base granules. The fact that the crushing blade is not substantially rotated means that the crushing blade is not rotated at all, or in view of the shape, size, etc. of the crushing blade, the retention of various raw materials in the vicinity of the crushing blade is prevented within the range where the base granule is not collapsed. This means that the crushing blade is rotated for the purpose. Specifically, when the crushing blade is continuously rotated, the fluid number is preferably 200 or less, more preferably 100 or less, and when it is intermittently rotated, the fluid number is not particularly limited. By mixing under such conditions, a mixture can be obtained without substantially breaking the base granules.
  なお、本明細書において、ベース顆粒の形態を実質的に維持する又は崩壊せしめないとは、混合物中でベース顆粒の70個数%以上がその形態を維持していることであり、その確認方法として、例えば得られた混合物を、有機溶媒を用いて可溶分を抽出した後の粒子を観察する方法が挙げられる。 In the present specification, the fact that the form of the base granule is not substantially maintained or collapsed means that 70% by number or more of the base granule maintains the form in the mixture. For example, a method of observing particles after extracting a soluble component of the obtained mixture using an organic solvent can be mentioned.
  また、本明細書で定義されるフルード数は以下の式で算出する。
    フルード数=V2/(R×g)
ここで、V:攪拌翼又は解砕翼の先端の周速[m/s]
        R:攪拌翼又は解砕翼の回転半径[m]
        g:重力加速度[m/s2
Further, the fluid number defined in this specification is calculated by the following equation.
Fluid number = V 2 / (R × g)
Here, V: peripheral speed [m / s] at the tip of the stirring blade or crushing blade
R: Rotating radius of stirring blade or crushing blade [m]
g: Gravity acceleration [m / s 2 ]
  工程(C)においては、所望により、ベース顆粒以外の粉体原料も配合することができる。その配合量は、溶解性の点から、ベース顆粒100質量部に対して好ましくは30質量部以下、より好ましくは15質量部以下である。 In the cocoon process (C), powder raw materials other than the base granules can be blended if desired. The blending amount is preferably 30 parts by mass or less, more preferably 15 parts by mass or less with respect to 100 parts by mass of the base granule from the viewpoint of solubility.
  本明細書で言う、ベース顆粒以外の粉体原料とは、常温で粉末の洗浄力強化剤又は吸油剤を意味する。具体的には、ゼオライト、クエン酸塩等の金属イオン封鎖能を示す基剤、炭酸ナトリウム、炭酸カリウム等のアルカリ能を示す基剤、結晶性ケイ酸塩等の金属イオン封鎖能・アルカリ能のいずれも有する基剤等や、金属イオン封鎖能は低いが高い吸油能を有する非晶質シリカや非晶質アルミノケイ酸塩、粘土鉱物等が挙げられる。かかる粉体原料を所望によりベース顆粒群と併用することで、界面活性剤組成物の高配合化及び混合機内への混合物の付着の低減が達成され、また、洗浄力の向上を図ることもできる。 粉体 The powder raw material other than the base granule referred to in the present specification means a powder cleaning strength enhancer or oil absorbent at room temperature. Specifically, bases showing sequestering ability such as zeolite and citrate, bases showing alkaline ability such as sodium carbonate and potassium carbonate, sequestering ability and alkaline ability such as crystalline silicate Examples thereof include bases and the like, and amorphous silica, amorphous aluminosilicate, clay mineral and the like having low sequestering ability but high oil absorption ability. By using this powder raw material together with the base granule group as desired, it is possible to increase the surfactant composition and reduce the adhesion of the mixture into the mixer, and also to improve the cleaning power. .
  なお、工程(C)と同時又は工程(C)の後に、0.1~20μmの水不溶性無機塩ゼオライト、シリカ及び粘土鉱物などの水不溶性無機塩を微粉体として添加することで、該水不溶性無機塩を洗剤粒子群の表面改質剤として用いることができる。通常、表面改質剤により洗剤粒子の流動性を向上させることができる。特に非イオン界面活性剤などの液状性の界面活性剤を用いる場合は効果的である。しかしながら本発明では意図的にこれら水不溶性無機塩を表面改質剤の量を低減させても、場合によっては表面改質剤を用いない場合でも、優れた粉末流動性を得ることができる。すなわち、本発明の製造方法によれば、製造工程において、表面改質剤で処理する工程を削減ないし処理時間を短縮したとしても、流動性に優れる洗剤粒子が得られるため、製造効率が向上する。更に結果として最終製品として、表面改質剤が低減された、或いは実質的に表面改質剤を有さない、流動性に優れる粉末洗剤を得ることができる。 At the same time as step (C) or after step (C), water-insoluble inorganic salts such as 0.1 to 20 μm water-insoluble inorganic salt zeolite, silica and clay minerals are added as fine powders, so that the water-insoluble Inorganic salts can be used as surface modifiers for detergent particles. Usually, the fluidity of the detergent particles can be improved by the surface modifier. This is particularly effective when a liquid surfactant such as a nonionic surfactant is used. However, in the present invention, excellent powder fluidity can be obtained even if these water-insoluble inorganic salts are intentionally reduced in the amount of the surface modifier or even if no surface modifier is used. That is, according to the production method of the present invention, even if the number of steps to be treated with the surface modifier is reduced or the treatment time is shortened in the production process, detergent particles having excellent fluidity can be obtained, and thus production efficiency is improved. . Furthermore, as a result, it is possible to obtain a powder detergent with excellent flowability, in which the surface modifier is reduced or substantially free of the surface modifier as a final product.
  本発明の洗剤粒子群は、工程(C)後のこれら水不溶性無機塩の配合を排除するものではないが、工程(C)と同時又は工程(C)の後に配合される水不溶性無機塩は、洗剤粒子群中に5質量%以下、更には2質量%以下であってもよく、特には実質的に表面改質剤として含有しなくとも優れた粉末物性を得ることができる。 The detergent particle group of the present invention does not exclude the blending of these water-insoluble inorganic salts after the step (C), but the water-insoluble inorganic salt blended simultaneously with the step (C) or after the step (C) In the detergent particle group, it may be 5% by mass or less, and further 2% by mass or less, and in particular, excellent powder physical properties can be obtained even if not substantially contained as a surface modifier.
  また、混合時の機内温度は、ベース顆粒の崩壊を実質的に抑制しながら界面活性剤組成物とベース顆粒を効率的に混合できる温度が好ましい。例えば、混合する界面活性剤組成物の流動点以上が好ましく、流動点の10℃以上がより好ましく、流動点の20℃以上が特に好ましい。また、混合時間は2~10分程度が好ましい。機内温度の調整はジャケット等に冷水や温水を流すことにより行うことができる。そのため、混合に用いる装置はジャケットを備えた構造のものが好ましい。 In addition, the temperature inside the apparatus at the time of mixing is preferably a temperature at which the surfactant composition and the base granule can be efficiently mixed while substantially suppressing the collapse of the base granule. For example, the pour point or higher of the surfactant composition to be mixed is preferable, the pour point of 10 ° C or higher is more preferable, and the pour point of 20 ° C or higher is particularly preferable. The mixing time is preferably about 2 to 10 minutes. The in-machine temperature can be adjusted by flowing cold water or hot water through a jacket or the like. Therefore, the apparatus used for mixing preferably has a structure with a jacket.
  界面活性剤組成物とベース顆粒の混合方法としては、回分式でも連続式でもよい。回分式で混合する場合、予めベース顆粒を混合機に仕込んだ後、界面活性剤組成物を添加することが好ましい。供給する界面活性剤組成物の温度は、界面活性剤組成物の安定性の観点から、好ましくは70℃以下、より好ましくは60℃以下である。 The mixing method of the surfactant composition and the base granule may be a batch type or a continuous type. When mixing batchwise, it is preferable to add the surfactant composition after the base granule is previously charged in the mixer. The temperature of the surfactant composition to be supplied is preferably 70 ° C. or less, more preferably 60 ° C. or less, from the viewpoint of the stability of the surfactant composition.
  回分式で混合を行う場合、一般に回分式の混合に使用される混合機を用いれば、特に限定されないが、例えば混合羽根の形状がパドル型の混合機として、(1)混合槽で内部に攪拌軸を有し、この軸に攪拌翼を取り付けて粉末の混合を行う形式のミキサー:例えばヘンシェルミキサー(三井三池化工機(株)製)、ハイスピードミキサー(深江工業(株)製)、バーチカルグラニュレーター((株)パウレック製)、レディゲミキサー((株)マツボー製)、プロシェアミキサー(太平洋機工(株)製)、TSK-MTIミキサー(月島機械(株)製)、特開平10-296064号公報、特開平10-296065号公報記載の混合装置等、混合羽根の形状がリボン型の混合機として、(2)円筒型、半円筒型又は円錐型の固定された容器内でスパイラルを形成したリボン状の羽根が回転することにより混合を行う形式のミキサー:リボンミキサー(日和機械工業(株)製)、バッチニーダー(佐竹化学機械工業(株)製)、リボコーン((株)大順製作所製)、ジュリアミキサー((株)徳寿工作所製)等、混合羽根の形状がスクリュー型の混合機として、(3)コニカル状の容器に沿ってスクリューが容器の壁と平行の軸を中心として自転しながら公転することにより混合を行う形式のミキサー:例えばナウターミキサー(ホソカワミクロン(株)製)、SVミキサー(神鋼パンテック(株)製)等がある。 When mixing in a batch type, there is no particular limitation as long as a mixer generally used for batch type mixing is used. For example, the mixing blade shape is a paddle type mixer. A mixer having a shaft, and mixing the powder by attaching a stirring blade to the shaft: for example, Henschel mixer (manufactured by Mitsui Miike Chemical Co., Ltd.), high speed mixer (manufactured by Fukae Kogyo Co., Ltd.), vertical granule Rator (Powrec Co., Ltd.), Redige Mixer (Matsubo Co., Ltd.), Proshear Mixer (Pacific Kiko Co., Ltd.), TSK-MTI Mixer (Tsukishima Kikai Co., Ltd.), JP 10-296064 (2) Cylindrical, semi-cylindrical, or conical fixed containers, such as mixing apparatuses described in Japanese Laid-Open Patent Publication No. 10-296065, etc. Mixers that mix by rotating ribbon-shaped blades that form spirals in the vessel: Ribbon mixer (manufactured by Hiyori Machinery Co., Ltd.), batch kneader (manufactured by Satake Chemical Machinery Co., Ltd.), ribocorn (3) As a mixer with screw-shaped mixing blades such as (made by Daishun Seisakusho Co., Ltd.), Julia mixer (manufactured by Tokuju Kogyo Co., Ltd.), (3) screw along the conical container is the wall of the container There are mixers that perform mixing by revolving while rotating around an axis parallel to the axis: for example, Nauter mixer (manufactured by Hosokawa Micron Corporation), SV mixer (manufactured by Shinko Pantech Co., Ltd.), and the like.
  また、連続式で混合を行う場合、一般に連続式混合に使用されている連続式混合機を用いれば、特に限定されないが、例えば上記の混合機のうちで連続型の装置を用いてベース顆粒と界面活性剤組成物を混合させてもよい。 In addition, when mixing in a continuous mode, there is no particular limitation as long as a continuous mixer generally used for continuous mixing is used, but for example, the base granule and A surfactant composition may be mixed.
  上記工程(A)~(C)を含む製造方法により、洗剤粒子群が得られる。本発明により製造された洗剤粒子群は、水不溶性無機塩の含有量が5質量%以下であることが好ましく、水不溶性無機塩を実質的に含有しないことがより好ましい。本発明により製造された洗剤粒子群は、リン酸系ビルダーの含有量が5質量%以下であることが好ましく、リン酸系ビルダーを実質的に含有しないことがより好ましい。本発明は、衣料等の繊維製品用の洗剤粒子群の製造方法として好適である。 洗 剤 Detergent particles can be obtained by the production method including the steps (A) to (C). In the detergent particle group produced according to the present invention, the content of the water-insoluble inorganic salt is preferably 5% by mass or less, and more preferably substantially free of the water-insoluble inorganic salt. The detergent particle group produced according to the present invention preferably has a phosphate builder content of 5% by mass or less, and more preferably contains substantially no phosphate builder. The present invention is suitable as a method for producing detergent particles for textiles such as clothing.
  本発明により製造された洗剤粒子群の個々の洗剤粒子は、単核性洗剤粒子であることが好ましい。ここで、単核性洗剤粒子とは、ベース顆粒を核として製造された洗剤粒子であって、実質的に1個の洗剤粒子の中に1個のベース顆粒を核として有する洗剤粒子をいう。 The individual detergent particles of the detergent particles produced according to the present invention are preferably mononuclear detergent particles. Here, the mononuclear detergent particles refer to detergent particles manufactured using base granules as a core, and substantially having one base granule as a core in one detergent particle.
  なお、洗剤粒子の単核性を表す指標として、下式で定義される粒子成長度を用いることができる。ここで言う単核性洗剤粒子は、粒子成長度が、1.5以下、好ましくは1.4以下、より好ましくは1.3以下である。下限については特に拘らないが、1.0以上が好ましい。
 粒子成長度=〔工程(C)により得られる洗剤粒子の平均粒径〕/〔ベース顆粒の平均粒径〕
In addition, the particle growth degree defined by the following formula can be used as an index representing the mononuclearity of the detergent particles. The mononuclear detergent particles referred to herein have a particle growth degree of 1.5 or less, preferably 1.4 or less, more preferably 1.3 or less. The lower limit is not particularly limited but is preferably 1.0 or more.
Particle growth degree = [average particle diameter of detergent particles obtained by step (C)] / [average particle diameter of base granules]
  かかる単核性洗剤粒子は粒子間の凝集が抑制されているため、所望の粒径範囲外の粒子(凝集粒子)が生成することなく、粒径分布がシャープであるという利点を有する。 Such mononuclear detergent particles have the advantage that the particle size distribution is sharp without the formation of particles outside the desired particle size range (aggregated particles) because aggregation between particles is suppressed.
  本発明により製造された洗剤粒子群は、以下のような物性を有することが好ましい。本発明において、洗剤粒子群の物性の測定は、目開き1180μmの篩を通過した粒子群を用いて行う(収率を除く)。また、収率、流動性、嵩密度の測定は、粒子製造後10分から20分の間に行うものとする。また、平均粒径、耐ケーキング性(通過率)、非イオン界面活性剤のシミ出し性の評価は、密閉容器中で、20~30℃で1~3日間保存した試料を用いて行うものとする。 The detergent particle group produced according to the present invention preferably has the following physical properties. In the present invention, the physical properties of the detergent particle group are measured using the particle group that has passed through a sieve having an opening of 1180 μm (excluding the yield). The measurement of yield, fluidity, and bulk density is performed between 10 and 20 minutes after the production of the particles. The average particle size, caking resistance (passage rate), and stain resistance of nonionic surfactants are evaluated using samples stored at 20 to 30 ° C. for 1 to 3 days in a sealed container. To do.
  洗剤粒子群の収率は、目開きが1180μmの篩を通過した試料の質量を全体の試料の質量で除すことによって計算される。かかる収率は80%以上が好ましく、90%以上がより好ましく、95%以上が更に好ましい。 The yield of the soot detergent particle group is calculated by dividing the mass of the sample that has passed through the sieve having an opening of 1180 μm by the mass of the entire sample. The yield is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  洗剤粒子群の平均粒径は、150μm以上が好ましく、500μm以下が好ましく、従って150~500μmがより好ましく、180~350μmが更に好ましい。 The average particle diameter of the soot detergent particle group is preferably 150 μm or more, preferably 500 μm or less, more preferably 150 to 500 μm, still more preferably 180 to 350 μm.
  洗剤粒子群の嵩密度は、300~1000g/Lが好ましく、400~900g/Lがより好ましく、450~850g/Lが更に好ましく、500~800g/Lが特に好ましい。 The bulk density of the soot detergent particle group is preferably 300 to 1000 g / L, more preferably 400 to 900 g / L, still more preferably 450 to 850 g / L, and particularly preferably 500 to 800 g / L.
  尚、本発明において所望により嵩密度を低くする場合は、例えば、噴霧乾燥スラリーに界面活性剤等を2質量%以下で添加しベース顆粒の嵩密度を低くする、造粒(混合)工程においてベース顆粒以外の粉体原料としてベース顆粒より嵩密度の低い粉体原料を配合する、或いはベース顆粒と混合する界面活性剤組成物量を低減する等の方法を用いることができる。 In the present invention, when the bulk density is lowered as desired, for example, a surfactant is added to the spray-dried slurry at 2% by mass or less to lower the bulk density of the base granule. A method of blending a powder raw material having a lower bulk density than the base granule as a powder raw material other than the granule or reducing the amount of the surfactant composition mixed with the base granule can be used.
  また、洗剤粒子群の流動性は、流動時間として10秒以下が好ましく、8秒以下がより好ましく、7秒以下が更に好ましい。流動時間は、JIS  K3362により規定された嵩密度測定用のホッパーすなわち、JIS K3362:2008の見掛け密度の項において、見掛け密度測定器の例として示されている漏斗(ホッパーともいう)から、100mLの洗剤粒子群が流出するのに要する時間である。 The fluidity of the detergent particles is preferably 10 seconds or less, more preferably 8 seconds or less, and even more preferably 7 seconds or less as the flow time. The flow time is 100 mL from a hopper for measuring bulk density specified by JIS K3362, that is, a funnel (also called a hopper) shown as an example of an apparent density measuring device in the section of apparent density of JIS K3362: 2008. This is the time required for the detergent particles to flow out.
  耐ケーキング性と非イオン性界面活性剤のシミ出し性については、以下のように評価する。濾紙(ADVANTEC社製、No.2)で長さ10.2cm×幅6.2cm×高さ4cmの天部のない箱を作り、四隅をステープラーでとめる。予め、底面部となる部分の対角線上に油性マーカーで2本のラインを引いて交差させる。この箱に、試料200mを入れ、アクリルのケースに封入し、温度30℃の恒温器中に7日間放置し、耐ケーキング性と非イオン性界面活性剤のシミ出し性について判定する。 ケ ー キ The caking resistance and the stain resistance of the nonionic surfactant are evaluated as follows. Using a filter paper (No. 2 manufactured by ADVANTEC), make a box without a top with a length of 10.2 cm, a width of 6.2 cm, and a height of 4 cm, and fix the four corners with a stapler. In advance, two lines are drawn with an oil marker on the diagonal line of the bottom portion to intersect. A 200 m sample is placed in this box, sealed in an acrylic case, and left in a thermostatic oven at a temperature of 30 ° C. for 7 days to determine caking resistance and non-ionic surfactant stain resistance.
  耐ケーキング性の判定は、以下のようにして通過率を求めることによって行う。
<通過率>
  前記条件で放置した後の試料を金網(または篩、網目5mm×5mm)上に静かにおき、金網を通過した洗剤粒子群の質量を計り、試験後の試料に対する通過率を求める。
 通過率(%)=(通過した洗剤粒子群の質量(g)/試料全体の質量(g))×100
  通過率は50%以上が好ましく、70%以上がより好ましく、90%以上が更に好ましい。
The determination of the caking resistance is performed by determining the passage rate as follows.
<Passing rate>
The sample after being left under the above conditions is gently placed on a wire mesh (or sieve, mesh 5 mm × 5 mm), the mass of the detergent particles that have passed through the wire mesh is measured, and the passage rate for the sample after the test is obtained.
Passing rate (%) = (mass of detergent particles passed (g) / mass of the entire sample (g)) × 100
The passage rate is preferably 50% or more, more preferably 70% or more, and still more preferably 90% or more.
  非イオン性界面活性剤のシミ出し性の判定は、試料を排出後、底面に引かれた油性マーカーのにじみ具合を目視して行う。評価は、1~5ランクとし、各ランクの状態は、下記の通りである。
  ランク1:にじみが全くない。
  ランク2:ラインの一部ににじみが生じ、繊毛が生えたような状態
  ランク3:ラインのほぼ全体ににじみが生じ、ラインの平均的な太さが2.0倍未満
  ランク4:ラインの全体ににじみが生じ、ラインの平均的な太さが2.0倍以上3.0倍未満
  ランク5:ラインの全体ににじみが生じ、ラインの平均的な太さが3.0倍以上
  なお、本発明においては、前記にじみ具合の評価がランク1、2のものを合格品とする。
Judgment of the nonionic surfactant is performed by visually observing the bleeding of the oily marker drawn on the bottom after the sample is discharged. The evaluation is 1 to 5 ranks, and the status of each rank is as follows.
Rank 1: There is no blur.
Rank 2: Part of the line bleeds and cilia appear. Rank 3: The line bleeds almost entirely, and the average line thickness is less than 2.0 times. Rank 4: The whole line The average line thickness is 2.0 times or more and less than 3.0 times. Rank 5: The entire line is blurred and the average line thickness is 3.0 times or more. In the invention, the evaluation of the degree of bleeding is that of ranks 1 and 2.
  本発明により製造された洗剤粒子群は、最終製品としての粉末洗剤を構成する粒子群の一部乃至全部であってよい。最終製品としての粉末洗剤を構成する粒子群の一部の場合、本発明により製造された洗剤粒子群は、他の洗剤用粒子群等と混合されて最終製品としての粉末洗剤となる粒子群が構成される。すなわち、本発明により製造された洗剤粒子群は、粉末洗剤そのものとして使用できる一方で、粉末洗剤の一部を構成している粒子として使用してもよい。よって、本発明は、洗剤用粒子群の製造方法(その場合、本明細書中の「洗剤粒子群」を「洗剤用粒子群」と読み替えることが可能である)としても好適である。 洗 剤 The detergent particles produced according to the present invention may be a part or all of the particles constituting the powder detergent as the final product. In the case of a part of the particle group constituting the powder detergent as the final product, the detergent particle group produced according to the present invention is a particle group that becomes a powder detergent as the final product by being mixed with other detergent particle groups. Composed. That is, the detergent particle group produced according to the present invention can be used as a powder detergent itself, while it may be used as particles constituting a part of the powder detergent. Therefore, the present invention is also suitable as a method for producing detergent particle groups (in this case, “detergent particle groups” in this specification can be read as “detergent particle groups”).
  本発明により製造された洗剤粒子群と混合される他の粒子として例えば、洗浄助剤粒子が主に挙げられ、プロテアーゼ、アミラーゼ、セルラーゼ及びリパーゼなどの酵素粒子、過炭酸塩及び過ホウ酸塩などの漂白剤粒子、TAED、アルカノイルオキシベンゼンスルホン酸塩及びアルカノイルオキシベンゼンカルボン酸などの過酸化水素と反応して有機過酸などを生成する漂白活性化剤粒子、アルカリ金属炭酸塩やアルカリ金属珪酸塩などのアルカリ剤を粒状化したアルカリ剤粒子を挙げることができる。機能性粒子を配合してもよく、機能性粒子としては、ベントナイトなどの柔軟付与性の粘土物質を粒子化した柔軟剤粒子、香料成分を主目的に含有する香料粒子、及びジメチルシロキサンなどのシリコーンなどの消泡性物質を含有する消泡剤粒子を挙げることができる。また本発明とは異なる界面活性剤から構成されている界面活性剤粒子と混合してもよい。
実施例
Other particles mixed with the detergent particles produced according to the present invention mainly include, for example, cleaning aid particles, enzyme particles such as protease, amylase, cellulase and lipase, percarbonate and perborate. Bleach activator particles, TAED, bleach activator particles that react with hydrogen peroxide such as alkanoyloxybenzene sulfonate and alkanoyloxybenzene carboxylic acid to produce organic peracids, alkali metal carbonates and alkali metal silicates Examples include alkali agent particles obtained by granulating an alkali agent. Functional particles may be blended. Examples of the functional particles include softener particles obtained by granulating a softening property clay material such as bentonite, fragrance particles mainly containing a fragrance component, and silicone such as dimethylsiloxane. Antifoaming agent particles containing an antifoaming substance such as Moreover, you may mix with the surfactant particle | grains comprised from the surfactant different from this invention.
Example
 次の実施例は本発明の実施について述べる。実施例は本発明の例示について述べるものであり、本発明を限定するためではない。 The following examples describe the implementation of the present invention. The examples are illustrative of the invention and are not intended to limit the invention.
  以下の実施例に基づいて本発明を更に説明する。 The present invention will be further described based on the following examples.
  実施例1~26、及び比較例1~11で使用したベース顆粒は、以下の手順により製造した〔工程(A)〕。 The base granules used in Examples 1 to 26 and Comparative Examples 1 to 11 were produced by the following procedure [Step (A)].
  水を最終のスラリー水分が53%となるように攪拌翼を有した1m3の混合槽に加え、水温が55℃に達した後に、硫酸ナトリウム、炭酸ナトリウム、亜硫酸ソーダの順番に添加した。10分間攪拌した後に、40質量%のポリアクリル酸ナトリウム水溶液を添加した。更に、10分間攪拌した後に、塩化ナトリウム、ゼオライトを添加し、30分間攪拌して均質なスラリーを得た。このスラリーの最終温度は58℃であった。また、このスラリーの全質量は1000kgで、表1~3に記載の水以外の成分の質量比率で配合した。但し、比較例11はポリアクリル酸ナトリウムの代りにアクリル酸-マレオン酸コポリマーを使用した。 Water was added to a 1 m 3 mixing tank having a stirring blade so that the final slurry moisture became 53%, and after the water temperature reached 55 ° C., sodium sulfate, sodium carbonate, and sodium sulfite were added in this order. After stirring for 10 minutes, a 40 mass% sodium polyacrylate aqueous solution was added. Further, after stirring for 10 minutes, sodium chloride and zeolite were added and stirred for 30 minutes to obtain a homogeneous slurry. The final temperature of this slurry was 58 ° C. Further, the total mass of this slurry was 1000 kg, and it was blended in the mass ratio of components other than water described in Tables 1 to 3. However, Comparative Example 11 used an acrylic acid-maleic acid copolymer in place of sodium polyacrylate.
  このスラリーを噴霧乾燥塔の塔頂付近に設置した圧力噴霧ノズルから噴霧圧力25kg/cm2で噴霧を行った。噴霧乾燥塔に供給する高温ガスは塔下部より温度が225℃で供給され、塔頂より105℃で排出された。ベース顆粒中の水分は表1~3記載の通りであった。 This slurry was sprayed at a spray pressure of 25 kg / cm 2 from a pressure spray nozzle installed near the top of the spray drying tower. The hot gas supplied to the spray drying tower was supplied at a temperature of 225 ° C. from the bottom of the tower, and was discharged at 105 ° C. from the top of the tower. The moisture in the base granule was as shown in Tables 1-3.
  実施例27で使用したベース顆粒は、以下の手順により製造した〔工程(A)〕。 ベ ー ス The base granule used in Example 27 was produced by the following procedure [Step (A)].
  水を最終のスラリー水分が53%となるように攪拌翼を有した1m3の混合槽に加え、水温が55℃に達した後に、硫酸ナトリウムを添加した。5分間攪拌した後に、珪酸ナトリウム(有効分40%)を添加した。5分間攪拌した後に、トリポリリン酸ナトリウム、炭酸ナトリウムを添加した。15分間攪拌した後に、40質量%のポリアクリル酸ナトリウム水溶液を添加した。更に、10分間攪拌した後に、塩化ナトリウムを添加し、30分間攪拌して均質なスラリーを得た。このスラリーの最終温度は60℃であった。また、このスラリーの全質量は1000kgで、表1に記載の水以外の成分の質量比率で配合した。 Water was added to a 1 m 3 mixing tank having a stirring blade so that the final slurry water content was 53%, and after the water temperature reached 55 ° C., sodium sulfate was added. After stirring for 5 minutes, sodium silicate (effective 40%) was added. After stirring for 5 minutes, sodium tripolyphosphate and sodium carbonate were added. After stirring for 15 minutes, 40 mass% sodium polyacrylate aqueous solution was added. Further, after stirring for 10 minutes, sodium chloride was added and stirred for 30 minutes to obtain a homogeneous slurry. The final temperature of this slurry was 60 ° C. Moreover, the total mass of this slurry was 1000 kg, and it mix | blended with the mass ratio of components other than the water of Table 1.
  このスラリーを噴霧乾燥塔の塔頂付近に設置した圧力噴霧ノズルから噴霧圧力35kg/cm2で噴霧を行った。噴霧乾燥塔に供給する高温ガスは塔下部より温度が235℃で供給され、塔頂より112℃で排出された。ベース顆粒中の水分は表1記載の通りであった。 This slurry was sprayed at a spraying pressure of 35 kg / cm 2 from a pressure spray nozzle installed near the top of the spray drying tower. The hot gas supplied to the spray-drying tower was supplied at a temperature of 235 ° C. from the bottom of the tower and discharged at 112 ° C. from the top of the tower. The water content in the base granules was as shown in Table 1.
  得られたベース顆粒の物性は、全て、平均粒径が198μm~243μm、嵩密度が480g/L~540g/L、粒子強度が250gf~550gf、細孔容積が0.33mL/g~0.56mL/gであり、細孔径は0.25μm~0.62μmの範囲内であった。 The physical properties of the obtained base granules are all from 198 μm to 243 μm in average particle size, 480 g / L to 540 g / L in bulk density, 250 gf to 550 gf in particle strength, and 0.33 mL / g to 0.56 mL in pore volume. / G, and the pore diameter was in the range of 0.25 μm to 0.62 μm.
  実施例1~27、及び比較例1~11で使用した界面活性剤組成物は、以下の手順により製造した〔工程(B)〕。 The surfactant compositions used in Examples 1 to 27 and Comparative Examples 1 to 11 were produced by the following procedure [Step (B)].
  実施例1~6、比較例3~4で使用した界面活性剤組成物は、非イオン界面活性剤と水とを表1、3記載の質量比率にて混合し、温度を60℃に調整して得た。 The surfactant compositions used in Examples 1 to 6 and Comparative Examples 3 to 4 were prepared by mixing a nonionic surfactant and water at a mass ratio shown in Tables 1 and 3 and adjusting the temperature to 60 ° C. I got it.
  実施例7、11~26、比較例5~11で使用した界面活性剤組成物は、非イオン界面活性剤中に有効分50%の陰イオン界面活性剤(LAS-Na、AS-Na、ES-Na、又はα-SFE)水溶液と表1~3記載の質量比率になるように所定の水を加えて混合して作製した。温度は60℃に調整した。但し、実施例13と比較例5~6は、作製後60℃の条件で水を蒸発させて水分を調整した。また、実施例23は、脂肪酸を48%苛性ソーダで界面活性剤組成物中にて中和して調製した。さらに、実施例24はポリエチレングリコールを所定量添加して調製した。実施例8~10は、非イオン界面活性剤に有効分30%の陰イオン界面活性剤水溶液を表1記載の質量比率にて混合し、温度を60℃に調整して得た。 The surfactant compositions used in Examples 7, 11 to 26 and Comparative Examples 5 to 11 were prepared by using an anionic surfactant (LAS-Na, AS-Na, ES) having an effective content of 50% in a nonionic surfactant. (-Na or α-SFE) aqueous solution and predetermined water were added and mixed so as to have mass ratios described in Tables 1 to 3. The temperature was adjusted to 60 ° C. However, in Example 13 and Comparative Examples 5 to 6, water was adjusted by evaporating water at 60 ° C. after the production. In addition, Example 23 was prepared by neutralizing a fatty acid with 48% caustic soda in a surfactant composition. Furthermore, Example 24 was prepared by adding a predetermined amount of polyethylene glycol. Examples 8 to 10 were obtained by mixing a nonionic surfactant with an anionic surfactant aqueous solution having an effective content of 30% at a mass ratio shown in Table 1 and adjusting the temperature to 60 ° C.
  比較例1は、非イオン界面活性剤と水を混合せずに別々に用いた。温度はそれぞれ60℃に調整した。 Comparative Example 1 was used separately without mixing the nonionic surfactant and water. Each temperature was adjusted to 60 ° C.
  比較例2は、非イオン界面活性剤と有効分50%の陰イオン界面活性剤水溶液を混合せずに別々に用いた。温度はそれぞれ60℃に調整した。 In Comparative Example 2, a nonionic surfactant and an anionic surfactant aqueous solution having an effective content of 50% were used separately without mixing. Each temperature was adjusted to 60 ° C.
  実施例1~27、比較例3~11の工程(C)は、以下のように行った。
  レディゲミキサー〔(株)マツボー製、容量20Lジャケット付き〕に50℃に予熱したベース顆粒群100質量部を投入し主軸(主軸の回転数:80r/min、攪拌翼のフルード数:1.07)の回転を開始した。なお、チョッパー(解砕翼付き)は回転させず、ジャケットに60℃の温水を10L/分で流した。主軸の回転による攪拌を1分間行った後、60℃の界面活性剤組成物を表1~3記載の質量部となるように2分かけて投入し、その後6分間混合を行った後、排出した。得られた洗剤粒子群の物性は表1~3記載の通りであった。
Step (C) of Examples 1 to 27 and Comparative Examples 3 to 11 were performed as follows.
100 parts by weight of the base granule group preheated to 50 ° C. was put into a Redige mixer (manufactured by Matsubo Co., Ltd., with a 20 L jacket) and the main shaft (the number of rotations of the main shaft: 80 r / min, the fluid number of the stirring blades: 1.07) ) Started rotating. The chopper (with crushing blades) was not rotated, and hot water at 60 ° C. was passed through the jacket at 10 L / min. After stirring for 1 minute by rotation of the main shaft, the surfactant composition at 60 ° C. is added over 2 minutes so as to be the parts by mass shown in Tables 1 to 3, and then mixed for 6 minutes and then discharged. did. The physical properties of the obtained detergent particles were as shown in Tables 1 to 3.
  比較例1の工程(C)は、以下のように行った。
  レディゲミキサー〔(株)マツボー製、容量20Lジャケット付き〕に50℃に予熱したベース顆粒群100質量部を投入し主軸(主軸の回転数:80r/min、攪拌翼のフルード数:1.07)の回転を開始した。なお、チョッパー(解砕翼付き)は回転させず、ジャケットに60℃の温水を10L/分で流した。主軸の回転による攪拌を1分間行った後、60℃の非イオン界面活性剤を表3記載の質量部となるように1分かけて投入し、続いて60℃の水を1分かけて投入し、その後6分間混合を行った後、排出した。得られた洗剤粒子の物性は表3記載の通りであった。
Step (C) of Comparative Example 1 was performed as follows.
100 parts by weight of the base granule group preheated to 50 ° C. was put into a Redige mixer (manufactured by Matsubo Co., Ltd., with a 20 L jacket) and the main shaft (the number of rotations of the main shaft: 80 r / min, the fluid number of the stirring blades: 1.07) ) Started rotating. The chopper (with crushing blades) was not rotated, and hot water at 60 ° C. was passed through the jacket at 10 L / min. After stirring for 1 minute by rotation of the main shaft, a nonionic surfactant at 60 ° C. is added over 1 minute so as to be the mass part shown in Table 3, and then water at 60 ° C. is added over 1 minute. Then, after mixing for 6 minutes, it was discharged. The physical properties of the resulting detergent particles are as shown in Table 3.
  比較例2の工程(C)は、以下のように行った。
  レディゲミキサー〔(株)マツボー製、容量20Lジャケット付き〕に50℃に予熱したベース顆粒群100質量部を投入し主軸(主軸の回転数:80r/min、攪拌翼のフルード数:1.07)の回転を開始した。なお、チョッパー(解砕翼付き)は回転させず、ジャケットに60℃の温水を10L/分で流した。主軸の回転による攪拌を1分間行った後、60℃の非イオン界面活性剤を表3記載の質量部となるように1分かけて投入し、続いて60℃の陰イオン界面活性剤を1分かけて投入し、その後6分間混合を行った後、排出した。得られた洗剤粒子の物性は表3記載の通りであった。
The process (C) of the comparative example 2 was performed as follows.
100 parts by weight of the base granule group preheated to 50 ° C. was put into a Redige mixer (manufactured by Matsubo Co., Ltd., with a 20 L jacket) and the main shaft (the number of rotations of the main shaft: 80 r / min, the fluid number of the stirring blades: 1.07) ) Started rotating. The chopper (with crushing blades) was not rotated, and hot water at 60 ° C. was passed through the jacket at 10 L / min. After stirring for 1 minute by rotation of the main shaft, a nonionic surfactant at 60 ° C. was added over 1 minute so as to have a mass part shown in Table 3, and then an anionic surfactant at 60 ° C. was added 1 It was charged over a period of time, then mixed for 6 minutes and then discharged. The physical properties of the resulting detergent particles are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  表1~3中の成分は以下のものである。また。表中「※」は測定不能であることを意味する。
・炭酸ナトリウム:セントラル硝子(株)製、商品名:ソーダ灰(軽灰)
・硫酸ナトリウム:四国化成(株)製、商品名:中性無水芒硝A0
・塩化ナトリウム:ナイカイ塩業(株)製、商品名:ナクルN
・亜硫酸ナトリウム:三井化学工業(株)製、商品名:亜硫酸ソーダ
・珪酸ナトリウム:セントラル硝子(株)製、商品名:珪酸ソーダ2号
・ポリアクリル酸ナトリウム:重量平均分子量1.5万;GPCによる測定、ポリエチレングリコール換算
・アクリル酸-マレイン酸コポリマー:ナトリウム塩(70モル%中和)であり、モノマー比はアクリル酸/マレイン酸=3/7(モル比)、重量平均分子量70000
・ゼオライト:ゼオビルダー社製、商品名:ゼオビルダー(ゼオライト4A型)
・トリポリリン酸ナトリウム:下関三井化学(株)製、商品名:トリポリリン酸ソーダ)
・非イオン界面活性剤1:炭素数12~14の1級アルコールにエチレンオキサイド(以下、EOと表記する)を平均6モル付加させたもの
・非イオン界面活性剤2:炭素数12~14の1級アルコールにEOを平均21モル付加させたもの
・非イオン界面活性剤3:炭素数12~14の1級アルコールにEOを平均9モル、プロピレンオキサイドを平均2モル、EOを平均9モルの順にブロック付加させたもの
・LAS-Na:アルキル基の炭素数12~14の直鎖アルキルベンゼンスルホン酸ナトリウム
・AS-Na:アルキル基の炭素数12~16のアルキル硫酸エステルナトリウム
・ES-Na:アルキル基の炭素数12~14、平均EO付加モル数が2のポリオキシエチレンアルキルエーテル硫酸エステルNa塩
・α-SFE:アルキル基の炭素数が12~14のα-スルホ脂肪酸メチルエステルナトリウム
・脂肪酸ナトリウム:花王(株)製、商品名:ルナックL55を48%苛性ソーダで中和したもの
・ポリエチレングリコール:花王(株)製、商品名:K-PEG6000LA(重量平均分子量;8500)
The components in Tables 1 to 3 are as follows. Also. “*” In the table means that measurement is not possible.
・ Sodium carbonate: manufactured by Central Glass Co., Ltd., trade name: soda ash (light ash)
-Sodium sulfate: manufactured by Shikoku Kasei Co., Ltd., trade name: neutral anhydrous sodium sulfate A0
・ Sodium chloride: manufactured by Naikai Shigyo Co., Ltd., trade name: Nakuru N
-Sodium sulfite: manufactured by Mitsui Chemicals, Inc., trade name: sodium sulfite-sodium silicate: manufactured by Central Glass Co., Ltd., trade name: sodium silicate No. 2-sodium polyacrylate: weight average molecular weight 15,000; GPC Measured by polyethylene glycol conversion, acrylic acid-maleic acid copolymer: sodium salt (70 mol% neutralized), monomer ratio is acrylic acid / maleic acid = 3/7 (molar ratio), weight average molecular weight 70000
・ Zeolite: Zeobuilder, Trade name: Zeobuilder (Zeolite 4A type)
-Sodium tripolyphosphate: manufactured by Shimonoseki Mitsui Chemicals, trade name: sodium tripolyphosphate)
・ Nonionic surfactant 1: An average of 6 moles of ethylene oxide (hereinafter referred to as EO) added to a primary alcohol having 12 to 14 carbon atoms. ・ Nonionic surfactant 2: It has 12 to 14 carbon atoms. Non-ionic surfactant with an average of 21 moles of EO added to a primary alcohol: 9 moles of EO, 2 moles of propylene oxide, and 9 moles of EO on a primary alcohol with 12 to 14 carbon atoms Block addition in order ・ LAS-Na: Alkyl group linear sodium alkylbenzene sulfonate having 12 to 14 carbon atoms ・ AS-Na: Alkyl sulfate sodium salt having 12 to 16 carbon atoms in alkyl group ・ ES-Na: Alkyl Polyoxyethylene alkyl ether sulfate Na salt / α-SFE having 12 to 14 carbon atoms and an average EO addition mole number of 2: Α-sulfo fatty acid methyl ester sodium having 12 to 14 carbon atoms in the kill group Fatty acid sodium: manufactured by Kao Corporation, trade name: Lunac L55 neutralized with 48% caustic soda, polyethylene glycol: manufactured by Kao Corporation , Trade name: K-PEG6000LA (weight average molecular weight; 8500)

Claims (12)

  1.   下記工程(A)~(C)を含む、洗剤粒子群の製造方法:
    工程(A):炭酸ナトリウム、ポリマーを構成している全モノマー構成単位に対するアクリル酸又はその塩の構成単位が占める割合が90~100モル%であるアクリル酸型ポリマー、及び水を含有し、水不溶性無機塩を含有してもよいスラリーを噴霧乾燥して、炭酸ナトリウム25~80質量%、水不溶性無機塩0~30質量%、及びアクリル酸型ポリマー2~25質量%を含有し、界面活性剤の含有量が2質量%以下であるベース顆粒を調製する工程、
    工程(B):界面活性剤を合計で50~80質量%、非イオン界面活性剤を15質量%以上及び水を20~50質量%含有する界面活性剤組成物を調製する工程、
    工程(C):工程(A)で得られたベース顆粒と、工程(B)で得られた界面活性剤組成物とを、前記ベース顆粒の形態を実質的に維持しつつ混合する工程。
    A method for producing detergent particles comprising the following steps (A) to (C):
    Step (A): Sodium carbonate, an acrylic acid type polymer in which the proportion of the constituent units of acrylic acid or a salt thereof with respect to all monomer constituent units constituting the polymer is 90 to 100 mol%, and water, A slurry that may contain an insoluble inorganic salt is spray-dried, and contains 25 to 80% by mass of sodium carbonate, 0 to 30% by mass of a water-insoluble inorganic salt, and 2 to 25% by mass of an acrylic acid type polymer, and has surface activity. A step of preparing a base granule having an agent content of 2% by mass or less,
    Step (B): a step of preparing a surfactant composition containing a total of 50 to 80% by weight of the surfactant, 15% by weight or more of the nonionic surfactant and 20 to 50% by weight of water,
    Step (C): A step of mixing the base granule obtained in the step (A) and the surfactant composition obtained in the step (B) while substantially maintaining the form of the base granule.
  2.   工程(C)において、ベース顆粒100質量部に対し、界面活性剤組成物を25~60質量部用いる、請求項1記載の製造方法。 The production method according to claim 1, wherein the surfactant composition is used in an amount of 25 to 60 parts by mass with respect to 100 parts by mass of the base granule in the culling step (C).
  3.   工程(B)の界面活性剤が非イオン界面活性剤及び陰イオン界面活性剤を含み、且つ非イオン界面活性剤/陰イオン界面活性剤の質量比が10/1~1/3である、請求項1又は2記載の製造方法。 The surfactant in step (B) comprises a nonionic surfactant and an anionic surfactant, and the mass ratio of nonionic surfactant / anionic surfactant is from 10/1 to 1/3. Item 3. The method according to Item 1 or 2.
  4.  非イオン界面活性剤が、炭素数8~22のアルキル基を有し、オキシエチレン基を含むオキシアルキレン基の平均付加モル数が4~25モルであるポリオキシアルキレンアルキルエーテルである、請求項1~3の何れかに記載の洗剤粒子群の製造方法。 The nonionic surfactant is a polyoxyalkylene alkyl ether having an alkyl group having 8 to 22 carbon atoms and an average addition mole number of an oxyalkylene group containing an oxyethylene group of 4 to 25 mol. 4. A method for producing a detergent particle group according to any one of items 1 to 3.
  5.  アクリル酸型ポリマーの重量平均分子量が2000~80000である請求項1~4の何れかに記載の洗剤粒子群の製造方法。 The method for producing a detergent particle group according to any one of claims 1 to 4, wherein the acrylic acid type polymer has a weight average molecular weight of 2,000 to 80,000.
  6.  アクリル酸型ポリマーが、ポリアクリル酸又はその塩である、請求項1~5何れかに記載の洗剤粒子群の製造方法。 The method for producing a detergent particle group according to any one of claims 1 to 5, wherein the acrylic acid type polymer is polyacrylic acid or a salt thereof.
  7.  得られる洗剤粒子群の平均粒径が150~500μmである、請求項1~6の何れかに記載の洗剤粒子群の製造方法。 The method for producing a detergent particle group according to any one of claims 1 to 6, wherein the resulting detergent particle group has an average particle size of 150 to 500 µm.
  8.  得られる洗剤粒子群の嵩密度が300~1000g/Lである、請求項1~7の何れかに記載の洗剤粒子群の製造方法。 The method for producing a detergent particle group according to any one of claims 1 to 7, wherein the bulk density of the obtained detergent particle group is 300 to 1000 g / L.
  9.  得られる洗剤粒子群の流動性が、JIS K3362により規定された見掛け密度測定用の漏斗から、100mLの洗剤粒子群が流出するのに要する時間として、10秒以下である、請求項1~8の何れかに記載の洗剤粒子群の製造方法。 The fluidity of the resulting detergent particle group is 10 seconds or less as the time required for 100 mL of the detergent particle group to flow out from the apparent density measurement funnel defined by JIS K3362. The manufacturing method of the detergent particle group in any one.
  10.  請求項1~9の何れかの製造方法によって得られた洗剤粒子群。 A detergent particle group obtained by the production method according to any one of claims 1 to 9.
  11.  請求項1~9に記載の製造方法によって得られた洗剤粒子群を用いて、繊維製品を洗浄する方法。 A method for washing a textile product using the detergent particle group obtained by the production method according to any one of claims 1 to 9.
  12.  請求項1~9に記載の製造方法によって得られた洗剤粒子群の繊維製品の洗浄への用途。 Use of detergent particles obtained by the production method according to claims 1 to 9 for washing textile products.
PCT/JP2011/069978 2010-09-06 2011-09-02 Method for producing detergent particle group WO2012033006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180042893.0A CN103108947B (en) 2010-09-06 2011-09-02 The manufacture method of detergent particles group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-198778 2010-09-06
JP2010198778A JP5631127B2 (en) 2010-09-06 2010-09-06 Method for producing detergent particles

Publications (1)

Publication Number Publication Date
WO2012033006A1 true WO2012033006A1 (en) 2012-03-15

Family

ID=45810608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069978 WO2012033006A1 (en) 2010-09-06 2011-09-02 Method for producing detergent particle group

Country Status (4)

Country Link
JP (1) JP5631127B2 (en)
CN (1) CN103108947B (en)
TW (1) TWI493029B (en)
WO (1) WO2012033006A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812710A (en) * 2012-11-20 2015-07-29 公立大学法人大阪市立大学 Method for hydrothermal oxidation treatment for organic halogen compound and catalyst therefor
WO2019144372A1 (en) * 2018-01-26 2019-08-01 The Procter & Gamble Company Detergent granules with high anionic surfactant content

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112697A (en) * 1985-11-01 1987-05-23 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Detergent composition, its components and production thereof
WO2000077160A1 (en) * 1999-06-16 2000-12-21 Kao Corporation Particulate detergent
JP2005194315A (en) * 2003-12-26 2005-07-21 Kao Corp Method for producing detergent particle group
JP2010001460A (en) * 2008-05-19 2010-01-07 Kao Corp Surfactant-supporting granule cluster

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112697A (en) * 1985-11-01 1987-05-23 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Detergent composition, its components and production thereof
WO2000077160A1 (en) * 1999-06-16 2000-12-21 Kao Corporation Particulate detergent
JP2005194315A (en) * 2003-12-26 2005-07-21 Kao Corp Method for producing detergent particle group
JP2010001460A (en) * 2008-05-19 2010-01-07 Kao Corp Surfactant-supporting granule cluster

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812710A (en) * 2012-11-20 2015-07-29 公立大学法人大阪市立大学 Method for hydrothermal oxidation treatment for organic halogen compound and catalyst therefor
WO2019144372A1 (en) * 2018-01-26 2019-08-01 The Procter & Gamble Company Detergent granules with high anionic surfactant content
CN111511890A (en) * 2018-01-26 2020-08-07 宝洁公司 Detergent particles with high anionic surfactant content
CN111511890B (en) * 2018-01-26 2022-03-04 宝洁公司 Detergent particles with high anionic surfactant content

Also Published As

Publication number Publication date
CN103108947B (en) 2015-12-02
TW201211237A (en) 2012-03-16
JP2012056984A (en) 2012-03-22
CN103108947A (en) 2013-05-15
JP5631127B2 (en) 2014-11-26
TWI493029B (en) 2015-07-21

Similar Documents

Publication Publication Date Title
KR20070036170A (en) A highly water-soluble solid laundry detergent composition that forms a clear wash liquor upon dissolution in water
EP1254950A2 (en) Effervescence compositions and dry effervescent granules
EP2841553B1 (en) Process for the production of a detergent granule, detergent granule and detergent composition comprising said granule
EP3030641B1 (en) Process for the production of a detergent granule, detergent granule and detergent composition comprising said granule
WO2013054624A1 (en) Powdered detergent composition for clothing, and production method therefor
WO2012033006A1 (en) Method for producing detergent particle group
JP4799951B2 (en) Method for producing mononuclear detergent particles
EP2870229B1 (en) Process for the production of a detergent granule, detergent granule and detergent composition comprising said granule
JP4926285B2 (en) Method for producing detergent particles
WO2006035608A1 (en) Powdery detergent composition for clothing
JP2009155612A (en) Detergent composition for clothing
JP5192156B2 (en) Method for producing detergent composition
JP3912986B2 (en) Base granules and detergent particles
JP4515239B2 (en) Hand washing laundry detergent
JP4970036B2 (en) Nonionic surfactant-containing particles and method for producing the same
JP2006070267A (en) Production process of mononuclear detergent particle group
JP5924805B2 (en) Powder detergent composition
JP4694020B2 (en) Bleach cleaning composition
JP2022026081A (en) Granular detergent composition for clothing and producing method of granular detergent composition for clothing
JP5132860B2 (en) Powder detergent composition and method for producing the same
JP2007045865A (en) Method for producing mononuclear detergent granular mass
JP2010144045A (en) Method for producing mononuclear detergent particle cluster
JPH069999A (en) Nonionic powdery detergent composition
JP4376405B2 (en) Bleach cleaning composition
JP2003193091A (en) Water-containing inorganic particle and detergent composition containing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042893.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823481

Country of ref document: EP

Kind code of ref document: A1