WO2012032861A1 - Body weight measuring system - Google Patents

Body weight measuring system Download PDF

Info

Publication number
WO2012032861A1
WO2012032861A1 PCT/JP2011/066427 JP2011066427W WO2012032861A1 WO 2012032861 A1 WO2012032861 A1 WO 2012032861A1 JP 2011066427 W JP2011066427 W JP 2011066427W WO 2012032861 A1 WO2012032861 A1 WO 2012032861A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
weight
measurement
load
data
Prior art date
Application number
PCT/JP2011/066427
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 泰雅
芳幸 辻
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2012032861A1 publication Critical patent/WO2012032861A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • G01G23/37Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting
    • G01G23/3728Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting with wireless means

Definitions

  • the present invention relates to a system for measuring the weight of a person to be measured, and more particularly to a weight measurement system for measuring a weight while communicating with a load sensor and a weight calculation unit.
  • Patent Document 1 The replacement of parts in Japanese Patent Application Laid-Open No. 2009-60950 (Patent Document 1) is mainly for appropriately changing the appearance design, but is not a part replacement related to the appearance design. There is a desire to replace the parts involved in general measurement as appropriate. For example, since a scale is not always required, there is a demand for eliminating a special installation space for the scale.
  • the user may configure the weight scale by selectively using the number of measurement units such as a plurality of load sensors. In this case, in order to accurately measure the weight, it is necessary to collect the load data from the measurement units used.
  • Patent Document 1 shows only a configuration for changing the appearance design, and uses a weight scale using the above-mentioned appropriately selected number of measurement units. No configuration for measuring body weight is shown.
  • an object of the present invention is to provide a weight measurement system capable of easily obtaining a load value from each measurement unit used for weight measurement.
  • the weight measurement system for measuring the weight of the person to be measured detects the applied load and transmits a load value derived from the detected load in response to the load request.
  • a weight calculation unit that wirelessly communicates with the measurement unit, and the weight calculation unit calculates a weight using a request transmission unit that transmits a load request and a load value received from one or more measurement units. Calculating means.
  • a load measurement unit includes a load sensor that detects a load to be applied, a measurement unit that derives a load value from the detected load, a wireless communication unit, and a power supply unit.
  • the unit includes request receiving means for receiving a request. When the request is received by the request receiving means, the derived load value is transmitted to the request source.
  • the measurement unit since the measurement unit transmits the load value when the request is received, the load value can be easily obtained from the measurement unit.
  • FIG. 1 is a schematic configuration diagram of a weight measurement system according to an embodiment. It is a figure which shows the external appearance of the weight scale using the measurement unit which concerns on embodiment. It is a block diagram of the measurement unit which concerns on embodiment. It is a block diagram of the hardware of the weight measurement system which concerns on embodiment. It is a functional block diagram of the measurement unit which concerns on embodiment. It is a functional block diagram of the calculation unit which concerns on embodiment. It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment.
  • the weight measurement system in the present embodiment has a function of measuring a human weight.
  • “weight” refers to the weight (mass) of a person who is a measurement target (hereinafter referred to as a person to be measured).
  • FIG. 1 shows a schematic configuration of a weight measurement system 1 according to the present embodiment.
  • the weight measurement system 1 includes a measurement unit 20, a calculation unit 40, and a display 511 on which a flat plate-like high-rigidity mounting surface 300 is mounted when measuring the weight of a measurement subject.
  • the external device 50 having The external device 50 is assumed to be a device having a communication function and an information output function, such as a PDA (Portable Digital Assistant) and a mobile phone.
  • PDA Portable Digital Assistant
  • the calculation unit 40 and the measurement unit 20 communicate wirelessly.
  • a wireless communication medium radio waves are assumed.
  • wireless communication with a relatively weak radio wave intensity is assumed, and therefore the communication area where radio waves can reach is also limited.
  • the measurement unit 20 detects the applied load and transmits a load value indicating the detected load to the calculation unit 40 in response to the request. At the time of weight measurement, a load applied via the mounting surface 300 to be mounted is detected and transmitted to the measurement unit 20.
  • the calculation unit 40 transmits a request to the measurement unit 20 during weight measurement, and calculates the body weight of the measurement subject based on the load value received in response to the request.
  • the external device 50 communicates with the calculation unit 40 wirelessly or by wire.
  • the external device 50 receives the weight value transmitted from the calculation unit 40 and displays the received weight value via the display 511.
  • the output mode of the external device 50 is not limited to display, and may be output by voice or printing.
  • calculation unit 40 and the external device 50 are provided separately, the calculation unit 40 may be integrally provided with the output function of the external device 50.
  • the person to be measured uses one or more measurement units 20 to configure a weight scale when he / she wishes to measure weight.
  • FIG. 1B schematically shows a situation where the four measurement units 20 in FIG. 1A are selected from the plurality of measurement units 20 in order to form a weight scale.
  • the measurement unit 20 has a uniform external shape.
  • the measurement subject sets the selected four measurement units 20 to be capable of communication and load detection by turning on the power.
  • four measurement units 20 are appropriately arranged on the horizontal floor surface, and the placement surface 300 is mounted on the arranged measurement units 20.
  • a weight scale can be comprised.
  • FIG. 2A shows a case where a weight scale is configured using four measurement units 20.
  • the four measurement units 20 are arranged so that the placement surface 300 can be supported horizontally with the floor surface.
  • the mounting surface 300 has a substantially square shape, and the measurement units 20 are arranged at each of the four corners of the square.
  • the arrangement mode is not limited to this. That is, even when a load is applied from the placement surface 300 in the floor direction, the placement surface 300 may be arranged in a manner that can support the placement surface 300 in parallel with the floor surface.
  • FIG. 2A a case where four measurement units 20 are used is shown, but the number of measurement units 20 used is not limited to four, and may be five or more. As shown in (B) of 2, the number may be 3 or less (at least one or more).
  • the measurement unit 20 includes a load cell 21 that is a load sensor for detecting an applied load, a power supply unit 22 such as a battery for supplying power to each unit of the measurement unit 20, and a PCB. (Abbreviation of printed circuit board) 23.
  • the PCB 23 includes a measurement circuit configured using a simple processor and a wireless module. The measurement circuit inputs a load signal that is detected and sequentially output by the load cell 21, processes the input load signal, and derives a load value. The derived load value is transmitted via the wireless module.
  • the measurement unit 20 includes a leg 20A for installing the measurement unit 20 on the floor and a main body 20B to which the leg 20A is integrally attached.
  • the main body portion 20B includes each portion shown in FIG.
  • the surface in contact with the floor surface of the leg 20A is made of a material having good adhesion to the floor surface so that the measurement unit 20 itself can be stably supported in a horizontal state with the floor surface.
  • the surface of the main body 20B opposite to the surface on which the legs 20A of the housing are attached is a flat surface, and the surface is made of a material having good adhesion to the material of the mounting surface 300.
  • each measurement unit 20 is loaded with a weight, and the measurement target is based on the load value derived from each measurement unit 20.
  • a person's weight can be measured.
  • the weight scale can be easily configured by the person to be measured simply mounting the placement surface 300 on the measurement unit 20 arranged on the floor surface. Therefore, the weight scale can be configured by using the mounting surface 300 having a size, a pattern, and a material according to a preference or a use environment. Further, the failed measurement unit 20 can be easily replaced, which is excellent in convenience.
  • the measurement unit 20 includes an A / D (Analog / Digital) conversion unit 230 and an A / D conversion unit that convert analog output signals of the load cell 21, the sensor group 243, the load cell 21, and the sensor group 243 into digital data and output the digital data.
  • 230 includes a measurement unit 231 that inputs and processes data output from 230, and a communication unit 232 that transmits data output from the measurement unit 231 to the calculation unit 40 and receives data from the calculation unit 40.
  • the A / D conversion unit 230, the measurement unit 231 and the communication unit 232 correspond to the PCB 23.
  • the load cell 21 is composed of a strained body made of a metal member that deforms in response to an applied load, and a strain gauge stretched on the strained body.
  • the strain gauge expands and contracts and the resistance value changes according to the expansion and contraction of the strain gauge, and the resistance change is derived as a load signal output. Therefore, when the measurement subject gets on the placement surface 300 and the strained body is distorted by the weight of the measurement subject applied to the load cell 21, the weight is measured as the change in the load signal output described above.
  • the load cell 21 is used as a load sensor for detecting the load.
  • a load sensor for detecting the load.
  • the amount of applied force (load) can be detected, for example, a spring or a piezo film is used. It may be a sensor used, an element for measuring compression, a displacement sensor, or the like.
  • the sensor group 243 includes a sensor that detects an aspect in which the measurement unit 20 is installed, and a sensor that detects an external environmental condition around the measurement unit 20.
  • the sensors that detect the installation mode include an acceleration sensor that detects the direction of the measurement unit 20, a weight sensor that detects whether or not the mounting surface 300 is mounted, that is, whether or not there is a load.
  • Sensors that detect external environmental conditions include temperature sensors that detect ambient temperature, sensors that detect ambient atmospheric pressure, and the like.
  • the measurement unit 231 has a simple microprocessor configuration to control the operation of the measurement unit 20. Specifically, it includes a CPU (Central Processing Unit) 240, a memory 242, and a timer 241 for measuring time.
  • the timer 241 may be a counter whose counter value can be reset by the CPU 240.
  • the calculation unit 40 includes an operation unit 42 including buttons and switches operated by the measurement subject, a control unit 41 for controlling the operation of the calculation unit 40, a storage unit 43, and a communication unit 45.
  • the communication unit 45 has a function for communicating with the measurement unit 20 and the external device 50.
  • the storage unit 43 and the memory 242 include various media such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a nonvolatile storage medium, and store programs, data, and the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • nonvolatile storage medium and store programs, data, and the like.
  • the control unit 41 includes a CPU 410, a timer 411 for measuring time, and a memory 412.
  • FIG. 5 shows a functional configuration of the measurement unit 20.
  • the CPU 240 of the measurement unit 20 includes a convergence detection unit 30, a zero point detection unit 31, a sensor output processing unit 32, a load acquisition unit 34, and a communication processing unit 35. These functions are realized by a program and / or a circuit.
  • the program is stored in a predetermined storage area of the memory 242 in advance, and the function of each unit is realized by the CPU 240 reading the program instruction and executing the read instruction.
  • the convergence detection unit 30 detects whether or not the load variation detected by the load cell 21 converges within a predetermined range.
  • the convergence detection unit 30 has no load that can be applied to the mounting surface 300 mounted on the measurement unit 20 immediately after the power is turned on. That is, the convergence of the load detected by the load cell 21 in the no-load state (hereinafter referred to as first convergence). ) And the convergence of the load detected after the person to be measured gets on the placement surface 300 (hereinafter referred to as second convergence).
  • the zero point detection unit 31 determines the load detected by the load cell 21 when the first convergence is detected by the convergence detection unit 30 as a zero point.
  • the determined zero point load is stored in the memory 242 as zero point data 26.
  • the zero point refers to the output value of the load cell 21 in a no-load state. It is known that the strain gauge expansion / contraction rate of the load cell 21 changes with time or according to the ambient temperature. Therefore, at the time of measurement, so-called zero point detection is required in which the load cell 21 is not subjected to any load such as the body weight of the person to be measured, and the output value of the load cell 21 when there is no load due to the load of only the mounting surface 300 is set to zero. It is said.
  • the weight of the subject is calculated based on the difference between the output value of the load cell 21 when the weight (load) of the subject is applied to the load cell 21 and the output value of the load cell 21 when there is no load. Is measured by measuring.
  • the sensor output processing unit 32 processes the output from the sensor group 243 and gives it to the communication processing unit 35.
  • the load acquisition unit 34 acquires the load sequentially detected by the load cell 21 as a load value in time series, and stores it in the memory 242 as time series load data 252.
  • the load value refers to a value obtained by subtracting the zero point data 26 detected by the zero point detection unit 31 from the detected load.
  • Time series refers to acquiring the load output from the load cell 21 in association with the time measurement data output from the timer 241. Therefore, by adding the time data output from the timer 241 to the load value based on the load sequentially acquired from the load cell 21, these load values are acquired in time series.
  • the load acquisition unit 34 includes a convergent load acquisition unit 341.
  • the convergence load acquisition unit 341 acquires a load detected by the load cell 21 as a load value in a period in which the second convergence is detected.
  • the load value acquired by the convergent load acquisition unit 341 is stored in the memory 242 as convergent load data 251.
  • the communication processing unit 35 includes a data generation unit 36 for generating data for transmission addressed to the calculation unit 40, a transmission unit 37 for transmitting the generated data, and a reception unit 38 for receiving the data. .
  • convergent load data 251 acquired by the convergent load acquisition unit 341, time-series load data 252 acquired by the load acquisition unit 34, zero point data 26, and ID (Identification) data that is identification information of the measurement unit 20 are stored.
  • 27 and destination data 28 indicating the destination of the data are stored.
  • the destination data 28 indicates data for identifying the calculation unit 40 (corresponding to calculation unit ID data 53 described later).
  • the functional configuration of the calculation unit 40 will be described with reference to FIG.
  • the CPU 410 of the calculation unit 40 calculates the weight based on the received load value, the measurement unit detection unit 60 that detects identification information (ID data 27) of one or more measurement units 20 used for measuring the body weight of the measurement subject.
  • the calculation unit 62 includes a convergence detection unit 63 that detects the second convergence of the received time-series load values.
  • the measurement unit detection unit 60 includes a trigger detection unit 61 for detecting a change in load value including a trigger according to the received time-series load value. Details of trigger detection by the trigger detector 61 will be described later.
  • the communication processing unit 65 includes a reception unit 66 that receives data transmitted from the measurement unit 20, a transmission unit 67 that transmits data to the measurement unit 20, and a data generation unit 68 that generates transmission data.
  • the memory 412 includes received load data 51 indicating the load data received from the measurement unit 20, measurement unit ID data 52 indicating the identification information of the measurement unit 20 detected by the measurement unit detector 60, and identification information of the calculation unit 40.
  • Calculation unit ID data 53, weight data 54 indicating the weight calculated by the calculation unit 62, history data 55, mode data 56, and condition data 57 are stored.
  • the measurement unit ID data 52 includes existence unit ID data 521.
  • the existence unit ID data 521 indicates the ID data 27 of the measurement unit 20 (however, the measurement unit 20 that can be communicated with the calculation unit 40 when the power is turned on) existing in the wireless communicable area of the calculation unit 40.
  • the history data 55 indicates a history in which identification information of the measurement unit 20 used in the past weight measurement is accumulated.
  • the history data 55 is generated by storing the measurement unit ID data 52 in association with the weight measurement time every time the weight measurement ends.
  • the mode data 56 indicates a mode for detecting the measurement unit 20 used for weight measurement.
  • the condition data 57 refers to data serving as a reference for detecting the measurement unit 20 used for weight measurement based on the installation mode or external environmental conditions detected by the sensor group 243.
  • the calculated unit ID data 53 is stored at the time of factory shipment. Further, the mode data 56 and the condition data 57 are previously input by the measurement subject and stored in the memory 412 by operating the operation unit 413.
  • the calculation unit 40 detects the measurement unit 20 according to a plurality of types of modes.
  • a mode for detection is specified by mode data 56 stored in the memory 412.
  • the mode includes, for example, a “previous use” mode, an “environment / installation” mode, and a “trigger” mode.
  • the “previous use” mode is a mode for detecting the measurement unit 20 used in the previous weight measurement based on the history data 55.
  • the “environment / installation” mode is a mode for detecting the measurement unit 20 in the same external environment condition or installation mode.
  • the “trigger” mode is a mode for analyzing the time series load value received from each measurement unit 20 and detecting the measurement unit 20 that has transmitted the time series load value including the trigger based on the analysis result. These modes may be set in combination. For example, by combining the “previous use” mode and the “trigger” mode, a mode in which the measurement unit 20 that transmits a time-series load value including the trigger among the measurement units 20 used in the previous weight measurement is detected. Can be set.
  • FIG. 7 to FIG. 10 are flowcharts showing a weight measurement processing procedure according to the present embodiment. These flowcharts are stored in advance in the memory 242 of the measurement unit 20 or the memory 412 of the calculation unit 40 as a program.
  • the CPU 240 or 410 reads out these programs from the memory 242 or 412 and executes the instructions of the read programs, thereby realizing a processing flowchart.
  • 11 to 15 show configuration examples of the data packet PA used for wireless communication between the measurement unit 20 and the calculation unit 40 in these flowcharts.
  • the data format of wireless communication in the present embodiment is not limited to a data packet, and may be a frame, for example.
  • FIG. 11 shows a basic configuration of the data packet PA according to the present embodiment.
  • data packet PA includes a field F1 for storing type data indicating the type (kind) of data packet PA, and a field for storing destination data for identifying the destination of data packet PA.
  • F2 includes a field F3 for storing data for identifying the transmission source of the data packet PA and a field F4 for storing data to be transmitted.
  • FIG. 12 shows the configuration of the data packet PA1.
  • the data packet PA1 is an inquiry data packet that the calculation unit 40 transmits to the surrounding area in order to confirm the presence of the measurement unit 20.
  • the type “Q” inquiry
  • the broadcast address “BD” is stored as destination data in the field F2
  • the transmission source of the data packet PA1 is stored in the field F3.
  • Calculation unit ID data (“ID40”) 53 of the calculation unit 40 is read from the memory 412 and stored.
  • the data in the field F4 of the data packet PA1 is indefinite data (NULL).
  • FIG. 13 shows the configuration of the data packet PA2.
  • the data packet PA2 is a response (reply) data packet to the inquiry of the data packet PA1. That is, it indicates a data packet transmitted as a reply to the inquiry from the measurement unit 20 that has received the data packet PA1.
  • the type “QA” inquiry response
  • the calculation unit ID data 53 (“ID40”) of the calculation unit 40 is stored as the destination data in the field F2
  • the field F3 is stored.
  • the data in the field F4 is indefinite data (“NULL”).
  • FIG. 14 shows the configuration of the data packet PA3.
  • the data packet PA3 is a data packet for a load request that requests the measurement unit 20 to transmit a load value.
  • the type “R” (load request) is stored in the field F1
  • the ID data 27 (“ID20”) of the measurement unit 20 is stored as the transmission destination data in the field F2
  • the field F3 is stored in the field F3.
  • the calculated unit ID data 53 (“ID40”) read from the memory 412 is stored as the transmission source data
  • the data MD indicating the mode is stored in the field F4.
  • Data MD indicates mode data 56 read from memory 412.
  • FIG. 15 shows the configuration of the data packet PA4.
  • the data packet PA4 is a response (reply) data packet to the load request data packet PA3.
  • the type “RA” request response
  • the field F1 the calculated unit ID data 53 (“ID40”) read from the memory 412 as the destination data
  • the field F3 is stored.
  • ID data 27 (“ID20”) of the measurement unit 20 is stored as transmission source data of the data packet PA4, and data EV and data WD are stored in the field F4.
  • the data EV in the field F4 indicates external environmental condition data acquired from the sensor group 243 or installation mode data.
  • the data WD indicates the convergent load data 251 or the time-series load data 252 read from the memory 242. Specifically, when the data MD of the received data packet PA3 indicates “trigger”, the time series load data 252 read from the memory 242 is stored in the field F4 of the response data packet PA4. In other modes, the convergent load data 251 is read from the memory 242 and stored.
  • FIG. 7 shows a flowchart of the main process.
  • measurement unit 20 used for weight measurement is detected while communicating between CPU 410 and CPU 240 of each measurement unit 20 (step S1).
  • the CPU 410 calculates the weight of the person to be measured based on the load value received from the detected one or more measurement units 20 (step S3).
  • the calculation result is output (step S5). Thereby, a series of weight measurement operations are completed.
  • step S1 Details of the detection process in step S1 will be described with reference to FIGS. Note that it is assumed that the measurement unit 20 used by the person to be measured for weight measurement is powered on in advance, can communicate, and can detect a load.
  • the detection process is started.
  • an inquiry data packet PA1 shown in FIG. 12 is generated by the data generation unit 68, and the generated data packet PA1 is transmitted by the transmission unit 67 (step S10). Since the broadcast address is stored in the field F2 of the data packet PA1, the data packet PA1 can be received by all the measurement units 20 existing in the wireless communicable area of the calculation unit 40.
  • the receiving unit 66 After transmitting the data packet PA1, the receiving unit 66 receives the data packet PA2 transmitted from each measurement unit 20 in response to the data packet PA1 (step S11).
  • the CPU 410 stores the ID data 27 stored in the field F3 of the received data packet PA2 in the memory 412 as the existing unit ID data 521. Thereby, the ID data 27 of all the measurement units 20 (however, the measurement units 20 capable of communication and load detection when the power is turned on) existing in the wireless communicable area of the calculation unit 40 can be acquired.
  • the measurement unit detector 60 determines the current mode (step S15). Specifically, the mode is determined based on the mode data 56 stored in the memory 412 in advance. When the mode data 56 indicates the “previous use” mode, the measurement unit detection unit 60 instructs the data generation unit 68 to generate the data packet PA3 in the “previous use” mode, and sets the “environment / installation” mode. When pointing, the generation of the data packet PA3 in the “environment / installation” mode is instructed, and when indicating the “trigger” mode, the generation of the data packet PA3 in the “trigger” mode is instructed.
  • the data generation unit 68 In each of steps S17, S19, and S21, the data generation unit 68 generates a data packet PA3 according to the instruction.
  • step S17 the data packet PA3 storing the data MD instructing the “previous use” mode is generated.
  • the ID data 27 of the measurement unit 20 used for the previous weight measurement read from the history data 55 is stored.
  • step S19 the data packet PA3 in which the data MD indicates the “environment / installation” mode is generated, and in step S21, the data packet PA3 in which the data MD indicates the “trigger” mode is generated.
  • the data packet PA3 generated in this way is transmitted by the transmission unit 67 (step S23). Thereafter, the process proceeds to step S61 described later.
  • the data packet PA3 generated in step S17 described above is transmitted to the measurement unit 20 used for the previous weight measurement.
  • the data generation unit 68 generates a data packet PA3 in which each of the ID data 27 included in the presence unit ID data 521 is stored in the field F2. Therefore, the data packet PA3 generated in steps S19 and S21 is transmitted to all the measurement units 20 existing in the communicable area of the calculation unit 40.
  • reception unit 38 of CPU 240 determines whether or not to receive any data packet PA (step S30). While the data packet PA is not received (NO in step S30), the reception standby process in step S30 is repeated. If it is determined that any data packet PA has been received (YES in step S30), CPU 240 refers to the type of field F1 of received data packet PA and determines the type of data packet PA. As a result of the determination, if it is determined that the type “Q” is instructed (YES in step S31), the CPU 240 instructs the data generation unit 36 to generate the data packet PA2. Thereby, the data generation unit 36 generates the data packet PA2.
  • the generated data packet PA2 is transmitted by the transmission unit 37 (step S33).
  • step S33 the data in the field F3 of the received data packet PA2 is stored in the memory 242 as the destination data 28. Thereafter, the process returns to the reception standby process in step S30.
  • step S31 If it is determined in step S31 that it is not the data packet PA1 (NO in step S31), it is determined whether or not it is the data packet PA addressed to itself (step S35). Specifically, the transmission destination data in the field F2 of the data packet PA is compared with the ID data 27 in the memory 242, and it is determined whether or not it is addressed to itself based on the comparison result (step S35). If the two data do not match, it is determined that the data is not addressed to itself, and the received data packet PA is ignored (discarded). Thereafter, the process returns to the reception standby process in step S30.
  • step S35 the data packet PA determined to be addressed to itself is the data packet PA3 transmitted in step S23.
  • the CPU 240 determines the mode. That is, the mode specified by the data MD in the field F4 of the received data packet PA3 is determined.
  • the data generation unit 36 When determining that the data MD indicates “previous use”, the data generation unit 36 generates a data packet PA4 in which the convergent load data 251 in the memory 242 is stored as the data WD (steps S39 and S41).
  • the CPU 240 instructs the sensor output processing unit 32 to acquire the output from the sensor group 243.
  • the sensor output processing unit 32 acquires the data EV based on the output from the sensor group 243 (step S43).
  • the data generation unit 36 reads the convergence load data 251 in the memory 242, and generates a data packet PA4 storing the read data WD as the convergence load data 251 and the acquired data EV (step). S45, S47).
  • the data generation unit 36 When it is determined that the data MD indicates “trigger”, the data generation unit 36 generates a data packet PA4 in which the time-series load data 252 in the memory 242 is stored as the data WD (steps S49 and S51).
  • the data in the field F3 of the received data packet PA3 is stored in the field F2.
  • the generated data packet PA4 is transmitted to the calculation unit 40 by the transmission unit 37.
  • step S61 reception unit 38 determines whether or not to receive any data packet PA (step S61). While any data packet PA is not received, the process of step S61 is repeated to enter a reception standby state.
  • the data packet PA detected in the reception standby state is the data packet PA4 transmitted in step S53.
  • the calculation unit 62 determines the mode based on the mode data 56 of the memory 412 (step S63).
  • the calculation unit 62 reads the data WD (corresponding to the convergence load data 251) stored in the field F4 of all the data packets PA4 received in step S61, The body weight is calculated by integrating (calculating the total sum) all the read data WD (step S67).
  • the data WD to be used for integration is determined from the measurement unit 20 detected in the “previous use” mode.
  • the weight can be calculated using the data WD of the measurement unit 20 used for weight measurement.
  • step S69 the body weight is calculated by integrating (summing up) the data WD (corresponding to the convergent load data 251) of the data packet PA4 in which the data EV and the condition data 57 match (step S73).
  • the measurement unit 20 used for weight measurement is used in the same environment (temperature, humidity, etc.) or in the same installation mode (direction, etc.), as data WD to be used for integration,
  • the measurement unit 20 used for weight measurement is detected, and the The weight can be calculated using the data WD.
  • the trigger detection unit 61 detects the trigger of the time series load data based on the data WD corresponding to the time series load data 252 of each received data packet PA4 ( Step S75).
  • the weight is calculated by the calculation unit 62 using only the data WD in which the trigger is detected (step S79).
  • the load values detected in time series of the measurement unit 20 used for weight measurement exhibit almost the same change, that is, there is a slight time lag, but there is a trigger, so the data to be used for integration
  • the measurement unit 20 used for weight measurement can be detected and the weight can be calculated using the data WD. .
  • step S67 step S73 or step S79, the process proceeds to step S5 in FIG. 8, and the weight calculated in the external device 50 is output.
  • the measurement unit 20 that responds by returning the data packet PA2 to the data packet PA1, that is, only the measurement unit 20 in which the existence of the calculation unit 40 in the communicable area is detected is addressed.
  • the data packet PA3 of the load value transmission request is transmitted to the.
  • the data packet PA3 can be transmitted only when the measurement unit 20 exists in the communicable area, and the communication load and power consumption of the calculation unit 40 can be reduced.
  • step S75 An example of trigger detection in step S75 will be described with reference to FIG.
  • the trigger detection unit 61 can acquire data WD indicating the time-series load data 252 from each of the four measurement units 20.
  • the horizontal axis of the graph in FIG. 16 indicates the passage of time (T), and the vertical axis indicates the load value detected with the passage of time.
  • the trigger detection unit 61 analyzes the time-series load value data indicated by the data WD of the data packet PA4 and detects a trigger based on the analysis result, the measurement unit 20 that is the transmission source of the data packet PA4 It can be determined that the measurement unit 20 is used for weight measurement.
  • FIG. 17 shows graphs L1 and L2 corresponding to the data WD from the two measurement units 20 that detected the trigger in FIG.
  • the convergence detection unit 63 translates the graph L1 or L2 in the time axis direction so that the times TR1 and TR2 coincide with the common time TR.
  • the graph L2 is translated in the time axis direction so that the time TR1 coincides with the time TR1.
  • the convergence detection unit 63 is powered on and then the person to be measured gets on the placement surface 300 and the movement of the subject on the placement surface 300 stops. Then, it is possible to detect a stable period, that is, a period CV in which the graphs L1 and L2 are both shifted to the second convergence state.
  • the calculation unit 62 can calculate the weight by integrating the load values indicated by the graphs L1 and L2 in the period CV.
  • the calculated weight is a value from which an error due to the body movement of the measurement subject is excluded.
  • step S39 and step S45 of each measurement unit 20 The same processing procedure as that on the calculation unit 40 side described in FIG. 17 is also executed in step S39 and step S45 of each measurement unit 20.
  • the processing procedure on the measurement unit 20 side will be described with reference to FIG.
  • the horizontal axis indicates the passage of time (T), and the vertical axis indicates the load value detected with the passage of time.
  • a trigger is detected at time TR1.
  • the convergence detection unit 30 detects the first convergence in a period from when the power is turned on to the time TR1, and the zero point detection unit 31 detects the zero point during the first convergence period.
  • the convergence detection unit 30 detects the second convergence period CV.
  • the convergent load acquisition unit 341 acquires the load value detected in the period CV (more specifically, the average value of the load values in the period CV).
  • step S39 and step S45 of each measurement unit 20 the load value is acquired in the period CV.
  • the convergent load acquisition unit 341 of each measurement unit 20 acquires a load value from which an error caused by the body movement of the measurement subject riding on the placement surface 300 is eliminated. Since the acquired load value can be transmitted to the calculation unit 40, the calculation unit 62 of the calculation unit 40 can calculate a weight value that does not include the error.
  • the calculation unit 40 is used for weight measurement by transmitting the data packet PA3 requesting the load value and receiving the data packet PA4 of the response from the measurement unit 20 to the data packet PA3.
  • the load value from the measurement unit 20 can be acquired. Further, since the measurement unit 20 can use the request reception of the load value as the load value transmission timing, the measurement unit 20 does not need to adjust the transmission timing by itself and can simplify the function.
  • the load unit transmission request data packet PA3 is transmitted to the measurement unit 20 in which the presence of the calculation unit 40 in the communicable area is detected. You may make it transmit data packet PA3 which stored the broadcast address in the field F2.
  • the calculation unit 40 may transmit the ID data 27 of the measurement unit 20 that is a transmission source of the load value used for weight calculation to the external device 50 for output.
  • the measurement subject can check the measurement unit 20 in the failure state in which the load value cannot be transmitted from the measurement units 20 on which the placement surface 300 is mounted.
  • the number of weight scales communicating with the calculation unit 40 is one, but it may be communicated with a plurality of weight scales.
  • a group identifier is added to the ID data 27 of the measurement unit 20.
  • This group identifier indicates a group of the measurement units 20 that constitutes the weight scale in which the measurement unit 20 is used.
  • the calculation unit 40 can acquire the load value and calculate the weight while identifying the measurement unit 20 in units of groups based on the ID data 27 to which the group identifier is added, that is, in units of scales.
  • the calculation unit 40 can calculate the weight of the person to be measured for each weight scale.

Abstract

A body weight measuring system (1) for measuring the body weight of a person to be measured is provided with measurement units (20) for detecting an applied load and transmitting a load value obtained from the detected load in response to a load request, and a calculation unit (40) for wirelessly communicating with the measurement units (20). The calculation unit (40) transmits the load request and calculates a body weight using a load value received from one or more measurement units (20).

Description

体重計測システムWeight measurement system
 本発明は被測定者の体重を計測するシステムに関し、特に、荷重センサと体重算出ユニットが通信しながら体重を計測する体重計測システムに関する。 The present invention relates to a system for measuring the weight of a person to be measured, and more particularly to a weight measurement system for measuring a weight while communicating with a load sensor and a weight calculation unit.
 従来の体重計測装置は、一般的に、箱状の筐体の内部に荷重センサ等の部品が固定して内蔵されている。内蔵される部品を着脱自在にすることにより、ユーザの好みに応じて部品を交換したいとの要望がある。この交換を可能にした構成の一例が、特開2009-60950号公報(特許文献1)に示される。特開2009-60950号公報(特許文献1)では、装置を水平に設置するために、水平儀として利用される着色液体が装置の筐体内部に注入・排出されることで、着色液体の交換が可能である。 Conventional weight measuring devices are generally built with a fixed part such as a load sensor inside a box-shaped housing. There is a desire to replace the components according to the user's preference by making the built-in components detachable. An example of a configuration that enables this replacement is disclosed in Japanese Patent Laying-Open No. 2009-60950 (Patent Document 1). In Japanese Patent Laid-Open No. 2009-60950 (Patent Document 1), in order to install the apparatus horizontally, the colored liquid used as a horizontal pipe is injected into and discharged from the casing of the apparatus, so that the colored liquid can be replaced. Is possible.
特開2009-60950号公報JP 2009-60950 A
 特開2009-60950号公報(特許文献1)の部品の交換は、主に、外観意匠を適宜に変更するためのものであるが、外観意匠に関する部品交換ではなく、装置内部のセンサ部品など実質的な測定にかかわる部品を適宜交換したいとの要望がある。たとえば、体重計は常時必要とされるものではないため、体重計のための特別な設置スペースをなくしたいとの要望がある。 The replacement of parts in Japanese Patent Application Laid-Open No. 2009-60950 (Patent Document 1) is mainly for appropriately changing the appearance design, but is not a part replacement related to the appearance design. There is a desire to replace the parts involved in general measurement as appropriate. For example, since a scale is not always required, there is a demand for eliminating a special installation space for the scale.
 この要望に応えるためには、体重計測が必要なときのみ、ユーザが複数個の荷重センサなどの測定ユニットのうちから適宜個数を選択的に用いて体重計を構成すればよい。この場合、体重を正確に計測するためには、用いられている測定ユニットを対象にして、それらから荷重データを収集する必要がある。 In order to meet this demand, only when weight measurement is necessary, the user may configure the weight scale by selectively using the number of measurement units such as a plurality of load sensors. In this case, in order to accurately measure the weight, it is necessary to collect the load data from the measurement units used.
 しかしながら、特開2009-60950号公報(特許文献1)には外観意匠の変更のための構成のみが示されており、上述の適宜に選択された個数の測定ユニットを用いた体重計を用いて体重を計測するための構成は何ら示されていない。 However, Japanese Patent Laid-Open No. 2009-60950 (Patent Document 1) shows only a configuration for changing the appearance design, and uses a weight scale using the above-mentioned appropriately selected number of measurement units. No configuration for measuring body weight is shown.
 それゆえにこの発明の目的は、体重計測に使用されている各測定ユニットから荷重値を簡単に取得することができる体重計測システムを提供することである。 Therefore, an object of the present invention is to provide a weight measurement system capable of easily obtaining a load value from each measurement unit used for weight measurement.
 この発明のある局面に従うと、被測定者の体重を計測する体重計測システムは、かけられた荷重を検出し、検出された荷重から導出される荷重値を、荷重要求に応答して送信する測定ユニットと、測定ユニットと無線通信する体重算出ユニットと、を備え、体重算出ユニットは、荷重要求を送信する要求送信手段と、1つ以上の測定ユニットから受信した荷重値を用いて体重を算出する算出手段と、を含む。 According to one aspect of the present invention, the weight measurement system for measuring the weight of the person to be measured detects the applied load and transmits a load value derived from the detected load in response to the load request. A weight calculation unit that wirelessly communicates with the measurement unit, and the weight calculation unit calculates a weight using a request transmission unit that transmits a load request and a load value received from one or more measurement units. Calculating means.
 この発明の他の局面に従う荷重測定ユニットは、かけられる荷重を検出する荷重センサと、検出される荷重から荷重値を導出する計測部と、無線通信部と、電源部と、を備え、無線通信部は、要求を受信する要求受信手段を含み、要求受信手段により要求が受信されると、導出される荷重値を要求元に送信する。 A load measurement unit according to another aspect of the present invention includes a load sensor that detects a load to be applied, a measurement unit that derives a load value from the detected load, a wireless communication unit, and a power supply unit. The unit includes request receiving means for receiving a request. When the request is received by the request receiving means, the derived load value is transmitted to the request source.
 本発明によれば、測定ユニットは、要求の受信を契機に、荷重値を要求元の送信するから、測定ユニットから簡単に荷重値を取得することができる。 According to the present invention, since the measurement unit transmits the load value when the request is received, the load value can be easily obtained from the measurement unit.
実施の形態に係る体重計測システムの概略構成図である。1 is a schematic configuration diagram of a weight measurement system according to an embodiment. 実施の形態に係る測定ユニットを使用した体重計の外観を示す図である。It is a figure which shows the external appearance of the weight scale using the measurement unit which concerns on embodiment. 実施の形態に係る測定ユニットの構成図である。It is a block diagram of the measurement unit which concerns on embodiment. 実施の形態に係る体重計測システムのハードウェアの構成図である。It is a block diagram of the hardware of the weight measurement system which concerns on embodiment. 実施の形態に係る測定ユニットの機能構成図である。It is a functional block diagram of the measurement unit which concerns on embodiment. 実施の形態に係る算出ユニットの機能構成図である。It is a functional block diagram of the calculation unit which concerns on embodiment. 実施の形態に係る体重計測の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. 実施の形態に係る体重計測の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. 実施の形態に係る体重計測の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. 実施の形態に係る体重計測の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the weight measurement which concerns on embodiment. 実施の形態に係るデータパケットの基本構成図である。It is a basic block diagram of the data packet which concerns on embodiment. 実施の形態に係るデータパケットの構成図である。It is a block diagram of the data packet which concerns on embodiment. 実施の形態に係るデータパケットの構成図である。It is a block diagram of the data packet which concerns on embodiment. 実施の形態に係るデータパケットの構成図である。It is a block diagram of the data packet which concerns on embodiment. 実施の形態に係るデータパケットの構成図である。It is a block diagram of the data packet which concerns on embodiment. 実施の形態に係るトリガ検出例を説明する図である。It is a figure explaining the example of a trigger detection concerning an embodiment. 実施の形態に係るトリガ検出後の体重算出を説明するための図である。It is a figure for demonstrating the weight calculation after the trigger detection which concerns on embodiment. 実施の形態に係る測定ユニットの荷重値算出の手順を説明する図である。It is a figure explaining the procedure of the load value calculation of the measurement unit which concerns on embodiment.
 以下、この発明の実施の形態について図面を参照して、詳細に説明する。なお、各図中、同一符号は同一または相当部分を指し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts, and description thereof will not be repeated.
 本実施の形態における体重計測システムは、人間の体重を測定する機能を有する。本実施の形態において、「体重」とは、測定対象である人(以下、被測定者と言う)の重さ(質量)を指す。 The weight measurement system in the present embodiment has a function of measuring a human weight. In the present embodiment, “weight” refers to the weight (mass) of a person who is a measurement target (hereinafter referred to as a person to be measured).
 図1には、本実施の形態に係る体重計測システム1の概略構成が示される。図1の(A)を参照して、体重計測システム1は、被測定者の体重計測時に平面板状の剛性の高い載置面300が搭載される測定ユニット20、算出ユニット40、およびディスプレイ511を有する外部機器50を備える。外部機器50はPDA(Portable Digital assistant)、携帯電話など通信機能と情報出力機能を備える機器を想定する。 FIG. 1 shows a schematic configuration of a weight measurement system 1 according to the present embodiment. Referring to FIG. 1A, the weight measurement system 1 includes a measurement unit 20, a calculation unit 40, and a display 511 on which a flat plate-like high-rigidity mounting surface 300 is mounted when measuring the weight of a measurement subject. The external device 50 having The external device 50 is assumed to be a device having a communication function and an information output function, such as a PDA (Portable Digital Assistant) and a mobile phone.
 算出ユニット40と測定ユニット20とは無線通信する。無線通信の媒体としては、電波を想定する。ここでは、電波強度が比較的弱い無線通信を想定しており、したがって、電波が到達可能な通信エリアも制限されている。 The calculation unit 40 and the measurement unit 20 communicate wirelessly. As a wireless communication medium, radio waves are assumed. Here, wireless communication with a relatively weak radio wave intensity is assumed, and therefore the communication area where radio waves can reach is also limited.
 測定ユニット20は、かけられた荷重を検出し、検出した荷重を指す荷重値を、要求に応答して算出ユニット40に送信する。体重計測時には、測定ユニット20には、搭載される載置面300を介してかけられる荷重を検出して送信する。 The measurement unit 20 detects the applied load and transmits a load value indicating the detected load to the calculation unit 40 in response to the request. At the time of weight measurement, a load applied via the mounting surface 300 to be mounted is detected and transmitted to the measurement unit 20.
 算出ユニット40は、体重計測時には、測定ユニット20に対して要求を送信し、当該要求に応答して受信した荷重値に基づき被測定者の体重を算出する。外部機器50は、算出ユニット40と無線または有線で通信する。外部機器50は、算出ユニット40から送信された体重値を受信し、受信した体重値をディスプレイ511を介して表示する。外部機器50の出力態様は表示に限定されず、音声または印字などによる出力であってもよい。 The calculation unit 40 transmits a request to the measurement unit 20 during weight measurement, and calculates the body weight of the measurement subject based on the load value received in response to the request. The external device 50 communicates with the calculation unit 40 wirelessly or by wire. The external device 50 receives the weight value transmitted from the calculation unit 40 and displays the received weight value via the display 511. The output mode of the external device 50 is not limited to display, and may be output by voice or printing.
 なお、算出ユニット40と外部機器50とは別個に設けたが、算出ユニット40が外部機器50の出力機能を一体的に備えるようにしてもよい。 Although the calculation unit 40 and the external device 50 are provided separately, the calculation unit 40 may be integrally provided with the output function of the external device 50.
 本実施の形態に係る体重計測システム1を用いて、被測定者は体重計測を希望するときは、体重計を構成するために1つ以上の測定ユニット20を使用する。図1の(B)では、複数の測定ユニット20のうちから、体重計を構成するために図1(A)の4個の測定ユニット20が選択されている状況が模式的に示される。 When using the weight measurement system 1 according to the present embodiment, the person to be measured uses one or more measurement units 20 to configure a weight scale when he / she wishes to measure weight. FIG. 1B schematically shows a situation where the four measurement units 20 in FIG. 1A are selected from the plurality of measurement units 20 in order to form a weight scale.
 図2を参照して、測定ユニット20を使用した体重計の外観について説明する。ここでは、測定ユニット20は一様な外観形状を有する。被測定者は、選択した4個の測定ユニット20を電源ONすることにより通信・荷重検出可能に設定する。そして、水平の床面の上に4個の測定ユニット20を適宜配置し、配置された測定ユニット20上に載置面300を搭載する。これにより体重計を構成することができる。 Referring to FIG. 2, the appearance of a weight scale using the measurement unit 20 will be described. Here, the measurement unit 20 has a uniform external shape. The measurement subject sets the selected four measurement units 20 to be capable of communication and load detection by turning on the power. Then, four measurement units 20 are appropriately arranged on the horizontal floor surface, and the placement surface 300 is mounted on the arranged measurement units 20. Thereby, a weight scale can be comprised.
 図2の(A)には、4個の測定ユニット20を用いて体重計を構成する場合が示される。図2の(A)では、4個の測定ユニット20は、載置面300を床面と水平に支持可能なように配置される。図2の(A)では、載置面300は略四角形であり、四角形の4つのコーナそれぞれに測定ユニット20を配置しているが、配置態様はこれに限定されない。つまり、載置面300上から床面方向に荷重がかけられた場合であっても、載置面300を床面と平行に支持することができるような配置態様であればよい。図2の(A)では、4個の測定ユニット20を使用した場合が示されるが、使用される測定ユニット20の数は4個に限定されず、5つ以上であってもよく、また図2の(B)に示すように3個以下(少なくとも1つ以上)であってもよい。 FIG. 2A shows a case where a weight scale is configured using four measurement units 20. In FIG. 2A, the four measurement units 20 are arranged so that the placement surface 300 can be supported horizontally with the floor surface. In FIG. 2A, the mounting surface 300 has a substantially square shape, and the measurement units 20 are arranged at each of the four corners of the square. However, the arrangement mode is not limited to this. That is, even when a load is applied from the placement surface 300 in the floor direction, the placement surface 300 may be arranged in a manner that can support the placement surface 300 in parallel with the floor surface. In FIG. 2A, a case where four measurement units 20 are used is shown, but the number of measurement units 20 used is not limited to four, and may be five or more. As shown in (B) of 2, the number may be 3 or less (at least one or more).
 図3を参照して測定ユニット20について説明する。図3の(A)に示すように測定ユニット20は、かけられる荷重を検出するための荷重センサであるロードセル21、測定ユニット20の各部に電力を供給するための電池などの電源部22、PCB(プリント回路基板の略)23を含む。PCB23は簡単なプロセッサを用いて構成される計測回路と、無線モジュールとを含む。計測回路は、ロードセル21により検出されて逐次出力される荷重信号を入力し、入力した荷重信号を処理し、荷重値を導出する。導出された荷重値は、無線モジュールを介して送信される。 The measurement unit 20 will be described with reference to FIG. As shown in FIG. 3A, the measurement unit 20 includes a load cell 21 that is a load sensor for detecting an applied load, a power supply unit 22 such as a battery for supplying power to each unit of the measurement unit 20, and a PCB. (Abbreviation of printed circuit board) 23. The PCB 23 includes a measurement circuit configured using a simple processor and a wireless module. The measurement circuit inputs a load signal that is detected and sequentially output by the load cell 21, processes the input load signal, and derives a load value. The derived load value is transmitted via the wireless module.
 図3の(B)を参照して、測定ユニット20は、測定ユニット20を床面に設置させるための脚部20Aおよび脚部20Aが一体的に取り付けられた本体部20Bを含む。本体部20Bは、図3の(A)で示す各部を含む。 Referring to FIG. 3B, the measurement unit 20 includes a leg 20A for installing the measurement unit 20 on the floor and a main body 20B to which the leg 20A is integrally attached. The main body portion 20B includes each portion shown in FIG.
 測定ユニット20自体を床面と水平の状態で安定支持できるように、脚部20Aの床面と接触する面は、床面と密着性のよい材料からなる。 The surface in contact with the floor surface of the leg 20A is made of a material having good adhesion to the floor surface so that the measurement unit 20 itself can be stably supported in a horizontal state with the floor surface.
 本体部20Bの筐体の脚部20Aが取り付けられた面とは反対側の面は平面であって、当該面は載置面300の材料と密着性がよい材料からなる。 The surface of the main body 20B opposite to the surface on which the legs 20A of the housing are attached is a flat surface, and the surface is made of a material having good adhesion to the material of the mounting surface 300.
 図3の(B)の状態で、被測定者が載置面300上に乗れば、各測定ユニット20には体重による荷重がかかり、各測定ユニット20から導出された荷重値に基づき、被測定者の体重を計測することができる。 In the state of FIG. 3B, if the person to be measured gets on the mounting surface 300, each measurement unit 20 is loaded with a weight, and the measurement target is based on the load value derived from each measurement unit 20. A person's weight can be measured.
 このように、被測定者が載置面300を、床面に配置された測定ユニット20上に搭載するだけで、簡単に体重計を構成することができる。したがって、好みの、または使用環境に応じたサイズ・絵柄・材質の載置面300を用いて体重計を構成することができる。また、故障した測定ユニット20を簡単に交換できて利便性に優れる。 As described above, the weight scale can be easily configured by the person to be measured simply mounting the placement surface 300 on the measurement unit 20 arranged on the floor surface. Therefore, the weight scale can be configured by using the mounting surface 300 having a size, a pattern, and a material according to a preference or a use environment. Further, the failed measurement unit 20 can be easily replaced, which is excellent in convenience.
 図4を参照して、体重計測システム1のハードウェアの構成について説明する。測定ユニット20は、ロードセル21、センサ群243、ロードセル21およびセンサ群243のアナログの出力信号をデジタルのデータに変換して出力するA/D(Analog/Digital)変換部230、A/D変換部230から出力されたデータを入力して処理する計測部231、計測部231から出力されるデータを算出ユニット40に宛てて送信するとともに、算出ユニット40からのデータを受信する通信部232を含む。A/D変換部230、計測部231および通信部232は、PCB23に相当する。 The hardware configuration of the weight measurement system 1 will be described with reference to FIG. The measurement unit 20 includes an A / D (Analog / Digital) conversion unit 230 and an A / D conversion unit that convert analog output signals of the load cell 21, the sensor group 243, the load cell 21, and the sensor group 243 into digital data and output the digital data. 230 includes a measurement unit 231 that inputs and processes data output from 230, and a communication unit 232 that transmits data output from the measurement unit 231 to the calculation unit 40 and receives data from the calculation unit 40. The A / D conversion unit 230, the measurement unit 231 and the communication unit 232 correspond to the PCB 23.
 ロードセル21は、かけられる荷重に応じて変形する金属部材からなる歪体と、歪体に張られた歪ゲージとからなる。歪体が歪むと、歪ゲージが伸縮して歪ゲージの伸縮に応じて抵抗値が変化し、その抵抗変化は荷重信号出力として導出される。したがって、被測定者が載置面300上に乗って、ロードセル21にかけられる被測定者の体重により歪体が歪むと、上述の荷重信号出力の変化として体重が測定される。 The load cell 21 is composed of a strained body made of a metal member that deforms in response to an applied load, and a strain gauge stretched on the strained body. When the strain body is distorted, the strain gauge expands and contracts and the resistance value changes according to the expansion and contraction of the strain gauge, and the resistance change is derived as a load signal output. Therefore, when the measurement subject gets on the placement surface 300 and the strained body is distorted by the weight of the measurement subject applied to the load cell 21, the weight is measured as the change in the load signal output described above.
 なお、荷重を検出するための荷重センサとして、本実施の形態では、ロードセル21を利用しているが、加えられる力の量(荷重)が検出できるものであれば、たとえば、ばねやピエゾフィルムを利用したセンサ、圧縮を測定する素子、変位センサなどであってもよい。 In this embodiment, the load cell 21 is used as a load sensor for detecting the load. However, if the amount of applied force (load) can be detected, for example, a spring or a piezo film is used. It may be a sensor used, an element for measuring compression, a displacement sensor, or the like.
 センサ群243は、当該測定ユニット20が設置されている態様を検出するセンサ、測定ユニット20の周囲の外部環境条件を検出するセンサを含む。設置の態様を検出するセンサとしては、測定ユニット20の方向を検出する加速度センサ、載置面300が搭載されているか否か、すなわち加重の有無を検出する重量センサなどを含む。外部の環境条件を検出するセンサとしては、周囲の温度を検出する温度センサ、周囲の気圧を検出するセンサなどを含む。 The sensor group 243 includes a sensor that detects an aspect in which the measurement unit 20 is installed, and a sensor that detects an external environmental condition around the measurement unit 20. The sensors that detect the installation mode include an acceleration sensor that detects the direction of the measurement unit 20, a weight sensor that detects whether or not the mounting surface 300 is mounted, that is, whether or not there is a load. Sensors that detect external environmental conditions include temperature sensors that detect ambient temperature, sensors that detect ambient atmospheric pressure, and the like.
 計測部231は測定ユニット20の動作を制御するために簡単なマイクロプロセッサの構成を有する。具体的には、CPU(Central Processing Unit)240、メモリ242および時間を計時するタイマ241を含む。タイマ241はカウンタ値がCPU240によってリセット可能なカウンタであってもよい。 The measurement unit 231 has a simple microprocessor configuration to control the operation of the measurement unit 20. Specifically, it includes a CPU (Central Processing Unit) 240, a memory 242, and a timer 241 for measuring time. The timer 241 may be a counter whose counter value can be reset by the CPU 240.
 算出ユニット40は、被測定者が操作するボタンやスイッチなどからなる操作部42、算出ユニット40の動作を制御するための制御部41、記憶部43および通信部45を含む。通信部45は、測定ユニット20および外部機器50と通信するための機能を有する。 The calculation unit 40 includes an operation unit 42 including buttons and switches operated by the measurement subject, a control unit 41 for controlling the operation of the calculation unit 40, a storage unit 43, and a communication unit 45. The communication unit 45 has a function for communicating with the measurement unit 20 and the external device 50.
 記憶部43およびメモリ242は、ROM(Read Only Memory)、RAM(Random Access Memory)、不揮発性記憶媒体などの各種媒体からなり、プログラムおよびデータなどを記憶する。 The storage unit 43 and the memory 242 include various media such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a nonvolatile storage medium, and store programs, data, and the like.
 制御部41は、CPU410、時間を計時するタイマ411およびメモリ412を含む。 The control unit 41 includes a CPU 410, a timer 411 for measuring time, and a memory 412.
 図5には、測定ユニット20の機能構成が示される。図5を参照して測定ユニット20のCPU240は、収束検出部30、ゼロ点検出部31、センサ出力処理部32、荷重取得部34および通信処理部35を備える。これらの機能は、プログラムおよび/または回路により実現される。プログラムは、予めメモリ242の所定記憶領域に格納されており、CPU240が当該プログラムの命令を読出し、読出した命令を実行することにより各部の機能が実現される。 FIG. 5 shows a functional configuration of the measurement unit 20. With reference to FIG. 5, the CPU 240 of the measurement unit 20 includes a convergence detection unit 30, a zero point detection unit 31, a sensor output processing unit 32, a load acquisition unit 34, and a communication processing unit 35. These functions are realized by a program and / or a circuit. The program is stored in a predetermined storage area of the memory 242 in advance, and the function of each unit is realized by the CPU 240 reading the program instruction and executing the read instruction.
 収束検出部30は、ロードセル21により検出される荷重の変動が所定レンジ内で収束するか否かを検出する。以下、ロードセル21が検出する荷重の変動が所定レンジ内で収束することを、単に、収束とも言う。収束検出部30は、電源ON直後に当該測定ユニット20に搭載された載置面300にかけられ得る荷重がない、すなわち無負荷状態においてロードセル21により検出される荷重の収束(以下、第1収束という)を検出するとともに、載置面300上に被測定者が乗った後に検出される荷重の収束(以下、第2収束という)を検出する。 The convergence detection unit 30 detects whether or not the load variation detected by the load cell 21 converges within a predetermined range. Hereinafter, the fact that the load variation detected by the load cell 21 converges within a predetermined range is also simply referred to as convergence. The convergence detection unit 30 has no load that can be applied to the mounting surface 300 mounted on the measurement unit 20 immediately after the power is turned on. That is, the convergence of the load detected by the load cell 21 in the no-load state (hereinafter referred to as first convergence). ) And the convergence of the load detected after the person to be measured gets on the placement surface 300 (hereinafter referred to as second convergence).
 ゼロ点検出部31は、収束検出部30により第1収束が検出されたときにロードセル21が検出する荷重をゼロ点として確定する。確定したゼロ点の荷重はゼロ点データ26としてメモリ242に格納される。ここで、ゼロ点とは、無負荷状態におけるロードセル21の出力値を指す。ロードセル21の歪ゲージの伸縮率は、時間経過に従ってまたは周囲温度によって変化することが知られている。したがって、測定時には、ロードセル21に被測定者の体重など荷重が全くかかっていない、載置面300だけの荷重による無負荷時におけるロードセル21の出力値をゼロ点とする、いわゆるゼロ点検出が必要とされる。これは、被測定者の体重は、被測定者の体重(荷重)がロードセル21にかかったときのロードセル21の出力値と、無負荷時のロードセル21の出力値との差に基づいて算出されることによって測定されることによるものである。 The zero point detection unit 31 determines the load detected by the load cell 21 when the first convergence is detected by the convergence detection unit 30 as a zero point. The determined zero point load is stored in the memory 242 as zero point data 26. Here, the zero point refers to the output value of the load cell 21 in a no-load state. It is known that the strain gauge expansion / contraction rate of the load cell 21 changes with time or according to the ambient temperature. Therefore, at the time of measurement, so-called zero point detection is required in which the load cell 21 is not subjected to any load such as the body weight of the person to be measured, and the output value of the load cell 21 when there is no load due to the load of only the mounting surface 300 is set to zero. It is said. This means that the weight of the subject is calculated based on the difference between the output value of the load cell 21 when the weight (load) of the subject is applied to the load cell 21 and the output value of the load cell 21 when there is no load. Is measured by measuring.
 センサ出力処理部32は、センサ群243からの出力を処理して通信処理部35に与える。 The sensor output processing unit 32 processes the output from the sensor group 243 and gives it to the communication processing unit 35.
 荷重取得部34は、ロードセル21によって逐次検出される荷重を、荷重値として時系列に取得して、時系列荷重データ252としてメモリ242に格納する。ここで、荷重値としては、検出される荷重に、ゼロ点検出部31によって検出されたゼロ点データ26を差し引いた値を指す。時系列とは、ロードセル21から出力される荷重を、タイマ241の出力する計時データと関連付けて取得することを指す。したがって、ロードセル21から順次に取得する荷重に基づく荷重値に、タイマ241から出力される時間データを付加することにより、これらの荷重値は、時系列に取得される。 The load acquisition unit 34 acquires the load sequentially detected by the load cell 21 as a load value in time series, and stores it in the memory 242 as time series load data 252. Here, the load value refers to a value obtained by subtracting the zero point data 26 detected by the zero point detection unit 31 from the detected load. Time series refers to acquiring the load output from the load cell 21 in association with the time measurement data output from the timer 241. Therefore, by adding the time data output from the timer 241 to the load value based on the load sequentially acquired from the load cell 21, these load values are acquired in time series.
 荷重取得部34は、収束荷重取得部341を含む。収束荷重取得部341は、第2収束が検出される期間においてロードセル21によって検出される荷重を、荷重値として取得する。収束荷重取得部341により取得された荷重値は、メモリ242に収束荷重データ251として格納される。 The load acquisition unit 34 includes a convergent load acquisition unit 341. The convergence load acquisition unit 341 acquires a load detected by the load cell 21 as a load value in a period in which the second convergence is detected. The load value acquired by the convergent load acquisition unit 341 is stored in the memory 242 as convergent load data 251.
 通信処理部35は、算出ユニット40宛の送信用のデータを生成するためのデータ生成部36、生成されたデータを送信するための送信部37、およびデータを受信するための受信部38を含む。 The communication processing unit 35 includes a data generation unit 36 for generating data for transmission addressed to the calculation unit 40, a transmission unit 37 for transmitting the generated data, and a reception unit 38 for receiving the data. .
 メモリ242には、収束荷重取得部341が取得した収束荷重データ251、荷重取得部34が取得した時系列荷重データ252、ゼロ点データ26、当該測定ユニット20の識別情報であるID(Identification)データ27、およびデータの宛先を指す宛先データ28が格納される。宛先データ28は、本実施の形態の場合、算出ユニット40を識別するためのデータ(後述の算出ユニットIDデータ53に相当)を指す。 In the memory 242, convergent load data 251 acquired by the convergent load acquisition unit 341, time-series load data 252 acquired by the load acquisition unit 34, zero point data 26, and ID (Identification) data that is identification information of the measurement unit 20 are stored. 27 and destination data 28 indicating the destination of the data are stored. In this embodiment, the destination data 28 indicates data for identifying the calculation unit 40 (corresponding to calculation unit ID data 53 described later).
 図6を参照して、算出ユニット40の機能構成について説明する。算出ユニット40のCPU410は、被測定者の体重計測に使用される1つ以上の測定ユニット20の識別情報(IDデータ27)を検出する測定ユニット検出部60、受信した荷重値に基づき体重を算出するための算出部62、操作部42からの入力情報を受付ける入力受付部64、測定ユニット20と通信するための通信処理部65、および外部機器50と通信するための外部通信部69を含む。 The functional configuration of the calculation unit 40 will be described with reference to FIG. The CPU 410 of the calculation unit 40 calculates the weight based on the received load value, the measurement unit detection unit 60 that detects identification information (ID data 27) of one or more measurement units 20 used for measuring the body weight of the measurement subject. A calculation unit 62 for receiving data, an input receiving unit 64 for receiving input information from the operation unit 42, a communication processing unit 65 for communicating with the measurement unit 20, and an external communication unit 69 for communicating with the external device 50.
 算出部62は、受信した時系列の荷重値について第2収束を検出する収束検出部63を有する。測定ユニット検出部60は、受信した時系列の荷重値に従ってトリガを含む荷重値の変化を検出するためのトリガ検出部61を含む。トリガ検出部61によるトリガの検出の詳細は後述する。 The calculation unit 62 includes a convergence detection unit 63 that detects the second convergence of the received time-series load values. The measurement unit detection unit 60 includes a trigger detection unit 61 for detecting a change in load value including a trigger according to the received time-series load value. Details of trigger detection by the trigger detector 61 will be described later.
 通信処理部65は、測定ユニット20から送信されるデータを受信する受信部66、測定ユニット20宛てにデータを送信する送信部67および送信データを生成するデータ生成部68を有する。 The communication processing unit 65 includes a reception unit 66 that receives data transmitted from the measurement unit 20, a transmission unit 67 that transmits data to the measurement unit 20, and a data generation unit 68 that generates transmission data.
 メモリ412には、測定ユニット20から受信した荷重データを指す受信荷重データ51、測定ユニット検出部60により検出された測定ユニット20の識別情報を指示する測定ユニットIDデータ52、算出ユニット40の識別情報である算出ユニットIDデータ53、算出部62によって算出された体重を指す体重データ54、履歴データ55、モードデータ56および条件データ57が格納される。測定ユニットIDデータ52は、存在ユニットIDデータ521を含む。存在ユニットIDデータ521は、算出ユニット40の無線通信可能エリアに存在する測定ユニット20(ただし、電源ONされて算出ユニット40と通信可能な測定ユニット20)のIDデータ27を指す。 The memory 412 includes received load data 51 indicating the load data received from the measurement unit 20, measurement unit ID data 52 indicating the identification information of the measurement unit 20 detected by the measurement unit detector 60, and identification information of the calculation unit 40. Calculation unit ID data 53, weight data 54 indicating the weight calculated by the calculation unit 62, history data 55, mode data 56, and condition data 57 are stored. The measurement unit ID data 52 includes existence unit ID data 521. The existence unit ID data 521 indicates the ID data 27 of the measurement unit 20 (however, the measurement unit 20 that can be communicated with the calculation unit 40 when the power is turned on) existing in the wireless communicable area of the calculation unit 40.
 履歴データ55は、過去の体重計測において使用された測定ユニット20の識別情報が蓄積されてなる履歴を指す。履歴データ55は、体重計測終了毎に、測定ユニットIDデータ52が体重計測時間と関連付けて格納されることにより生成される。 The history data 55 indicates a history in which identification information of the measurement unit 20 used in the past weight measurement is accumulated. The history data 55 is generated by storing the measurement unit ID data 52 in association with the weight measurement time every time the weight measurement ends.
 モードデータ56は、体重計測に使用される測定ユニット20を検出するためのモードを指す。条件データ57は、体重計測に使用される測定ユニット20を、センサ群243が検出した設置態様または外部環境条件に基づき検出するための基準となるデータを指す。算出ユニットIDデータ53は工場出荷時などに格納される。また、モードデータ56および条件データ57は、操作部413を操作することにより、予め被測定者により入力されてメモリ412に格納される。 The mode data 56 indicates a mode for detecting the measurement unit 20 used for weight measurement. The condition data 57 refers to data serving as a reference for detecting the measurement unit 20 used for weight measurement based on the installation mode or external environmental conditions detected by the sensor group 243. The calculated unit ID data 53 is stored at the time of factory shipment. Further, the mode data 56 and the condition data 57 are previously input by the measurement subject and stored in the memory 412 by operating the operation unit 413.
 ここで、体重計測に使用される測定ユニット20を検出するためのモードを説明する。
 算出ユニット40は、複数種類のモードに従って測定ユニット20を検出する。検出のためのモードは、メモリ412に格納されるモードデータ56により指定される。
Here, a mode for detecting the measurement unit 20 used for weight measurement will be described.
The calculation unit 40 detects the measurement unit 20 according to a plurality of types of modes. A mode for detection is specified by mode data 56 stored in the memory 412.
 モードには、たとえば“前回使用”モード、“環境・設置”モードおよび“トリガ”モードが含まれる。“前回使用”モードは、履歴データ55に基づき前回の体重計測において使用された測定ユニット20を検出するためのモードである。“環境・設置”モードは、同様な外部環境条件または設置態様におかれた測定ユニット20を検出するためのモードである。“トリガ”モードは、各測定ユニット20から受信した時系列の荷重値を解析し、解析結果に基づき、トリガを含む時系列の荷重値を送信した測定ユニット20を検出するためのモードである。これらのモードは複数個を組合わせて設定してもよい。たとえば、“前回使用”モードと“トリガ”モードを組合せることにより、前回の体重計測において使用された測定ユニット20のうち、トリガを含む時系列の荷重値を送信した測定ユニット20を検出するモードを設定できる。 The mode includes, for example, a “previous use” mode, an “environment / installation” mode, and a “trigger” mode. The “previous use” mode is a mode for detecting the measurement unit 20 used in the previous weight measurement based on the history data 55. The “environment / installation” mode is a mode for detecting the measurement unit 20 in the same external environment condition or installation mode. The “trigger” mode is a mode for analyzing the time series load value received from each measurement unit 20 and detecting the measurement unit 20 that has transmitted the time series load value including the trigger based on the analysis result. These modes may be set in combination. For example, by combining the “previous use” mode and the “trigger” mode, a mode in which the measurement unit 20 that transmits a time-series load value including the trigger among the measurement units 20 used in the previous weight measurement is detected. Can be set.
 図7~図10は、本実施の形態に係る体重計測の処理手順を示すフローチャートである。これらフローチャートは、プログラムとして測定ユニット20のメモリ242または算出ユニット40のメモリ412に予め格納されている。CPU240または410が、メモリ242または412からこれらのプログラムを読出し、読出したプログラムの命令を実行することにより、処理フローチャートが実現される。 FIG. 7 to FIG. 10 are flowcharts showing a weight measurement processing procedure according to the present embodiment. These flowcharts are stored in advance in the memory 242 of the measurement unit 20 or the memory 412 of the calculation unit 40 as a program. The CPU 240 or 410 reads out these programs from the memory 242 or 412 and executes the instructions of the read programs, thereby realizing a processing flowchart.
 図11~図15には、これらフローチャートにおける測定ユニット20と算出ユニット40の間の無線通信に用いられるデータパケットPAの構成例が示される。なお、本実施の形態における無線通信のデータフォーマットはデータパケットに限定されず、たとえばフレームであってもよい。 11 to 15 show configuration examples of the data packet PA used for wireless communication between the measurement unit 20 and the calculation unit 40 in these flowcharts. Note that the data format of wireless communication in the present embodiment is not limited to a data packet, and may be a frame, for example.
 図11には、本実施の形態に係るデータパケットPAの基本構成が示される。図11を参照して、データパケットPAは、当該データパケットPAのタイプ(種類)を指すタイプデータを格納するフィールドF1、当該データパケットPAの送信先を識別するための送信先データを格納するフィールドF2、当該データパケットPAの送信元を識別するためのデータを格納するフィールドF3および送信すべきデータを格納するためのフィールドF4を含む。 FIG. 11 shows a basic configuration of the data packet PA according to the present embodiment. Referring to FIG. 11, data packet PA includes a field F1 for storing type data indicating the type (kind) of data packet PA, and a field for storing destination data for identifying the destination of data packet PA. F2 includes a field F3 for storing data for identifying the transmission source of the data packet PA and a field F4 for storing data to be transmitted.
 無線通信では、フィールドF1のタイプデータによって、種類の異なるデータパケットPA1~PA4(図12~図15)が用いられる。 In wireless communication, different types of data packets PA1 to PA4 (FIGS. 12 to 15) are used depending on the type data of the field F1.
 図12には、データパケットPA1の構成が示される。データパケットPA1は、測定ユニット20の存在を確認するために、算出ユニット40が周囲エリアに送信する問合せデータパケットである。データパケットPA1は、フィールドF1にはタイプ“Q”(問合せ)が格納され、フィールドF2には送信先データとしてブロードキャストアドレス“BD”が格納され、フィールドF3には当該データパケットPA1の送信元である算出ユニット40の算出ユニットIDデータ(“ID40”)53がメモリ412から読出されて格納される。データパケットPA1のフィールドF4のデータは、不定のデータ(NULL)である。 FIG. 12 shows the configuration of the data packet PA1. The data packet PA1 is an inquiry data packet that the calculation unit 40 transmits to the surrounding area in order to confirm the presence of the measurement unit 20. In the data packet PA1, the type “Q” (inquiry) is stored in the field F1, the broadcast address “BD” is stored as destination data in the field F2, and the transmission source of the data packet PA1 is stored in the field F3. Calculation unit ID data (“ID40”) 53 of the calculation unit 40 is read from the memory 412 and stored. The data in the field F4 of the data packet PA1 is indefinite data (NULL).
 図13には、データパケットPA2の構成が示される。データパケットPA2は、データパケットPA1の問合せに対する応答(返信)のデータパケットである。つまり、データパケットPA1を受信した測定ユニット20から当該問合せに対する返信として送信されるデータパケットを指す。データパケットPA2は、フィールドF1にはタイプ“QA”(問合わせ応答)が格納され、フィールドF2には送信先データとして算出ユニット40の算出ユニットIDデータ53(“ID40”)が格納され、フィールドF3には送信元データとして送信元の測定ユニット20のメモリ242から読出されたIDデータ27(“ID20”)が格納される。フィールドF4のデータは、不定データ(“NULL”)である。 FIG. 13 shows the configuration of the data packet PA2. The data packet PA2 is a response (reply) data packet to the inquiry of the data packet PA1. That is, it indicates a data packet transmitted as a reply to the inquiry from the measurement unit 20 that has received the data packet PA1. In the data packet PA2, the type “QA” (inquiry response) is stored in the field F1, the calculation unit ID data 53 (“ID40”) of the calculation unit 40 is stored as the destination data in the field F2, and the field F3 is stored. Stores the ID data 27 (“ID20”) read from the memory 242 of the measurement unit 20 as the transmission source data. The data in the field F4 is indefinite data (“NULL”).
 図14には、データパケットPA3の構成が示される。データパケットPA3は、測定ユニット20に対して荷重値を送信するように要求する荷重要求のデータパケットである。データパケットPA2は、フィールドF1にはタイプ“R”(荷重要求)が格納され、フィールドF2には、送信先データとして測定ユニット20のIDデータ27(“ID20”)が格納され、フィールドF3には送信元データとしてメモリ412から読出された算出ユニットIDデータ53(“ID40”)が格納され、フィールドF4には、モードを示すデータMDが格納される。データMDは、メモリ412から読出されたモードデータ56を指す。 FIG. 14 shows the configuration of the data packet PA3. The data packet PA3 is a data packet for a load request that requests the measurement unit 20 to transmit a load value. In the data packet PA2, the type “R” (load request) is stored in the field F1, the ID data 27 (“ID20”) of the measurement unit 20 is stored as the transmission destination data in the field F2, and the field F3 is stored in the field F3. The calculated unit ID data 53 (“ID40”) read from the memory 412 is stored as the transmission source data, and the data MD indicating the mode is stored in the field F4. Data MD indicates mode data 56 read from memory 412.
 図15には、データパケットPA4の構成が示される。データパケットPA4は、荷重要求のデータパケットPA3に対する応答(返信)のデータパケットである。データパケットPA4は、フィールドF1にタイプ“RA”(要求応答)が格納され、フィールドF2に送信先データとしてメモリ412から読出された算出ユニットIDデータ53(“ID40”)が格納され、フィールドF3に当該データパケットPA4の送信元データとして測定ユニット20のIDデータ27(“ID20”)が格納され、フィールドF4にデータEV、データWDが格納される。 FIG. 15 shows the configuration of the data packet PA4. The data packet PA4 is a response (reply) data packet to the load request data packet PA3. In the data packet PA4, the type “RA” (request response) is stored in the field F1, the calculated unit ID data 53 (“ID40”) read from the memory 412 as the destination data is stored in the field F2, and the field F3 is stored. ID data 27 (“ID20”) of the measurement unit 20 is stored as transmission source data of the data packet PA4, and data EV and data WD are stored in the field F4.
 フィールドF4のデータEVは、センサ群243から取得した外部環境条件データまたは設置態様のデータを指す。 The data EV in the field F4 indicates external environmental condition data acquired from the sensor group 243 or installation mode data.
 データWDは、メモリ242から読出した収束荷重データ251または時系列荷重データ252を指す。具体的には、受信したデータパケットPA3のデータMDが“トリガ”を指すときは、応答のデータパケットPA4のフィールドF4には、メモリ242から読出した時系列荷重データ252が格納される。それ以外のモードでは、収束荷重データ251がメモリ242から読出されて格納される。 The data WD indicates the convergent load data 251 or the time-series load data 252 read from the memory 242. Specifically, when the data MD of the received data packet PA3 indicates “trigger”, the time series load data 252 read from the memory 242 is stored in the field F4 of the response data packet PA4. In other modes, the convergent load data 251 is read from the memory 242 and stored.
 図7~図10のフローチャートを参照して、本実施の形態に係る体重計測のための処理手順について説明する。図7には、メイン処理のフローチャートが示される。 A processing procedure for weight measurement according to the present embodiment will be described with reference to the flowcharts of FIGS. FIG. 7 shows a flowchart of the main process.
 図7を参照して、CPU410と、各測定ユニット20のCPU240との間で、通信を行ないながら、体重計測に使用される測定ユニット20が検出される(ステップS1)。 Referring to FIG. 7, measurement unit 20 used for weight measurement is detected while communicating between CPU 410 and CPU 240 of each measurement unit 20 (step S1).
 測定ユニット20が検出されると、検出された1つ以上の測定ユニット20から受信した荷重値に基づき、CPU410は被測定者の体重を算出する(ステップS3)。体重が算出されると、算出結果が出力される(ステップS5)。これにより、一連の体重計測の動作が終了する。 When the measurement unit 20 is detected, the CPU 410 calculates the weight of the person to be measured based on the load value received from the detected one or more measurement units 20 (step S3). When the weight is calculated, the calculation result is output (step S5). Thereby, a series of weight measurement operations are completed.
 図8と図9を参照して、ステップS1の検出処理の詳細を説明する。なお、体重計測のために被測定者が使用している測定ユニット20は予め電源ONされており、通信可能であり、且つ荷重検出が可能な状態にあると想定する。 Details of the detection process in step S1 will be described with reference to FIGS. Note that it is assumed that the measurement unit 20 used by the person to be measured for weight measurement is powered on in advance, can communicate, and can detect a load.
 操作部42を介して測定開始指示が入力されると、検出処理が開始される。まず、CPU410の通信処理部65では、データ生成部68によって図12に示す問合せデータパケットPA1が生成されて、生成されたデータパケットPA1は送信部67により送信される(ステップS10)。データパケットPA1のフィールドF2には、ブロードキャストアドレスが格納されているので、当該データパケットPA1は、算出ユニット40の無線通信可能エリアに存在する全ての測定ユニット20により受信可能である。 When a measurement start instruction is input via the operation unit 42, the detection process is started. First, in the communication processing unit 65 of the CPU 410, an inquiry data packet PA1 shown in FIG. 12 is generated by the data generation unit 68, and the generated data packet PA1 is transmitted by the transmission unit 67 (step S10). Since the broadcast address is stored in the field F2 of the data packet PA1, the data packet PA1 can be received by all the measurement units 20 existing in the wireless communicable area of the calculation unit 40.
 データパケットPA1を送信した後、受信部66は、データパケットPA1に応答した各測定ユニット20から送信されるデータパケットPA2を受信する(ステップS11)。 After transmitting the data packet PA1, the receiving unit 66 receives the data packet PA2 transmitted from each measurement unit 20 in response to the data packet PA1 (step S11).
 CPU410は、受信したデータパケットPA2のフィールドF3に格納されたIDデータ27をメモリ412に存在ユニットIDデータ521として格納する。これにより、算出ユニット40の無線通信可能エリアに存在する全ての測定ユニット20(ただし、電源ONされて通信および荷重検出が可能な測定ユニット20)のIDデータ27を取得することができる。 The CPU 410 stores the ID data 27 stored in the field F3 of the received data packet PA2 in the memory 412 as the existing unit ID data 521. Thereby, the ID data 27 of all the measurement units 20 (however, the measurement units 20 capable of communication and load detection when the power is turned on) existing in the wireless communicable area of the calculation unit 40 can be acquired.
 続いて、測定ユニット検出部60は、現在のモードを判定する(ステップS15)。具体的には、メモリ412に予め格納されたモードデータ56に基づきモードを判定する。モードデータ56が“前回使用”モードを指すときは、測定ユニット検出部60は、データ生成部68に対して“前回使用”モードのデータパケットPA3の生成を指示し、“環境・設置”モードを指すときは、“環境・設置”モードのデータパケットPA3の生成を指示し、“トリガ”モードを指すときは、 “トリガ”モードのデータパケットPA3の生成を指示する。 Subsequently, the measurement unit detector 60 determines the current mode (step S15). Specifically, the mode is determined based on the mode data 56 stored in the memory 412 in advance. When the mode data 56 indicates the “previous use” mode, the measurement unit detection unit 60 instructs the data generation unit 68 to generate the data packet PA3 in the “previous use” mode, and sets the “environment / installation” mode. When pointing, the generation of the data packet PA3 in the “environment / installation” mode is instructed, and when indicating the “trigger” mode, the generation of the data packet PA3 in the “trigger” mode is instructed.
 ステップS17、S19およびS21のそれぞれにおいて、データ生成部68は指示に従ってデータパケットPA3を生成する。 In each of steps S17, S19, and S21, the data generation unit 68 generates a data packet PA3 according to the instruction.
 ステップS17では、“前回使用”モードを指示するデータMDが格納されたデータパケットPA3が生成される。このデータパケットPA3のフィールドF2には、履歴データ55から読出された前回の体重計測に使用された測定ユニット20のIDデータ27が格納される。 In step S17, the data packet PA3 storing the data MD instructing the “previous use” mode is generated. In the field F2 of the data packet PA3, the ID data 27 of the measurement unit 20 used for the previous weight measurement read from the history data 55 is stored.
 ステップS19ではデータMDが“環境・設置”モードを指示するデータパケットPA3が生成され、ステップS21では、データMDが“トリガ”モードを指示するデータパケットPA3が生成される。 In step S19, the data packet PA3 in which the data MD indicates the “environment / installation” mode is generated, and in step S21, the data packet PA3 in which the data MD indicates the “trigger” mode is generated.
 このようにして生成されたデータパケットPA3は、送信部67によって送信される(ステップS23)。その後、後述のステップS61の処理に移行する。 The data packet PA3 generated in this way is transmitted by the transmission unit 67 (step S23). Thereafter, the process proceeds to step S61 described later.
 上述のステップS17で生成されたデータパケットPA3は、前回の体重計測に使用された測定ユニット20宛てに送信される。ステップS19およびS21では、データ生成部68は、存在ユニットIDデータ521に含まれるIDデータ27のそれぞれをフィールドF2に格納したデータパケットPA3を生成する。したがって、ステップS19およびS21で生成されたデータパケットPA3は、算出ユニット40の通信可能エリアに存在する全ての測定ユニット20に対して送信される。 The data packet PA3 generated in step S17 described above is transmitted to the measurement unit 20 used for the previous weight measurement. In steps S19 and S21, the data generation unit 68 generates a data packet PA3 in which each of the ID data 27 included in the presence unit ID data 521 is stored in the field F2. Therefore, the data packet PA3 generated in steps S19 and S21 is transmitted to all the measurement units 20 existing in the communicable area of the calculation unit 40.
 図9を参照して、検出処理において各測定ユニット20では、CPU240の受信部38は、何らかのデータパケットPAを受信するか否かを判定する(ステップS30)。データパケットPAが受信されない間は(ステップS30でNO)、ステップS30の受信待機処理が繰返される。何らかのデータパケットPAを受信したと判定されると(ステップS30でYES)、CPU240は、受信したデータパケットPAのフィールドF1のタイプを参照して当該データパケットPAの種類を判定する。判定の結果、タイプ“Q”を指示すると判定すると(ステップS31でYES)、CPU240は、データ生成部36に対してデータパケットPA2を生成するよう指示する。これにより、データ生成部36はデータパケットPA2を生成する。生成されたデータパケットPA2は送信部37により送信される(ステップS33)。ステップS33では、受信したデータパケットPA2のフィールドF3のデータがメモリ242に宛先データ28として格納される。その後、ステップS30の受信待機処理に戻る。 Referring to FIG. 9, in each measurement unit 20 in the detection process, reception unit 38 of CPU 240 determines whether or not to receive any data packet PA (step S30). While the data packet PA is not received (NO in step S30), the reception standby process in step S30 is repeated. If it is determined that any data packet PA has been received (YES in step S30), CPU 240 refers to the type of field F1 of received data packet PA and determines the type of data packet PA. As a result of the determination, if it is determined that the type “Q” is instructed (YES in step S31), the CPU 240 instructs the data generation unit 36 to generate the data packet PA2. Thereby, the data generation unit 36 generates the data packet PA2. The generated data packet PA2 is transmitted by the transmission unit 37 (step S33). In step S33, the data in the field F3 of the received data packet PA2 is stored in the memory 242 as the destination data 28. Thereafter, the process returns to the reception standby process in step S30.
 ステップS31においてデータパケットPA1でないと判定されると(ステップS31でNO)、自己宛てのデータパケットPAであるか否かを判定する(ステップS35)。具体的には、当該データパケットPAのフィールドF2の送信先データとメモリ242のIDデータ27とを比較し、比較結果に基づき自己宛てであるか否かを判定する(ステップS35)。比較結果、両データが不一致の場合は自己宛てではないと判定し、受信したデータパケットPAを無視(破棄)する。その後、処理はステップS30の受信待機処理に戻る。 If it is determined in step S31 that it is not the data packet PA1 (NO in step S31), it is determined whether or not it is the data packet PA addressed to itself (step S35). Specifically, the transmission destination data in the field F2 of the data packet PA is compared with the ID data 27 in the memory 242, and it is determined whether or not it is addressed to itself based on the comparison result (step S35). If the two data do not match, it is determined that the data is not addressed to itself, and the received data packet PA is ignored (discarded). Thereafter, the process returns to the reception standby process in step S30.
 比較結果、両データが一致の場合は自己宛てと判定する(ステップS35でYES)。このとき自己宛てと判定されるデータパケットPAは、ステップS23で送信されたデータパケットPA3である。 If the comparison result shows that both data match, it is determined to be addressed to itself (YES in step S35). At this time, the data packet PA determined to be addressed to itself is the data packet PA3 transmitted in step S23.
 自己宛てと判定されると、CPU240はモードを判定する。すなわち、受信したデータパケットPA3のフィールドF4のデータMDが指定するモードを判別する。データMDが“前回使用”を指すと判定すると、データ生成部36は、メモリ242の収束荷重データ251をデータWDとして格納したデータパケットPA4を生成する(ステップS39、S41)。 If it is determined that it is addressed to itself, the CPU 240 determines the mode. That is, the mode specified by the data MD in the field F4 of the received data packet PA3 is determined. When determining that the data MD indicates “previous use”, the data generation unit 36 generates a data packet PA4 in which the convergent load data 251 in the memory 242 is stored as the data WD (steps S39 and S41).
 データMDが“環境・設置”を指すと判定すると、CPU240は、センサ出力処理部32にセンサ群243からの出力を取得するように指示する。これにより、センサ出力処理部32はセンサ群243からの出力に基づきデータEVを取得する(ステップS43)。データ生成部36は、CPU240の指示により、メモリ242の収束荷重データ251を読出し、読出した収束荷重データ251であるデータWDと、取得されたデータEVとを格納したデータパケットPA4を生成する(ステップS45、S47)。 When it is determined that the data MD indicates “environment / installation”, the CPU 240 instructs the sensor output processing unit 32 to acquire the output from the sensor group 243. Thereby, the sensor output processing unit 32 acquires the data EV based on the output from the sensor group 243 (step S43). In response to an instruction from the CPU 240, the data generation unit 36 reads the convergence load data 251 in the memory 242, and generates a data packet PA4 storing the read data WD as the convergence load data 251 and the acquired data EV (step). S45, S47).
 また、データMDが“トリガ”を指すと判定されると、データ生成部36は、メモリ242の時系列荷重データ252を、データWDとして格納したデータパケットPA4を生成する(ステップS49、S51)。 When it is determined that the data MD indicates “trigger”, the data generation unit 36 generates a data packet PA4 in which the time-series load data 252 in the memory 242 is stored as the data WD (steps S49 and S51).
 ステップS41またはステップS47またはステップS51で生成されたデータパケットPA4は、フィールドF2に、受信データパケットPA3のフィールドF3のデータが格納される。生成されたデータパケットPA4は、送信部37により算出ユニット40宛てに送信される。 In the data packet PA4 generated in step S41, step S47 or step S51, the data in the field F3 of the received data packet PA3 is stored in the field F2. The generated data packet PA4 is transmitted to the calculation unit 40 by the transmission unit 37.
 図10を参照して、算出ユニット40では、ステップS61において、受信部38は何らかのデータパケットPAを受信するか否かを判定する(ステップS61)。何らかのデータパケットPAが受信されない間は、ステップS61の処理が繰返されることにより、受信待機状態となる。受信待機状態で検出されるデータパケットPAは、ステップS53で送信されるデータパケットPA4である。 Referring to FIG. 10, in calculation unit 40, in step S61, reception unit 38 determines whether or not to receive any data packet PA (step S61). While any data packet PA is not received, the process of step S61 is repeated to enter a reception standby state. The data packet PA detected in the reception standby state is the data packet PA4 transmitted in step S53.
 この受信待機状態においてデータパケットPA4の受信が検出されると(ステップS61でYES)、算出部62は、メモリ412のモードデータ56に基づき、モードを判定する(ステップS63)。モードデータ56が“前回使用”を指すと判定すると、算出部62は、ステップS61で受信した全てのデータパケットPA4のフィールドF4に格納されているデータWD(収束荷重データ251に相当)を読出し、読出した全てのデータWDを積算(総和算出)することにより体重を算出する(ステップS67)。 When reception of the data packet PA4 is detected in this reception standby state (YES in step S61), the calculation unit 62 determines the mode based on the mode data 56 of the memory 412 (step S63). When determining that the mode data 56 indicates “previous use”, the calculation unit 62 reads the data WD (corresponding to the convergence load data 251) stored in the field F4 of all the data packets PA4 received in step S61, The body weight is calculated by integrating (calculating the total sum) all the read data WD (step S67).
 これにより、被測定者は体重計測に同じ測定ユニット20を繰返し利用する傾向が高いと容易に推認できることに鑑みると、積算に用いるべきデータWDとして、“前回使用”モードで検出した測定ユニット20からのデータWDを選択的に用いることで、体重計測に使用されている測定ユニット20のデータWDを用いた体重の算出が可能となる。 Accordingly, in view of the fact that the person to be measured can easily infer that the same measurement unit 20 tends to be repeatedly used for weight measurement, the data WD to be used for integration is determined from the measurement unit 20 detected in the “previous use” mode. By selectively using the data WD, the weight can be calculated using the data WD of the measurement unit 20 used for weight measurement.
 モードデータ56が“環境・設置”を指していると判定すると、受信した各データパケットPA4のフィールドF4に格納されるデータEVとメモリ412の条件データ57とを比較照合し、不一致のデータパケットPAは無視(破棄)する(ステップS69)。ステップS73では、データEVと条件データ57が一致しているデータパケットPA4のデータWD(収束荷重データ251に相当)を積算(総和算出)することにより体重を算出する(ステップS73)。 If it is determined that the mode data 56 indicates “environment / installation”, the data EV stored in the field F4 of each received data packet PA4 and the condition data 57 of the memory 412 are compared and collated, and the mismatched data packet PA Is ignored (discarded) (step S69). In step S73, the body weight is calculated by integrating (summing up) the data WD (corresponding to the convergent load data 251) of the data packet PA4 in which the data EV and the condition data 57 match (step S73).
 これにより、体重計測に用いられている測定ユニット20は同じ環境(温度、湿度など)または同じ設置態様(方向など)で用いられていることは明らかであるから、積算に用いるべきデータWDとして、データEVと条件データ57を用いて外部環境または設置態様が一致している測定ユニット20からのデータWDを選択的に用いることで、体重計測に使用されている測定ユニット20を検出して、そのデータWDを用いた体重の算出が可能となる。 Thereby, since it is clear that the measurement unit 20 used for weight measurement is used in the same environment (temperature, humidity, etc.) or in the same installation mode (direction, etc.), as data WD to be used for integration, By selectively using the data WD from the measurement unit 20 that matches the external environment or installation mode using the data EV and the condition data 57, the measurement unit 20 used for weight measurement is detected, and the The weight can be calculated using the data WD.
 ステップS63において“トリガ”と判定されると、トリガ検出部61は、受信された各データパケットPA4の時系列荷重データ252に相当のデータWDに基づき、当該時系列荷重データのトリガを検出する(ステップS75)。トリガが検出されたデータWDのみを用いて算出部62により体重が算出される(ステップS79)。 If it is determined as “trigger” in step S63, the trigger detection unit 61 detects the trigger of the time series load data based on the data WD corresponding to the time series load data 252 of each received data packet PA4 ( Step S75). The weight is calculated by the calculation unit 62 using only the data WD in which the trigger is detected (step S79).
 これにより、体重計測に用いられている測定ユニット20の時系列に検出される荷重値は、ほぼ同じような変化を呈する、すなわち多少の時間ずれはあるがトリガを有するから、積算に用いるべきデータWDとして、トリガの有無により測定ユニット20からのデータWDを選択的に用いることで、体重計測に使用されている測定ユニット20を検出して、そのデータWDを用いた体重の算出が可能となる。 As a result, the load values detected in time series of the measurement unit 20 used for weight measurement exhibit almost the same change, that is, there is a slight time lag, but there is a trigger, so the data to be used for integration By selectively using the data WD from the measurement unit 20 depending on the presence or absence of a trigger as the WD, the measurement unit 20 used for weight measurement can be detected and the weight can be calculated using the data WD. .
 ステップS67、ステップS73またはステップS79の処理後は、図8のステップS5の処理に移行して、外部機器50において算出された体重が出力される。 After step S67, step S73 or step S79, the process proceeds to step S5 in FIG. 8, and the weight calculated in the external device 50 is output.
 上述の処理では、データパケットPA1に対してデータパケットPA2を返信して応答をした測定ユニット20のみを対象にして、すなわち算出ユニット40の通信可能エリア内の存在が検出された測定ユニット20のみ宛てに荷重値の送信要求のデータパケットPA3を送信するようにしている。これにより、通信可能エリア内に測定ユニット20が存在するときのみデータパケットPA3を送信することが可能となり、算出ユニット40の通信負荷および電力消費量を少なくできる。 In the above-described processing, only the measurement unit 20 that responds by returning the data packet PA2 to the data packet PA1, that is, only the measurement unit 20 in which the existence of the calculation unit 40 in the communicable area is detected is addressed. The data packet PA3 of the load value transmission request is transmitted to the. As a result, the data packet PA3 can be transmitted only when the measurement unit 20 exists in the communicable area, and the communication load and power consumption of the calculation unit 40 can be reduced.
 図16を参照して、ステップS75におけるトリガ検出例を説明する。
 たとえば、4個の測定ユニット20それぞれからデータパケットPA4を受信したと想定する。この場合、トリガ検出部61は、4個の測定ユニット20のそれぞれから時系列荷重データ252を指すデータWDを取得できる。
An example of trigger detection in step S75 will be described with reference to FIG.
For example, assume that a data packet PA4 is received from each of the four measurement units 20. In this case, the trigger detection unit 61 can acquire data WD indicating the time-series load data 252 from each of the four measurement units 20.
 図16のグラフの横軸は時間(T)の経過を指し、縦軸は時間の経過に伴って検出される荷重値を指す。測定ユニット20を電源ONした後において載置面300に未だ被測定者が乗っていない状態ではロードセル21に体重による荷重はかからないので測定ユニット20が検出する荷重値は変化しない。その後、被測定者が載置面300に乗り始めると荷重値は急激に上昇を開始する。図16では、時間が“1秒”付近でグラフの急峻な立上が示される。本実施の形態では、被測定者が載置面300に乗り始めたときの荷重値の急激な増加開始(グラフの急峻な立ち上がり)点をトリガと称する。 The horizontal axis of the graph in FIG. 16 indicates the passage of time (T), and the vertical axis indicates the load value detected with the passage of time. After the measurement unit 20 is turned on, a load due to weight is not applied to the load cell 21 in a state where the measurement subject is not yet on the placement surface 300, so the load value detected by the measurement unit 20 does not change. Thereafter, when the measurement subject starts to ride on the placement surface 300, the load value starts to increase rapidly. In FIG. 16, the steep rise of the graph is shown around time “1 second”. In the present embodiment, the point at which the load value starts to increase rapidly (the sharp rise of the graph) when the measurement subject starts to ride on the placement surface 300 is referred to as a trigger.
 図16によれば、4個の測定ユニット20の荷重値のうち、2個の測定ユニット20についてはトリガを含む荷重値の変化が検出されるが、他の2つの測定ユニット20についてはトリガを含む荷重値の変化が検出されないことから、他の2つの測定ユニット20は体重計測に使用されていないことがわかる。 According to FIG. 16, among the load values of the four measurement units 20, a change in the load value including the trigger is detected for the two measurement units 20, but the trigger is detected for the other two measurement units 20. Since the change of the load value including it is not detected, it turns out that the other two measurement units 20 are not used for weight measurement.
 したがって、トリガ検出部61は、データパケットPA4のデータWDが指す時系列の荷重値データを解析し、解析結果に基づきトリガを検出した場合には、当該データパケットPA4の送信元の測定ユニット20は、体重計測に使用されている測定ユニット20であると判定することができる。 Therefore, when the trigger detection unit 61 analyzes the time-series load value data indicated by the data WD of the data packet PA4 and detects a trigger based on the analysis result, the measurement unit 20 that is the transmission source of the data packet PA4 It can be determined that the measurement unit 20 is used for weight measurement.
 次に、図17の(A)と(B)を参照して、トリガ検出後の算出部62による体重算出(ステップS79)の手順について説明する。図17のグラフの横軸は時間(T)の経過を指し、縦軸は時間の経過に伴って検出される荷重値を指す。図17には、図16でトリガを検出した2個の測定ユニット20からのデータWDに対応するグラフL1とL2が示される。 Next, with reference to FIGS. 17A and 17B, the procedure of weight calculation (step S79) by the calculation unit 62 after trigger detection will be described. The horizontal axis of the graph in FIG. 17 indicates the passage of time (T), and the vertical axis indicates the load value detected with the passage of time. FIG. 17 shows graphs L1 and L2 corresponding to the data WD from the two measurement units 20 that detected the trigger in FIG.
 正確に体重を算出するためには、図16でトリガを検出した2個の測定ユニット20からのデータWDについて同期をとる必要がある。つまり、被測定者が載置面300に乗り始めると各測定ユニット20に荷重がかかり始めるが、荷重がかかり始めるタイミングは乗り方または測定ユニット20の配置の仕方などによってずれが生じる。これに起因してグラフL1とL2のトリガの検出時間TR1とTR2は一致せず若干のずれを生じる(図17の(A)参照)。したがって、体重を算出するに際しては、このずれを解消するようにグラフL1とL2の時間軸を一致させる必要がある。 In order to calculate the weight accurately, it is necessary to synchronize the data WD from the two measurement units 20 that detected the trigger in FIG. That is, when the measurement subject starts to ride on the mounting surface 300, a load starts to be applied to each measurement unit 20. However, the timing at which the load starts to be applied varies depending on how to ride or how the measurement unit 20 is arranged. Due to this, the detection times TR1 and TR2 of the triggers in the graphs L1 and L2 do not coincide with each other, and a slight shift occurs (see FIG. 17A). Therefore, when calculating the weight, it is necessary to match the time axes of the graphs L1 and L2 so as to eliminate this shift.
 具体的には、収束検出部63は、図17の(B)に示すように、時間TR1とTR2を共通の時間TRに一致させるように、グラフL1またはL2を時間軸方向に平行移動させる。ここでは、時間TR1に時間TR2を一致させるように、グラフL2のみを時間軸方向に平行移動させる。 Specifically, as shown in FIG. 17B, the convergence detection unit 63 translates the graph L1 or L2 in the time axis direction so that the times TR1 and TR2 coincide with the common time TR. Here, only the graph L2 is translated in the time axis direction so that the time TR1 coincides with the time TR1.
 平行移動後の図17の(B)のグラフによれば、収束検出部63は電源ONした後に載置面300上に被測定者が乗り、載置面300上の被測定者の動きが停止し安定している期間、すなわちグラフL1とL2について両方ともに第2収束の状態に移行した期間CVを検出することができる。 According to the graph of FIG. 17B after the parallel movement, the convergence detection unit 63 is powered on and then the person to be measured gets on the placement surface 300 and the movement of the subject on the placement surface 300 stops. Then, it is possible to detect a stable period, that is, a period CV in which the graphs L1 and L2 are both shifted to the second convergence state.
 算出部62は、図17の(B)に示す期間CVを検出すると、期間CVにおけるグラフL1とL2が示す荷重値を積算することにより体重を算出することができる。算出された体重は、被測定者の体動に起因した誤差が排除された値である。 When the calculation unit 62 detects the period CV shown in FIG. 17B, the calculation unit 62 can calculate the weight by integrating the load values indicated by the graphs L1 and L2 in the period CV. The calculated weight is a value from which an error due to the body movement of the measurement subject is excluded.
 図17で説明した算出ユニット40側の処理手順と、同様の処理が各測定ユニット20のステップS39およびステップS45においても実行される。測定ユニット20側の処理手順を、図18を参照して説明する。 The same processing procedure as that on the calculation unit 40 side described in FIG. 17 is also executed in step S39 and step S45 of each measurement unit 20. The processing procedure on the measurement unit 20 side will be described with reference to FIG.
 図18のグラフの横軸は時間(T)の経過を指し、縦軸は時間の経過に伴って検出される荷重値を指す。図18のグラフでは、時間TR1でトリガが検出されている。収束検出部30は、電源ONされてから時間TR1までの期間で第1収束を検出し、第1収束の期間においてゼロ点検出部31によりゼロ点が検出される。時間TR1でトリガを検出後は、収束検出部30により第2収束の期間CVが検出される。収束荷重取得部341は、期間CVにおいて検出される荷重値(より特定的には、期間CVの荷重値の平均値)を取得する。このように、各測定ユニット20のステップS39およびステップS45においては、期間CVにおいて荷重値が取得される。 18, the horizontal axis indicates the passage of time (T), and the vertical axis indicates the load value detected with the passage of time. In the graph of FIG. 18, a trigger is detected at time TR1. The convergence detection unit 30 detects the first convergence in a period from when the power is turned on to the time TR1, and the zero point detection unit 31 detects the zero point during the first convergence period. After detecting the trigger at time TR1, the convergence detection unit 30 detects the second convergence period CV. The convergent load acquisition unit 341 acquires the load value detected in the period CV (more specifically, the average value of the load values in the period CV). Thus, in step S39 and step S45 of each measurement unit 20, the load value is acquired in the period CV.
 これにより、各測定ユニット20の収束荷重取得部341は、載置面300上に乗っている被測定者の体動に起因した誤差が排除された荷重値を取得する。取得された荷重値は算出ユニット40に送信することができるので、算出ユニット40の算出部62は当該誤差を含まないような体重値を算出することができる。 Thereby, the convergent load acquisition unit 341 of each measurement unit 20 acquires a load value from which an error caused by the body movement of the measurement subject riding on the placement surface 300 is eliminated. Since the acquired load value can be transmitted to the calculation unit 40, the calculation unit 62 of the calculation unit 40 can calculate a weight value that does not include the error.
 本実施の形態によれば、荷重値を要求するデータパケットPA3を送信し、それに対する測定ユニット20からの応答のデータパケットPA4を受信することにより、算出ユニット40は、体重計測に使用されている測定ユニット20からの荷重値を取得することができる。また、測定ユニット20は、荷重値の送信タイミングとして、荷重値の要求受信を利用できるから、測定ユニット20は自己で送信タイミングを調整する必要はなく、機能を簡素化することができる。 According to the present embodiment, the calculation unit 40 is used for weight measurement by transmitting the data packet PA3 requesting the load value and receiving the data packet PA4 of the response from the measurement unit 20 to the data packet PA3. The load value from the measurement unit 20 can be acquired. Further, since the measurement unit 20 can use the request reception of the load value as the load value transmission timing, the measurement unit 20 does not need to adjust the transmission timing by itself and can simplify the function.
 (変形例)
 上述の処理では、算出ユニット40の通信可能エリア内の存在が検出された測定ユニット20を対象にして荷重値の送信要求のデータパケットPA3を送信するようにしているが、これに代替して、フィールドF2にブロードキャストアドレスを格納したデータパケットPA3を送信するようにしてもよい。
(Modification)
In the above-described processing, the load unit transmission request data packet PA3 is transmitted to the measurement unit 20 in which the presence of the calculation unit 40 in the communicable area is detected. You may make it transmit data packet PA3 which stored the broadcast address in the field F2.
 また、ステップS5では、算出ユニット40は、体重算出に用いた荷重値の送信元である測定ユニット20のIDデータ27を外部機器50に送信し、出力させるようにしてもよい。これにより、被測定者は、載置面300が搭載されている測定ユニット20のうちから、荷重値を送信できないような故障状態の測定ユニット20を確認することができる。 Further, in step S5, the calculation unit 40 may transmit the ID data 27 of the measurement unit 20 that is a transmission source of the load value used for weight calculation to the external device 50 for output. As a result, the measurement subject can check the measurement unit 20 in the failure state in which the load value cannot be transmitted from the measurement units 20 on which the placement surface 300 is mounted.
 上述の実施の形態では、図1に示すように算出ユニット40と通信する体重計は1個としているが、複数個の体重計と通信するとしてもよい。この場合には、測定ユニット20のIDデータ27に、グループ識別子を付加させる。このグループ識別子は、当該測定ユニット20が用いられている体重計を構成する測定ユニット20のグループを指す。これにより、算出ユニット40は、測定ユニット20を、グループ識別子が付加されたIDデータ27に基づきグループ単位で、すなわち体重計単位で識別しながら、荷重値を取得して体重を算出できる。これにより、算出ユニット40は体重計毎に被測定者の体重を算出することができる。 In the above-described embodiment, as shown in FIG. 1, the number of weight scales communicating with the calculation unit 40 is one, but it may be communicated with a plurality of weight scales. In this case, a group identifier is added to the ID data 27 of the measurement unit 20. This group identifier indicates a group of the measurement units 20 that constitutes the weight scale in which the measurement unit 20 is used. Thereby, the calculation unit 40 can acquire the load value and calculate the weight while identifying the measurement unit 20 in units of groups based on the ID data 27 to which the group identifier is added, that is, in units of scales. Thereby, the calculation unit 40 can calculate the weight of the person to be measured for each weight scale.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 体重計測システム、20 測定ユニット、21 ロードセル、22 電源部、23 PCB、34 荷重取得部、35,65 通信処理部、36,68 データ生成部、37,67 送信部、38,66 受信部、40 算出ユニット、50 外部機器、55 履歴データ、56 モードデータ、57 条件データ、60 測定ユニット検出部、61 トリガ検出部、62 算出部、243 センサ群、251 収束荷重データ、252 時系列荷重データ、300 置面、511 ディスプレイ、PA,PA1~PA4 データパケット。 1 Weight measurement system, 20 measurement units, 21 load cell, 22 power supply unit, 23 PCB, 34 load acquisition unit, 35, 65 communication processing unit, 36, 68 data generation unit, 37, 67 transmission unit, 38, 66 reception unit, 40 calculation units, 50 external devices, 55 history data, 56 mode data, 57 condition data, 60 measurement unit detection unit, 61 trigger detection unit, 62 calculation unit, 243 sensor group, 251 convergence load data, 252 time series load data, 300 surface, 511 display, PA, PA1 to PA4 data packets.

Claims (12)

  1.  被測定者の体重を計測する体重計測システム(1)であって、
     かけられた荷重を検出し、検出された荷重から導出される荷重値を、荷重要求に応答して送信する測定ユニット(20)と、
     前記測定ユニットと無線通信する体重算出ユニット(40)と、を備え、
     前記体重算出ユニット(40)は、
     前記荷重要求を送信する要求送信手段と、
     1つ以上の前記測定ユニットから受信した前記荷重値を用いて体重を算出する算出手段と、を含む、体重計測システム。
    A weight measurement system (1) for measuring the weight of a measurement subject,
    A measurement unit (20) for detecting an applied load and transmitting a load value derived from the detected load in response to a load request;
    A weight calculation unit (40) in wireless communication with the measurement unit;
    The weight calculation unit (40)
    Request transmitting means for transmitting the load request;
    A weight measurement system comprising: calculation means for calculating a weight using the load value received from one or more of the measurement units.
  2.  前記測定ユニットは、
     かけられた荷重を検出する荷重センサと、検出された荷重を処理し荷重値として導出する計測部と、前記体重算出ユニットと無線通信する通信部と、電源部とを含む、請求項1に記載の体重計測システム。
    The measurement unit is
    2. A load sensor that detects an applied load, a measurement unit that processes the detected load and derives a load value, a communication unit that wirelessly communicates with the weight calculation unit, and a power supply unit. Weight measurement system.
  3.  前記体重算出ユニットは、
     1つ以上の前記測定ユニットそれぞれから受信する所定データに基づき、当該測定ユニットから受信する荷重値を、前記算出手段による体重の算出に用いるか否かを判定する判定手段を、さらに含む、請求項2に記載の体重計測システム。
    The weight calculation unit includes:
    The apparatus further includes a determination unit that determines whether or not a load value received from the measurement unit is used for calculation of weight by the calculation unit based on predetermined data received from each of the one or more measurement units. 2. The weight measurement system according to 2.
  4.  前記測定ユニットは、予め識別データが割当てされて、
     前記所定データは、前記測定ユニットの前記識別データを含む、請求項3に記載の体重計測システム。
    The measurement unit is pre-assigned identification data,
    The weight measurement system according to claim 3, wherein the predetermined data includes the identification data of the measurement unit.
  5.  前記体重算出ユニットは、
     体重の算出に使用された前記荷重値の送信元の前記測定ユニットの前記識別データの履歴を格納する履歴格納部を、さらに含み、
     前記判定手段は、
     1つ以上の前記測定ユニットそれぞれから受信した前記識別データと、前記履歴格納部の前記履歴とを比較し、比較結果に基づき、当該測定ユニットから受信する荷重値を、前記算出手段による体重の算出に用いるか否かを判定する、請求項4に記載の体重計測システム。
    The weight calculation unit includes:
    A history storage unit that stores a history of the identification data of the measurement unit that is a transmission source of the load value used for calculating the weight;
    The determination means includes
    The identification data received from each of the one or more measurement units is compared with the history in the history storage unit, and based on the comparison result, the weight value received from the measurement unit is calculated by the calculation means. The weight measurement system according to claim 4, wherein it is determined whether or not to use.
  6.  前記測定ユニットは、
     当該測定ユニットの設置態様を検出する設置検出手段を、さらに含み、
     前記所定データは、前記設置検出手段により検出された前記設置態様を含み、
     前記判定手段は、
     1つ以上の前記測定ユニットそれぞれから受信した前記設置態様と、所定態様とを比較し、比較結果に基づき、当該測定ユニットから受信する荷重値を、前記算出手段による体重の算出に用いるか否かを判定する、請求項4に記載の体重計測システム。
    The measurement unit is
    It further includes installation detection means for detecting the installation mode of the measurement unit,
    The predetermined data includes the installation mode detected by the installation detection means,
    The determination means includes
    Whether the installation mode received from each of the one or more measurement units is compared with a predetermined mode, and based on the comparison result, whether or not the load value received from the measurement unit is used for calculating the weight by the calculation means The weight measurement system according to claim 4, wherein:
  7.  前記測定ユニットは、
     当該測定ユニットの周囲の外部環境条件を検出する環境検出手段を、さらに含み、
     前記所定データは、前記環境検出手段により検出された前記外部環境条件を含み、
     前記判定手段は、
     1つ以上の前記測定ユニットそれぞれから受信した前記外部環境条件と、所定環境条件とを比較し、比較結果に基づき、当該測定ユニットから受信する荷重値を、前記算出手段による体重の算出に用いるか否かを判定する、請求項4に記載の体重計測システム。
    The measurement unit is
    An environmental detection means for detecting external environmental conditions around the measurement unit;
    The predetermined data includes the external environmental condition detected by the environment detection means,
    The determination means includes
    Whether the external environmental condition received from each of the one or more measurement units is compared with a predetermined environmental condition, and based on the comparison result, the load value received from the measurement unit is used for calculating the weight by the calculation means. The weight measurement system according to claim 4, which determines whether or not.
  8.  前記荷重センサは、体重の計測開始から時系列に荷重を検出し、
     前記計測部は、検出された荷重を時系列の荷重値として導出し、
     前記所定データは、前記時系列の荷重値のデータを含み、
     前記判定手段は、
     1つ以上の前記測定ユニットそれぞれから受信した前記時系列の荷重値の変化の有無に基づき、当該測定ユニットから受信する荷重値を、前記算出手段による体重の算出に用いるか否かを判定する、請求項4に記載の体重計測システム。
    The load sensor detects the load in time series from the start of weight measurement,
    The measurement unit derives the detected load as a time-series load value,
    The predetermined data includes data of the time-series load value,
    The determination means includes
    Determining whether to use the load value received from the measurement unit for calculating the weight based on the presence or absence of a change in the time-series load value received from each of the one or more measurement units; The weight measurement system according to claim 4.
  9.  前記測定ユニットは、予め識別データが割当てされて、
     前記体重算出ユニットは、
     測定ユニットの存在を確認するための存在問合せを周囲エリアに送信する存在問合せ手段と、
     前記存在問合せに対する応答を受信する存在応答受信手段と、を含み、
     前記存在応答受信手段により受信される応答には、当該応答を送信した前記測定ユニットの前記識別データが含まれ、
     前記所定データは、前記存在応答受信手段により受信された応答に含まれる前記識別データを含む、請求項3に記載の体重計測システム。
    The measurement unit is pre-assigned identification data,
    The weight calculation unit includes:
    Existence inquiry means for transmitting an existence inquiry for confirming the existence of the measurement unit to the surrounding area,
    Presence response receiving means for receiving a response to the presence query,
    The response received by the presence response receiving means includes the identification data of the measurement unit that transmitted the response,
    The weight measurement system according to claim 3, wherein the predetermined data includes the identification data included in a response received by the presence response receiving unit.
  10.  前記周囲エリアは、
     前記体重算出ユニットが無線通信することが可能なエリアを指す、請求項9に記載の体重計測システム。
    The surrounding area is
    The weight measurement system according to claim 9, wherein the weight calculation unit indicates an area where wireless communication is possible.
  11.  前記体重算出ユニットと通信する出力ユニットを、さらに備え、
     前記出力ユニットは、前記体重算出ユニットから算出された体重を受信し、受信した体重を出力する、請求項1に記載の体重計測システム。
    An output unit that communicates with the weight calculating unit;
    The weight measurement system according to claim 1, wherein the output unit receives the weight calculated from the weight calculation unit and outputs the received weight.
  12.  かけられる荷重を検出する荷重センサと、
     検出される荷重から荷重値を導出する計測部と、
     無線通信部と、
     電源部と、を備え、
     前記無線通信部は、要求を受信する要求受信手段を含み、
     前記要求受信手段により要求が受信されると、導出される前記荷重値を要求元に送信する、荷重測定ユニット。
    A load sensor for detecting an applied load;
    A measurement unit for deriving a load value from the detected load;
    A wireless communication unit;
    A power supply unit,
    The wireless communication unit includes request receiving means for receiving a request,
    A load measuring unit that transmits the derived load value to a request source when a request is received by the request receiving means.
PCT/JP2011/066427 2010-09-06 2011-07-20 Body weight measuring system WO2012032861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010198834A JP2012057969A (en) 2010-09-06 2010-09-06 Weight-measuring system
JP2010-198834 2010-09-06

Publications (1)

Publication Number Publication Date
WO2012032861A1 true WO2012032861A1 (en) 2012-03-15

Family

ID=45810465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066427 WO2012032861A1 (en) 2010-09-06 2011-07-20 Body weight measuring system

Country Status (2)

Country Link
JP (1) JP2012057969A (en)
WO (1) WO2012032861A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017167051A (en) 2016-03-17 2017-09-21 北川工業株式会社 Measurement information output system and program
WO2024024165A1 (en) * 2022-07-25 2024-02-01 パナソニックIpマネジメント株式会社 Measurement data management device, measurement data management method, program and measurement system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219856A (en) * 1995-02-14 1996-08-30 Kubota Corp Load cell type weighing instrument
JPH1073477A (en) * 1996-06-10 1998-03-17 Kubota Corp Radio-type measuring device
JPH1073479A (en) * 1996-06-10 1998-03-17 Kubota Corp Radio-type measuring device
JP2006017466A (en) * 2004-06-30 2006-01-19 Teraoka Seiko Co Ltd Platform scale, gauge system, and inventory management method
JP2010088473A (en) * 2008-10-03 2010-04-22 Showa Denko Kk Sensor control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199129B2 (en) * 1992-03-23 2001-08-13 大和製衡株式会社 Self-recovery device for force or load sensor failure
BR0109207A (en) * 2000-03-20 2003-02-11 Hill Rom Services Inc Patient scale
JP2004136811A (en) * 2002-10-18 2004-05-13 Auto Network Gijutsu Kenkyusho:Kk Sensor and device for detecting occupant
JP5219328B2 (en) * 2004-12-02 2013-06-26 大和製衡株式会社 Weight measuring device
JP4963101B2 (en) * 2007-11-13 2012-06-27 パラマウントベッド株式会社 User status detection system in bed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219856A (en) * 1995-02-14 1996-08-30 Kubota Corp Load cell type weighing instrument
JPH1073477A (en) * 1996-06-10 1998-03-17 Kubota Corp Radio-type measuring device
JPH1073479A (en) * 1996-06-10 1998-03-17 Kubota Corp Radio-type measuring device
JP2006017466A (en) * 2004-06-30 2006-01-19 Teraoka Seiko Co Ltd Platform scale, gauge system, and inventory management method
JP2010088473A (en) * 2008-10-03 2010-04-22 Showa Denko Kk Sensor control system

Also Published As

Publication number Publication date
JP2012057969A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP4827798B2 (en) Remote controller for air conditioning, air conditioner and air conditioning system
KR100790084B1 (en) Method and apparatus for measuring distance in bluetooth device
CN104142190B (en) Portable electronic device
KR101855573B1 (en) Smart body temperature patch
KR100842566B1 (en) Method and apparatus for controlling robot using motion of mobile terminal
JP2008309379A5 (en)
US20140128118A1 (en) Terminal device, communication system and method of activating terminal device
KR20190100814A (en) An electronic device updating calibration data based on blood pressure information and control method thereof
WO2012032861A1 (en) Body weight measuring system
JP2013005208A (en) Sound volume adjustment system and sound volume adjustment method
JP2006275761A (en) Setting technique of sensor module
KR20150120658A (en) Wireless monitoring device of automatic recognizing type
JP2012057968A (en) Weight-measuring system
CN104883173A (en) Key, terminal device and method for determining key stroke
US20040122609A1 (en) Gravity corrected scale, gravity correction indicator and gravity corrected scale system
JP7006827B1 (en) Substance detection system
CN109506756A (en) Electronic scale component, electronic scale combined method and combine electronic scale
CN103234617A (en) Remote-control digital weighing machine with temperature compensation function and temperature compensation method for remote-control digital weighing machine
US11549927B2 (en) Method and electronic device for correcting and generating data related to outside air on basis of movement
US20210215736A1 (en) Method for calibrating a sensor of a device and sensor system
CN101762267B (en) Tilting sensing device
WO2020129512A1 (en) Information management system, and pairing method for measurement device and information terminal
JP5535125B2 (en) Remote controller
KR102252779B1 (en) Sensor data smart transceiver and the method thereof
KR20160138864A (en) Portable scale system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823340

Country of ref document: EP

Kind code of ref document: A1