WO2012032621A1 - Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor - Google Patents

Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor Download PDF

Info

Publication number
WO2012032621A1
WO2012032621A1 PCT/JP2010/065419 JP2010065419W WO2012032621A1 WO 2012032621 A1 WO2012032621 A1 WO 2012032621A1 JP 2010065419 W JP2010065419 W JP 2010065419W WO 2012032621 A1 WO2012032621 A1 WO 2012032621A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage unit
power
charge
charging
Prior art date
Application number
PCT/JP2010/065419
Other languages
French (fr)
Japanese (ja)
Inventor
晴見 竹田
佳史 竹田
Original Assignee
Takeda Harumi
Takeda Yoshifumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Harumi, Takeda Yoshifumi filed Critical Takeda Harumi
Priority to PCT/JP2010/065419 priority Critical patent/WO2012032621A1/en
Publication of WO2012032621A1 publication Critical patent/WO2012032621A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition

Definitions

  • the present invention provides an initial drive for a control circuit for a power storage device at the start of power storage of the power storage device using a capacitor such as an electric double layer capacitor (hereinafter referred to as EDLC).
  • EDLC electric double layer capacitor
  • the present invention relates to a power storage device, a charge control circuit, and a charge control method thereof that supply the electric power and also control charging of the capacitor.
  • the rated voltage of the capacitor alone is as low as about 2.3 to 4.0 (V).
  • a single capacitor is connected in series. In many cases, they are connected in parallel to increase the storage capacity. That is, in a power storage device using a capacitor, a plurality of capacitors are often used in series-parallel connection.
  • the capacitance error of capacitors is large, when a plurality of capacitors are connected in series, they are fully charged in order starting from the capacitor with the smallest capacitance during charging. The voltage between terminals of a capacitor with a small capacitance exceeds the rated voltage, which causes deterioration and destruction of the capacitor.
  • a power storage device using a capacitor in the charging process, it is necessary to suppress (equalize) the variation in voltage between terminals of each capacitor due to the capacitance error of the capacitor constituting the power storage unit, It is necessary to perform control to prevent overcharging of the capacitor. Therefore, in general, a power storage device using a capacitor suppresses variation in voltage between terminals of a power storage unit composed of a plurality of capacitors connected in series and parallel and the capacitor of the power storage unit, It is comprised from the control part which prevents charge.
  • control for maintaining the output voltage of the power storage unit (hereinafter simply referred to as the power storage unit voltage) within the allowable input voltage range of the power converter
  • various functions have been proposed so far for various purposes such as control of input current to the storage unit and control of output current to the load. Since it is configured by a control element such as a processor, PLD, or FPGA, a power source for driving the control unit itself is required. However, there is little suggestion about power supply to such a control unit.
  • the power storage device using a capacitor is characterized in that the cycle life of the capacitor is extremely longer than that of the battery in the first place, and requires little maintenance. Using a battery having a much shorter life than the capacitor as the power source of the control unit impairs the characteristics of the power storage device using the capacitor.
  • control unit cannot be operated for a while immediately after the start of charging of the capacitor of the power storage unit, and when the power storage unit is configured by a capacitor with a large capacitance, the power storage unit voltage is Since it takes a relatively long time to reach a value that can be used as the power supply of the control unit, the state of no control is continued for a long time.
  • the control unit is preferably in an operating state from the start of charging the power storage unit.
  • the reason is described below.
  • a voltage equalizing circuit also called a parallel monitor
  • resistors as in Patent Documents 1 to 3
  • a voltage equalizing circuit using a transformer or a coil as described in Patent Documents 4 to 7,
  • Patent Document 8 or Patent Document 9 there is a voltage equalizing circuit using a capacitor.
  • the control unit controls these pressure equalizing circuits.
  • Japanese Patent No. 3418951 Japanese Patent Laid-Open No. 11-215695
  • Series-parallel switching type power supply device Japanese Patent No. 3487780
  • Connection switching control capacitor power supply Patent No. 3468924 A power storage device using a capacitor and a control method thereof PCT / JP2005 / 019208 WO2007046138
  • Japanese Patent No. 3854592 Japanese Patent Laid-Open No. 2005-80469
  • Japanese Patent No. 3764633 Japanese Patent Laid-Open No.
  • Patent Document 1 JP 2006-296179 A Capacitor Power Storage Device and Charge / Discharge Method Japanese Unexamined Patent Publication No. 2007-006552 JP, 2006-109620, A Voltage control device of a capacitor, and a capacitor module provided with the same PCT / JP2010 / 057212 Power storage device using capacitor
  • Patent Documents 1 to 3 when a control method called serial-parallel switching is used in the power storage unit, when the capacitor of the power storage unit is in a completely discharged state, and the control unit is not operating, Even the switching control cannot be performed, and the power storage unit itself cannot be charged.
  • the control unit is in an operating state when charging of the capacitor of the power storage unit is started, and the voltage equalization operation by the control unit is performed simultaneously with the start of charging, so that variation in the inter-terminal voltage between the capacitors can be suppressed. Is preferred. By doing so, the power energy input to the capacitor of the power storage unit can be stored without waste, and the charging time can be shortened.
  • a power storage device 100 using a capacitor is configured as shown in FIG.
  • the control unit 140 controls the power storage unit voltage within the allowable input voltage range of the power converter 170, controls the input current to the power storage unit 130, and loads 180 via the power converter 170. Output current control, overcharge prevention control of each capacitor constituting the power storage unit 130, control for equalizing the voltage between terminals of each capacitor, and the like.
  • the control unit 140 also requires a power source.
  • the power stored in the power storage unit 130 is often used as the power source for the control unit 140.
  • the electric power stored in the power storage unit 130 is supplied to the control unit 140 via the DC-DC converter 150.
  • control unit 140 cannot be driven after charging of power storage unit 130 in the fully discharged state until the voltage of power storage unit 130 reaches a voltage that can sufficiently drive control unit 140. . That is, when the power storage unit 130 is in a completely discharged state, or when the voltage and power that can sufficiently drive the control unit 140 are not stored in the power storage unit 130, the control unit 140 is not driven. The control state will be continued.
  • Patent Document 10 a power storage unit is referred to as a main power storage unit, and a capacitor used as a sub power storage unit for initial drive is referred to as an initial drive capacitor or a start capacitor.
  • the initial drive capacitor is a circuit that supplies drive power to the control circuit until at least the output voltage of the power storage unit reaches the drive voltage of the control circuit, and the output voltage of the power storage unit becomes the drive voltage of the control circuit.
  • the power storage unit main power storage unit
  • the power storage device using the initial drive capacitor as the initial drive power supply has the following problems. (1) Depending on the configuration of the power storage device, the sub power storage unit (initial drive capacitor) is often used only when the main power storage unit is charged from a fully discharged state. It is necessary to prepare an initial driving capacitor that does not directly contribute. (2) When the capacity of the initial drive capacitor is too small, the power stored in the initial drive capacitor is stored in the control unit before the power necessary for driving the control unit is stored in the main power storage unit. It is consumed and the control unit cannot be driven normally. Conversely, if the capacity of the initial drive capacitor is excessive, it takes time to charge the initial drive capacitor, and the start of charging the main power storage unit is delayed.
  • a break contact switch (Normally Closed switch) is incorporated in the circuit that constitutes the sub power storage unit. If a malfunction occurs in the circuit, a close failure may occur and the circuit may continue to be maintained. is there. (4)
  • the circuit configuration is complicated and many circuit parts are required, which causes an increase in cost.
  • the external power source is a solar cell or the like, power is not supplied to the power storage device at night, but the discharge is often performed day or night, and discharge control by the control unit is required even during this discharge. The Therefore, even when power supply from the external power supply is temporarily interrupted, power for driving the control unit must be ensured.
  • the initial drive capacitor is not used, and even when the capacitor of the power storage unit is in a completely discharged state, power for driving the control unit (
  • the initial drive power is supplied to the control unit to start charging the power storage unit, and even when the power supply from the external power supply is temporarily interrupted, the voltage is sufficient to drive the control unit.
  • the power for driving the control unit is supplied from an external power source or the power storage unit, and the power storage unit is charged with a constant current.
  • a power storage device having an initial driving power source having a charge control function of performing constant voltage charging has been proposed.
  • a power storage device includes: A power storage unit using a capacitor; Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit; Signal output means for outputting the charge control signal to the charge control means; Monitoring means for monitoring power storage status in the power storage unit;
  • the charge control means includes An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
  • the DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit.
  • the signal output means switches the charge control means to either one of an initial charge mode or a constant current charge mode in accordance with a power storage status of the power storage obtained from the monitoring means, and A charging control signal for controlling charging is output.
  • a power storage unit using a capacitor Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit; Signal output means for outputting the charge control signal to the charge control means; Monitoring means for monitoring power storage status in the power storage unit;
  • the charge control means includes An initial charging mode for supplying the direct current as at least the driving power of the signal output means; The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit.
  • a constant current charge mode to be supplied as drive power for the charge control means
  • the DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage
  • the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control.
  • the charging control signal is output.
  • the signal output means according to the power storage status of the power storage unit obtained from the monitoring means, When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit, When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit, When the power storage unit voltage becomes equal to or higher than a third set voltage, the charge control unit is switched from the constant current charging mode to the constant voltage charging mode to charge the power storage unit.
  • Voltage conversion means is provided for converting drive power supplied from the external power source or the power storage unit into a predetermined voltage and supplying the drive power as drive power for the signal output means, the monitoring means, and the charge control means.
  • the charging control device is In a charging control device configured to output a direct current flowing from an external power source as charging power for charging a power storage unit using a capacitor, Charging control means for controlling a direct current flowing from the external power source based on the charging control signal and supplying the direct current as charging power to the power storage unit; Signal output means for outputting the charge control signal to the charge control means; Monitoring means for monitoring power storage status in the power storage unit; With The charge control means includes An initial charging mode for supplying the direct current as at least the driving power of the signal output means; The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit.
  • the charge control means is configured to charge the power storage unit by switching to either one of an initial charge mode and a constant current charge mode.
  • Charging control means for controlling a direct current flowing from the external power source based on the charging control signal and supplying the direct current as charging power to the power storage unit; Signal output means for outputting the charge control signal to the charge control means; Monitoring means for monitoring power storage status in the power storage unit; With The charge control means includes An initial charging mode for supplying the direct current as at least the driving power of the signal output means; The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit.
  • a constant current charge mode to be supplied as drive power for the charge control means
  • the DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage
  • the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control.
  • the charging control means is configured to charge the power storage unit by switching to any one of three charging modes of an initial charging mode, a constant current charging mode, and a constant voltage charging mode.
  • the signal output means according to the power storage status of the power storage unit obtained from the monitoring means, When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit, When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit, When the power storage unit voltage becomes equal to or higher than a third set voltage, the charge control unit is switched from the constant current charging mode to the constant voltage charging mode to charge the power storage unit.
  • the signal output means is configured to output a pulse train signal having a duty ratio according to the power storage status of the power storage unit obtained from the monitoring means
  • the charge control means includes Switch means for receiving the pulse train signal and controlling on / off of the charging current to the power storage unit according to the duty ratio; Smoothing means for smoothing the charging power output from the switch means and outputting to the power storage unit, By changing the duty ratio, either one of the constant current charging mode and the constant voltage charging mode can be switched to one charging mode.
  • Voltage conversion means is provided for converting drive power supplied from the external power source or the power storage unit into a predetermined voltage and supplying the drive power as drive power for the signal output means, the monitoring means, and the charge control means.
  • a power storage device control method includes: A power storage unit using a capacitor; Charge control means for controlling a direct current flowing from an external power source based on a charge control signal to charge the power storage unit; Signal output means for outputting the charge control signal to the charge control means; Monitoring means for monitoring power storage status in the power storage unit; With The charge control means includes An initial charging mode for supplying the direct current as at least the driving power of the signal output means; The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit.
  • the DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control.
  • a constant voltage charging mode to supply as driving power of the means In a charge control method for a power storage device using a capacitor comprising: Using the monitoring means to monitor the power storage status of the power storage unit, When the power storage unit voltage is less than a second set voltage, the signal output means outputs a charge control signal for switching the charge control means to the initial charge mode, When the power storage unit voltage is equal to or higher than a second set voltage, the charge output signal for switching the charge control means from the initial charge mode to the constant current charge mode is output from the signal output means, When the power storage unit voltage is equal to or higher than a third set voltage, by causing the signal output means to output a charge control signal for switching the charge control means from the constant current charge mode to the constant voltage charge mode, The charge control means is operated in a charge mode according to the power storage status of the power storage unit.
  • a power storage unit using a capacitor Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit; Signal output means for outputting the charge control signal to the charge control means; Monitoring means for monitoring power storage status in the power storage unit;
  • the charge control means includes An initial charging mode for supplying the direct current as at least the driving power of the signal output means; The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit.
  • the signal output unit charges the power storage unit by switching the charge control unit to either one of an initial charge mode or a constant current charge mode according to a power storage state of the power storage unit obtained from the monitoring unit. Because it is configured to output a charge control signal to control so that In the initial charging mode, even when the power storage unit is in a fully discharged state or a state close thereto, a direct current is supplied as driving power for the signal output unit, the monitoring unit, and the charge control unit, thereby charging the power storage unit. From the start, the signal output means, the monitoring means, and the charge control means are normally driven to enable appropriate charge control.
  • the charge control means includes An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
  • the DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit.
  • a constant current charge mode to be supplied as drive power for the charge control means,
  • the DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control.
  • a constant voltage charging mode to supply as driving power of the means With The signal output means switches the charge control means to any one charge mode of an initial charge mode, a constant current charge mode, or a constant voltage charge mode according to the power storage status of the power storage unit obtained from the monitoring means.
  • the signal output means according to the power storage status of the power storage unit obtained from the monitoring means, When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit, When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit, When the power storage unit voltage is equal to or higher than a third set voltage, the charging control unit is configured to charge the power storage unit by switching from the constant current charging mode to the constant voltage charging mode.
  • the signal output means, the monitoring means, and the charge control means are provided from the start of charging to the power storage unit, similarly to the power storage device according to claims 1, 2, and 3. Appropriate charge control is possible by operating normally in an appropriate charge mode.
  • the signal output means is configured to output a pulse train signal having a duty ratio according to the power storage status of the power storage unit obtained from the monitoring means
  • the charge control means includes Switch means for receiving the pulse train signal and controlling on / off of the charging current to the power storage unit according to the duty ratio; Since smoothing means for smoothing the charging current output from the switch means and outputting to the power storage unit, By changing the duty ratio of the pulse train signal, one charging control means can be operated in a state suitable for each of the initial charging mode, the constant current charging mode, and the constant voltage charging mode.
  • the signal output means, the monitoring means, and the charge control are performed regardless of whether the voltage of the driving power supplied from the external power source or the power storage unit is too high or too low.
  • the means can be operated normally.
  • the charging control means has an initial charging mode, a constant current charging mode, and a constant voltage charging mode, When the power storage unit voltage is less than a second set voltage, the signal output means outputs a charge control signal for switching the charge control means to the initial charge mode, When the power storage unit voltage is equal to or higher than a second set voltage, the charge output signal for switching the charge control means from the initial charge mode to the constant current charge mode is output from the signal output means, When the power storage unit voltage is equal to or higher than a third set voltage, by causing the signal output means to output a charge control signal for switching the charge control means from the constant current charge mode to the constant voltage charge mode, Since the charging control means is operated in a charging mode according to the power storage status of the power storage unit, Power can be supplied to the signal output means, the monitoring means, and the charge control means in the initial charge mode even when the power storage unit is in a fully discharged state, and charging can be appropriately performed while appropriately controlling charging power from
  • FIG. 1 is a basic configuration diagram of a power storage device according to the present invention. It is explanatory drawing explaining three charge modes of the electrical storage apparatus which concerns on this invention.
  • FIG. 2 is a block diagram illustrating a specific circuit configuration example of the power storage device illustrated in FIG. 1.
  • FIG. 4 is a block diagram illustrating a more specific circuit configuration example of the power storage device illustrated in FIG. 3.
  • FIG. 3 is a block diagram illustrating a configuration example of a chopper type step-down DC-DC converter. It is a flowchart explaining the charge control method of the electrical storage apparatus which concerns on this invention. It is a figure which shows the time transition of the input voltage and electrical storage part voltage in the transition process from the initial charge mode of the electrical storage apparatus which concerns on this invention to the constant current charge mode.
  • FIG. 1 shows a basic configuration example of a power storage device 1 using a capacitor.
  • the power storage device 1 includes a charge control circuit 2, a power storage unit 3, a control unit 4, and a DC-DC converter 5.
  • the capacitor is preferably charged from a current source rather than a voltage source. Therefore, a DC current source 6 is connected to the input side of the power storage device 1 as an external power source.
  • the DC current source 6 for example, a solar battery or the like is used.
  • the DC-DC converter 5 in the power storage device 1 supplies a voltage and electric power necessary for driving the control unit 4.
  • the direct current source 6 and the power storage unit 3 are supplied from the supply voltage to the control unit 4. Since the output voltage is often higher, a step-down DC-DC converter is often used.
  • a power converter 7 such as a DC-DC converter or a DC-AC inverter is connected to the output side of the power storage device 1, and a load 8 is connected to the output side of the power converter 7.
  • the charge control circuit 2 is incorporated between the direct current source 6 and the power storage unit 3.
  • the charging control circuit 2 is controlled based on a control signal (indicated by a broken arrow) output from the control unit 4.
  • the initial drive power for driving the control unit 4 is controlled from the DC current source 6 by the functions of the charge control circuit 2 and the control unit 4 even when the capacitor of the power storage unit 3 is in a completely discharged state.
  • the power storage unit 3 is started to be charged at the same time, and charging of the power storage unit 3 is performed while gradually increasing the charging current while continuing to secure stable power supply to the control unit 4. Charge.
  • control unit 4 monitors the power storage status of the power storage unit 3 and obtains power storage information such as the power storage unit voltage (indicated by a broken arrow).
  • the charging control circuit 2 corresponds to charging control means described in the claims
  • control unit 4 corresponds to signal output means and monitoring means described in the claims
  • the DC-DC The converter 5 corresponds to voltage conversion means described in the claims.
  • the power storage device 1 using the capacitor according to the present invention is composed of three kinds of charging modes. First, these three types of charging modes will be described.
  • FIG. 2 shows the current flow in the power storage device 1 in each charging mode with arrows.
  • the storage information and various signals between the control unit 4 and the charging control circuit 2 (such as the input voltage information Vi shown in FIG. The flow of signals etc. is omitted.
  • Initial charging mode When the power storage unit 3 is in a completely discharged state or when the power storage unit voltage Vt is not a voltage that can sufficiently drive the control unit 4, as shown in FIG.
  • the electric power from the direct current source 6 is supplied as drive power to the control unit 4 via the DC-DC converter 5 until the partial voltage Vt becomes a voltage that can sufficiently drive the control unit 4, and stored in parallel.
  • the charging of the power storage unit 3 is started while gradually increasing the charging current while starting the charging of the unit 3 and continuously ensuring a stable power supply to the control unit 4. In this state, sufficient power that can be supplied to the load is not stored in the power storage unit 3, so output of power from the power storage unit 3 to the power converter 7 and the load 8 is cut off.
  • This charging mode is called an initial charging mode.
  • the power storage unit 3 stores power that can be supplied to the load, and thus power is output from the power storage unit 3 to the power converter 7 and the load 8.
  • This charging mode is called an initial charging mode.
  • Constant voltage charging mode When the power storage unit 3 is fully charged by charging in the constant current mode, if the constant current charging is continued thereafter, the capacitor of the power storage unit 3 exceeds the rated voltage and becomes overcharged, causing deterioration. In some cases, or in the worst case, destruction may occur, so as shown in FIG. 2C, the constant current charging is shifted to the constant voltage charging. In this state, the power storage unit 3 stores sufficient power that can be supplied to the load, so that power is output from the power storage unit 3 to the power converter 7 and the load 8.
  • This charging mode is called a constant voltage charging mode.
  • the controller is continuously driven even when the power supply from the DC current source 6 is temporarily interrupted due to sunset or rain when the DC current source 6 is a solar cell, for example. .
  • FIG. 3 is a block diagram of the power storage device 1 of the first embodiment in which the charge control circuit 2 shown in FIG. 1 is more specifically configured.
  • the charge control circuit 2 includes a switch Si (switch means), a smoothing circuit 21 (smoothing means), a comparator 22 (comparator), a reference voltage generation circuit 23, and the like.
  • the switch Si is a make contact switch (Normally Open type switch).
  • the diodes D1, D2, and D3 in FIG. 3 are backflow prevention diodes, and the resistors R1 and R2 are voltage dividing resistors.
  • the switch So is a discharge output switch.
  • the discharge output switch So is also a make contact switch (Normally Open type switch).
  • the control unit 4 when no direct current is supplied from the external power supply 6, for example, when the external power supply 6 is a solar battery or the like, and the nighttime or the like, the power stored in the power storage unit 3 must be supplied to the load. There are many cases that must be done. Therefore, the control unit 4 must always be in operation for discharge control or the like.
  • the path from the power storage unit 3 via the diode D2 to the DC-DC converter 5 causes the control unit 4 to operate even in the above-described case, that is, when no direct current is supplied from the external power supply 6. It is a circuit for supplying the electric power for electricity from the electrical storage part 3.
  • FIG. 3 The configuration of the charging control circuit 2 shown in FIG. 3 is similar to the configuration of the chopper type step-down DC-DC converter 200 as shown in FIG. However, in the chopper type step-down DC-DC converter of FIG. 5, the output voltage is controlled by feeding back the output voltage Vo to the control circuit 210. However, the charge control circuit 2 shown in FIG.
  • the input voltage information Vi based on the input voltage Vin is input to the control unit 4 to control the output voltage from the charge control circuit 2 to the power storage unit 3.
  • the input to the power storage device 1 is the DC current source 6, and therefore, the information based on the change in the input voltage Vin to the power storage device 1 is input to the control unit 4, whereby the charge control circuit 2 to the power storage unit 3. Therefore, it becomes possible to control the output voltage.
  • control unit 4 obtains the storage information by monitoring the storage state of the storage unit 3 by the storage unit voltage Vt, and a voltage dividing circuit constituted by the resistor R1 and the resistor R2, The output voltage from the charge control circuit 2 to the power storage unit 3 is monitored by the input voltage information Vi obtained from the comparator 22 and the reference voltage generation circuit 23.
  • the switch opening / closing signal has not yet been output from the control unit 4, and the discharge output switch So of the make contact switch is opened and is in the cut-off state.
  • the control unit 4 is not in operation and the switch Si is open,
  • the output voltage of the DC current source 6, that is, the input voltage Vin to the power storage device 1 is the set maximum voltage
  • the output current of the DC current source 6, that is, the input current Iin to the power storage device is the diode D 1. Therefore, the DC-DC converter 5 is operated, and the drive power converted into a predetermined voltage is started to be supplied as the control unit power supply of the control unit 4.
  • a switch open / close signal is output from the control unit 4 to the switch Si, and the switch Si starts to be controlled to open / close.
  • the switch open / close signal is a signal for closing the switch Si
  • the switch Si is closed to be in an ON (conducting) state, and the current from the DC current source 6 passes through the smoothing circuit 21 and the backflow prevention diode D3 to be stored in the power storage unit 3.
  • the switch opening / closing signal is a signal for opening the switch Si
  • the switch Si is opened to be in an OFF (non-conducting) state, and current flow from the DC current source 6 to the power storage unit 3 is prevented.
  • the current from the DC current source 6 to the power storage unit 3 is pulse-width modulated by opening and closing the switch Si, and the pulse-width modulated current is smoothed by the smoothing circuit 21 and then passed to the power storage unit 3 via the diode D3. Supplied. Therefore, by increasing the ON (conduction) time of the switch opening / closing signal output from the control unit 4, the charging current Ic flowing into the power storage unit 3 is increased, and the switch opening / closing signal output from the control unit 4 is turned OFF ( By increasing the (non-conduction) time, the charging current Ic flowing into the power storage unit 3 can be reduced.
  • the ratio of the open time of the switch open / close signal within the fixed time T (that is, the duty ratio of the switch open / close signal) is changed from 0% (the switch Si is non-conductive) to the fixed time T1 (hereinafter, time interval T1). And charging is performed while increasing the charging current Ic flowing into the power storage unit 3 by increasing a preset ratio every time.
  • the duty ratio of the switch opening / closing signal increases, the charging current Ic flowing into the power storage unit 3 increases.
  • the current exceeding the set current upper limit value Ilim is not output from the DC current source 6, eventually.
  • the input voltage Vin to the power storage device 1 causes a voltage drop.
  • the DC-DC converter 5 cannot supply the driving power required by the control unit 4. The unit cannot operate normally.
  • the input voltage monitoring circuit includes a voltage dividing resistor including resistors R1 and R2, a comparator 22, and a reference voltage generation circuit 23.
  • the input voltage information Vi is output from the comparator 22 to the control unit 4.
  • the control unit 4 reduces the duty ratio of the switch open / close signal by a predetermined ratio to control the charging current Ic flowing into the power storage unit, thereby reducing the power storage device.
  • the voltage drop of the input voltage Vin to 1 is suppressed, and the DC-DC converter 5 supplies the control unit 4 with voltage and power that can ensure the operation of the control unit 4 constantly.
  • a voltage obtained by adding the forward voltage drop of the diode D1 to the lower limit value of the allowable input voltage range of the DC-DC converter 5 may be used as the first set voltage Vr1.
  • the initial charging mode is a charging mode in which power is stored in the power storage unit 3 and the power storage unit voltage Vt reaches a voltage that can sufficiently drive the control unit 4.
  • Charging of the power storage unit 3 proceeds by charging in the initial charging mode, the power storage unit voltage Vt rises to be equal to or higher than the second set voltage Vr2, and voltage and power that can sufficiently drive the control unit 4 are accumulated in the power storage unit 3.
  • the control unit 4 confirms that this has been done, the duty ratio of the switch opening / closing signal output from the control unit 4 is set to 100% (that is, the switch Si is in a conductive state) and supplied from the DC current source 6.
  • the operation proceeds to a constant current charging mode in which the power storage unit 3 is charged with a constant current.
  • a voltage that can sufficiently drive the charge control circuit 2 and the control unit 4 is defined as a second set voltage Vr2.
  • this constant current charging mode a part of the current from the direct current source 6 is passed through the diode D1 and the DC-DC converter 5, or the electric power stored in the power storage unit 3 is passed through the diode D2 and the DC-DC converter 5.
  • the power storage unit 3 is charged while being stably supplied as drive power to the control unit 4 via.
  • the discharge output switch So is closed by the switch open / close signal output from the control unit 4, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7. ing. If charging is continued at a constant current, the power storage unit 3 will eventually become fully charged.
  • the control unit 4 checks whether or not the power storage unit voltage Vt is equal to or higher than the third set voltage Vr3 at every constant time T2 (hereinafter referred to as time interval T2). When the partial voltage Vt reaches the third set voltage Vr3, the constant current charging mode is terminated and the constant voltage charging mode is entered. Note that the full charge voltage of the power storage unit 3 may be the third set voltage Vr3.
  • the operation of the charging control circuit 2 in the constant voltage charging mode is the same as that of a general constant voltage output type DC-DC converter, and the output voltage of the charging control circuit 2 (that is, the power storage unit voltage Vt)
  • the set voltage Vr4 is compared by the control unit 4 every predetermined time T3 (hereinafter referred to as time interval T3), and when the power storage unit voltage Vt becomes equal to or higher than the fourth set voltage Vr4, the duty ratio of the switch open / close signal is set in advance.
  • the constant voltage charging is realized by performing control such that the duty ratio of the switch opening / closing signal is increased by a predetermined ratio when the ratio is decreased by a predetermined ratio and, conversely, when it becomes less than the fourth set voltage Vr4.
  • the duty ratio of the switch opening / closing signal is increased by a predetermined ratio when the ratio is decreased by a predetermined ratio and, conversely, when it becomes less than the fourth set voltage Vr4.
  • part of the current from the direct current source 6 is passed through the diode D1 and the DC-DC converter 5, or the electric power stored in the power storage unit 3 is transferred to the diode D2 and the DC-DC converter.
  • the power storage unit 3 is charged while being supplied as drive power to the control unit 4 via 5.
  • the discharge output switch So is closed by the switch open / close signal from the control unit 4, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7. .
  • the full charge voltage of the power storage unit 3 can be set to the fourth set voltage Vr4.
  • the charge control circuit 2 is a configuration corresponding to the charge control means described in the claims, and the configuration for outputting the switch open / close signal from the control unit 4 is described in the claims.
  • the output voltage of the power storage unit 3 is input to the control unit 4 as the power storage unit voltage Vt, and the power storage unit voltage Vt is converted into the second set voltage Vr2 and the third set voltage by the comparison program of the control unit 4.
  • the configuration monitored in comparison with Vr3 or the fourth set voltage Vr4 is a configuration corresponding to the monitoring means described in the claims.
  • the switch opening / closing signal has a configuration corresponding to a charge control signal described in the claims.
  • FIG. 4 is a configuration diagram of power storage device 1 showing a more specific circuit configuration example of charge control circuit 2 shown in FIG. 3. A portion surrounded by a broken line is the charge control circuit 2.
  • the charge control circuit 2 shown in FIG. 4 includes a P-type MOSFET 24, a coil L, a capacitor C, a comparator (comparator) 22, a reference voltage generation circuit 23, and the like.
  • a smoothing circuit 21 is formed by the coil L and the capacitor C. Is formed.
  • the configuration of the charge control circuit 2 shown in FIG. 4 is similar to a chopper type step-down DC-DC converter. However, in the chopper type step-down DC-DC converter 200 as shown in FIG. 5, the output voltage is controlled by feeding back the output voltage to the control circuit 210.
  • the charge control circuit 2 shown in FIG. the input voltage information Vi based on the input voltage Vin to the power storage device 1 is input to the control unit 4 to control the output voltage from the charge control circuit 2 to the power storage unit 3.
  • the input power source is a DC current source 6
  • input voltage information Vi based on the input voltage Vin to the charging control circuit 2 is input to the control unit 4, whereby the charging control circuit 2 to the power storage unit 3 is input.
  • the output can be controlled.
  • diodes D1, D2, and D3 are backflow prevention diodes, and diode D4 is a flywheel diode.
  • the resistors R1 and R2 are voltage dividing resistors, and the resistor R3 is a pull-up resistor.
  • the P-type MOSFET 24 is also in the ON (conducting) state, and the current energy flowing from the DC current source 6 is the coil L, the capacitor C, and the power storage unit (EDLC). Accumulated in. At this time, no current flows through the diode D4.
  • the P-type MOSFET 24 When the transistor Tr is turned off (non-conducting), the P-type MOSFET 24 is also turned off (non-conducting), and current energy flowing from the direct current source 6 toward the power storage unit 3 is cut off and stored in the coil L. The energy is supplied to the power storage unit 3 via the diode D4 and the capacitors C and D4, and the output voltage from the charge control circuit 2 to the power storage unit 3 is kept substantially constant.
  • the P-type MOSFET 24 and the transistor Tr correspond to the switching means described in the claims, and the coil L and the capacitor C correspond to the smoothing means described in the claims.
  • the P-type MOSFET 24 is also turned off (non-conducting). That is, the duty ratio of the PWM signal that is the charge control signal output from the control unit 4 is 0%.
  • the control unit 4 When the control unit 4 is not in an operating state, the output voltage of the DC current source 6, that is, the input voltage Vin to the power storage device 1 is the set maximum voltage, and the output current of the DC current source 6, that is, Since the input current Iin to the power storage device 1 flows into the DC-DC converter 5 via the diode D1, the DC-DC converter 5 operates and the supply of drive power to the control unit 4 is started.
  • the control unit 4 is driven, a PWM signal is output from the control unit 4 to the transistor Tr, and the transistor Tr is switched. Accordingly, the P-type MOSFET 24 is switched.
  • the discharge output switch So In an open state, and power output from the power storage unit 3 to the load 8 via the power converter 7 is interrupted.
  • the transistor Tr when the signal level of the PWM signal becomes the high potential level (H), the transistor Tr becomes conductive, and the collector potential of the transistor Tr, that is, the gate potential of the P-type MOSFET 24 becomes the low potential level (L). Is turned on (conductive), and the current from the DC current source 6 flows into the power storage unit 3. Further, when the signal level of the PWM signal becomes a low potential level (L), the transistor Tr becomes non-conductive, and the collector potential of the transistor Tr, that is, the gate potential of the P-type MOSFET 24 becomes the high potential level (H). MOSFET 24 is turned off (non-conducting), and current flow from DC current source 6 to power storage unit 3 is blocked.
  • the duty ratio of the PWM signal is gradually increased from 0% every certain time T1 because the voltage obtained by subtracting the forward voltage drop of the diode D1 from the input voltage Vin to the power storage device 1 is a DC-DC converter. This is to prevent the control unit 4 from entering an operation stop state by dropping below the lower limit value of the allowable input voltage range of 5.
  • the voltage drop of the input voltage Vin to the power storage device 1 is monitored by monitoring means using the comparator 22 (comparator) in FIG. That is, when the input voltage Vin to the power storage device 1 falls below the first set voltage Vr1 generated by the reference voltage generation circuit 23, the input voltage information Vi is output from the comparator 22 to the control unit 4.
  • the control unit 4 receives the input voltage information Vi, the control unit 4 reduces the duty ratio of the PWM signal by a predetermined ratio and suppresses the charging current Ic flowing into the power storage unit 3 to thereby supply power to the power storage device 1.
  • the voltage drop of the input voltage Vin is suppressed, and the DC-DC converter 5 constantly supplies a voltage and driving power that can ensure the operation of the control unit 4.
  • a voltage obtained by adding the forward voltage drop of the diode D1 to the lower limit value of the allowable input voltage range of the DC-DC converter 5 may be used as the first set voltage Vr1.
  • the voltage obtained by subtracting the forward voltage drop of the diode D1 from the input voltage Vin to the power storage device 1 is used as the allowable input voltage of the DC-DC converter 5.
  • the power storage unit 3 is charged without lowering below the lower limit of the range (that is, while ensuring the operation of the control unit 4).
  • This series of operations is the initial charging mode. This initial charging mode is continued until voltage and power that can sufficiently drive the control unit 4 are accumulated in the power storage unit 3.
  • Charging of the power storage unit 3 proceeds by charging in the initial charge mode, the power storage unit voltage Vt rises to be equal to or higher than the second set voltage Vr2, and voltage and power that can sufficiently drive the control unit 4 are accumulated in the power storage unit 3. If the control unit 4 constituting the monitoring means confirms that the duty ratio of the PWM signal output from the control unit 4 is set to 100% (that is, the transistor Tr and the P-type MOSFET 24 are always ON). , Transition to a constant current charging mode in which charging is performed at a constant current. When electric power that can sufficiently drive the control unit 4 is accumulated in the power storage unit 3, the control unit 4 can be operated even when the supply of DC current from the external power source 6 is temporarily interrupted thereafter. become.
  • the current from the DC current source 6 passes through the diode D1 and the DC-DC converter 5, or the power stored in the power storage unit 3 passes through the diode D2 and the DC-DC converter 5.
  • the power storage unit 3 is charged while being supplied as drive power to the control unit 4.
  • the discharge output switch So is closed, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7. If charging is continued at a constant current, the power storage unit 3 will eventually become fully charged, but if the constant current charging is continued further, the voltage across the terminals of each capacitor constituting the power storage unit 3 will exceed the rated voltage, resulting in overcharging, It may cause deterioration of the capacitor or may be destroyed in the worst case.
  • the control unit 4 checks whether or not the power storage unit voltage Vt is equal to or higher than the third set voltage Vr3 every constant time T2 (time interval T2). When the set voltage Vr3 is reached, the constant current charging mode is terminated and the constant voltage charging mode is entered. The full charge voltage of the power storage unit 3 can be set to the third set voltage Vr3.
  • the operation of the charging control circuit 2 in the constant voltage charging mode is the same as that of a general step-down DC-DC converter, and the output voltage (that is, the storage unit voltage Vt) of the charging control circuit 2 and the fourth set voltage Vr4 are obtained.
  • the control unit 4 compares each constant time T3 (time interval T3), and if the storage unit voltage Vt becomes equal to or higher than the fourth set voltage Vr4, the PWM signal output from the control unit 4 to the base of the transistor Tr Constant voltage charging is realized by controlling the duty ratio to be decreased by a predetermined ratio, and conversely to increase the duty ratio of the PWM signal by a predetermined ratio when the voltage falls below the fourth set voltage Vr4. ing.
  • the current from the direct current source 6 passes through the diode D1 and the DC-DC converter 5, or the power stored in the power storage unit 3 passes through the diode D2 and the DC-DC converter 5.
  • the power storage unit 3 is charged while being supplied as drive power to the control unit 4.
  • the full charge voltage of the power storage unit 3 can be set to the fourth set voltage Vr4.
  • the discharge output switch So is closed, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7.
  • step S ⁇ b> 1 of FIG. 6 when the power storage unit 3 is in a fully discharged state or a state close thereto, the charge control circuit 2 first supplies the drive power to the control unit 4 and supplies the power to the power storage unit 3 in the initial charge mode. Start supplying charging power. In the initial stage of the initial charging mode, at least the supply of driving power to the control unit 4 is most important, and the supply of charging power to the power storage unit 3 is not essential.
  • step S2 by setting the duty ratio of the PWM signal to 0% in step S2, charging power is not supplied to the power storage unit 3, and after the elapse of the time interval T1 in step S3, the duty ratio of the PWM signal is set in step S4.
  • the supply of charging power to the power storage unit 3 is started by increasing it by a predetermined rate.
  • step S5 the input voltage Vin from the direct current source 6 to the charge control circuit 2 is compared with the first set voltage Vr1, Input voltage Vin> first set voltage Vr1
  • step S7 the process proceeds to step S7.
  • the routine proceeds to step S6, where the duty ratio of the PWM signal is decreased by a predetermined ratio to prevent the input voltage Vin from being lowered too much. Then, the process proceeds to step S7.
  • step S7 the power storage unit voltage Vt is compared with the second set voltage Vr2, Power storage unit voltage Vt ⁇ second set voltage Vr2 The processing from step S3 is repeated until.
  • step S7 Power storage unit voltage Vt ⁇ second set voltage Vr2 Is confirmed, in step S8, the initial charging mode is terminated, and the process proceeds to step S9 to shift to the constant current charging mode.
  • step S9 the constant current charging to the power storage unit is started in the constant current charging mode with the duty ratio of the PWM signal set to 100%.
  • step S10 after elapse of a predetermined time interval T2, the process proceeds to step S11, and the power storage unit voltage Vt is compared with the third set voltage Vr3.
  • step S10 Power storage unit voltage Vt ⁇ third set voltage Vr3
  • step S11 Power storage unit voltage Vt ⁇ third set voltage Vr3 Is confirmed
  • step S12 Power storage unit voltage Vt ⁇ third set voltage Vr3 Is confirmed
  • step S13 Power storage unit voltage Vt ⁇ third set voltage Vr3 Is confirmed
  • step S13 Power storage unit voltage Vt ⁇ third set voltage Vr3 Is confirmed
  • step S12 Power storage unit voltage Vt ⁇ third set voltage Vr3 Is confirmed
  • step S13 to start charging the power storage unit in the constant voltage charging mode.
  • step S14 When charging is started in the constant voltage charging mode in step S13, the process proceeds to step S14, and after a predetermined time interval T3 has elapsed, the process proceeds to step S15, where the power storage unit voltage Vt is compared with the fourth set voltage Vr4.
  • Power storage unit voltage Vt ⁇ fourth set voltage Vr4 In this case, the duty ratio of the PWM signal is decreased by a predetermined ratio in step S16, and the process returns to step S14.
  • Power storage unit voltage Vt ⁇ fourth set voltage Vr4 In this case, the duty ratio of the PWM signal is increased by a predetermined ratio in step S17, and the process returns to step S14. In this way, charging in the constant voltage charging mode is continued.
  • the power storage device 1 of FIG. 4 using the above-described charge control circuit 2 is connected to a power storage unit configured by arranging 10 EDLCs with a rated voltage of 2.7 [v] and a capacitance of 1700 [F] in 5 series and 2 in parallel.
  • the characteristics of the charging control circuit 2 when configured and performing a charging operation will be described.
  • the first set voltage Vrl is 6.0 [V]
  • the second set voltage Vr2 is 6.0 [V]
  • the third set voltage Vr3 is 13.4 [V]
  • the fourth set voltage Vr4 is set. It was set to 13.4 [V]. Since the full charge voltage of the power storage unit 3 is 13.5 [V], the third set voltage Vr3 and the fourth set voltage Vr4 are set to 13.5 [V], and after reaching this voltage Although it is desirable to shift to the constant voltage charging mode, the third set voltage Vr3 and the fourth set voltage Vr4 are set for safety in consideration of the variation in the voltage between terminals of each capacitor due to the capacitance error of the capacitor. It was set to 13.4 [V], which is 0.1 [V] lower than 13.5 [V].
  • FIG. 7 shows temporal transitions of the input voltage Vin and the power storage unit voltage Vt from the direct current source 6 to the power storage device 1 in the transition process from the initial charge mode to the constant current charge mode.
  • the input voltage Vin to the power storage device 1 is set to 6.0 [V] which is the lower limit value of the allowable input voltage range of the DC-DC converter 5.
  • Charging in the initial charging mode is performed in which the power storage unit 3 is charged by gradually increasing the duty ratio of the PWM signal from 0% while maintaining the voltage to be equal to or higher than the voltage obtained by adding the forward voltage drop. Recognize.
  • the initial charge is performed. It can be seen that the mode has shifted to the constant current charging mode.
  • the voltage difference between the input voltage Vin to the power storage device 1 and the power storage unit voltage Vt in the constant current charging mode in FIG. 7 is mainly due to the forward voltage drop characteristic of the backflow prevention diode D3 in FIG. is there.
  • FIG. 8 shows temporal transitions of the input voltage Vin from the direct current source 6 to the power storage device 1 and the power storage unit voltage Vt in the transition process from the constant current charging mode to the constant voltage charging mode. From FIG. 8, it can be seen that when the power storage unit voltage Vt reaches the third set voltage Vr3 (13.4 [V] in this embodiment), the constant current charging mode is shifted to the constant voltage charging mode. In the voltage charging mode, the input voltage Vin to the power storage device 1 has reached a maximum of 15.3 [V], but the power storage unit voltage Vt maintains the set 13.4 [V].
  • the power storage unit 3 can be prevented from being overcharged, and the cause of the deterioration of the capacitor can be eliminated.
  • the following effects can be obtained. (1) Since it is not necessary to separately prepare an initial drive capacitor that does not directly contribute to the power storage of the power storage unit, the configuration is simplified and the cost increase can be suppressed. (2) Since the control unit can always be operated in a normal state to perform charge control, stable charge control can be performed from the start of charge to the end of charge even when the capacitor of the power storage unit is in a completely discharged state. In addition, since the initial drive capacitor is unnecessary, the time required for the charge is not required, and charging control to the power storage unit is performed with the control unit operating normally even when the capacitor of the power storage unit is completely discharged. Can start.
  • the charge control circuit By configuring the charge control circuit with a P-type MOSFET, a coil, a capacitor, a comparator, and the like, the duty ratio of the pulse width modulation signal for controlling on / off of the P-type MOSFET is controlled in the range of 0% to 100%. By doing so, proper charging is always possible, a complicated circuit configuration is not required, and an increase in cost can be suppressed.
  • the initial drive capacitor is not used, and the initial charge mode is used even when the capacitor of the power storage unit is in a completely discharged state.
  • the constant current In the charging mode power for driving the control unit is supplied from the DC current source or the power storage unit, and after charging to the power storage unit is started, the power storage unit is charged with constant current by the power supplied from the DC current source to store the power.
  • the present invention can be used for a purpose of appropriately charging a power storage device for various uses as long as it is a power storage device using a capacitor.
  • Power storage device 2 Charge control circuit, charge control means 3 Power storage part 4 Control part, signal output means, monitoring means 5 DC-DC converter, voltage conversion means 6 DC current source, external power supply 7 Power converter 8 Load Si switch, switch Means So Discharge output switch 24 P-type MOSFET, switch means Tr transistor, switch means L coil, smoothing means C capacitor, smoothing means 21 smoothing circuit, smoothing means 22 comparator 23 reference voltage generation circuit R1, R2 voltage dividing resistor R3 pull Up resistor D1, D2, D3 Backflow prevention diode D4 Flywheel diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Objective] To propose a power storage apparatus that uses a capacitor such as an EDLC as a power storage unit thereof, and wherein an appropriate charging control can be conducted from when the capacitor of the power storage unit is in a completely discharged state until the capacitor becomes a completely charged state. [Solution] A power storage apparatus of the present invention is provided with: a charge-controlling means for supplying direct current from an external power supply to a power storage unit; a signal outputting means; and a monitoring means for monitoring the charging state. The charge-controlling means is provided with: an initial charging mode wherein the direct current is supplied to the signal outputting means; a constant-current charging mode wherein the power storage unit is charged with constant-current charging, and the direct current from the external power supply or power stored in the power storage unit is supplied to the signal outputting means, the monitoring means, and the charge-controlling means; and a constant-voltage charging mode wherein the power storage unit is charged with constant-voltage charging, and the direct current from the external power supply or power stored in the power storage unit is supplied to the signal outputting means, the monitoring means, and the charge-controlling means. The power storage apparatus is configured to switch the mode of the charge-controlling means to either one of the charging modes, in accordance with the charged state.

Description

キャパシタを用いた蓄電装置、その充電制御装置、および、その充電制御方法Power storage device using capacitor, charge control device thereof, and charge control method thereof
 本発明は、電気二重層キャパシタ(Electric Double Layer Capacitor、以下、EDLCと記す。)などのキャパシタを用いた蓄電装置の蓄電開始時において、当該蓄電装置用の制御回路に対して、その初期駆動用の電力を供給し、かつキャパシタへの充電制御も行う蓄電装置、充電制御回路、およびその充電制御方法に関するものである。
The present invention provides an initial drive for a control circuit for a power storage device at the start of power storage of the power storage device using a capacitor such as an electric double layer capacitor (hereinafter referred to as EDLC). The present invention relates to a power storage device, a charge control circuit, and a charge control method thereof that supply the electric power and also control charging of the capacitor.
 EDLCなどのキャパシタ(以下、単にキャパシタと記す。)を用いた蓄電装置ではキャパシタ単体の定格電圧が2.3~4.0(V)程度と低いので、必要な出力電圧を得るために、複数個のキャパシタを直列接続して用いることが多い。また、蓄電容量を増加させるために並列接続して用いることも多い。すなわちキャパシタを用いた蓄電装置では、複数個のキャパシタを直並列接続して用いることが多い。
 しかし、キャパシタは静電容量誤差が大きいので、複数個のキャパシタを直列接続して用いた場合、充電時に静電容量の小さなキャパシタから順番に満充電となり、さらに、充電を継続し続ければ、静電容量の小さなキャパシタの端子間電圧は定格電圧を超え、キャパシタの劣化や破壊の原因となる。
 そこで、キャパシタを用いた蓄電装置では、その充電過程において、蓄電部を構成するキャパシタの静電容量誤差等に起因する各キャパシタの端子間電圧のばらつきを抑制(均圧化)する必要や、各キャパシタの過充電を防止するための制御を行う必要がある。
 したがって、一般的にキャパシタを用いた蓄電装置は、直並列接続された複数個のキャパシタによって構成される蓄電部と、当該蓄電部のキャパシタの端子間電圧のばらつきを抑制したり、各キャパシタの過充電を防止する制御部から構成される。
In a power storage device using a capacitor such as an EDLC (hereinafter simply referred to as a capacitor), the rated voltage of the capacitor alone is as low as about 2.3 to 4.0 (V). In many cases, a single capacitor is connected in series. In many cases, they are connected in parallel to increase the storage capacity. That is, in a power storage device using a capacitor, a plurality of capacitors are often used in series-parallel connection.
However, since the capacitance error of capacitors is large, when a plurality of capacitors are connected in series, they are fully charged in order starting from the capacitor with the smallest capacitance during charging. The voltage between terminals of a capacitor with a small capacitance exceeds the rated voltage, which causes deterioration and destruction of the capacitor.
Therefore, in a power storage device using a capacitor, in the charging process, it is necessary to suppress (equalize) the variation in voltage between terminals of each capacitor due to the capacitance error of the capacitor constituting the power storage unit, It is necessary to perform control to prevent overcharging of the capacitor.
Therefore, in general, a power storage device using a capacitor suppresses variation in voltage between terminals of a power storage unit composed of a plurality of capacitors connected in series and parallel and the capacitor of the power storage unit, It is comprised from the control part which prevents charge.
 キャパシタを用いた蓄電装置の制御部の機能については、上述の他にも、蓄電部の出力電圧(以後、単に蓄電部電圧と記す。)を電力変換器の許容入力電圧範囲に維持する制御や、蓄電部への入力電流制御や負荷への出力電流制御など、様々な目的のために様々な機能がこれまでに提案されているが、そのような制御部もアナログ回路や論理回路、あるいはマイクロプロセッサやPLD、FPGAなどの制御素子によって構成されているので、制御部自体の駆動用の電源が必要である。
 しかし、このような制御部への電源供給については余り示唆されていない。制御部の電源として一次電池あるいは二次電池を用いる方法があるが、キャパシタを用いた蓄電装置は、そもそもキャパシタのサイクル寿命が電池より極めて長く、保守を余り必要としないことが特徴であるから、制御部の電源としてキャパシタよりはるかに寿命の短い電池を用いることは、キャパシタを用いた蓄電装置の特徴を損なうことになる。
Regarding the function of the control unit of the power storage device using the capacitor, in addition to the above, control for maintaining the output voltage of the power storage unit (hereinafter simply referred to as the power storage unit voltage) within the allowable input voltage range of the power converter, Various functions have been proposed so far for various purposes such as control of input current to the storage unit and control of output current to the load. Since it is configured by a control element such as a processor, PLD, or FPGA, a power source for driving the control unit itself is required.
However, there is little suggestion about power supply to such a control unit. Although there is a method of using a primary battery or a secondary battery as a power source for the control unit, the power storage device using a capacitor is characterized in that the cycle life of the capacitor is extremely longer than that of the battery in the first place, and requires little maintenance. Using a battery having a much shorter life than the capacitor as the power source of the control unit impairs the characteristics of the power storage device using the capacitor.
 また、制御部の電源として、蓄電部のキャパシタに蓄積された電力のみを用いることを前提としている蓄電装置もあるが、この方法では、蓄電部のキャパシタが完全放電状態の場合には、無制御の状態で蓄電部のキャパシタへの充電が開始されることになり、キャパシタに電荷が徐々に蓄積されて、蓄電部電圧が制御部の電源として利用し得る値に達してから制御部が稼働状態になる。
 即ち、蓄電部のキャパシタへの充電開始直後から暫くの間、制御部を稼働させることはできず、しかも、蓄電部が大きな静電容量のキャパシタによって構成されている場合には、蓄電部電圧が制御部の電源として利用し得る値に達するまでに比較的長い時間を必要とするので、長時間、無制御の状態が継続されることになる。
There is also a power storage device that presupposes that only the power stored in the capacitor of the power storage unit is used as the power source of the control unit. However, in this method, when the capacitor of the power storage unit is in a fully discharged state, no control is performed. In this state, charging of the capacitor of the power storage unit is started, and electric charges are gradually accumulated in the capacitor, and the control unit is in an operating state after the power storage unit voltage reaches a value that can be used as a power source of the control unit. become.
That is, the control unit cannot be operated for a while immediately after the start of charging of the capacitor of the power storage unit, and when the power storage unit is configured by a capacitor with a large capacitance, the power storage unit voltage is Since it takes a relatively long time to reach a value that can be used as the power supply of the control unit, the state of no control is continued for a long time.
 しかし、制御部は蓄電部への充電開始時から稼働状態にあることが好ましい。その理由を以下に記す。
 これまで、キャパシタを用いた蓄電装置に関して、蓄電部を構成するキャパシタの静電容量誤差や自己放電に起因する端子間電圧のばらつきを抑制し、全てのキャパシタの端子間電圧を揃え(以下では、単に均圧化と記す。)たり、キャパシタの過充電を防止するための様々な方法が提案されている。
 例えば、特許文献1~3のように、抵抗を用いた均圧化回路(並列モニタとも呼ばれる。)を用いる方法や、特許文献4~7のようにトランスやコイルを用いた均圧化回路、特許文献8もしくは特許文献9のようにキャパシタを用いた均圧化回路などがある。これらの均圧化回路を制御しているのが制御部である。
However, the control unit is preferably in an operating state from the start of charging the power storage unit. The reason is described below.
Until now, regarding power storage devices using capacitors, it is possible to suppress variations in terminal voltages caused by capacitance errors and self-discharge of the capacitors constituting the power storage unit, and to align the voltages between terminals of all capacitors (below, Various methods have been proposed to prevent overcharging of the capacitor.
For example, a method using a voltage equalizing circuit (also called a parallel monitor) using resistors as in Patent Documents 1 to 3, a voltage equalizing circuit using a transformer or a coil as described in Patent Documents 4 to 7, As described in Patent Document 8 or Patent Document 9, there is a voltage equalizing circuit using a capacitor. The control unit controls these pressure equalizing circuits.
特許第3418951号公報(特開平11-215695) 直並列切換型電源装置Japanese Patent No. 3418951 (Japanese Patent Laid-Open No. 11-215695) Series-parallel switching type power supply device 特許第3487780号公報(特開2000-253572) 接続切り換え制御キャパシタ電源装置Japanese Patent No. 3487780 (Japanese Patent Laid-Open No. 2000-253572) Connection switching control capacitor power supply 特許第3468924号公報 キャパシタを用いた蓄電装置とその制御方法 PCT/JP2005/019208 WO2007046138Patent No. 3468924 A power storage device using a capacitor and a control method thereof PCT / JP2005 / 019208 WO2007046138 特許第3854592号公報(特開2005-80469) 蓄電器の充電装置Japanese Patent No. 3854592 (Japanese Patent Laid-Open No. 2005-80469) 特許第3764633号公報(特開2002-10510) 電気エネルギ貯蔵装置、セルエネルギ量調節装置およびセルエネルギ量調整方法Japanese Patent No. 3764633 (Japanese Patent Laid-Open No. 2002-10510) Electrical energy storage device, cell energy amount adjusting device, and cell energy amount adjusting method 特開2007-252078公報 均等蓄放電回路JP 2007-252078 JP Equal storage circuit 特開2006-296179公報 キャパシタの蓄電装置、及びその充放電方法Patent Document 1: JP 2006-296179 A Capacitor Power Storage Device and Charge / Discharge Method 特開2007-006552公報 組電池用均等化回路Japanese Unexamined Patent Publication No. 2007-006552 特開2006-109620公報 蓄電器の電圧制御装置及びそれを備えた蓄電器モジュールJP, 2006-109620, A Voltage control device of a capacitor, and a capacitor module provided with the same PCT/JP2010/057212 キャパシタを用いた蓄電装置PCT / JP2010 / 057212 Power storage device using capacitor
 しかし、何れの均圧化回路を用いるとしても、制御部の電源として蓄電部のキャパシタに蓄積された電力を用いる方法を用いれば、完全放電状態にある蓄電部のキャパシタへの充電が開始され、電荷が徐々に蓄積されて、その電圧が制御部の電源として利用し得る値に達するまでの間、無制御状態が継続されることになり、均圧化回路は作動しない。無制御状態が長時間続くと、蓄電部のキャパシタの端子間電圧のばらつきは大きくなる。したがって、蓄電部のキャパシタの電圧が制御部の電源として利用し得る値に達して、制御部が動作可能となった段階で均圧化回路を動作させても、均圧化が間に合わない場合や、拡大したキャパシタ間の端子間電圧のばらつきを抑制するために蓄電部に蓄積された多くのエネルギーを無駄に消費しなければならないという事態が起こり得る。 However, regardless of which voltage equalization circuit is used, if the method using the power stored in the capacitor of the power storage unit is used as the power source of the control unit, charging of the capacitor of the power storage unit in a fully discharged state is started, Until the electric charge is gradually accumulated and the voltage reaches a value that can be used as the power source of the control unit, the non-control state is continued, and the voltage equalization circuit does not operate. When the non-control state continues for a long time, the variation in the voltage between the terminals of the capacitor of the power storage unit increases. Therefore, even if the voltage equalization circuit is operated when the voltage of the capacitor of the power storage unit reaches a value that can be used as the power source of the control unit and the control unit becomes operable, In order to suppress the variation in the inter-terminal voltage between the expanded capacitors, there may occur a situation where a lot of energy accumulated in the power storage unit must be consumed wastefully.
 また、特許文献1~3のように、蓄電部において直並列切り換えと呼ばれる制御方法が用いられる場合には、蓄電部のキャパシタが完全放電状態にあり、制御部が稼働していない場合には、その切り換えの制御すら行えず、蓄電部の充電自体が行えないことになる。
 以上のような理由により、蓄電部のキャパシタへの充電開始時には制御部が稼働状態であり、充電開始と同時に制御部による均圧化動作が行われ、キャパシタ間の端子間電圧のばらつきを抑制できることが好ましい。そうすることにより、蓄電部のキャパシタに入力される電力エネルギーを無駄なく蓄積することができ、充電時間を短縮することも可能となる。
Further, as in Patent Documents 1 to 3, when a control method called serial-parallel switching is used in the power storage unit, when the capacitor of the power storage unit is in a completely discharged state, and the control unit is not operating, Even the switching control cannot be performed, and the power storage unit itself cannot be charged.
For the reasons described above, the control unit is in an operating state when charging of the capacitor of the power storage unit is started, and the voltage equalization operation by the control unit is performed simultaneously with the start of charging, so that variation in the inter-terminal voltage between the capacitors can be suppressed. Is preferred. By doing so, the power energy input to the capacitor of the power storage unit can be stored without waste, and the charging time can be shortened.
 一般的にキャパシタを用いた蓄電装置100は図9に示したように構成される。
 先にも述べたように、制御部140は、蓄電部電圧を電力変換器170の許容入力電圧範囲に維持する制御や、蓄電部130への入力電流制御や電力変換器170を介した負荷180への出力電流制御、蓄電部130を構成する各キャパシタの過充電防止制御、各キャパシタの端子間電圧を均圧化する制御などを行うが、この制御部140にも電源が必要である。
 一般的には、制御部140の電源として、蓄電部130に蓄積された電力を利用することが多い。例えば、図9のように、蓄電部130に蓄積された電力がDC-DCコンバータ150を経由して制御部140に供給される。
Generally, a power storage device 100 using a capacitor is configured as shown in FIG.
As described above, the control unit 140 controls the power storage unit voltage within the allowable input voltage range of the power converter 170, controls the input current to the power storage unit 130, and loads 180 via the power converter 170. Output current control, overcharge prevention control of each capacitor constituting the power storage unit 130, control for equalizing the voltage between terminals of each capacitor, and the like. The control unit 140 also requires a power source.
In general, the power stored in the power storage unit 130 is often used as the power source for the control unit 140. For example, as shown in FIG. 9, the electric power stored in the power storage unit 130 is supplied to the control unit 140 via the DC-DC converter 150.
 しかし、外部電源である直流電流源160から完全放電状態にある蓄電部130のキャパシタに充電電流の供給が開始され、蓄電部130に電力が蓄積されて、制御部140を十分に駆動し得る電圧に到るまでには時間を要する。したがって、完全放電状態にある蓄電部130の充電を開始してから、蓄電部130の電圧が制御部140を十分に駆動し得る電圧に到るまでの間は制御部140を駆動させることができない。
 即ち、蓄電部130が完全放電状態にある場合や、制御部140を十分に駆動し得る電圧と電力が蓄電部130に蓄積されていない状態では制御部140が駆動されないので、蓄電部130は無制御状態が継続されることになる。
However, the supply of charging current from the DC current source 160, which is an external power supply, to the capacitor of the power storage unit 130 in a fully discharged state is started, and power is accumulated in the power storage unit 130, so that the control unit 140 can be sufficiently driven. It takes time to reach Therefore, control unit 140 cannot be driven after charging of power storage unit 130 in the fully discharged state until the voltage of power storage unit 130 reaches a voltage that can sufficiently drive control unit 140. .
That is, when the power storage unit 130 is in a completely discharged state, or when the voltage and power that can sufficiently drive the control unit 140 are not stored in the power storage unit 130, the control unit 140 is not driven. The control state will be continued.
 そこで、発明者らは、EDLC等のキャパシタを蓄電部に用いた蓄電装置において、蓄電部への充電を開始する前に制御部を確実に駆動させるために、初期駆動用の副蓄電部を用意し、その副蓄電部にキャパシタを用いる初期駆動電源を提案した(特許文献10参照。)
 なお、特許文献10では、蓄電部を主蓄電部と呼び、初期駆動用の副蓄電部に用いるキャパシタを初期駆動用キャパシタあるいはスタートキャパシタと呼んでいる。
 前記初期駆動用キャパシタは、少なくとも、蓄電部の出力電圧が制御回路の駆動電圧に達するまでの間、制御回路に駆動電力を供給する回路であり、蓄電部の出力電圧が制御回路の駆動電圧に達したあとも制御回路に駆動電力を供給する回路構成とすることもできるし、蓄電部の出力電圧が制御回路の駆動電圧に達した後は、制御回路の駆動電力を蓄電部から供給する回路構成とすることもできるが、いずれの回路構成であっても、前記初期駆動用キャパシタへの充電が終了し、制御部が作動できる状態に到った後、蓄電部(主蓄電部)への充電が開始される。
In view of this, the inventors have prepared a sub power storage unit for initial driving in a power storage device using a capacitor such as an EDLC as a power storage unit, in order to reliably drive the control unit before starting charging of the power storage unit. Then, an initial driving power source using a capacitor for the sub power storage unit has been proposed (see Patent Document 10).
In Patent Document 10, a power storage unit is referred to as a main power storage unit, and a capacitor used as a sub power storage unit for initial drive is referred to as an initial drive capacitor or a start capacitor.
The initial drive capacitor is a circuit that supplies drive power to the control circuit until at least the output voltage of the power storage unit reaches the drive voltage of the control circuit, and the output voltage of the power storage unit becomes the drive voltage of the control circuit. A circuit configuration that supplies drive power to the control circuit after reaching the control circuit, and a circuit that supplies drive power for the control circuit from the power storage unit after the output voltage of the power storage unit reaches the drive voltage of the control circuit. In any circuit configuration, after charging of the initial drive capacitor is completed and the control unit is ready to operate, the power storage unit (main power storage unit) is connected. Charging starts.
 しかし、初期駆動電源として初期駆動用キャパシタを用いた蓄電装置には以下のような問題がある。
(1)蓄電装置の構成によっては、副蓄電部(初期駆動用キャパシタ)が、主蓄電部が完全放電の状態から充電される場合にしか使用されないことも多く、また主蓄電部の電力蓄積に直接寄与しない初期駆動用キャパシタを別途用意する必要がある。
(2)初期駆動用キャパシタの容量が過小な場合には、制御部を駆動させるのに必要な電力が主蓄電部に蓄積される前に、初期駆動用キャパシタに蓄積された電力が制御部で消費されてしまい、制御部が正常に駆動できなくなる。また逆に、初期駆動用キャパシタの容量が過大な場合には、初期駆動用キャパシタの充電に時間を要し、主蓄電部への充電開始が遅れる。
However, the power storage device using the initial drive capacitor as the initial drive power supply has the following problems.
(1) Depending on the configuration of the power storage device, the sub power storage unit (initial drive capacitor) is often used only when the main power storage unit is charged from a fully discharged state. It is necessary to prepare an initial driving capacitor that does not directly contribute.
(2) When the capacity of the initial drive capacitor is too small, the power stored in the initial drive capacitor is stored in the control unit before the power necessary for driving the control unit is stored in the main power storage unit. It is consumed and the control unit cannot be driven normally. Conversely, if the capacity of the initial drive capacitor is excessive, it takes time to charge the initial drive capacitor, and the start of charging the main power storage unit is delayed.
(3)副蓄電部を構成する回路にはブレーク接点スイッチ(Normally Closed型スイッチ)が組み込まれており、回路に不具合が生じた場合にはクローズ故障を起こし、閉路状態を維持し続ける可能性がある。
(4)回路構成が複雑で、必要となる回路部品も多く、コスト上昇の要因となる。
 また、上記の問題以外に、EDLC等のキャパシタを蓄電部に用いた蓄電装置では、蓄電部への入力電流制御や入力電圧制御も行う必要があり、初期駆動電源はこれらの制御も同時に行えることが望ましい。
 しかも、外部電源が太陽電池等の場合には、夜間には蓄電装置に電力が供給されないが、放電は昼夜を問わず行われる場合が多く、この放電時にも制御部による放電制御が必要とされる。したがって、外部電源からの電力供給が一時的に途絶えた場合にも、制御部を駆動させるための電力が確保されなければならない。
(3) A break contact switch (Normally Closed switch) is incorporated in the circuit that constitutes the sub power storage unit. If a malfunction occurs in the circuit, a close failure may occur and the circuit may continue to be maintained. is there.
(4) The circuit configuration is complicated and many circuit parts are required, which causes an increase in cost.
In addition to the above problems, in a power storage device using a capacitor such as an EDLC for the power storage unit, it is necessary to perform input current control and input voltage control to the power storage unit, and the initial drive power supply can perform these controls simultaneously. Is desirable.
In addition, when the external power source is a solar cell or the like, power is not supplied to the power storage device at night, but the discharge is often performed day or night, and discharge control by the control unit is required even during this discharge. The Therefore, even when power supply from the external power supply is temporarily interrupted, power for driving the control unit must be ensured.
 そこで、本発明では、EDLC等のキャパシタを蓄電部に用いた蓄電装置において、初期駆動用キャパシタを用いず、蓄電部のキャパシタが完全放電状態であっても、制御部を駆動させるための電力(以降、初期駆動電力という。)を制御部に供給して蓄電部の充電を開始し、外部電源からの電力供給が一時的に途絶えた場合にも、制御部を駆動するのに十分な電圧と電力が蓄電部に蓄積された後は、外部電源もしくは蓄電部から制御部を駆動させるための電力を供給すると共に、蓄電部を定電流充電し、蓄電部が満充電になると、蓄電部のキャパシタが過充電に陥ることを避けるために定電圧充電を行うという充電制御機能を持った初期駆動電源を有する蓄電装置を提案している。
Therefore, in the present invention, in the power storage device using a capacitor such as an EDLC for the power storage unit, the initial drive capacitor is not used, and even when the capacitor of the power storage unit is in a completely discharged state, power for driving the control unit ( Hereinafter, the initial drive power is supplied to the control unit to start charging the power storage unit, and even when the power supply from the external power supply is temporarily interrupted, the voltage is sufficient to drive the control unit. After the electric power is stored in the power storage unit, the power for driving the control unit is supplied from an external power source or the power storage unit, and the power storage unit is charged with a constant current. In order to avoid overcharging, a power storage device having an initial driving power source having a charge control function of performing constant voltage charging has been proposed.
 本発明の請求項1に係る蓄電装置は、
キャパシタを用いた蓄電部と、
外部電源から流入する直流電流を、充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
前記蓄電部における蓄電状況を監視する監視手段と、
を備えた蓄電装置において、
前記充電制御手段は、
前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
を備え、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、前記充電制御手段を、初期充電モードもしくは定電流充電モードの何れか1つの充電モードに切り換えて、前記蓄電部を充電するように制御する充電制御信号を出力するように構成したものである。
A power storage device according to claim 1 of the present invention includes:
A power storage unit using a capacitor;
Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit;
Signal output means for outputting the charge control signal to the charge control means;
Monitoring means for monitoring power storage status in the power storage unit;
In a power storage device comprising:
The charge control means includes
An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
With
The signal output means switches the charge control means to either one of an initial charge mode or a constant current charge mode in accordance with a power storage status of the power storage obtained from the monitoring means, and A charging control signal for controlling charging is output.
 請求項2では、
キャパシタを用いた蓄電部と、
外部電源から流入する直流電流を、充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
前記蓄電部における蓄電状況を監視する監視手段と、
を備えた蓄電装置において、
前記充電制御手段は、
前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電圧充電するとともに、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電圧充電モードと、
を備え、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、前記充電制御手段を、初期充電モード、定電流充電モード、もしくは定電圧充電モードの何れか1つの充電モードに切り換える充電制御信号を出力するように構成した。
In claim 2,
A power storage unit using a capacitor;
Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit;
Signal output means for outputting the charge control signal to the charge control means;
Monitoring means for monitoring power storage status in the power storage unit;
In a power storage device comprising:
The charge control means includes
An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control. A constant voltage charging mode to supply as driving power of the means;
With
The signal output means switches the charge control means to any one charge mode of an initial charge mode, a constant current charge mode, or a constant voltage charge mode according to the power storage status of the power storage unit obtained from the monitoring means. The charging control signal is output.
 請求項3では、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換えて前記蓄電部を充電し、
前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換えて前記蓄電部を充電し、
前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換えて前記蓄電部を充電するように構成した。
In claim 3,
The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit,
When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit,
When the power storage unit voltage becomes equal to or higher than a third set voltage, the charge control unit is switched from the constant current charging mode to the constant voltage charging mode to charge the power storage unit.
 請求項4では、
前記外部電源もしくは前記蓄電部から供給される駆動電力を所定の電圧に変換して前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する電圧変換手段を備えた。
In claim 4,
Voltage conversion means is provided for converting drive power supplied from the external power source or the power storage unit into a predetermined voltage and supplying the drive power as drive power for the signal output means, the monitoring means, and the charge control means.
 本発明の請求項5に係る充電制御装置は、
外部電源から流入する直流電流を、キャパシタを用いた蓄電部に充電するための充電電力として出力するように構成された充電制御装置において、
前記外部電源から流入する直流電流を、前記充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
前記蓄電部における蓄電状況を監視する監視手段と、
を備えるとともに、
前記充電制御手段は、
前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
を備え、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
前記充電制御手段を、初期充電モードもしくは定電流充電モードの何れか1つの充電モードに切り換えて前記蓄電部を充電するように構成したものである。
The charging control device according to claim 5 of the present invention is
In a charging control device configured to output a direct current flowing from an external power source as charging power for charging a power storage unit using a capacitor,
Charging control means for controlling a direct current flowing from the external power source based on the charging control signal and supplying the direct current as charging power to the power storage unit;
Signal output means for outputting the charge control signal to the charge control means;
Monitoring means for monitoring power storage status in the power storage unit;
With
The charge control means includes
An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
With
The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
The charge control means is configured to charge the power storage unit by switching to either one of an initial charge mode and a constant current charge mode.
 請求項6では、
外部電源から流入する直流電流を、キャパシタを用いた蓄電部に充電するための充電電力として出力するように構成された充電制御装置において、
前記外部電源から流入する直流電流を、前記充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
前記蓄電部における蓄電状況を監視する監視手段と、
を備えるとともに、
前記充電制御手段は、
前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電圧充電するとともに、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電圧充電モードと、
を備え、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
前記充電制御手段を、初期充電モード、定電流充電モード、および定電圧充電モードの3つの充電モードの内の何れか1つの充電モードに切り換えて前記蓄電部を充電するように構成した。
In claim 6,
In a charging control device configured to output a direct current flowing from an external power source as charging power for charging a power storage unit using a capacitor,
Charging control means for controlling a direct current flowing from the external power source based on the charging control signal and supplying the direct current as charging power to the power storage unit;
Signal output means for outputting the charge control signal to the charge control means;
Monitoring means for monitoring power storage status in the power storage unit;
With
The charge control means includes
An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control. A constant voltage charging mode to supply as driving power of the means;
With
The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
The charging control means is configured to charge the power storage unit by switching to any one of three charging modes of an initial charging mode, a constant current charging mode, and a constant voltage charging mode.
 請求項7では、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換えて前記蓄電部を充電し、
前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換えて前記蓄電部を充電し、
前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換えて前記蓄電部を充電するように構成した。
In claim 7,
The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit,
When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit,
When the power storage unit voltage becomes equal to or higher than a third set voltage, the charge control unit is switched from the constant current charging mode to the constant voltage charging mode to charge the power storage unit.
 請求項8では、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じたデューティ比のパルス列信号を出力するように構成され、
前記充電制御手段は、
前記パルス列信号が入力されて、そのデューティ比に応じて蓄電部への充電電流をオンオフ制御するスイッチ手段と、
前記スイッチ手段から出力される充電電力を平滑して蓄電部へ出力する平滑手段と
を備え、
デューティ比を変えることによって定電流充電モードもしくは定電圧充電モードの何れか1つの充電モードに切り換え得るように構成した。
In claim 8,
The signal output means is configured to output a pulse train signal having a duty ratio according to the power storage status of the power storage unit obtained from the monitoring means,
The charge control means includes
Switch means for receiving the pulse train signal and controlling on / off of the charging current to the power storage unit according to the duty ratio;
Smoothing means for smoothing the charging power output from the switch means and outputting to the power storage unit,
By changing the duty ratio, either one of the constant current charging mode and the constant voltage charging mode can be switched to one charging mode.
 請求項9では、
前記外部電源もしくは前記蓄電部から供給される駆動電力を所定の電圧に変換して前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する電圧変換手段を備えた。
In claim 9,
Voltage conversion means is provided for converting drive power supplied from the external power source or the power storage unit into a predetermined voltage and supplying the drive power as drive power for the signal output means, the monitoring means, and the charge control means.
本発明の請求項10に係る蓄電装置の制御方法は、
キャパシタを用いた蓄電部と、
外部電源から流入する直流電流を、充電制御信号に基づいて制御して前記蓄電部に充電する充電制御手段と、
前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
前記蓄電部における蓄電状況を監視する監視手段と、
を備え、
前記充電制御手段は、
前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電圧充電するとともに、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電圧充電モードと、
を備えてなるキャパシタを用いた蓄電装置の充電制御方法において、
前記監視手段を用いて前記蓄電部の蓄電状況を監視させ、
前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換える充電制御信号を前記信号出力手段から出力させ、
前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換える充電制御信号を前記信号出力手段から出力させ、
前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換える充電制御信号を前記信号出力手段から出力させることによって、
前記充電制御手段を、蓄電部の蓄電状況に応じた充電モードで作動させることを特徴としている。
A power storage device control method according to claim 10 of the present invention includes:
A power storage unit using a capacitor;
Charge control means for controlling a direct current flowing from an external power source based on a charge control signal to charge the power storage unit;
Signal output means for outputting the charge control signal to the charge control means;
Monitoring means for monitoring power storage status in the power storage unit;
With
The charge control means includes
An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control. A constant voltage charging mode to supply as driving power of the means;
In a charge control method for a power storage device using a capacitor comprising:
Using the monitoring means to monitor the power storage status of the power storage unit,
When the power storage unit voltage is less than a second set voltage, the signal output means outputs a charge control signal for switching the charge control means to the initial charge mode,
When the power storage unit voltage is equal to or higher than a second set voltage, the charge output signal for switching the charge control means from the initial charge mode to the constant current charge mode is output from the signal output means,
When the power storage unit voltage is equal to or higher than a third set voltage, by causing the signal output means to output a charge control signal for switching the charge control means from the constant current charge mode to the constant voltage charge mode,
The charge control means is operated in a charge mode according to the power storage status of the power storage unit.
 本発明の請求項1に係る蓄電装置においては、
キャパシタを用いた蓄電部と、
外部電源から流入する直流電流を、充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
前記蓄電部における蓄電状況を監視する監視手段と、
を備えた蓄電装置において、
前記充電制御手段は、
前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
を備え、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、前記充電制御手段を、初期充電モードもしくは定電流充電モードの何れか1つの充電モードに切り換えて前記蓄電部を充電するように制御する充電制御信号を出力するように構成されているので、
初期充電モードでは、蓄電部が完全放電状態もしくはそれに近い状態であっても、直流電流を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給することにより、蓄電部への充電開始時から前記信号出力手段と前記監視手段および前記充電制御手段を正常に駆動させて適切な充電制御が可能となる。
In the power storage device according to claim 1 of the present invention,
A power storage unit using a capacitor;
Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit;
Signal output means for outputting the charge control signal to the charge control means;
Monitoring means for monitoring power storage status in the power storage unit;
In a power storage device comprising:
The charge control means includes
An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
With
The signal output unit charges the power storage unit by switching the charge control unit to either one of an initial charge mode or a constant current charge mode according to a power storage state of the power storage unit obtained from the monitoring unit. Because it is configured to output a charge control signal to control so that
In the initial charging mode, even when the power storage unit is in a fully discharged state or a state close thereto, a direct current is supplied as driving power for the signal output unit, the monitoring unit, and the charge control unit, thereby charging the power storage unit. From the start, the signal output means, the monitoring means, and the charge control means are normally driven to enable appropriate charge control.
 請求項2では、
前記充電制御手段は、
前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電圧充電するとともに、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電圧充電モードと、
を備え、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、前記充電制御手段を、初期充電モード、定電流充電モード、もしくは定電圧充電モードの何れか1つの充電モードに切り換える充電制御信号を出力するように構成されているので、
蓄電部の蓄電状況に応じて適切な充電を行うことができるとともに、初期充電モードでは、蓄電部が完全放電状態もしくはそれに近い状態であっても、直流電流を信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給することにより、蓄電部への充電開始時から前記信号出力手段と前記監視手段および前記充電制御手段を正常に駆動させて適切な充電制御が可能となる。
In claim 2,
The charge control means includes
An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control. A constant voltage charging mode to supply as driving power of the means;
With
The signal output means switches the charge control means to any one charge mode of an initial charge mode, a constant current charge mode, or a constant voltage charge mode according to the power storage status of the power storage unit obtained from the monitoring means. Since it is configured to output the charge control signal,
In addition to being able to perform appropriate charging according to the power storage status of the power storage unit, in the initial charge mode, even if the power storage unit is in a completely discharged state or a state close thereto, a direct current is output from the signal output means, the monitoring means, and the By supplying the drive power for the charge control means, the signal output means, the monitoring means, and the charge control means are normally driven from the start of charging the power storage unit, thereby enabling appropriate charge control.
 請求項3では、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換えて前記蓄電部を充電し、
前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換えて前記蓄電部を充電し、
前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換えて前記蓄電部を充電するように構成されているので、
蓄電部の蓄電状況に応じて適切な充電を行うことができるとともに、初期充電モードでは、蓄電部が完全放電状態もしくはそれに近い状態であっても、直流電流を信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給することにより、蓄電部への充電開始時から前記信号出力手段と前記監視手段および前記充電制御手段を正常に駆動させて適切な充電制御が可能となる。
In claim 3,
The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit,
When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit,
When the power storage unit voltage is equal to or higher than a third set voltage, the charging control unit is configured to charge the power storage unit by switching from the constant current charging mode to the constant voltage charging mode. ,
In addition to being able to perform appropriate charging according to the power storage status of the power storage unit, in the initial charge mode, even if the power storage unit is in a completely discharged state or a state close thereto, a direct current is output from the signal output means, the monitoring means, and the By supplying the drive power for the charge control means, the signal output means, the monitoring means, and the charge control means are normally driven from the start of charging the power storage unit, thereby enabling appropriate charge control.
 請求項4では、
前記外部電源もしくは前記蓄電部から供給される駆動電力を所定の電圧に変換して前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する電圧変換手段を備えているので、
外部電源もしくは蓄電部から供給される駆動電力の電圧が高すぎても低すぎても、前記信号出力手段と前記監視手段および前記充電制御手段を正常に作動させることができる。
In claim 4,
Since it comprises voltage conversion means for converting the drive power supplied from the external power supply or the power storage unit into a predetermined voltage and supplying it as drive power for the signal output means, the monitoring means and the charge control means,
The signal output means, the monitoring means and the charge control means can be operated normally even if the voltage of the driving power supplied from the external power supply or the power storage unit is too high or too low.
 請求項5、6、7の充電制御装置では、前記請求項1、2、3の蓄電装置と同様に、蓄電部への充電開始時から前記信号出力手段と前記監視手段および前記充電制御手段を適切な充電モードで正常に作動させることによって適切な充電制御が可能となる。 In the charge control device according to claims 5, 6, and 7, the signal output means, the monitoring means, and the charge control means are provided from the start of charging to the power storage unit, similarly to the power storage device according to claims 1, 2, and 3. Appropriate charge control is possible by operating normally in an appropriate charge mode.
 請求項8では、
前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じたデューティ比のパルス列信号を出力するように構成され、
前記充電制御手段は、
前記パルス列信号が入力されて、そのデューティ比に応じて蓄電部への充電電流をオンオフ制御するスイッチ手段と、
前記スイッチ手段から出力される充電電流を平滑して蓄電部へ出力する平滑手段と
を備えているので、
パルス列信号のデューティ比を変えることによって、ひとつの充電制御手段を、初期充電モードや、定電流充電モードや、定電圧充電モードのそれぞれに適した状態で作動させることができる。
In claim 8,
The signal output means is configured to output a pulse train signal having a duty ratio according to the power storage status of the power storage unit obtained from the monitoring means,
The charge control means includes
Switch means for receiving the pulse train signal and controlling on / off of the charging current to the power storage unit according to the duty ratio;
Since smoothing means for smoothing the charging current output from the switch means and outputting to the power storage unit,
By changing the duty ratio of the pulse train signal, one charging control means can be operated in a state suitable for each of the initial charging mode, the constant current charging mode, and the constant voltage charging mode.
 請求項9では、請求項4の蓄電装置と同様に、外部電源もしくは蓄電部から供給される駆動電力の電圧が高すぎても低すぎても、前記信号出力手段と前記監視手段および前記充電制御手段を正常に作動させることができる。 In the ninth aspect, similar to the power storage device of the fourth aspect, the signal output means, the monitoring means, and the charge control are performed regardless of whether the voltage of the driving power supplied from the external power source or the power storage unit is too high or too low. The means can be operated normally.
 本願発明の請求項10に係る蓄電装置の制御方法によれば、
充電制御手段は、初期充電モードと、定電流充電モードと、定電圧充電モードとを備えており、
前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換える充電制御信号を前記信号出力手段から出力させ、
前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換える充電制御信号を前記信号出力手段から出力させ、
前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換える充電制御信号を前記信号出力手段から出力させることによって、
前記充電制御手段を、蓄電部の蓄電状況に応じた充電モードで作動させるので、
蓄電部が完全放電状態であっても初期充電モードで前記信号出力手段と前記監視手段および前記充電制御手段に電源を供給でき、完全放電状態から充電電力を適宜制御しながら適正に充電することができる。
According to the method of controlling the power storage device according to claim 10 of the present invention,
The charging control means has an initial charging mode, a constant current charging mode, and a constant voltage charging mode,
When the power storage unit voltage is less than a second set voltage, the signal output means outputs a charge control signal for switching the charge control means to the initial charge mode,
When the power storage unit voltage is equal to or higher than a second set voltage, the charge output signal for switching the charge control means from the initial charge mode to the constant current charge mode is output from the signal output means,
When the power storage unit voltage is equal to or higher than a third set voltage, by causing the signal output means to output a charge control signal for switching the charge control means from the constant current charge mode to the constant voltage charge mode,
Since the charging control means is operated in a charging mode according to the power storage status of the power storage unit,
Power can be supplied to the signal output means, the monitoring means, and the charge control means in the initial charge mode even when the power storage unit is in a fully discharged state, and charging can be appropriately performed while appropriately controlling charging power from the fully discharged state. it can.
本発明に係る蓄電装置の基本構成図である。1 is a basic configuration diagram of a power storage device according to the present invention. 本発明に係る蓄電装置の3つの充電モードを説明する説明図である。It is explanatory drawing explaining three charge modes of the electrical storage apparatus which concerns on this invention. 図1に示した蓄電装置の具体的な回路構成例を示したブロック図である。FIG. 2 is a block diagram illustrating a specific circuit configuration example of the power storage device illustrated in FIG. 1. 図3に示した蓄電装置のより具体的な回路構成例を示したブロック図である。FIG. 4 is a block diagram illustrating a more specific circuit configuration example of the power storage device illustrated in FIG. 3. チョッパ型の降圧型DC-DCコンバータの構成例を示したブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a chopper type step-down DC-DC converter. 本発明に係る蓄電装置の充電制御方法を説明するフローチャートである。It is a flowchart explaining the charge control method of the electrical storage apparatus which concerns on this invention. 本発明に係る蓄電装置の初期充電モードから定電流充電モードへの移行過程における入力電圧と蓄電部電圧の時間的推移を示す図である。It is a figure which shows the time transition of the input voltage and electrical storage part voltage in the transition process from the initial charge mode of the electrical storage apparatus which concerns on this invention to the constant current charge mode. 本発明に係る蓄電装置の定電流充電モードから定電圧充電モードへの移行過程における入力電圧と蓄電部電圧の時間的推移を示す図である。It is a figure which shows the time transition of the input voltage and electrical storage part voltage in the transition process from the constant current charge mode to the constant voltage charge mode of the electrical storage apparatus which concerns on this invention. キャパシタを用いた蓄電装置の一般的な構成例を示すブロック図である。It is a block diagram which shows the general structural example of the electrical storage apparatus using a capacitor.
 以下に、本発明に係るキャパシタを用いた蓄電装置を、実施形態を示した図面を参照して説明する。
 図1にキャパシタを用いた蓄電装置1の基本的な構成例を示す。
 図1に示したように、この蓄電装置1は、充電制御回路2、蓄電部3、制御部4、DC-DCコンバータ5から構成されている。
 一般的にキャパシタは電圧源ではなく、電流源から充電することが好ましい。そこでこの蓄電装置1の入力側には外部電源として直流電流源6が接続されているが、直流電流源6としては、例えば太陽電池などが用いられる。風力発電機やエンジン発電機などの他の電力供給源を利用することも可能であるが、これらの場合には交流出力のものや直流出力ものがあり、電力供給源が交流電源である場合には直流化して利用する。
 また、蓄電装置1内のDC-DCコンバータ5は、制御部4の駆動に必要な電圧と電力を供給するが、一般的には制御部4への供給電圧より直流電流源6や蓄電部3の出力電圧の方が高い場合が多いので、降圧型DC-DCコンバータを用いることが多い。
 この蓄電装置1の出力側には、DC-DCコンバータやDC-ACインバータなどの電力変換器7が接続されており、その電力変換器7の出力側に負荷8が接続されている。
Hereinafter, a power storage device using a capacitor according to the present invention will be described with reference to the drawings illustrating embodiments.
FIG. 1 shows a basic configuration example of a power storage device 1 using a capacitor.
As shown in FIG. 1, the power storage device 1 includes a charge control circuit 2, a power storage unit 3, a control unit 4, and a DC-DC converter 5.
In general, the capacitor is preferably charged from a current source rather than a voltage source. Therefore, a DC current source 6 is connected to the input side of the power storage device 1 as an external power source. As the DC current source 6, for example, a solar battery or the like is used. It is possible to use other power supply sources such as wind generators and engine generators, but in these cases there are AC output and DC output, and when the power supply is an AC power source. Is used by converting to DC.
The DC-DC converter 5 in the power storage device 1 supplies a voltage and electric power necessary for driving the control unit 4. Generally, the direct current source 6 and the power storage unit 3 are supplied from the supply voltage to the control unit 4. Since the output voltage is often higher, a step-down DC-DC converter is often used.
A power converter 7 such as a DC-DC converter or a DC-AC inverter is connected to the output side of the power storage device 1, and a load 8 is connected to the output side of the power converter 7.
 図1に示したように、この蓄電装置1では直流電流源6と蓄電部3との間に充電制御回路2が組み込まれている。前記充電制御回路2は前記制御部4から出力される制御信号(破線の矢線で示した。)に基づいて制御される。
 後述するように、この充電制御回路2と制御部4の働きによって、蓄電部3のキャパシタが完全放電状態であっても、制御部4を駆動させるための初期駆動電力を直流電流源6から制御部4へ供給するとともに、並行して蓄電部3の充電を開始し、さらに継続して制御部4への安定的な電力供給を確保しながら、充電電流を徐々に増加しながら蓄電部3を充電する。
 また、制御部4を駆動するのに十分な電圧と電力が蓄電部3に蓄積された後は、制御部4を駆動させるための駆動電力を直流電流源6もしくは蓄電部3から供給すると共に、直流電流源6から供給される充電電力によって蓄電部3を定電流充電する。そして蓄電部3が満充電になると、蓄電部3のキャパシタが過充電に陥ることを避けるために定電圧充電を行う。なお、前記制御部4には、必要に応じて、前記蓄電装置1への入力電圧に基づいた入力電圧情報が、例えば、一点鎖線の矢線で示したように、前記充電制御回路2から入力される。
 以上の動作において、前記制御部4は蓄電部3の蓄電状況を監視して、蓄電部電圧等の蓄電情報(破線の矢線で示した。)を得ている。
 なお、前記充電制御回路2は特許請求の範囲に記載された充電制御手段に対応し、前記制御部4は特許請求の範囲に記載された信号出力手段および監視手段に対応し、前記DC-DCコンバータ5は特許請求の範囲に記載された電圧変換手段に対応している。
As shown in FIG. 1, in the power storage device 1, the charge control circuit 2 is incorporated between the direct current source 6 and the power storage unit 3. The charging control circuit 2 is controlled based on a control signal (indicated by a broken arrow) output from the control unit 4.
As will be described later, the initial drive power for driving the control unit 4 is controlled from the DC current source 6 by the functions of the charge control circuit 2 and the control unit 4 even when the capacitor of the power storage unit 3 is in a completely discharged state. The power storage unit 3 is started to be charged at the same time, and charging of the power storage unit 3 is performed while gradually increasing the charging current while continuing to secure stable power supply to the control unit 4. Charge.
In addition, after the voltage and power sufficient to drive the control unit 4 are accumulated in the power storage unit 3, driving power for driving the control unit 4 is supplied from the DC current source 6 or the power storage unit 3, The power storage unit 3 is charged with a constant current by the charging power supplied from the DC current source 6. When the power storage unit 3 is fully charged, constant voltage charging is performed to prevent the capacitor of the power storage unit 3 from being overcharged. Note that, if necessary, input voltage information based on the input voltage to the power storage device 1 is input to the control unit 4 from the charge control circuit 2 as indicated by a dashed line. Is done.
In the above operation, the control unit 4 monitors the power storage status of the power storage unit 3 and obtains power storage information such as the power storage unit voltage (indicated by a broken arrow).
The charging control circuit 2 corresponds to charging control means described in the claims, and the control unit 4 corresponds to signal output means and monitoring means described in the claims, and the DC-DC The converter 5 corresponds to voltage conversion means described in the claims.
 本発明に係るキャパシタを用いた蓄電装置1は、3種の充電モードから構成されている。まず、この3種の充電モードについて説明する。図2は、それぞれの充電モードにおける蓄電装置1内の電流の流れを矢線で示している。なお、図2では、電流の流れをわかりやすく表示するために、蓄電情報や、制御部4と充電制御回路2等との間の各種の信号(図3に示した入力電圧情報Viやスイッチ開閉信号等)の流れは省略している。 The power storage device 1 using the capacitor according to the present invention is composed of three kinds of charging modes. First, these three types of charging modes will be described. FIG. 2 shows the current flow in the power storage device 1 in each charging mode with arrows. In FIG. 2, in order to display the current flow in an easy-to-understand manner, the storage information and various signals between the control unit 4 and the charging control circuit 2 (such as the input voltage information Vi shown in FIG. The flow of signals etc. is omitted.
 以下では、図2を参照して3種の充電モードについて説明する。
(1)初期充電モード
 蓄電部3が完全放電状態にある場合や、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧でない場合には、図2(a)に示したように、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧になるまで、直流電流源6からの電力をDC-DCコンバータ5を経由して制御部4へ駆動電力として供給しながら、並行して蓄電部3の充電を開始し、さらに継続して制御部4への安定的な電力供給を確保しながら、充電電流を徐々に増加しながら蓄電部3を充電する。
 この状態では、蓄電部3には負荷に供給できる充分な電力が蓄電されていないので、蓄電部3から電力変換器7および負荷8への電力の出力は遮断されている。
この充電モードを初期充電モードと呼ぶ。
Hereinafter, three types of charging modes will be described with reference to FIG.
(1) Initial charging mode When the power storage unit 3 is in a completely discharged state or when the power storage unit voltage Vt is not a voltage that can sufficiently drive the control unit 4, as shown in FIG. The electric power from the direct current source 6 is supplied as drive power to the control unit 4 via the DC-DC converter 5 until the partial voltage Vt becomes a voltage that can sufficiently drive the control unit 4, and stored in parallel. The charging of the power storage unit 3 is started while gradually increasing the charging current while starting the charging of the unit 3 and continuously ensuring a stable power supply to the control unit 4.
In this state, sufficient power that can be supplied to the load is not stored in the power storage unit 3, so output of power from the power storage unit 3 to the power converter 7 and the load 8 is cut off.
This charging mode is called an initial charging mode.
(2)定電流充電モード
 初期充電モードの充電によって、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧に達した後は、図2(b)に示したように、直流電流源6からの電力もしくは蓄電部3に蓄積された電力をDC-DCコンバータ5を経由して制御部4へ供給しながら、蓄電部3を定電流充電する。この充電モードを定電流充電モードと呼ぶ。なお、図2(b)において、制御部4には直流電流源6からの電力だけではなく、蓄電部3に蓄積された電力がDC-DCコンバータ5を経由して供給されているが、これは直流電流源6が例えば太陽電池のような場合に日没や雨天等によって、直流電流源6からの電力供給が一時的に途絶えた場合にも、制御部を継続的に駆動させるためのである。
 この状態では、蓄電部3には負荷に供給できる程度の電力が蓄電されているので、蓄電部3から電力変換器7および負荷8への電力が出力されている。
この充電モードを初期充電モードと呼ぶ。
(3)定電圧充電モード
 定電流モードの充電によって蓄電部3が満充電になると、それ以降、定電流充電を継続すると蓄電部3のキャパシタが定格電圧を超えて、過充電となり、劣化の原因となる場合や、最悪の場合には破壊に到る場合があるので、図2(c)に示したように、定電流充電から定電圧充電に移行する。
 この状態では、蓄電部3には負荷に供給できる充分な電力が蓄電されているので、蓄電部3から電力変換器7および負荷8への電力が出力されている。
この充電モードを定電圧充電モードと呼ぶ。
 なお、図2(c)において、制御部4には直流電流源6からの電力だけではなく、蓄電部3に蓄積された電力がDC-DCコンバータ5を経由して供給されているが、これは直流電流源6が例えば太陽電池のような場合に日没や雨天等によって、直流電流源6からの電力供給が一時的に途絶えた場合にも、制御部を継続的に駆動させるためである。
(2) Constant Current Charging Mode After the storage unit voltage Vt reaches a voltage that can sufficiently drive the control unit 4 by charging in the initial charging mode, as shown in FIG. The power storage unit 3 is charged with constant current while supplying the power from the power source or the power stored in the power storage unit 3 to the control unit 4 via the DC-DC converter 5. This charging mode is called a constant current charging mode. In FIG. 2B, not only the power from the direct current source 6 but also the power stored in the power storage unit 3 is supplied to the control unit 4 via the DC-DC converter 5. Is for continuously driving the control unit even when the power supply from the DC current source 6 is temporarily interrupted due to sunset or rain when the DC current source 6 is a solar cell, for example. .
In this state, the power storage unit 3 stores power that can be supplied to the load, and thus power is output from the power storage unit 3 to the power converter 7 and the load 8.
This charging mode is called an initial charging mode.
(3) Constant voltage charging mode When the power storage unit 3 is fully charged by charging in the constant current mode, if the constant current charging is continued thereafter, the capacitor of the power storage unit 3 exceeds the rated voltage and becomes overcharged, causing deterioration. In some cases, or in the worst case, destruction may occur, so as shown in FIG. 2C, the constant current charging is shifted to the constant voltage charging.
In this state, the power storage unit 3 stores sufficient power that can be supplied to the load, so that power is output from the power storage unit 3 to the power converter 7 and the load 8.
This charging mode is called a constant voltage charging mode.
In FIG. 2C, not only the power from the direct current source 6 but also the power stored in the power storage unit 3 is supplied to the control unit 4 via the DC-DC converter 5. This is because the controller is continuously driven even when the power supply from the DC current source 6 is temporarily interrupted due to sunset or rain when the DC current source 6 is a solar cell, for example. .
 なお、前記DC-DCコンバータ5に代えて制御部4が必要とする駆動電圧に応じて別の電圧変換手段を採用することが可能である。また、前記直流電流源6から前記制御部4の動作に適正な電圧が出力される場合には、前記定電圧充電モードに工夫を要するが、前記DC-DCコンバータ5は省略することができる。
Instead of the DC-DC converter 5, it is possible to employ another voltage conversion means according to the drive voltage required by the control unit 4. When a voltage appropriate for the operation of the control unit 4 is output from the direct current source 6, the constant voltage charging mode needs to be devised, but the DC-DC converter 5 can be omitted.
 図3は、図1に示した充電制御回路2をより具体的に構成した実施例1の蓄電装置1のブロック図である。この図において、破線で囲まれた部分が充電制御回路2である。
 図3に示したように、充電制御回路2は、スイッチSi(スイッチ手段)、平滑回路21(平滑手段)、比較器22(コンパレータ)、基準電圧生成回路23等から構成されている。
 なお、前記スイッチSiはメーク接点スイッチ(Normally Open型スイッチ)が用いられている。
 また、図3中のダイオードD1、D2、D3は逆流防止用ダイオードであり、抵抗R1と抵抗R2は分圧抵抗である。さらに、スイッチSoは放電出力用スイッチである。前記放電出力用スイッチSoもメーク接点スイッチ(Normally Open型スイッチ)が用いられている。
 なお、外部電源6からの直流電流の供給がない場合、例えば外部電源6が太陽電池等の場合であって、夜間などの場合にも、蓄電部3に蓄積された電力を負荷に供給しなければならない場合が多い。したがって放電制御等のために制御部4は常時、稼働していなければならない。
FIG. 3 is a block diagram of the power storage device 1 of the first embodiment in which the charge control circuit 2 shown in FIG. 1 is more specifically configured. In this figure, a portion surrounded by a broken line is the charging control circuit 2.
As shown in FIG. 3, the charge control circuit 2 includes a switch Si (switch means), a smoothing circuit 21 (smoothing means), a comparator 22 (comparator), a reference voltage generation circuit 23, and the like.
The switch Si is a make contact switch (Normally Open type switch).
Also, the diodes D1, D2, and D3 in FIG. 3 are backflow prevention diodes, and the resistors R1 and R2 are voltage dividing resistors. Further, the switch So is a discharge output switch. The discharge output switch So is also a make contact switch (Normally Open type switch).
In addition, when no direct current is supplied from the external power supply 6, for example, when the external power supply 6 is a solar battery or the like, and the nighttime or the like, the power stored in the power storage unit 3 must be supplied to the load. There are many cases that must be done. Therefore, the control unit 4 must always be in operation for discharge control or the like.
 蓄電部3からダイオードD2を経由してDC-DCコンバータ5に到る経路は、上述のような場合、すなわち、外部電源6からの直流電流の供給が無い場合にも、制御部4を稼働させるための電力を蓄電部3から供給するための回路である。
 図3に示した充電制御回路2の構成は、図5に示したようなチョッパ型の降圧型DC-DCコンバータ200の構成に似ている。しかし、図5のチョッパ型の降圧型DC-DCコンバータでは、出力電圧Voを制御回路210にフィードバックすることにより出力電圧が制御されるが、図3に示した充電制御回路2では蓄電装置1への入力電圧Vinに基づいた入力電圧情報Viを制御部4に入力して、充電制御回路2から蓄電部3への出力電圧を制御している。これは、蓄電装置1への入力が直流電流源6であるので、蓄電装置1への入力電圧Vinの変化に基づいた情報を制御部4に入力することにより、充電制御回路2から蓄電部3への出力電圧を制御することが可能となるのである。
 以上の動作において、前記制御部4は蓄電部電圧Vtによって蓄電部3の蓄電状況を監視してその蓄電情報を得ており、また、抵抗R1と抵抗R2とで構成される分圧回路と、比較器22と、基準電圧生成回路23とから得られる入力電圧情報Viによって充電制御回路2から蓄電部3への出力電圧を監視している。
The path from the power storage unit 3 via the diode D2 to the DC-DC converter 5 causes the control unit 4 to operate even in the above-described case, that is, when no direct current is supplied from the external power supply 6. It is a circuit for supplying the electric power for electricity from the electrical storage part 3. FIG.
The configuration of the charging control circuit 2 shown in FIG. 3 is similar to the configuration of the chopper type step-down DC-DC converter 200 as shown in FIG. However, in the chopper type step-down DC-DC converter of FIG. 5, the output voltage is controlled by feeding back the output voltage Vo to the control circuit 210. However, the charge control circuit 2 shown in FIG. The input voltage information Vi based on the input voltage Vin is input to the control unit 4 to control the output voltage from the charge control circuit 2 to the power storage unit 3. This is because the input to the power storage device 1 is the DC current source 6, and therefore, the information based on the change in the input voltage Vin to the power storage device 1 is input to the control unit 4, whereby the charge control circuit 2 to the power storage unit 3. Therefore, it becomes possible to control the output voltage.
In the above operation, the control unit 4 obtains the storage information by monitoring the storage state of the storage unit 3 by the storage unit voltage Vt, and a voltage dividing circuit constituted by the resistor R1 and the resistor R2, The output voltage from the charge control circuit 2 to the power storage unit 3 is monitored by the input voltage information Vi obtained from the comparator 22 and the reference voltage generation circuit 23.
 以下では、図3を参照して、3つの充電モードの動作について説明する。
<初期充電モードの充電動作>
 蓄電部3が完全放電状態にある場合や、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧まで蓄電部3が充電されていない場合に、制御部4を十分に駆動し得る電圧と電力が蓄電部3に充電されるまでの間に行われるのが、初期充電モードでの充電である。
 蓄電部3が完全放電状態にある場合や、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧まで蓄電部3が充電されていない場合、充電開始時には制御部4は稼働状態ではないので、図3中のスイッチSi(メーク接点スイッチ)は開放状態である。
 この初期充電モードでは、制御部4からはスイッチ開閉信号がまだ出力されていず、メーク接点スイッチの放電出力用スイッチSoは開放されて遮断状態となっている。
 制御部4が稼働状態ではなく、スイッチSiが開放状態のとき、
直流電流源6の出力電圧、すなわち、蓄電装置1への入力電圧Vinは設定された最大の電圧となっており、直流電流源6の出力電流、すなわち、蓄電装置への入力電流IinはダイオードD1を経由してDC-DCコンバータ5に流入するので、DC-DCコンバータ5が作動し、所定の電圧に変換された駆動電力が、制御部4の制御部電源として供給開始される。
Below, with reference to FIG. 3, operation | movement of three charge modes is demonstrated.
<Charging operation in initial charging mode>
When the power storage unit 3 is in a fully discharged state, or when the power storage unit 3 is not charged to a voltage at which the power storage unit voltage Vt can sufficiently drive the control unit 4, the voltage that can sufficiently drive the control unit 4 The charging in the initial charging mode is performed until the power storage unit 3 is charged with electric power.
When the power storage unit 3 is in a fully discharged state or when the power storage unit 3 is not charged to a voltage at which the power storage unit voltage Vt can sufficiently drive the control unit 4, the control unit 4 is not in an operating state at the start of charging. The switch Si (make contact switch) in FIG. 3 is in an open state.
In this initial charging mode, the switch opening / closing signal has not yet been output from the control unit 4, and the discharge output switch So of the make contact switch is opened and is in the cut-off state.
When the control unit 4 is not in operation and the switch Si is open,
The output voltage of the DC current source 6, that is, the input voltage Vin to the power storage device 1 is the set maximum voltage, and the output current of the DC current source 6, that is, the input current Iin to the power storage device is the diode D 1. Therefore, the DC-DC converter 5 is operated, and the drive power converted into a predetermined voltage is started to be supplied as the control unit power supply of the control unit 4.
 制御部4に駆動電力が供給され、制御部4が作動し始めると、制御部4からスイッチSiへスイッチ開閉信号が出力され、スイッチSiが開閉制御され始める。
 スイッチ開閉信号がスイッチSiを閉じる信号の場合には、スイッチSiは閉じてON(導通)状態となり、直流電流源6からの電流が、平滑回路21と逆流防止用ダイオードD3を通って蓄電部3へ流入する。また、スイッチ開閉信号がスイッチSiを開放する信号の場合には、スイッチSiは開いてOFF(非導通)状態となり、直流電流源6から蓄電部3への電流流入が阻止される。
 すなわち、直流電流源6から蓄電部3への電流はスイッチSiの開閉によってパルス幅変調され、そのパルス幅変調された電流が平滑回路21で平滑化され、ダイオードD3を経由して蓄電部3に供給される。
 したがって、制御部4から出力されるスイッチ開閉信号のON(導通)時間を増加させることによって、蓄電部3へ流入する充電電流Icを増加させ、制御部4から出力されるスイッチ開閉信号のOFF(非導通)時間を増加させることによって、蓄電部3へ流入する充電電流Icを減少させることができる。
When drive power is supplied to the control unit 4 and the control unit 4 starts to operate, a switch open / close signal is output from the control unit 4 to the switch Si, and the switch Si starts to be controlled to open / close.
When the switch open / close signal is a signal for closing the switch Si, the switch Si is closed to be in an ON (conducting) state, and the current from the DC current source 6 passes through the smoothing circuit 21 and the backflow prevention diode D3 to be stored in the power storage unit 3. Flow into. When the switch opening / closing signal is a signal for opening the switch Si, the switch Si is opened to be in an OFF (non-conducting) state, and current flow from the DC current source 6 to the power storage unit 3 is prevented.
That is, the current from the DC current source 6 to the power storage unit 3 is pulse-width modulated by opening and closing the switch Si, and the pulse-width modulated current is smoothed by the smoothing circuit 21 and then passed to the power storage unit 3 via the diode D3. Supplied.
Therefore, by increasing the ON (conduction) time of the switch opening / closing signal output from the control unit 4, the charging current Ic flowing into the power storage unit 3 is increased, and the switch opening / closing signal output from the control unit 4 is turned OFF ( By increasing the (non-conduction) time, the charging current Ic flowing into the power storage unit 3 can be reduced.
 そこで、一定時間T内におけるスイッチ開閉信号の開時間の割合(すなわち、スイッチ開閉信号のデューティ比)を、0%の状態(スイッチSiが非導通状態)から、一定時間T1(以後、タイムインターバルT1と記す。)毎にあらかじめ設定した割合だけ増加させ、蓄電部3へ流入する充電電流Icを増加させながら、充電を行う。
 スイッチ開閉信号のデューティ比の増加に伴って、蓄電部3へ流入する充電電流Icが増加していくが、直流電流源6からは設定された電流上限値Ilim以上の電流は出力されないので、やがて蓄電装置1への入力電圧Vinは電圧降下を起こす。蓄電装置1への入力電圧Vinが、DC-DCコンバータ5の許容入力電圧範囲の下限値未満に低下すると、DC-DCコンバータ5は制御部4が必要とする駆動電力を供給できなくなるので、制御部は正常に作動できなくなる。
Therefore, the ratio of the open time of the switch open / close signal within the fixed time T (that is, the duty ratio of the switch open / close signal) is changed from 0% (the switch Si is non-conductive) to the fixed time T1 (hereinafter, time interval T1). And charging is performed while increasing the charging current Ic flowing into the power storage unit 3 by increasing a preset ratio every time.
As the duty ratio of the switch opening / closing signal increases, the charging current Ic flowing into the power storage unit 3 increases. However, since the current exceeding the set current upper limit value Ilim is not output from the DC current source 6, eventually. The input voltage Vin to the power storage device 1 causes a voltage drop. When the input voltage Vin to the power storage device 1 falls below the lower limit value of the allowable input voltage range of the DC-DC converter 5, the DC-DC converter 5 cannot supply the driving power required by the control unit 4. The unit cannot operate normally.
 なお、スイッチ開閉信号のデューティ比を0%から一定時間T1毎に、徐々に増加させるのは、蓄電装置1への入力電圧VinからダイオードD1の順方向電圧降下分を差し引いた電圧が、DC-DCコンバータ5の許容入力電圧範囲の下限値未満に低下することにより、制御部4が動作停止状態に陥ることを避けるためである。
 そこで、蓄電装置1への入力電圧Vinの電圧降下を、図3中の比較器22を用いた入力電圧監視回路で監視している。入力電圧監視回路は、抵抗R1と抵抗R2による分圧抵抗と、比較器22と、基準電圧生成回路23とで構成されている。
 蓄電装置1への入力電圧Vinが、基準電圧発生回路23で生成される第1の設定電圧Vr1未満に低下すると、比較器22から入力電圧情報Viが制御部4に出力される。制御部4はこの入力電圧情報Viを受け取ると、スイッチ開閉信号のデューティ比をあらかじめ定められた割合だけ減少させて、蓄電部へ流入する充電電流Icを減少させるように制御することにより、蓄電装置1への入力電圧Vinの電圧降下を抑え、DC-DCコンバータ5が絶えず制御部4の動作を確保し得る電圧と電力を制御部4に供給するようにしている。
 なお、DC-DCコンバータ5の許容入力電圧範囲の下限値にダイオードD1の順方向電圧降下分を加えた電圧を、第1の設定電圧Vr1としてもよい。
Note that the duty ratio of the switch open / close signal is gradually increased from 0% every certain time T1 because the voltage obtained by subtracting the forward voltage drop of the diode D1 from the input voltage Vin to the power storage device 1 is DC− This is because the control unit 4 is prevented from falling into an operation stop state due to a drop below the lower limit value of the allowable input voltage range of the DC converter 5.
Therefore, the voltage drop of the input voltage Vin to the power storage device 1 is monitored by an input voltage monitoring circuit using the comparator 22 in FIG. The input voltage monitoring circuit includes a voltage dividing resistor including resistors R1 and R2, a comparator 22, and a reference voltage generation circuit 23.
When the input voltage Vin to the power storage device 1 falls below the first set voltage Vr1 generated by the reference voltage generation circuit 23, the input voltage information Vi is output from the comparator 22 to the control unit 4. When the control unit 4 receives the input voltage information Vi, the control unit 4 reduces the duty ratio of the switch open / close signal by a predetermined ratio to control the charging current Ic flowing into the power storage unit, thereby reducing the power storage device. The voltage drop of the input voltage Vin to 1 is suppressed, and the DC-DC converter 5 supplies the control unit 4 with voltage and power that can ensure the operation of the control unit 4 constantly.
A voltage obtained by adding the forward voltage drop of the diode D1 to the lower limit value of the allowable input voltage range of the DC-DC converter 5 may be used as the first set voltage Vr1.
 以上の動作を一定時間T1(タイムインターバルT1)毎に繰り返すことにより、蓄電装置1への入力電圧VinからダイオードD1の順方向電圧降下分を差し引いた電圧を、DC-DCコンバータ5の許容入力電圧範囲の下限値未満に低下させることなく(すなわち、制御部4の動作を確保しながら)、蓄電部3への充電を行う。この一連の動作が初期充電モードである。
 この初期充電モードは、蓄電部3に電力が蓄積され、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧になるまで継続される。これは外部電源6からの直流電流の供給が一時的に途絶えた場合にも、安定的に制御部4を稼働させるための電力を蓄電部3から確保するためである。換言すれば、蓄電部3に電力が蓄積され、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧になるまでの充電モードが初期充電モードである。
By repeating the above operation every predetermined time T1 (time interval T1), the voltage obtained by subtracting the forward voltage drop of the diode D1 from the input voltage Vin to the power storage device 1 is used as the allowable input voltage of the DC-DC converter 5. The power storage unit 3 is charged without lowering below the lower limit of the range (that is, while ensuring the operation of the control unit 4). This series of operations is the initial charging mode.
This initial charging mode is continued until power is stored in the power storage unit 3 and the power storage unit voltage Vt reaches a voltage that can sufficiently drive the control unit 4. This is to secure electric power for stably operating the control unit 4 from the power storage unit 3 even when the supply of direct current from the external power source 6 is temporarily interrupted. In other words, the initial charging mode is a charging mode in which power is stored in the power storage unit 3 and the power storage unit voltage Vt reaches a voltage that can sufficiently drive the control unit 4.
<定電流充電モードの充電動作>
 初期充電モードでの充電によって蓄電部3の充電が進み、蓄電部電圧Vtが上昇して第2の設定電圧Vr2以上となり、制御部4を十分に駆動し得る電圧と電力が蓄電部3に蓄積されたことが制御部4で確認されると、制御部4から出力されるスイッチ開閉信号のデューティ比が100%(すなわち、スイッチSiは導通状態)に設定され、直流電流源6から供給される一定電流で蓄電部3への充電が行われる定電流充電モードに移行する。
 なお、充電制御回路2や制御部4を十分に駆動し得る電圧を第2の設定電圧Vr2とする。
 この定電流充電モードでは、直流電流源6からの電流の一部をダイオードD1とDC-DCコンバータ5を経由して、あるいは蓄電部3に蓄積された電力をダイオードD2とDC-DCコンバータ5を経由して、制御部4への駆動電力として安定的に供給しながら、蓄電部3への充電が行われる。
 この定電流充電モードでは、制御部4から出力されるスイッチ開閉信号によって放電出力用スイッチSoは閉じられており、蓄電部3から、電力変換器7を介して負荷8への電力が放電出力されている。
 定電流で充電を継続すると、蓄電部3はやがて満充電になるが、それ以上、定電流充電を継続すると、蓄電部3を構成する各キャパシタの端子間電圧が定格電圧を超えて過充電となり、キャパシタの劣化の原因となる場合や、最悪の場合には破壊されてしまうおそれがある。
 そこで、定電流充電モードでは、一定時間T2(以後、タイムインターバルT2と記す。)毎に、蓄電部電圧Vtが第3の設定電圧Vr3以上になっているか否かを制御部4で調べ、蓄電部電圧Vtが第3の設定電圧Vr3に達した場合には、定電流充電モードを終了して、定電圧充電モードに移行する。なお、蓄電部3の満充電電圧を第3の設定電圧Vr3としてもよい。
<Charging operation in constant current charging mode>
Charging of the power storage unit 3 proceeds by charging in the initial charging mode, the power storage unit voltage Vt rises to be equal to or higher than the second set voltage Vr2, and voltage and power that can sufficiently drive the control unit 4 are accumulated in the power storage unit 3. When the control unit 4 confirms that this has been done, the duty ratio of the switch opening / closing signal output from the control unit 4 is set to 100% (that is, the switch Si is in a conductive state) and supplied from the DC current source 6. The operation proceeds to a constant current charging mode in which the power storage unit 3 is charged with a constant current.
A voltage that can sufficiently drive the charge control circuit 2 and the control unit 4 is defined as a second set voltage Vr2.
In this constant current charging mode, a part of the current from the direct current source 6 is passed through the diode D1 and the DC-DC converter 5, or the electric power stored in the power storage unit 3 is passed through the diode D2 and the DC-DC converter 5. The power storage unit 3 is charged while being stably supplied as drive power to the control unit 4 via.
In this constant current charging mode, the discharge output switch So is closed by the switch open / close signal output from the control unit 4, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7. ing.
If charging is continued at a constant current, the power storage unit 3 will eventually become fully charged. However, if constant current charging is continued further, the inter-terminal voltage of each capacitor constituting the power storage unit 3 will exceed the rated voltage and become overcharged. In the worst case, the capacitor may be destroyed.
Therefore, in the constant current charging mode, the control unit 4 checks whether or not the power storage unit voltage Vt is equal to or higher than the third set voltage Vr3 at every constant time T2 (hereinafter referred to as time interval T2). When the partial voltage Vt reaches the third set voltage Vr3, the constant current charging mode is terminated and the constant voltage charging mode is entered. Note that the full charge voltage of the power storage unit 3 may be the third set voltage Vr3.
<定電圧充電モードの充電動作>
 定電圧充電モードにおける充電制御回路2の動作は、一般的な定電圧出力型のDC-DCコンバータの動作と同様であり、充電制御回路2の出力電圧(すなわち蓄電部電圧Vt)と第4の設定電圧Vr4を、一定時間T3(以後、タイムインターバルT3と記す。)毎に制御部4で比較し、蓄電部電圧Vtが第4の設定電圧Vr4以上になればスイッチ開閉信号のデューティ比をあらかじめ定められた割合だけ減少させ、逆に第4の設定電圧Vr4未満になればスイッチ開閉信号のデューティ比をあらかじめ定められた割合だけ増加させるという制御を行うことによって定電圧充電を実現している。
この定電圧充電モードにおいても、直流電流源6からの電流の一部を、ダイオードD1とDC-DCコンバータ5を経由して、あるいは蓄電部3に蓄積された電力をダイオードD2とDC-DCコンバータ5を経由して、制御部4への駆動電力として供給しながら、蓄電部3への充電が行われる。
 この定電圧充電モードでは、制御部4からのスイッチ開閉信号によって放電出力用スイッチSoは閉じられており、蓄電部3から、電力変換器7を介して負荷8への電力が放電出力されている。
 なお、蓄電部3の満充電電圧を第4の設定電圧Vr4とすることができる。
 以上の構成において、充電制御回路2は、特許請求の範囲に記載された充電制御手段に対応する構成であり、制御部4からスイッチ開閉信号を出力する構成が、特許請求の範囲に記載された信号出力手段に対応し、蓄電部3の出力電圧が蓄電部電圧Vtとして制御部4に入力され、制御部4の比較プログラムよって蓄電部電圧Vtを第2の設定電圧Vr2、第3の設定電圧Vr3、もしくは第4の設定電圧Vr4と比較して監視する構成が、特許請求の範囲に記載された監視手段に対応する構成である。
 また、前記スイッチ開閉信号は、特許請求の範囲に記載された充電制御信号に対応する構成である。
<Charging operation in constant voltage charging mode>
The operation of the charging control circuit 2 in the constant voltage charging mode is the same as that of a general constant voltage output type DC-DC converter, and the output voltage of the charging control circuit 2 (that is, the power storage unit voltage Vt) The set voltage Vr4 is compared by the control unit 4 every predetermined time T3 (hereinafter referred to as time interval T3), and when the power storage unit voltage Vt becomes equal to or higher than the fourth set voltage Vr4, the duty ratio of the switch open / close signal is set in advance. The constant voltage charging is realized by performing control such that the duty ratio of the switch opening / closing signal is increased by a predetermined ratio when the ratio is decreased by a predetermined ratio and, conversely, when it becomes less than the fourth set voltage Vr4.
Even in this constant voltage charging mode, part of the current from the direct current source 6 is passed through the diode D1 and the DC-DC converter 5, or the electric power stored in the power storage unit 3 is transferred to the diode D2 and the DC-DC converter. The power storage unit 3 is charged while being supplied as drive power to the control unit 4 via 5.
In this constant voltage charging mode, the discharge output switch So is closed by the switch open / close signal from the control unit 4, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7. .
The full charge voltage of the power storage unit 3 can be set to the fourth set voltage Vr4.
In the above configuration, the charge control circuit 2 is a configuration corresponding to the charge control means described in the claims, and the configuration for outputting the switch open / close signal from the control unit 4 is described in the claims. Corresponding to the signal output means, the output voltage of the power storage unit 3 is input to the control unit 4 as the power storage unit voltage Vt, and the power storage unit voltage Vt is converted into the second set voltage Vr2 and the third set voltage by the comparison program of the control unit 4. The configuration monitored in comparison with Vr3 or the fourth set voltage Vr4 is a configuration corresponding to the monitoring means described in the claims.
The switch opening / closing signal has a configuration corresponding to a charge control signal described in the claims.
 図4は、図3に示した充電制御回路2のより具体的な回路構成例を示した蓄電装置1の構成図である。破線で囲まれた部分が充電制御回路2である。
 図4に示した充電制御回路2は、P型MOSFET24、コイルL、キャパシタC、比較器(コンパレータ)22、基準電圧生成回路23等から構成されており、コイルLとキャパシタCによって平滑回路21が形成されている。
 図4に示した充電制御回路2の構成はチョッパ型の降圧型DC-DCコンバータに似ている。しかし、図5に示したようにチョッパ型の降圧型DC-DCコンバータ200では、出力電圧を制御回路210にフィードバックすることにより、出力電圧が制御されるが、図4に示した充電制御回路2では蓄電装置1への入力電圧Vinに基づいた入力電圧情報Viを制御部4に入力することにより、充電制御回路2から蓄電部3への出力電圧を制御している。これは、入力電源が直流電流源6であるので、充電制御回路2への入力電圧Vinに基づいた入力電圧情報Viを制御部4に入力することにより、充電制御回路2から蓄電部3への出力を制御することが可能となる。
FIG. 4 is a configuration diagram of power storage device 1 showing a more specific circuit configuration example of charge control circuit 2 shown in FIG. 3. A portion surrounded by a broken line is the charge control circuit 2.
The charge control circuit 2 shown in FIG. 4 includes a P-type MOSFET 24, a coil L, a capacitor C, a comparator (comparator) 22, a reference voltage generation circuit 23, and the like. A smoothing circuit 21 is formed by the coil L and the capacitor C. Is formed.
The configuration of the charge control circuit 2 shown in FIG. 4 is similar to a chopper type step-down DC-DC converter. However, in the chopper type step-down DC-DC converter 200 as shown in FIG. 5, the output voltage is controlled by feeding back the output voltage to the control circuit 210. However, the charge control circuit 2 shown in FIG. Then, the input voltage information Vi based on the input voltage Vin to the power storage device 1 is input to the control unit 4 to control the output voltage from the charge control circuit 2 to the power storage unit 3. This is because the input power source is a DC current source 6, and input voltage information Vi based on the input voltage Vin to the charging control circuit 2 is input to the control unit 4, whereby the charging control circuit 2 to the power storage unit 3 is input. The output can be controlled.
 なお、図4中のダイオードD1、D2、D3は逆流防止用ダイオードであり、ダイオードD4はフライホイール・ダイオードである。また、抵抗R1と抵抗R2は分圧抵抗であり、抵抗R3はプルアップ抵抗である。
 図4において、トランジスタTrがON(導通)状態の場合には、P型MOSFET24もON(導通)状態となり、直流電流源6から流入する電流エネルギーはコイルL、キャパシタCおよび蓄電部(のEDLC)に蓄積される。このとき、ダイオードD4に電流は流れない。
 また、トランジスタTrがOFF(非導通)状態になると、P型MOSFET24もOFF(非導通)状態となり、直流電流源6から蓄電部3に向かって流れる電流エネルギーは遮断され、コイルLに蓄えられていたエネルギーがダイオードD4を介して、キャパシタCおよびD4を介して蓄電部3に供給され、充電制御回路2から蓄電部3への出力電圧がほぼ一定に保たれる。
 なお、前記P型MOSFET24と前記トランジスタTrは特許請求の範囲に記載されたスイッチ手段に対応し、前記コイルLとキャパシタCは特許請求の範囲に記載された平滑手段に対応している。
In FIG. 4, diodes D1, D2, and D3 are backflow prevention diodes, and diode D4 is a flywheel diode. The resistors R1 and R2 are voltage dividing resistors, and the resistor R3 is a pull-up resistor.
In FIG. 4, when the transistor Tr is in the ON (conducting) state, the P-type MOSFET 24 is also in the ON (conducting) state, and the current energy flowing from the DC current source 6 is the coil L, the capacitor C, and the power storage unit (EDLC). Accumulated in. At this time, no current flows through the diode D4.
When the transistor Tr is turned off (non-conducting), the P-type MOSFET 24 is also turned off (non-conducting), and current energy flowing from the direct current source 6 toward the power storage unit 3 is cut off and stored in the coil L. The energy is supplied to the power storage unit 3 via the diode D4 and the capacitors C and D4, and the output voltage from the charge control circuit 2 to the power storage unit 3 is kept substantially constant.
The P-type MOSFET 24 and the transistor Tr correspond to the switching means described in the claims, and the coil L and the capacitor C correspond to the smoothing means described in the claims.
 以下では、図4を参照して、3種の充電モードの動作について説明する。
<初期充電モードの充電動作>
 図4に示した蓄電装置1における初期充電モードの充電動作について説明する。
 蓄電部3が完全放電状態である場合や、蓄電部電圧Vtが制御部4を十分に駆動し得る電圧まで蓄電部3が充電されていない場合には、制御部4は稼働状態ではないので、図4に示したトランジスタTrのベースに対して、後述するパルス幅変調信号(以後、PWM信号と記す。)が制御部4から出力されず(もしくは低電位レベル(L)であるので)、トランジスタTrはOFF(非導通)状態である。したがって、P型MOSFET24もOFF(非導通)の状態となる。すなわち、制御部4から出力される充電制御信号であるPWM信号のデューティ比が0%の状態である。
 制御部4が稼働状態ではないとき、直流電流源6の出力電圧、すなわち、蓄電装置1への入力電圧Vinは設定された最大の電圧となっており、直流電流源6の出力電流、すなわち、蓄電装置1への入力電流IinはダイオードD1を経由してDC-DCコンバータ5に流入するので、DC-DCコンバータ5が作動し、制御部4への駆動電力の供給が開始される。
 制御部4が駆動されると、制御部4からトランジスタTrへPWM信号が出力され、トランジスタTrがスイッチングされる。それに伴ってP型MOSFET24がスイッチングされる。
 この初期充電モードでは、放電出力用スイッチSoは開放状態であり、蓄電部3から、電力変換器7を介して負荷8への電力出力は遮断されている。
Below, with reference to FIG. 4, operation | movement of 3 types of charging modes is demonstrated.
<Charging operation in initial charging mode>
A charging operation in the initial charging mode in power storage device 1 shown in FIG. 4 will be described.
When the power storage unit 3 is in a fully discharged state or when the power storage unit 3 is not charged to a voltage at which the power storage unit voltage Vt can sufficiently drive the control unit 4, the control unit 4 is not in an operating state. With respect to the base of the transistor Tr shown in FIG. 4, a pulse width modulation signal (hereinafter referred to as a PWM signal) described later is not output from the control unit 4 (or is at a low potential level (L)), and the transistor Tr is in an OFF (non-conducting) state. Therefore, the P-type MOSFET 24 is also turned off (non-conducting). That is, the duty ratio of the PWM signal that is the charge control signal output from the control unit 4 is 0%.
When the control unit 4 is not in an operating state, the output voltage of the DC current source 6, that is, the input voltage Vin to the power storage device 1 is the set maximum voltage, and the output current of the DC current source 6, that is, Since the input current Iin to the power storage device 1 flows into the DC-DC converter 5 via the diode D1, the DC-DC converter 5 operates and the supply of drive power to the control unit 4 is started.
When the control unit 4 is driven, a PWM signal is output from the control unit 4 to the transistor Tr, and the transistor Tr is switched. Accordingly, the P-type MOSFET 24 is switched.
In this initial charging mode, the discharge output switch So is in an open state, and power output from the power storage unit 3 to the load 8 via the power converter 7 is interrupted.
 すなわち、PWM信号の信号レベルが高電位レベル(H)になると、トランジスタTrが導通し、トランジスタTrのコレクタ電位、すなわちP型MOSFET24のゲート電位が低電位レベル(L)になるので、P型MOSFET24はON(導通)状態となり、直流電流源6からの電流が蓄電部3へ流入する。
 また、PWM信号の信号レベルが低電位レベル(L)になると、トランジスタTrが非導通となり、トランジスタTrのコレクタ電位、すなわちP型MOSFET24のゲート電位が高電位レベル(H)になるので、P型MOSFET24はOFF(非導通)状態となり、直流電流源6から蓄電部3への電流の流入が阻止される。
 したがって、制御部4から出力されるPWM信号のデューティ比を増加させると、蓄電部3へ流入する充電電流Icは増加し、制御部4から出力されるPWM信号のデューティ比を減少させると、蓄電部3へ流入する充電電流Icは減少する。
That is, when the signal level of the PWM signal becomes the high potential level (H), the transistor Tr becomes conductive, and the collector potential of the transistor Tr, that is, the gate potential of the P-type MOSFET 24 becomes the low potential level (L). Is turned on (conductive), and the current from the DC current source 6 flows into the power storage unit 3.
Further, when the signal level of the PWM signal becomes a low potential level (L), the transistor Tr becomes non-conductive, and the collector potential of the transistor Tr, that is, the gate potential of the P-type MOSFET 24 becomes the high potential level (H). MOSFET 24 is turned off (non-conducting), and current flow from DC current source 6 to power storage unit 3 is blocked.
Therefore, when the duty ratio of the PWM signal output from the control unit 4 is increased, the charging current Ic flowing into the power storage unit 3 increases, and when the duty ratio of the PWM signal output from the control unit 4 is decreased, The charging current Ic flowing into the unit 3 decreases.
 そこで、PWM信号のデューティ比を0%の状態から、一定時間T1(タイムインターバルT1)毎にあらかじめ定められた割合だけを増加させ、蓄電部3へ流入する充電電流Icを増加させながら充電を行う。PWM信号のデューティ比の増加に伴って、蓄電部3へ流入する充電電流Icが増加していくが、直流電流源6からは設定された電流上限値Ilim以上の電流は出力されないので、やがて蓄電装置1への入力電圧Vinは電圧降下を起こす。
 蓄電装置1への入力電圧VinからダイオードD1の順方向電圧降下分を差し引いた電圧が、DC-DCコンバータ5の許容入力電圧範囲の下限値未満に低下すると、制御部4への駆動電力が供給できなくなる。
Therefore, charging is performed while increasing the charging current Ic flowing into the power storage unit 3 by increasing the predetermined ratio every predetermined time T1 (time interval T1) from the state where the duty ratio of the PWM signal is 0%. . As the duty ratio of the PWM signal increases, the charging current Ic flowing into the power storage unit 3 increases. However, since the current exceeding the set current upper limit value Ilim is not output from the DC current source 6, the power storage will eventually be performed. The input voltage Vin to the device 1 causes a voltage drop.
When the voltage obtained by subtracting the forward voltage drop of the diode D1 from the input voltage Vin to the power storage device 1 falls below the lower limit value of the allowable input voltage range of the DC-DC converter 5, the drive power to the control unit 4 is supplied become unable.
 なお、PWM信号のデューティ比を0%から一定時間T1毎に、徐々に増加させるのは、蓄電装置1への入力電圧VinからダイオードD1の順方向電圧降下分を差し引いた電圧がDC-DCコンバータ5の許容入力電圧範囲の下限値未満に降下することにより、制御部4が動作停止状態に陥ることを避けるためである。 The duty ratio of the PWM signal is gradually increased from 0% every certain time T1 because the voltage obtained by subtracting the forward voltage drop of the diode D1 from the input voltage Vin to the power storage device 1 is a DC-DC converter. This is to prevent the control unit 4 from entering an operation stop state by dropping below the lower limit value of the allowable input voltage range of 5.
 そこで、蓄電装置1への入力電圧Vinの電圧降下を、図4中の比較器22(コンパレータ)を用いた監視手段で監視している。すなわち、蓄電装置1への入力電圧Vinが、基準電圧生成回路23で生成される第1の設定電圧Vr1未満に低下すると、比較器22から入力電圧情報Viが制御部4に出力される。制御部4は、この入力電圧情報Viを受け取ると、PWM信号のデューティ比をあらかじめ定められた割合だけ減少させて、蓄電部3へ流入する充電電流Icを抑制することにより、蓄電装置1への入力電圧Vinの電圧降下を抑え、DC-DCコンバータ5が絶えず制御部4の動作を確保し得る電圧と駆動電力を供給するようにしている。
 なお、DC-DCコンバータ5の許容入力電圧範囲の下限値にダイオードD1の順方向電圧降下分を加えた電圧を、第1の設定電圧Vr1としてもよい。
Therefore, the voltage drop of the input voltage Vin to the power storage device 1 is monitored by monitoring means using the comparator 22 (comparator) in FIG. That is, when the input voltage Vin to the power storage device 1 falls below the first set voltage Vr1 generated by the reference voltage generation circuit 23, the input voltage information Vi is output from the comparator 22 to the control unit 4. When the control unit 4 receives the input voltage information Vi, the control unit 4 reduces the duty ratio of the PWM signal by a predetermined ratio and suppresses the charging current Ic flowing into the power storage unit 3 to thereby supply power to the power storage device 1. The voltage drop of the input voltage Vin is suppressed, and the DC-DC converter 5 constantly supplies a voltage and driving power that can ensure the operation of the control unit 4.
A voltage obtained by adding the forward voltage drop of the diode D1 to the lower limit value of the allowable input voltage range of the DC-DC converter 5 may be used as the first set voltage Vr1.
 以上の動作を一定時間T1(タイムインターバルT1)毎に繰り返すことにより、蓄電装置1への入力電圧VinからダイオードD1の順方向電圧降下分を差し引いた電圧を、DC-DCコンバータ5の許容入力電圧範囲の下限値未満に低下させることなく(すなわち制御部4の動作を確保しながら)、蓄電部3への充電を行う。この一連の動作が初期充電モードである。
 この初期充電モードは、制御部4を十分に駆動し得る電圧と電力が蓄電部3に蓄積されるまで継続される。
 
By repeating the above operation every predetermined time T1 (time interval T1), the voltage obtained by subtracting the forward voltage drop of the diode D1 from the input voltage Vin to the power storage device 1 is used as the allowable input voltage of the DC-DC converter 5. The power storage unit 3 is charged without lowering below the lower limit of the range (that is, while ensuring the operation of the control unit 4). This series of operations is the initial charging mode.
This initial charging mode is continued until voltage and power that can sufficiently drive the control unit 4 are accumulated in the power storage unit 3.
<定電流充電モードの充電動作>
 初期充電モードの充電によって蓄電部3の充電が進み、蓄電部電圧Vtが上昇して第2の設定電圧Vr2以上となり、制御部4を十分に駆動し得る電圧と電力が蓄電部3に蓄積されたことが、監視手段を構成する制御部4で確認されると、制御部4から出力されるPWM信号のデューティ比が100%(すなわち、トランジスタTrおよびP型MOSFET24は常にON状態)に設定され、定電流で充電が行われる定電流充電モードに移行する。
 蓄電部3に制御部4を十分に駆動し得る電力が蓄積されると、以後は外部電源6からの直流電流の供給が一時的に途絶えた場合にも、制御部4を稼働させることが可能になる。
 この定電流充電モードにおいては、直流電流源6からの電流をダイオードD1とDC-DCコンバータ5を経由して、あるいは蓄電部3に蓄積された電力をダイオードD2とDC-DCコンバータ5を経由して、制御部4への駆動電力として供給しながら、蓄電部3への充電が行われる。
 この定電流充電モードでは、放電出力用スイッチSoは閉じられており、蓄電部3から、電力変換器7を介して負荷8への電力が放電出力されている。
 定電流で充電を継続すると、蓄電部3はやがて満充電となるが、それ以上、定電流充電を継続すると蓄電部3を構成する各キャパシタの端子間電圧は定格電圧を超え、過充電となり、キャパシタの劣化の原因となる場合や、最悪の場合には破壊してしまう場合がある。
 そこで定電流充電モードでは、一定時間T2(タイムインターバルT2)毎に蓄電部電圧Vtが第3の設定電圧Vr3以上になっているか否かを制御部4で調べ、蓄電部電圧Vtが第3の設定電圧Vr3に達した場合には、定電流充電モードを終了して定電圧充電モードに移行する。なお、蓄電部3の満充電電圧を第3の設定電圧Vr3とすることができる。
<Charging operation in constant current charging mode>
Charging of the power storage unit 3 proceeds by charging in the initial charge mode, the power storage unit voltage Vt rises to be equal to or higher than the second set voltage Vr2, and voltage and power that can sufficiently drive the control unit 4 are accumulated in the power storage unit 3. If the control unit 4 constituting the monitoring means confirms that the duty ratio of the PWM signal output from the control unit 4 is set to 100% (that is, the transistor Tr and the P-type MOSFET 24 are always ON). , Transition to a constant current charging mode in which charging is performed at a constant current.
When electric power that can sufficiently drive the control unit 4 is accumulated in the power storage unit 3, the control unit 4 can be operated even when the supply of DC current from the external power source 6 is temporarily interrupted thereafter. become.
In this constant current charging mode, the current from the DC current source 6 passes through the diode D1 and the DC-DC converter 5, or the power stored in the power storage unit 3 passes through the diode D2 and the DC-DC converter 5. Thus, the power storage unit 3 is charged while being supplied as drive power to the control unit 4.
In the constant current charging mode, the discharge output switch So is closed, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7.
If charging is continued at a constant current, the power storage unit 3 will eventually become fully charged, but if the constant current charging is continued further, the voltage across the terminals of each capacitor constituting the power storage unit 3 will exceed the rated voltage, resulting in overcharging, It may cause deterioration of the capacitor or may be destroyed in the worst case.
Therefore, in the constant current charging mode, the control unit 4 checks whether or not the power storage unit voltage Vt is equal to or higher than the third set voltage Vr3 every constant time T2 (time interval T2). When the set voltage Vr3 is reached, the constant current charging mode is terminated and the constant voltage charging mode is entered. The full charge voltage of the power storage unit 3 can be set to the third set voltage Vr3.
<定電圧充電モードの充電動作>
 定電圧充電モードにおける充電制御回路2の動作は、一般的な降圧型DC-DCコンバータの動作と同様で、充電制御回路2の出力電圧(すなわち蓄電部電圧Vt)と第4の設定電圧Vr4を、一定時間T3(タイムインターバルT3)毎に制御部4で比較し、蓄電部電圧Vtが第4の設定電圧Vr4以上になれば、制御部4からトランジスタTrのベースに対して出力するPWM信号のデューティ比をあらかじめ定められた割合だけ減少させ、逆に第4の設定電圧Vr4以下になればPWM信号のデューティ比をあらかじめ定められた割合だけ増加させるという制御を行うことによって定電圧充電を実現している。
 この定電圧充電モードにおいても、直流電流源6からの電流をダイオードD1とDC-DCコンバータ5を経由して、あるいは蓄電部3に蓄積された電力をダイオードD2とDC-DCコンバータ5を経由して、制御部4への駆動電力として供給しながら、蓄電部3への充電が行われる。
 なお、蓄電部3の満充電電圧を第4の設定電圧Vr4とすることができる。
 この定電圧充電モードでは、放電出力用スイッチSoは閉じられており、蓄電部3から、電力変換器7を介して負荷8への電力が放電出力されている。
 
<Charging operation in constant voltage charging mode>
The operation of the charging control circuit 2 in the constant voltage charging mode is the same as that of a general step-down DC-DC converter, and the output voltage (that is, the storage unit voltage Vt) of the charging control circuit 2 and the fourth set voltage Vr4 are obtained. The control unit 4 compares each constant time T3 (time interval T3), and if the storage unit voltage Vt becomes equal to or higher than the fourth set voltage Vr4, the PWM signal output from the control unit 4 to the base of the transistor Tr Constant voltage charging is realized by controlling the duty ratio to be decreased by a predetermined ratio, and conversely to increase the duty ratio of the PWM signal by a predetermined ratio when the voltage falls below the fourth set voltage Vr4. ing.
Also in this constant voltage charging mode, the current from the direct current source 6 passes through the diode D1 and the DC-DC converter 5, or the power stored in the power storage unit 3 passes through the diode D2 and the DC-DC converter 5. Thus, the power storage unit 3 is charged while being supplied as drive power to the control unit 4.
The full charge voltage of the power storage unit 3 can be set to the fourth set voltage Vr4.
In this constant voltage charging mode, the discharge output switch So is closed, and the power to the load 8 is discharged from the power storage unit 3 via the power converter 7.
 上記の一連の充電過程における制御部4の動作を、図6に示したフローチャートを参照して説明する。
 図6のステップS1では、蓄電部3が完全放電状態か、それに近い状態である場合には、充電制御回路2はまず、初期充電モードで制御部4への駆動電源の供給と蓄電部3への充電電力の供給を開始する。なお、初期充電モードの最初の段階では、少なくとも制御部4への駆動電力の供給が最も重要であり、蓄電部3への充電電力の供給は必須ではない。
 そこで、ステップS2でPWM信号のデューティ比を0%とすることにより、蓄電部3へは充電電力を供給せず、ステップS3にてタイムインターバルT1の経過後に、ステップS4でPWM信号のデューティ比をあらかじめ定められた割合だけ増加させて蓄電部3への充電電力の供給を開始する。
 ステップS5では、直流電流源6から充電制御回路2への入力電圧Vinを第1の設定電圧Vr1と比較して、
   入力電圧Vin>第1の設定電圧Vr1
の場合にはステップS7へ進み、
   入力電圧Vin≦第1の設定電圧Vr1
の場合にはステップS6へ進んでPWM信号のデューティ比をあらかじめ定められた割合だけ減少させ、入力電圧Vinが下がりすぎることを防止する。そしてステップS7へ進む。
The operation of the control unit 4 in the series of charging processes will be described with reference to the flowchart shown in FIG.
In step S <b> 1 of FIG. 6, when the power storage unit 3 is in a fully discharged state or a state close thereto, the charge control circuit 2 first supplies the drive power to the control unit 4 and supplies the power to the power storage unit 3 in the initial charge mode. Start supplying charging power. In the initial stage of the initial charging mode, at least the supply of driving power to the control unit 4 is most important, and the supply of charging power to the power storage unit 3 is not essential.
Therefore, by setting the duty ratio of the PWM signal to 0% in step S2, charging power is not supplied to the power storage unit 3, and after the elapse of the time interval T1 in step S3, the duty ratio of the PWM signal is set in step S4. The supply of charging power to the power storage unit 3 is started by increasing it by a predetermined rate.
In step S5, the input voltage Vin from the direct current source 6 to the charge control circuit 2 is compared with the first set voltage Vr1,
Input voltage Vin> first set voltage Vr1
In step S7, the process proceeds to step S7.
Input voltage Vin ≦ first set voltage Vr1
In this case, the routine proceeds to step S6, where the duty ratio of the PWM signal is decreased by a predetermined ratio to prevent the input voltage Vin from being lowered too much. Then, the process proceeds to step S7.
 ステップS7では、蓄電部電圧Vtを第2の設定電圧Vr2と比較して、
   蓄電部電圧Vt≧第2の設定電圧Vr2
になるまでステップS3からの処理を繰り返す。
 ステップS7で、
   蓄電部電圧Vt≧第2の設定電圧Vr2
が確認されると、ステップS8では初期充電モードを終了し、ステップS9に進んで定電流充電モードに移行する。
 ステップS9では、PWM信号のデューティ比を100%として定電流充電モードで蓄電部への定電流充電を開始する。
 ステップS10では、所定のタイムインターバルT2の経過後に、ステップS11へ進み、蓄電部電圧Vtを第3の設定電圧Vr3と比較して、
   蓄電部電圧Vt≧第3の設定電圧Vr3
になるまでステップS10からの処理を繰り返す。
 ステップS11で、
   蓄電部電圧Vt≧第3の設定電圧Vr3
が確認されると、ステップS12へ進んで定電流充電モードを終了し、ステップS13へ進んで定電圧充電モードで蓄電部への充電を開始する。
 ステップS13で、定電圧充電モードで充電を開始すると、ステップS14へ進んで、所定のタイムインターバルT3の経過後に、ステップS15へ進み、蓄電部電圧Vtを第4の設定電圧Vr4と比較して、
   蓄電部電圧Vt≧第4の設定電圧Vr4
の場合にはステップS16でPWM信号のデューティ比をあらかじめ定められた割合だけ減少させてステップS14へ戻り、
   蓄電部電圧Vt<第4の設定電圧Vr4
の場合にはステップS17でPWM信号のデューティ比をあらかじめ定められた割合だけ増加させてステップS14へ戻る。このようにして、定電圧充電モードでの充電を継続する。
In step S7, the power storage unit voltage Vt is compared with the second set voltage Vr2,
Power storage unit voltage Vt ≧ second set voltage Vr2
The processing from step S3 is repeated until.
In step S7
Power storage unit voltage Vt ≧ second set voltage Vr2
Is confirmed, in step S8, the initial charging mode is terminated, and the process proceeds to step S9 to shift to the constant current charging mode.
In step S9, the constant current charging to the power storage unit is started in the constant current charging mode with the duty ratio of the PWM signal set to 100%.
In step S10, after elapse of a predetermined time interval T2, the process proceeds to step S11, and the power storage unit voltage Vt is compared with the third set voltage Vr3.
Power storage unit voltage Vt ≧ third set voltage Vr3
The processing from step S10 is repeated until.
In step S11,
Power storage unit voltage Vt ≧ third set voltage Vr3
Is confirmed, the process proceeds to step S12 to end the constant current charging mode, and the process proceeds to step S13 to start charging the power storage unit in the constant voltage charging mode.
When charging is started in the constant voltage charging mode in step S13, the process proceeds to step S14, and after a predetermined time interval T3 has elapsed, the process proceeds to step S15, where the power storage unit voltage Vt is compared with the fourth set voltage Vr4.
Power storage unit voltage Vt ≧ fourth set voltage Vr4
In this case, the duty ratio of the PWM signal is decreased by a predetermined ratio in step S16, and the process returns to step S14.
Power storage unit voltage Vt <fourth set voltage Vr4
In this case, the duty ratio of the PWM signal is increased by a predetermined ratio in step S17, and the process returns to step S14. In this way, charging in the constant voltage charging mode is continued.
<実験と結果>
 定格電圧2.7[v]、静電容量1700[F]のEDLC10個を5直列2並列にして構成した蓄電部に対して、上述の充電制御回路2を用いた図4の蓄電装置1を構成し、充電動作を行った場合の充電制御回路2の特性について述べる。
 なお、蓄電部3の満充電電圧は13.5[V](=2.7[V」×5)、DC-DCコンバータの許容入力電圧範囲は6.0[V」~16.0[V]である。
 また第1の設定電圧Vrlを6.0[V]、第2の設定電圧Vr2を6.0[V]、第3の設定電圧Vr3を13.4[V]、第4の設定電圧Vr4を13.4[V」に設定した。なお、蓄電部3の満充電電圧が13.5[V]であるから、第3の設定電圧Vr3と第4の設定電圧Vr4を13.5[V]に設定し、この電圧に達してから定電圧充電モードに移行するのが望ましいが、キャパシタの静電容量誤差に伴う各キャパシタの端子間電圧のばらつき考慮して、安全のために第3の設定電圧Vr3と第4の設定電圧Vr4を13.5[V]より0.1[V」低い13.4[V」に設定した。
<Experiment and results>
The power storage device 1 of FIG. 4 using the above-described charge control circuit 2 is connected to a power storage unit configured by arranging 10 EDLCs with a rated voltage of 2.7 [v] and a capacitance of 1700 [F] in 5 series and 2 in parallel. The characteristics of the charging control circuit 2 when configured and performing a charging operation will be described.
The full charge voltage of the power storage unit 3 is 13.5 [V] (= 2.7 [V] × 5), and the allowable input voltage range of the DC-DC converter is 6.0 [V] to 16.0 [V] ].
The first set voltage Vrl is 6.0 [V], the second set voltage Vr2 is 6.0 [V], the third set voltage Vr3 is 13.4 [V], and the fourth set voltage Vr4 is set. It was set to 13.4 [V]. Since the full charge voltage of the power storage unit 3 is 13.5 [V], the third set voltage Vr3 and the fourth set voltage Vr4 are set to 13.5 [V], and after reaching this voltage Although it is desirable to shift to the constant voltage charging mode, the third set voltage Vr3 and the fourth set voltage Vr4 are set for safety in consideration of the variation in the voltage between terminals of each capacitor due to the capacitance error of the capacitor. It was set to 13.4 [V], which is 0.1 [V] lower than 13.5 [V].
 まず、初期充電モードから定電流充電モードへの移行過程における、直流電流源6から蓄電装置1への入力電圧Vinと蓄電部電圧Vtの時間的推移を図7に示す。
 図7から、制御部4を確実に駆動させるために、蓄電装置1への入力電圧Vinが、DC-DCコンバータ5の許容入力電圧範囲の下限値である6.0[V]にダイオードD1の順方向電圧降下分を加えた電圧以上となるように保ちながら、PWM信号のデューティ比を0%から徐々に増加させて蓄電部3を充電する、初期充電モードによる充電が行われていることがわかる。
 また蓄電部電圧Vtが第2の設定電圧Vr2(この例では6.0[V])に達し、制御部4を駆動し得る十分な電圧と電力が蓄電部3に蓄積されると、初期充電モードから定電流充電モードに移行していることがわかる。
 なお、図7中の定電流充電モードにおける蓄電装置1への入力電圧Vinと蓄電部電圧Vtの電圧差は、主に図4中の逆流防止用のダイオードD3の順方向電圧降下特性によるものである。
First, FIG. 7 shows temporal transitions of the input voltage Vin and the power storage unit voltage Vt from the direct current source 6 to the power storage device 1 in the transition process from the initial charge mode to the constant current charge mode.
From FIG. 7, in order to drive the control unit 4 reliably, the input voltage Vin to the power storage device 1 is set to 6.0 [V] which is the lower limit value of the allowable input voltage range of the DC-DC converter 5. Charging in the initial charging mode is performed in which the power storage unit 3 is charged by gradually increasing the duty ratio of the PWM signal from 0% while maintaining the voltage to be equal to or higher than the voltage obtained by adding the forward voltage drop. Recognize.
Further, when the power storage unit voltage Vt reaches the second set voltage Vr2 (6.0 [V] in this example) and sufficient voltage and power that can drive the control unit 4 are stored in the power storage unit 3, the initial charge is performed. It can be seen that the mode has shifted to the constant current charging mode.
The voltage difference between the input voltage Vin to the power storage device 1 and the power storage unit voltage Vt in the constant current charging mode in FIG. 7 is mainly due to the forward voltage drop characteristic of the backflow prevention diode D3 in FIG. is there.
 また、図8に、定電流充電モードから定電圧充電モードへの移行過程における、直流電流源6から蓄電装置1への入力電圧Vinと蓄電部電圧Vtの時間的推移を示す。
 図8から、蓄電部電圧Vtが第3の設定電圧Vr3(この実施例では13.4「V])に達すると、定電流充電モードから定電圧充電モードに移行していることがわかる。定電圧充電モードでは蓄電装置1への入力電圧Vinが最大15.3[V]に達しているが、蓄電部電圧Vtは設定された13.4[V]を維持している。
FIG. 8 shows temporal transitions of the input voltage Vin from the direct current source 6 to the power storage device 1 and the power storage unit voltage Vt in the transition process from the constant current charging mode to the constant voltage charging mode.
From FIG. 8, it can be seen that when the power storage unit voltage Vt reaches the third set voltage Vr3 (13.4 [V] in this embodiment), the constant current charging mode is shifted to the constant voltage charging mode. In the voltage charging mode, the input voltage Vin to the power storage device 1 has reached a maximum of 15.3 [V], but the power storage unit voltage Vt maintains the set 13.4 [V].
 このように、定電流充電モードから定電圧充電モードに移行して充電を継続するので、蓄電部3が過充電となることが避けられ、キャパシタの劣化の原因を取り除くことができる。 Thus, since the charging is continued by shifting from the constant current charging mode to the constant voltage charging mode, the power storage unit 3 can be prevented from being overcharged, and the cause of the deterioration of the capacitor can be eliminated.
 以上の蓄電装置1によれば、以下の効果が得られる。
(1)蓄電部の電力蓄積に直接寄与しない初期駆動用キャパシタを別途用意する必要がないので、構成がシンプルになり、コスト上昇も抑えることができる。
(2)つねに制御部を正常な状態で作動させて充電制御できるので、蓄電部のキャパシタが完全放電状態であっても、充電開始から充電終了まで安定した充電制御ができる。また、初期駆動用キャパシタが不要であるので、その充電に要する時間が不要になり、蓄電部のキャパシタが完全放電状態であっても制御部を正常に作動させた状態で蓄電部への充電制御を開始することができる。
According to the power storage device 1 described above, the following effects can be obtained.
(1) Since it is not necessary to separately prepare an initial drive capacitor that does not directly contribute to the power storage of the power storage unit, the configuration is simplified and the cost increase can be suppressed.
(2) Since the control unit can always be operated in a normal state to perform charge control, stable charge control can be performed from the start of charge to the end of charge even when the capacitor of the power storage unit is in a completely discharged state. In addition, since the initial drive capacitor is unnecessary, the time required for the charge is not required, and charging control to the power storage unit is performed with the control unit operating normally even when the capacitor of the power storage unit is completely discharged. Can start.
(3)充電制御回路を、P型MOSFETとコイルとキャパシタと比較器等から構成することにより、前記P型MOSFETをオンオフ制御するパルス幅変調信号のデューティ比を0%から100%の範囲で制御することによって、常時適正な充電が可能であり、複雑な回路構成が不要となり、コスト上昇も抑制することができる。 (3) By configuring the charge control circuit with a P-type MOSFET, a coil, a capacitor, a comparator, and the like, the duty ratio of the pulse width modulation signal for controlling on / off of the P-type MOSFET is controlled in the range of 0% to 100%. By doing so, proper charging is always possible, a complicated circuit configuration is not required, and an increase in cost can be suppressed.
 このようにして、本発明によれば、EDLC等のキャパシタを蓄電部に用いた蓄電装置において、初期駆動用キャパシタを用いず、蓄電部のキャパシタが完全放電状態であっても、初期充電モードで、制御部を駆動させるための初期駆動電力を制御部に供給して蓄電部の充電を開始し、制御部を駆動するのに十分な電圧と電力が蓄電部に蓄積された後は、定電流充電モードで、制御部を駆動させるための電力を直流電流源もしくは蓄電部から供給すると共に、蓄電部への充電開始後は直流電流源から供給される電力によって蓄電部を定電流充電し、蓄電部が満充電になると、蓄電部のキャパシタが過充電に陥ることを避けるために、定電圧充電モードで定電圧充電を行うという優れた充電制御機能を持った蓄電装置を提供できるのである。
Thus, according to the present invention, in the power storage device using the capacitor such as EDLC for the power storage unit, the initial drive capacitor is not used, and the initial charge mode is used even when the capacitor of the power storage unit is in a completely discharged state. After the initial drive power for driving the control unit is supplied to the control unit to start charging the power storage unit and sufficient voltage and power to drive the control unit are accumulated in the power storage unit, the constant current In the charging mode, power for driving the control unit is supplied from the DC current source or the power storage unit, and after charging to the power storage unit is started, the power storage unit is charged with constant current by the power supplied from the DC current source to store the power. When the unit is fully charged, it is possible to provide a power storage device having an excellent charge control function of performing constant voltage charging in the constant voltage charging mode in order to prevent the capacitor of the power storage unit from being overcharged.
 本発明は、キャパシタを用いた蓄電装置であれば、種々の用途の蓄電装置を適切に充電する用途に利用できる。
The present invention can be used for a purpose of appropriately charging a power storage device for various uses as long as it is a power storage device using a capacitor.
1 蓄電装置
2 充電制御回路、充電制御手段
3 蓄電部
4 制御部、信号出力手段、監視手段
5 DC-DCコンバータ、電圧変換手段
6 直流電流源、外部電源
7 電力変換器
8 負荷
Si スイッチ、スイッチ手段
So 放電出力用スイッチ
24 P型MOSFET、スイッチ手段
Tr トランジスタ、スイッチ手段
L コイル、平滑手段
C キャパシタ、平滑手段
21 平滑回路、平滑手段
22 比較器
23 基準電圧生成回路
R1、R2 分圧抵抗
R3 プルアップ抵抗
D1、D2、D3 逆流防止用ダイオード
D4 フライホイール・ダイオード
DESCRIPTION OF SYMBOLS 1 Power storage device 2 Charge control circuit, charge control means 3 Power storage part 4 Control part, signal output means, monitoring means 5 DC-DC converter, voltage conversion means 6 DC current source, external power supply 7 Power converter 8 Load Si switch, switch Means So Discharge output switch 24 P-type MOSFET, switch means Tr transistor, switch means L coil, smoothing means C capacitor, smoothing means 21 smoothing circuit, smoothing means 22 comparator 23 reference voltage generation circuit R1, R2 voltage dividing resistor R3 pull Up resistor D1, D2, D3 Backflow prevention diode D4 Flywheel diode

Claims (10)

  1. キャパシタを用いた蓄電部と、
    外部電源から流入する直流電流を、充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
    前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
    前記蓄電部における蓄電状況を監視する監視手段と、
    を備えた蓄電装置において、
    前記充電制御手段は、
    前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
    を備え、
    前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、前記充電制御手段を、初期充電モードもしくは定電流充電モードの何れか1つの充電モードに切り換えて充電するように制御する充電制御信号を出力するように構成されていることを特徴とするキャパシタを用いた蓄電装置。
    A power storage unit using a capacitor;
    Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit;
    Signal output means for outputting the charge control signal to the charge control means;
    Monitoring means for monitoring power storage status in the power storage unit;
    In a power storage device comprising:
    The charge control means includes
    An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
    With
    The signal output means controls the charge control means so as to switch to one of the initial charge mode and the constant current charge mode and charge according to the power storage status of the power storage unit obtained from the monitoring means. A power storage device using a capacitor is configured to output a charge control signal.
  2. キャパシタを用いた蓄電部と、
    外部電源から流入する直流電流を、充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
    前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
    前記蓄電部における蓄電状況を監視する監視手段と、
    を備えた蓄電装置において、
    前記充電制御手段は、
    前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電圧充電するとともに、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電圧充電モードと、
    を備え、
    前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、前記充電制御手段を、初期充電モード、定電流充電モード、もしくは定電圧充電モードの何れか1つの充電モードに切り換える充電制御信号を出力するように構成されていることを特徴とするキャパシタを用いた蓄電装置。
    A power storage unit using a capacitor;
    Charging control means for controlling a direct current flowing from an external power source based on a charging control signal and supplying the direct current as charging power to the power storage unit;
    Signal output means for outputting the charge control signal to the charge control means;
    Monitoring means for monitoring power storage status in the power storage unit;
    In a power storage device comprising:
    The charge control means includes
    An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control. A constant voltage charging mode to supply as driving power of the means;
    With
    The signal output means switches the charge control means to any one charge mode of an initial charge mode, a constant current charge mode, or a constant voltage charge mode according to the power storage status of the power storage unit obtained from the monitoring means. A power storage device using a capacitor, wherein the power storage device is configured to output a charge control signal.
  3. 前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
    前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換えて前記蓄電部を充電し、
    前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換えて前記蓄電部を充電し、
    前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換えて前記蓄電部を充電するように構成されていることを特徴とする請求項2に記載のキャパシタを用いた蓄電装置。
    The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
    When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit,
    When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit,
    The power storage unit is configured to charge the power storage unit by switching the charge control means from the constant current charging mode to the constant voltage charging mode when the power storage unit voltage is equal to or higher than a third set voltage. A power storage device using the capacitor according to claim 2.
  4. 前記外部電源もしくは前記蓄電部から供給される駆動電力を所定の電圧に変換して前記信号出力手段および前記監視手段の駆動電力として供給する電圧変換手段を備えていることを特徴とする請求項1乃至3の何れか1項に記載の蓄電装置。 2. A voltage conversion unit that converts driving power supplied from the external power source or the power storage unit into a predetermined voltage and supplies the driving power to the signal output unit and the monitoring unit. 4. The power storage device according to any one of items 1 to 3.
  5. 外部電源から流入する直流電流を、キャパシタを用いた蓄電部に充電するための充電電力として出力するように構成された充電制御装置において、
    前記外部電源から流入する直流電流を、前記充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
    前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
    前記蓄電部における蓄電状況を監視する監視手段と、
    を備えるとともに、
    前記充電制御手段は、
    前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
    を備え、
    前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
    前記充電制御手段を、初期充電モードもしくは定電流充電モードの何れか1つの充電モードに切り換えて充電するように構成されていることを特徴とするキャパシタを用いた蓄電装置の充電制御装置。
    In a charging control device configured to output a direct current flowing from an external power source as charging power for charging a power storage unit using a capacitor,
    Charging control means for controlling a direct current flowing from the external power source based on the charging control signal and supplying the direct current as charging power to the power storage unit;
    Signal output means for outputting the charge control signal to the charge control means;
    Monitoring means for monitoring power storage status in the power storage unit;
    With
    The charge control means includes
    An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
    With
    The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
    A charge control device for a power storage device using a capacitor, wherein the charge control means is configured to be charged by switching to one of an initial charge mode and a constant current charge mode.
  6. 外部電源から流入する直流電流を、キャパシタを用いた蓄電部に充電するための充電電力として出力するように構成された充電制御装置において、
    前記外部電源から流入する直流電流を、前記充電制御信号に基づいて制御して前記蓄電部への充電電力として供給する充電制御手段と、
    前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
    前記蓄電部における蓄電状況を監視する監視手段と、
    を備えるとともに、
    前記充電制御手段は、
    前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電圧充電するとともに、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電圧充電モードと、
    を備え、
    前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
    前記充電制御手段を、初期充電モード、定電流充電モード、および定電圧充電モードの3つの充電モードの内の何れか1つの充電モードに切り換えて充電するように構成されていることを特徴とするキャパシタを用いた蓄電装置の充電制御装置。
    In a charging control device configured to output a direct current flowing from an external power source as charging power for charging a power storage unit using a capacitor,
    Charging control means for controlling a direct current flowing from the external power source based on the charging control signal and supplying the direct current as charging power to the power storage unit;
    Signal output means for outputting the charge control signal to the charge control means;
    Monitoring means for monitoring power storage status in the power storage unit;
    With
    The charge control means includes
    An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control. A constant voltage charging mode to supply as driving power of the means;
    With
    The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
    The charge control means is configured to charge by switching to one of three charge modes of an initial charge mode, a constant current charge mode, and a constant voltage charge mode. A charge control device for a power storage device using a capacitor.
  7. 前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じて、
    前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換えて前記蓄電部を充電し、
    前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換えて前記蓄電部を充電し、
    前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換えて充電するように構成されていることを特徴とする請求項6に記載のキャパシタを用いた蓄電装置の充電制御装置。
    The signal output means, according to the power storage status of the power storage unit obtained from the monitoring means,
    When the power storage unit voltage is less than a second set voltage, the charge control unit is switched to an initial charge mode to charge the power storage unit,
    When the power storage unit voltage is equal to or higher than a second set voltage, the charge control unit is switched from the initial charging mode to the constant current charging mode to charge the power storage unit,
    When the power storage unit voltage is equal to or higher than a third set voltage, the charging control unit is configured to charge by switching from the constant current charging mode to the constant voltage charging mode. The charge control apparatus of the electrical storage apparatus using the capacitor of Claim 6.
  8. 前記信号出力手段は、前記監視手段から得られる蓄電部の蓄電状況に応じたデューティ比のパルス列信号を出力するように構成され、
    前記充電制御手段は、
    前記パルス列信号が入力されて、そのデューティ比に応じて蓄電部への充電電力をオンオフ制御するスイッチ手段と、
    前記スイッチ手段から出力される充電電力を平滑して蓄電部へ出力する平滑手段と
    を備え、
    デューティ比を変えることによって定電流充電モードもしくは定電圧充電モードの何れか1つの充電モードに切り換え得るように構成されていることを特徴とする請求項6乃至7の何れか1項に記載のキャパシタを用いた蓄電装置の充電制御装置。
    The signal output means is configured to output a pulse train signal having a duty ratio according to the power storage status of the power storage unit obtained from the monitoring means,
    The charge control means includes
    Switch means for inputting on / off control of charging power to the power storage unit according to the duty ratio when the pulse train signal is input;
    Smoothing means for smoothing the charging power output from the switch means and outputting to the power storage unit,
    8. The capacitor according to claim 6, wherein the capacitor can be switched to one of a constant current charging mode and a constant voltage charging mode by changing a duty ratio. Charge control device for a power storage device using a battery.
  9. 前記外部電源もしくは前記蓄電部から供給される駆動電力を所定の電圧に変換して前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する電圧変換手段を備えていることを特徴とする請求項5乃至8の何れか1項に記載の充電制御装置。 It comprises voltage conversion means for converting drive power supplied from the external power source or the power storage unit into a predetermined voltage and supplying the drive power as the signal output means, the monitoring means, and the charge control means. The charge control device according to any one of claims 5 to 8.
  10. キャパシタを用いた蓄電部と、
    外部電源から流入する直流電流を、充電制御信号に基づいて制御して前記蓄電部に充電する充電制御手段と、
    前記充電制御手段へ前記充電制御信号を出力する信号出力手段と、
    前記蓄電部における蓄電状況を監視する監視手段と、
    を備え、
    前記充電制御手段は、
    前記直流電流を、少なくとも前記信号出力手段の駆動電力として供給する初期充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電流充電するとともに、並行して、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電流充電モードと、
    前記直流電流を前記蓄電部への充電電力として供給して前記蓄電部を定電圧充電するとともに、前記直流電流もしくは前記蓄電部に蓄積された電力を前記信号出力手段と前記監視手段および前記充電制御手段の駆動電力として供給する定電圧充電モードと、
    を備えてなるキャパシタを用いた蓄電装置の充電制御方法において、
    前記監視手段を用いて前記蓄電部の蓄電状況を監視させ、
    前記蓄電部電圧が第2の設定電圧未満である場合には、前記充電制御手段を初期充電モードに切り換える充電制御信号を前記信号出力手段から出力させ、
    前記蓄電部電圧が第2の設定電圧以上になった場合には、前記充電制御手段を前記初期充電モードから前記定電流充電モードに切り換える充電制御信号を前記信号出力手段から出力させ、
    前記蓄電部電圧が第3の設定電圧以上になった場合には、前記充電制御手段を前記定電流充電モードから前記定電圧充電モードに切り換える充電制御信号を前記信号出力手段から出力させることによって、
    前記充電制御手段を、蓄電部の蓄電状況に応じた充電モードで作動させることを特徴とするキャパシタを用いた蓄電装置の充電制御方法。
    A power storage unit using a capacitor;
    Charge control means for controlling a direct current flowing from an external power source based on a charge control signal to charge the power storage unit;
    Signal output means for outputting the charge control signal to the charge control means;
    Monitoring means for monitoring power storage status in the power storage unit;
    With
    The charge control means includes
    An initial charging mode for supplying the direct current as at least the driving power of the signal output means;
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant current, and at the same time, the DC output or the power stored in the power storage unit is supplied to the signal output unit and the monitoring unit. And a constant current charge mode to be supplied as drive power for the charge control means,
    The DC current is supplied as charging power to the power storage unit to charge the power storage unit at a constant voltage, and the DC current or the power stored in the power storage unit is used as the signal output unit, the monitoring unit, and the charge control. A constant voltage charging mode to supply as driving power of the means;
    In a charge control method for a power storage device using a capacitor comprising:
    Using the monitoring means to monitor the power storage status of the power storage unit,
    When the power storage unit voltage is less than a second set voltage, the signal output means outputs a charge control signal for switching the charge control means to the initial charge mode,
    When the power storage unit voltage is equal to or higher than a second set voltage, the charge output signal for switching the charge control means from the initial charge mode to the constant current charge mode is output from the signal output means,
    When the power storage unit voltage is equal to or higher than a third set voltage, by causing the signal output means to output a charge control signal for switching the charge control means from the constant current charge mode to the constant voltage charge mode,
    A charge control method for a power storage device using a capacitor, wherein the charge control means is operated in a charge mode according to a power storage status of a power storage unit.
PCT/JP2010/065419 2010-09-08 2010-09-08 Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor WO2012032621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065419 WO2012032621A1 (en) 2010-09-08 2010-09-08 Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065419 WO2012032621A1 (en) 2010-09-08 2010-09-08 Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor

Publications (1)

Publication Number Publication Date
WO2012032621A1 true WO2012032621A1 (en) 2012-03-15

Family

ID=45810246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065419 WO2012032621A1 (en) 2010-09-08 2010-09-08 Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor

Country Status (1)

Country Link
WO (1) WO2012032621A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111784A1 (en) * 2013-01-18 2014-07-24 Toyota Jidosha Kabushiki Kaisha Electricity storage system
GB2525345A (en) * 2013-01-31 2015-10-21 Statoil Petroleum As A method of plugging a well
US9308966B2 (en) 2012-10-03 2016-04-12 Kawasaki Jukogyo Kabushiki Kaisha Saddle type electric vehicle
CN107678891A (en) * 2017-10-13 2018-02-09 郑州云海信息技术有限公司 The dual control method, apparatus and readable storage medium storing program for executing of a kind of storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175371A (en) * 1998-12-04 2000-06-23 Hitachi Koki Co Ltd Battery charger
JP2007221958A (en) * 2006-02-20 2007-08-30 Power System:Kk Charging device for capacitor storage power supply
JP2008141806A (en) * 2006-11-30 2008-06-19 Kuroi Electric Co Ltd Storage battery charging circuit by solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175371A (en) * 1998-12-04 2000-06-23 Hitachi Koki Co Ltd Battery charger
JP2007221958A (en) * 2006-02-20 2007-08-30 Power System:Kk Charging device for capacitor storage power supply
JP2008141806A (en) * 2006-11-30 2008-06-19 Kuroi Electric Co Ltd Storage battery charging circuit by solar cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308966B2 (en) 2012-10-03 2016-04-12 Kawasaki Jukogyo Kabushiki Kaisha Saddle type electric vehicle
JPWO2014054069A1 (en) * 2012-10-03 2016-08-25 川崎重工業株式会社 Electric vehicle and battery pack
US9821882B2 (en) 2012-10-03 2017-11-21 Kawasaki Jukogyo Kabushiki Kaisha Assembling method and assembling management method of electric vehicle
US9840306B2 (en) 2012-10-03 2017-12-12 Kawasaki Jukogyo Kabushiki Kaisha Electric vehicle, and battery pack
US10259530B2 (en) 2012-10-03 2019-04-16 Kawasaki Jukogyo Kabushiki Kaisha Assembling management system of electric vehicle and assembling method of electric vehicle
WO2014111784A1 (en) * 2013-01-18 2014-07-24 Toyota Jidosha Kabushiki Kaisha Electricity storage system
US9525300B2 (en) 2013-01-18 2016-12-20 Toyota Jidosha Kabushiki Kaisha Electricity storage system
GB2525345A (en) * 2013-01-31 2015-10-21 Statoil Petroleum As A method of plugging a well
GB2525345B (en) * 2013-01-31 2017-08-23 Statoil Petroleum As A method of plugging a well
CN107678891A (en) * 2017-10-13 2018-02-09 郑州云海信息技术有限公司 The dual control method, apparatus and readable storage medium storing program for executing of a kind of storage system
CN107678891B (en) * 2017-10-13 2021-06-29 郑州云海信息技术有限公司 Double control method and device of storage system and readable storage medium

Similar Documents

Publication Publication Date Title
US8686693B2 (en) Systems and methods for scalable configurations of intelligent energy storage packs
US8193761B1 (en) Hybrid power source
CN1741345B (en) Power management system
US10017138B2 (en) Power supply management system and power supply management method
JP5082339B2 (en) Power converter
JP4067554B2 (en) Power storage device
US9868358B2 (en) Power conversion system suppressing reduction in conversion efficiency
WO2011148908A1 (en) Solar cell system
JP2012019685A (en) Operation method and circuit of battery system with a plurality of battery cells
KR101560514B1 (en) Voltage conversion circuit and electronic apparatus
US20070092763A1 (en) Fuel cell system
WO2012032621A1 (en) Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor
JP2009148110A (en) Charger/discharger and power supply device using the same
KR20140094857A (en) Battery charger and method of operating the same
JP2004336974A (en) Power supply
JP4724726B2 (en) DC power supply system and charging method thereof
JP4828511B2 (en) Backup power supply and control method thereof
CN109193885B (en) Control system of photovoltaic energy storage inverter
JP2004320982A (en) Electronic equipment
JP2009118683A (en) Charger, charging method thereof, and power supply system
JP5295801B2 (en) DC power supply system and discharge method
CN110783969A (en) Battery management system and battery system
CN114655071A (en) Battery, battery control method and electric vehicle
CN113196641B (en) Voltage regulation module, charging module and charging pile
JP2008035573A (en) Electricity accumulation device employing electric double layer capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP