WO2012032000A1 - Roue elastique non pneumatique multietages - Google Patents

Roue elastique non pneumatique multietages Download PDF

Info

Publication number
WO2012032000A1
WO2012032000A1 PCT/EP2011/065263 EP2011065263W WO2012032000A1 WO 2012032000 A1 WO2012032000 A1 WO 2012032000A1 EP 2011065263 W EP2011065263 W EP 2011065263W WO 2012032000 A1 WO2012032000 A1 WO 2012032000A1
Authority
WO
WIPO (PCT)
Prior art keywords
circumferential
wheel
membrane
fibers
wheel according
Prior art date
Application number
PCT/EP2011/065263
Other languages
English (en)
Inventor
Jean-Paul Meraldi
Antonio Delfino
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to US13/822,284 priority Critical patent/US20130233458A1/en
Publication of WO2012032000A1 publication Critical patent/WO2012032000A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/26Wheels of high resiliency, e.g. with conical interacting pressure-surfaces comprising resilient spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/111Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/11Passenger cars; Automobiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to laminated products, that is to say to products made of several layers or strips of flat or non-planar shape which are interconnected, for example of the cellular or honeycomb type.
  • the invention is more particularly related to elastic (flexible) wheels for motor vehicles of the "non-pneumatic" type, that is to say not requiring inflation gases such as air to take their usable form, and the inclusion in such wheels of laminates, especially when these laminates are composite products all or part of which consists of fibers embedded in a resin matrix.
  • the invention particularly relates to an elastic wheel for a vehicle intended for use in extreme conditions, especially at very low temperatures and on soft or sandy ground.
  • the operating principle of such a strip is that the shear modulus of the shear layer is very much smaller than the extension modulus of the two membranes, while being sufficient to be able to correctly transmit the forces from one membrane to the other. and thereby causing said strip to shear.
  • this annular band it is possible to manufacture tires or non-pneumatic wheels, able to roll under severe or aggressive conditions without any risk of punctures and without the inconvenience of having to maintain an air pressure inside the tire. bandage.
  • a more evenly distributed ground contact pressure is achieved here, resulting in improved tire work, improved handling and wear resistance. .
  • WO2009 / 1 1 5254 describes a non-pneumatic elastic wheel, preferably based on composite material, which overcomes at least in part the aforementioned drawbacks.
  • the non-pneumatic elastic wheel comprises: o a hub;
  • shear annular band comprising at least one inner circumferential membrane and an outer circumferential membrane oriented in the circumferential direction;
  • each cylindrical connection structure comprises a plurality of elementary cylinders, preferably concentric, having their generatrix oriented in the axial direction Y, said elementary cylinders being nested within each other and interconnected with each other in each anchoring zone.
  • This non-pneumatic elastic wheel of the invention has a deformable cellular structure, very aerated, which has been found to have a high resistance to bending and / or compression forces and a high endurance to such repeated or alternating efforts.
  • the elementary cylinders constituting the cylindrical connection structures are composite cylinders comprising fibers embedded in a resin matrix.
  • annular full shear band i.e. both membranes and elementary cylinders
  • a fiber-based composite material especially glass fiber and / or carbon
  • thermosetting resin of polyester or vinylester type this wheel proved not only able to withstand extremely low temperatures but also suitable for use in a very wide range of temperatures typically ranging from - 250 ° C to + 150 ° C.
  • WO2009 / 115254 discloses a non-pneumatic elastic wheel composed solely of materials capable of maintaining elastic properties in a temperature range of at least about 40 K to 400 K.
  • the use of these materials makes it possible to use this elastic wheel in an environment characterized by an exceptional temperature range, such as in the lunar environment.
  • this wheel is likely to cause driving problems. In such cases, there is loss of efficiency in the traction exerted by the wheel.
  • the expression P Gh / R, where P is the ground pressure, G the effective shear modulus, h the height of the shear band and R the radius of the wheel, mathematically explains the physics of the operation of this architecture. It is observed that this formula is independent of the width of the wheel. Thus, even by increasing the width of the wheel, no effect is produced on the ground pressure.
  • the pressure P is related to the dimensions of the area of contact, which are managed by the variables G, h and R.
  • G, h and R are managed by the variables G, h and R.
  • the invention provides various technical means.
  • a first object of the invention is to provide an elastic wheel for use in extreme temperature conditions
  • Another object of the invention is to provide an elastic wheel to improve the strength and traction on soft or sandy soil
  • Yet another object of the invention is to provide an elastic wheel avoiding unwanted recessions when driving on soft or sandy soils.
  • the invention provides a non-pneumatic elastic wheel, defining three perpendicular, circumferential X, axial Y and radial Z directions, said wheel comprising at least: o a hub;
  • shear annular band comprising at least one inner circumferential membrane and an outer circumferential membrane oriented in the circumferential direction X;
  • said wheel furthermore comprising:
  • connection elements providing a connecting connection between the circumferential contact membrane and the annular shear band.
  • the wheel according to the invention makes it possible to increase the ground trace without modifying the one generated by the shear band by creating a new contact surface capable of distributing the concentrated efforts in the area over a larger area. of contact generated by the shear band.
  • this effect is obtained in a continuous manner by adding a third flexible membrane, but inextensible, external to those forming the shear band, and attached to the elastic wheel by radii, preferably very flexible in compression but rigid in extension.
  • the circumferential contact membrane comprises fibers embedded in a resin matrix.
  • the fibers of the circumferential contact membrane are preferably continuous fibers, advantageously unidirectional, and oriented in the circumferential direction X.
  • the fibers of the circumferential contact membrane are glass fibers and / or carbon fibers.
  • Figure 1A shows a radial section of an exemplary elastic wheel according to the invention, without load
  • Figure 1B shows the wheel of Figure 1A subjected to a load
  • Figure 1C shows a radial section of the central portion of an exemplary elastic wheel according to the invention, without load
  • FIG. 2 shows a cross-section of a portion of the annular shear band of the wheel of FIG. 1;
  • Figure 3 shows a perspective view of the cross section of FIG. 2 above, represented flat for simplification
  • FIG. 4 shows a complete perspective view of another example of a central portion of a non-pneumatic elastic wheel according to the invention.
  • composite speaking of any material or object: a material or article having fibers, short or continuous, embedded in a resin matrix; "layer” or “strip”: a sheet or any other element of relatively small thickness relative to its other dimensions, this layer possibly being of homogeneous or cohesive nature;
  • cylinder means any hollow cylinder (Le., bottomless) in the broadest sense of the word, that is to say any cylindrical object of any right (orthonormal) cross section, that is to say, of which the contour defines a closed line without point of inflection (for example of a circular, oval, elliptical section) or with point (s) of inflection; according to such a definition, it will be understood that terms such as tube, cylindrical tube, cylindrical tube portion, tubular element, tubular column, cylindrical element all designate said "cylinder”;
  • unidirectional fibers means a set of fibers essentially parallel to each other, that is to say oriented along the same axis;
  • non-pneumatic in reference to a wheel or tire: a wheel or tire designed to be capable of carrying a substantial load without inflation pressure, that is to say not requiring an inflation gas such as air to take its usable form and support the load; "oriented along an axis or a direction" by speaking of any element such as a band, a fiber or other elongated reinforcing element, an element which is oriented substantially parallel to this axis or this direction, that is to say to say, with this axis or this direction, an angle that does not deviate by more than ten degrees (hence no or at most equal to 10 degrees), preferably not more than five degrees;
  • oriented perpendicular to an axis or direction speaking of any element such as a band, a fiber or other elongated reinforcing element, an element that is oriented substantially perpendicular to that axis or direction, it is that is to say, making with a perpendicular to this axis or this direction an angle not diverging by more than ten degrees, preferably not more than five degrees;
  • radially oriented speaking of a wheel element (or tire): oriented in any direction passing through the axis of rotation of the wheel (or tire) and substantially perpendicular to that direction, that is, that is to say, making with a perpendicular to this direction an angle not diverging by more than ten degrees, preferably not more than five degrees;
  • circumferentially oriented speaking of a wheel element (or tire): oriented substantially parallel to the circumferential direction of the wheel (or tire), that is to say making with this direction an angle not not more than ten degrees apart, preferably no more than five degrees;
  • laminated product as defined in the International Patent Classification: any product having at least two layers or strips, of flat or non-planar form, which are connected and connected together; the term “bound” or “connected” must be interpreted extensively to include all connecting or joining means, for example by gluing, nailing, riveting, buttoning;
  • resin any synthetic resin, of thermoplastic type or of thermosetting type (also said for the latter curable, polymerizable or crosslinkable), and by extension any composition, formulation based on said resin and further comprising one or more additives such as for example a curing agent.
  • FIG. 1C very schematically represents a radial section (Le., In a plane perpendicular to the axis of rotation Y of the wheel) of the internal portion of a non-pneumatic elastic wheel (10). structurally supported (Le., thanks to a supporting structure), whose circumferential shear band (13) consists of a laminated product.
  • This wheel which defines three perpendicular, circumferential (X), axial (Y) and radial (Z) directions, comprises at least:
  • annular so-called shear strip (13) comprising at least one inner circumferential membrane (14) and one outer circumferential membrane (16) oriented in the circumferential direction X;
  • each cylindrical connection structure (15) further comprises a plurality of (Le., at least two) elementary cylinders (15a, 15b), preferably concentric, having their generatrix oriented in the axial direction Y, said elementary cylinders being fitted together in each other and interconnected (secured) to each other in each anchoring zone (17a, 17b) to said inner (14) and outer (16) membranes.
  • the axis (generatrix) of the elementary cylinders is aligned parallel to the Y axis of rotation of the wheel, at least in the structure of the undistorted wheel (at rest).
  • each cylindrical connection structure Apart from the two anchoring zones (outer zone 17a, inner zone 17b) of each cylindrical connection structure, zones that can also be called “embedding zones” or “connection zones”, where each cylindrical connection structure comes from anchoring, connecting, directly or indirectly, to the two membranes of the shear band, the elementary cylinders (ie 15a, 15b, ...) constituting each cylindrical connection structure (15A, 15B, 15C, ... ), with or without play between them, "work" independently of each other.
  • the elementary cylinders may be in contact or not with each other, but that in normal operation, outside said anchoring zones, these cylinders elementary elements are preferably not connected, not secured to each other so that they can operate optimally, that is to say independently of one another (in the case of two elementary cylinders) or from each other ( in the case of more than two elementary cylinders).
  • the elementary cylinders (15a, 15b, ...) can be of different thicknesses from one to the other, they preferably have a more or less ovoid shape in order to optimize (increase) the contact surface of said cylinders , particularly that of the outermost cylinder (15a), on both membranes (14, 16) in the respective anchoring zones (17a, 17b).
  • the outside diameter (ie, dimension along the Z axis) of the inner elementary cylinder ( 15b) is less than or at most equal to the internal diameter (dimension Z) of the outer elementary cylinder (15a) (the one closest to the inner and outer membranes, generally substantially tangent to the latter).
  • the different elementary cylinders nested within each other have a diameter (dimension along the Z axis) as close as possible from one cylinder to another, in order to optimize the overall endurance of the assembly forming the cylindrical connection structure, and finally that of the wheel of the invention.
  • the shear band (13) of the non-pneumatic elastic wheel of the invention thus forms a hollow structure, very cellular, which can be described as "cellular” in the sense that no other material is necessary (such as illustrated for example in Figures 2 and 3) between the two membranes and the cylindrical connection structures (formed of hollow and bottomless cylinders, by definition).
  • This deformable cellular structure used as a non-planar elastic beam, has proved to have a high resistance to flexural-compression forces and a high endurance to such repeated or alternating efforts, this being due to its ability to generate a deformation comparable to shear between its two membranes under the action of various stresses in traction, flexion or compression.
  • the wheel according to the invention further comprises a circumferential contact membrane 2 1, oriented in the circumferential direction X.
  • This membrane forms an external tread with respect to the shearing band 13.
  • the circumferential contact membrane 21 is flexible, so as to allow contact between the shear band 13 and the inner surface of the circumferential membrane of contact 21. This contact occurs in the substantially median area of the tread.
  • Figure 1B illustrates the contact length of the LCBC shear band. The contact surface thus generated prevents blistering.
  • FIG. 1B also shows the length of contact of the LCBRE tread produced by the crushing of the circumferential contact membrane in the contact phase with the ground.
  • the LCBRE and LCBC lengths This increase allows ground contact surface gains ranging from 50% to over 150%. Such gains make it possible to reduce the pressure exerted on the ground. This provides a clear improvement in the traction exerted by the wheel.
  • the wheel according to the invention allows significant gains in traction and autonomy to the vehicle.
  • connection elements 22 are circumferentially distributed around the circumference of the wheel and provide a connection connection between the circumferential contact membrane 21 and the annular band.
  • the connection elements take the form of spokes, or rods, of substantially refined profile. These connection elements allow to radially separate the tread of the shear band on the periphery of the wheel, except at the LCBC contact length.
  • the connecting elements 22 are substantially flexible in compression and substantially rigid in tension.
  • connection elements are rigid enough to provide a separation of the two membranes over most of the periphery, but also flexible enough to allow on the one hand the contact between the two bands at the LCBC length but also to allow the creation of the length of contact of the LCBRE tread with the ground. Excess stiffness would prevent contact at the LCBC zone, while a lack of rigidity would prevent good separation of the two bands along the rest of the circumference.
  • rolling stops 24 are distributed circumferentially around the outer periphery of the circumferential strip. shear. These stops are advantageously designed in leather, to withstand extreme temperature conditions.
  • the stops have a thickness ranging from about one cm up to two cm, or even more. Thanks to these stops, the connection elements 22 are less stressed during the flattening phase.
  • a plurality of layers of leather are laid and fixed one on top of the other, by gluing or any equivalent means.
  • the ground trace of the shear band plate on the ground circumferential contact membrane which overall, thanks to the rigidity in extension of the spokes, takes an oblong shape and extends on each side the ground trace of the shear band.
  • the distance between the shear band and the outer membrane makes it possible to adjust the gain in terms of ground track.
  • the contact at ground level between the shear band and the outer membrane prevents the latter, which is subjected to a compressive force, to blister. As mentioned above, this contact is advantageously established through the stops 24 rolling.
  • the materials of the circumferential contact diaphragm 21 and the connecting elements 22 are suitably selected to enable these functions to be fulfilled, both in static mode (when the vehicle is stopped) and in dynamic mode (when driving).
  • the connection elements 22 are advantageously designed in PET.
  • the circumferential contact membrane 21 is made of composite material, that is to say comprising embedded fibers (or coated, both of which are considered synonymous) in a resin matrix.
  • This type of material provides a high deformation potential in a purely elastic field.
  • these composite material elements are particularly enduring because they exhibit a purely elastic behavior until rupture, without plastic deformation, unlike for example a metal structure that could under very strong deformation plastic behavior, Le., Irreversible harmful in a known manner to endurance.
  • a more durable wheel is obtained, which is significantly lighter and more resistant to corrosion.
  • fiber applies to any type of fiber whose shear modulus is substantially higher than the shear modulus of the resin, for example a higher preference factor.
  • glass, carbon fibers, ceramic fibers, and mixtures of such fibers are advantageously used.
  • fibers selected from the group consisting of glass fibers, carbon fibers and mixtures of such fibers. More preferably still, glass fibers are used.
  • the resin employed is a resin which is preferably thermosetting. It is for example a resin crosslinkable by ionizing radiation, such as for example a UV-visible radiation emitting preferably in a spectrum extending from 300 nm to 450 nm, an accelerated electron beam or radii X. It is also possible to choose a composition comprising a resin crosslinkable with a peroxide, the subsequent crosslinking can then be carried out, when the time comes, by means of a supply of calories, for example by the action of microwaves.
  • a composition of the ionizing radiation curable type is used, the final polymerization being able to be triggered and easily controlled by means of an ionizing treatment, for example of UV or UV-visible type.
  • the resin used, in the thermoset state has an extension modulus (ASTM D 638) which is preferably at least equal to 2.3 GPa, more preferably greater than 2.5 GPa, especially greater than 3.0 GPa.
  • Its glass transition temperature (Tg), measured by DSC, is preferably greater than 130 ° C., more preferably greater than 140 ° C.
  • crosslinkable resin it is more preferably used a polyester resin (Le., Based on unsaturated polyester) or a vinylester resin.
  • a vinylester resin is used. Surprisingly, some vinylester resins have been found to resist better than others at extremely low temperatures.
  • a simple test makes it possible to measure that the bending strength of a fiberglass / vinylester resin composite is substantially increased at very low temperature. This test consists in making a loop with a composite monofilament (for example, of diameter 1 mm) and to reduce the radius of curvature until rupture (clearly visible to the naked eye) of the outer part of the monofilament which is in extension. It is then unexpectedly realized that the minimum radius reached becomes smaller when the monofilament loop has been plunged just before into liquid nitrogen (-196 ° C). In immersion test or thermal quenching in liquid nitrogen, one can also test the resin as such, giving preference to resins that do not crack during such a test.
  • the two membranes and the cylindrical connection structures may consist of various materials such as metals (for example titanium, steel, aluminum, metal alloys), polymers or composite materials.
  • the annular shear band may also be of a hybrid nature, that is to say composed of different materials combined.
  • the elementary cylinders are cylinders of composite material that is to say comprising embedded fibers (or coated, both being considered synonymous) in a resin matrix; more particularly, it is both the elementary cylinders and the two membranes that are made of composite material.
  • the annular shear band has a high deformation potential in a purely elastic field.
  • Such cylindrical connection structures of composite material are particularly enduring because they exhibit a purely elastic behavior until rupture, without plastic deformation, unlike, for example, a metal structure which could experience under very strong deformation a plastic behavior, Le., irreversible, harmful in a known way to endurance.
  • This advantageous property of course also applies to the membranes (14, 16) when the latter are also made of composite material (fibers / resin).
  • the fibers of the elementary cylinders may be continuous fibers or short fibers, it is preferred to use continuous fibers.
  • these fibers are more preferably unidirectional and oriented circumferentially in a radial plane (perpendicular to the Y axis).
  • Elementary cylinders work mainly in bending. According to the circumferential axis of their reinforcing fibers, they have a modulus in extension (ASTM D 638) and in flexion (ASTM D 790) which are preferably greater than 15 GPa, more preferably greater than 30 GPa, in particular between 30 and 50 GPa.
  • the invention applies to cases where the two membranes could be made of a material, for example metal or polymer, other than that, composite or not, elementary cylinders.
  • the inner (14) and outer (16) membranes are also composite membranes comprising embedded fibers. in a resin matrix.
  • the entire basic structure of the annular shear band (13), consisting of the two membranes (14, 16), the series (15 A, 15 B, 15 C, etc.) of cylindrical connection structures and their plurality of elementary cylinders (15a, 15b) is made of composite material.
  • the two membranes or flanges have an extension module (ASTM D 63 8) which is preferably greater than 15 GPa, more preferably greater than 30 GPa (for example between 30 and 50 GPa).
  • the cylindrical connecting structures (15) and / or the membranes (14, 16), when they are preferably made of composite material, may consist of a single filamentary layer or of several superimposed elementary filamentary layers whose fibers are preferably all oriented in the main direction X.
  • this multilayer structure may be interposed one or more additional layers of crossed son, in particular oriented along the Y axis (generator of the rolls), in order to strengthen the structure laterally and thus, in a term dedicated in the composites business, balancing the overall structure.
  • the cylindrical connection structures (15) have, from one cylindrical structure to the other, a diameter D (outer diameter or dimension along the Z axis, as shown in FIGS. ) which is substantially constant in a direction Z said radial, normal to the X direction and the Y axis, so as to maintain the outer membrane (16) and inner (14) substantially (Le., approximately) equidistant.
  • the cylindrical connection structures (15) may also have, from one cylindrical structure to the other, a diameter D which is linearly variable in the main direction X, when wishes a structure in which the distance between the two membranes is likely to vary gradually along the main axis X.
  • the term "diameter” must be considered in the present application, extensively, as the dimension of the cylinder (including thickness) measured in the radial direction Z.
  • FIG. 2 schematizes, in cross section (or radial section), a portion of the annular shear band (13) of the wheel (10) of FIG. 1 while FIG. 3 gives a schematic perspective view. of the same cross section of Figure 2.
  • this portion of the annular shear band has been shown flat (X-axis circumferential represented rectilinear).
  • annular shear band (13) An essential feature of the annular shear band (13) is that its cylindrical connection structures (15A, 15B, 15C, ...) are non-contiguous in the circumferential direction (X) so that they can deform and work. in bending freely.
  • the ratio d / D is between 0.10 and 0.50, where d represents the average distance, measured along the X direction, between two consecutive cylindrical connection structures, as illustrated in FIGS. 2 and 3.
  • Mean distance means an average calculated on all of the cylindrical connection structures (15A, 15B, 15C, ...) present in the annular shear band (13). If d / D is less than 0, 10, there is a risk of a certain lack of flexibility in shearing of the annular band (13) whereas if d / D is greater than 0.50, a lack of uniformity of bending deformation may occur.
  • the d / D ratio is more preferably within a range of about 0.15 to 0.40. It will be noted in this respect that, in FIG. 1C previously commented on, very schematically, the cylindrical connection structures (15) and the wheel spokes (12) have been represented in a relatively small number compared to the preferred embodiments of the invention. invention, for the simple purpose of simplifying the figure.
  • annular shear band (13) of the non-pneumatic elastic wheel (10) there is at least one, more preferably still all of the following characteristics which is verified:
  • a diameter D which is between 10 and 100 mm;
  • an average distance d which is between 1 and 50 mm;
  • a width Lm of the membranes and a width of the cylindrical connection structures both measured in an axial direction (parallel to the Y axis), which are each between 5 and 200 mm;
  • a thickness Em of the membranes (measured in the radial direction Z) which is between 0.25 and 3 mm;
  • a thickness Ec of the elementary cylinders (measured for example in the radial direction Z) which is between 0, 10 and 3 mm.
  • non-pneumatic elastic wheel of the invention has a usual diameter for a wheel, for example between 200 and 2000 mm.
  • a width Lm and a width Le which are each between 20 and 100 mm;
  • Em a thickness Em between 0.5 and 2 mm.
  • D values of less than 10 mm or greater than 100 mm are possible depending on the diameters of wheels envisaged.
  • a diameter D between 10 and 100 cm, in particular between 15 and 45 cm;
  • a width Lm and a width Le each of between 5 and 200 cm, in particular between 20 and 100 cm;
  • a thickness Em between 0.25 and 3 cm, in particular between 0.5 and 2 cm;
  • the various constituent parts of the annular shear band (13) of the non-pneumatic elastic wheel (10) of the invention, in particular the cylindrical connection structures (15) and the inner (14) and outer (16) membranes which are the basic parts, can be connected directly to each other through chemical, physical or mechanical means of fixation.
  • Examples of such direct fastening means include, for example, adhesives, rivets, bolts, staples, ligatures or seams.
  • the mechanical fastening means such as rivets or bolts for example may be of various materials, such as metal, metal alloy, plastic or composite material (for example based on glass fibers and / or carbon).
  • the cylindrical connection structures (15) can also partially penetrate the outer and / or inner membranes (14) to which they are connected.
  • the cylindrical connection structures (15) can be connected indirectly to the outer (16) and inner (14) membranes, that is to say by means of intermediate connecting pieces.
  • These intermediate pieces or “inserts” can take different geometric shapes, for example in the form of parallelepiped, dovetail, shaped "I", "T", "U”; they can themselves be attached to the base parts (membranes and elementary cylinders) by fastening means such as those described above.
  • inserts may be used as reinforcement pieces whenever the forces that are supported are too great, these inserts being able to reduce the stresses transmitted to the composite structure to acceptable levels.
  • These inserts are for example metal, alloy metal, plastic or composite material (for example fiberglass and / or carbon embedded in a resin).
  • a protective and non-adhesive layer (vis-à- screw of these cylinders) of a material, preferably with a very low coefficient of friction so as not to oppose the relative displacement of said adjacent elementary cylinders and the appropriate thermal properties, for example a polymer layer (eg a fluorinated polymer such as than PTFE).
  • the previously described cylindrical connection structures could also be reinforced, for at least a part of of them, by at least one elongated reinforcing element (18) called "radial reinforcement" (in particular in the form of a monofilament or a ribbon, for example made of glass-resin composite material) passing through them completely according to their diameter. , so as to be anchored in the outer (16) and inner (14) membranes, parallel to a radial direction Z which is perpendicular to the main direction X and the generator Y of the elementary cylinders.
  • radial reinforcement in particular in the form of a monofilament or a ribbon, for example made of glass-resin composite material
  • the radial reinforcements (18) then work as a beam that can prevent the deformation of the cylindrical connection structures (15) perpendicular to their axis Y (generator). By their stiffness in tension and in compression, they can prevent the annular shear band (13) from flaring when the composite structure is subjected to the most severe bending.
  • the annular shear band of the wheel of the invention consists entirely of glass and / or carbon fibers, more preferably still glass fibers, embedded in a vinylester resin matrix.
  • Vinylester resins are well known in the field of composite materials. Without this definition being limiting, the vinylester resin is preferably of the epoxyvinylester type.
  • a vinylester resin in particular of the epoxide type, which is at least partly based on novolac and / or bisphenol (or preferably a vinylester resin based on novolac, bisphenol or novolak, is more preferably used) and bisphenol) as described, for example, in applications EP 1 074 369 and EP 1 174 250 (or US Pat. No. 6,926,853).
  • An epoxyvinylester resin of novolac and bisphenolic type has shown excellent results; for example, mention may be made in particular of the vinylester resins "ATLAC 590" or “” ATLAC E-Nova FW 2045 “from the company DSM (both diluted with styrene) Such epoxyvinylester resins are available from other manufacturers such as Reichhold, Cray Valley, UCB.
  • the annular shear band may advantageously consist solely of composite parts, in particular glass fibers embedded in a vinylester resin.
  • the support elements (12) also called here "wheel spokes", preferably with low compression stiffness, work in tension to transmit the forces between the annular shear band and the hub (11) of the wheel, as described for example in the aforementioned US Pat. No. 7,201,194 (see for example Fig. 7 to Fig. 11).
  • Their thickness is typically fine relative to that of the membranes, preferably less than 0.5 mm, more preferably less than 0.3 mm.
  • wheel spokes (12) can be made of materials as diverse as metal (or metal alloys), polymers or hybrid materials, reinforced or not.
  • polymers such as polyurethanes, composite materials comprising fibers, in particular glass and / or carbon, impregnated or not with a resin.
  • the module in extension of the materials used is of course adapted to the load that will be supported by each spoke wheel.
  • wheel spokes By adjusting the elastic elongation capacity of the wheel spokes (or that of the materials constituting them), it is possible to generate a more or less important counter-jib and thus to adjust the footprint of the wheel.
  • wheel spokes with elastic elongation under tension of some%, typically from 1 to 5%, are used.
  • wheel spokes which are themselves made of a composite material, for example a PTFE impregnated glass fiber cloth. (Polytetrafluoroethylene) or unidirectional layers of continuous glass fibers embedded in a vinylester resin matrix, or a polyester fiber fabric.
  • a composite material for example a PTFE impregnated glass fiber cloth. (Polytetrafluoroethylene) or unidirectional layers of continuous glass fibers embedded in a vinylester resin matrix, or a polyester fiber fabric.
  • Any process suitable for the manufacture of blocks, sheets, elongated elements such as monofilaments or ribbons is used. Such methods are widely known today by those skilled in the art.
  • FIG. 4 shows a perspective view of another example of an arrangement of the inner portion of the non-pneumatic wheel (30) whose shear band (13) comprises, as it were, several elementary shear strips arranged in planes radial (the., perpendicular to the axial direction Y) parallel.
  • each elementary outer circumferential membrane (16a, 16b, 16c, 16d) is relatively narrow (axial width equal for example to 40 mm, measured according to Y) with respect to the total axial width of the wheel (for example equal to at 200 mm).
  • the inner circumferential membrane (14), hardly visible in this view, may itself consist of one or more elementary internal circumferential membranes, for example two in number (for example each of axial width equal to 80 mm) or four (for example each of axial width equal to 40 mm).
  • the elementary shear bands are here circumferentially disposed with respect to each other such that their cylindrical connecting structures (15) (width equal to 40 mm) are substantially aligned with an elementary shear band at the same time. other, in the axial direction Y.
  • Such a configuration gives the wheel greater axial flexibility and can provide a decoupling advantageous to "absorb" more effectively an obstacle during taxiing.
  • the elementary shear bands could be arranged in such a way that their cylindrical connecting structures (15) are staggered in the axial direction Y, from an elementary shear band to the other. According to such an arrangement, a single circumferential membrane 21, covering the entire width of the wheel can be used.
  • the circumferential membrane is arranged in several portions arranged side by side.
  • connection elements 22 which can be separated and distributed over the entire width of the wheel, or unitary, covering the entire width.
  • a tread could possibly be added to the wheels of the invention described above, arranged radially above the circumferential contact membrane 21 when the latter is not intended for direct contact with the ground when rolling the non-pneumatic wheel.
  • This tread may consist of materials as diverse as metal (or metal alloys), polymers or hybrid materials metal-polymer.
  • polymers that may be mentioned include, for example, polyesters such as PET, PTFE, cellulose such as rayon, rubbers such as diene rubbers or polyurethanes.
  • a tread made of metal or polymer other than rubber is preferred.
  • the tread is in the form of a three-dimensional fabric, especially in the abovementioned materials, the thickness of which is for example between 5 and 20 mm.
  • the leather used as tread especially in a thickness of a few mm (for example 3 to 4 mm), has proved particularly effective at very low temperatures.
  • This tread may be fixed to the shear band of the wheel by various fastening means such as described above, for example by gluing or buttoning, or even using assembly means such as the previously described inserts.
  • the non-pneumatic elastic wheel of the invention can be used in all types of motor vehicles, terrestrial or non-terrestrial, in particular vehicles intended to cope with severe or aggressive driving conditions, or extreme temperatures such as those that might be encountered, for example lunar vehicles, road transport units, off-the-road vehicles such as agricultural or civil engineering vehicles, or any other type of transport or handling vehicle for which the use of an elastomeric material is not possible or is not desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Roue (10) élastique non pneumatique, supportée structurellement, définissant trois directions perpendiculaires, circonférentielle (X), axiale (Y) et radiale (Z), cette roue comportant au moins : o un moyeu (11); o une bande annulaire dite de cisaillement (13) comprenant au moins une membrane circonférentielle interne (14) et une membrane circonférentielle externe (16) orientées selon la direction circonférentielle X; o une pluralité d'éléments de support (12) connectant le moyeu (1 1) à la membrane circonférentielle interne (14), la roue comportant par ailleurs : o une membrane circonférentielle de contact (21), flexible et orientée selon la direction circonférentielle X; o une pluralité d'éléments de connexion (22), assurant une liaison de connexion entre la membrane circonférentielle de contact (21) et la bande annulaire de cisaillement (13).

Description

ROUE ELASTIQUE NON PNEUMATIQUE MULTIETAGES DOMAINE TECHNIQUE DE L'INVENTION
La présente invention est relative à des produits stratifiés, c'est-à-dire à des produits faits de plusieurs couches ou bandes de forme plane ou non plane qui sont reliées entre elles, par exemple du type cellulaire ou nid d'abeilles.
L'invention est plus particulièrement relative aux roues élastiques (flexibles) pour véhicules automobiles du type « non-pneumatiques », c'est-à-dire ne nécessitant pas de gaz de gonflage tels que l'air pour prendre leur forme utilisable, et à l'incorporation dans de telles roues de produits stratifiés, en particulier lorsque ces produits stratifiés sont des produits composites dont tout ou partie est constituée de fibres enrobées dans une matrice de résine.
L'invention concerne tout particulièrement une roue élastique pour véhicule destiné à des utilisations dans des conditions extrêmes, notamment par très basses températures et sur sol meuble ou sablonneux.
ETAT DE LA TECHNIQUE ANTERIEURE
Les bandages ou roues flexibles non pneumatiques sont bien connus de l'homme du métier. Ils ont été décrits dans de très nombreux documents brevets, par exemple dans les brevets ou demandes de brevet EP 1 242 254 (ou US 6 769 465), EP 1 359 028 (ou US 6 994 135), EP 1 242 254 (ou US 6 769 465), US 7 201 194, WO 00/37269 (ou US 6 640 859), WO 2007/085414. De tels bandages non pneumatiques, lorsqu'il sont associés à tout élément mécanique rigide destiné à assurer la liaison entre le bandage flexible et le moyeu d'une roue, remplacent l'ensemble constitué par le bandage pneumatique, la jante et le disque tels qu'on les connaît sur la plupart des véhicules routiers actuels. En particulier, le brevet US 7 201 194 précité décrit un bandage non pneumatique, supporté structurellement (sans pression interne), qui a pour caractéristique essentielle de comporter une bande annulaire de renfort qui supporte la charge sur le bandage et une pluralité d'éléments de support ou rayons, à très faible rigidité de compression, qui travaillent en tension pour transmettre les efforts entre la bande annulaire et le moyeu de la roue. Cette bande annulaire (ou bande de cisaillement) comporte deux membranes formées de câblés essentiellement inextensibles, enrobés de caoutchouc naturel ou synthétique, séparées par une couche de cisaillement elle-même en caoutchouc. Le principe de fonctionnement d'une telle bande est que le module de cisaillement de la couche de cisaillement est très nettement inférieur au module en extension des deux membranes, tout en étant suffisant pour pouvoir transmettre correctement les efforts d'une membrane à l'autre et faire travailler ainsi ladite bande en cisaillement. Grâce à cette bande annulaire, il est possible de fabriquer des bandages ou roues non pneumatiques, aptes à rouler dans des conditions sévères ou agressives sans risque aucun de crevaison et sans l'inconvénient de devoir maintenir une pression d'air à l'intérieur du bandage. En outre, comparativement aux bandages non pneumatiques de l'art antérieur, est obtenue ici une pression de contact au sol qui est plus uniformément répartie, d'où un meilleur travail du bandage, une tenue de route et une résistance à l'usure améliorées.
Toutefois, une telle bande de cisaillement en caoutchouc n'est pas dépourvue d'inconvénients.
Tout d'abord, aux températures usuelles d'utilisation, par exemple entre - 30°C et + 40°C, elle est relativement hystérétique, c'est-à-dire qu'une partie de l'énergie fournie pour le roulage est dissipée (perdue) sous forme de chaleur. Ensuite, pour des températures d'utilisation notamment plus basses, comme celles que l'on peut trouver par exemple dans des zones géographiques de type polaires, ou sur la lune, typiquement inférieures à - 50°C voire moins, il est bien connu que le caoutchouc devient rapidement fragile, cassant et donc inutilisable. Sous de telles conditions extrêmes, on comprend d'autre part que des fluctuations plus ou moins larges et rapides de température, combinées par exemple à des contraintes mécaniques relativement élevées, pourraient aussi entraîner des problèmes d'adhésion entre les deux membranes et la couche de cisaillement, avec un risque de flambage localisé de la bande de cisaillement au niveau des membranes et d'endurance finalement dégradée. Par ailleurs, WO2009/ 1 1 5254 décrit une roue élastique non pneumatique, préférentiellement à base de matériau composite, qui permet de pallier au moins en partie les inconvénients précités.
La roue élastique non pneumatique comporte : o un moyeu ;
o une bande annulaire dite de cisaillement comprenant au moins une membrane circonférentielle interne et une membrane circonférentielle externe orientées selon la direction circonférentielle ;
o une pluralité d'éléments de support connectant le moyeu à la membrane circonférentielle interne,
o les deux membranes étant connectées entre elles, en des zones dites zones d'ancrage, par l'intermédiaire d'une série s'étendant dans la direction circonférentielle, de structures cylindriques dites structures cylindriques de connexion non jointives selon la direction circonférentielle ;
o chaque structure cylindrique de connexion comporte une pluralité de cylindres élémentaires, préférentiellement concentriques, ayant leur génératrice orientée selon la direction axiale Y, lesdits cylindres élémentaires étant emboîtés les uns dans les autres et interconnectés entre eux dans chaque zone d'ancrage.
Cette roue élastique non pneumatique de l'invention possède une structure cellulaire déformable, très aérée, qui s'est révélée présenter une résistance élevée aux efforts en flexion et/ou compression et une haute endurance à de tels efforts répétés ou alternés.
Selon un mode de réalisation préférentiel de l'invention, les cylindres élémentaires, constitutifs des structures cylindriques de connexion, sont des cylindres composites comportant des fibres noyées dans une matrice de résine.
En outre, lorsque la bande annulaire de cisaillement complète (c'est-à-dire les deux membranes et les cylindres élémentaires) est constituée d'un matériau composite à base de fibres (en particulier de fibres de verre et/ou de fibres de carbone) noyées dans une résine thermodurcissable du type polyester ou vinylester, cette roue s'est révélée non seulement capable de résister à des températures extrêmement basses mais aussi apte à être utilisée dans un très large gamme de températures s'étendant typiquement de - 250°C jusqu'à + 150°C.
Ainsi, WO2009/115254 décrit une roue élastique non pneumatique composée uniquement de matériaux capables de garder des propriétés élastiques dans un domaine de température allant au minimum d'environ 40 K à 400 K. La mise en œuvre de ces matériaux permet d'utiliser cette roue élastique dans un environnement caractérisé par une plage de température exceptionnelle, comme par exemple dans l'environnement lunaire. Cependant, lors d'utilisations sur des sols meubles ou sablonneux, cette roue est susceptible d'occasionner des problèmes d'enfoncement. Dans de tels cas, on observe des pertes d'efficacité au niveau de la traction exercée par la roue. L'expression P = Gh/R, où P est la pression au sol, G le module de cisaillement effectif, h la hauteur de la bande de cisaillement et R le rayon de la roue, explicite mathématiquement la physique du fonctionnement de cette architecture. On observe que cette formule est indépendante de la largeur de la roue. Ainsi, même en augmentant la largeur de la roue, aucun effet n'est produit sur la pression au sol.
La pression P est reliée aux dimensions de l'aire de contact, qui son gérées par les variables G, h et R. Sur sol meuble, comme par exemple à la surface de la lune, pour assurer une bonne traction, il faut maintenir la pression de contact à un faible niveau pour éviter un glissement par cisaillement de la structure du sol.
Le domaine de variation des variables G, h et R pour diminuer la pression au sol par l'augmentation de l'air de contact en augmentant les valeurs de h et/ou R trouve rapidement ses limites, pour des raisons de poids, de faisabilité ou de tenue à la fatigue des matériaux sous fortes déformations répétées. D'autres types de solutions doivent donc être imaginées.
Pour pallier ces différents inconvénients, l'invention prévoit différents moyens techniques.
EXPOSE DE L'INVENTION
Tout d'abord, un premier obj et de l'invention consiste à prévoir une roue élastique permettant des utilisations dans des conditions extrêmes de températures ;
Un autre objet de l'invention consiste à prévoir une roue élastique permettant d'améliorer la tenue et la traction sur sol meuble ou sablonneux ;
Encore un autre objet de l'invention consiste à prévoir une roue élastique évitant les enfoncements intempestifs lors de roulage sur sols meubles ou sablonneux.
Pour ce faire, l'invention prévoit une roue élastique non pneumatique, définissant trois directions perpendiculaires, circonférentielle X, axiale Y et radiale Z, ladite roue comportant au moins: o un moyeu ;
o une bande annulaire dite de cisaillement comprenant au moins une membrane circonférentielle interne et une membrane circonférentielle externe orientées selon la direction circonférentielle X ;
o une pluralité d'éléments de support connectant le moyeu à la membrane circonférentielle interne,
ladite roue comportant par ailleurs :
o une membrane circonférentielle de contact, flexible, orientée selon la direction circonférentielle X ;
o une pluralité d'éléments de connexion, assurant une liaison de connexion entre la membrane circonférentielle de contact et la bande annulaire de cisaillement.
Grâce à ces caractéristiques, la roue selon l'invention permet d'augmenter la trace au sol sans modifier celle générée par la bande de cisaillement en créant une nouvelle surface de contact capable de distribuer sur une plus grande surface les efforts concentrés dans l'aire de contact générée par la bande de cisaillement.
Selon un mode de réalisation avantageux, cet effet est obtenu d'une manière continue en ajoutant une troisième membrane flexible, mais inextensible, extérieure à celles formant la bande de cisaillement, et attachée à la roue élastique par des rayons de préférence très flexibles en compression, mais rigides en extension.
Selon un autre mode de réalisation avantageux, la membrane circonférentielle de contact comporte des fibres noyées dans une matrice de résine. Les fibres de la membrane circonférentielle de contact sont de préférence des fibres continues, avantageusement unidirectionnelles, et orientées dans la direction circonférentielle X.
Selon encore un autre mode de réalisation avantageux, les fibres de la membrane circonférentielle de contact sont des fibres de verre et/ou des fibres de carbone.
DESCRIPTION DES FIGURES
Tous les détails de réalisation sont donnés dans la description qui suit, complétée par les figures 1 à 4, présentées uniquement à des fins d'exemples non limitatifs, et dans lesquelles: la figure 1A présente une coupe radiale d'un exemple de roue élastique selon l'invention, sans charge;
la figure 1B montre la roue de la figure 1 A soumise à une charge ;
la figure 1C présente une coupe radiale de la portion centrale d'un exemple de roue élastique selon l'invention, sans charge;
la figure 2 présente une coupe transversale d'une portion de la bande annulaire de cisaillement de la roue de la Fig. 1;
la figure 3 présente une vue en perspective de la coupe transversale de la Fig. 2 précédente, représentée à plat pour simplification ;
- la figure 4 montre une vue complète en perspective d'un autre exemple d'une portion centrale d'une roue élastique non pneumatique selon l'invention.
DEFINITIONS
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse.
D'autre part, dans la présente demande, on entend par :
"composite", en parlant d'un matériau ou objet quelconque : un matériau ou objet comportant des fibres, courtes ou continues, enrobées dans une matrice de résine ; "couche" ou "bande" : une feuille ou tout autre élément d'épaisseur relativement faible par rapport à ses autres dimensions, cette couche pouvant être ou non de nature homogène ou cohésive ;
"cylindre", tout cylindre creux (Le., sans fond) au sens le plus large du terme, c'est- à-dire tout objet de forme cylindrique de section droite (orthonormale) quelconque, c'est-à-dire dont le contour définit une ligne fermée sans point d'inflexion (cas par exemple d'une section circulaire, ovale, elliptique) ou avec point(s) d'inflexion ; selon une telle définition, on comprendra que des termes tels que tube, tube cylindrique, portion de tube cylindrique, élément tubulaire, colonne tubulaire, élément cylindrique désignent tous ledit "cylindre" ;
"fibres unidirectionnelles", un ensemble de fibres essentiellement parallèles entre elles, c'est-à-dire orientées selon un même axe ;
- "non pneumatique", en parlant d'une roue ou d'un bandage : une roue ou un bandage conçu(e) pour être capable de porter une charge substantielle sans pression de gonflage, c'est-à-dire ne nécessitant pas un gaz de gonflage tel que l'air pour prendre sa forme utilisable et supporter la charge ; " orienté selon un axe ou une direction" en parlant d'un élément quelconque tel qu'une bande, une fibre ou autre élément de renforcement longiligne, un élément qui est orienté sensiblement parallèlement à cet axe ou cette direction, c'est-à-dire faisant avec cet axe ou cette direction un angle ne s'écartant pas de plus de dix degrés (donc nul ou au plus égal à 10 degrés), préférentiellement pas de plus de cinq degrés ;
"orienté perpendiculairement à un axe ou une direction" : en parlant d'un élément quelconque tel qu'une bande, une fibre ou autre élément de renforcement longiligne, un élément qui est orienté sensiblement perpendiculairement à cet axe ou cette direction, c'est-à-dire faisant avec une perpendiculaire à cet axe ou cette direction un angle ne s'écartant pas de plus de dix degrés, préférentiellement pas de plus de cinq degrés ;
"orienté radialement", en parlant d'un élément de roue (ou de bandage) : orienté selon une direction quelconque passant par l'axe de rotation de la roue (ou du bandage) et sensiblement perpendiculairement à cette direction, c'est-à-dire faisant avec une perpendiculaire à cette direction un angle ne s'écartant pas de plus de dix degrés, préférentiellement pas de plus de cinq degrés ;
"orienté circonférentiellement", en parlant d'un élément de roue (ou de bandage) : orienté sensiblement parallèlement à la direction circonférentielle de la roue (ou du bandage), c'est-à-dire faisant avec cette direction un angle ne s'écartant pas de plus de dix degrés, préférentiellement pas de plus de cinq degrés ;
"produit stratifié", au sens de la classification internationale des brevets : tout produit comportant au moins deux couches ou bandes, de forme plane ou non plane, qui sont liées, connectées entre elles ; l'expression "lié" ou "connecté" doit être interprétée de façon extensive de manière à inclure tous les moyens de liaison ou d'assemblage, par exemple par collage, clouage, rivetage, boutonnage ;
"résine" : toute résine synthétique, de type thermoplastique ou de type thermodurcissable (encore dite pour cette dernière durcissable, polymérisable ou réticulable), et par extension toute composition, formulation à base de ladite résine et comportant en outre un ou plusieurs additifs tels que par exemple un agent durcissant.
DESCRIPTION DETAILLEE DE L'INVENTION
A titre d'exemple, la figure 1C représente de manière très schématique une coupe radiale (Le., dans un plan perpendiculaire à l'axe de rotation Y de la roue) de la portion interne d'une roue élastique non pneumatique (10), supportée structurellement (Le., grâce à une structure porteuse), dont la bande de cisaillement (13) circonférentielle est constituée par un produit stratifié.
Cette roue, définit trois directions perpendiculaires, circonférentielle (X), axiale (Y) et radiale (Z), comporte au moins :
o un moyeu (11) ;
o une bande annulaire dite de cisaillement (13) comprenant au moins une membrane circonférentielle interne (14) et une membrane circonférentielle externe (16) orientées selon la direction circonférentielle X ;
o une pluralité d'éléments de support (12) ou "rayons de roue" connectant le moyeu (11) à la membrane circonférentielle interne (14).
Selon un mode de réalisation avantageux,
o les deux membranes (14, 16) sont connectées entre elles, en des zones (17) dites zones d'ancrage, par l'intermédiaire d'une série (15 A, 15B, 15C ...) s'étendant dans la direction circonférentielle X, de structures cylindriques (15) dites structures cylindriques de connexion non jointives selon la direction X ;
o chaque structure cylindrique de connexion (15) comporte en outre une pluralité de (Le., au moins deux) cylindres élémentaires (15a, 15b), préférentiellement concentriques, ayant leur génératrice orientée selon la direction axiale Y, lesdits cylindres élémentaires étant emboîtés les uns dans les autres et interconnectés (solidarisés) entre eux dans chaque zone d'ancrage (17a, 17b) auxdites membranes interne (14) et externe (16).
En d'autres termes, l'axe (génératrice) des cylindres élémentaires est aligné parallèlement à l'axe Y de rotation de la roue, tout au moins dans la structure de la roue non déformée (au repos).
En dehors des deux zones d'ancrage (zone externe 17a, zone interne 17b) de chaque structure cylindrique de connexion, zones pouvant être également dénommées "zones d'encastrement" ou "zones de connexion", où chaque structure cylindrique de connexion vient s'ancrer, se connecter, directement ou indirectement, aux deux membranes de la bande de cisaillement, les cylindres élémentaires (soit 15a, 15b, ...) constitutifs de chaque structure cylindrique de connexion (15 A, 15B, 15C, ...), avec ou sans jeu entre eux, "travaillent" indépendamment les uns des autres.
L'homme du métier à la lecture de la présente demande comprendra aisément que, au repos, les cylindres élémentaires peuvent être au contact ou non les uns des autres, mais qu'en fonctionnement normal, en dehors desdites zones d'ancrage, ces cylindres élémentaires sont préférentiellement non connectés, non solidarisés entre eux afin qu'ils puissent fonctionner de manière optimale, c'est-à-dire indépendamment l'un de l'autre (dans le cas de deux cylindres élémentaires) ou les uns des autres (dans le cas de plus de deux cylindres élémentaires).
L'emploi de plusieurs (Le., deux ou plus de deux, par exemple trois ou quatre) cylindres élémentaires empilés, notamment concentriques, plutôt que d'un seul cylindre, permet avantageusement, pour une même raideur de la bande de cisaillement, de limiter les contraintes dans la structure cylindrique de connexion et d'augmenter ainsi le déplacement admissible de l'ensemble.
Les cylindres élémentaires (15a, 15b, ...) peuvent être de différentes épaisseurs de l'un à l'autre, ils ont de préférence une forme ovoïde plus ou moins marquée afin d'optimiser (augmenter) la surface de contact desdits cylindres, particulièrement celle du cylindre le plus externe (15a), sur les deux membranes (14, 16) dans les zones d'ancrage respectives (17a, 17b).
Dans le cas par exemple de deux cylindres élémentaires (15a, 15b) par structure cylindrique de connexion, comme illustré par exemple à la figure 1C, on comprendra que le diamètre (i.e., dimension selon l'axe Z) extérieur du cylindre élémentaire interne (15b) est inférieur ou au plus égal au diamètre (dimension selon Z) interne du cylindre élémentaire externe (15a) (celui le plus proche des membranes interne et externe, généralement sensiblement tangent à ces dernières). On préfère que les différents cylindres élémentaires emboîtés les uns dans les autres aient un diamètre (dimension selon l'axe Z) aussi proche que possible d'un cylindre à l'autre, afin d'optimiser l'endurance globale de l'ensemble formant la structure cylindrique de connexion, et finalement celle de la roue de l'invention. La bande de cisaillement (13) de la roue élastique non pneumatique de l'invention forme ainsi une structure creuse, très alvéolée, que l'on peut qualifier de "cellulaire" en ce sens qu'aucune autre matière n'est nécessaire (comme illustré par exemple aux Fig. 2 et 3) entre les deux membranes et les structures cylindriques de connexion (formées de cylindres creux et sans fond, par définition).
Cette structure cellulaire déformable, utilisée comme une poutre élastique non plane, s'est révélée présenter une résistance élevée aux efforts en flexion-compression et une haute endurance à de tels efforts répétés ou alternés, ceci grâce à sa capacité à générer une déformation assimilable à du cisaillement entre ses deux membranes sous l'action de diverses sollicitations en traction, flexion ou compression.
Tel que montré aux figures 1A et 1B, la roue selon l'invention comporte par ailleurs une membrane circonférentielle de contact 2 1 , orientée selon la direction circonférentielle X. Cette membrane forme une bande de roulement externe par rapport à la bande de cisaillement 13. Pour remplir son rôle de bande de roulement, et augmenter la surface de contact 23 avec le sol, la membrane circonférentielle de contact 21 est flexible, de façon à permettre un contact entre la bande de cisaillement 13 et la surface interne de la membrane circonférentielle de contact 21. Ce contact se produit dans la zone sensiblement médiane de la bande de roulement. La figure 1B illustre la longueur de contact de la bande de cisaillement LCBC. La surface de contact ainsi générée évite tout cloquage.
La figure 1B montre également la longueur de contact de la bande de roulement LCBRE produite par l'écrasement de la membrane circonférentielle de contact dans la phase de contact avec le sol. On note bien l'augmentation considérable de la longueur de contact avec le sol en comparant les longueurs LCBRE et LCBC. Cette augmentation permet des gains de surface de contact avec le sol pouvant aller de 50 % à plus de 150 %. De tels gains permettent de diminuer la pression exercée sur le sol. Ceci procure une nette amélioration de la traction exercée par la roue. Dans le cas de sols meubles et/ou sablonneux et/ou instables et/ou peu fermes, la roue selon l'invention permet des gains importants de traction et d'autonomie au véhicule.
Pour assurer la fixation de la membrane circonférentielle de contact à la bande de cisaillement, une pluralité d'éléments de connexion 22 sont répartis circonférentiellement sur le pourtour de la roue et assurent une liaison de connexion entre la membrane circonférentielle de contact 21 et la bande annulaire de cisaillement 13. Dans l'exemple illustré, les éléments de connexion prennent la forme de rayons, ou tiges, de profil sensiblement affiné. Ces éléments de connexion permettent de séparer radialement la bande de roulement de la bande de cisaillement sur le pourtour de la roue, sauf au niveau de la longueur de contact LCBC. Pour remplir cette fonction de maintient, les éléments de connexion 22 sont sensiblement flexibles en compression et sensiblement rigides en traction.
Plus particulièrement, les éléments de connexion sont suffisamment rigides pour procurer une séparation des deux membranes sur la majeur partie du pourtour, mais aussi suffisamment souples pour permettre d'une part le contact entre les deux bandes au niveau de la longueur LCBC mais également pour permettre la création de la longueur de contact de la bande de roulement LCBRE avec le sol. Un excès de rigidité empêcherait le contact au niveau de la zone LCBC, tandis qu'un manque de rigidité empêcherait une bonne séparation des deux bandes le long du reste de la circonférence. De manière avantageuse, tel que montré à la figure 1B, pour éviter un contact direct entre la bande de cisaillement 13 et la surface interne de la membrane circonférentielle de contact, des butées de roulement 24 sont réparties circonférentiellement sur le pourtour externe de la bande de cisaillement. Ces butées sont avantageusement conçues en cuir, afin de résister à des conditions de températures extrêmes. Selon les modes de réalisation, les butées ont une épaisseur pouvant aller d'environ un cm jusqu'à deux cm, ou même plus. Grâce à ces butées, les éléments de connexion 22 sont moins sollicités lors de la phase de mise à plat. Pour former les butées 24, une pluralité de couches de cuir sont posées et fixées les unes par dessus les autres, par collage ou tout moyen équivalent.
En fonctionnement, sous l'effet de la charge, la trace au sol de la bande cisaillement plaque au sol la membrane circonférentielle de contact, qui globalement, grâce à la rigidité en extension des rayons, prend une forme oblongue et allonge de chaque côté la trace au sol de la bande de cisaillement. La distance entre la bande de cisaillement et la membrane extérieure permet d'ajuster le gain en termes de trace au sol. Le contact au niveau du sol entre la bande de cisaillement et la membrane extérieure empêche cette dernière, qui est soumise à un effort de compression, de cloquer. Tel que mentionné précédemment, ce contact est avantageusement établi par l'entremise des butées 24 de roulement.
Tel que décrit plus loin, les matériaux de la membrane circonférentielle de contact 21 et des éléments de connexion 22 sont adéquatement sélectionnés pour permettre d'assurer ces fonctions, tant en mode statique (à l'arrêt du véhicule) qu'en mode dynamique (lors du roulage). Les éléments de connexion 22 sont avantageusement conçus en PET.
Selon un mode de réalisation préférentiel de l'invention, la membrane circonférentielle de contact 21 est en matériau composite, c'est-à-dire comportant des fibres noyées (ou enrobées, les deux étant considérés comme synonymes) dans une matrice de résine. Ce type de matériau procure un potentiel de déformation important dans un domaine purement élastique. Par ailleurs, ces éléments en matériau composite sont particulièrement endurants car ils présentent un comportement purement élastique jusqu'à la rupture, sans déformation plastique, contrairement par exemple à une structure métallique qui pourrait connaître sous très forte déformation un comportement plastique, Le., irréversible, nuisible de manière connue à l'endurance. Enfin, comparativement à une structure en métal, on obtient ainsi une roue plus endurante, et nettement plus légère et résistant en outre à la corrosion.
Dans toute la présente description, sauf précision particulière, le terme "fibre" s'applique à tout type de fibre dont le module de cisaillement est sensiblement plus élevé que le module de cisaillement de la résine, par exemple d'un facteur de préférence supérieur à 15. Ainsi, on utilise avantageusement les fibres de verre, de carbone, les fibres céramiques, et les mélanges de telles fibres.
On préfère utiliser, notamment pour une application à très basse température, des fibres choisies dans le groupe constitué par les fibres de verre, les fibres de carbone et les mélanges de telles fibres. Plus préférentiellement encore, on utilise des fibres de verre.
La résine employée est une résine qui est de préférence thermodurcissable. Il s'agit par exemple d'une résine réticulable par un rayonnement ionisant, tel que par exemple un rayonnement UV- visible émettant de préférence dans un spectre s'étendant de 300 nm à 450 nm, un faisceau d'électrons accélérés ou de rayons X. On peut choisir aussi une composition comprenant une résine réticulable par un peroxyde, la réticulation ultérieure pouvant alors être effectuée, le moment venu, au moyen d'un apport de calories, par exemple par l'action de micro-ondes. De préférence, on utilise une composition du type durcissable par un rayonnement ionisant, la polymérisation finale pouvant être déclenchée et contrôlée aisément au moyen d'un traitement ionisant, par exemple de type UV ou UV-visible.
La résine utilisée, à l'état thermodurci, présente un module en extension (ASTM D 638) qui est préférentiellement au moins égal à 2,3 GPa, plus préférentiellement supérieur à 2,5 GPa, notamment supérieur à 3,0 GPa. Sa température de transition vitreuse (Tg), mesurée par DSC, est préférentiellement supérieure à 130°C, plus préférentiellement supérieure à 140°C.
A titre de résine réticulable, on utilise plus préférentiellement une résine polyester (Le., à base de polyester insaturé) ou une résine vinylester.
Plus préférentiellement encore, on utilise une résine vinylester. On a constaté, de manière surprenante, que certaines résines vinylester résistaient mieux que les autres à des températures extrêmement basses. Un test simple permet de mesurer que la résistance à la flexion d'un composite fibres de verre/ résine vinylester est sensiblement augmentée à très basse température. Ce test consiste à faire une boucle avec un monofilament composite (par exemple, de diamètre 1 mm) et de diminuer le rayon de courbure jusqu'à rupture (bien visible à l'œil nu) de la partie extérieure du monofilament qui est en extension. On s'aperçoit alors, de manière inattendue, que le rayon minimum atteint devient plus petit lorsque la boucle de monofilament a été plongée juste avant dans l'azote liquide (- 196°C). Au test d'immersion ou trempe thermique dans l'azote liquide, on pourra également tester la résine en tant que telle, en privilégiant les résines qui ne fissurent pas lors d'un tel test.
Dans la bande annulaire de cisaillement 13 décrite ci-dessus, les deux membranes et les structures cylindriques de connexion peuvent être constitués de divers matériaux tels que des métaux (par exemple titane, acier, aluminium, alliages métalliques), des polymères ou des matériaux composites. La bande annulaire de cisaillement peut être également de nature hybride, c'est-à-dire constituée de matériaux différents combinés.
Toutefois, selon un mode de réalisation préférentiel de l'invention, les cylindres élémentaires sont des cylindres en matériau composite c'est-à-dire comportant des fibres noyées (ou enrobées, les deux étant considérés comme synonymes) dans une matrice de résine ; plus particulièrement, ce sont à la fois les cylindres élémentaires et les deux membranes qui sont en matériau composite. Grâce à des structures cylindriques de connexion préférentiellement en matériau composite, la bande annulaire de cisaillement présente un potentiel de déformation important dans un domaine purement élastique. De telles structures cylindriques de connexion en matériau composite sont particulièrement endurantes car elles présentent un comportement purement élastique jusqu'à la rupture, sans déformation plastique, contrairement par exemple à une structure métallique qui pourrait connaître sous très forte déformation un comportement plastique, Le., irréversible, nuisible de manière connue à l'endurance. Cette propriété avantageuse s'applique bien entendu également aux membranes (14, 16) lorsque ces dernières sont elles aussi en matériau composite (fibres/ résine).
Comparativement à une structure en métal, on obtient ainsi une structure plus endurante, nettement plus légère (densité du composite proche de 2) et résistant en outre à la corrosion. Les fibres des cylindres élémentaires peuvent être des fibres continues ou des fibres courtes, on préfère utiliser des fibres continues. Pour une meilleure résistance des cylindres, ces fibres sont plus préférentiellement unidirectionnelles et orientées circonférentiellement dans un plan radial (perpendiculaire à l'axe Y). Les cylindres élémentaires travaillent essentiellement en flexion. Selon l'axe circonférentiel de leurs fibres de renforcement, ils présentent un module en extension (ASTM D 638) et en flexion (ASTM D 790) qui sont de préférence supérieurs à 15 GPa, plus préférentiellement supérieurs à 30 GPa, notamment compris entre 30 et 50 GPa.
L'invention s'applique aux cas où les deux membranes pourraient être constituées d'un matériau, par exemple en métal ou en polymère, autre que celui, composite ou non, des cylindres élémentaires.
Toutefois, selon un mode de réalisation préférentiel, les membranes interne (14) et externe (16) (appelées plutôt "semelles" par l'homme du métier dans le domaine des produits stratifiés composites) sont des membranes elles aussi composites comportant des fibres noyées dans une matrice de résine. Ainsi, l'ensemble de la structure de base de la bande annulaire de cisaillement (13), constitué par les deux membranes (14, 16), la série (15 A, 15B, 15C, etc) de structures cylindriques de connexion et leur pluralité de cylindres élémentaires (15a, 15b), est en matériau composite.
Dans la direction X, les deux membranes ou semelles présentent un module en extension (ASTM D 63 8) qui est de préférence supérieur à 1 5 GPa, plus préférentiellement supérieur à 30 GPa (par exemple entre 30 et 50 GPa).
Les structures cylindriques de connexion (15) et/ou les membranes (14, 16), lorsqu'elles sont préférentiellement en matériau composite, peuvent être constituées d'une seule couche filamenteuse ou de plusieurs couches filamenteuses élémentaires superposées dont les fibres sont préférentiellement toutes orientées selon la direction principale X. Dans cette structure multicouches peuvent être intercalées une ou plusieurs autres couches additionnelles de fils croisés, notamment orientés selon l'axe Y (génératrice des cylindres), ceci afin de renforcer la structure latéralement et ainsi, selon un terme consacré dans le métier des composites, équilibrer la structure d'ensemble.
Selon un autre mode de réalisation préférentiel, les structures cylindriques de connexion (15) ont, d'une structure cylindrique à l'autre, un diamètre D (diamètre externe ou dimension selon l'axe Z, tel que représenté aux figures 2 et 3) qui est sensiblement constant selon une direction Z dite radiale, normale à la direction X et à l'axe Y, de manière à maintenir les membranes externe (16) et interne (14) sensiblement (Le., à peu près) équidistantes. Selon un autre mode de réalisation possible de l'invention, les structures cylindriques de connexion (15) peuvent également avoir, d'une structure cylindrique à l'autre, un diamètre D qui est linéairement variable dans la direction principale X, lorsqu'on souhaite une structure dans laquelle la distance entre les deux membranes est susceptible de varier progressivement selon l'axe principal X.
Comme déjà indiqué, la définition des cylindres élémentaires n'étant pas limitée à des cylindres de section droite circulaire, le terme "diamètre" doit être considéré dans la présente demande, de manière extensive, comme la dimension du cylindre (épaisseur comprise) mesurée dans la direction radiale Z.
L'homme du métier saura, en fonction des applications particulières visées, ajuster les dimensions particulières de la bande annulaire de cisaillement, des structures cylindriques de connexion , de leurs cylindres élémentaires et celles des membranes, leur arrangement relatif, aux dimensions de la roue élastique non pneumatique visée. La dimension D par exemple permet d'ajuster la raideur en flexion des structures cylindriques de connexion.
Pour plus de détail, la figure 2 schématise, en coupe transversale (ou radiale), une portion de la bande annulaire de cisaillement (13) de la roue (10) de la figure 1 tandis que la figure 3 donne une vue schématique en perspective de cette même coupe transversale de la figure 2. Dans le cas de la figure 3, pour simplifier le schéma, cette portion de la bande annulaire de cisaillement a été représentée à plat (axe X circonférentiel représenté rectiligne).
Une caractéristique essentielle de la bande annulaire de cisaillement (13) est que ses structures cylindriques de connexion (15 A, 15B, 15C, ...) sont non jointives dans la direction circonférentielle (X) afin qu'elles puissent se déformer et travailler en flexion librement.
De préférence, le rapport d/D est compris entre 0,10 et 0,50, d représentant la distance moyenne, mesurée selon la direction X, entre deux structures cylindriques de connexion consécutives, tel qu'illustré aux Fig. 2 et 3. Par distance moyenne, on entend une moyenne calculée sur l'ensemble des structures cylindriques de connexion (15A, 15B, 15C, ...) présentes dans la bande annulaire de cisaillement (13). Si d/D est inférieur à 0, 10, on risque s'exposer à un certain manque de souplesse en cisaillement de la bande annulaire (13) alors que si d/D est supérieur à 0,50, un manque d'uniformité de la déformation de flexion peut apparaître. Pour ces raisons, le rapport d/D est plus préférentiellement compris dans un domaine d'environ 0, 15 à 0,40. On notera à ce titre que, sur la figure 1 C précédemment commentée, très schématique, les structures cylindriques de connexion (15) et les rayons de roue (12) ont été représentés en nombre relativement réduit comparativement aux modes de réalisation préférentiels de l'invention, ceci dans un simple but de simplification de la figure.
A titre d'exemples préférentiels de structures possibles pour la bande annulaire de cisaillement (13) de la roue élastique non pneumatique (10) selon l'invention, on a au moins une quelconque, plus préférentiellement encore l'ensemble des caractéristiques suivantes qui est vérifié(e) :
- un diamètre D qui est compris entre 10 et 100 mm ;
- une distance moyenne d qui est comprise entre 1 et 50 mm ;
- une largeur Lm des membranes et une largeur Le des structures cylindriques de connexion, mesurées toutes deux dans une direction axiale (parallèle à l'axe Y), qui sont chacune comprises entre 5 et 200 mm ;
- une épaisseur Em des membranes (mesurée selon la direction radiale Z) qui est comprise entre 0,25 et 3 mm ;
- une épaisseur Ec des cylindres élémentaires (mesurée par exemple selon la direction radiale Z) qui est comprise entre 0, 10 et 3 mm.
Ces caractéristiques préférentielles correspondent particulièrement au cas où la roue élastique non pneumatique de l'invention a un diamètre usuel pour une roue, par exemple compris entre 200 et 2000 mm.
Plus préférentiellement, pour les raisons indiquées ci-dessus, on a au moins une quelconque, plus préférentiellement encore l'ensemble des caractéristiques suivantes qui est vérifié(e) : - un diamètre D compris entre 15 et 45 mm ;
une distance moyenne d comprise entre 1,5 et 40 mm (notamment entre 3 et 40 mm, plus particulièrement entre 5 et 15 mm) ;
- une largeur Lm et une largeur Le qui sont chacune comprises entre 20 et 100 mm ;
- une épaisseur Em comprise entre 0,5 et 2 mm.
- une épaisseur Ec comprise entre 0,2 et 2 mm.
Bien entendu, des valeurs D inférieures à 10 mm ou supérieures à 100 mm restent possibles en fonction des diamètres de roues envisagés. Ainsi, à titre d'autres exemples de structures possibles de la bande annulaire de cisaillement de la roue élastique non pneumatique selon l'invention, on a au moins une quelconque, plus préférentiellement encore l'ensemble des caractéristiques suivantes qui est vérifié(e) : un diamètre D compris entre 10 et 100 cm, notamment entre 15 et 45 cm ;
- une distance moyenne d comprise entre 1 et 50 cm, notamment entre 1 ,5 et 40 cm ;
- une largeur Lm et une largeur Le chacune comprises entre 5 et 200 cm, notamment entre 20 et 100 cm ;
- une épaisseur Em comprise entre 0,25 et 3 cm, notamment entre 0,5 et 2 cm ;
- une épaisseur Ec comprise entre 0, 10 et 3 cm, notamment entre 0,2 et 2 cm. Les différentes pièces constitutives de la bande annulaire de cisaillement (13) de la roue élastique non pneumatique (10) de l'invention, en particulier les structures cylindriques de connexion (15) et les membranes interne (14) et externe (16) qui en constituent les pièces de base, peuvent être connectés directement entre elles grâce à des moyens de fixation chimiques, physiques ou mécaniques. A titre d'exemples de tels moyens de fixation directs, on citera par exemple des adhésifs, des rivets, boulons, agrafes, des ligatures ou coutures diverses. Les moyens de fixation mécaniques tels que rivets ou boulons par exemple peuvent être en matériaux divers, tels que métal, alliage métallique, matière plastique ou encore en matériau composite (par exemple à base de fibres de verre et/ou de carbone).
Pour un meilleur ancrage, les structures cylindriques de connexion (15) peuvent aussi pénétrer partiellement dans les membranes externe 16 et/ou interne (14) auxquelles elles sont connectées. Selon un autre mode de réalisation possible, les structures cylindriques de connexion (15) peuvent être connectées indirectement aux membranes externe (16) et interne (14), c'est-à-dire au moyen de pièces d'assemblage intermédiaires. Ces pièces intermédiaires ou "inserts" peuvent prendre différentes formes géométriques, par exemple en forme de parallélépipède, de queue d'aronde, en forme de "I", de "T", de "U" ; elles peuvent être elles-mêmes fixées aux pièces de base (membranes et cylindres élémentaires) par des moyens de fixation tels que ceux décrits ci-dessus. On peut utiliser notamment de tels inserts comme pièces de renfort chaque fois que les efforts supportés sont trop importants, ces inserts pouvant abaisser jusqu'à des taux admissibles les contraintes transmises à la structure composite. Ces inserts sont par exemple en métal, alliage métallique, en matière plastique ou encore en matériau composite (par exemple en fibres de verre et/ou de carbone noyées dans une résine).
Pour éviter, lors de sollicitations dynamiques et répétées, un éventuel risque de frottement ou abrasion, voire de pénétration de corps étrangers entre les cylindres élémentaires adjacents, on peut si besoin intercaler entre ces cylindres élémentaires une couche protectrice et non adhésive (vis-à-vis de ces cylindres) d'un matériau, de préférence à très faible coefficient de frottement afin de ne pas s'opposer au déplacement relatif desdits cylindres élémentaires adjacents et aux propriétés thermiques adaptées, par exemple une couche de polymère (e.g. un polymère fluoré tel que PTFE).
Selon un mode de réalisation particulier, comme représenté par exemple à la figure 3 pour une seule (15C) des structures cylindriques de connexion (pour simplifier le schéma), les structures cylindriques de connexion précédemment décrites pourraient être également renforcées, pour au moins une partie d'entre elles, par au moins un élément de renforcement longiligne (18) dit "renfort radial" (notamment sous forme d'un monofilament ou d'un ruban, par exemple en matériau composite verre-résine) les traversant totalement selon leur diamètre, de manière à s'ancrer dans les membranes externe ( 16) et interne ( 14), parallèlement à une direction Z radiale qui est perpendiculaire à la direction principale X et à la génératrice Y des cylindres élémentaires. Les renfort radiaux (18) travaillent alors comme une poutre qui peut prévenir la déformation des structures cylindriques de connexion (15) perpendiculairement à leur axe Y (génératrice). Par leur raideur en traction et en compression, ils peuvent éviter à la bande annulaire de cisaillement (13) de flamber lorsque la structure composite est soumise aux flexions les plus sévères.
Selon un mode de réalisation particulièrement préférentiel, la bande annulaire de cisaillement de la roue de l'invention est entièrement constituée de fibres de verre et/ou de carbone, plus préférentiellement encore de fibres de verre, noyées dans une matrice de résine vinylester.
Les résines vinylester sont bien connues dans le domaine des matériaux composites. Sans que cette définition soit limitative, la résine vinylester est préférentiellement du type époxyvinylester.
On utilise plus préférentiellement une résine vinylester, notamment du type époxyde, qui au moins pour partie est à base novolaque et/ou bisphénolique (soit préférentiellement une résine vinylester à base novolaque, bisphénolique, ou novolaque et bisphénolique) telle que décrite par exemple dans les demandes EP 1 074 369 et EP 1 174 250 (ou brevet US 6 926 853). Une résine époxyvinylester de type novolaque et bisphénolique a montré d'excellents résultats ; à titre d'exemple, on peut citer notamment les résines vinylester "ATLAC 590" ou ""ATLAC E-Nova FW 2045" de la société DSM (diluées toutes deux avec du styrène). De telles résines époxyvinylester sont disponibles chez d'autres fabricants tels que Reichhold, Cray Valley, UCB.
La bande annulaire de cisaillement peut être avantageusement constituée uniquement de pièces composites, en particulier en fibres de verre noyées dans une résine vinylester.
Les éléments de support (12) encore appelés ici "rayons de roue", préférentiellement à faible rigidité de compression, travaillent en tension pour transmettre les efforts entre la bande de cisaillement annulaire et le moyeu (11) de la roue, comme décrit par exemple dans le brevet US 7 201 194 précité (voir par exemple fig. 7 à fig. 11). Leur épaisseur est typiquement fine relativement à celle des membranes, préférentiellement inférieure à 0,5 mm, plus préférentiellement inférieure à 0,3 mm.
Grâce à leur présence, on favorise une pression de contact au sol uniformément répartie, d'où un meilleur travail de la roue ; ainsi, on évite notamment des points localisés de haute pression et les risques d'enlisement ou d'ensablement qui peuvent aller avec sur des sols instables.
Ces rayons de roue (12) peuvent être en matériaux aussi divers que métal (ou alliages métalliques), polymères ou encore matériaux hybrides, renforcés ou non. A titre d'exemples, on peut citer des polymères tels que des polyuréthanes, des matériaux composites comportant des fibres, notamment de verre et/ou de carbone, imprégnées ou non par une résine. Le module en extension des matériaux utilisés est adapté bien entendu à la charge qui sera supportée par chaque rayon de roue.
En réglant la capacité d'allongement élastique des rayons de roue (ou celle des matériaux les constituant), on peut générer une contre-flèche plus ou moins importante et ainsi ajuster l'empreinte au sol de la roue. Ainsi, préférentiellement, on utilise des rayons de roue présentant un allongement élastique sous traction de quelque %, typiquement de 1 à 5%.
Selon un mode de réalisation préférentiel, notamment pour une utilisation de la roue à basse température, on peut utiliser des rayons de roue qui sont eux-mêmes en matériau composite, comme par exemple un tissu de fibres de verre imprégné PTFE (polytétrafluoroéthylène) ou des couches de fibres de verre continues, unidirectionnelles, noyées dans une matrice de résine vinylester, ou encore un tissu de fibres polyester. Pour la fabrication des différents éléments composites à base de fibres et de résine constitutifs de la roue de l'invention, qu'il s'agisse des cylindres de connexion, le cas échéant des membranes ou des renforts radiaux de cylindres, on peut mettre en œuvre tout procédé approprié pour la fabrication de blocs, nappes, éléments longilignes tels que monofilaments ou rubans. De tels procédés sont largement connus aujourd'hui par l'homme du métier.
La demande de brevet EP 1 174 250 (ou brevet US 6 926 853) a proposé par exemple, après dégazage, d'imprégner un arrangement rectiligne de fibres par de la résine liquide, de faire passer l'imprégné liquide au travers d'une filière calibrée pour imposer par exemple une forme de monofilament de section ronde ou celle d'un ruban, de stabiliser le monofilament ou ruban en aval de la filière par une solidification substantielle de la résine dans une chambre UV de stabilisation, puis d'enrouler le monofilament ou ruban solide (stabilisé) sur un support de forme appropriée, enfin faire cuire le tout dans un moule sous pression afin de solidariser l'ensemble et garantir une résistance élevée au cisaillement.
La demande de brevet WO 2007/085414 a proposé comme alternative d'enrouler directement en continu et en plusieurs couches, sur un support dictant la forme finale du bloc composite, les fibres noyées dans leur résine à l'état liquide pendant tout l'opération de fabrication, pour formation directe d'un bloc composite continu sur ledit support. Une fois le composite "liquide" ainsi formé, on soumet la résine liquide à une polymérisation au moins partielle, par exemple à l'aide d'UV ou d'un traitement thermique, pour stabiliser, solidifier au moins en partie ledit composite avant de le séparer de son support. Le bloc composite ainsi stabilisé, dans lequel la composition de résine est alors, au moins pour partie, en phase solide, peut alors être aisément manipulé, stocké tel quel ou traité immédiatement afin de finir de polymériser la résine (cuisson ou réticulation finale). Ainsi, l'opération de cuisson finale peut être réalisée sous simple pression atmosphérique, "hors moule" (ou "moule ouvert" selon une terminologie reconnue).
La figure 4 montre une vue en perspective d'un autre exemple d'arrangement de la portion interne de la roue non pneumatique (30) dont la bande de cisaillement (13) comporte en quelque sorte plusieurs bandes de cisaillement élémentaires, disposées dans des plans radiaux (Le., perpendiculaires à la direction axiale Y) parallèles. On voit sur cette figure 4 que chaque membrane circonférentielle externe élémentaire (16a, 16b, 16c, 16d) est relativement étroite (largeur axiale égale par exemple à 40 mm, mesurée selon Y) par rapport à la largeur axiale totale de la roue (par exemple égale à 200 mm). La membrane circonférentielle interne (14), peu visible sur cette vue, peut être elle- même constituée d'une seule ou de plusieurs membranes circonférentielles internes élémentaires, par exemple au nombre de deux (par exemple chacune de largeur axiale égale à 80 mm) ou de quatre (par exemple chacune de largeur axiale égale à 40 mm).
Les bandes de cisaillement élémentaires sont ici disposées circonférentiellement l'une par rapport à l'autre de telle manière que leurs structures cylindriques de connexion (15) (largeur égale à 40 mm) soient sensiblement alignés d'une bande de cisaillement élémentaire à l'autre, dans la direction axiale Y. Une telle configuration confère à la roue une plus grande flexibilité axiale et peut fournir un découplage avantageux pour "absorber" plus efficacement un obstacle lors du roulage. Toutefois, selon un autre mode de réalisation possible, les bandes de cisaillement élémentaires pourraient être disposées de telle manière que leurs structures cylindriques de connexion (15) soient disposées en quinconce dans la direction axiale Y, d'une bande de cisaillement élémentaire à l'autre. Selon un tel agencement, une membrane circonférentielle 21 unique, couvrant toute la largeur de la roue peut être utilisée. Selon une variante, de façon similaire à la portion interne de la roue, la membrane circonférentielle est agencée en plusieurs portions disposées côte à côte. Ce même choix de configuration s'offre pour les éléments de connexion 22, qui peuvent être séparés et répartis sur toute la largeur de la roue, ou unitaires, couvrant toute la largeur.
Une bande de roulement, non représentée pour simplification sur les figures, pourrait être éventuellement ajoutée aux roues de l'invention précédemment décrites, disposée radialement au dessus de la membrane circonférentielle de contact 21 lorsque cette dernière n'est pas destinée à un contact direct avec le sol lors du roulage de la roue non pneumatique.
Cette bande de roulement peut être constituée de matériaux aussi divers que métal (ou alliages métalliques), polymères ou encore matériaux hybrides métal-polymère. A titre d'exemples de polymères, on peut citer par exemple des polyesters tels que PET, du PTFE, de la cellulose telle que de la rayonne, des caoutchoucs tels que des caoutchoucs diéniques ou des polyuréthanes. Pour une utilisation à très basse température, on préfère une bande de roulement en métal, ou en polymère autre que caoutchouc. Selon un mode de réalisation préférentiel, la bande de roulement se présente sous la forme d'un tissu tridimensionnel, notamment dans les matériaux précités, dont l'épaisseur est par exemple comprise entre 5 et 20 mm. Selon un autre mode de réalisation préférentiel, le cuir utilisé comme bande de roulement, notamment selon une épaisseur de quelques mm (par exemple 3 à 4 mm), s'est révélé particulièrement performant à très basse température.
Cette bande de roulement peut être fixée à la bande de cisaillement de la roue par divers moyens de fixation tels que décrits supra, par exemple par collage ou boutonnage, voire à l'aide de moyens d'assemblage tels que les inserts précédemment décrits.
La roue élastique non pneumatique de l'invention est utilisable dans tous types de véhicules automobiles, terrestres ou non terrestres, en particulier de véhicules destinés à affronter des conditions de roulage sévères ou agressives, ou des températures extrêmes telles que celles que pourraient rencontrer par exemple des véhicules lunaires, des engins de transport routier, des véhicules hors-la-route tels qu'engins agricoles ou de génie civil, ou tout autre type de véhicules de transport ou de manutention pour lequel l'utilisation d'un matériau élastomérique n'est pas possible ou n'est pas souhaitée.

Claims

REVENDICATIONS
1. Roue él asti que non pneumati que ( 1 0), défini ssant troi s directi ons perpendiculaires, circonférentielle (X), axiale (Y) et radiale (Z), ladite roue comportant au moins :
o un moyeu (11) ;
o une bande annulaire dite de cisaillement (13) comprenant au moins une membrane circonférentielle interne (14) et une membrane circonférentielle externe (16) orientées selon la direction circonférentielle X ;
o une pluralité d'éléments de support ( 12) connectant le moyeu (1 1 ) à la membrane circonférentielle interne (14),
caractérisée en ce qu'elle comporte par ailleurs :
o une membrane circonférentielle de contact (21), flexible, orientée selon la direction circonférentielle X ;
o une pluralité d'éléments de connexion (22), assurant une liaison de connexion entre la membrane circonférentielle de contact (21) et la bande annulaire de cisaillement (13).
2. Roue selon la revendication 1, dans laquelle les éléments de connexion (22) sont sensiblement flexibles en compression et sensiblement rigides en traction.
3. Roue selon l'une des revendications 1 ou 2, dans laquelle la membrane circonférentielle de contact (21) est sensiblement inextensible.
4. Roue selon l'une quelconque des revendications 1 à 3 , dans laquelle la membrane circonférentielle de contact (21) comporte des fibres noyées dans une matrice de résine.
5. Roue selon la revendication 4, dans laquelle les fibres de la membrane circonférentielle de contact (21) sont des fibres continues.
6. Roue selon l'une des revendications 4 ou 5, dans laquelle les fibres de la membrane circonférentielle de contact (21) sont des fibres de verre et/ou des fibres de carbone.
7. Roue selon l'une quelconque des revendications 1 à 6, dans laquelle les deux membranes (14, 16) sont connectées entre elles, en des zones ( 17) dites zones d'ancrage, par l'intermédiaire d'une série (15A, 15B, 15C) s'étendant dans la direction circonférentielle (X), de structures cylindriques (15), dites structures cylindriques de connexion, non jointives selon la direction circonférentielle X, et dans laquelle chaque structure cylindrique de connexion ( 1 5) comporte une pluralité de cylindres élémentaires (15a, 15b) ayant leur génératrice orientée selon la direction axiale Y, lesdits cylindres élémentaires étant emboîtés les uns dans les autres et interconnectés entre eux dans chaque zone d'ancrage (17a, 17b).
8. Roue selon la revendication 7, dans laquelle les cylindres élémentaires (15a, 15b) sont des cylindres concentriques.
9. Roue selon l'une quelconque des revendications précédentes, comportant des butées de roulement (24), positionnées radialement extérieurement à la membrane circonférentielle externe (16) et réparties circonférentiellement le long de cette membrane.
10. Roue selon la revendication 9, dans laquelle les butées (24) de roulement sont en cuir.
PCT/EP2011/065263 2010-09-09 2011-09-05 Roue elastique non pneumatique multietages WO2012032000A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/822,284 US20130233458A1 (en) 2010-09-09 2011-09-05 Multi-Stage Non-Pneumatic Resilient Wheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057154A FR2964597B1 (fr) 2010-09-09 2010-09-09 Roue elastique non pneumatique multietages
FR1057154 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012032000A1 true WO2012032000A1 (fr) 2012-03-15

Family

ID=43733226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065263 WO2012032000A1 (fr) 2010-09-09 2011-09-05 Roue elastique non pneumatique multietages

Country Status (3)

Country Link
US (1) US20130233458A1 (fr)
FR (1) FR2964597B1 (fr)
WO (1) WO2012032000A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015090973A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Renfort multi-composite pour pneumatique
WO2015165777A1 (fr) 2014-04-29 2015-11-05 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2016116457A1 (fr) 2015-01-21 2016-07-28 Compagnie Generale Des Etablissements Michelin Renfort multi-composite verre-résine à propriétés améliorées
WO2016189126A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2016189209A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort multi-composite en verre-resine ameliore
WO2017116481A1 (fr) * 2015-12-31 2017-07-06 Compagnie Generale Des Etablissements Michelin Déformation par cisaillement de rayons de bandage non pneumatique
FR3089996A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
FR3089994A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
CN112770917A (zh) * 2018-10-09 2021-05-07 普利司通美国轮胎运营有限责任公司 具有多个剪切环的非充气轮胎
US11491820B2 (en) 2013-08-01 2022-11-08 Compagnie Generale Des Etablissements Michelin GRC (glass-resin composite) monofilament

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363749B1 (ko) * 2013-01-29 2014-02-14 정상광 미끄럼방지동테
EP3007909A4 (fr) 2013-06-15 2017-03-01 Ronald Thompson Bague annulaire et bandage non pneumatique
WO2015175002A1 (fr) * 2014-05-16 2015-11-19 Compagnie Generale Des Etablissements Michelin Moyeu de roue thermoplastique et pneu non pneumatique
US20160214435A1 (en) 2015-01-27 2016-07-28 Mtd Products Inc Wheel assemblies with non-pneumatic tires
USD792332S1 (en) 2015-06-03 2017-07-18 Mtd Products Inc Non-pneumatic tire
US10899169B2 (en) 2015-01-27 2021-01-26 Mtd Products Inc Wheel assemblies with non-pneumatic tires
CA2976055A1 (fr) 2015-02-04 2016-08-11 Advancing Mobility, Llc. Pneu non pneumatique et autres dispositifs annulaires
USD784917S1 (en) 2015-06-03 2017-04-25 Mtd Products Inc Non-pneumatic tire
US20170008341A1 (en) * 2015-07-10 2017-01-12 Caterpillar Inc. Non-pneumatic tire including shear module
US20170008342A1 (en) * 2015-07-10 2017-01-12 Caterpillar Inc. Non-pneumatic tire including shear band
US9731556B2 (en) * 2015-08-28 2017-08-15 Caterpillar, Inc. Non-pneumatic tire including support members having tension member
WO2017106723A1 (fr) * 2015-12-16 2017-06-22 Thompson Ronald H Roue comprenant un pneu non pneumatique
CA3008828A1 (fr) * 2015-12-16 2017-06-22 Ronald H. Thompson Systeme de chenille pour la traction d'un vehicule
WO2018112650A1 (fr) * 2016-12-21 2018-06-28 Camso Inc. Roue comprenant un pneu non pneumatique
WO2018227276A1 (fr) 2017-06-15 2018-12-20 Camso Inc. Roue équipée d'un pneu non pneumatique
EP3648984B1 (fr) * 2017-07-06 2023-08-30 Compagnie Générale des Etablissements Michelin Roue non-pneumatique avec des rayons de polyamide
FR3130201A1 (fr) 2021-12-14 2023-06-16 Compagnie Generale Des Etablissements Michelin Pneumatique sans air avec une bande de cisaillement optimisée

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037269A1 (fr) 1998-12-18 2000-06-29 Conception Et Developpement Michelin S.A. Bandage flexible utilisable de facon non pneumatique
EP1074369A1 (fr) 1999-08-04 2001-02-07 Conception et Développement Michelin S.A. Procédé de fabrication de pièces en composite fortement sollicitées
EP1174250A1 (fr) 2000-07-17 2002-01-23 Conception et Développement Michelin S.A. Imprégnation en continu de fibres en grandes longueurs, par de la résine, pour la fabrication d'éléments composites longilignes
EP1242254A1 (fr) 1999-12-10 2002-09-25 Michelin Recherche Et Technique S.A. Pneumatique souple a support structurel
EP1359028A1 (fr) 2002-04-29 2003-11-05 Conception et Développement Michelin S.A. Bandage flexible non pneumatique
EP1378377A2 (fr) * 2002-07-01 2004-01-07 Technology Investments Limited Une roue légère élastique
US7201194B2 (en) 2001-08-24 2007-04-10 Michelin Recherche Et Technique S.A. Non-pneumatic tire
WO2007085414A1 (fr) 2006-01-27 2007-08-02 Michelin Recherche Et Technique S.A. Procede de fabrication d’un anneau composite
WO2008041927A1 (fr) * 2006-10-04 2008-04-10 Sesyk Ab Roue absorbant les chocs
FR2909035A1 (fr) * 2006-11-24 2008-05-30 Delsey Sa Roue a amortissement radial
WO2009115254A1 (fr) 2008-03-19 2009-09-24 Societe De Technologie Michelin Produit stratifie composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US739053A (en) * 1902-11-28 1903-09-15 Louis Biava Vehicle-wheel.
US891169A (en) * 1907-06-19 1908-06-16 Frank J C Krahn Spring-tire.
US5360500A (en) * 1986-11-20 1994-11-01 Dunlop Limited Method of producing light-weight high-strength stiff panels
TW467940B (en) * 1997-10-14 2001-12-11 Toray Industries Thermosetting resin composition for carbon-fiber reinforced composite material
US7013939B2 (en) * 2001-08-24 2006-03-21 Michelin Recherche Et Technique S.A. Compliant wheel
EP2170625A4 (fr) * 2007-06-29 2012-05-30 Michelin Soc Tech Bande de cisaillement élastique à éléments cylindriques

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640859B1 (en) 1998-12-18 2003-11-04 Conception Et Developpement Michelin S.A. Non-pneumatic resilient tire
WO2000037269A1 (fr) 1998-12-18 2000-06-29 Conception Et Developpement Michelin S.A. Bandage flexible utilisable de facon non pneumatique
EP1074369A1 (fr) 1999-08-04 2001-02-07 Conception et Développement Michelin S.A. Procédé de fabrication de pièces en composite fortement sollicitées
EP1242254A1 (fr) 1999-12-10 2002-09-25 Michelin Recherche Et Technique S.A. Pneumatique souple a support structurel
US6769465B2 (en) 1999-12-10 2004-08-03 Michelin Recherche Et Technique, S.A. Structurally supported resilient tire
US6926853B2 (en) 2000-07-17 2005-08-09 Conception Et Developpement Michelin S.A. Continuous impregnation of long fibers with resin for manufacturing elongate composite elements
EP1174250A1 (fr) 2000-07-17 2002-01-23 Conception et Développement Michelin S.A. Imprégnation en continu de fibres en grandes longueurs, par de la résine, pour la fabrication d'éléments composites longilignes
US7201194B2 (en) 2001-08-24 2007-04-10 Michelin Recherche Et Technique S.A. Non-pneumatic tire
US6994135B2 (en) 2002-04-29 2006-02-07 Conception Et Developpement Michelin S.A. Flexible non-pneumatic tire
EP1359028A1 (fr) 2002-04-29 2003-11-05 Conception et Développement Michelin S.A. Bandage flexible non pneumatique
EP1378377A2 (fr) * 2002-07-01 2004-01-07 Technology Investments Limited Une roue légère élastique
WO2007085414A1 (fr) 2006-01-27 2007-08-02 Michelin Recherche Et Technique S.A. Procede de fabrication d’un anneau composite
WO2008041927A1 (fr) * 2006-10-04 2008-04-10 Sesyk Ab Roue absorbant les chocs
FR2909035A1 (fr) * 2006-11-24 2008-05-30 Delsey Sa Roue a amortissement radial
WO2009115254A1 (fr) 2008-03-19 2009-09-24 Societe De Technologie Michelin Produit stratifie composite

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491820B2 (en) 2013-08-01 2022-11-08 Compagnie Generale Des Etablissements Michelin GRC (glass-resin composite) monofilament
WO2015090973A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Renfort multi-composite pour pneumatique
US10259266B2 (en) 2014-04-29 2019-04-16 Compagnie Generale Des Etablissements Michelin Multi-composite planar reinforcement
WO2015165777A1 (fr) 2014-04-29 2015-11-05 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2016116457A1 (fr) 2015-01-21 2016-07-28 Compagnie Generale Des Etablissements Michelin Renfort multi-composite verre-résine à propriétés améliorées
WO2016189209A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort multi-composite en verre-resine ameliore
US10994573B2 (en) 2015-05-28 2021-05-04 Compagnie Generale Des Etablissements Michelin Multi-composite planar reinforcement
WO2016189126A1 (fr) 2015-05-28 2016-12-01 Compagnie Generale Des Etablissements Michelin Renfort plat multi-composite
WO2017117606A1 (fr) * 2015-12-31 2017-07-06 Compagnie General Des Etablissements Michelin Rayons de pneu non pneumatique à déformation par cisaillement
CN108602381A (zh) * 2015-12-31 2018-09-28 米其林集团总公司 剪切变形非充气轮胎辐条
WO2017116481A1 (fr) * 2015-12-31 2017-07-06 Compagnie Generale Des Etablissements Michelin Déformation par cisaillement de rayons de bandage non pneumatique
CN108602381B (zh) * 2015-12-31 2021-12-10 米其林集团总公司 剪切变形非充气轮胎辐条
CN112770917A (zh) * 2018-10-09 2021-05-07 普利司通美国轮胎运营有限责任公司 具有多个剪切环的非充气轮胎
FR3089996A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
FR3089994A1 (fr) 2018-12-18 2020-06-19 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
WO2020128288A1 (fr) 2018-12-18 2020-06-25 Compagnie Generale Des Etablissements Michelin Composition de résine comprenant un agent de réticulation spécifique
WO2020128289A1 (fr) 2018-12-18 2020-06-25 Compagnie Generale Des Etablissements Michelin Composition de resine comprenant un agent de reticulation specifique

Also Published As

Publication number Publication date
FR2964597A1 (fr) 2012-03-16
US20130233458A1 (en) 2013-09-12
FR2964597B1 (fr) 2012-08-31

Similar Documents

Publication Publication Date Title
EP2265446B1 (fr) Roue elastique non pneumatique
WO2012032000A1 (fr) Roue elastique non pneumatique multietages
EP2257424B1 (fr) Produit stratifie composite
EP2195158B1 (fr) Produit stratifie composite
WO2009033620A1 (fr) Roue élastique non pneumatique
EP3519206B1 (fr) Roue élastique non pneumatique
EP1192054B1 (fr) Appui de securite allege pour pneumatique
EP1056604B1 (fr) Bandage flexible utilisable de facon non pneumatique
EP3247574B1 (fr) Dispositif de type pneumatique pour vehicule
EP2021192A1 (fr) Bande de cisaillement amelioree
EP3724002A1 (fr) Roue non-pneumatique
EP3519182B1 (fr) Produit stratifié à base de caoutchouc silicone et de composite fibre-résine
WO2016139005A1 (fr) Pneumatique ayant une bande de roulement renforcee
WO2018020163A1 (fr) Dispositif de type pneumatique pour vehicule
WO2017137706A1 (fr) Pneumatique ayant une bande de roulement renforcee
WO2023110657A1 (fr) Pneumatique sans air avec une bande de cisaillement optimisée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11751907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13822284

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11751907

Country of ref document: EP

Kind code of ref document: A1