WO2012031811A1 - Batteriesystem - Google Patents

Batteriesystem Download PDF

Info

Publication number
WO2012031811A1
WO2012031811A1 PCT/EP2011/062406 EP2011062406W WO2012031811A1 WO 2012031811 A1 WO2012031811 A1 WO 2012031811A1 EP 2011062406 W EP2011062406 W EP 2011062406W WO 2012031811 A1 WO2012031811 A1 WO 2012031811A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
conducting plate
heat
cell housing
Prior art date
Application number
PCT/EP2011/062406
Other languages
English (en)
French (fr)
Inventor
Christian Pankiewitz
Ralf Angerbauer
Holger Fink
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP11743216.1A priority Critical patent/EP2614551A1/de
Publication of WO2012031811A1 publication Critical patent/WO2012031811A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery system comprising at least two battery cells and a heat conducting plate, wherein the at least two battery cells are arranged together on one side of the heat conducting plate for heat exchange between the cell housings and the heat conducting plate.
  • Such a battery system is disclosed for example in DE 602 08 862 T2.
  • the battery cells are designed as prismatic battery cells and arranged in the form of a battery cell stack on the heat conducting plate.
  • a plurality of battery cells are received by an outer battery housing.
  • the purpose of the battery housing is to ensure a good heat exchange between the heat conducting plate and the cell housings of the battery cells.
  • the battery housing encloses the battery cells received by him over a large area.
  • a battery case includes a heat transmitting member having protruding, tab-shaped ends. In the assembled state, these tab-shaped ends abut against the heat-conducting plate and ensure the heat exchange between the cell casing and the heat-conducting plate.
  • the invention relates to a battery system comprising at least two battery cells and a heat conducting plate, each battery cell having a thermally conductive cell housing, wherein the battery cells together on a Side of the heat conducting plate for the purpose of heat exchange between the cell housings and the heat conducting plate are arranged.
  • the battery cells are arranged together on one side of the heat-conducting for the purpose of heat exchange between the cell housings and the heat conducting plate such that the heat exchange between the cell housings and the heat conducting in each case at least 50% directly between the heat conducting and a heat conducting plate opposite underside of the cell housing.
  • the cell housing of a battery cell is characterized in that it includes an electrolyte used for the power generation of the battery cell.
  • the battery system according to the invention makes it possible to dispense with additional means, which promote the heat exchange between cell housings of the battery cells and the heat conducting plate, in particular on heat conducting elements which are arranged between the battery cells or the battery cell cell housings and connected to the heat conducting plate.
  • additional means which promote the heat exchange between cell housings of the battery cells and the heat conducting plate, in particular on heat conducting elements which are arranged between the battery cells or the battery cell cell housings and connected to the heat conducting plate.
  • the heat exchange between the cell housings and the heat-conducting plate can optionally take place completely directly between the undersides of the cell housing and the heat-conducting plate.
  • the structure of the invention allows a considerable simplification of the battery system. Due to this, a battery system according to the invention has cost advantages and can be made compact and efficient.
  • the battery cells are designed as prismatic battery cells.
  • the cell housings may each have at least three, in particular four, side walls, in addition to the underside and one upper side, in particular parallel to the underside.
  • one or more side walls of the cell housing of each battery cell can be made thicker than would be required to meet the mechanical requirements. This has the advantage that heat generated within the battery cells is supplied to an increased extent via the thicker side walls of the underside of the cell housing, from where the heat is then passed directly to the heat conducting plate.
  • At least one, in particular two, side wall of a cell housing has a wall thickness which is greater than the wall thickness of the underside of the same cell housing and / or greater than the wall thickness of another side wall of the same cell housing and / or larger than that
  • Wall thickness of the top of the same cell housing is. This has the advantage that the heat exchange from the cell interior to the side wall, from the side wall to the bottom and thus also to the heat plate is improved. Thus, advantageously, temperature gradients in the cell interior can be reduced, whereby the weight of the battery system can be kept low.
  • adjacent sidewalls of adjacent cell housings of adjacent battery cells have a greater wall thickness than the bottoms and / or tops and / or other sidewalls of the cell housings of the battery cells.
  • the heat exchange between adjacent battery cells can be improved and thus temperature gradients within the battery system can be reduced.
  • Sidewalls that are not adjacent to other cell housings may have a wall thickness that is less than or equal to the wall thickness of the underside of the cell housing. This has the advantage that the weight of the cell housing and thus of the battery system can be reduced.
  • the cell housings can each have two large-area, parallel side walls and two small-area, mutually parallel side walls.
  • at least one large-area side wall of a cell housing adjacent to a large-scale side wall of a cell housing be arranged an adjacent battery cell.
  • the large-area side walls of a cell housing have a greater wall thickness than the underside and / or top and / or the small-area side walls of the same cell housing. In this way, temperature gradients can be improved both within a battery cell and within the battery system.
  • the wall thicknesses of the cell housing may, for example, in a range of 0.3 mm to 4 mm, in particular in the range of 0.6 mm to 1, 4 mm lie.
  • the cell casings each preferably have a thermal conductivity ⁇ of at least 40 W / mK, in particular of at least 120 W / mK, for example up to 400 W / mK.
  • the cell housings are preferably metallic housings.
  • the cell housing made of aluminum or copper, in particular aluminum, may be formed.
  • a heat conducting means preferably a fluidic thermal conduction, for example a thermal grease, is provided.
  • a fluidic thermal conduction for example a thermal grease
  • the battery cells In order to attach the battery cells to the heat-conducting plate, the battery cells preferably each have at least one fastening strap, via which the respective battery cell is fastened to the heat-conducting plate.
  • an electrical insulating means is preferably arranged between two adjacent battery cells.
  • the heat-conducting plate may be part of a tempering device or be connectable to such a tempering device.
  • a tempering device can be, for example, a coolant system via which the battery cells can be cooled.
  • Fig. 1 is a schematic perspective view of a single battery cell
  • FIG. 2 shows a schematic, perspective view of a first embodiment of a battery system according to the invention
  • FIG. 3 shows a schematic cross section through the battery system shown in FIG. 2;
  • FIG. 4 is a schematic view of the battery system shown in FIG. 2 connected to a coolant system; FIG. and
  • Fig. 5 is a schematic, perspective view of a section of a
  • FIG. 2 shows a perspective view of an embodiment of a battery system 1 according to the invention.
  • the battery system 1 comprises a plurality of battery cells 2 and a heat-conducting plate 4.
  • the battery cells 2 are designed as prismatic battery cells and, aligned parallel to each other, arranged on the heat-conducting plate 4 in the form of a battery cell stack. In particular, the battery cells 2 are aligned perpendicular to the surface of the heat conducting plate 4.
  • the heat-conducting plate 4 is formed in this embodiment as a support plate, in particular as a bottom plate for the battery cells 2.
  • the heat-conducting plate 4 preferably consists of a nem material which has a high thermal conductivity, for example aluminum or copper.
  • FIG. 1 shows a single prismatic battery cell 2.
  • the battery cell 2 comprises two contacts 11, via which a voltage provided by the battery cell 2 can be tapped or via which the battery cell 2, in the case of an accumulator cell, can also be charged can.
  • the battery cell 2 comprises a cell housing 3, which encloses an electrolyte not shown here in detail and two electrodes in its housing interior.
  • the cell housing 3 is plate-shaped and comprises a small-area underside 12c, a small surface 12d lying parallel to the underside 12c, two surface-parallel side walls 12e, 12f and two plane-parallel opposite, large-area side walls 12a, 12b.
  • the battery cells 2 are arranged on the heat-conducting plate 4 such that the side surface opposite the contacts 11, the underside 12c of the cell housing 3, is opposite the surface of the heat-conducting plate 4.
  • the bases 12a, 12b of adjacent battery cells 2 are directly adjacent to each other.
  • each battery cell 3 comprises lateral tabs 7a,
  • a heat-conducting agent 6 may be applied in order to reduce the heat-transfer resistance between the cell housing 3 and the heat-conducting plate 4.
  • the heat-conducting medium is preferably a fluid, for example a thermal paste.
  • the cell casing 3 preferably has a thermal conductivity ⁇ of at least 40 W / mK.
  • the cell housing 3 of each battery cell 2 is in this embodiment, a metallic housing, for example made of aluminum.
  • the wall thickness of the cell housing 3 may for example have a value in the range of 0.3 mm to 4 mm. Although the highest possible wall thickness is advantageous for the heat conduction, it has disadvantages with regard to the weight and the dimensioning of the battery cell 2.
  • the battery system 2 comprises a tensioning device for clamping the battery cells 2.
  • a tensioning device for clamping the battery cells 2.
  • the battery cells 2 By clamping the battery cells 2, arrows P which characterize the pressure in FIG. 2, the battery cells 2 are pressed against one another on their large-area side walls 12a, 12b. In this way, the heat exchange between adjacent battery cells 2 can be increased. In this way, a temperature compensation between the individual battery cells 2 can be promoted.
  • the clamping pressure generated by the clamping device is preferably matched to the thermal expansion of the battery cells 2, that it remains maintained throughout the temperature working range of the battery system.
  • Fig. 2 as a possible embodiment of such a clamping device part of a clamping frame.
  • the clamping device may for example also be designed by an elastic strap.
  • the heat exchange between the battery cells 2 and the heat conducting plate 4 takes place for the most part, ie at least 50%, directly between the heat conducting plate 4 and the heat conducting plate 4 opposite underside 12c of each cell housing 3 of the battery cells 2.
  • the heat generated within the battery cells 2 heat can flow directly through the bottom 12c in the direction of heat conduction plate 4, or indirectly via the adjacent side walls and in particular the large-area side walls 12a, 12b initially the bottom 12c are fed, and are directed from there directly to the heat conducting 4.
  • FIG. 4 shows a perspective view of the battery system 1, which is connected to a tempering device 13.
  • the tempering device 13, here a coolant system, serves to dissipate heat stored in the heat conduction plate 4 heat.
  • the temperature device 13 which is shown in fragmentary form in FIG. 4, comprises a temperature-control plate 15.
  • the temperature-control plate 15 comprises a channel structure (not shown in detail here) running inside the temperature-control plate 15, through which a temperature control medium flows via an input 14a and an output 14b , in particular a cooling medium, can be passed therethrough. By passing a tempering medium, an effective temperature control of the temperature control plate 15 can take place.
  • the heat-conducting plate 4 of the battery system 1 is placed over a large area on the temperature-control plate 15, so that a good thermal contact is present between the heat-conducting plate 4 and the temperature-control plate 15. In this way, heat generated by the individual battery cells 2 of the battery system 1 can be dissipated effectively via the heat-conducting plate 4 through the tempering device 13. In this sense, the heat-conducting plate 4 serves as an "interface" between the battery cells 2 and the tempering device 13.
  • the heat-conducting plate 4 itself may be formed with means which allow an effective temperature control of the heat-conducting plate 4, for example with its own channel structure for the passage of a temperature control or with temperature control ribs.
  • the cell housing 3 of a battery cell 2 is designed to be electrically insulated from the electrical contacts 11.
  • one of the contacts 1 1 may be electrically connected to the cell housing 3.
  • an electrical insulating means 8 is arranged, see Fig. 5.
  • Such an insulating means 8 for example in the form of a non-metallic layer, for example by a silicone rubber film, preferably with a glass fiber fabric insert, a mica, a Ceramic disc, a silicone mat and / or be performed by a plastic film.
  • a thermal conductivity of the insulating means 8 is preferred for the purpose of heat exchange between adjacent battery cells 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die Erfindung betrifft ein Batteriesystem, welches mindestens zwei Batteriezellen (2) und eine Wärmeleitplatte (4) umfasst, wobei jede Batteriezelle (2) ein wärmeleitendes Zellengehäuse (3) aufweist, wobei die Batteriezellen (2) gemeinsam auf einer Seite der Wärmeleitplatte (4) zwecks Wärmeaustauschs zwischen den Zellengehäusen (3) und der Wärmeleitplatte (4) derart angeordnet sind, dass der Wärmeaustausch zwischen den Zellengehäusen (3) und der Wärmeleitplatte (4) jeweils zu mindestens 50 % direkt zwischen Wärmeleitplatte (4) und einer der Wärmeleitplatte (4) gegenüberliegenden Unterseite (12c) des Zellengehäuses (3) erfolgt.

Description

Beschreibung
Titel
Battenesystem
Die Erfindung betrifft ein Batteriesystem, das mindestens zwei Batteriezellen und eine Wärmeleitplatte umfasst, wobei die mindestens zwei Batteriezellen gemeinsam auf einer Seite der Wärmeleitplatte zwecks Wärmeaustausches zwischen den Zellengehäusen und der Wärmeleitplatte angeordnet sind.
Stand der Technik
Ein derartiges Batteriesystem offenbart beispielsweise die DE 602 08 862 T2. Die Batteriezellen sind als prismatische Batteriezellen ausgebildet und in Form eines Batteriezellenstapels auf der Wärmeleitplatte angeordnet. Hierbei sind mehrere Batteriezellen von einem äußeren Batteriegehäuse aufgenommen. Das Batteriegehäuse hat den Zweck, einen guten Wärmeaustausch zwischen der Wärmeleitplatte und den Zellengehäusen der Batteriezellen zu gewährleisten. Das Batteriegehäuse umschließt die von ihm aufgenommenen Batteriezellen großflächig. Um auch einen guten Wärmekontakt zwischen der Wärmeleitplatte und einem Batteriegehäuse zu gewährleisten, umfasst ein Batteriegehäuse ein Wärmeübertragungsteil mit hervorstehenden, laschenförmigen Enden. Im montierten Zustand liegen diese laschenförmigen Enden an der Wärmeleitplatte an und sorgen für den Wärmeaustausch zwischen dem Zellengehäuse und der Wärmeleitplatte.
Offenbarung der Erfindung
Gegenstand der Erfindung ist ein Batteriesystem, das mindestens zwei Batterie- zellen und eine Wärmeleitplatte umfasst, wobei jede Batteriezelle ein wärmeleitendes Zellengehäuse aufweist, wobei die Batteriezellen gemeinsam auf einer Seite der Wärmeleitplatte zwecks Wärmeaustauschs zwischen den Zellengehäusen und der Wärmeleitplatte angeordnet sind. Insbesondere sind die Batteriezellen gemeinsam auf einer Seite der Wärmeleitplatte zwecks Wärmeaustauschs zwischen den Zellengehäusen und der Wärmeleitplatte derart angeordnet, dass der Wärmeaustausch zwischen den Zellengehäusen und der Wärmeleitplatte jeweils zu mindestens 50 % direkt zwischen Wärmeleitplatte und einer der Wärmeleitplatte gegenüberliegenden Unterseite des Zellengehäuses erfolgt.
In diesem Zusammenhang heißt„direkt", dass der Wärmeaustausch zwischen der Wärmeleitplatte und der Unterseite des Zellengehäuses unmittelbar durch
Kontakt der Wärmeleitplatte und der Unterseite des Zellengehäuses oder mittelbar über ein zwischen Wärmeleitplatte und der Unterseite des Zellengehäuses angeordnetens Wärmeleitmittel, beispielsweise eine Wärmeleitpaste, erfolgt. Insbesondere kann der Anteil des Wärmeaustauschs direkt zwischen Unterseite des Zellengehäuses und Wärmeleitplatte mindestens 70%, beispielsweise mindestens 90 %, des Gesamtwärmeaustauschs zwischen dem Zellengehäuse und der Wärmeleitplatte betragen. Das Zellengehäuse einer Batteriezelle ist dadurch gekennzeichnet, dass es einen für die Stromerzeugung verwendeten Elektrolyten der Batteriezelle einschließt.
Das erfindungsgemäße Batteriesystem erlaubt es, auf zusätzliche Mittel, die den Wärmeaustausch zwischen Zellengehäusen der Batteriezellen und der Wärmeleitplatte fördern, insbesondere auf Wärmeleitelemente, die zwischen den Batteriezellen beziehungsweise den Batteriezellen-Zellengehäusen angeordnet und mit der Wärmeleitplatte verbunden sind, zu verzichten. Insofern auf derartige Wärmeleitelemente verzichtete wird, kann der Wärmeaustausch zwischen den Zellengehäusen und der Wärmeleitplatte gegebenenfalls vollständig direkt zwischen den Unterseiten der Zellengehäuse und der Wärmeleitplatte erfolgen. Insgesamt ermöglicht der erfindungsgemäße Aufbau eine erhebliche Vereinfachung des Batteriesystems. Aufgrund dessen hat ein erfindungsgemäßes Batteriesystem Kostenvorteile und kann kompakt und leistungsfähig ausgeführt werden.
Vorzugsweise sind die Batteriezellen als prismatische Batteriezellen ausgeführt. Die Zellengehäuse können insbesondere jeweils - neben der Unterseite und einer, insbesondere zur Unterseite parallelen, Oberseite - mindestens drei, insbesondere vier, Seitenwände aufweisen. Insbesondere können dabei eine oder mehrere Seitenwände des Zellengehäuses jeder Batteriezelle dicker ausgeführt sein, als dies zur Erfüllung der mechanischen Anforderungen erforderlich wäre. Dies hat den Vorteil, dass innerhalb der Batteriezellen erzeugte Wärme in erhöhtem Maße über die dicker ausgeführten Seitenwände der Unterseite des Zellengehäuses zugeleitet wird, von wo die Wärme anschließend direkt zur Wärmeleit- platte geleitet wird.
Vorzugsweise weist mindestens eine, insbesondere zwei, Seitenwand eines Zellengehäuses eine Wandstärke auf, die größer als die Wandstärke der Unterseite desselben Zellengehäuses und/oder die größer als die Wandstärke von einer anderen Seitenwand desselben Zellengehäuses und/oder die größer als die
Wandstärke der Oberseite desselben Zellengehäuses ist. Dies hat den Vorteil, dass der Wärmeaustausch vom Zellinneren mit der Seitenwand, von der Seitenwand mit der Unterseite und damit auch mit der Wärmeplatte verbessert wird. So können vorteilhafterweise Temperaturgradienten im Zellinneren verringert wer- den, wobei das Gewicht des Batteriesystems gering gehalten werden kann.
Vorzugsweise weisen benachbarte Seitenwände von benachbarten Zellengehäusen von benachbarten Batteriezellen eine größere Wandstärke als die Unterseiten und/oder Oberseiten und/oder anderen Seitenwände der Zellengehäuse der Batteriezellen auf. Auf diese Weise kann zusätzlich der Wärmeaustausch zwischen benachbarten Batteriezellen verbessert und damit Temperaturgradienten innerhalb des Batteriesystems verringert werden. Seitenwände, welche nicht zu anderen Zellengehäusen benachbart sind, können eine Wandstärke aufweisen, welche kleiner oder gleich der Wandstärke der Unterseite des Zellengehäu- ses ist. Dies hat den Vorteil, dass das Gewicht des Zellengehäuses und damit des Batteriesystems verringert werden kann.
Insbesondere können die Zellengehäuse jeweils zwei großflächige, zueinander parallele Seitenwände und zwei kleinflächige, zueinander parallele Seitenwände aufweisen. Dabei kann mindestens eine großflächige Seitenwand eines Zellengehäuses benachbart zu einer großflächigen Seitenwand eines Zellengehäuses einer benachbarten Batteriezelle angeordnet sein. Vorzugsweise weisen dabei die großflächigen Seitenwände eines Zellengehäuses eine größere Wandstärke auf als die Unterseite und/oder Oberseite und/oder die kleinflächigen Seitenwände desselben Zellengehäuses. Auf diese Weise können Temperaturgradienten sowohl innerhalb einer Batteriezelle als auch innerhalb des Batteriesystems verbessert werden.
Die Wandstärken der Zellengehäuse können beispielsweise in einem Bereich von 0,3 mm bis 4 mm, insbesondere im Bereich von 0,6 mm bis 1 ,4 mm, liegen.
Um einen guten Wärmeaustausch zwischen Wärmeleitplatte und Zellengehäuse der Batteriezellen zu gewährleisten, weisen die Zellengehäuse jeweils vorzugsweise eine Wärmeleitfähigkeit λ von mindestens 40 W/mK, insbesondere von mindestens 120 W/mK, beispielsweise bis 400 W/mK, auf. Die Zellengehäuse sind bevorzugt metallische Gehäuse. Beispielsweise können die Zellengehäuse aus Aluminium oder Kupfer, insbesondere Aluminium, ausgebildet sein.
Vorzugsweise ist zwischen den Zellengehäusen, insbesondere den Unterseiten der Zellengehäuse, und der Wärmeleitplatte jeweils zumindest bereichsweise, beispielsweise vollflächig, ein Wärmeleitmittel, vorzugsweise ein fluidisches Wärmeleitmittel, beispielsweise eine Wärmeleitpaste, vorgesehen. So kann vorteilhafterweise der Wärmeübergangswiderstand zwischen der Unterseite des Zellengehäuses und der Wärmeleitplatte verringert werden.
Um die Batteriezellen an der Wärmeleitplatte zu befestigen, weisen die Batteriezellen vorzugsweise jeweils mindestens eine Befestigungslasche auf, über die die jeweilige Batteriezelle an der Wärmeleitplatte befestigt ist.
Insofern das Zellengehäuse nicht gegen die Kathode und Anode elektrisch isoliert ist, ist vorzugsweise zwischen zwei benachbarten Batteriezellen ein elektrisches Isoliermittel angeordnet.
Die Wärmeleitplatte kann Bestandteil einer Temperiereinrichtung sein oder mit einer derartigen Temperiereinrichtung verbindbar sein. Eine derartige Temperiereinrichtung kann beispielsweise ein Kühlmittelsystem sein, über das die Batteriezellen gekühlt werden können. Weitere vorteilhafte Ausführungsformen der Erfindung sind Gegenstände der abhängigen Ansprüche.
Zeichnungen
Weitere Vorteile und vorteilhafte Ausgestaltungen der erfindungsgemäßen Gegenstände werden durch die Zeichnungen veranschaulicht und in der nachfolgenden Beschreibung erläutert. Dabei ist zu beachten, dass die Zeichnungen nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken. Es zeigen
Fig. 1 eine schematische, perspektivische Ansicht einer einzelnen Batteriezelle;
Fig. 2 eine schematische, perspektivische Ansicht einer ersten Ausführungsform eines erfindungsgemäßen Batteriesystems;
Fig. 3 einen schematischen Querschnitt durch das in Fig. 2 gezeigte Batteriesystem;
Fig. 4 eine schematische Ansicht des in Fig. 2 gezeigten Batteriesystems, das mit einem Kühlmittelsystem verbunden ist; und
Fig. 5 eine schematische, perspektivische Ansicht eines Ausschnittes einer
Variante des erfindungsgemäßen Batteriesystems.
Ausführungsformen der Erfindung
Die Fig. 2 zeigt in einer perspektivischen Ansicht einer Ausführungsform eines erfindungsgemäßen Batteriesystems 1.
Das Batteriesystem 1 umfasst mehrere Batteriezellen 2 und eine Wärmeleitplatte 4. Die Batteriezellen 2 sind als prismatische Batteriezellen ausgeführt und, parallel zueinander ausgerichtet, in Form eines Batteriezellenstapels auf der Wärmeleitplatte 4 angeordnet. Insbesondere sind die Batteriezellen 2 senkrecht zur Oberfläche der Wärmeleitplatte 4 ausgerichtet. Die Wärmeleitplatte 4 ist in diesem Ausführungsbeispiel als Trägerplatte, insbesondere als Bodenplatte für die Batteriezellen 2 ausgebildet. Die Wärmeleitplatte 4 besteht vorzugsweise aus ei- nem Material, welches eine hohe Wärmeleitfähigkeit aufweist, beispielsweise Aluminium oder Kupfer.
Die Fig. 1 zeigt eine einzelne prismatische Batteriezelle 2. Die Batteriezelle 2 um- fasst zwei Kontakte 11 , über die eine von der Batteriezelle 2 zur Verfügung gestellte Spannung abgegriffen werden kann oder über die die Batteriezelle 2, im Falle einer Akkumulatorzelle, auch geladen werden kann. Des Weiteren umfasst die Batteriezelle 2 ein Zellengehäuse 3, das einen hier nicht näher dargestellten Elektrolyt und zwei Elektroden in seinem Gehäuseinneren einschließt. Das Zellengehäuse 3 ist plattenförmig ausgebildet und umfasst eine kleinflächige Unterseite 12c, eine kleinflächige, der Unterseite 12c planparallel gegenüberliegende Oberseite 12d, zwei sich planparallel gegenüberliegende, kleinflächige Seitenwände 12e, 12f und zwei sich planparallel gegenüberliegende, großflächige Seitenwände 12a, 12b.
Wie aus der Fig. 2 ersichtlich, sind die Batteriezellen 2 derart auf der Wärmeleitplatte 4 angeordnet, dass die den Kontakten 11 gegenüberliegende Seitenfläche, die Unterseite 12c des Zellengehäuses 3, der Oberfläche der Wärmeleitplatte 4 gegenüberliegt. Die Grundflächen 12a, 12b benachbarter Batteriezellen 2 liegen unmittelbar aneinander an.
Um einen guten thermischen Kontakt zwischen Unterseite 12c eines Zellengehäuses 3 und der Wärmeleitplatte 4 zu gewährleisten, liegt das Zellengehäuse 3 mit seiner Unterseite 12c möglichst großflächig auf der Oberfläche der Wärme- leitplatte 4 auf. Des Weiteren umfasst jede Batteriezelle 3 seitliche Laschen 7a,
7b, siehe Fig. 3, mit denen die Batteriezelle 2 beispielsweise über eine Schraubverbindung, eine Schweißverbindung oder über eine Lötverbindung mit der Wärmeleitplatte 4 verbunden ist und wodurch die Unterseite 12c des Zellengehäuses 3 jeder Batteriezelle 3 in Kontakt mit der Wärmeleitplatte 4 gehalten wird und vorzugsweise die Unterseite 12 des Zellengehäuses 3 jeder Batteriezelle 2 an die Oberfläche der Wärmeleitplatte 4 angepresst wird.
Des Weiteren kann insbesondere zwischen Unterseite 12c und Wärmeleitplatte 4 ein Wärmeleitmittel 6 aufgetragen sein, um den Wärmeübergangswiderstand zwischen Zellengehäuse 3 und Wärmeleitplatte 4 zu verringern. Vorzugsweise ist das Wärmeleitmittel ein Fluid, beispielsweise eine Wärmeleitpaste. Um einen guten Wärmeaustausch zwischen Zellengehäuse 3 und Wärmeleitplatte 4 zu gewährleisten, besitzt das Zellengehäuse 3 vorzugsweise eine Wärmeleitfähigkeit λ von mindestens 40 W/mK. Das Zellengehäuse 3 jeder Batteriezelle 2 ist in diesem Ausführungsbeispiel ein metallisches Gehäuse, beispielsweise aus Aluminium. Die Wandstärke des Zellengehäuses 3 kann beispielsweise einen Wert im Bereich von 0,3 mm bis 4 mm aufweisen. Eine möglichst hohe Wandstärke ist zwar vorteilhaft für die Wärmeleitung, besitzt aber Nachteile bezüglich des Gewichtes und der Dimensionierung der Batteriezelle 2.
Des Weiteren umfasst das Batteriesystem eine Spannvorrichtung zum Verspannen der Batteriezellen 2. Durch das Verspannen der Batteriezellen 2, in der Fig. 2 durch den Druck kennzeichnende Pfeile P dargestellt, werden die Batteriezellen 2 an ihren großflächigen Seitenwänden 12a, 12b gegeneinander gepresst. Auf diese Weise lässt sich der Wärmeaustausch zwischen benachbarten Batteriezellen 2 erhöhen. Auf diese Weise kann ein Temperaturausgleich zwischen den einzelnen Batteriezellen 2 gefördert werden.
Der von der Spannvorrichtung erzeugte Spanndruck ist bevorzugt so auf die Wärmeausdehnung der Batteriezellen 2 abgestimmt, dass er im gesamten Temperatur-Arbeitsbereich des Batteriesystems aufrechterhalten bleibt. Die Fig. 2 als eine mögliche Ausführungsform einer derartigen Spannvorrichtung einen Teil eines Spannrahmens. Alternativ kann die Spannvorrichtung beispielsweise auch durch ein elastisches Spannband ausgeführt sein.
Der Wärmeaustausch zwischen den Batteriezellen 2 und der Wärmeleitplatte 4 erfolgt zum größten Teil, d.h., zu mindestens 50%, direkt zwischen Wärmeleitplatte 4 und der der Wärmeleitplatte 4 gegenüberliegenden Unterseite 12c jedes Zellengehäuses 3 der Batteriezellen 2. Die innerhalb der Batteriezellen 2 erzeug- te Wärme kann direkt über die Unterseite 12c in Richtung Wärmeleitplatte 4 abfließen, oder aber indirekt über die benachbarten Seitenwände und insbesondere die großflächigen Seitenwände 12a, 12b zunächst der Unterseite 12c zugeleitet werden, und von dort direkt zur Wärmeleitplatte 4 geleitet werden.
Die Fig. 4 zeigt in einer perspektivischen Ansicht das Batteriesystem 1 , das mit einer Temperiereinrichtung 13 verbunden ist. Die Temperiereinrichtung 13, hier einem Kühlmittelsystem, dient zur Wärmeabfuhr von in der Wärmeleitplatte 4 gespeicherter Wärme.
Die Temperatureinrichtung 13, die in Fig. 4 ausschnittsweise dargestellt ist, um- fasst eine Temperierplatte 15. Die Temperierplatte 15 umfasst eine hier nicht näher dargestellte, im Inneren der Temperierplatte 15 verlaufende Kanalstruktur, durch die über einen Eingang 14a und einen Ausgang 14b ein Temperiermedium, insbesondere ein Kühlmedium, hindurchgeleitet werden kann. Durch das Hindurchleiten eines Temperiermediums kann eine effektive Temperierung der Temperierplatte 15 erfolgen.
Die Wärmeleitplatte 4 des Batteriesystems 1 ist großflächig auf der Temperierplatte 15 aufgesetzt, so dass zwischen Wärmeleitplatte 4 und Temperierplatte 15 ein guter Wärmekontakt vorhanden ist. Auf diese Weise kann von den einzelnen Batteriezellen 2 des Batteriesystems 1 erzeugte Wärme effektiv über die Wärmeleitplatte 4 durch die Temperiereinrichtung 13 abgeführt werden. Die Wärmeleitplatte 4 dient in diesem Sinne als„Schnittstelle" zwischen den Batteriezellen 2 und der Temperiereinrichtung 13.
Alternativ kann die Wärmeleitplatte 4 selbst mit Mitteln ausgebildet sein, die eine effektive Temperierung der Wärmeleitplatte 4 ermöglichen, beispielsweise mit einer eigenen Kanalstruktur für die Hindurchleitung eines Temperiermittels oder mit Temperierrippen.
In den in den Fig. 1-4 gezeigten Ausführungsformen ist das Zellengehäuse 3 einer Batteriezelle 2 gegenüber den elektrischen Kontakten 11 elektrisch isoliert ausgeführt. In einer alternativen Ausführungsform kann einer der Kontakte 1 1 mit dem Zellengehäuse 3 elektrisch verbunden sein. In diesem Fall ist zwischen benachbarten Batteriezellen 2 ein elektrisches Isoliermittel 8 angeordnet, siehe Fig. 5. Ein derartiges Isoliermittel 8 kann beispielsweise in Form einer nichtmetallischen Schicht, zum Beispiel durch eine Silikongummi-Folie, bevorzugt mit einer Glasfasergewebe-Einlage, eine Glimmerscheibe, eine Keramikscheibe, eine Silikonmatte und/oder durch eine Kunststofffolie ausgeführt sein. Eine thermische Leitfähigkeit des Isoliermittels 8 ist zwecks Wärmeaustausches zwischen benachbarten Batteriezellen 2 bevorzugt.

Claims

Batteriesystem, umfassend mindestens zwei Batteriezellen (2) und eine Wärmeleitplatte (4), wobei jede Batteriezelle (2) ein wärmeleitendes Zellengehäuse (3) aufweist, wobei die Batteriezellen (2) gemeinsam auf einer Seite der Wärmeleitplatte (4) zwecks Wärmeaustauschs zwischen den Zellengehäusen (3) und der Wärmeleitplatte (4) derart angeordnet sind, dass der Wärmeaustausch zwischen den Zellengehäusen (3) und der Wärmeleitplatte (4) jeweils zu mindestens 50 % direkt zwischen Wärmeleitplatte (4) und einer der Wärmeleitplatte (4) gegenüberliegenden Unterseite (12c) des Zellengehäuses (3) erfolgt.
Batteriesystem nach Anspruch 1 , wobei die Batteriezellen (2) als prismatische Batteriezellen ausgeführt sind.
Batteriesystem nach Anspruch 1 oder 2, wobei die Zellengehäuse (3) jeweils eine Unterseite (12c), eine Oberseite (12d) und mindestens drei Seitenwände (12a,12b,12e,12f) aufweisen, wobei mindestens eine Seitenwand
(12a, 12b) eines Zellengehäuses (3) eine Wandstärke aufweist, die größer als die Wandstärke der Unterseite (12c) desselben Zellengehäuses (3) und/oder die größer als die Wandstärke von einer anderen Seitenwand (12e,12f) desselben Zellengehäuses (3) und/oder die größer als die Wandstärke der Oberseite (12d) desselben Zellengehäuses (3) ist.
Batteriesystem nach Anspruch 3, wobei benachbarte Seitenwände (12a, 12b) von Zellengehäusen (3) von benachbarten Batteriezellen (2) eine größere Wandstärke als die Unterseiten (12c) und/oder Oberseiten (12d) und/oder anderen Seitenwände (12e, 12f) der Zellengehäuse (3) der Batteriezellen (2) aufweisen. 5. Batteriesystem nach einem der Ansprüche 1 bis 4, wobei die Zellengehäuse (3) jeweils zwei großflächige, zueinander parallele Seitenwände (12a, 12b) und zwei kleinflächige, zueinander parallele Seitenwände (12e,12f) aufwei- sen, wobei mindestens eine großflächige Seitenwand (12a, 12b) eines Zellengehäuses (3) benachbart zu einer großflächigen Seitenwand (12a, 12b) eines Zellengehäuses (3) einer benachbarten Batteriezellen (2) angeordnet ist, wobei die großflächigen Seitenwände (12a, 12b) eines Zellengehäuses (3) eine größere Wandstärke aufweisen als die Unterseite (12c) und/oder
Oberseite (12d) und/oder die kleinflächigen Seitenwände (12e,12f) desselben Zellengehäuses (3).
Batteriesystem nach einem der Ansprüche 1 bis 5, wobei das Zellengehäuse (3) eine Wärmeleitfähigkeit λ von mindestens 40 W/mK aufweist.
Batteriesystem nach einem der Ansprüche 1 bis 6, wobei das Zellengehäuse (3) ein metallisches Gehäuse ist.
Batteriesystem nach einem der Ansprüche 1 bis 7, wobei zwischen den Zellengehäusen (3) und der Wärmeleitplatte (4) jeweils zumindest bereichsweise ein Wärmeleitmittel (6), beispielsweise eine Wärmeleitpaste, vorgesehen ist.
Batteriesystem nach einem der Ansprüche 1 bis 8, wobei die Batteriezellen (2) jeweils mindestens eine Befestigungslasche (7a, 7b) aufweisen, über die die jeweilige Batteriezelle (2) an der Wärmeleitplatte (4) befestigt ist.
Batteriesystem nach einem der Ansprüche 1 bis 9, wobei zwischen zwei benachbarten Batteriezellen (2) ein elektrisches Isoliermittel (8) angeordnet ist.
PCT/EP2011/062406 2010-09-10 2011-07-20 Batteriesystem WO2012031811A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11743216.1A EP2614551A1 (de) 2010-09-10 2011-07-20 Batteriesystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010040545 DE102010040545A1 (de) 2010-09-10 2010-09-10 Batteriesystem
DE102010040545.0 2010-09-10

Publications (1)

Publication Number Publication Date
WO2012031811A1 true WO2012031811A1 (de) 2012-03-15

Family

ID=44503788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062406 WO2012031811A1 (de) 2010-09-10 2011-07-20 Batteriesystem

Country Status (3)

Country Link
EP (1) EP2614551A1 (de)
DE (1) DE102010040545A1 (de)
WO (1) WO2012031811A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2528137A1 (de) * 2011-05-25 2012-11-28 Sanyo Electric Co., Ltd. Leistungsquellenvorrichtung zur Bereitstellung von elektrischem Strom, und mit der Leistungsquellenvorrichtung ausgerüstetes Fahrzeug
US20130115494A1 (en) * 2011-11-03 2013-05-09 Duk-Jung Kim Rechargeable battery
CN104916878A (zh) * 2014-03-13 2015-09-16 福特全球技术公司 电池组件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219057A1 (de) * 2012-10-18 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Energiespeichermodul und Verfahren zur Herstellung des Energiespeichermoduls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60208862T2 (de) 2001-07-19 2006-08-10 Matsushita Electric Industrial Co., Ltd., Kadoma Prismatische Batterie mit Kühlstruktur und damit aufgebauter Batteriesatz
DE102007010744A1 (de) * 2007-02-27 2008-08-28 Daimler Ag Batteriezelle und Zellverbund einer Batterie
JP2009110832A (ja) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 角形電池及び電池パック
WO2009119037A1 (ja) * 2008-03-24 2009-10-01 三洋電機株式会社 バッテリ装置及びバッテリユニット
JP2010040420A (ja) * 2008-08-07 2010-02-18 Sanyo Electric Co Ltd 車両用の電源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60208862T2 (de) 2001-07-19 2006-08-10 Matsushita Electric Industrial Co., Ltd., Kadoma Prismatische Batterie mit Kühlstruktur und damit aufgebauter Batteriesatz
DE102007010744A1 (de) * 2007-02-27 2008-08-28 Daimler Ag Batteriezelle und Zellverbund einer Batterie
JP2009110832A (ja) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 角形電池及び電池パック
WO2009119037A1 (ja) * 2008-03-24 2009-10-01 三洋電機株式会社 バッテリ装置及びバッテリユニット
EP2262048A1 (de) * 2008-03-24 2010-12-15 Sanyo Electric Co., Ltd. Batterieelement und batterieeinheit
JP2010040420A (ja) * 2008-08-07 2010-02-18 Sanyo Electric Co Ltd 車両用の電源装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2528137A1 (de) * 2011-05-25 2012-11-28 Sanyo Electric Co., Ltd. Leistungsquellenvorrichtung zur Bereitstellung von elektrischem Strom, und mit der Leistungsquellenvorrichtung ausgerüstetes Fahrzeug
US20130115494A1 (en) * 2011-11-03 2013-05-09 Duk-Jung Kim Rechargeable battery
CN104916878A (zh) * 2014-03-13 2015-09-16 福特全球技术公司 电池组件

Also Published As

Publication number Publication date
DE102010040545A1 (de) 2012-04-19
EP2614551A1 (de) 2013-07-17

Similar Documents

Publication Publication Date Title
DE102008034862B4 (de) Batterie mit einem Zellverbund mehrerer Batteriezellen
EP2789029B1 (de) Batterie und zellblock für eine batterie
EP2153487B1 (de) Elektrochemische energiespeichereinheit mit kühlvorrichtung
EP2422386A1 (de) Batteriemodul
DE102008059954B4 (de) Batterie mit mehreren parallel und/oder seriell miteinander elektrisch verschalteten Batteriezellen und einer Kühlvorrichtung und die Verwendung der Batterie
EP2564462B1 (de) Batterie mit einer kühlplatte und kraftfahrzeug mit einer entsprechenden batterie
WO2017157968A1 (de) Batterie
DE102008034869A1 (de) Batterie mit mehreren einen Zellenverbund bildenden Batteriezellen
DE102010029872A1 (de) Batteriebaugruppe für Hybrid- oder Elektrofahrzeuge
DE102009058808A1 (de) Kühlvorrichtung für eine Fahrzeugantriebsbatterie und Fahrzeugantriebsbatteriebaugruppe mit Kühlvorrichtung
DE102010038681A1 (de) Vorrichtung zur Spannungsversorgung mit einer Kühlanordnung
DE102007050400A1 (de) Vorrichtung zur elektronischen Energiespeicherung
WO2016045855A1 (de) Ausgleichsvorrichtung und akkumulatormodul mit derselben
DE102009016868A1 (de) Galvanische Zelle, Zellenstapel und Kühlkörper
WO2012136323A2 (de) Energiespeichervorrichtung mit einer temperiereinrichtung
DE102013021651A1 (de) Batterie mit Zellkühlung
DE102012006122A1 (de) Wärmeübertragungseinrichtung, insbesondere Heiz- und/oder Kühlplatte
AT521526A1 (de) Batterie
DE102019205049A1 (de) Kühlungsanordnung zur Kühlung von Batteriemodulen, Hochvoltbatterie und Kraftfahrzeug
DE102017222350A1 (de) Wärmetauscher für eine doppelseitige kühlung von elektronikmodulen
WO2012031811A1 (de) Batteriesystem
WO2013023847A1 (de) Batteriemodul mit luftkühlung sowie kraftfahrzeug
DE112015001249B4 (de) Thermoelektrische Anordnung und Verfahren zum Zusammensetzen einer thermoelektrischen Anordnung
DE102014201220A1 (de) Batteriemodul
DE102014002522B4 (de) Batterie mit einer Ableiterkühlung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11743216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011743216

Country of ref document: EP