WO2012031461A1 - 供气装置及具有该供气装置的气液泵和水产养殖水处理系统 - Google Patents

供气装置及具有该供气装置的气液泵和水产养殖水处理系统 Download PDF

Info

Publication number
WO2012031461A1
WO2012031461A1 PCT/CN2011/001537 CN2011001537W WO2012031461A1 WO 2012031461 A1 WO2012031461 A1 WO 2012031461A1 CN 2011001537 W CN2011001537 W CN 2011001537W WO 2012031461 A1 WO2012031461 A1 WO 2012031461A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
liquid
pipe
pipeline
Prior art date
Application number
PCT/CN2011/001537
Other languages
English (en)
French (fr)
Inventor
翟爱民
宋柏君
Original Assignee
北京水创新能科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010278763.4A external-priority patent/CN102400836B/zh
Priority claimed from CN2010102787545A external-priority patent/CN102396428A/zh
Priority claimed from CN2010102787456A external-priority patent/CN102400962A/zh
Priority claimed from CN201010278785.0A external-priority patent/CN102400874B/zh
Application filed by 北京水创新能科技有限责任公司 filed Critical 北京水创新能科技有限责任公司
Publication of WO2012031461A1 publication Critical patent/WO2012031461A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/02Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped using both positively and negatively pressurised fluid medium, e.g. alternating

Definitions

  • the invention relates to a method and a device for collecting water energy, which is a device and a device for conveniently collecting and converting kinetic energy and potential energy contained in a water flow into a pressure difference energy for further utilization, in particular, a device for increasing energy utilization efficiency.
  • the gas supply device and the gas liquid pump and the aquaculture water treatment system having the gas supply device.
  • the water conservancy energy is very rich, and it is one of the important ways of energy development and utilization. It has obvious advantages such as cleanliness and recycling.
  • the main way of utilizing water conservancy energy is hydropower generation, which is the flow of water through the ice turbine. The kinetic energy and potential energy are rotated into mechanical energy to obtain electricity. In this way, a large amount of water conservancy infrastructure and a dedicated ice-generator unit are needed.
  • the initial one-time investment is quite large, which has certain adverse effects on the environment, especially water.
  • the wheel generator set has a complicated structure, a large equipment, a low energy conversion rate, and is prone to malfunctions and problems, and therefore needs to be improved and optimized.
  • a liquid pump is a machine that transports or pressurizes a liquid. It transfers the mechanical energy of the prime mover or other external energy to the liquid to increase the energy of the liquid.
  • the water pump is mainly used to transport liquids including water, oil, acid and alkali, emulsion, Suspensions, liquid metals, etc., can also transport liquids, gas mixtures, and liquids containing suspended solids.
  • centrifugal pump mixed flow pump
  • axial flow pump vortex pump
  • jet pump volumetric pump (screw pump, piston pump, diaphragm pump), chain pump, electromagnetic pump, liquid ring pump, pulse pump, etc. .
  • the technical problem to be solved by the present invention is that the structure of the gas supply device in the prior art is complicated, thereby providing a gas supply device with low cost and simple structure, and a gas liquid pump using the gas supply device and using the gas liquid Pump aquaculture water treatment system,.
  • the air supply device of the present invention is composed of a pipeline having a water inlet portion and a water outlet portion, and the water inlet portion and the water outlet portion are connected by a horizontal pipe.
  • the inlet and outlet of the pipeline There is a certain height difference between the inlet and outlet of the pipeline, the height of the inlet is higher than the height of the outlet, the inlet is located at the high water level, and the outlet is located at the low water level, the outlet and the pipe of the horizontal pipe.
  • the diameter of the pipe is larger than the diameter of the inlet.
  • the top of the horizontal pipe of the pipeline is provided with an outlet, and the outlet is located at the end of the horizontal pipe near the low water level.
  • the water inlet is also the inlet.
  • the pipe is U-shaped.
  • the U-shaped tube is a regular U-shaped tube.
  • the U-shaped tube is provided with an intake air amount control device at the intake of the pipeline for controlling the intake air amount of the pipeline.
  • the gas outlet is connected to the power unit, and the power unit is a gas pump or a gas power machine.
  • An air supply device is an inverted U-shaped tube, the U-shaped tube has a water inlet and a water outlet, and the water inlet and the ice outlet are connected by a horizontal pipe.
  • the water inlet is at a high water level, and the water outlet is at a low water level, the diameter of the pipeline at the water outlet is larger than the diameter of the pipeline at the water inlet, and the horizontal of the inverted U-shaped tube
  • An air inlet is disposed on a pipe wall of the pipe above the level of the influent water source, and the air inlet is located at an end of the inverted U-tube that is close to the low water level.
  • the water outlet is also the outlet.
  • the utility model relates to a liquid gas energy porous pipe synergy device for the above gas supply device, which is suitable for a liquid gas energy collecting device, wherein the basic structure of the liquid gas energy collecting device is a pipeline for the water to flow through, and is provided with the atmosphere
  • the overflow water in the pipeline can be mixed into the gas and the gas is separated into small bubbles, and the direction of gravity acceleration is set to the positive direction of the velocity, then the water velocity is the component and level of the gravity acceleration in the vertical direction. The sum of the velocity components of the direction of the water flow.
  • the bubble When the component of the water flow in the vertical direction of the gravity acceleration is greater than zero, and the bubble is gradually separated into smaller bubbles of a certain volume, the bubble will move with the water flow; when the water flow is not large in the vertical direction of the gravity acceleration At zero hour, the bubble moves upward to surface, collects the overflow gas at the bubble overflow surface to form a pressurized gas, and at the same time, a negative pressure can be generated at the inlet of the pipeline, which is characterized by: The amount of intake air mixed into the water flow is provided with a porous pipe member at a place where the water flow and the gas are mixed, so that the water flow and the gas break are sufficiently mixed.
  • the porous tubular member has the same axial direction as the flow of water and is at the intake. .
  • the porous tube member is composed of a plurality of porous tubes, the porous tube has a vent hole, and is associated with the atmosphere
  • the porous tube is tapered and extends into the water.
  • the above-mentioned pipeline is a U-shaped pipeline, and the U-shaped pipe can be arranged as a positive U-shaped pipeline.
  • the level of the liquid level of the inlet water source of the above-mentioned U-shaped tube is higher than the level of the level of the drain water channel of the outlet.
  • the positive U-shaped tube is provided with an intake air amount control device at the intake of the pipeline to control the intake air amount of the pipeline.
  • An outlet is provided at the cross tube member of the positive U-shaped tube.
  • a power device such as a liquid gas energy pump or a gas power machine, can be coupled to the outlet of the cross tube member of the positive U-shaped tube.
  • the pipeline material is non-metallic materials such as PVC material, plastic, cement, ceramics, etc.; or the pipeline material is metal materials such as ferroniobium and stainless steel.
  • a liquid gas energy screen synergy device for the above gas supply device is suitable for a liquid gas energy collecting device, wherein the basic structure of the liquid gas energy collecting device is a pipeline for passing water, and is provided with a gas passage through the atmosphere. At the gas, when the water flows through, the overflow water in the pipeline can be mixed into the gas and the gas is separated into small bubbles, and the direction of gravity acceleration is set to the positive direction of the velocity, then the water velocity is the component and level of the gravity acceleration in the vertical direction.
  • a negative pressure can also be generated at the intake of the pipeline to increase the mixing into the water flow at the intake air.
  • the amount of intake air is provided with a mesh-like member at the mixing of the water flow and the gas to sufficiently mix the water flow with the gas.
  • the mesh member is disposed in a section of the water flow and is at the intake.
  • the mesh-like member is composed of a rib material which is criss-crossed, and one side of the rib material has an air passage and is connected to the atmosphere.
  • the mesh-like member has one side of the air passage in the same direction as the water flow.
  • the above-mentioned pipeline is a U-shaped pipeline, and the U-shaped pipe can be arranged as a positive U-shaped pipeline.
  • the liquid level of the inlet water source of the upper U-shaped tube is higher than the level of the liquid level of the discharge water channel of the outlet.
  • the positive U-shaped tube is provided with an intake air amount control device at the intake of the pipeline to control the intake air amount of the pipeline.
  • An outlet is provided at the cross tube member of the positive U-shaped tube.
  • a power device such as a liquid gas energy pump or a gas power machine, can be coupled to the outlet of the cross tube member of the positive U-shaped tube.
  • the pipeline material is non-metallic materials such as PVC material, plastic, cement, P-sentence porcelain; or the pipeline material is metal materials such as cast iron and stainless steel.
  • a gas-liquid pump is composed of a liquid pipe and a gas pipe.
  • the liquid pipe is provided with a gas transmission hole connected to the gas pipe, and the gas pressure of the gas pipe is greater than atmospheric pressure.
  • the liquid pipe has two ports, an upper port and a lower port, the upper port is higher in level than the lower port, the upper port of the liquid pipe is connected to the atmosphere, and the lower port of the liquid pipe is invaded into the liquid.
  • the gas transmission hole is located below the liquid surface, the height difference between the gas transmission hole and the liquid liquid surface immersed in the liquid pipe is smaller than the height difference between the gas transmission hole and the lower port of the liquid pipe; or the water column temperature formed in the liquid pipe is smaller than the gas transmission hole The height difference to the port under the liquid pipe,
  • the gas transmission hole is located below the liquid surface, the height difference between the gas transmission hole and the liquid surface immersed in the liquid pipe, and the sum of the height differences of the surface tension of the inner wall formed by the liquid in the liquid pipe is smaller than the gas transmission hole to the lower port of the liquid pipe.
  • the height difference; or the height of the water column formed in the liquid pipe, plus the height difference of the surface tension of the liquid formed in the liquid pipe, is smaller than the height difference between the gas inlet hole and the lower port of the liquid pipe.
  • the upper port of the primary gas-liquid pump is connected to the lower port of the secondary gas-liquid pump, and can be connected in multiple stages to form a cascade gas-liquid pump.
  • the liquid output from the upper port of the primary gas pump and the lower port of the secondary gas pump require continuous input through the container for continuous transfer.
  • the primary and secondary gas pumps can share a single gas source until more cascades and combinations.
  • the liquid pipe is made of a non-wetting material or a non-wetting material.
  • the diameter of the liquid pipe is about 2-10 hidden.
  • the air supply pressure of the air pipe is at atmospheric pressure, provided by the liquid gas device, or it can be supplied by the air pump.
  • the liquid gas device is the gas supply device described above,
  • An aquaculture water treatment system which is mainly composed of a culture pond, a water lifting facility and a water source, and is characterized in that: the water lifting facility is composed of a water dam and a water flow energy pump.
  • the water flow energy pump has two upper and lower nozzles, the water outlet is located on the upper wave surface of the water in the dam, and the upper water outlet is connected to the culture tank, and the water flow energy pump can be used to complete pumping or lifting water into the culture tank, that is, the water flow energy pump
  • the water outlet sends water to the nozzle until it reaches the breeding pond.
  • the water flow energy pump is composed of pipelines, and the pipeline is composed of at least one or two pipelines, and is disposed on each pipeline. There is a small hole, and the pipeline is placed in the upper liquid surface in the dam. When the small hole of the pipeline is under the liquid surface, a water column is formed in the pipeline, and the pressure is introduced into the small hole of the pipeline. Gas, and when the gas pressure at the two ends of the water column is different, the water column will move toward the lower pressure end, and the water moving to the predetermined position can be collected and utilized, that is, the position of the water inlet.
  • the difference in height between the inlet and outlet of the pipeline to the liquid surface is less than or much smaller than the difference in height between the inlet and the lower end of the pipeline.
  • the water flow water pump is composed of a pipeline, and the pipeline is composed of at least one or more pipelines, and each pipeline is provided with a small hole, and the pipeline is placed in a liquid, and one end of the pipeline is below the liquid surface. And when the small hole of the pipe is located on the liquid surface and the other end is outside the liquid surface, the negative pressure vessel can be passed through, and the difference between the pressure of the negative pressure gas and the atmospheric pressure in the negative pressure container is B, on the outer surface of the liquid pipeline
  • the air inlet is connected to the atmosphere, and the height difference of the air inlet from the liquid surface is less than or far less than the height of the water column with the same pressure and enthalpy.
  • the pipeline is higher than the air inlet and the bottom of the vacuum vessel is provided with drainage.
  • the drain pipe is a hollow large inner diameter pipe, and the other end of the drain pipe is under the liquid surface of the water container, and the water container is positioned lower than the negative pressure container, and the water column of the liquid container to the bottom of the negative pressure container is at the same height, and the water column is generated.
  • the pressure value is greater than the threshold value. Adjust the intake air intake to a certain extent, gas and water are mixed into the pipeline to the negative pressure vessel, the gas is pumped away, and the water is then drained to the water container for utilization and transported to the straightening tank.
  • the difference in height of the air inlet from the liquid surface is less than or much less than the height of the liquid corresponding to the difference between the negative pressure source and the atmospheric pressure.
  • the pressurized gas of the water flow pump comes from a gas collecting device.
  • the device is a positive U-shaped tube with a water inlet and a water outlet.
  • the diameter of the water at the outlet and the horizontal pipe is larger than the diameter of the water at the inlet.
  • the water is also the inlet, and the outlet is provided at the top of the horizontal pipe of the positive U-shaped pipe.
  • the outlet is located at the end of the horizontal pipe of the positive U-tube near the low water level.
  • the inlet and outlet of the gas collection device are located respectively.
  • the upper and lower liquid level of the head difference in the dam are located respectively.
  • the pressurized gas of the water flow pump comes from a gas collecting device, which is an inverted u-shaped gas collecting device having a water level at the inlet and outlet of the water source, and The outlet is located at the level of the drain channel, and the diameter of the pipe at the outlet is larger than the diameter of the pipe at the inlet.
  • a gas collecting device which is an inverted u-shaped gas collecting device having a water level at the inlet and outlet of the water source, and The outlet is located at the level of the drain channel, and the diameter of the pipe at the outlet is larger than the diameter of the pipe at the inlet.
  • the outlet is also provided.
  • the inlet is located at the end of the cross tube of the U-tube, which is close to the low water level.
  • the inlet and outlet of the gas collection device are respectively located above and below the head of the aquaculture water treatment.
  • the water in the dam comes from the tidal water flowing into the ocean.
  • the water level in the dam is higher than the water level outside the dam.
  • the dam can also be a water retaining or retaining wall in the river.
  • the water flow energy pump is the gas liquid pump described above,
  • the dam's dam has one or more check valves, and the water flow can flow in from the outside to the outside, and is not allowed to flow outward.
  • the gas pump of the invention has the advantages of simple structure, easy manufacture, unrestricted pumping height, small required equipment, high energy conversion rate, small investment income ratio, wide application range and maintenance-free.
  • Liquid-gas energy porous pipe synergy device and liquid gas energy mesh filter efficiency device which collects and converts the kinetic energy and potential energy of the water flow into air pressure difference energy, and then uses the air pressure difference to drive other power equipment, such as water pump or gas.
  • Power machine, etc. low investment in equipment required in the early stage, higher energy conversion rate, wide application range, no mechanical rotating parts, no maintenance.
  • FIG. 1 is a schematic view showing the structure of a positive U-shaped pipe of the gas supply device of the present invention
  • FIG. 1 is a schematic view showing the structure of an inverted U-shaped pipe of the air supply device of the present invention
  • FIG. 3 is a schematic structural view of the gas supply device provided with a liquid gas energy efficiency device according to the present invention.
  • Figure 4 is a schematic view showing the structure of a porous pipe member of the liquid gas energy porous pipe synergizing device of the present invention
  • Figure 5 is a schematic view showing the structure of a vent hole of a porous pipe member of the liquid gas energy porous pipe synergizing device of the present invention
  • Figure 6 is a schematic cross-sectional view of the rib material of the screen-like component of the liquid-gas filter mesh synergy device of the present invention
  • Figure 7 is a screen-like component of the liquid-gas filter mesh synergy device of the present invention.
  • FIG. 8 is a schematic view of the gas-liquid pump of the present invention
  • Figure 9 is a schematic view showing the cascade mode of the gas-liquid pump of the present invention.
  • FIG. 10 is a schematic view of the aquaculture water treatment system of the present invention.
  • Figure U is a schematic view of a water flow energy pump of the aquaculture water treatment system of the present invention.
  • Figure 12 is another schematic view of the water flow energy pump of the aquaculture water treatment system of the present invention.
  • 10-air supply device 104-liquid gas energy efficiency device, 108-cross tube, 109-intake, 1 1 0-outlet, 1 1 1-inlet, 1 11 '- inlet, 1 12 - water outlet, 1 12 '-water outlet, 141-porous pipe fitting, 142-porous pipe, 143-venting, 144-screen mesh, 145-airway;
  • Example 1.1 Gas supply device
  • a gas supply device which is composed of a pipeline having a water inlet portion 111 and a water outlet portion 112, and the water inlet portion 111 and the water outlet portion 112 are connected by a horizontal tube 108.
  • the water inlet portion 111 and the water outlet portion 112 of the pipeline have a certain height difference, the height of the water inlet portion 111 is higher than the height of the water outlet portion, the water inlet portion 111 is located at the high water level 308, and the water outlet portion 112 is located at the low water level 309.
  • the diameter of the pipe of the water outlet 112 and the horizontal pipe 108 is larger than the diameter of the pipe of the water inlet 111.
  • the top of the horizontal pipe 108 of the pipeline is provided with an outlet portion 110, and the outlet portion 110 is located at one end of the horizontal pipe 108 close to the low water level 309.
  • the water inlet 111 is also the inlet 109, that is, the inlet 111 coincides with the inlet 109.
  • the pipe is U-shaped.
  • the U-shaped pipe is preferably a U-shaped pipe.
  • the U-shaped tube is provided with an intake air amount control means at the intake portion 109 of the pipeline for controlling the intake air amount of the pipeline.
  • the air outlet 110 is connected to a power unit, which is an air pump 20 or a gas power unit.
  • Example 1.2 Gas supply device
  • the gas supply device is an inverted U-shaped tube
  • the inverted U-shaped tube has a water inlet portion 111 and a water outlet portion 112, and the water inlet portion 111 and the water inlet portion
  • the water outlets 112 are connected by a horizontal pipe 108, the water inlet portion 111 is at a high water level surface, and the water outlet portion 112 is at a low water level surface, and the water outlet portion 112 has a pipe diameter larger than the water inlet portion 111.
  • the diameter of the pipe where the horizontal pipe 108 of the inverted II pipe is higher than the pipe wall of the inlet water source, the inlet 109 is located at the horizontal pipe 108 of the inverted U-shaped pipe. Close to the end of the low water level.
  • the water outlet 112 is also the outlet portion 110, i.e., the outlet portion 112 coincides with the outlet portion 110.
  • the invention provides a water flow energy collecting method and device with simple structure, low cost and high efficiency, in particular, an optimized device capable of improving efficiency, which is described with reference to the embodiments and the drawings.
  • the device made by the method of the invention.
  • Figure 3 is a schematic view showing the structure of the gas supply device provided with a liquid-gas energy synergy device, which is mainly composed of a pipeline, and has a positive U-shaped tube.
  • the two nozzles of the I-shaped tube have a certain height difference.
  • the nozzle 11 ⁇ is located at the high water level 308, and the water outlet 112' is located at the low water level 309.
  • the pipeline is a positive U-shaped tube
  • the positive U-shaped tube has a water inlet 111 and a water outlet 112.
  • the diameter of the pipe of the water outlet 112 and the horizontal pipe 108 is larger than the pipe diameter of the water inlet 111, the water inlet 111 is also the air inlet 109, and the gas outlet 110 is disposed at the top of the horizontal pipe 108 of the positive I) pipe, as shown in FIG. Shown.
  • the water flow naturally flows through the positive U-shaped tube, and the upstream and downstream water flows flow through the water inlet portion 111 and the water outlet portion 112, at this time in the atmosphere.
  • the gas is also mixed into the water flow through the air inlet 109, and the gas enters the water flow in the pipe, that is, when the water flow passes, the overflow water in the pipeline can be mixed into the gas and the gas is separated into small bubbles, and the gravity acceleration is set.
  • the direction is the positive direction of the velocity, then the water flow velocity is the combined velocity of the component in the vertical direction of the gravitational acceleration and the component in the horizontal direction.
  • the bubble When the component of the ice flow in the vertical direction of the gravitational acceleration is greater than zero, the bubble is gradually separated into a certain volume. When small bubbles are present, the bubbles will move with the water flow; when the horizontal tube 108 is reached, that is, when the component of the water flow in the vertical direction of the gravity acceleration is not greater than zero, the bubble moves upward to float out of the water surface, and collects gas at the bubble overflowing water surface to form When the gas is pressed, a positive pressure gas is formed which is obviously higher than the atmospheric pressure. If the water flow in the pipe continues to flow, it will continue to be positive. Pressure gas, this pressure difference can be used and work, and at the same time, there is a negative pressure at the inlet 109.
  • a porous tube 142 member 141 is provided in combination with the water flow and the gas; the water flow is thoroughly mixed with the gas, and the porous tube 142 member 141 is disposed in the water flow section and is in progress.
  • the porous tube member 141 is composed of a plurality of porous tubes 142 having side walls vent holes 143 and connected to the atmosphere, so that sufficient atmospheric gas can be secured. Display It is easy to see that the porous tube 142 member 141 has the same side of the flow direction as the water flow direction (see Fig. 5).
  • the porous tube member 141 in this embodiment is a liquid gas energy efficiency device 104.
  • an air intake amount control means is provided at the port of the inlet portion 109 of the positive elbow, and the amount of intake air of the line can be controlled.
  • the level of the liquid level of the inlet water source of the positive U-shaped tube is higher than the level of the liquid level of the discharge channel of the outlet portion 112.
  • an intake air amount control device is provided to control the intake air amount of the pipeline.
  • an air outlet 1 10 is provided, and the generated gas can be collected, and can be connected to a power device such as a liquid gas pump or a gas power machine.
  • the material used for the pipeline is most convenient for PVC.
  • the pipeline material may also be non-metallic materials such as plastic, cement, ceramics, and metal materials such as ferroniobium and stainless steel.
  • the gas energy harvesting method of the present invention is achieved by the following method: A pipeline is provided, the pipeline is a U-shaped tube, and the two nozzles of the U-shaped tube are respectively the water inlet 11 ⁇ and The water outlet 112', the elevation of the water outlet 11 ⁇ is higher than the elevation of the water outlet 1 12 ', and can pass the water flow, and has an air inlet 109 connected to the atmosphere, when the water flows, the water in the pipeline
  • the gas can be mixed and the gas is separated into small bubbles, and the direction of gravity acceleration is set to the positive direction of the velocity, then the water velocity is the combined velocity of the component in the vertical direction of the gravity acceleration and the component in the horizontal direction, when the water flow is in the vertical direction of the gravity acceleration.
  • the bubble When the component is larger than zero, the bubble is gradually separated into a small volume of a certain volume, the bubble will move with the water flow; when the component of the vertical flow of the gravity acceleration is not greater than zero, the bubble moves upward to surface, and collects at the surface of the bubble overflow
  • the gas is overflowed to form a pressurized gas. If it is a positive U-shaped tube, it is collected and separated at the outlet of the pipeline.
  • the body can form a distinct pressurized gas.
  • the gas pressure is higher than atmospheric pressure to form a positive pressure gas.
  • the kinetic energy and potential energy contained in the water flow are collected and converted into a pressure difference energy including a positive pressure gas or a negative pressure difference. This differential pressure energy can be used as a power to drive other devices.
  • the kinetic energy and potential energy contained in the water flow can be conveniently collected and converted into air pressure difference energy for further utilization, and the required equipment is small, the energy conversion rate is higher, the application range is wide, and maintenance is free. .
  • Example 3 Liquid gas screen mesh synergy device
  • FIG. 3 is a schematic structural view of the gas supply device provided with a liquid gas energy synergy device, which is mainly composed of a pipeline, and has a positive U-shaped tube, as shown in FIG.
  • the two nozzles of the I) tube have a certain height difference, the water inlet 1 1 ⁇ is located at the high water level 308 surface, and the water outlet 1 1 2 'is located at the low water level 309 surface'
  • the pipeline is a positive U-shaped tube
  • the positive U-shaped tube has a water inlet portion 111 and a water outlet portion 112, and the diameter of the water outlet portion 112 and the horizontal tube 108 is larger than the diameter of the water inlet portion 111.
  • the water inlet 111 is also the intake point 1 09
  • the outlet portion of the horizontal tube 108 of the positive U-shaped tube is provided with a gas outlet n o.
  • the water inlet 11 ⁇ and the water outlet 112 ′ are respectively located at the upper water level and the lower water level of the water surface, the water flow naturally flows through the positive U-shaped tube, and the upstream and downstream water flows through the water inlet 11 1 and the water outlet 112, and the atmosphere
  • the gas in the air is also mixed into the water flow through the air inlet 109, and the gas enters the water flow in the pipe, that is, when the water flow passes, the overflow water in the pipeline can be mixed into the gas and the gas is separated into small bubbles.
  • the direction of gravity acceleration is the positive direction of velocity, then the velocity of water flow is the combined velocity of the component in the vertical direction of gravity acceleration and the component in the horizontal direction.
  • the bubble When the component of the water flow in the vertical direction of gravity acceleration is greater than zero, the bubble is gradually separated into a certain volume. When the smaller bubble, the bubble will move with the water flow; when reaching the horizontal pipe 108, that is, when the component of the vertical direction of the gravity acceleration is not greater than zero, the bubble moves upward to float out of the water surface, and collects gas at the bubble overflow surface.
  • a pressurized gas In order to form a pressurized gas, a positive pressure gas higher than atmospheric pressure is formed, and if the water flow in the pipe continues to flow, it is continued.
  • the positive pressure gas this pressure difference can be used and work, and at the same time, there is a negative pressure at the inlet 109.
  • a mesh member 144 (shown in Fig. 6) is provided at the mixing of the water flow and the gas to sufficiently mix the water flow with the gas, and the mesh member 144 is disposed in the water flow cross section. It is at the air intake 109.
  • the mesh member 144 is formed by criss-crossing the rib material, and one side of the rib material has an air passage 145 and is connected with the atmosphere (see FIG. 7), so that sufficient atmospheric gas can be ensured, which is obvious.
  • the mesh member 144 has one side of the air passage 145 which is mounted in the same direction as the water flow.
  • the screen-like member 144 in this embodiment is a liquid-gas energy-enhancing device 104
  • an intake air amount control device is provided at the port of the positive U-tube inlet 109 to control the intake air amount of the pipeline.
  • the level of the liquid level of the inlet water source of the positive U-shaped tube is higher than the level of the liquid level of the discharge channel of the water discharge portion.
  • an intake air amount control device is provided to control the intake air amount of the pipeline.
  • An outlet portion 110 is provided in the cross tube 108 of the positive U-shaped tube to collect the generated gas, and can be connected to a power device such as liquid gas.
  • the material used in the pipeline in the above embodiment is most convenient with PVC.
  • the pipeline material can also be non-metallic materials such as plastics, cement, ceramics, and metal materials such as cast iron and stainless steel.
  • the gas energy harvesting method of the present invention is achieved by the following method: As shown in Fig. 1, a pipeline is provided, the pipeline is a U-shaped tube, and the two nozzles of the U-shaped tube The water inlet 11 ⁇ and the water outlet 112 ′ respectively, the elevation of the water inlet 11 ⁇ is higher than the elevation of the water outlet 112 ′, and can pass the water flow, and is provided with an air inlet 109 which is open to the atmosphere, when the water flows through, The overflow water in the pipeline can be mixed with gas and the gas is separated into small bubbles.
  • the direction of gravity acceleration is set to the positive direction of velocity, then the velocity of water is the combined velocity of the component in the vertical direction of gravity acceleration and the component in the horizontal direction.
  • the component of the vertical direction of gravity acceleration is greater than zero, and the bubble is gradually separated into a small volume of a certain volume, the bubble will move with the water flow; when the component of the vertical direction of the gravity acceleration is not greater than zero, the bubble moves upward to surface.
  • the overflow gas is collected at the overflow surface of the bubble to form a pressurized gas. If it is a positive U-shaped tube, the outlet is collected at the outlet 110.
  • the separated gas can form a distinct pressurized gas, which is at a pressure of atmospheric pressure to form a positive pressure gas, so that the kinetic energy and potential energy contained in the water flow are collected and converted into a gas pressure including a positive pressure gas or a negative pressure difference. Poor energy, this differential pressure energy can be used as power to drive other devices.
  • the kinetic energy and potential energy contained in the water flow can be conveniently collected and converted into air pressure difference energy for further utilization, and the required equipment is small, the energy conversion rate is higher, the utility model is wide, and maintenance-free. .
  • a gas-liquid pump 20 which is composed of a liquid pipe 200 and a gas pipe 202.
  • Both the liquid pipe 200 and the gas pipe 202 can be made of a suitable material, for example, made of plastic pipe, especially PVC material, in liquid.
  • the gas pipe 201 is connected to the gas pipe 202, and the gas transmission hole 201 is generally disposed at the middle and lower parts of the pipe.
  • the gas pipe 202 has a pressurized gas, and the gas pressure is generally greater than atmospheric pressure, and the pressurized gas can be supplied into the liquid pipe 200 through the gas vent 201.
  • the liquid pipe 200 has two ports, an upper port and a lower port, respectively.
  • the upper port has a higher level than the lower port, and the upper port of the liquid pipe 200 is open to the atmosphere, and has no pressure relative to the atmospheric pressure, and the level of the port on the surface is up to
  • the height of the water lift that is, the height of the water to be lifted, the lower port of the liquid pipe 200 is intruded into the liquid, and the liquid described in this embodiment is substantially water or a liquid of similar nature.
  • the gas transmission hole 201 of the liquid pipe 200 is connected to the gas pipe 202 and is located below the liquid level to be extracted, and the height difference between the gas transmission hole 201 and the liquid level of the liquid pipe 200 is smaller than the gas transmission hole 201.
  • the height difference to the lower port of the liquid pipe 200 that is, when the liquid pipe 200 is placed in the water, as shown in Fig. 1, the liquid surface enters the liquid pipe 200 and is immersed in the gas vent 201,
  • the pressurized gas enters the liquid pipe 200 through the gas supply hole 201
  • the water body in the liquid pipe 200 is simultaneously discharged upward and downward due to the pressure of the gas, and the upward water body forms a liquid column 203'.
  • the water body moving downward in the liquid pipe 200 also maintains a certain height and remains substantially unchanged until the liquid column 203' is completely pushed out of the liquid pipe 200, At the same time as the liquid pipe 200 is pushed out, the gas pressure in the liquid pipe 200 instantaneously returns to the atmospheric pressure due to the absence of the liquid column 203', and the water body in the lower portion of the gas supply hole 201 in the liquid pipe 200 naturally rises to be level or nearly level with the horizontal plane.
  • the influence of surface tension on the flow of water in the liquid pipe 200 is different in different pipe diameters, so that it is necessary to consider :
  • the height difference between the air vent 201 and the liquid surface immersed in the liquid pipe 200, plus the height difference of the surface tension of the liquid immersed in the liquid pipe 200 is smaller than the gas transmission.
  • the height difference between the hole 201 and the lower port of the liquid pipe 200; or the height of the water column 203 formed in the liquid pipe 200, plus the sum of the height differences of the surface tension of the liquid formed in the liquid pipe 200 is smaller than the gas supply hole 201 to The height difference of the port under the liquid pipe 200. In this way, the upper port of the water can be effectively output until the lifting height is reached.
  • the above-mentioned single device may not reach a higher pumping height due to equipment, terrain and other influences, and then may be composed of two or more gas-liquid pumps 20 at this time.
  • the basic structure is to complete the requirements of the height.
  • the basic principle is to make the same gas-liquid pump 20 into a plurality of parts, which are divided into primary, secondary, third-level...
  • the cascading mode of the gas-liquid pump 20 shown in FIG. 9 is composed of the following: a primary liquid pipe 2001, a primary liquid pipe 2001, a primary air inlet hole 2011,
  • the secondary liquid pipe 2002, the secondary air pipe 2022, the secondary air inlet hole 2012, and the container 204 are composed.
  • the primary portion is composed of a primary liquid tube 2001, a primary liquid tube 2001, and a primary air inlet hole 2011.
  • the secondary liquid tube 2002, the secondary air tube 2022, the secondary air inlet hole 2012, and the container 204 form a secondary portion, and each portion is pumped.
  • the principle is the same as the foregoing embodiment (see FIG. 8), except that the container 204 is added as a continuous transfer conveying device, and the primary portion is composed of the primary liquid pipe 2001, the primary liquid pipe 2001, and the primary air inlet hole 2011.
  • the liquid column 203' is lifted by the intake of the primary air inlet 2011, and the liquid column 203' reaches the upper port of the primary liquid pipe 2001 and overflows in the container 204. After accumulating to a certain height, the liquid surface overflows.
  • Position if you want to lift the water to a higher position, you can increase the number of stages, so that you can raise the water or other liquid to any desired height, but as the height increases, transport The number of bodies will be reduced.
  • a multi-stage connection can be formed, and a cascade gas-liquid pump is formed.
  • the primary and secondary gas pumps can share a single gas source until more cascades and combinations.
  • the material of the liquid pipe 200 is made of a non-wetting material or close to a non-wetting material, so that the energy utilization rate is high.
  • the diameter of the liquid pipe 200 is about 2-100, which is suitable.
  • the air source pressure of the air pipe 202 is at atmospheric pressure, and is provided by a liquid gas device, and may also be provided by a common air pump, and the pressurized water raises the water body to complete the pumping work.
  • the liquid or fluid is water
  • a gas supply device is also provided here, which can be separately used in the above embodiments, and the following description will be respectively made.
  • the positive pressure gas is used in the embodiment, which can be said to be a differential pressure energy, and the air pressure difference energy is generated by providing a pipeline for the liquid to pass therethrough and providing an air inlet which is open to the atmosphere.
  • the overcurrent liquid in the pipeline can be mixed into the gas and the gas is separated into small bubbles, and the direction of gravity acceleration is set to the positive direction of the velocity, then the liquid velocity is the component in the vertical direction of the gravity acceleration.
  • the combined velocity of the components in the horizontal direction when the component of the liquid in the vertical direction of the gravitational acceleration is greater than zero, and the bubble is gradually separated into smaller bubbles of a certain volume, the bubble will move with the liquid; when the component of the liquid in the vertical direction of the gravitational acceleration is not greater than At zero hour, the bubble rises upward to float out of the water surface, and the overflow gas is collected at the bubble overflow surface to form a pressurized gas, so that the kinetic energy and potential energy contained in the liquid are collected and converted into a pressure difference energy including a positive pressure difference.
  • This differential pressure energy can be used as a power to drive other devices.
  • the device made by the method according to the invention is mainly composed of a pipeline and has a U-shaped tubular shape. As shown in Fig. 1, the two nozzles of the U-shaped tube have a certain height difference, and the height of the water inlet 1 1 ⁇ Above the height of the water outlet U 2 ', the water inlet 1 1 ⁇ is located at the high water level 308 surface, and the water outlet 112 ′ is located at the low water level 309 surface.
  • the gas-liquid pump of this embodiment uses the following devices to complete the gas supply.
  • the pipeline of the gas supply device in this embodiment is a positive U-shaped pipe
  • the positive U-shaped pipe has a water inlet portion 111 and a water outlet portion 12 12
  • the water outlet portion 112 and the horizontal pipe 108 have a large diameter and a dry water inlet portion 1 1
  • the diameter of the pipe of 1 is also the inlet portion of the inlet portion 109.
  • the outlet portion 110 of the positive U-shaped tube is provided with an outlet portion 110, and the outlet portion 110 is located at the end of the horizontal tube 108 of the positive U-shaped tube near the low water level 309. .
  • the liquid naturally flows through the positive U-shaped tube, and the upstream and downstream liquids flow through the water inlet 11 1 and the water outlet 1 12 .
  • the gas in the atmosphere is also mixed into the liquid chamber through the air inlet 109, and the gas enters the liquid in the tube, that is, when the liquid passes, the overflow water in the pipeline can be mixed into the gas and the gas is separated into small bubbles.
  • the bubble When the component of the liquid in the vertical direction of gravity acceleration is greater than zero, the bubble is gradually separated into When a certain volume of small bubbles is formed, the bubbles will move with the liquid; when reaching the horizontal tube 108, because the diameter of the water outlet 12 12 and the horizontal tube 108 are larger, the flow velocity is gradually decreased, that is, when the liquid is in the vertical direction of the gravity acceleration, the component is not When it is greater than zero, the bubble moves upward to float out of the water surface, and the overflow gas is collected at the bubble overflow surface to form a pressurized gas, and the discharge is concentrated to At the gas point 110, where the bubble overflows the liquid, a positive pressure gas is formed which is obviously higher than the atmospheric pressure.
  • the material used for the piping in the above embodiment is most convenient with PVC.
  • the pipeline material can also be non-metallic materials such as plastics, cement, ceramics, and metal materials such as ferroniobium and stainless steel.
  • the gas energy harvesting method of the present invention is achieved by the following method: A pipeline is provided, the pipeline is a U-shaped tube, and the two nozzles of the U-shaped tube are respectively the water inlet 11 1 'and the water outlet 112', the elevation of the water inlet 11 ⁇ is higher than the elevation of the water outlet 1 1 2 ', and can pass the liquid, and is provided with an air inlet 109 which is open to the atmosphere, when the liquid passes, the pipeline
  • the over-current water can be mixed into the gas and the gas is separated into small bubbles, and the direction of gravity acceleration is set to the positive direction of the velocity, then the liquid velocity is the combined velocity of the component in the vertical direction of the gravity acceleration and the component in the horizontal direction, when the liquid is in the gravitational acceleration The component in the vertical direction is greater than zero.
  • the bubble When the bubble is gradually separated into a small volume of a certain volume, the bubble will move with the liquid; when the component of the liquid in the vertical direction of the gravity acceleration is not greater than zero, the bubble moves upward to float out of the water surface, and collects the overflow gas at the bubble overflow surface > A pressurized gas is formed.
  • the liquid in the pipeline can be mixed into the gas and separated into small bubbles.
  • the liquid separation bubble is small to a certain extent, the bubble will move with the liquid, and when the liquid flow rate is lowered, the bubble will be separated from the liquid. When it comes out and moves upwards, the separated gas is collected at the outlet of the pipeline 110, and a distinct pressurized gas can be formed.
  • This gas pressure is higher than atmospheric pressure to form a positive pressure difference, so that the kinetic energy and potential energy contained in the liquid are collected. It is converted into a differential pressure energy including a positive pressure difference or a negative pressure difference, which can be used as power to drive other devices.
  • the above-mentioned pipeline is a U-shaped pipeline, and the II-shaped pipe can be arranged as a positive U-shaped pipeline;
  • the positive U-shaped tube generates a positive pressure difference at the air outlet 110;
  • the level of the liquid level of the inlet water source of the positive U-shaped tube is higher than the level of the liquid level of the discharge water passage of the outlet portion 112; in addition, the positive I) tube described above is provided at the inlet portion 109 of the pipeline.
  • the intake air amount control device can control the amount of helium in the pipeline; further, if the pipeline is a positive U-shaped tube, the outlet portion 110 of the positive U-shaped tube is provided with an outlet portion 110, and the outlet portion 110 is located at the horizontal portion of the U-shaped tube.
  • the tube 108 is near one end of the low water level 309;
  • the kinetic energy and potential energy contained in the liquid can be conveniently collected and converted into air pressure difference energy for further utilization, and the required equipment is small, the energy conversion rate is high, the investment income ratio is small, and the application range is wide. , maintenance free.
  • Fig. 10 shows the aquaculture water treatment system of the present invention, which is mainly composed of a culture pond 303, a water lifting facility, and a water source, and the water lifting facility is composed of a dam 301 and a water flow energy pump 20'.
  • the core is the ice energy pump 20', and the auxiliary facility dam 301.
  • the water flow pump 20' is composed of a pipe and is erected on the dam 301.
  • the pumping device water flow pump 20'
  • water flow pump 20' can be used.
  • the water flow energy pump 20' disposed in the dam 301 has two upper and lower nozzles in the direction of the falling water.
  • the water outlet is located on the upper surface of the water in the dam 301, and the upper water outlet is connected to the culture tank 303, and the water flow can be
  • the water pump 20' can be used to complete the water pumping into the culture tank 303, that is, the water flowing from the water outlet of the water flow pump 20' to the nozzle to the culture tank 303.
  • the water in the dam 301 comes from the seawater flowing into the tidal action of the ocean.
  • the water level in the dam 301 is higher than the water level outside the dam 301, that is, the upper surface of the dam and the lower surface of the dam; dam 301 It can also be a water retaining or water retaining wall in a river.
  • the dam of the dam 301 has one or more check valves, and the water flow can flow from the outside to the inside, and is not allowed to flow outward.
  • the water flow energy pump 20' of the present invention uses a pressurized gas as a power to drive the liquid to flow
  • the gas source can be provided by a common gas source, and can also be the present invention. Way to provide.
  • the difference between gas and atmospheric pressure it can be divided into two categories: positive pressure drive and negative pressure drive. Specifically, different working modes can be selected according to actual conditions. Both methods can achieve the same effect. .
  • FIG. 11 is a schematic structural view of the water flow energy pump, which is mainly composed of a pipe 305, and the pipe end is connected to the atmosphere outside the liquid surface.
  • the liquid is water, especially sea water, in order to need to pump or lift
  • the air inlet hole 20 is provided with a pressure gas, and the difference between the pressure of the pressurized gas and the atmospheric pressure is A, that is, the pressure of the pressurized gas is relatively large, and the large quantity is A, the unit of measurement of A
  • A the difference between the pressure of the pressurized gas and the atmospheric pressure
  • the height difference between the intake hole 201' and the upper liquid surface is smaller or much smaller than the height of the water column 203 whose pressure of the pressurized gas is equal to the A value; that is, the air inlet hole 20 is up.
  • the height difference of the liquid level is smaller or much smaller than the height difference of the intake hole 201' to the lower end of the pipe.
  • the pipe 305 high-drying air inlet 20 ⁇ part is a straight pipe, in order to reduce the resistance, adjust the intake hole 201 'intake amount to a certain extent, gas rest, water mixing into the pipe 305 is higher than the intake hole 201 ' Inside, and under the action of the pressure difference of the pressurized gas, the end of the tube moves to the outside of the top liquid level, and the above drainage process is automatically repeated.
  • the water is transported to the predetermined place for use by the water wave pump 20', that is, in the breeding pond 303, to achieve the purpose of pumping or lifting water.
  • the number of the pipes 305 can be more than two, and the amount can be increased according to the amount of water required, more than two pipes 305 can be manufactured together or fixed into bundles, so that the amount of pumping required can be easily achieved.
  • FIG. 12 is another schematic view of the water flow energy pump.
  • the pipe 305 is at the upper surface of the upper liquid surface; the other end is outside the upper liquid surface, and is connected to the negative pressure container 302.
  • the negative pressure container 302 is provided with a suction hole 307.
  • the negative pressure gas source can be connected.
  • the difference between the pressure of the negative pressure gas and the atmospheric pressure in the negative pressure vessel 302 is B, that is, the pressure of the negative pressure gas is smaller than the atmospheric pressure, and the small quantity value is B, B.
  • the unit of measure is the height value within the conduit 305 of the liquid.
  • the air inlet 304 is provided to the atmosphere.
  • the height difference of the air inlet 304 from the upper liquid surface is smaller or much smaller than the height of the water column 203 whose negative pressure gas generates a pressure equal to the B value, that is, the air inlet hole 20 ⁇
  • the height difference from the upper liquid surface is less than or much smaller than the height of the liquid corresponding to the difference between the negative pressure gas source and the atmospheric pressure.
  • the pipe 305 is higher than the intake hole 201' as a straight pipe, and the negative pressure capacity II 302 is at the bottom.
  • the drain pipe 310 (the drain pipe 310 is a hollow large inner diameter pipe, the inner diameter is large to the surface tension, the pipe shape does not form a stable water column 203), and the other end of the drain pipe 310 passes through the liquid water container 300, and the water container 300 is Where the water is required, the water container 300 is positioned lower than the negative pressure container 302, and the water column 203 is at a height equal to the bottom of the water container 300 to the bottom of the negative pressure container 302, and the generated pressure value is greater than the B value, and the air inlet is adjusted.
  • the water is transported to the predetermined place for use by the water flow pump 20', that is, in the culture tank 303, for the purpose of pumping or lifting water. Also, since the number of pipes 305 can be more than two, and the amount of water required can be increased, the amount of pumping required can be easily achieved.
  • the liquid or fluid is water or seawater.
  • the water flow energy pump shown in Fig. 11 uses a positive pressure gas
  • the water flow energy pump shown in Fig. 12 uses a negative pressure gas, which can be said to be a differential pressure energy
  • the air pressure difference energy The method is: a pipeline is arranged to pass the liquid, and an air inlet 109 is connected to the atmosphere. When the liquid passes, the overflow liquid in the pipeline can be mixed into the gas and the gas is separated into small bubbles, and the gravity is set.
  • the acceleration direction is the positive direction of the velocity, then the liquid velocity is the combined velocity of the component in the vertical direction of the gravitational acceleration and the component in the horizontal direction.
  • the bubble When the component of the liquid in the vertical direction of the gravitational acceleration is greater than zero, the bubble is gradually separated into a certain volume. When small bubbles are present, the bubbles will move with the liquid; when the component of the liquid in the vertical direction of gravity acceleration is not greater than zero, the bubbles move up to the surface, and the overflow gas is collected at the surface of the bubble overflow to form a pressurized gas in the pipeline.
  • the air inlet 109 can also generate a negative pressure, so that the kinetic energy and potential energy contained in the liquid are collected and converted into positive pressure. Or negative pressure difference can be the difference, the pressure difference between the energy of the other drive means may be powered.
  • the device made by the method according to the present invention is mainly composed of a pipeline, and is a U-shaped tube or a U-shaped tube, as shown in FIG. 1 and FIG. 2, wherein FIG. 1 It is a positive U-shaped tube, and Figure 2 is a U-shaped tube.
  • the two nozzles of the two U-shaped tubes have a certain height difference, the height of the water inlet 1 1 is higher than the height of the water outlet 112', and the water inlet 111' is located.
  • the high water level 308 is the upper liquid level, and the water outlet 112' is located at the 309 water level, that is, the lower liquid level.
  • the aquaculture water treatment system water flow energy pump shown in Figure 11 uses the following devices to complete the gas supply.
  • the pipeline is a positive U-shaped pipe
  • the positive U-shaped pipe has a water inlet portion 111 and a water outlet portion 112, and the pipe diameter of the water outlet portion 112 and the horizontal pipe 108 is larger than the pipe diameter of the water inlet portion 111.
  • the water inlet 111 is also the air inlet 109
  • the air outlet 1 10 is disposed at the top of the horizontal tube 108 of the positive U-shaped tube.
  • the air outlet 1 10 is located at the low water level of the horizontal tube 108 of the positive U-shaped tube.
  • the water inlet 1 11 and the outlet 1 12 of the gas collecting device are respectively located at the upper and lower surfaces of the head of the dam 301.
  • the liquid naturally flows through the positive U-shaped tube, and the upstream and downstream liquids flow through the water inlet portion 111 and the water outlet portion 112, at which time the atmosphere
  • the gas in the air is also mixed into the liquid through the air inlet 109, and the gas enters the liquid in the tube, that is, when the liquid passes, the overflow water in the pipeline can be mixed into the gas and the gas is separated into small bubbles.
  • the direction of gravity acceleration is the positive direction of velocity
  • the liquid velocity is the combined velocity of the component in the vertical direction of gravity acceleration and the component in the horizontal direction.
  • the bubble When the component of the liquid in the vertical direction of gravity acceleration is greater than zero, the bubble is gradually separated into a certain volume. When the bubble is small, the bubble will move with the liquid; when the horizontal pipe 108 is reached, since the diameter of the water outlet 112 and the horizontal pipe 108 is large, the flow velocity is gradually decreased, that is, when the component of the liquid in the vertical direction of the gravity acceleration is not greater than zero, The bubble moves upward to surface, collects the overflow gas at the bubble overflow surface to form a pressurized gas, and discharges it to the out At the point where the bubble overflows the liquid, a positive pressure gas is formed which is obviously higher than the atmospheric pressure.
  • the aquaculture water treatment system water flow pump shown in Fig. 12 uses the following means for supplying air (supply of a negative pressure gas).
  • the inverted U-shaped pipe has a water inlet portion 111 and a water outlet portion 112, the water inlet portion 111 is at a liquid level of the water source, and the water outlet portion 12 is at the water discharge channel.
  • the liquid level, the diameter of the pipe at the water outlet 112 is larger than the diameter of the pipe at the water inlet 111, and the inlet portion 109 is provided on the pipe wall of the U-tube with the horizontal pipe 108 higher than the liquid level of the inlet water source, and the outlet portion 112 is also vented.
  • the inlet portion 111 is at a liquid level of the water source
  • the water outlet portion 12 is at the water discharge channel.
  • the liquid level, the diameter of the pipe at the water outlet 112 is larger than the diameter of the pipe at the water inlet 111, and the inlet portion 109 is provided on the pipe wall of the U-tube with the horizontal pipe 108 higher than the liquid level of the inlet water source, and the outlet portion 112 is also vented.
  • the air inlet 109 is located at one end of the cross tube 108 of the inverted U-shaped tube near the low ice level 309, and the water inlet L 11 and the water outlet 112 of the gas collecting device are respectively located in the dam 301.
  • the air inlet 109 is closed, the inverted U-shaped tube is filled with water, and the upstream and downstream liquids pass through the siphon action.
  • the inlet 1 1 1 and the outlet 112 generate a flow.
  • the inlet 109 is appropriately opened. At this time, the inlet 109 is open to the atmosphere, and when the liquid passes, the overflow water in the pipeline can be mixed into the gas.
  • the body separates the gas into small bubbles, and sets the direction of gravity acceleration to the positive direction of the velocity, then the liquid velocity is the combined velocity of the component in the vertical direction of the gravity acceleration and the component in the horizontal direction, when the component of the liquid in the vertical direction of the gravity acceleration is greater than Zero, when the bubble is gradually separated into a small volume of a certain volume, the bubble will move with the liquid; when reaching the water outlet 1 12, because the diameter of the water outlet 12 12 is larger, the liquid flow rate is lowered, and the liquid is perpendicular to the gravity acceleration.
  • the bubble moves upward to float out of the water surface, and the overflow gas is collected at the overflow surface of the bubble to form a pressurized air break, and is automatically discharged to the large or collected through the air outlet 110, and the liquid in the tube will continue to flow.
  • the air inlet 109 a continuous and significant negative pressure airflow is generated, and a continuous negative pressure difference is obtained.
  • This pressure difference can be utilized and work, that is, the air inlet 109 is connected to the air vent 307. It can work as shown in Figure 12, and at the same time, there is a positive pressure phenomenon at the outlet.
  • an air intake amount control device is provided at the port of the inverted U-shaped tube inlet 109 and the positive U-shaped tube inlet 109, and the line can be controlled. The amount of air intake.
  • the material used for the pipeline is most convenient for PVC, but at the same time, the pipeline material can also be plastic, non-metallic materials such as cement and ceramics, and metal materials such as H-loss and stainless steel.
  • the kinetic energy and potential energy contained in the liquid can be conveniently collected and converted into air pressure difference energy for further utilization, especially for pumping or lifting water in aquaculture, and the required equipment is small, High energy conversion rate, wide application range and maintenance-free.
  • the high water level is also the upper water level or the upper liquid level
  • the low water level is also the lower water level or the lower liquid level
  • the gas liquid pump 20 is also the water flow energy pump 20' or the liquid gas energy pump or pumping water.
  • the liquid column 203' is also the water column 203; the water inlet 1 1 1 is the water inlet 1 1 ⁇ , and the gas transmission hole 201 is also the air inlet hole 20 ⁇ , the water outlet 1 12 is the water outlet 1 12 '; the liquid gas device is also the gas supply device; the upper port is the water inlet, and the lower port is the water outlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

供气装置及具有该供气装置的气液泵和水产养殖水处理系统 技术领域
本发明涉及一种水利能量收集方法和装置,是一种将水流中所蕴藏的动能、势能方便的收集并转 换为气压差能以进一步利用的方法和装置,特别是增加能量利用效率的装置, 具体地说供气装置及具 有该供气装置的气液泵和水产养殖水处理系统。
背景枝术
水利能量的藴藏十分丰富, 是能源开发和利用的重要方式之一, 并且具有洁净、 再循环等十分显 著的优点, 目前水利能量的利用的主要方式是水利发电,是通过氷轮机将水流所具有的动能和势能轮 换成机械能来获得电力, 这样, 就需要大量的水利基础建设和配套专用的氷轮发电机组, 前期的一次 性投入相当大, 对环境具有一定的不良影响, 特别是水轮发电机组结构复杂、 设备庞大, 能量转换率 低, 也容易出现故障和问题, 因而, 还需要进行改善和优化。
另外, 水利能量的利用, 还有采用水锤泵等方式来获得较高水头的方法, 也有投入大, 效率低的 不足。 液体泵是输送液体或使液体增压的机械, 它将原动机的机械能或其他外部能量传送给液体, 使 液体能量增加, 水泵主要用来输送液体包括水、 油、 酸碱液、 乳化液、 悬乳液和液态金属等, 也可输 送液体、 气体混合物以及含悬浮固体物的液体。 按工作原理可分为: 离心泵、 混流泵、 轴流泵、 旋涡 泵、 射流泵、 容积泵(螺杆泵、 活塞泵、 隔膜泵)、 链奈泵、 电磁泵、 液环泵、 脉冲泵等.
上述的各种类型的泵应用在社会的各个领域, 为人类的进步和科技的发展起到了绝对性的作用, 但是上述的各种泵也有不足, 如结构复杂, 部件过多, 制造需要一定的工艺要求, 容易损耗, 扬程有 限, 等等, 这些不足都限制了泵的应用, 也因而产生了多种多样的液体泵, 特别是水泵。
当前我国海水养殖业发展迅猛, 全国养鱼面积已超过 2000千公顷, 大多既开放式流水养殖, 需 用大功率的泵将海水抽入养殖池, 能耗大, 运行费用高, 必须不停地制造出大量的新鲜海水常年保, 一天下来, 其所耗费的能源是巨大的, 而同时海洋和河流自身的能量并没有利用起来, 因此, 水产养 殖水处理其自身以及水利能量的利用, 还有限制多, 效率低的不足。
发明内容
为此, 本发明所要解决的技术问题在于现有技术中供气装置结构复杂, 进而提供一种成本低, 结 构简单的供气装置, 及使用该供气装置的气液泵及使用该气液泵的水产养殖水处理系统,.
为解决上述枝术问题, 本发明的一种供气装置, 由管路组成, 管路具有一个进水处和出水处, 所 述进水处和所述出水处之间由横管连接, 所迷管路的进水处和出水处具有一定高度差,进水处的高度 高于出水处的高度, 进水处位于高水位面, 而出水处位于低水位面, 出水处和横管的管道直径大于进 水处的管道直径, 管路的横管顶端设置出气处, 出气处位于横管接近低水位的一端。
所述进水处也为所述进气处。
所述管路呈 U形。
所述 U形管为正 U形管。
所迷 U形管在管路的进气处设置有进气量控制装置, 用于控制管路的进气量。
所迷出气处与动力装置连接, 所迷动力装置为气液泵或气体动力机。
一种供气装置, 所述供气装置为一个倒 U形管, 所迷例 U形管具有一个进水处和出水处, 所述进 水处和所述出氷处之间由橫管连接, 所迷进水处处于一个高水位面, 而所述出水处处于低水位面, 所 述出水处的管道直径大于所述进水处的管道直径,在所述倒 U型管的所述横管高于进水水源液面的管 道壁上设置进气处, 所述进气处位于倒 U型管的所述橫管接近低水位的一端。
所述出水处也为所述出气处.
一种用于上述供气装置的液气能多孔管增效装置,适用于液气能收集装置, 液气能收集装置其基 本结构为一管路使水流通过, 并设有与大气相通的进气处, 当水流通过时,管路中的过流水可混入气 体并分离气体成为小气泡,设定重力加速度方向为速度的正方向,那么水流速度则为在重力加速度在 垂直方向的分量和水平方向水流速度分量的合量, 当水流在重力加速度垂直方向的分量大于零, 气泡 被逐渐分离为一定体积的较小气泡时, 气泡将随水流运动; 当水流在重力加速度垂直方向的分量不大 于零时, 气泡向上运动浮出水面, 在气泡溢出水面处收集溢出气体, 以形成有压气体, 同时, 在管路 的进气处也可以产生负压, 其特征在于:为增加在进气处往水流中混入的进气量, 在水流与气体混合 处设置多孔管部件, 使水流与气休充分混合。
所述的多孔管部件的轴向与水流的流向相同, 并处于进气处。 .
所述的多孔管部件是多个多孔管组成的, 多孔管具有通气孔, 并与大气相联
所述的多孔管呈锥状, 并延伸至水中,
上述的管路为 U形管路, 并且 U形管可设置成正 U形管路,
上述正 U形管的进水水源的液面水平髙度高于出水处泄水水道液面水平高度。
上述正 U形管在管路的进气处, 设置有进气量控制装置, 可以控制管路的进气量。
在正 U形管的橫管部件设置出气处。
在正 U形管的橫管部件设置出气处可以联接动力装置, 如液气能水泵或气体动力机等。
管路材料为 PVC材料、 塑料、 水泥、 陶瓷等非金属材料; 或管路材料为锜铁、 不锈钢等金属材料。 一种用于上述供气装置的液气能筛网增效装置,适用于液气能收集装置, 液气能收集装置其基本 结构为一管路使水流通过, 并设有与大气相通的迸气处, 当水流通过时,管路中的过流水可混入气体 并分离气体成为小气泡,设定重力加速度方向为速度的正方向, 那么水流速度则为在重力加速度在垂 直方向的分量和水平方向水流速度分量的合量, 当水流在重力加速度垂直方向的分量大于零, 气泡被 逐渐分离为一定体积的较小气泡时, 气泡将随水流运动; 当水流在重力加速度垂直方向的分量不大于 零时, 气泡向上运动浮出水面, 在气泡溢出水面处收集溢出气体, 以形成有压气体, 同时, 在管路的 进气处也可以产生负压, 为增加在进气处往水流中混入的进气量, 在水流与气体混合处设置筛网状部 件, 使水流与气体充分混合。
所述的 ^网状部件设置在水流的截面, 并处于进气处。
所述的筛网状部件是由肋骨材料纵橫交错组成的, 肋骨材料的一侧具有通气道, 并与大气相联。 所述的筛网状部件具有通气道的一面与水流方向相同。
上述的管路为 U形管路, 并且 U形管可设置成正 U形管路。
上迷正 U形管的进水水源的液面水平高度高于出水处泄水水道液面水平高度。
上述正 U形管在管路的进气处, 设置有进气量控制装置, 可以控制管路的进气量。
在正 U形管的橫管部件设置出气处。
在正 U形管的横管部件设置出气处可以联接动力装置, 如液气能水泵或气体动力机等。
管路材料为 PVC材料、 塑料、 水泥、 P句瓷等非金属材料; 或管路材料为铸铁、 不锈钢等金属材料。 一种气液泵, 由液管和气管组成, 液管设置输气孔与气管相连接, 气管气体压力大于大气压。 液管具有两个端口, 分别为上端口与下端口, 上端口的水平高度高于下端口, 液管的上端口与大 气相通, 至提水高度, 液管的下端口侵入在液体中,
输气孔位于液面以下, 输气孔距液管所浸入液体液面的高度差, 小于输气孔至液管下端口的高度 差; 或在液管内形成的水柱髙度, 小于输气孔至液管下端口的高度差,
输气孔位于液面以下,输气孔距液管所浸入液面的高度差,加上液体在液管内浸入所形成内壁表 面张力的高度差之和, 小于输气孔至液管下端口的高度差; 或在液管内形成的水柱高度, 加上液体在 液管内浸入所形成内壁表面张力的高度差之和, 小于输气孔至液管下端口的高度差。
可由两个或以上的气液泵组成, 初级气液泵的上端口与次级气液泵的下端口相接, 可多级相联, 组成级联式气液泵。
初级气液泵的上端口输出的液体与次级气液泵的下端口需要输入的液体通过容器实现连续接替 输送.
初級气液泵与次级气液泵可以共用一个气源, 直至更多级联及组合。
液管的制成材料为非浸润性材料或接近于非浸润性材料。
液管的直径约为 2-10隱。
气管的气源压力在于大气压力, 由液气装置提供, 也可以由气泵提供。
液气装置为上面所述供气装置,
一种水产养殖水处理系统, 该主要由养殖池、 提水设施、 水源组成, 其特征在于: 提水设施由水 坝及水流能水泵组成。
所述的水流能水泵具有上下两个水口,下水口位于水坝内水的上波面,上水口位连通于养殖池内, 可由水流能水泵来完成向养殖池内的抽水或提水,即由水流能水泵的下水口向水口榆送流水直至养殖 池。
所迷的水流能水泵是由管路构成的, 管路至少由一个或二个以上的管道组成, 在每个管道上设置 有小孔,将此管路放置在水坝内的上液面中, 当管道的小孔位于液面下时,在管道内会形成一段水柱, 此时向管路的小孔中通入有压气体, 并当水柱两端气体压强不同时, 水柱将向压强较小的一端运动, 且运动到预定位置的水可被收集利用, 也就是上水口的位置,
管路的进气孔到液面的高度差, 小于或远小于进气孔到管道下端部的高度差
所述的水流水泵是由管路构成的, 管路至少由一个或一个以上的管道组成,在每个管道上设置有 小孔, 将此管路放置在液体中, 管道一端在液面下, 并当管道的小孔位于液面上、 而另一端在液面外 时, 可以通负压容器, 负压容器内负压气体的压强与大气压强的差值为 B , 液面外管道段上, 设进气 口通大气, 进气口距液面的高度差, 小于或远小于产生压强与 Β值相等的水柱的高度, 管道高于进气 孔部分为直管, 负压容器底部设排水管, 排水管为中空大内径管, 排水管另一端通盛水容器液面下, 盛水容器位置低于负压容器, 与盛水容器液面到负压容器底部距离等高度的水柱, 产生的压强值大于 Β值。 调节进气口进气量到一定程度, 气体、 水混合进入管道到负压容器, 气体被抽走, 水再经排水 管到盛水容器供利用, 并输送至养直池。
进气孔距液面的高度差, 小于或远小于负压气源与大气压强所产生差值所对应液体的高度。 水流能水泵的有压气体来自于一个气体收集装置,这个装置呈为一个正 U形管, 具有一个进水处 和出水处, 出水处和横管的管道直径大于进水处的管道直径, 进水处也为进气处, 在正 U型管的橫管 顶端设置出气处, 出气处位于正 U型管的橫管接近低水位的一端, 这个气体收集装置的进水处和出水 处分别位于水坝中水头差的上下液面。
水流能水泵的有压气体来自于一个气体收集装置, 这个装置呈为一个倒 u 形管集气装置, 倒 υ 形管具有一个进水处和出水处进水处处于一个水源的液面, 而出水处处于泄水水道液面, 出水处的管 道直径大于进水处的管道直径, 在例 U型管的横管高于进水水源液面的管道壁上设置进气处, 出水处 也为出气处,进气处位于例 U型管的横管接近低水位的一端,这个气体收集装置的进水处和出水处分 别位于水产养殖水处理中水头差的上下液面。
水坝内的水来自于海洋的潮汐作用所涌进的海水, 水坝内的水位高度髙于水坝外的水位高度; 水 坝也可以为河流中的挡水堰或挡水墙,
所述水流能水泵是上面所述气液泵,
水坝的坝体具有一个及一个以上的单向阀, 水流可以自外向内流入, 而不允许向外流出。
本发明的上述技术方案相比现有技术具有以下优点,
1 ) 本发明所迷气液泵结构简单, 制造容易, 可抽水高度不受限制, 且所需设备小, 能量转换率 高, 投资收益比小, 适用范围广, 免维护。
2 ) 液气能多孔管增效装置及液气能筛网增效装置这种将水流蕴藏的动能、 势能收集并转换为气 压差能, 再利用气压差来驱动其它动力设备, 如水泵或气体动力机等, 前期所需设备投资少, 能量转 换率更高, 适用范围广, 无机械转动部件, 无需维护。
3 ) 利用海洋或河流自身的能量, 在水坝中可将抽水或提水至更高位置, 无需供油供电, 设备可 自行运转, 且所需设备小, 能量转换率高, 适用范围广, 免维护.
附图说明
为了使本发明的内容更容易被清楚的理解, 下面根据本发明的具体实施例并结合附图,对本发明 作进一步详细的说明, 其中
图 1是本发明所述供气装置正 U形管结构示意图;
图 1是本发明所述供气装置倒 U形管结构示意图;
图 3是本发明设有液气能增效装置的所述供气装置结构示意图;
图 4是本发明所述液气能多孔管增效装置的多孔管部件结构示意图;
图 5是本发明所述液气能多孔管增效装置的多孔管部件的通气孔结构示意图;
图 6是本发明所述液气能筛网增效装置的筛网状部件的肋骨材料纵橫交错布置示意图; 图 7是本发明所述液气能筛网增效装置的筛网状部件的肋骨材料的通气孔结构示意图; 图 8是本发明所述气液泵示意图;
图 9是本发明所述气液泵级联方式示意图;
图 1 0是本发明所述水产养殖水处理系统示意图;
图 U是本发明所述水产养殖水处理系统水流能水泵的示意图;
图 12是本发明所述水产养殖水处理系统水流能水泵另一示意图,
图中附图标记表示为:
10-供气装置, 104-液气能增效装置, 108-橫管, 109-进气处, 1 1 0-出气处, 1 1 1-进水处, 1 11 '- 进水口, 1 12-出水处, 1 12 '-出水口, 141-多孔管部件, 142-多孔管, 143-通气孔, 144-筛网状部件, 145-通气道;
20-气液泵, 20'-水流能水泵, 200-液管, 201-输气孔, 202-气管, 203-水柱, 203'-液柱, 2001- 初级液管, 2011-初级进气孔, 2021-初级气管, 2002-次级液管, 2012-次级进气孔, 2022-次级气管, 204-容器;
300-盛水容器, 301-水坝, 302-负压容器, 303-养殖池, 304-进气口, 304'-进气孔, 305-管道,
307-抽气孔, 308-高水位, 309-低水位 309, 310-排水管 具体实施方式
实施例 1.1-供气装置
图 1所述为本发明所述供气装置, 由管路组成, 管路具有一个进水处 111和出水处 112, 所述进 水处 111和所述出水处 112之间由橫管 108连接,所述管路的进水处 111和出水处 112具有一定高度 差,进水处 111的高度高于出水处的高度,进水处 111位于高水位 308,而出水处 112位于低水位 309 处, 出水处 112和橫管 108的管道直径大于进水处 111的管道直径, 管路的横管 108顶端设置出气处 110, 出气处 110位于橫管 108接近于低水位 309的一端,
本实施例中优选所述进水处 111也为所述进气处 109, 也即所述进水处 111与所述进气处 109重 合.
所述管路呈 U形, 本实施例中优选所述 U形管为正 U形管。
进一步,本实施例在上述实施例的基础上, 所迷 U形管在管路的进气处 109设置有进气量控制装 置, 用于控制管路的进气量。
进一步, 本实施例在上述实施例的基础上, 所述出气处 110与动力装置连接, 所述动力装置为气 液泵 20或气体动力机。
实施例 1.2-供气装置
图 2所述为本发明所述供气装置,所迷供气装置为一个倒 U形管,所迷倒 U形管具有一个进水处 111和出水处 112, 所述进水处 111和所述出水处 112之间由横管 108连接, 所述进水处 111处于一 个高水位面, 而所述出水处 112处于低水位面, 所述出水处 112的管道直径大于所述进水处 111的管 道直径, 在所述倒 II型管的所述橫管 108高于进水水源液面的管道壁上设置进气处, 所述进气处 109 位于倒 U型管的所述橫管 108接近于低水位的一端。
本实施例中优选所述出水处 112也为所述出气处 110,即所述出水处 112与所述出气处 110重合。 实施例 2-液气能多孔管增效装置
本发明的 的是提供一种结构简单、成本低廉并且具有较高效率的水流能量收集方法及装置,特别 是一种可以提高效率的优化装置,现结合实施例及附图来进行说明,基于本发明所述方法所制成的装置。
图 3所述为设有液气能增效装置的所述供气装置的结构示意图, 主要由管路组成, 呈正 U形管, 这 种 I 形管的两个管口具有一定高差, 进水口 11Γ 位于高水位 308面, 而出水口 112' 位于低水位 309, 本实施例中, 所述的管路为正 U形管, 正 U形管具^ "一个进水处 111和出水处 112, 出水处 112和 橫管 108的管道直径大于进水处 111的管道直径, 进水处 111也为进气处 109, 在正 I)型管的橫管 108 顶端设置出气处 110, 如图 1所示。
当进水口 11 与出水口 112'分别位于水面的上水位和下水位时, 水流会自然流过正 U形管, 上下 游水流通过进水处 111和出水处 112产生流动, 此时大气中的气体也通过进气处 109混入到水流中去, 就有气体进入到管内的水流中去,即当水流通过时,管路中的过流水可混入气体并分离气体成为小气泡, 设定重力加速度方向为速度的正方向,那么水流速度则为在重力加速度垂直方向的分量和水平方向的分 量的合速度, 当氷流在重力加速度垂直方向的分量大于零, 气泡被逐渐分离为一定体积的较小气泡时, 气泡将随水流运动; 当到达橫管 108时, 即当水流在重力加速度垂直方向的分量不大于零时, 气泡向上 运动浮出水面,在气泡溢出水面处收集气体,以形成有压气体,就形成明显的高于大气压力的正压气体, 如果管内水流持续流动, 就得到持续的正压气体, 这个压力差值就可以利用和做功, 同时, 在进气处 109处有负压现象。
在试验中可以发现并且验证, 在同等奈件下, 随着进入到进气处 109的气体的增加, 也就是混入 到水流中去的气休的增加, 在出气处 110处所产生的气体的压力和数量都会增加, 因此, 为了增强上迷 装置的效率, 在水流与气体 ; 合处设置多孔管 142部件 141, 使水流与气体充分混合, 这个多孔管 142 部件 141设置在水流截面, 并处于进气处 109处 (见图 4所示)。 另外, 多孔管部件 141是由多个多孔 管 142组成的, 多孔管 142侧壁具有通气孔 143, 并与大气相联, 这样, 可以保证充足的大气气体。 显 而易见的> 多孔管 142部件 141具有通气札 143的一面安装方面与水流方向相同 (见图 5所示)。 本实施例中所述多孔管部件 141是一种液气能增效装置 104 ,
另外, 为了使上述正 U形管内的水流稳定, 在正 11形管进气处 109的端口, 设置有进气量控制装 置, 可以控制管路的进气量。
从附图中也可以看出,正 U形管的进水水源的液面水平高度高于出水处 112泄水水道液面水平髙度。 为了更加准确的正 U形管在管路的进气处 109 , 设置有进气量控制装置, 可以控制管路的进气量。 在正 U形管的橫管 108部件设置出气处 1 10, 可以收集所产生的气体, 可以联接动力装置, 如液气 能水泵或气体动力机等。
上述实施例中管路所用材料以 PVC最为方便. 但同时管路材料也可为塑料、 水泥、 陶瓷等非金属材 料, 以及锜铁、 不锈钢等金属材料。
这样, 结合上述的实施例可以得出本发明的气体能量收集方法是通过以下方法实现的: 设置管路, 管路呈 U形状管, U形管的两个管口分别是进水口 11 Γ 和出水口 112 ' ,迸水口 11 Γ 的高程高于出水 口 1 12 ' 的高程, 并能够使水流通过, 并设有一与大气相通的进气处 109, 当水流通过时,管路中的过流 水可混入气体并分离气体成为小气泡,设定重力加速度方向为速度的正方向, 那么水流速度则为在重力 加速度垂直方向的分量和水平方向的分量的合速度, 当水流在重力加速度垂直方向的分量大于零, 气泡 被逐渐分离为一定体积的较小气泡时, 气泡将随水流运动; 当水流在重力加速度垂直方向的分量不大于 零时, 气泡向上运动浮出水面, 在气泡溢出水面处收集溢出气体, 以形成有压气体, 如果是正 U形管, 在管路此出气处 1 10收集分离出来的气体, 可以形成明显有压气体,这个气压高于大气压力形成一个正 压气体, 这样, 水流中所蘊藏的动能、 势能便被收集并转换为包括正压气体或负压差的气压差能, 这个 气压差能量可以作为动力来驱动其它装置。
采用本发明的方法和装置, 可以将水流中所蕴藏的动能、势能方便的收集并转换为气压差能以进一 步利用, 且所需设备小, 能量转换率更高, 适用范围广, 免維护。
实施例 3-液气能筛网增效装置
本发明的目的是提供一种结构简单、成本低廉并且具有较高效率的水流能量收集方法及装置, 特别 是一种可以提高效率的优化装置,现结合实施例及附图来进行说明,基于本发明所述方法所制成的装置; 图 3所述为设有液气能增效装置的所述供气装置的结构示意图, 主要由管路组成, 呈正 U形管, 如 图 1所示, 这种 I)形管的两个管口具有一定高差, 进水口 1 1 Γ位于高水位 308面, 而出水口 1 1 2 '位于 低水位 309面'
本实施例中, 所迷的管路为正 U形管, 正 U形管具有一个进水处 111和出水处 112 , 出水处 112和 橫管 108的管道直径大于进水处 111的管道直径, 进水处 111也为进气处 1 09 , 在正 U型管的橫管 108 顶端设置出气处 n o.
当进水口 11 Γ与出水口 112 '分别位于水面的上水位和下水位时, 水流会自然流过正 U形管, 上下 游水流通过进水处 11 1和出水处 112产生流动, 此时大气中的气体也通过进气处 1 09混入到水流中去, 就有气体进入到管内的水流中去,即当水流通过时,管路中的过流水可混入气体并分离气体成为小气泡, 设定重力加速度方向为速度的正方向,那么水流速度则为在重力加速度垂直方向的分量和水平方向的分 量的合速度, 当水流在重力加速度垂直方向的分量大于零, 气泡被逐渐分离为一定体积的较小气泡时, 气泡将随水流运动; 当到达橫管 1 08时, 即当水流在重力加速度垂直方向的分量不大于零时, 气泡向上 运动浮出水面,在气泡溢出水面处收集气体,以形成有压气体,就形成明显的高于大气压力的正压气体, 如果管内水流持续流动, 就得到持续的正压气体, 这个压力差值就可以利用和做功, 同时, 在进气处 109处有负压现象。
在试验中可以发现并且验证, 在同等条件下, 随着进入到进气处 109的气体的增加, 也就是混入 到水流中去的气体的增加, 在出气处 110处所产生的气体的压力和数量都会增加, 因此, 为了增强上述 装置的效率, 在水流与气体混合处设置筛网状部件 144 (见图 6所示), 使水流与气体充分混合, 这个 筛网状部件 144设置在水流截面, 并处于进气处 109处。 另外, 筛网状部件 144是由肋骨材料纵横交错 组成的, 肋骨材料的一侧具有通气道 145 , 并与大气相联(见图 7所示), 这样, 可以保证充足的大气 气体, 显而易见的, 筛网状部件 144具有通气道 145的一面安装方面与水流方向相同。
本实施例中所述筛网状部件 144是一种液气增能效装置 104
另外, 为了使上迷正 ϋ形管内的水流稳定, 在正 U形管进气处 109的端口, 设置有进气量控制装 置, 可以控制管路的进气量。
从附图中也可以看出,正 U形管的进水水源的液面水平高度高于出水处 1 12泄水水道液面水平高度。 为了更加准确的正 U形管在管路的进气处 109 , 设置有进气量控制装置, 可以控制管路的进气量。 在正 U形管的橫管 108部件设置出气处 110 , 可以收集所产生的气体, 可以联接动力装置, 如液气 能水泵或气体动力机等。
上迷实施例中管路所用材料以 PVC最为方便。 但同时管路材料也可为塑料、 水泥、 陶瓷等非金属材 枓, 以及铸铁、 不锈钢等金属材枓。
这样, 结合上迷的实施例可以得出本发明的气体能量收集方法是通过以下方法实现的: 见图 1所 示, 设置管路, 管路呈 U形状管, U形管的两个管口分别是进水口 11 Γ 和出水口 112 ' , 进水口 11 Γ 的高程高于出水口 112 ' 的高程, 并能够使水流通过, 并设有一与大气相通的进气处 109 , 当水流通过 时,管路中的过流水可混入气体并分离气体成为小气泡, 设定重力加速度方向为速度的正方向, 那么水 流速度则为在重力加速度垂直方向的分量和水平方向的分量的合速度,当水流在重力加速度垂直方向的 分量大于零, 气泡被逐渐分离为一定体积的较小气泡时, 气泡将随水流运动; 当水流在重力加速度垂直 方向的分量不大于零时, 气泡向上运动浮出水面, 在气泡溢出水面处收集溢出气体, 以形成有压气体, 如果是正 U形管, 在管路此出气处 110收集分离出来的气体, 可以形成明显有压气体, 这个气压髙于大 气压力形成一个正压气体, 这样, 水流中所蕴藏的动能、 势能便被收集并转换为包括正压气体或负压差 的气压差能, 这个气压差能量可以作为动力来驱动其它装置。
采用本发明的方法和装置, 可以将水流中所蕴藏的动能、势能方便的收集并转换为气压差能以进 一步利用, 且所需设备小, 能量转换率更高, 适用范困广, 免维护。
实施例 4-气液泵
基于本发明的目的和附图, 以及已经取得的成功试脸数据, 从以下实施例来说明原理及工作情况。 图 8所述为本发明所述气液泵 20, 由液管 200和气管 202组成, 液管 200与气管 202均可以合适 材料制成, 例如以塑料管材制成, 特别是 PVC材料, 在液管 200上设置输气孔 201与气管 202相连接, 输气孔 201—般设置在管件的中下部。
在气管 202中具有压气体, 气体压力一般大于大气压,可以通过输气孔 201向液管 200内输送有压 气体。
在液管 200具有两个端口, 分别为上端口与下端口, 上端口的水平高度高于下端口, 液管 200的上 端口与大气相通, 相对于大气压无压力, 面上端口的水平高度至提水高度, 也就是所要提水的高度, 液 管 200的下端口侵入在液体中, 在本实施例中所述的液体实质上为水, 或是性质接近的液体。
在工作时, 液管 200的输气孔 201与气管 202相连接, 并位于所要抽取的液体液面以下, 输气孔 201距液管 200所浸入液体液面的高度差, 小于输气孔 201至液管 200下端口的高度差, 也就是说, 当 把液管 200放入到水中去时, 如图 1的状态, 液面会进入到液管 200内并浸过输气孔 201 , 有压气体通 过输气孔 201进入到液管 200时, 由于气体的压力作用, 会将液管 200内的水体同时向上、 向下排出, 这时向上的水体就形成了一个液柱 203' , 随着进气量的增加而向上运动, 而此时的压力不变, 液管 200 内向下运动的水体也保持一定的高度后基本维持不变, 直至将液柱 203'完全推出液管 200, 在推出液管 200的同时, 由于没有液柱 203'的阻碍, 液管 200内的气体压力瞬时回到大气压, 在液管 200内输气孔 201下部的水体自然上升至与水平面相持平或接近持平,怛此时气管 202内有持续不断的有压气体供应, 因此又将在液管 200内输气孔 201上部形成液柱 203' , 并且重复上述的过程, 这样就一点一点将水排 出至液管 200上端口的高度。
因此, 在上述的过程中, 为保证能够输送水至液管 200 上端口的位置, 那就需要确保在液管 200 内形成的水柱 203高度, 小于输气孔 201至液管 200下端口的髙度差, 否则, 气管 202内的有压气体就 会自液管 200的下端口处泄露。
这上面这个实施例中,有些影响因素没有仔细计算在内,例如水在液管 200内流动时所受到的表面 张力的影响, 在不同管径时受到的影响也不同, 这样, 就需要考虑到: 当输气孔 201位于液面以下, 输 气孔 201距液管 200所浸入液面的高度差,加上液体在液管 200内浸入所形成内壁表面张力的高度差之 和, 小于输气孔 201至液管 200下端口的高度差; 或在液管 200内形成的水柱 203高度, 加上液体在液 管 200内浸入所形成内壁表面张力的高度差之和, 小于输气孔 201至液管 200下端口的高度差。 这样, 才能够有效地将水输出的上端口, 直至达到提升高度。
进一步, 本实施例在上迷实施例的基础上, 上述的单个装置会由于设备、 地形及其它影响不能够达 到更高的抽水高度, 那么这时候可由两个或以上的气液泵 20组成级联结构, 来完成高度上的要求, 其 基本原理就是将同样的气液泵 20制成多个, 分成为初级、 次级、 第三级 ... ...直至到第 N级, 初级气液 泵 20的液管 200上端口与次级气液泵 20的液管 200下端口相接,也就是每一级的上端口与次一级的组 成级联式气液泵 20 , 而初级气液泵 20的上端口输出的液体与次级气液泵 20的下端口需要输入的液体 通过容器实现连续接替输送。
见图 9所示气液泵 20的级联方式是由以下组成: 初级液管 2001、初级液管 2001、初级进气孔 2011、 次级液管 2002、 次级气管 2022、 次级进气孔 2012 , 容器 204组成。
由初级液管 2001、初级液管 2001、初级进气孔 2011组成初级部分,由次级液管 2002、次级气管 2022、 次级进气孔 2012、容器 204组成次级部分,每一部分的抽水原理就如同前述的实施例(见附图 8所示), 不同之处在于增加了容器 204作为连续接替输送装置, 由初级液管 2001、 初级液管 2001、 初级进气孔 2011组成初级部分, 在由初级进气孔 201 1进气的作用下完成液柱 203 '的提升, 液柱 203'到达初级液管 2001的上端口并溢出在容器 204内, 积累到一定高度以后液面漫过次级进气孔 2012的高度, 同时, 次 级气管 2022开始加气, 过程同前, 将形成液柱 203 '并溢出到次级液管 2002的上端口溢出, 也就是提 水到了更高的水平位置, 如果想要提水到更高的位置, 再增加级数即可, 这样就可以将水或其它液体提 升到任意想要达到的高度, 但随着高度的增加, 输送液体的数量会减少。
也就是说, 通过上一级与次一级的联接, 即初级气液泵的上端口与次级气液泵的下端口相接, 可形 成多级相联, 組成级联式气液泵,
初级气液泵与次级气液泵可以共用一个气源, 直至更多级联及组合。
由干液管 200的管壁具有表面张力,所以,液管 200的制成材料为非浸润性材料或接近于非浸润性 材料, 这样能量利用率较高。
在试验中检测可以发现, 上述液管 200的直径约为 2- 1 0誦比较适合,
上述气管 202的气源压力在于大气压力, 由液气装置提供, 也可以由普通气泵提供, 由有压气体抬 高水体来完成抽水工作。
在本发明所涉及的所有实施例中, 所述的液体或流体均为水,
为了配合上述的装置完成其功能, 这里也同时提供了一种供气装置, 可以分別用于上迷实施例, 下 面分别做说明。
在上述实施例中, 实施例中使用了正压气体,可以说就是一种气压差能,而气压差能的产生方法是, 设置一管路使液体通过, 并设有一与大气相通的进气处 1 09 , 当液体通过时,管路中的过流液体可混入 气体并分离气体成为小气泡,设定重力加速度方向为速度的正方向, 那么液体速度则为在重力加速度垂 直方向的分量和水平方向的分量的合速度, 当液体在重力加速度垂直方向的分量大于零, 气泡被逐渐分 离为一定体积的较小气泡时, 气泡将随液体运动; 当液体在重力加速度垂直方向的分量不大于零时, 气 泡向上运动浮出水面,在气泡溢出水面处收集溢出气体, 以形成有压气体,这样, 液体中所蕴藏的动能、 势能便被收集并转换为包括正压差的气压差能, 这个气压差能量可以作为动力来驱动其它装置.
基于本发明所述方法所制成的装置主要由管路组成, 呈正 U形管状, 如图 1所示, 这种 U形管的两 个管口具有一定高差, 进水口 1 1 Γ的高度高于出水口 U 2 '的高度, 进水口 1 1 Γ位于高水位 308面, 而 出水口 112 '位于低水位 309面,
本实施例所述气液泵采用的是以下的装置来完成供气.
本实施例中的供气装置的管路为正 U形管,正 U形管具有一个进水处 111和出水处 1 12 ,出水处 112 和橫管 108的管道直径大干进水处 1 1 1的管道直径,进水处 111也为进气处 1 09 ,在正 U型管的橫管 108 顶端设置出气处 110 , 出气处 110位于正 U型管的橫管 108接近低水位 309的一端。
当进水口 11 Γ与出水口 1 12 '分别位于水面的上水位和下水位时, 液体会自然流过正 U形管, 上下 游液体通过进水处 11 1和出水处 1 12产生流动, 此时大气中的气体也通过进气处 109混入到液休中去, 就有气体进入到管内的液体中去,即当液体通过时,管路中的过流水可混入气体并分离气体成为小气泡, 设定重力加速度方向为速度的正方向,那么液体速度则为在重力加速度垂直方向的分量和水平方向的分 量的合速度, 当液体在重力加速度垂直方向的分量大于零, 气泡被逐渐分离为一定体积的较小气泡时, 气泡将随液体运动; 当到达橫管 108时, 因为出水处 1 12、 橫管 108的直径较大, 流速逐渐降低, 即当 液体在重力加速度垂直方向的分量不大于零时, 气泡向上运动浮出水面,在气泡溢出水面处收集溢出气 体, 以形成有压气体, 并排出集中到出气处 110即气泡溢出液体处, 就形成明显的高于大气压力的正压 气体, 如果管内液体持续流动, 就得到持续的正压差, 这个压力差值就可以利用和做功, 也就是说, 将 出气处 110接至上述气液泵 20的气管 202、 2021、 2022上, 就可以让图 8、 图 9所示抽水装置工作, 同时, 在进气处 109处有负压现象。
上述实施例中管路所用材料以 PVC最为方便。 但同时管路材料也可为塑料、 水泥、 陶瓷等非金属材 料, 以及锜铁、 不锈钢等金属材料。
这样, 结合上述的实施例可以得出本发明的气体能量收集方法是通过以下方法实现的: 设置一管 路, 管路呈 U形状管, U形管的两个管口分别是进水口 11 1 ' 和出水口 112 ' , 进水口 11 Γ 的高程高于 出水口 1 1 2 ' 的高程, 并能够使液体通过, 并设有一与大气相通的进气处 109 , 当液体通过时,管路中的 过流水可混入气体并分离气体成为小气泡,设定重力加速度方向为速度的正方向, 那么液体速度则为在 重力加速度垂直方向的分量和水平方向的分量的合速度, 当液体在重力加速度垂直方向的分量大于零, 气泡被逐渐分离为一定体积的较小气泡时, 气泡将随液体运动; 当液体在重力加速度垂直方向的分量不 大于零时, 气泡向上运动浮出水面, 在气泡溢出水面处收集溢出气体 > 以形成有压气体, 当液体通过时 管路中的液体可混入气休并分离成为小气泡, 液体分离气泡小到一定程度, 气泡将随液体运动, 当液体 流速降低时, 气泡将从液体中分离出来并向上运动, 在管路此出气处 110收集分离出来的气体, 可以形 成明显有压气体, 这个气压高于大气压力形成一个正压差, 这样, 液体中所蕴藏的动能、 势能便被收集 并转换为包括正压差或负压差的气压差能, 这个气压差能量可以作为动力来驱动其它装置。
进一步的, 上述的管路为 U形管路, II形管可设置成正 U形管路;
进一步的, 正 U形管在出气处 110产生的为正压差;
另外, 上述的正 U形管的进水水源的液面水平高度高于出水处 112泄水水道液面水平高度; 另外, 上述的正 I)形管在管路的进气处 109 , 设置有进气量控制装置, 可以控制管路的逬气量; 进一步的, 如果管路为正 U形管, 在正 U形管的橫管 108部件设置出气处 110, 出气处 110位于 U 型管的横管 108接近低水位 309的一端;
采用本发明的方法和装置,可以将液体中所蘊藏的动能、势能方便的收集并转换为气压差能以进一 步利用, 且所需设备小, 能量转换率高, 投资收益比小, 适用范围广, 免维护。
实施例 5-水产养殖氷处理系统
基于本发明的目的, 以及已经取得的成功试验数据, 从以下两个实施例来说明原理及工作情况。 图 10所示为本发明所述水产养殖水处理系统, 该主要由养殖池 303、 提水设施, 水源组成, 提水设 施由水坝 301及水流能水泵 20'组成。 核心是氷流能水泵 20' , 以及辅助设施水坝 301 , 水流能水泵 20' 是由管道组成, 并架设在水坝 301 上, 如附图 10所示, 可以将抽水装置 (水流能水泵 20' ) 沿落水方 向放置在水坝 301内, 置在水坝 301内的水流能水泵 20'具有上下两个水口, 下水口位于水坝 301 内水 的上液面, 上水口位连通于养殖池 303内, 可由水流能水泵 20'来完成向养殖池 303内的提水, 即由水 流能水泵 20'的下水口向水口输送流水直至养殖池 303。
另外, 水坝 301内的水来自于海洋的潮汐作用所涌进的海水, 水坝 301内的水位高度高于水坝 301 外的水位高度, 也就是坝内上液面和坝外下液面; 水坝 301也可以为河流中的挡水堰或挡水墙。
还有, 为了更好地利用海水或河流流水, 水坝 301的坝体具有一个及一个以上的单向阀, 水流可以 自外向内流入, 而不允许向外流出。
如前所述, 本发明所述的水流能水泵 20 ' 是以有压气体来作为动力, 来驱动液体进行流动的, 这 个气休来源可以为普通气源提供, 更可以为本发明所涉及的方式来提供。 同时, 根据气体与大气压力的 差值可以分为两大类: 正压驱动和负压驱动, 具体可以根据实际情况的不同来选择不同的工作方式, 这 两种方式都可以达到同样类似的效果。
见图 11为所述水流能水泵结构示意图, 主要由管道 305组成, 管道 305 —端在液面外通大气, 在 本发明的实施例中液体均为水, 特别是海水, 为需要抽水或提水的预定髙度; 另一端(下端部)在上液 面下, 图 11中的波紋线表示为液休(以下同), 聂上一根表示液面, 管道 305在上液面下的一段上设进 气孔 20 , 并通有压气体, 有压气体的压强与大气压强的差值为 A, 即这个有压气体的压强较大气压强 大, 并且大的数量值为 A, A的计量单位为液体的管道 305内的高度值, 进气孔 201 '到上液面的高度差, 小于或远小于有压气体产生压强与 A值相等的水柱 203的高度; 也就是进气孔 20Γ到上液面的高度差, 小于或远小于进气孔 201 '到管道下端部的高度差。 如果向管路的小孔中通入有压气体, 并当水柱 203 两端气体压强不同时, 水柱 203将向压强较小的一端运动, 管道 305在进气孔 201 '下的一段最低位置 距进气孔 201 '的高度差, 也就是进气孔 20 距管道 305的下端口的高度差, 大于有压气体产生压强与 A 值相等的水柱 203的高度, 这样, 在进气孔 201 '连接有压气源时, 才可能正常向上驱动液体。
另外, 管道 305 高干进气孔 20Γ部分为直管, 是为了减少阻力, 调节进气孔 201 '进气量到一定程 度, 气休、 水混合进入管道 305 高于进气孔 201 '的部分内, 并在有压气体压差的作用下, 在管内运动 到顶端液面外的一端排出, 且自动重复以上排水过程。 这样水通过水波能水泵 20'就被运到了预定处供 利用, 即养殖池 303内, 达到抽水或提水的目的.
同时, 由于管道 305的数量可大于 2根, 并且可以根据需要的水量增加数量, 大于 2根的管道 305 可以制造在一起, 或者固定成束, 因此, 可以很轻松达到所需要抽水的数量。
见图 12所示为水流能水泵另一示意图, 管道 305—端在上液面下; 另一端在上液面外, 且通负压 容器 302, 在负压容器 302上设置有抽气孔 307 , 可以连接负压气源, 负压容器 302内负压气体的压强 与大气压强的差值为 B, 也就是说, 负压气体的压强比大气压强较小, 并且小的数量值为 B, B的计量 单位为液体的管道 305内的高度值。 在上液面外管道 305段上, 设进气口 304通大气。 进气口 304距上 液面的高度差, 小于或远小于负压气体产生压强与 B值相等的水柱 203的高度, 也就是说, 进气孔 20Γ 距上液面的高度差, 小于或远小于负压气源与大气压强所产生差值所对应液体的高度,管道 305高于进 气孔 201 '部分为直管, 负压容 II 302底部设排水管 310 (排水管 310为中空大内径管, 内径大到靠表面 张力之托, 管内形不成稳定的水柱 203 ), 排水管 310另一端通盛水容器 300液面下, 盛水容器 300为 需水的预定处, 盛水容器 300位置低于负压容器 302 , 与盛水容器 300液面到负压容器 302底部距离等 高度的水柱 203 , 产生的压强值大于 B值, 调节进气口 304进气量到一定程度, 气体、 水混合进入管道 305 , 并在压差的作用下, 在管内运动到负压容器 302 , 气体被抽走, 水再经排水管 310到盛水容器 300 供利用, 这样就实现了抽水或提水的目的, 本装置一经启动, 自动重复以上排水过程,
这样水通过水流能水泵 20'就被运到了预定处供利用, 即养殖池 303内, 达到抽水或提水的目的。 同样, 由于管道 305的数量也可大于 2根, 并且可以根椐需要的水量增加数量, 因此, 可以很轻松 达到所需要抽水的数量。
在本发明所涉及的所有实施例中, 所述的液体或流体均为水或海水。
为了配合上述的装置完成其功能,这里也同时提供了两种供气装置,可以分别用于上述两个实施例, 下面分别做说明。
在上迷两个实施例中, 图 1 1所示水流能水泵使用了正压气体, 图 12所示的水流能水泵使用了负压 气体, 可以说就是一种气压差能, 而气压差能的产生方法是, 设置一管路使液体通过, 并设有一与大气 相通的进气处 109 , 当液体通过时,管路中的过流液体可混入气体并分离气体成为小气泡, 设定重力加 速度方向为速度的正方向, 那么液体速度则为在重力加速度垂直方向的分量和水平方向的分量的合速 度, 当液体在重力加速度垂直方向的分量大于零, 气泡被逐渐分离为一定体积的较小气泡时, 气泡将随 液体运动; 当液体在重力加速度垂直方向的分量不大于零时, 气泡向上运动浮出水面, 在气泡溢出水面 处收集溢出气体, 以形戍有压气体,在管路的进气处 109也可以产生负压,这样, 液体中所蕴藏的动能、 势能便被收集并转换为包括正压差或负压差的气压差能, 这个气压差能量可以作为动力来驱动其它装 置.
现结合实施例及附图来进行说明, 基于本发明所述方法所制成的装置主要由管路组成, 呈正 U形管 或例 U形管, 如图 1和图 2所示, 其中图 1为正 U形管, 图 2为例 U形管, 这两种 U形管的两个管口具 有一定高差, 进水口 1 1 的高度高于出水口 112'的高度, 进水口 111 '位于高水位 308面, 即上液面, 而出水口 112 '位于氐水位 309面, 即下液面。
图 11所示水产养殖水处理系统水流能水泵采用的是以下的装置来完成供气。
见图 1所示供气装置, 管路为正 U形管, 正 U形管具有一个进水处 111和出水处 112 , 出水处 112 和横管 108的管道直径大于进水处 111的管道直径,进水处 111也为进气处 109 ,在正 U型管的橫管 108 顶端设置出气处 1 10 , 如图 4所示, 出气处 1 10位于正 U型管的橫管 108接近低水位 309的一端, 这个 气体收集装置的进水处 1 11和出水处 1 12分别位于水坝 301 中水头差的上液面和下液面。
当进水口 111 '与出水口 1 12 '分别位于水面的上水位和下水位时, 液体会自然流过正 U形管, 上下 游液体通过进水处 111和出水处 112产生流动, 此时大气中的气体也通过进气处 109混入到液体中去, 就有气体进入到管内的液体中去,即当液体通过时,管路中的过流水可混入气体并分离气体成为小气泡, 设定重力加速度方向为速度的正方向,那么液体速度则为在重力加速度垂直方向的分量和水平方向的分 量的合速度, 当液体在重力加速度垂直方向的分量大于零, 气泡被逐渐分离为一定体积的较小气泡时, 气泡将随液体运动; 当到达橫管 108时, 因为出水处 112、 橫管 108的直径较大, 流速逐渐降低, 即当 液体在重力加速度垂直方向的分量不大于零时, 气泡向上运动浮出水面, 在气泡溢出水面处收集溢出气 体, 以形成有压气体, 并排出集中到出气处 1 10即气泡溢出液体处, 就形成明显的高于大气压力的正压 气体, 如果管内液体持续流动, 就得到持续的正压差, 这个压力差值就可以利用和做功, 也就是说, 将 出气处 110接至进气孔 20Γ , 就可以让图 11所示抽水装置水流能水泵 20'工作, 同时, 在进气处 109 处有负压现象。
作为可变换的实施例, 图 12所示水产养殖水处理系统水流能水泵采用以下的装置进行供气(供应负 压气体)。
见图 2所示, 如果管路为倒 U形管, 倒 U形管具有一个进水处 111和出水处 112,进水处 111处于 一个水源的液面,而出水处 1 12处于泄水水道液面,出水处 112的管道直径大于进水处 111的管道直径, 在例 U型管的横管 108高于进水水源液面的管道壁上设置进气处 109 , 出水处 112也为出气处 1 10, 如 图 5所示, 进气处 109位于倒 U型管的横管 108接近低氷位 309的一端, 这个气体收集装置的进水处 L 11和出水处 112分别位于水坝 301 中水头差的上液面和下液面,
当进水口 1 1 Γ与出水口 112 '分别位于水面的上水位和下水位时, 使进气处 109处于关闭状态, 在 倒 U形管内加注满水, 上下游液体之间由于虹吸作用通过进水处 1 1 1和出水处 112产生流动,待液体稳 定后, 适当开启进气处 109 , 在此时进气处 109与大气相通, 当液体通过时,管路中的过流水可混入气 体并分离气体成为小气泡,设定重力加速度方向为速度的正方向,那么液体速度则为在重力加速度垂直 方向的分量和水平方向的分量的合速度, 当液体在重力加速度垂直方向的分量大于零, 气泡被逐渐分离 为一定体积的较小气泡时, 气泡将随液体运动; 当到达出水处 1 12时, 因为出水处 1 12的直径较大, 液 体流速降低, 液体在重力加速度垂直方向的分量不大于零时, 气泡向上运动浮出水面, 在气泡溢出水面 处收集溢出气体, 以形成有压气休, 并通过出气处 110自动排出到大或收集, 管内液体会并持续流动, 此时就会在进气处 109就会产生连续的明显的负压气流,得到持续的负压差,这个压力差值就可以利用 和做功, 也就是说, 将进气处 109接至抽气孔 307 , 就可以让图所示 12工作, 同时, 在出气处 110有 正压现象。
为了使上迷的倒 U形管或正 U形管内的液体稳定, 在倒 U形管进气处 109和正 U形管进气处 109 的端口, 设置有进气量控制装置, 可以控制管路的进气量.
上迷实施例中管路所用材料以 PVC最为方便, 但同时管路材料也可为塑料, 水泥、 陶瓷等非金属材 枓, 以及 H失、 不锈钢等金属材料。
采用本发明的方法和装置, 可以将液体中所蕴藏的动能、势能方便的收集并转换为气压差能以进 一步利用, 特别是用于水产养殖的抽水或提水中去, 且所需设备小, 能量转换率高, 适用范围广, 免 维护。
上述实施例中所述高水位也即上水位或上液面, 所述低水位也即下水位或下液面; 所述气液泵 20也即水流能水泵 20'或液气能水泵或抽水装置; 所述液柱 203'也即水柱 203; 所述进水处 1 1 1即为 所述进水口 1 1 Γ , 所迷输气孔 201也即进气孔 20 Γ , 所述出水处 1 12也即出水口 1 12 '; 所述液气装 置也即为供气装置; 所述上端口即为上水口, 所述下端口即为下水口。
显然, 上迷实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的限定. 对于所属领域的 普通技术人员来说,在上迷说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对 所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之 中。

Claims

权 利 要 求 书
1. 种供气装置, 其特征在于: 由管路组成, 管路具有一个迸水处和出水处, 所迷进水处和所述 出水处之间由横管连接,所述管路的进水处和出水处具有一定高度差,进水处的高度高于出水处的高度, 进水处位于高水位面, 而出水处位于低水位面, 出水处和橫管的管道直径大于进水处的管道直径, 管路 的橫管顶端设置出气处, 出气处位于橫管接近低水位的一端,
2. 根据权利要求 1所述供气装置, 其特征在于, 所述进水处也为所述进气处。
3. 根据权利要求 2所迷供气装置, 其特征在于, 所述管路呈 U形。
4. 根据权利要求 3所述供气装置, 其特征在于, 所述 U形管为正 U形管,
5. 根据权利要求 4所述供气装置, 其特征在于, 所述 U形管在管路的进气处设置有进气量控制装 置, 用于控制管路的进气量。
6. 根据权利要求 5所述供气装置, 其特征在于, 所述出气处与动力装置连接, 所述动力装置为气 液泵或气体动力机。
7. 种供气装置, 其特征在于: 所迷供气装置为一个倒 U形管, 所述例 U形管具有一个进水处和 出水处, 所述进水处和所述出水处之间由横管连接, 所述进水处处于一个高水位面, 而所述出水处处于 低水位面, 所述出水处的管道直径大于所述进水处的管道直径,在所述倒 U型管的所迷横管高于进水水 源液面的管道壁上设置进气处, 所述进气处位于倒 U型管的所迷横管接近低水位的一端。
8. 根据权利要求 7所述供气装置, 其特征在于, 所述出水处也为所述出气处.
9. 一种液气能多孔管增效装置,适用于液气能收集装置,液气能收集装置其基本结构为一管路 使水流通过, 并设有与大气相通的进气处, 当水流通过时,管路中的过流水可混入气体并分离气体成为 小气泡,设定重力加速度方向为速度的正方向, 那么水流速度则为在重力加速度在垂直方向的分量和水 平方向水流速度分量的合量, 水流在重力加速度垂直方向的分量大于零, 气泡被逐渐分离为 定体积 的较小气泡时, 气泡将随水流运动; 当水流在重力加速度垂直方向的分量不大于零时, 气泡向上运动浮 出水面, 在气泡溢出水面处收集溢出气体, 以形成有压气体, 同时, 在管路的进气处也可以产生负压, 其特征在于:为增加在进气处往水流中混入的逬气量, 在水流与气体混合处设置多孔管部件, 使水流与 气体充分; 合。
10. 根据权利要求 9所述的液气能多孔管增效装置, 其特征在于: 所述的多孔管部件的轴向与 水流的流向相同, 并处于进气处。
11. 根据权利要求 9所迷的液气能多孔管增效装置,其特征在于:所述的多孔管部件是多个多孔 管组成的, 多孔管具有通气孔, 并与大气相联。
12. 根据权利要求 9所迷的液气能多孔管增效装置,其特征在于: 所述的多孔管呈锥状, 并延伸 至水中,
1 3. 根据权利要求 9所迷的液气能多孔管增效装置,其特征在于: 上述的管路为 U形管路, 并且 U形管可设置成正 U形管路。
14. 根据权利要求 10所述的液气能多孔管增效装置,其特征在于: 上述正 U形管的进水水源的 液面水平高度高于出水处泄水水道液面水平高度,
15. 根据权利要求 10所述的液气能多孔管增效装置,其特征在于: 上述正 U形管在管路的进气 处, 设置有进气量控制装置, 可以控制管路的进气量。
16. 根据权利要求 1 0所述的液气能多孔管增效装置,其特征在于: 在正 U形管的橫管部件设置 出气处。
17. 根据权利要求 16所述的液气能多孔管增效装置,其特征在于: 在正 U形管的橫管部件设置 出气处可以联接动力装置, 如液气能水泵或气体动力机等。
18. 根据权利要求 9所迷的液气能多孔管增效装置,其特征在于: 管路材料为 PVC材料、 塑料, 水泥、 陶瓷等非金属材料; 或管路材料为铸铁、 不锈钢等金属材料,
19. 一种液气能筛网增效装置,适用于液气能收集装置,液气能收集装置其基本结构为一管路使 水流通过, 并设有与大气相通的进气处, 当水流通过时,管路中的过流水可混入气体并分离气体成为小 气泡,设定重力加速度方向为速度的正方向,那么水流速度则为在重力加速度在垂直方向的分量和水平 方向水流速度分量的合量, 当水流在重力加速庹垂直方向的分量大于零, 气泡被逐渐分离为一定体积的 较小气泡时, 气泡将随水流运动; 当水流在重力加速度垂直方向的分量不大于零时, 气泡向上运动浮出 水面, 在气泡溢出水面处收集溢出气体, 以形成有压气体, 同时, 在管路的进气处也可以产生负压, 其 特征在于:为增加在进气处往水流中混入的进气量, 在氷流与气休混合处设置筛网状部件, 使水流与气 体充分混合。
20. 根据权利要求 19所述的液气能筛网增效装置, 其特征在于: 所述的筛网状部件设置在水流 的截面, 并处于进气处。
21. 根椐权利要求 19所述的液气能筛网增效装置,其特征在于 : 所述的筛网状部件是由肋骨材 料纵橫交错组成的, 肋骨材料的一侧具有通气道, 并与大气相联。
22. 根据权利要求 19所述的液气能筛网增效装置,其特征在于: 所迷的 网状部件具有通气道 的一面与氷流方向相同。
23. 根据权利要求 19所述的液气能筛网增效装置,其特征在于: 上迷的管路为 U形管路, 并且
U形管可设置成正 U形管路。
24. 根椐权利要求 20所述的液气能筛网增效装置,其特征在于: 上迷正 U形管的进水水源的液 · 面水平高度高于出水处泄水水道液面水平高度。
25. 根据权利要求 20所述的液气能筛网增效装置,其特征在于:上迷正 U形管在管路的进气处, 设置有进气量控制装置, 可以控制管路的进气量。
26. 根据权利要求 20所述的液气能筛网增效装置,其特征在于: 在正 u形管的横管部件设置出 气处。
27. 根椐权利要求 26所述的液气能筛网增效装置,其特征在于: 在正 U形管的橫管部件设置出 气处可以联接动力装置, 如液气能水泵或气体动力机等。
28. 根椐权利要求 19所述的液气能筛网增效装置,其特征在于: 管路材料为 PVC材料、 塑料、 水泥、 陶瓷等非金属材料; 或管路材料为铸铁、 不锈钢等金属材料.
29. 一种气液泵, 其特征在于: 由液管和气管组成, 液管设置输气孔与气管相连接, 气管气体 压力大于大气压.
30. 根据权利要求 29所迷的气液泵,其特征在于: 液管具有两个端口,分别为上端口与下端口, 上端口的水平高度高于下端口, 液管的上端口与大气相通, 至提水高度, 液管的下端口侵入在液体中。
31. 根据权利要求 29所述的气液泵, 其特征在于: 输气孔位于液面以下, 输气孔距液管所浸入 液体液面的高度差, 小于输气孔至液管下端口的高度差; 或在液管内形成的水柱高度, 小于输气孔至液 管下端口的高度差,
32. 根据权利要求 29所述的气液泵, 其特征在于: 输气孔位于液面以下, 输气孔距液管所浸入 液面的高度差,加上液体在液管内浸入所形成内壁表面张力的高度差之和, 小于揄气孔至液管下端口的 高度差; 或在液管内形成的水柱高度, 加上液体在液管内浸入所形成内壁表面张力的高度差之和, 小于 输气孔至液管下端口的高度差。
33. 根据权利要求 29 - 32所迷的气液泵, 其特征在于: 可由两个或以上的气液泵组成, 初级气 液泵的上端口与次级气液泵的下端口相接, 可多级相联, 组成级联式气液泵.
34. 根据权利要求 33所述的气液泵, 其特征在于: 初级气液泵的上端口输出的液休与次级气液 泵的下端口需要输入的液体通过容器实现连续接替榆送,
35. 根据权利要求 33所述的气液泵,其特征在于;初级气液泵与次级气液泵可以共用一个气源, 直至更多级联及组合。
36. 根据权利要求 29 ~ 32任一所述的气液泵, 其特征在于;液管的制成材料为非浸润性材料或 接近于非浸润性材料。
37. 根据权利要求 29 ~ 32任一所述气液泵, 其特征在于: 液管的直径约为 2- 10
38. 根据权利要求 29 ~ 32任一所述气液泵, 其特征在于: 气管的气源压力在于大气压力, 由液 气装置提供, 也可以由气泵提供,
39. 根据权利要求 3S所述气液泵, 其特征在于: 液气装置为权利要求 1― 8任一所述供气装置。
40. 一种水产养殖水处理系统, 该主要由养殖池、 提水设施、 水源组成, 其特征在于: 提水设 施由水坝及氷流能水泵组成.
41. 根椐权利要求 40所述水产养殖水处理系统, 其特征在于: 所述的水流能水泵具有上下两个 氷口, 下水口位于水坝内水的上液面, 上水口位连通于养殖池内, 可由水流能水泵来完成向 ^¾池内的 抽水或提水, 即由水流能水泵的下水口向水口输送流水直至养殖池。
42. 根据权利要求 41所述水产养殖水处理系统, 其特征在于: 所述的水流能水泵是由管路构成 營路至 由一个或二个以上的管道组成, 在每个管道上设置有小孔, 将此管路放置在水坝内的上液 面中, 当管道的小孔位于液面下时, 在管道内会形成一段水柱, 此时向管路的小孔中通入有压气体, 并 当水柱两端气体压强不同时, 水柱将向压强较小的一端运动, 且运动到预定位置的水可被收集利用, 也 就是上氷口的位置.
43. 根椐权利要求 42所述一种水产养殖水处理系统, 其特征在于: 管路的进气孔到液面的高度 差, 小于或远小于进气孔到管道下端部的高度差.
44. 根据权利要求 41所述水产养殖水处理系统,其特征在于:所述的水流水泵是由管路构成的, 管路至少由一个或一个以上的管道组成, 在每个管道上设置有小孔, 将此管路放置在液体中, 管道一端 在液面下, 并当管道的小孔位于液面上、 而另一端在液面外时, 可以通负压容器, 负压容器内负压气体 的压强与大气压强的差值为 B , 液面外管道段上, 设进气口通大气, 进气口 3巨液面的高度差, 小于或远 小于产生压强与 B值相等的水柱的高度, 管道高于进气孔部分为直管, 负压容器底部设排水管, 排水管 为中空大内径管, 排水管另一端通盛水容器液面下, 盛水容器位置低于负压容器, 与盛水容器液面到负 压容器底部距离等高度的水柱, 产生的压强值大于 B值。 调节进气口进气量到一定程度, 气体、 水混合 进入管道到负压容器, 气体被抽走, 水再经排水管到盛水容 II供利用, 并输送至养殖池。
45. 根据权利要求 44所述水产养殖水处理系统, 其特征在于: 进气孔距液面的高度差, 小于或 远小于负压气源与大气压强所产生差值所对应液体的高度,
46. 根据权利要求 42所述水产养殖水处理系统, 其特征在于: 水流能水泵的有压气体来自于一 个气体收集装置, 这个装置呈为一个正 U形管, 具有一个进水处和出水处, 出水处和横管的管道直径大 于进水处的管道直径, 进水处也为进气处, 在正 U型管的横管顶端设置出气处, 出气处位于正 U型管的 横管接近低水位的一端, 这个气体收集装置的进水处和出水处分别位于水坝中水头差的上下液面。
47. 根据权利要求 44所述水产养殖水处理系统, 其特征在于: 水流能水泵的有压气体来自于一 个气体收集装置,这个装置呈为一个倒 U形管集气装置,倒 U形管具有一个进水处和出水处进水处处于 一个水源的液面, 而出水处处于泄水水道液面, 出水处的管道直径大于进水处的管道直径, 在倒 U型管 的横管髙于进水水源液面的管道壁上设置进气处, 出水处也为出气处,进气处位于倒 U型管的橫管接近 低氷位的一端, 这个气体收集装置的进水处和出水处分别位于水产养¾水处理中水头差的上下液面,
48. 根据权利要求 40所述水产养殖水处理系统, 其特征在于: 水坝内的水来自于海洋的潮汐作 用所涌进的海水, 水坝内的水位高度高于水坝外的水位高度; 水坝也可以为河流中的挡水堰或挡水墙,
49. 根据权利要求 40 - 48任一所述水产养殖水处理系统, 其特征在于: 所述水流能水泵是权利 要求 29 - 39任一所述气液泵。
50. 根据权利要求 40所述水产养殖水处理系统, 其特征在于: 水坝的坝体具有一个及一个以上 的单向阀, 水流可以自外向内流入, 而不允许向外流出。
PCT/CN2011/001537 2010-09-09 2011-09-09 供气装置及具有该供气装置的气液泵和水产养殖水处理系统 WO2012031461A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201010278785.0 2010-09-09
CN201010278763.4A CN102400836B (zh) 2010-09-09 2010-09-09 一种液气能多孔管增效装置
CN2010102787545A CN102396428A (zh) 2010-09-09 2010-09-09 水产养殖水处理系统
CN201010278745.6 2010-09-09
CN2010102787456A CN102400962A (zh) 2010-09-09 2010-09-09 气液泵
CN201010278763.4 2010-09-09
CN201010278785.0A CN102400874B (zh) 2010-09-09 2010-09-09 一种液气能筛网增效装置
CN201010278754.5 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012031461A1 true WO2012031461A1 (zh) 2012-03-15

Family

ID=45810092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001537 WO2012031461A1 (zh) 2010-09-09 2011-09-09 供气装置及具有该供气装置的气液泵和水产养殖水处理系统

Country Status (1)

Country Link
WO (1) WO2012031461A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335255A (zh) * 2017-08-18 2017-11-10 河北科瑞达仪器科技股份有限公司 水路气泡消除装置
CN109356806A (zh) * 2018-11-27 2019-02-19 上海交通大学 深海声激发气泡能量采集器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2503247Y (zh) * 2001-08-15 2002-07-31 翟爱民 抽水装置
CN1120658C (zh) * 1998-09-23 2003-09-10 王秉心 封闭循环养殖方法
CN101418822A (zh) * 2008-10-28 2009-04-29 翟爱民 全管无轮泵
CN101725490A (zh) * 2008-10-28 2010-06-09 翟爱民 能量收集转换
CN201884340U (zh) * 2010-09-09 2011-06-29 翟爱民 气液泵
CN201884232U (zh) * 2010-09-09 2011-06-29 北京银万特科技有限公司 一种液气能筛网增效装置
CN201884231U (zh) * 2010-09-09 2011-06-29 北京银万特科技有限公司 一种液气能磁体增效装置
CN201884189U (zh) * 2010-09-09 2011-06-29 北京银万特科技有限公司 一种液气能多孔管增效装置
CN102128151A (zh) * 2010-01-15 2011-07-20 翟爱民 水流能量收集方法和装置
CN102128182A (zh) * 2010-01-15 2011-07-20 翟爱民 水利能量收集方法及气液单向阀门联合装置
CN102212999A (zh) * 2010-04-12 2011-10-12 北京银万特科技有限公司 液气能水泵调水系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120658C (zh) * 1998-09-23 2003-09-10 王秉心 封闭循环养殖方法
CN2503247Y (zh) * 2001-08-15 2002-07-31 翟爱民 抽水装置
CN101418822A (zh) * 2008-10-28 2009-04-29 翟爱民 全管无轮泵
CN101725490A (zh) * 2008-10-28 2010-06-09 翟爱民 能量收集转换
CN102128151A (zh) * 2010-01-15 2011-07-20 翟爱民 水流能量收集方法和装置
CN102128182A (zh) * 2010-01-15 2011-07-20 翟爱民 水利能量收集方法及气液单向阀门联合装置
CN102212999A (zh) * 2010-04-12 2011-10-12 北京银万特科技有限公司 液气能水泵调水系统
CN201884340U (zh) * 2010-09-09 2011-06-29 翟爱民 气液泵
CN201884232U (zh) * 2010-09-09 2011-06-29 北京银万特科技有限公司 一种液气能筛网增效装置
CN201884231U (zh) * 2010-09-09 2011-06-29 北京银万特科技有限公司 一种液气能磁体增效装置
CN201884189U (zh) * 2010-09-09 2011-06-29 北京银万特科技有限公司 一种液气能多孔管增效装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335255A (zh) * 2017-08-18 2017-11-10 河北科瑞达仪器科技股份有限公司 水路气泡消除装置
CN109356806A (zh) * 2018-11-27 2019-02-19 上海交通大学 深海声激发气泡能量采集器

Similar Documents

Publication Publication Date Title
CN102128151A (zh) 水流能量收集方法和装置
CN104696175A (zh) 一种低水头能量收集装置和方法
El-Sawaf et al. Study of the different parameters that influence on the performance of water jet pump
CN102297163A (zh) 一种用于u形渠的抽水装置和方法
CN101913724B (zh) 一种用于处理富营养化水体蓝藻的装置
CN203640043U (zh) 套管式文丘里虹吸排污管
CN203593642U (zh) 一种含油废水的紧凑型气浮处理装置
CN101618896B (zh) 一种射流器制取溶气水装置
CN102396428A (zh) 水产养殖水处理系统
CN104976163A (zh) 一种多管无轮泵的供气装置
WO2012031461A1 (zh) 供气装置及具有该供气装置的气液泵和水产养殖水处理系统
CN110409562B (zh) 一种带控制进气量的球阀的聚能抽水装置及抽水方法
CN207581461U (zh) 一种改进型虹吸式脉冲布水器
CN211620102U (zh) 一种河道修复的充氧装置
CN204511793U (zh) 一种低水头能量收集装置
CN205953680U (zh) 一种超饱和溶解氧曝气装置
CN201458786U (zh) 射流器制取溶气水装置
CN205527843U (zh) 一种低速微射流气液混合释放器
CN211111151U (zh) 一种多层高效溶气释放器
CN202191741U (zh) 水池排污系统
CN207905101U (zh) 一种一体化泵站清淤装置
CN211666953U (zh) 一种气动设备和有压气体产生装置及其上的进气结构
CN213012060U (zh) 一种用于气浮池的可调节溶气释放器
CN216198611U (zh) 河流能量采集装置
CN210973975U (zh) 一种溶气气浮溶气罐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11822984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 16/05/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11822984

Country of ref document: EP

Kind code of ref document: A1