WO2012031447A1 - 电力变压器绕组内部温度和应力的监测系统及其监测方法 - Google Patents

电力变压器绕组内部温度和应力的监测系统及其监测方法 Download PDF

Info

Publication number
WO2012031447A1
WO2012031447A1 PCT/CN2011/000795 CN2011000795W WO2012031447A1 WO 2012031447 A1 WO2012031447 A1 WO 2012031447A1 CN 2011000795 W CN2011000795 W CN 2011000795W WO 2012031447 A1 WO2012031447 A1 WO 2012031447A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
temperature
power transformer
transformer winding
frequency
Prior art date
Application number
PCT/CN2011/000795
Other languages
English (en)
French (fr)
Inventor
卢文华
张海龙
关庆华
聂德鑫
石延辉
左文霞
杜思思
李丰攀
全江华
Original Assignee
国网电力科学研究院武汉南瑞有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网电力科学研究院武汉南瑞有限责任公司 filed Critical 国网电力科学研究院武汉南瑞有限责任公司
Publication of WO2012031447A1 publication Critical patent/WO2012031447A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/322Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Brillouin scattering

Definitions

  • the invention belongs to the field of optical fiber sensing in power transformer monitoring, and particularly relates to a monitoring system for internal temperature and stress of a power transformer winding and a monitoring method thereof. Background technique
  • the first is to measure the surface temperature of the winding of the power transformer winding through a sensor mounted on the surface of the winding of the transformer winding.
  • this method can only measure the surface temperature of the winding of the power transformer and does not truly reflect the hot spot temperature of the winding.
  • the second is to measure the internal temperature of the windings of the power transformer by measuring the temperature of the medium. It is proved by engineering practice that the internal winding temperature of the winding obtained by this method is not accurate.
  • the third is to measure the internal temperature of the windings of the power transformer windings through a more complex fiber grating sensor.
  • the grating sensor of this method is complicated to install and has limited measurement points.
  • the internal stress measurement of the winding group can only be measured by the winding deformation test device, that is, the winding deformation instrument.
  • the stress variation of the winding can not be reflected in real time, and the repetition rate of the measurement result is low, which is easy to cause misjudgment.
  • the object of the present invention is to provide a monitoring system and a monitoring method for the internal temperature and stress of a transformer winding based on the Brillouin scattering principle.
  • the prototype test proves that the temperature and stress at various points in the transformer winding can be accurately measured, and the real reaction Hottest temperature Degrees and windings are subject to stress due to deformation, and the repetition rate of measurement results is high, which can greatly improve the accuracy and flexibility of measurement of internal temperature and stress of power transformer windings.
  • the technical solution adopted by the invention is: a monitoring system for internal temperature and stress of a power transformer winding, comprising: a laser light source, an optical fiber sensor, a frequency shift detecting circuit, an amplifying circuit, a filtering sampling circuit and a display, and the light emitted by the laser light source Generating Brillouin scattering through the fiber optic sensor, the fiber optic sensor being embedded in a magnet wire of the power transformer winding, the temperature and stress inside the power transformer winding affecting the frequency of the Brillouin scattering signal of the fiber sensor, The Brillouin scattering signal returned by the optical fiber sensor is converted into an electrical signal by the frequency shift detecting circuit, and then the distributed temperature and stress information is obtained through the amplifying circuit and the filtering sampling circuit, and finally sent to the display. display.
  • the distance resolution of the monitoring system can reach O.lrn
  • the temperature resolution can reach 0.1 degrees Celsius
  • the resolution of the strain can reach 2
  • the fiber can meet 50 km. Temperature and strain measurements in the range.
  • the present invention also provides a monitoring method using the internal temperature and stress monitoring system of a power transformer winding as described above.
  • the optical fiber is reflected back to a temperature and strain.
  • the corresponding Brillouin scattering narrow-spectrum pulsed light signal, the amplifying circuit and the filtering sampling circuit perform amplification filtering sampling and analysis on the return signal column, and convert the time into a distance from the position generated by the Brillouin scattered light change to the end of the fiber, By converting the optical frequency to the temperature of the fiber, the temperature and stress at each point can be obtained.
  • the method for monitoring internal temperature and stress of a power transformer winding as described above wherein the signal returned by the optical fiber sensor is offset by the temperature and stress, and the frequency of the Brillouin scattered light is shifted, and the frequency offset and the optical fiber are generated. Subject to temperature and stress Good linear relationship.
  • the method for monitoring the internal temperature and stress of the power transformer winding the fiber installed on the winding wire of the transformer is subjected to temperature and strain, and the Brillouin scattering light frequency is shifted, and is found by the test calibration method.
  • the Brillouin scattering frequency offset is mapped to temperature and stress to achieve direct measurement of temperature and stress inside the transformer winding.
  • the method for monitoring the internal temperature and stress of the power transformer winding as described above, the calibration of the temperature and stress inside the winding of the power transformer and the Brillouin scattering frequency offset test data is achieved by a least squares fitting method.
  • the invention solves the problem that the internal temperature stress of the conventional power transformer winding cannot be directly measured, and improves the flexibility and accuracy of the internal temperature stress measurement of the transformer winding;
  • the invention realizes the problem that the internal temperature and the stress of the winding of the power transformer are simultaneously measured by a single optical fiber, and the whole optical fiber is a sensor, and the hot spot and the winding stress distribution inside the winding wire can be accurately measured;
  • the present invention can accurately measure the temperature and stress distribution inside the winding of the power transformer, and the present invention can measure the temperature and stress per 0.1 m interval within 50 km.
  • the temperature resolution is 0.1 degrees and the strain resolution is 2 ⁇ .
  • FIG. 1 is a schematic structural view of a transformer core and a coil of a monitoring system for internal temperature and stress of a power transformer winding according to an embodiment of the present invention. detailed description
  • the symbols in the drawing illustrate: 1. The sensing fiber wound on the original side of the transformer core; 2. The electromagnetic wire wound on the original side of the transformer; 3. The sensing fiber wound on the secondary side of the transformer core; 4. Winding Electromagnetic wire made in the secondary side of the transformer; 5, transformer core; 6, transformer original; 7, transformer secondary; 8, laser source; 9, frequency detection circuit; 10, signal amplification circuit; o, signal processing circuit; , display.
  • the internal temperature and stress monitoring system of the transformer winding of the present invention mainly comprises: a laser light source, a fiber optic sensor, a frequency shift detecting circuit, an amplifying circuit, a filtering sample circuit and a display.
  • the internal fiber of the power transformer winding is installed, and the sensing fiber is connected to the laser source and the measuring circuit, and the light emitted by the laser source forms a closed optical path through the optical fiber sensor.
  • the fiber is reflected back to a Brillouin scattering narrow-spectrum pulsed light signal corresponding to its own temperature and strain; the signal processing part amplifies and samples the return signal column.
  • the present invention first buryes a single mode or multimode fiber sensor in a magnet wire, and then winds the coils of the primary and secondary sides of the power transformer in accordance with a conventional process.
  • the optical signal is converted into an electrical signal by the frequency detecting circuit (9 in FIG. 1), and the electrical signal passes through the signal amplifying circuit (Fig. 1 in 10) amplify and send to the signal processing circuit (O in Figure 1) for analysis and processing to obtain the frequency, and finally send Display the frequency signal to the display ( ⁇ in Figure 1).
  • the temperature and stress values can be obtained by simply converting the acquired Brillouin scattering frequency signal into a temperature and stress signal.
  • the signal calibration process is described in detail below:
  • the frequency offset of the corresponding Brillouin scattering frequency is recorded for every 5 degrees Celsius increase in temperature. Always raise the temperature to T degrees Celsius. In this way, a total of n sets of data are measured. The least squares method is applied for fitting.
  • the current transformer winding temperature T and stress values can be calculated from the frequency offset of the Brillouin scattering frequency of the fiber inside the current transformer winding.
  • the spatial resolution of the internal temperature and stress monitoring system of the power transformer winding can reach 0.1m.
  • the temperature resolution is 0.1 degrees and the strain resolution is 1 ⁇ .
  • the temperature and strain measurement in the range of 50 km can be satisfied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

电力变压器绕组内部温度和应力的监测系统
及其监测方法 技术领域
本 明属于电力变压器监测中的光纤传感领域, 具体涉及一 种电力变压器绕组内部温度和应力的监测系统及其监测方法。 背景技术
目前国内外电力变压器线圏绕组的温度测量方法主要有三 种。 第一种是通过安装在变压器绕组线圈表面的传感器, 测量电 力变压器绕组线圏的表面温度, 但该方法只能测量电力变压器绕 组表面温度, 未能真实反映绕组最热点温度。 第二种是通过测量 介质温度, 间接测量电力变压器绕组线圏内部温度, 经工程实践 证明, 该方法得到的绕组内部线圏温度不精确。 第三种是通过较 为复杂的光纤光栅传感器测量电力变压器绕组线圏的内部温度, 该方法的光栅传感器安装复杂, 可测点有限。 而国内外对线圏绕 组内部应力的测量只能通过绕组的形变测试装置即绕组变形仪间 接的测量, 不但不能实时反应绕组的应力变化, 且由于测量结果 重复率低, 易造成误判。
因此,有必要提供一种能够准确测量出变压器绕组内各点温 度和应力的变压器绕组内部温度和应力的监测系统及其监测方 法, 以满足实际工程需要。 发明内容
本发明的目的是:提供一种基于布里渊散射原理的变压器绕 组内部温度和应力的监测系统及其监测方法, 经样机试验证明, 可准确测量出变压器绕组内各点温度和应力, 真实反应最热点温 度和绕组由于形变受到的应力, 且测量结果重复率高, 可极大地 提高电力变压器绕组内部温度和应力的测量的精确性和灵活性。
本发明采用的技术方案是: 一种电力变压器绕组内部温度和 应力的监测系统, 包括: 激光光源、 光纤传感器、 频移检测电路、 放大电路、 滤波采样电路及显示器, 所述激光光源发出的光经过 所述光纤传感器产生布里渊散射, 所述光纤传感器预埋在电力变 压器绕组的电磁线内, 电力变压器绕组内部的温度和应力影响所 述光纤传感器的布里渊散射信号的频率, 所述光纤传感器传回的 布里渊散射信号经过所述频移检测电路转换为电信号, 再经过所 述放大电路和所述滤波采样电路, 得出绕组内部分布式的温度和 应力信息, 最后送显示器显示。
如上所述的电力变压器绕组内部温度和应力的监测系统, 所 述光纤传感器为单模光纤传感器。
如上所述的电力变压器绕组内部温度和应力的监测系统,所 述监测系统的距离分辨率可达到 O.lrn, 温度分辨率可达到 0.1摄 氏度, 应变的分辨率可达到 2, 可满足 50km 的光纤范围内的温 度与应变测量。
本发明还提供一种采用如上所述的电力变压器绕组内部温 度和应力监测系统的监测方法, 当传感器光纤的任意一点或者任 意一段有温度和应力变化时, 光纤就反射回一个与自身温度和应 变相对应的布里渊散射窄谱脉冲光信号, 放大电路及滤波采样电 路对返回信号列进行放大滤波采样和分析, 将时间换算成从布里 渊散射光变化产生的位置到光纤末端的距离, 并将光频率换算成 光纤的温度, 即可求出各点的温度和应力。
如上所述的电力变压器绕组内部温度和应力的监测方法,所 述的光纤传感器传回的信号在受到温度和应力作用下布里渊散射 光频率发生了偏移, 其产生的频率偏移与光纤所受温度和应力呈 良好的线性关系。
如上所述的电力变压器绕组内部温度和应力的监测方法,安 装在变压器绕组线圏上的光纤在受到温度和应变作用下, 布里渊 散射光频率发生了偏移现象, 通过试验标定的方法找到布里渊散 射频率偏移与温度及应力的映射关系, 从而实现对变压器绕组内 部的温度和应力直接测量。
如上所述的电力变压器绕组内部温度和应力的监测方法, 电 力变压器绕组内部的温度和应力与布里渊散射频率偏移试验数据 的标定是通过最小二乘的拟合方法实现的。
与现有技术相比, 本发明的优点在于:
( 1 ) 本发明解决了传统电力变压器绕组内部温度应力不能 直接测量的问题, 提高了变压器绕组内部温度应力测量的灵活性 和精确性;
( 2 ) 本发明实现了单根光纤同时测量电力变压器绕组内部 温度和应力的问题, 整个光纤都是传感器, 可以准确地测量到绕 组线圏内部最热点和绕组应力分布;
( 3 ) 本发明能准确测量电力变压器绕组内部的温度和应力 分布, 本发明可以测量 50km内每 0.1m间隔的温度和应力。 温度 分辨率可达到 0.1度, 应变的分辨率可达到 2 ^。 附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本 申请的一部分,本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1是本发明实施例的电力变压器绕组内部温度和应力的监 测系统的变压器铁心和线圏的结构示意图。 具体实施方式
以下结合附图和实施例对本发明做进一步的详细说明。
附图中的符号说明:①、绕制在变压器铁心原方的传感光纤; ②、 绕制在变压器原方的电磁线; ③、 绕制在变压器铁心副方的 传感光纤; ④、 绕制在变压器副方的电磁线; ⑤、 变压器铁心; ⑥、 变压器原方; ⑦、 变压器副方; ⑧、 激光源; ⑨、 频率检测 电路; ⑩、 信号放大电路; o、 信号处理电路; ◎、 显示器。
本发明所述的变压器绕组内部温度和应力监测系统主要包 括: 激光光源, 光纤传感器, 频移检测电路, 放大电路, 滤波釆 样电路及显示器。 首先安装电力变压器绕组内部光纤, 将传感光 纤连接在激光源和测量回路上, 激光源发出的光, 经过光纤传感 器形成闭合的光路。 当传感器光纤的任意一点或者任意一段有温 度和应力变化时, 光纤就反射回一个与自身温度和应变相对应的 布里渊散射窄谱脉冲光信号; 信号处理部分对返回信号列进行放 大滤波采样和分析, 将光在光纤中的布里渊散射频率标定到对应 的温度值和应力值。 标定完成后, 将标定数据进行最小二乘拟合 获取温度和应力值与散射频率之间的映射关系。 然后再将实时测 到的光纤布里渊散射频率通过映射关系计算得到温度和应力值。
( 1 ) 安装光纤传感器
与传统电力变压器电磁线不同,本发明先将单模或者多模光 纤传感器掩埋在棵电磁线中, 然后按照常规工艺绕制电力变压器 原方和副方的线圈。
( 2 ) 测量光在光纤中的基准频率和布里渊散射频率
基准光频率和布里渊散射光频率的测量符合一般光频率测 量的方法, 首先被测光信号通过频率检测电路(图 1中⑨) 将光 信号转换为电信号, 电信号经过信号放大电路(图 1中⑩)放大 送给信号处理电路(图 1中 O ) 进行分析处理获取频率, 最后送 给显示器 (图 1中◎ ) 显示频率信号。
(3) 布里渊散射频率标定
因布里渊散射频率的偏移量与光纤应变和温度的变化有很 好的线性关系, 因此只需将获取的布里渊散射频率信号转换为温 度和应力信号就可获取温度和应力值。 下面详细的描述信号标定 过程:
首先将装设有光纤的电力变压器放置在常温 20 摄氏度 ( JC0 =20 )且不受应力的情况下, 记下布里渊散射频率的频率偏 移为;
其次在不受应力的情况下, 温度每升高 5摄氏度, 分别记录 下对应的布里渊散射频率的频率偏移记 ,。 一直将温度升高到 T 摄氏度。这样一共就测量了 n组数据。应用最小二乘法进行拟合。
引入平均值: ( 1 )
η
1
y = -∑yt (2)
Figure imgf000007_0001
根据公式 ( 1 ) 、 (3) 、 (4) 则:
y-a-bx = ( 5) xy-ax- bx2 = 0 (6)
( 7)
Figure imgf000007_0002
将 a、 b值带入线性方程 y = + bjc, 即得到回归直线方程。 得到布里渊散射频率的频率偏移与温度之间的映射关系。
将试验条件改为, 保持温度不变。 应力每增加 5牛顿, 分别 记录下对应的布里渊散射频率的频率偏移记 。 一直将应力升高 到 T牛顿。这样一共就测量了 n组数据。应用最小二乘进行拟合。 同样可以得到布里渊散射频率的频率偏移与应变之间的映射关 系, y = a2 + b2x。
( 4 ) 变压器绕组温度和应力的计算
记布里渊散射频率的频率偏移与温度之间的映射关系: ; = , + b,x。 布里渊散射频率的频率偏移与应变之间的映射关系:
«2 + b 。根据当前变压器绕组内部光纤的布里渊散射频率的频 率偏移就可计算出当前变压器绕组温度 T与应力值 。
( 5 )精度分析
根据实验分析, 电力变压器绕组内部温度和应力的监测系统 空间分辨率可以达到 0.1m。 温度的分辨率可达到 0.1度, 应变的 分辨率可达到 1 με。 可满足 50km的光纤范围内的温度与应变测 最后应当说明的是:以上实施例仅用以说明本发明的技术方 案而非对其限制; 尽管参照较佳实施例对本发明进行了详细的说 明, 所属领域的普通技术人员应当理解: 依然可以对本发明的具 体实施方式进行修改或者对部分技术特征进行等同替换; 而不脱 离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术 方案范围当中。

Claims

权 利 要 求
1. 一种电力变压器绕组内部温度和应力的监测系统, 其特 征在于, 系统包括: 激光光源、 光纤传感器、 频移检测电路、 放 大电路、 滤波采样电路及显示器, 所述激光光源发出的光经过所 述光纤传感器产生布里渊散射, 所述光纤传感器预埋在电力变压 器绕组的电磁线内, 电力变压器绕组内部的温度和应力影响所述 光纤传感器的布里渊散射信号的频率, 所述光纤传感器传回的布 里渊散射信号经过所述频移检测电路转换为电信号, 再经过所述 放大电路和所述滤波采样电路, 得出绕组内部分布式的温度和应 力信息, 最后送显示器显示。
2. 如权利要求 1 所述的电力变压器绕组内部温度和应力的 监测系统, 其特征在于, 所述光纤传感器为单模光纤传感器。
3. 如权利要求 1 所述的电力变压器绕组内部温度和应力的 监测系统,其特征在于,所述监测系统的距离分辨率可达到 O.lrn, 温度分辨率可达到 0.1摄氏度, 应变的分辨率可达到 2^, 可满 足 50km的光纤范围内的温度与应变测量。
4. 一种采用权利要求 1 所述的电力变压器绕组内部温度和 应力监测系统的监测方法, 其特征在于, 当传感器光纤的任意一 点或者任意一段有温度和应力变化时, 光纤就反射回一个与自身 温度和应变相对应的布里渊散射窄谱脉冲光信号, 放大电路及滤 波采样电路对返回信号列进行放大滤波采样和分析, 将时间换算 成从布里渊散射光变化产生的位置到光纤末端的距离, 并将光频 率换算成光纤的温度, 即可求出各点的温度和应力。
5. 如权利要求 4 所述的电力变压器绕组内部温度和应力的 监测方法, 其特征在于, 所述的光纤传感器传回的信号在受到温 度和应力作用下布里渊散射光频率发生了偏移, 其产生的频率偏 移与光纤所受温度和应力呈良好的线性关系。
6. 如权利要求 4 所述的电力变压器绕組内部温度和应力的: 监测方法, 其特征在于, 安装在变压器绕组线圏上的光纤在受到 温度和应变作用下, 布里渊散射光频率发生了偏移现象, 通过试 验标定的方法找到布里渊散射频率偏移与温度及应力的映射关 系, 从而实现对变压器绕组内部的温度和应力直接测量。
7. 如权利要求 4 所述的电力变压器绕组内部温度和应力的 监测方法, 其特征在于, 电力变压器绕组内部的温度和应力与布 里渊散射频率偏移试验数据的标定是通过最小二乘的拟合方法实 现的。
PCT/CN2011/000795 2010-09-08 2011-05-06 电力变压器绕组内部温度和应力的监测系统及其监测方法 WO2012031447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102750131A CN101949745B (zh) 2010-09-08 2010-09-08 电力变压器绕组内部温度和应力的监测系统及其监测方法
CN201010275013.1 2010-09-08

Publications (1)

Publication Number Publication Date
WO2012031447A1 true WO2012031447A1 (zh) 2012-03-15

Family

ID=43453321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000795 WO2012031447A1 (zh) 2010-09-08 2011-05-06 电力变压器绕组内部温度和应力的监测系统及其监测方法

Country Status (2)

Country Link
CN (1) CN101949745B (zh)
WO (1) WO2012031447A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168621A1 (en) * 2015-04-17 2016-10-20 Micatu Inc. Enhanced optical condition monitoring system for power transformer and method for operating power transformer
CN109269679A (zh) * 2018-10-11 2019-01-25 宜昌睿传光电技术有限公司 一种光纤光栅传感器阵列的温度标定装置及方法
WO2019023794A1 (en) * 2017-08-01 2019-02-07 Hyperion Sensors Inc. METHODS AND SYSTEMS FOR OPTICAL DETECTION FOR TRANSFORMERS AND THEIR CONSTRUCTION
US10401169B2 (en) 2015-10-09 2019-09-03 Micatu Inc. Enhanced power transmission tower condition monitoring system for overhead power systems
US10401377B2 (en) 2014-02-13 2019-09-03 Micatu Inc. Optical sensor system and methods of use thereof
US10473706B2 (en) 2016-02-15 2019-11-12 Hyperion Sensors Inc. Optical sensing methods and systems for power applications, and the construction thereof
CN113654682A (zh) * 2021-09-22 2021-11-16 河北地质大学 全光纤无源带电体温度监测方法及装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949745B (zh) * 2010-09-08 2012-08-08 国网电力科学研究院武汉南瑞有限责任公司 电力变压器绕组内部温度和应力的监测系统及其监测方法
CN102183319B (zh) * 2011-03-08 2013-04-17 国网电力科学研究院武汉南瑞有限责任公司 将光纤光栅传感器预埋于电磁线的制作方法及成套系统
CN103620710B (zh) * 2011-04-04 2016-10-05 魏德曼电气技术公司 用于监测变压器老化的夹持力传感器组件
CN102331651B (zh) * 2011-09-19 2013-05-08 北京交通大学 两稀土超磁致伸缩体的光纤受激布里渊散射阈值提高装置
DE102012109640A1 (de) * 2012-10-10 2014-04-10 Maschinenfabrik Reinhausen Gmbh Hochspannungstransformator mit Sensorsystem, Verfahren zur Überwachung von physikalischen Kenngrößen eines Hochspannungstransformators und Sensorsystem zur Überwachung physikalischer Kenngrößen
CN103425149A (zh) * 2013-06-28 2013-12-04 国网电力科学研究院武汉南瑞有限责任公司 基于利用光纤光栅技术测量的热点温度的变压器负荷控制方法
CN103389176B (zh) * 2013-07-25 2015-08-12 国家电网公司 一种变压器绕组幅向应力测量装置和测量方法
CN104142188B (zh) * 2014-08-22 2016-09-07 国家电网公司 一种变压器绕组测温装置
CN105241586A (zh) * 2015-11-26 2016-01-13 云南电网有限责任公司电力科学研究院 一种线圈电动力模拟试验系统
CN105973511A (zh) * 2016-04-28 2016-09-28 华北电力大学 基于分布式光纤的变压器绕组应力监测系统
CN107588789B (zh) * 2017-09-05 2019-11-01 华北电力大学(保定) 一种分布式光纤在变压器内部的防护方法
CN109115118B (zh) * 2018-07-25 2021-04-13 国网河北省电力有限公司电力科学研究院 一种基于分布式光纤传感的变压器绕组检测系统
CN110220614A (zh) * 2019-07-08 2019-09-10 华北电力大学(保定) 基于拉曼散射的变压器绕组温度测量系统及测量方法
CN112964187A (zh) * 2021-02-07 2021-06-15 国网河北省电力有限公司电力科学研究院 一种电力变压器绕组变形检测装置及方法
CN113983944B (zh) * 2021-11-03 2022-10-21 国网辽宁省电力有限公司抚顺供电公司 一种变压器绕组变形检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107123A (ja) * 1984-10-31 1986-05-26 Mitsubishi Electric Corp 温度検出器
CN101158591A (zh) * 2007-10-15 2008-04-09 北京航空航天大学 适用于光纤分布式温度和应力传感装置的探测方法
CN101640092A (zh) * 2009-07-27 2010-02-03 苑泽 光电绕组
CN101949744A (zh) * 2010-09-06 2011-01-19 国网电力科学研究院武汉南瑞有限责任公司 一种基于光纤光栅的变压器内部温度检测系统
CN101949745A (zh) * 2010-09-08 2011-01-19 国网电力科学研究院武汉南瑞有限责任公司 电力变压器绕组内部温度和应力的监测系统及其监测方法
CN201852564U (zh) * 2010-01-12 2011-06-01 武汉烽火富华电气有限责任公司 变压器绕组变形和温度的分布式光纤在线监测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0111623D0 (en) * 2001-05-11 2001-07-04 Europ Org For Nuclear Research A cryogenic optical fibre temperature sensor
CN2569119Y (zh) * 2002-09-18 2003-08-27 新疆特变电工股份有限公司 变压器绕组热点温度在线监测装置
JP2007101508A (ja) * 2005-10-07 2007-04-19 Sumitomo Electric Ind Ltd 温度測定方法及び温度測定装置
CN100489461C (zh) * 2007-10-15 2009-05-20 北京航空航天大学 光纤分布式温度和应力传感装置
CN201926525U (zh) * 2010-09-08 2011-08-10 国网电力科学研究院武汉南瑞有限责任公司 电力变压器绕组内部温度和应力的监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107123A (ja) * 1984-10-31 1986-05-26 Mitsubishi Electric Corp 温度検出器
CN101158591A (zh) * 2007-10-15 2008-04-09 北京航空航天大学 适用于光纤分布式温度和应力传感装置的探测方法
CN101640092A (zh) * 2009-07-27 2010-02-03 苑泽 光电绕组
CN201852564U (zh) * 2010-01-12 2011-06-01 武汉烽火富华电气有限责任公司 变压器绕组变形和温度的分布式光纤在线监测系统
CN101949744A (zh) * 2010-09-06 2011-01-19 国网电力科学研究院武汉南瑞有限责任公司 一种基于光纤光栅的变压器内部温度检测系统
CN101949745A (zh) * 2010-09-08 2011-01-19 国网电力科学研究院武汉南瑞有限责任公司 电力变压器绕组内部温度和应力的监测系统及其监测方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401377B2 (en) 2014-02-13 2019-09-03 Micatu Inc. Optical sensor system and methods of use thereof
WO2016168621A1 (en) * 2015-04-17 2016-10-20 Micatu Inc. Enhanced optical condition monitoring system for power transformer and method for operating power transformer
US10215621B2 (en) 2015-04-17 2019-02-26 Micatu Inc. Enhanced optical condition monitoring system for power transformer and method for operating power transformer
US10401169B2 (en) 2015-10-09 2019-09-03 Micatu Inc. Enhanced power transmission tower condition monitoring system for overhead power systems
US10473706B2 (en) 2016-02-15 2019-11-12 Hyperion Sensors Inc. Optical sensing methods and systems for power applications, and the construction thereof
US11175351B2 (en) 2016-02-15 2021-11-16 Hyperion Sensors Inc. Optical sensing methods and systems for power applications, and the construction thereof
WO2019023794A1 (en) * 2017-08-01 2019-02-07 Hyperion Sensors Inc. METHODS AND SYSTEMS FOR OPTICAL DETECTION FOR TRANSFORMERS AND THEIR CONSTRUCTION
US11592496B2 (en) 2017-08-01 2023-02-28 Hyperion Sensors Inc. Optical sensing methods and systems for transformers, and the construction thereof
CN109269679A (zh) * 2018-10-11 2019-01-25 宜昌睿传光电技术有限公司 一种光纤光栅传感器阵列的温度标定装置及方法
CN113654682A (zh) * 2021-09-22 2021-11-16 河北地质大学 全光纤无源带电体温度监测方法及装置

Also Published As

Publication number Publication date
CN101949745A (zh) 2011-01-19
CN101949745B (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2012031447A1 (zh) 电力变压器绕组内部温度和应力的监测系统及其监测方法
US20160320324A1 (en) Method for Predicting the Life of Transformer based on Fiber Grating Temperature Measurement System
US7379169B1 (en) System and method for integrated measurement using optical sensors
JP3440721B2 (ja) 多点型歪み及び温度センサ
WO2014101754A1 (zh) 多芯光纤、采用该多芯光纤的传感装置及其运行方法
CN101509962B (zh) 一种磁感应强度的测量方法及装置
TWI499791B (zh) 應用於雙線電源線電流量測之非接觸式電流感測器安裝位置變動補償裝置
CN104155619A (zh) 基于磁致伸缩分布式光频域反射磁场传感装置和解调方法
CN202057420U (zh) 水轮发电机转子非接触式测温装置
CN103163360A (zh) 基于比较测量结构的光学电流传感器及测量电流的方法
CN202938928U (zh) 一种变压器绕组温度在线检测系统
CN111795759A (zh) 用于分布式拉曼光纤测温系统色散修正的方法和系统
CN108007603A (zh) 一种基于非对称双芯光纤的多参量分布测量系统
JP2015230171A (ja) 避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法
CN104697665A (zh) 一种基于分布式光纤的高炉热风炉温度监测系统及方法
CN102519625B (zh) 一种利用光纤Bragg光栅温度传感器测量瓷质绝缘子温度的方法
CN106997022A (zh) 基于激光测距补偿紫外局放光子数的检测装置
CN111043947A (zh) 一种核燃料组件氧化膜厚度涡流检测装置
CN113156349B (zh) 一种材料磁致机械特性的测量方法和装置
CN105606640A (zh) 一种光电式金属线胀系数测定装置
CN105466594B (zh) 一种变压器热点温度最小二乘法修正方法
CN107631814A (zh) 光自相干传感光路结构、频移变化检测方法和传感装置
CN204807232U (zh) 温度测量系统
CN201926525U (zh) 电力变压器绕组内部温度和应力的监测系统
KR20030096396A (ko) 측정 헤드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11822970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11822970

Country of ref document: EP

Kind code of ref document: A1