WO2012031428A1 - 可以电隔离的光伏组件及其电隔离方法 - Google Patents

可以电隔离的光伏组件及其电隔离方法 Download PDF

Info

Publication number
WO2012031428A1
WO2012031428A1 PCT/CN2010/078702 CN2010078702W WO2012031428A1 WO 2012031428 A1 WO2012031428 A1 WO 2012031428A1 CN 2010078702 W CN2010078702 W CN 2010078702W WO 2012031428 A1 WO2012031428 A1 WO 2012031428A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
photovoltaic module
circuit
solar cell
signal
Prior art date
Application number
PCT/CN2010/078702
Other languages
English (en)
French (fr)
Inventor
陈文良
孟利
Original Assignee
Chen Wenliang
Meng Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Wenliang, Meng Li filed Critical Chen Wenliang
Publication of WO2012031428A1 publication Critical patent/WO2012031428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a photovoltaic module and an electrical isolation method which can be electrically isolated and can be used in any photovoltaic power generation system.
  • BIPV Photovoltaic and Building Integration
  • An electrical isolation method for a photovoltaic module the photovoltaic assembly being composed of a plurality of interconnected solar cell modules, characterized in that a circuit breaker is connected in each of the solar cell module power output circuits;
  • the electrical connection line of the photovoltaic module is used to load and transmit a power-off signal, and the power-off signal triggers the circuit breaker to cut off the transmission line of each of the solar battery components, thereby making the entire photovoltaic
  • the power generation system stops outputting power; after the situation is released, the power-off signal is turned off to cause the circuit breaker to be connected to the power transmission line to resume power supply; and the circuit breaker is powered by each of the solar battery modules.
  • a bimetal temperature relay is connected between the two power output ends of each of the solar cell modules. When the external temperature is higher than a certain value, the contacts of the bimetal temperature relay are closed and the solar cell components are short-circuited. , does not output power.
  • a photovoltaic module that can be electrically isolated, comprising a plurality of interconnected solar cell assemblies, characterized in that a circuit breaker is connected in each of the solar cell module power output circuits, in the photovoltaic module
  • a power-off signal generator is connected to the power output end, and the power-off signal sent by the power-off signal generator is transmitted as a carrier through the power output line of the photovoltaic module to the input end of the circuit breaker, and the circuit breaker is triggered to cut off each solar battery.
  • the power output of the component achieves the purpose of stopping the output of power.
  • a bimetal temperature relay is connected between the two power output terminals of each of the solar cell modules.
  • the power down signal generator includes An encoder and an amplifier are connected at the input end of the encoder with a control signal input end, the output end of the encoder being connected to the input end of the amplifier, and the output end of the amplifier is passed through the isolation capacitor and the The power output line of the photovoltaic module is connected.
  • the trigger end of the power-off signal generator is connected to an alarm signal of the fire alarm, or connected to a trigger signal of the leakage protector, or connected to the control switch.
  • the circuit breaker comprises an amplification shaping circuit, a decoder, a flip-flop, a bistable relay and a power converter, and the input end of the amplification shaping circuit passes through the isolation capacitor C2 Connected to the power output line of the photovoltaic module, the output end of the amplification shaping circuit is connected to the trigger end of the flip-flop through a decoder, and the two outputs of the flip-flop are respectively connected with the bistable relay Two control terminals are connected, the two switch ends of the bistable relay are connected in series to the power output loop of the circuit solar cell assembly, and a power-off signal is connected between the two switch ends of the bistable relay Capacitor providing the path C1;
  • the power converter converts the power output from the solar cell module of the circuit and supplies it as a power source for the other components.
  • the circuit breaker includes an amplification shaping circuit, a decoder, an inverter, a relay, and a power converter.
  • the input end of the amplification shaping circuit is connected to the power output line of the photovoltaic component through an isolation capacitor, and the output of the amplification shaping circuit
  • the terminal is connected to the input end of the inverter through a decoder, and two control terminals of the relay are connected between the output end of the inverter and the power ground, and the two switch ends of the relay are connected in series to the circuit solar battery component
  • the power output circuit; the power converter converts the power output from the circuit solar battery module as a power source for the other components.
  • the invention has the beneficial effects that when a fire occurs in a building or a solar cell component leaks, a power-off signal is sent to the power generation system through the power-off signal generator, and all the circuit breakers are connected to the solar cells of the solar battery array.
  • the component is rapidly cracked into a low-voltage single-cell solar cell module, and after the accident, a power-on signal is restored to restore the power generation system to normal power generation.
  • Figure 1 is a block diagram showing the overall structure of the present invention
  • Figure 2 is a block diagram of the basic circuit of the circuit breaker of the present invention.
  • Figure 3 is a circuit block diagram of a first embodiment of the circuit breaker of the present invention.
  • Figure 4 is a circuit block diagram of a second embodiment of the circuit breaker of the present invention.
  • Figure 5 is a circuit block diagram of an embodiment of the power down signal generator of the present invention.
  • the invention relates to an electrical isolation method for a photovoltaic module, which is composed of a plurality of interconnected solar battery modules, characterized in that a circuit breaker is connected in each power output circuit of the solar battery module;
  • a circuit breaker is connected in each power output circuit of the solar battery module;
  • the electrical connection line of the photovoltaic module is used to load a transmission power-off signal, and the power-off signal triggers the circuit breaker to cut off the transmission line of each of the solar battery modules, thereby enabling
  • the entire photovoltaic power generation system stops outputting power; after the situation is released, the power-off signal is disconnected to cause the circuit breaker to be connected to the power transmission line to restore power supply; and the circuit breaker is powered by each of the solar battery modules.
  • an galvanically isolated photovoltaic module of the present invention includes a plurality of interconnected solar cell modules.
  • the circuit breaker B (including the relay J1) is connected to the power output circuit of each of the solar cell modules 1, and a power-off signal generator is connected to the power output end of the photovoltaic module.
  • the power-off signal from the power-off signal generator A is loaded (superimposed) onto the power output line of the photovoltaic module (including the series circuit of each unit C) and transmitted to the circuit breaker B.
  • the input terminal triggers the action of the circuit breaker B to cut off the power output end of each solar battery module 1 to achieve the purpose of stopping the output of power.
  • each solar cell component 1 and one circuit breaker B in Figure 1 Forming a unit C, the output voltage of each solar cell module 1 is selected in a safe voltage range (such as 24V or 36V), and multiple units C are connected in series and / as needed Or parallel to form the entire photovoltaic power generation component.
  • a safe voltage range such as 24V or 36V
  • a double metal piece temperature relay J2 can also be connected between the two power output ends of each of the solar cell modules 1 . Since the solar cell exhibits a constant current characteristic when short-circuited, the bimetal temperature relay J2 is connected in parallel across the low-voltage single-cell solar cell module, and exceeds the set temperature when an abnormal temperature such as a fire rises (eg, 90). °C), even if other control systems have been burned at this time, the bimetal can be operated according to the temperature appliance, short-circuiting the solar cell module, so that the solar cell has no voltage output.
  • C1, C2 Is a DC isolation capacitor and provides a path for the power down signal.
  • one embodiment of the circuit breaker B includes an amplification shaping circuit 5, a decoder 4, and a flip-flop 3
  • the bistable relay J1 and the power converter 2 is connected to the power output line of the photovoltaic module through the isolation capacitor C2, and the amplification shaping circuit 5
  • the output terminal is connected to the trigger terminal of the flip-flop 3 via the decoder 4, and the two outputs of the flip-flop 3 are respectively connected to the two control terminals of the bistable relay J1, the bistable relay J1
  • the two ends of the switch (contact) are connected in series to the power output circuit of the solar cell module 1 of the circuit, and a capacitor C1 for providing a path for the power-off signal is connected between the two switch terminals of the bistable relay J1.
  • the (DC/DC) power converter 2 converts the power output of the circuit solar cell module (voltage conversion and regulation) It is then used as the operating power source for the other components described above.
  • the bistable relay J1 since the bistable relay J1 is used, positive and negative pulses are required to switch the operating state, so the operational reliability is high.
  • the working principle of this embodiment is: when there is a positive pulse triggering bistable relay J1 greater than 20ms, the bistable relay J1 The contact is closed; when there is a negative pulse trigger greater than 20ms, the contact of the bistable relay J1 is open.
  • Relay J1 during normal operation The contacts are closed and the coil does not consume electrical energy.
  • the bimetal temperature relay J2 can be operated to replace the solar cell module. 1 Short circuit, the solar cell has no voltage output.
  • Capacitors C1 and C2 form the channel of the AC carrier signal, where capacitor C1 is for the bistable relay J1 After disconnecting, the channel for providing the AC carrier signal is transmitted. After the carrier signal is amplified and shaped, it is sent to the decoder, and the decoder will judge whether the signal is 'on' or 'off'.
  • another embodiment of the circuit breaker B described in the previous embodiment is a flip-flop 3 and a bistable relay J1.
  • an inverter (or general amplifier) 9 and a normal relay respectively, including amplification shaping circuit 5, decoder 4, inverter 9, relay J1, and DC/DC power converter 2
  • the input end of the amplification shaping circuit 5 is connected to the power output line of the photovoltaic module through an isolation capacitor C2, and the output end of the amplification shaping circuit 5 passes through the decoder 4 and the inverter 9
  • the input terminal is connected, and two control terminals of the relay J1 are connected between the output end of the inverter 9 and the power ground, and the switch (contact) of the relay J1 is connected in series at the circuit solar battery module 1
  • the power output circuit 2 converts the power output from the circuit solar battery unit 1 into a power source for the other components.
  • the power-off signal generator A includes an encoder 6 and an amplifier 7 at the encoder 6 The input end is connected with a control signal input terminal d, the output end of the encoder 6 is connected to the input end of the amplifier 7, and the output end of the amplifier 7 is passed through the isolation capacitor C3 and the The power output line of the photovoltaic module is connected.
  • a shaping circuit can also be provided between the encoder 6 and the amplifier 7.
  • the trigger terminal d of the power-off signal generator A It can be connected with the alarm signal of the fire alarm, or connected to the trigger signal of the leakage protector of the PV module, or connected to the control switch K.
  • the trigger terminal d can also be set with the power-off trigger terminal and the power-on trigger terminal and the trigger switch respectively.
  • the encoder 6 outputs different control signals respectively; and a trigger terminal d is a switch for controlling the circuit breaker with high and low potentials respectively.
  • the circuit breaker B When the power-off signal generator A is connected to a fire alarm or a leakage alarm, the circuit breaker B The turn-on and component disconnect signals are provided by fire alarms or leakage alarms, which provide different codes and are amplified and output.
  • the transmission of the carrier signal forms a path through the positive pole of the photovoltaic square or negatively to ground.
  • Capacitor C3 Here, it functions to isolate the square array of photovoltaic components.
  • Each circuit breaker B of the present invention can be installed in the junction box, and the relay J1 of the circuit breaker B Electromagnetic relays can be used, or solid state relays can be used.
  • the switching signal of the electromagnetic bistable relay can be completed by the carrier signal transmitted by the DC loop, so there is no need to increase the control signal line, and the structure is very simple. If using bimetals followed by temperature appliances J2, it can occur in the event of a fire, and at the same time the control system has collapsed, the temperature of the solar cell module rises, and it can still cut off the isolation protection of the circuit. Use two relays at the same time J1, J2 This makes the electrical isolation device work more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Protection Of Static Devices (AREA)

Description

[根据细则37.2由ISA制定的发明名称] 可以电隔离的光伏组件及其电隔离方法 技术领域
本发明涉及一种可以电隔离的光伏组件和电隔离方法,可用于任何光伏发电系统。
光伏与建筑一体化 ( BIPV ) ,是太阳能光伏发电的重要方法之一,其主要是并网发电。为了和电网电压一致和提高系统效率、降低制造成本,通常是将多块电压等级为 24V 或者 36V 的太阳电池组件串联,因此光伏直流系统的电压比较高,可以达到 600 伏左右,和建筑物紧密结合以后会产生许多安全问题:
1 :消防安全没有办法解决。当建筑物发生火灾以后,由于建筑物有 600V 的带电体同时这个带电体只要有光照就存在,致使消防队无法施救。
2 :如果太阳电池组件发生漏电,可能造成建筑物带电,造成人身事故。
发明内容
本发明的目的是提供一种可以电隔离的光伏组件和电隔离方法,以解决现有技术存在的在紧急情况下不能断电的问题。
本发明的技术方案是:
一种光伏组件的电隔离方法,该光伏组件由多个相互联接的太阳电池组件组成,其特征在于,在每一所述的太阳电池组件的电力输出回路中均连接有断路器;当遇到紧急情况需要断电时,利用所述的光伏组件的电连接线路加载输送断电信号,该断电信号触发所述的断路器切断每一所述的太阳电池组件的输电线路,从而使整个光伏发电系统停止输出电力;情况解除后,断开断电信号使断路器接通输电线路,恢复供电;所述的断路器由每一所述的太阳电池组件供电。
在每一所述的太阳电池组件的两个电力输出端之间连接一双金属片温度继电器,当外接温度高于一定值时,双金属片温度继电器的触点闭合导通,将太阳电池组件短路,不输出电力。
一种可以电隔离的光伏组件,包括多个相互联接的太阳电池组件,其特征在于,在每一所述的太阳电池组件的电力输出回路中均连接有断路器,在所述的光伏组件的电力输出端连接有断电信号发生器,该断电信号发生器发出的断电信号作为载波通过光伏组件的电力输出线传送到该断路器的输入端,触发该断路器动作切断每一太阳电池组件的电力输出端,达到停止输出电力的目的。
在每一所述的太阳电池组件的两个电力输出端之间连接一双金属片温度继电器。
所述的断电信号发生器包括 编码器和放大器,在编码器的输入端连接有控制信号输入端,该编码器的输出端与放大器的输入端连接,该放大器的输出端通过隔离电容后与所述的 光伏组件的电力输出线连接。
所述的断电信号发生器的触发端与火灾报警器的报警信号连接,或与漏电保护器的触发信号连接,或连接控制开关。
所述的断路器包括放大整形电路、解码器、双稳态触发器、双稳态继电器和电源转换器,放大整形电路的输入端通过隔离电容 C2 与所述的光伏组件的电力输出线连接,该放大整形电路的输出端通过解码器与双稳态触发器的触发端连接,该双稳态触发器的两个输出端分别与双稳态继电器的两个控制端连接,该双稳态继电器的两个开关端串联在所述的电路太阳电池组件的电力输出回路,在该双稳态继电器的两个开关端之间连接有为断电信号提供通路的电容 C1 ;该电源转换器将电路太阳电池组件输出的电力转换后作为上述其他部件的电源。
所述的断路器包括放大整形电路、解码器、反相器、继电器和电源转换器,放大整形电路的输入端通过隔离电容与所述的光伏组件的电力输出线连接,该放大整形电路的输出端通过解码器与反相器的输入端连接,在该反相器的输出端与电源地之间连接继电器的两个控制端,该继电器的两个开关端串联在所述的电路太阳电池组件的电力输出回路;该电源转换器将电路太阳电池组件输出的电力转换后作为上述其他部件的电源。
本发明的有益效果是:在建筑物发生火灾、或者太阳电池组件发生漏电时,通过断电信号发生器向发电系统发出断电信号,触发所有断路器将太阳电池方阵的各个串联的太阳电池组件迅速裂解为低电压的单体太阳电池组件,待事故过后发出恢复通电信号,使发电系统回复正常发电。
附图说明
图 1 是本发明的总体构成框图;
图 2 是本发明断路器基本电路框图;
图 3 本发明断路器的第一实施例的电路框图;
图 4 本发明断路器的第二实施例的电路框图;
图 5 是本发明断电信号发生器实施例的电路框图。
具体实施方式
本发明一种光伏组件的电隔离方法,该光伏组件由多个相互联接的太阳电池组件组成,其特征在于,在每一所述的太阳电池组件的电力输出回路中均连接有断路器;当遇到紧急情况需要断电时,利用所述的光伏组件的电连接线路加载输送断电信号,该断电信号触发所述的断路器切断每一所述的太阳电池组件的输电线路,从而使整个光伏发电系统停止输出电力;情况解除后,断开断电信号使断路器接通输电线路,恢复供电;所述的断路器由每一所述的太阳电池组件供电。
参见图 1 和图 2 ,本发明一种可以电隔离的光伏组件,包括多个相互联接的太阳电池组件 1 ,其特征在于,在每一所述的太阳电池组件 1 的电力输出回路中均连接有断路器 B ( 包括继电器 J1 ) ,在所述的光伏组件的电力输出端连接有断电信号发生器 A ,该断电信号发生器 A 发出的断电信号加载 ( 叠加 ) 到光伏组件的电力输出线 ( 包括各个单元 C 的串联回路 ) 上,并传送到该断路器 B 的输入端,触发该断路器 B 动作,以切断每一太阳电池组件 1 的电力输出端,达到停止输出电力的目的。图 1 中每一太阳电池组件 1 与一个断路器 B 组成一个单元 C ,每一太阳电池组件 1 的输出电压选择在安全电压范围 ( 如 24V 或 36V ) ,多个单元 C 根据需要串联和 / 或并联组成整个光伏发电组件。
还可在每一所述的太阳电池组件 1 的两个电力输出端之间连接一双金属片温度继电器 J2 。由于太阳电池在短路时呈现恒流特性,所以双金属片温度继电器 J2 并联在低电压的单体太阳电池组件两端,当出现火灾等异常情况温度升高时超过设定温度 ( 如 90 ℃ ) 时,即使这时其他控制系统已经烧毁,双金属片继温度电器可以动作,将太阳电池组件短路,使太阳电池没有电压输出。 C1 、 C2 为直流隔离电容,并为为断电信号提供通路。
本领域技术人员可以在图 1 和图 2 的基础上,利用现有技术提供各种断电信号发生器 A 和断路器 B 的具体实施电路,均未本发明的设计思路,属于本发明保护的范围。下面给出的几个具体实施例只是为了进一步说明本发明的原理,并不限定本发明的保护范围。
参见图 3 ,所述的断路器 B 的一个实施例包括放大整形电路 5 、解码器 4 、双稳态触发器 3 、双稳态继电器 J1 和电源转换器 2 ,放大整形电路 5 的输入端通过隔离电容 C2 与所述的光伏组件的电力输出线连接,该放大整形电路 5 的输出端通过解码器 4 与双稳态触发器 3 的触发端连接,该双稳态触发器 3 的两个输出端分别与双稳态继电器 J1 的两个控制端连接,该双稳态继电器 J1 的开关 ( 触点 ) 的两端串联在所述的电路太阳电池组件 1 的电力输出回路,在该双稳态继电器 J1 的两个开关端之间连接有为断电信号提供通路的电容 C1 ;该 ( DC/DC ) 电源转换器 2 将电路太阳电池组件输出的电力转换 ( 电压转换和稳压 ) 为后作为上述其他部件的工作电源。该实施例由于采用双稳态继电器 J1 ,需要正负脉冲才能使其转换工作状态,所以工作可靠性高。
该实施例的工作原理是:当有大于 20ms 的正脉冲触发双稳态继电器 Jl 时 , 双稳态继电器 J1 的触点闭合;当有大于 20ms 的负脉冲触发,双稳态继电器 J1 的触点断开。正常工作时继电器 J1 的触点闭合,线圈不消耗电能。当出现火灾等异常情况温度升高时超过 90 ℃ 时,即使这时控制系统已经烧毁,双金属片温度继电器 J2 也可以动作,将太阳电池组件 1 短路,太阳电池没有电压输出。
电容 C1 、 C2 构成交流载波信号的通道,其中电容 C1 是为了双稳态继电器 J1 断开以后提供交流载波信号的通道,载波信号通过放大、整形以后送到解码器,解码器将判断信号是 ' 开 ' 还是 ' 关 ' 。
参见图 4 ,所述的断路器 B 的另一实施例将上一实施例中的双稳态触发器 3 和双稳态继电器 J1 分别用反相器 ( 或一般放大器 ) 9 和普通继电器代替,包括放大整形电路 5 、解码器 4 、反相器 9 、继电器 J1 和 DC/DC 电源转换器 2 ,放大整形电路 5 的输入端通过隔离电容 C2 与所述的光伏组件的电力输出线连接,该放大整形电路 5 的输出端通过解码器 4 与反相器 9 的输入端连接,在该反相器 9 的输出端与电源地之间连接继电器 J1 的两个控制端,该继电器 J1 的开关 ( 触点 ) 两端串联在所述的电路太阳电池组件 1 的电力输出回路;该电源转换器 2 将电路太阳电池组件 1 输出的电力转换后作为上述其他部件的电源。
参见图 5 ,所述的断电信号发生器 A 包括 编码器 6 和放大器 7 ,在编码器 6 的输入端连接有控制信号输入端 d ,该编码器 6 的输出端与放大器 7 的输入端连接,该放大器 7 的输出端通过隔离电容 C3 后与所述的 光伏组件的电力输出线连接。还可在 编码器 6 与放大器 7 之间设置整形电路。
所述的断电信号发生器 A 的触发端 d 可与火灾报警器的报警信号连接,或与光伏组件的漏电保护器的触发信号连接,或连接控制开关 K ,触发端 d 也可分别设置断电触发端和通电触发端和触发开关 ( 由编码器 6 分别对应输出不同的控制信号 ) ;而一个触发端 d 是用高低电位分别控制断路器的开关。
当断电信号发生器 A 与火灾报警器或者漏电报警器连接时,断路器 B 的接通和组件断开信号由火灾报警或者漏电报警器提供,这两种信号提供不同编码,通过放大后输出。载波信号的传输通过光伏方阵的正极或者负对地形成路。电容器 C3 在这里起到隔离光伏组件方阵直流的作用。
本发明的每一断路器 B 可以安装在接线盒里面,断路器 B 的继电器 J1 可以采用电磁继电器,也可采用固体继电器。电磁双稳态继电器的开关信号可以由直流回路传输载波信号完成,所以不需要增加控制信号线,结构非常简单。如果使用双金属片继温度电器 J2 ,它可以在火灾发生,同时控制系统已经崩溃以后,太阳电池组件温度升高,仍然可以起到切断电路的隔离保护作用。同时使用两种继电器 J1 、 J2 ,使得电隔离装置工作更加可靠。

Claims (8)

  1. 一种光伏组件的电隔离方法,该光伏组件由多个相互联接的太阳电池组件组成,其特征在于,在每一所述的太阳电池组件的电力输出回路中均连接有断路器;当遇到紧急情况需要断电时,利用所述的光伏组件的电连接线路加载输送断电信号,该断电信号触发所述的断路器切断每一所述的太阳电池组件的输电线路,从而使整个光伏发电系统停止输出电力;情况解除后,断开断电信号使断路器接通输电线路,恢复供电;所述的断路器由每一所述的太阳电池组件供电。
  2. 根据权利要求 1 所述的光伏组件的电隔离方法,其特征在于,在每一所述的太阳电池组件的两个电力输出端之间连接一双金属片温度继电器,当外接温度高于一定值时,双金属片温度继电器的触点闭合导通,将太阳电池组件短路,不输出电力。
  3. 一种可以电隔离的光伏组件,包括多个相互联接的太阳电池组件,其特征在于,在每一所述的太阳电池组件的电力输出回路中均连接有断路器,在所述的光伏组件的电力输出端连接有断电信号发生器,该断电信号发生器发出的断电信号作为载波通过光伏组件的电力输出线传送到该断路器的输入端,触发该断路器动作切断每一太阳电池组件的电力输出端,达到停止输出电力的目的。
  4. 根据权利要求 3 所述的可以电隔离的光伏组件,其特征在于,在每一所述的太阳电池组件的两个电力输出端之间连接一双金属片温度继电器。
  5. 根据权利要求 3 所述的可以电隔离的光伏组件,其特征在于,所述的断电信号发生器包括 编码器和放大器,在编码器的输入端连接有控制信号输入端,该编码器的输出端与放大器的输入端连接,该放大器的输出端通过隔离电容后与所述的 光伏组件的电力输出线连接。
  6. 根据权利要求 5 所述的可以电隔离的光伏组件,其特征在于,所述的断电信号发生器的触发端与火灾报警器的报警信号连接,或与漏电保护器的触发信号连接,或连接控制开关。
  7. 根据权利要求 5 所述的可以电隔离的光伏组件,其特征在于,所述的断路器包括放大整形电路、解码器、双稳态触发器、双稳态继电器和电源转换器,放大整形电路的输入端通过隔离电容 C2 与所述的光伏组件的电力输出线连接 , 该放大整形电路的输出端通过解码器与双稳态触发器的触发端连接,该双稳态触发器的两个输出端分别与双稳态继电器的两个控制端连接,该双稳态继电器的两个开关端串联在所述的电路太阳电池组件的电力输出回路,在该双稳态继电器的两个开关端之间连接有为断电信号提供通路的电容 C1 ;该电源转换器将电路太阳电池组件输出的电力转换后作为上述其他部件的电源。
  8. 根据权利要求 5 所述的可以电隔离的光伏组件,其特征在于,所述的断路器包括放大整形电路、解码器、反相器、继电器和电源转换器,放大整形电路的输入端通过隔离电容与所述的光伏组件的电力输出线连接,该放大整形电路的输出端通过解码器与反相器的输入端连接,在该反相器的输出端与电源地之间连接继电器的两个控制端,该继电器的两个开关端串联在所述的电路太阳电池组件的电力输出回路;该电源转换器将电路太阳电池组件输出的电力转换后作为上述其他部件的电源。
PCT/CN2010/078702 2010-09-08 2010-11-13 可以电隔离的光伏组件及其电隔离方法 WO2012031428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010275378.4 2010-09-08
CN 201010275378 CN101951190B (zh) 2010-09-08 2010-09-08 可以电隔离的光伏组件

Publications (1)

Publication Number Publication Date
WO2012031428A1 true WO2012031428A1 (zh) 2012-03-15

Family

ID=43454570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078702 WO2012031428A1 (zh) 2010-09-08 2010-11-13 可以电隔离的光伏组件及其电隔离方法

Country Status (2)

Country Link
CN (1) CN101951190B (zh)
WO (1) WO2012031428A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105765B2 (en) 2012-12-18 2015-08-11 Enphase Energy, Inc. Smart junction box for a photovoltaic system

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8111052B2 (en) 2008-03-24 2012-02-07 Solaredge Technologies Ltd. Zero voltage switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
CN102422429B (zh) 2009-05-22 2014-08-06 太阳能安吉科技有限公司 电隔离的散热接线盒
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
DE102011110682A1 (de) 2011-08-19 2013-02-21 Phoenix Contact Gmbh & Co. Kg Anschlussdose für ein Solarpanel mit einer Schutzschaltung
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN103701093A (zh) * 2012-10-09 2014-04-02 中电电气(南京)太阳能研究院有限公司 一种光伏防火断路器及光伏断路方法
CN102916384A (zh) * 2012-11-01 2013-02-06 中电电气(南京)太阳能研究院有限公司 一种光伏防火控制器
DE102013101314A1 (de) 2013-02-11 2014-08-14 Phoenix Contact Gmbh & Co. Kg Sichere Photovoltaik-Anlage
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP2779251B1 (en) 2013-03-15 2019-02-27 Solaredge Technologies Ltd. Bypass mechanism
DE102015114755A1 (de) 2015-09-03 2017-03-09 Phoenix Contact Gmbh & Co. Kg Sichere Photovoltaik-Anlage
CN107153212B (zh) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
CN106409604B (zh) * 2016-10-17 2018-05-22 中国葛洲坝集团电力有限责任公司 一种双金属片的光伏阵列裂解器
CN107425808A (zh) * 2017-06-07 2017-12-01 江苏通灵电器股份有限公司 一种应用于光伏发电的快速关断系统
CN108206504A (zh) * 2018-02-06 2018-06-26 浙江辉弘光能股份有限公司 分布式光伏发电站漏电保护装置
DE102021006104A1 (de) 2021-12-12 2023-06-15 Friedhelm Engels Abschalt-PV Anlage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343722A (ja) * 1992-06-05 1993-12-24 Sharp Corp 太陽電池の短絡検出装置
CN1236213A (zh) * 1998-03-03 1999-11-24 佳能株式会社 光电源产生系统
JP2002091586A (ja) * 2000-09-19 2002-03-29 Canon Inc 太陽光発電装置およびその制御方法
CN1933315A (zh) * 2005-07-27 2007-03-21 武藤健一 太阳光发电装置
CN101404416A (zh) * 2008-11-04 2009-04-08 合肥阳光电源有限公司 一种太阳能蓄电池充电控制器及其控制方法
CN101820187A (zh) * 2010-01-26 2010-09-01 广州大学 一种太阳能电源残余电能收集电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045646A (ja) * 1999-07-28 2001-02-16 Toshiba Corp ディジタル保護継電器
DE10222621A1 (de) * 2002-05-17 2003-11-27 Josef Steger Verfahren und Schaltungsanordnung zur Steuer- und Regelung von Photovoltaikanlagen
US8816535B2 (en) * 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
WO2010078303A2 (en) * 2008-12-29 2010-07-08 Atonometrics, Inc. Electrical safety shutoff system and devices for photovoltaic modules

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343722A (ja) * 1992-06-05 1993-12-24 Sharp Corp 太陽電池の短絡検出装置
CN1236213A (zh) * 1998-03-03 1999-11-24 佳能株式会社 光电源产生系统
JP2002091586A (ja) * 2000-09-19 2002-03-29 Canon Inc 太陽光発電装置およびその制御方法
CN1933315A (zh) * 2005-07-27 2007-03-21 武藤健一 太阳光发电装置
CN101404416A (zh) * 2008-11-04 2009-04-08 合肥阳光电源有限公司 一种太阳能蓄电池充电控制器及其控制方法
CN101820187A (zh) * 2010-01-26 2010-09-01 广州大学 一种太阳能电源残余电能收集电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105765B2 (en) 2012-12-18 2015-08-11 Enphase Energy, Inc. Smart junction box for a photovoltaic system

Also Published As

Publication number Publication date
CN101951190A (zh) 2011-01-19
CN101951190B (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2012031428A1 (zh) 可以电隔离的光伏组件及其电隔离方法
CN109391131B (zh) 一种mmc阀子模块旁路开关驱动装置
US20120091810A1 (en) Automatic system for synchronous enablement-disablement of solar photovoltaic panels of an energy production plant with distributed dc/dc conversion
JP6042682B2 (ja) 太陽光発電システム
US10523012B2 (en) Safety device for photovoltaic installations
JP2013252046A (ja) 発電モジュールを含む太陽光発電システム
CN109787269B (zh) 光伏组件快速关断系统及关断后的重启方法
CN201360082Y (zh) 断电自动保护插座
US9735777B2 (en) Disconnection of solar modules
CN103441568A (zh) 光伏电源与市电不间断自动切换控制系统
CN109818567B (zh) 用于光伏组件的并联式或串联式关断系统
US11451048B2 (en) Rapid shutdown device and photovoltaic system
CN109245711B (zh) 一种光伏系统安全保护设备
CN205029421U (zh) 一种供电电源切换装置
CN109818569B (zh) 用于光伏组件的并联式关断系统及关断后重新启动的方法
CN204597916U (zh) 一种igbt驱动电路
CN203014342U (zh) 船舶配电系统应急停止电路
CN111264011A (zh) 紧急情况关断能量供给装置
CN109818568B (zh) 用于光伏组件的串联式关断系统及关断后重新启动的方法
CN103368426A (zh) 具有开路电压保护功能的光伏逆变器
CN114024291A (zh) 一种多种控制的组件级快速关断器
WO2023283771A1 (zh) 供电系统、供电系统的保护方法及dc/dc转换器
CN116014798B (zh) 控制电路、并联控制电路及其储能逆变器系统
CN206649328U (zh) 一种水产养殖多功能无线控制系统
CN214543789U (zh) 一种楼宇电源控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856890

Country of ref document: EP

Kind code of ref document: A1