WO2012029957A1 - Method for creating cloned animal - Google Patents

Method for creating cloned animal Download PDF

Info

Publication number
WO2012029957A1
WO2012029957A1 PCT/JP2011/070062 JP2011070062W WO2012029957A1 WO 2012029957 A1 WO2012029957 A1 WO 2012029957A1 JP 2011070062 W JP2011070062 W JP 2011070062W WO 2012029957 A1 WO2012029957 A1 WO 2012029957A1
Authority
WO
WIPO (PCT)
Prior art keywords
xist
embryos
expression
gene
chromosome
Prior art date
Application number
PCT/JP2011/070062
Other languages
French (fr)
Japanese (ja)
Inventor
淳郎 小倉
貴美子 井上
史敏 石野
尚 幸田
澤井 健
Original Assignee
独立行政法人理化学研究所
国立大学法人東京医科歯科大学
国立大学法人岩手大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, 国立大学法人東京医科歯科大学, 国立大学法人岩手大学 filed Critical 独立行政法人理化学研究所
Publication of WO2012029957A1 publication Critical patent/WO2012029957A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0273Cloned animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/05Animals modified by non-integrating nucleic acids, e.g. antisense, RNAi, morpholino, episomal vector, for non-therapeutic purpose
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated

Definitions

  • the present invention relates to a method for producing a cloned animal by somatic cell nuclear transfer.
  • the somatic cell cloning technique is a technique for creating a new individual by removing a nucleus from a somatic cell of a mature individual, transplanting it to an enucleated unfertilized egg, and returning it to the maternal fallopian tube or uterus. This technique makes it possible to produce an individual having the same gene as the parent individual, and is expected to be applied to biological pharmaceutical production, regenerative medicine, and agriculture in the future.
  • Non-Patent Document 1 Somatic cell nuclear transfer (SCNT) has been successfully applied to more than 16 animal species.
  • SCNT Somatic cell nuclear transfer
  • histone deacetylation inhibitors are presumed egg cytoplasmic factors (ooplasmic factors) It is believed to facilitate access to the transplanted nuclear genome. Therefore, the effects of histone deacetylation inhibitors are global rather than specific and vary depending on the epigenetic state of the donor genome.
  • the present invention has been made in view of the above-described problems of the prior art, and its object is to make it possible to dramatically increase the success rate in a method for producing a cloned animal by somatic cell cloning technology. Is to provide.
  • somatic cell nuclear transfer-specific phenotypes such as placental abnormalities (S. Tanaka, M. Oda et al., Biol Reprod 65, 1813-1821 (2001)), obesity (K. L. Tamashiro, T. Wakayama et al., Nat Med 8, 262-267 (2002)) and immunodeficiency (N. Ogonuki, K. Inoue et al., Nat Genet 30, 253-254 (2002)) are inevitable for somatic cell nuclear transfer. Suggesting that certain epigenetic errors are induced in the donor genome. These are probably non-random and limiting features caused by the fundamental epigenetic differences that exist between the somatic and germ cell genomes.
  • the present inventors conducted earnest research to elucidate epigenetic errors in the donor genome induced by somatic cell nuclear transfer.
  • Xist which is normally inactivated on one of the two X chromosomes in females, is ectopically expressed from active X (Xa) chromosomes in both male and female mouse embryos.
  • Xa active X
  • Deletion of Xist in the Xa chromosome normalized the overall gene expression pattern and improved cloning efficiency by 7 to 8 times.
  • the present inventor has also identified a non-random mechanism that is independent of Xist and suppresses a series of X-linked genes via somatic-type repressive histone control.
  • the present inventors produced siRNA for Xist and introduced it into a cloned embryo. As a result, we found that the introduction of siRNA improved the birth rate of clones by more than 10 times. Furthermore, combining trichostatin A treatment with the introduction of siRNA resulted in a synergistic effect on the birth rate of the clones.
  • the inventor has identified the world's first non-random reprogramming error induced by somatic cell nuclear transfer, and by normalizing this error, the success rate of mammalian somatic cell nuclear transfer As a result, the present invention has been completed.
  • the present invention provides the following inventions.
  • a method for producing a cloned animal by somatic cell nuclear transfer, which suppresses abnormal gene expression of the active X chromosome in a reconstructed embryo formed by transplanting the nucleus of a somatic cell into an enucleated oocyte A method characterized by.
  • kits for carrying out the method according to (1) to (5), wherein an active X chromosome in a reconstructed embryo formed by transplanting a somatic nucleus into an enucleated oocyte A kit comprising a molecule having an activity of suppressing abnormal gene expression.
  • the present invention has identified two types of somatic cell nuclear transfer-related errors (SCNT-associated errors) that specifically affect the X chromosome.
  • the first is the ectopic expression of Xist from the Xa chromosome, and the second is the persistence of inhibitory histone modifications (H3K9me2) in the Magea and Xlr regions.
  • H3K9me2 inhibitory histone modifications
  • the expression of Xist was increased in both male and female bovine somatic cell nuclear transfer embryos, and therefore, the present invention can be widely applied to animals.
  • the present invention by using gene targeting, RNA knockdown, and other techniques to suppress (normalize) gene expression abnormality in the Xa chromosome, the efficiency of producing cloned animals by somatic cell nuclear transfer can be improved in a wide range of animals. It can be improved dramatically.
  • FIG. 1 It is a figure which shows the large-scale expression fall of the X linkage gene in a somatic cell nuclear transfer (SCNT) embryo.
  • FIG. The expression level was normalized with the expression level of the IVF embryo. Red bars indicate X-linked genes with reduced expression in cloned embryos.
  • B is a graph showing the expression level ratio of the X-linked gene to the autosomal gene.
  • C is a graph plotting relative gene expression levels of cumulus cell cloned embryos (red), trichostatin A-treated cumulus cell embryos (blue), and IVF embryos (gray) at the position of the X chromosome. .
  • the dotted line represents one embryo and the solid line shows their average value. It is a figure which shows that Xist is ectopically expressed on an active X chromosome in a male and female clone embryo.
  • A is a graph showing the expression of Xist in male and female embryos.
  • B is a photomicrograph of an embryo stained with Xist RNA and nuclei.
  • C is a graph showing the ratio (0-2) of blastomeres classified by the number of Xist RNA domains in one embryo. Each bar represents one embryo. It is a figure which shows that the deletion of Xist on the active X chromosome (Xa) in a somatic cell nuclear transfer embryo improves the gene expression pattern and developmental ability in vivo.
  • A is a graph showing the number of genes with reduced expression in somatic cell nuclear transfer embryos compared to the corresponding IVF embryos.
  • B and C are graphs in which the relative expression level of the X-linked gene is plotted at the X chromosome position in female and male clones, respectively.
  • Xlr clusters are indicated by triangles with a number of 1
  • Magea clusters are indicated by triangles with a number of 2.
  • D is a graph showing the birth rate in the transplanted embryo.
  • E is a photograph of a fetus born after nuclear transfer using Sertoli cells with (left) or without (right) the Xist gene. It is a graph which shows the expression increase of Xist gene in the somatic cell nuclear transfer embryo of a bovine male and female.
  • A Quantitative RT-PCR of Xist in cloned embryos introduced with control or Xist-siRNA and cultured for 48 hours (4 cell stage), 72 hours (morula stage) or 96 hours (blastocyst stage) It is a graph which shows a result. The horizontal line in each group shows the average value of each expression level.
  • B It is a photograph which shows the result of the FISH analysis of Xist in the cloned embryo which introduce
  • (C) It is a graph which shows the result of having analyzed the ratio of the blastomere classified by the cloud or pinpoint expression pattern of Xist by RNA FISH. Each column represents a single embryo. It is a figure which shows the effect of Xist-siRNA in the development after implantation of a clone embryo.
  • (A) It is a graph which shows the development rate of the embryo evaluated in embryonic period (E) 5.5 and the last stage of pregnancy. In some experiments, trichostatin A was added to the medium at 5 or 50 nM. The numbers above the bar graph indicate the rate of normal shaped embryos (E5.5) and full-term births relative to the transferred embryos. * P ⁇ 0.05, ** P ⁇ 0.001 (Fisher exact test).
  • the present invention provides a method for producing a cloned animal by somatic cell nuclear transfer.
  • the method of the present invention is characterized by suppressing abnormal gene expression of active X chromosomes in embryos formed by transplanting somatic cell nuclei into enucleated oocytes.
  • the animal for producing a clone in the present invention is not particularly limited as long as it is a non-human animal capable of producing a clone by somatic cell nuclear transfer.
  • a non-human animal capable of producing a clone by somatic cell nuclear transfer.
  • mouse, rat, cow, horse, pig, sheep, goat, monkey Rabbits, dogs, cats, ferrets, camels, deer and the like.
  • the recipient oocyte used in the method of the present invention can be collected from, for example, an animal in which superovulation is induced by administration of a hormone such as gonadotropin or a slaughtered animal ovary.
  • a hormone such as gonadotropin or a slaughtered animal ovary.
  • Enucleation in an oocyte can be performed, for example, by treating the oocyte with cytochalasin B, which is a cytoskeleton formation inhibitor, and then removing the nucleus from the oocyte using a micropipette.
  • donor somatic cells used in the method of the present invention include cumulus cells, Sertoli cells, fibroblasts, nerve cells, mammary cells, blood cells, and lymphocytes, but are not limited thereto.
  • somatic cells may be derived from stem cells such as embryonic stem cells, tissue stem cells, and cells to which pluripotency is imparted by genetic manipulation (for example, iPS cells).
  • the treatment for suppressing abnormal gene expression of the active X chromosome is preferably a treatment for suppressing the expression or function of the Xist gene.
  • the treatment for suppressing the expression or function of the Xist gene includes, for example, destroying the Xist gene in somatic cells, or a molecule having an activity of suppressing the expression of the Xist gene (for example, siRNA, antisense described later) Introducing RNA, RNA having ribozyme activity, and vectors expressing them) into somatic cells, oocytes, or reconstructed embryos.
  • the gene sequence of the Xist gene is known (Borsani, G., Tonlorenzi, R. Nature 351 325-329 (1991), J. Kawai, A. Shinagawa, Nature 409, 685-690 (2001). NCBI Reference ID: AF138745, AK051106, NR_001464.2, U50910.1, GU372693.1, EF619477.1).
  • Xist genes include, for example, BRCA1 binding to Xist (Ganesan et al., Cell 111, 393-405 (2002), Sirchia, et al., PLoS One 4 ( 5), PRC1,2 related genes (Plath et al, Science 300, 131-135 (2003), which is a polycomb protein that suppresses the expression or function of the gene encoding e5559 (2009)) and maintains X chromosome inactivation.
  • BRCA1 binding to Xist Ganesan et al., Cell 111, 393-405 (2002), Sirchia, et al., PLoS One 4 ( 5), PRC1,2 related genes (Plath et al, Science 300, 131-135 (2003), which is a polycomb protein that suppresses the expression or function of the gene encoding e5559 (2009)) and maintains X chromosome inactivation.
  • a body that destroys these genes in somatic cells and has an activity that suppresses the expression of these genes for example, siRNA, antisense RNA, RNA having ribozyme activity and a vector that expresses these RNAs described later.
  • SATB1,2 As other processing to suppress the expression or function of Xist gene, SATB1,2 (Agrelo, et al., Developmental Cell 16, 507-516 (2009)), which is a factor involved in gene silencing by Xist, is encoded. Tsix (Lee et al., Cell 99, 47-57 (1999), Lee et al., Cell 103, 17-27 (2000), Sado, which is a regulator that suppresses the increase in gene expression or function, and Xist et al., Development 128, 1275-1286 (2001), Ogawa et al, Science 320. 1336-1341 (2008)) may also include treatment for increasing the expression or enhancing the function of the gene. In order to increase the expression of the gene or enhance the function, for example, a vector expressing the gene or a synthetic RNA may be introduced into a somatic cell, an oocyte, or a reconstructed embryo.
  • H3K27me3 (Plath et al, Science 300, 131-135 (2003), Rougeulle et al., Mol Cell Biol. 24, 5475-5484 (2004), which is a histone modification that maintains X chromosome inactivation. )) To suppress the expression or function of the Xist gene.
  • the above-described treatment method for suppressing abnormal gene expression of the active X chromosome can be applied alone, but a plurality of methods can be applied in combination as appropriate.
  • Trichostatin A is a potent histone deacetylation inhibitor that mitigates histone-related repression of donor chromatin during genome reprogramming in vitro and in vivo, It is known to promote the development of cloned embryos (Kishigami, S. et al., Biochem. Biophys. Res. Commun. 340, 183-189 (2006)). In fact, in this example, when the introduction of siRNA that suppresses expression of Xist and trichostatin A treatment were combined, a synergistic effect was shown in the development of cloned embryos (FIG. 7A).
  • “suppression of gene expression” means both complete suppression and partial suppression of gene expression. It also includes both transcriptional and translational repression. Further, in the present invention, “suppression of gene function” means both suppression of the function of a gene transcription product and suppression of the function of a translation product.
  • methods well known to those skilled in the art such as a method for destroying a target gene and a method using an RNA interference technique, can be used.
  • a knockout technique using homologous recombination can be used.
  • a targeting DNA construct having a sequence homologous to at least a part of the target gene region is introduced into a cell so that homologous recombination occurs with the target gene region.
  • the targeting DNA construct typically has a structure in which DNA consisting of a sequence homologous to the sequence of the target DNA site is adjacent to each end of the DNA for destroying the target gene. That is, the homologous DNA is in the left and right arms of the targeting DNA construct, and the DNA for destroying the target gene is located between the two arms.
  • the term “homologous” includes not only the case where sequences are completely identical (ie, 100%) but also the case where some sequences are different as long as homologous recombination occurs. Usually, at least 95% or more, preferably 97% or more, more preferably 99% or more of the sequences are identical.
  • the target gene region on the chromosome and the homologous sequence of the targeting DNA construct interact to exchange a specific sequence of the target gene region with the DNA on the targeting DNA construct, thereby knocking out the target gene. it can.
  • DNA in which a marker gene is inserted into the cloned target gene can be used.
  • a dsRNA double stranded RNA
  • DNA encoding dsRNA includes antisense DNA encoding antisense RNA for any region of the transcript (mRNA) of the target gene, and sense DNA encoding sense RNA for any region of the mRNA
  • Antisense RNA and sense RNA can be expressed from the antisense DNA and the sense DNA, respectively.
  • dsRNA can be produced from these antisense RNA and sense RNA.
  • the configuration in which the dsRNA expression system is held in a vector or the like includes a case where antisense RNA and sense RNA are expressed from the same vector, and a case where antisense RNA and sense RNA are expressed from different vectors, respectively.
  • the antisense RNA and sense RNA are expressed from the same vector.
  • an antisense RNA expression cassette in which a promoter capable of expressing a short RNA such as polIII is linked upstream of the antisense DNA and the sense DNA.
  • sense RNA expression cassettes are constructed, and these cassettes are inserted into the vector in the same direction or in the opposite direction.
  • an expression system in which antisense DNA and sense DNA are arranged in opposite directions so as to face each other on different strands.
  • one double-stranded DNA in which an antisense RNA coding strand and a sense RNA coding strand are paired is provided, and antisense RNA and sense RNA are separated from each strand on both sides.
  • a promoter is provided oppositely so that it can be expressed.
  • a terminator is added to the 3 'end of each strand (antisense RNA coding strand, sense RNA coding strand). It is preferable to provide.
  • this terminator a sequence in which four or more A (adenine) bases are continued can be used.
  • the two promoter types are preferably different.
  • antisense RNA expression in which a promoter capable of expressing a short RNA such as polIII is linked upstream of antisense DNA and sense DNA, respectively.
  • a cassette and a sense RNA expression cassette are constructed, and these cassettes are held in different vectors.
  • dsRNA can be prepared by those skilled in the art by chemically synthesizing each strand.
  • the dsRNA used in the present invention is preferably siRNA.
  • siRNA means double-stranded RNA consisting of short strands in a range that does not show toxicity in cells.
  • the chain length is not particularly limited as long as the expression of the target gene can be suppressed and it does not show toxicity.
  • the dsRNA chain length is, for example, 15 to 49 base pairs, preferably 15 to 35 base pairs, and more preferably 21 to 30 base pairs.
  • siRNA composed of the RNA described in SEQ ID NO: 5 and the RNA described in embryonic row number: 6 can be suitably used.
  • the DNA encoding dsRNA need not be completely identical to the base sequence of the target gene, but is at least 70% or more, preferably 80% or more, more preferably 90% or more (eg, 95%, 96%, 97 %, 98%, 99% or more). Sequence identity can be determined by the BLAST program.
  • antisense technology using DNA encoding antisense RNA complementary to the target gene transcript (antisense DNA) and cleaving target gene transcripts specifically. It is also conceivable to use a ribozyme technique using DNA encoding RNA having ribozyme activity.
  • the above nucleic acid molecule for suppressing abnormal gene expression of the active X chromosome can be introduced into host animal cells by a known transformation technique such as lipofection, electroporation, or viral vector method. it can.
  • the donor somatic cell in order to suppress abnormal gene expression of the active X chromosome in the reconstructed embryo, has an activity of suppressing the expression of the somatic cell in which the Xist gene is disrupted or the Xist gene.
  • Somatic cells into which siRNA having the same is introduced are used. By transferring the nuclei of these donor somatic cells to the enucleated oocytes that are recipients, reconstructed embryos can be obtained.
  • an enucleated oocyte into which siRNA having an activity to suppress the expression of the Xist gene is introduced as the recipient enucleated oocyte.
  • a reconstructed embryo can be obtained by transplanting the nucleus of a donor somatic cell into this enucleated oocyte.
  • the expression of the Xist gene is suppressed in the reconstructed embryo.
  • SiRNA having the activity to be introduced is introduced.
  • Transplantation of a somatic cell nucleus into an oocyte can be performed by a known method such as a method of directly injecting a somatic cell nucleus into an enucleated oocyte or a method of fusing a somatic cell and an enucleated oocyte. it can.
  • Oocytes are activated before or after nuclear transfer. The activation of the oocyte can be carried out, for example, by treatment with strontium or ethanol, calcium ionophore treatment or electrical stimulation.
  • the reconstructed embryo thus obtained is cultured for a certain period of time (for example, until reaching the 2-cell stage, 4-cell stage, morula stage, or blastocyst stage) and then transplanted into the oviduct or uterus of the animal. And thus a cloned animal can be obtained.
  • the present invention also provides a kit for carrying out the above-described method of the present invention.
  • the kit of the present invention includes at least one of the above-described molecules having an activity of suppressing abnormal gene expression of the active X chromosome in the reconstructed embryo, and may further include instructions for use.
  • a reagent capable of increasing the efficiency of production of a cloned animal by somatic cell nuclear transfer for example, trichostatin A may be included.
  • testis cells were treated with 0.1 mg / mL collagenase (Sigma-Aldrich) and 0.01 mg / mL deoxyribonuclease (Sigma-Aldrich) for 30 minutes at 37 ° C., followed by 0.2 mg / mL trypsin (Sigma- Aldrich) for 5 minutes at 37 ° C.
  • the testicular cell suspension was washed with PBS containing 4 mg / mL bovine serum albumin without addition of Ca 2+ / Mg 2+ and used for injection.
  • Cumulus cells were collected from cumulus / oocyte complexes after treatment with KSMO medium containing 0.1% “bovine testicular hyaluronidase” (Calbiochem).
  • KSOM medium containing 0.1% bovine testicular hyaluronidase.
  • Oocytes were enucleated in hepes buffered KSOM containing 7.5 ⁇ g / mL cytochalasin B.
  • the donor nucleus was introduced into the enucleated oocyte using “Piezo-driven micromanipulator” (PMM-150FU, Primetech).
  • PMM-150FU piezo-driven micromanipulator
  • the oocytes were activated for 1 hour in KSOM containing 2.5 mM SrCl 2 without addition of Ca 2+ .
  • the reconstructed embryo was cultured in KSOM containing 5 ⁇ g / mL cytochalasin B for 5 hours.
  • RNA Cloned blastocysts cultured for 96 hours were used for total RNA extraction with TRIzol reagent (Invitrogen).
  • RNA from one blastocyst was subjected to two rounds of linear amplification using “TargetAmp Two-Round Aminoallyl-aRNA Amplification Kits” (Epicentre) according to the manufacturer's instructions.
  • TargetAmp Two-Round Aminoallyl-aRNA Amplification Kits (Epicentre) according to the manufacturer's instructions.
  • IVF blastocyst was subjected to total RNA extraction and two rounds of RNA amplification.
  • RNA is labeled with Cy3 dye (GE Healthcare) and hybridized to “whole mouse genome oligo DNA microarray” (4′44K, Agilent Technologies) for 16 hours at 65 ° C. according to the manufacturer's instructions. I let you.
  • Microarray analysis Scanning of microarray slides was performed at a resolution of 5 ⁇ m using a DNA microarray scanner (Agilent Technologies).
  • the scanned image file was detected for signal intensity using “Feature Extraction software” (Agilent Technologies).
  • quantile normalization was performed to adjust for differences in signal intensity between different chips. Signal intensities with average values greater than 50 in IVF embryos were selected and plotted according to their location on the chromosome.
  • all raw data were loaded into “Gene Spring GX 7.3 software” (Agilent Technologies) and quantile normalization was performed.
  • RNA fluorescence in situ hybridization was performed with slight modifications to the description in the literature (M. Sugimoto, K. Abe, PLoS Genet 3, e116 (2007)).
  • a probe for detecting Xist RNA was prepared from a Xist genomic clone containing a 7.5 kb fragment of exon 1 by nick translation using Cy3-dCTP (GE Healthcare). Embryos were incubated in PBS containing 0.1% Triton X-100 for 10 seconds and fixed in PBS containing 4% paraformaldehyde for 10 minutes at room temperature. Hybridization was performed overnight at 37 ° C.
  • Embryo samples obtained from IVF or nuclear transfer embryos were heated at 80 ° C. for 5 minutes and 0.8 ⁇ l of solution was used for sex determination.
  • PCR for the sexing of embryos was performed as described in the literature (M. Sugimoto, K. Abe, PLoS Genet 3, e116 (2007)).
  • the protocol used to determine the relative amount of bovine Xist transcript is as described in the literature (A. Ogura, K. Inoue et al., Biol Reprod 62, 1579-1584. (2000)).
  • For normalization of the relative expression of Xist the relative amount of transcript relative to GAPDH in the same sample was determined.
  • PCR was performed using StepOne unit (Applied Biosystems), and cDNA was synthesized with SYBR Green (Qiagen) and a primer for bovine XIST (SEQ ID NO: 1 / 5′-AATAATGCGACAGGCAAAGG-3 ′ and SEQ ID NO: 2/5). Amplified in a 20 ⁇ l reaction mixture containing '-TCCCGCTCATTTTCCATTAG-3') or primers for GAPDH (SEQ ID NO: 3 / 5'-CCAGAAGACTGTGGATGGCC-3 'and SEQ ID NO: 4 / 5'-CTGACGCCTGCTTCACCACC-3').
  • siRNA design Synthetic siRNA duplexes were designed by “Stealth TM designer” (Invitrogen Life Technologies Japan, Tokyo, Japan). The siRNAs used are as follows.
  • somatic cell nuclear transfer oocytes were activated for 1 hour in KSOM containing 2.5 mM SrCl 2 without addition of Ca 2+ .
  • the reconstructed embryo was cultured in KSOM containing 5 ⁇ g / mL cytochalasin B for 5 hours, and further cultured in KSOM not containing cytochalasin B.
  • trichostatin A Sigma-Aldrich
  • final concentrations of 5 and 50 nM was added to each medium for 6 and 8 hours (total), respectively, from the beginning of oocyte activation.
  • siRNA or mRNA siRNA or mRNA microinjection was performed using "Piezo-driven micropipette" (Prime Tech).
  • siRNA final concentration 5 mM in nuclease-free water
  • SiRNA was introduced into embryos generated by somatic cell nuclear transfer 6-7 hours after activation corresponding to the pronuclear (1 cell) stage (FIG. 8).
  • embryos were washed and cultured in KSOM prior to analysis or embryo transfer.
  • mRNA (1-100 pg / mL) was introduced into oocytes just prior to somatic cell nuclear transfer.
  • KSOM Embryo Transfer and Recovery Reconstructed embryos that reached the 2-cell stage after 24 hours of culture in KSOM were transferred to the oviduct of ICR recipient female mice one day after pseudopregnancy induction. On the 20th day, the recipient females investigated for full-term fetuses and raised live births in lactating ICR foster parents. Some recipient females were sacrificed on day 6 corresponding to E5.5 and the implanted embryos were carefully removed from the uterus using a dissecting microscope.
  • RNA amplification and microarray analysis The total RNA content of a single blastocyst was amplified by a two-round amplification method. Extract total RNA from 96-hour cultured blastocysts using TRIzol reagent (Invitrogen) and use ⁇ TargetAmp Two-Round Aminoallyl-aRNA Amplification Kits '' (Epicentre) according to the manufacturer's instructions for 2 rounds was subjected to linear amplification. For control embryos, one IVF blastocyst was subjected to total RNA extraction and two rounds of RNA amplification.
  • the amplified RNA was labeled with Cy3 dye (GE Healthcare) and purified with RNeasy Mini kit (Qiagen, Tokyo, Japan).
  • the labeled RNA was hybridized to “whole mouse genome oligo DNA microarray” (4′44K, Agilent Technologies) for 17 hours at 65 ° C. After washing, the image of the microarray slide was scanned using a DNA microarray scanner (Agilent Technologies), and the signal intensity was detected using “Feature Extraction software” (Agilent Technologies).
  • All raw data was loaded into “Gene Spring GX 11 software” (Agilent Technologies) and quantile normalization was performed to adjust for differences in signal intensity between different chips did. Normalized values of genes that expressed differently between each group of embryos were compared by one-way analysis of variance (ANOVA) using Tukey's post-hoc test (P ⁇ 0.05 is considered significant).
  • Quantitative RT-PCR Single embryo cDNA was synthesized by “Cell to cDNAII kits” (Ambion Japan, Tokyo, Japan). Quantitative PCR was performed using “QuantiTect SYBR Green PCR kit” (Qiagen) and “ABI Prism 7900HT system” (Applied Biosystems). All PCRs were performed in duplicate at 60 ° C annealing temperature and 50 amplification cycles. Primer sequences are as follows.
  • embryos were mixed in a mixture of secondary antibodies conjugated with ⁇ Alexa Fluor 488 '' (anti-rabbit, Invitrogen) or ⁇ Alexa Fluor 546 '' (anti-sheep, Invitrogen) for 1 hour at room temperature. Incubated with. After washing, specimens were made on glass slides using Vectashield (Vector Laboratories, Burlingame, CA, USA). The fluorescence signal was observed using a “confocal scanning laser microscope” (Digital Eclipse C1; Nikon, Tokyo, Japan).
  • RNA fluorescence in situ hybridization A probe for detecting Xist RNA was prepared from a Xist genomic clone containing a 7.5 kb fragment of exon 1 by nick translation using Cy3-dCTP (GE Healthcare). Embryos were incubated on ice for 10 seconds in PBS containing 0.1% Triton X-100 and fixed in PBS containing 4% paraformaldehyde for 10 minutes at room temperature. Hybridization was performed overnight at 37 ° C. Following stringent washing, embryonic nuclei were stained with TO-PRO-3 (Invitrogen). Embryos were sampled in 90% glycerol, 0.1'PBS, and 1% Dabco (Sigma-Aldrich) and fluorescent images were obtained using an "LSM510 meta confocal laser scanning microscope" (Zeiss).
  • Example 1 Expression of X-linked genes in somatic cell nuclear transfer (SCNT) embryos
  • SCNT somatic cell nuclear transfer
  • FIG. 1A This phenomenon was independent of sex and genotype, as the average X: autosomal (X: A) expression ratio in the three types of cloned embryos was always lower compared to the corresponding control embryo ( FIG. 1B). From the detailed observation of the entire X chromosome, it seems that there are some gene-specific variations, but the expression level of the X-linked gene was greatly reduced in most regions (FIG. 1C).
  • CDGs commonly decreased genes
  • the present inventor examined whether or not the reduced expression of the X-linked gene in the cloned embryo could be improved by treating the reconstructed oocyte with trichostatin A.
  • the inventor's laboratory has confirmed that the birth rate is increased 2 or 3 times.
  • no significant improvement was observed in X: A expression ratio (FIG. 1B) or X-linked gene expression levels (FIG. 1C) compared to untreated cloned embryos.
  • Example 2 Expression of Xist in male and female cloned embryos Extensive reduction of expression on the X chromosome in cloned embryos is reminiscent of X inactivation (XCI). This process usually results in the inactivation of one of the two X chromosomes in the female embryo so that it can be balanced with the male in gene dosage (KD Huynh, JT Lee, Nat Rev Genet 6, 410- 418 (2005)). Since X-chromosome inactivation is established by Xist RNA coating in cis, the present inventor next investigated whether Xist is overexpressed in cloned embryos. As reported (S. Bao, N.
  • Xist expression levels were significantly higher in female blastocysts derived from cumulus cells than in female IVF embryos (FIG. 2A).
  • Xist was expressed at high levels, in contrast to male IVF embryos that expressed little or no Xist (FIG. 2A).
  • Quantitative real-time PCR (RT-PCR) experiments confirmed the overexpression of Xist in male and female cloned embryos. From this discovery, the present inventor assumed that Xist was ectopically expressed from the activated X chromosome (Xa) in male and female cloned embryos.
  • RNA FISH RNA fluorescence in situ hybridization
  • Example 3 Effect of deletion of Xist on active X chromosome (Xa) in somatic cell nuclear transfer embryos on gene expression pattern and developmental ability Xist has an overall suppressive effect on the X-linked gene with cis Therefore, the present inventor next examined to what extent the ectopic expression contributed to abnormal gene expression in the cloned embryo. For this study, the present inventor determined that Xa is Xist deficient (X DXist ) (T. Sado, Y. Hoki, H. Sasaki, Dev Cell 9, 159-165 (2005)). Cloned and analyzed the gene expression pattern of the embryo. Xist-deficient donor cells have the same B6D2F1 genotype as wild-type donor cells.
  • the present inventor hopes that the development after transplantation will be better than that of wild-type somatic cell nuclear transfer embryos, so that the somatic cell nuclear transfer embryos containing the Xist-deficient Xa chromosome were transferred to a pseudopregnant female recipe. Transplanted to the ent. As a result, embryo development was significantly improved in both cumulus cells and clones derived from Sertoli cells. The respective birth rates reached 12.1% and 13.0% of the transferred embryos, which were 7-8 times higher than the wild type control (FIGS. 3D, 3E).
  • mice derived from a pedigree with a standard genetic background did not reach such high efficiencies even when treated with trichostatin A or scriptaid (up to about 3-5%) (Non-Patent Documents 5 to 7).
  • the Magea family gene encodes a “melanoma antigen A” (MAGE-A) protein that is expressed only in germ cells, placenta and cancer cells (melanoma)
  • MAGE-A melanoma antigen A
  • ES cells embryonic stem cells
  • G9a histone methyltransferase that dimethylates histone H3 at lysine 9
  • H3K9me2 is responsible for gene silencing with a constitutive heterochromatin state, and this histone-modified region is a tissue-specific block called LOCKs (large organized chromatin K9 modifications) (B. Wen, H. Wu et al., Nat Genet 41, 246-250 (2009)).
  • the present inventor then determined whether or not the two identified regions with decreased expression are related to LOCKs, such as the public database of Wen et al. (B. Wen, H. Wu et al., Nat Genet 41, 246-250 (2009)). Interestingly, not only the Magea family gene but also the Xlr family gene was present in LOCKs common to all undifferentiated and differentiated ES cells (B. Wen, H. Wu et al., Nat Genet 41, 246. -250 (2009)). In contrast, F8a in the Xlr gene was outside of these regions and expression levels were restored in Xist knockout cloned embryos.
  • the present inventor has shown that the expression of Magea family gene and Xlr family gene is very low in undifferentiated ES cells by microarray analysis, whereas these genes are actively expressed in their blastocyst counterparts. Showed that. Therefore, the inventor has shown that the suppressive state of the Magea region and the Xlr region via somatic cell type LOCKs in donor cells is resistant to reprogramming by putative egg cytoplasmic factors. Think of it as being transmitted to the cloned embryo.
  • the expression level of the G9a gene is variable at the blastocyst stage, but in the 2-cell cloned embryo, the Glp (G9a-like-protein) gene that forms a heterocomplex with G9a to methylate H3K9 Similar to (M. Tachibana, J. Ueda et al., Genes Dev 19, 815-826 (2005)), the expression level was high. Since the primary embryonic gene activation (EGA) phase begins in the 2-cell stage in mice, this finding suggests that cloned embryos activate G9a and Glp as early as EGA, and somatic LOCKs in their genomes. It is shown that it is maintained.
  • EGA embryonic gene activation
  • BIX a G9a inhibitor
  • the reprogramming mechanism is initially present in the egg cytoplasm to change the epigenetic state of the gamete to the epigenetic state of the zygote.
  • Somatic cell nuclear transfer technology takes advantage of this mechanism in some way to reprogram the donor's somatic genome, which is epigeneticly different from the gamete. Therefore, various epigenetic errors are considered to occur in cloned embryos (J. Fulka, Jr., N. Miyashita, T. Nagai, A. Ogura, Nat Biotechnol 22, 25-26 (2004)).
  • Example 4 Effect of specific siRNA on Xist RNA level of parthenogenetic activated embryos introduced with siRNA at different times
  • the present inventors have developed parthenogenetic embryos expressing the Xist gene after the morula stage
  • the effectiveness of siRNA constructs was examined. As a result, it was found that siRNA effectively reduces the level of Xist RNA in the resulting blastocyst when introduced into the oocyte 6 hours after activation (FIG. 5). Therefore, in the next series of experiments, a similar dosing regimen was used for somatic cell nuclear transfer embryos reconstructed with nuclei from neonatal Sertoli cells.
  • Example 5 Transient suppression of ectopic Xist expression in embryos generated by somatic cell nuclear transfer by introduction of Xist-siRNA
  • Xist-siRNA One-cell cloned embryos introduced with Xist-specific siRNA (one-cell cloned) Approximately 66% (53/80) of embryos) developed into blastocysts after 96 hours in culture. This trend was not statistically significant compared to those introduced with control siRNA (52%, 44/84; P> 0.05, Fisher's exact test).
  • RNA FISH Xist RNA fluorescence in situ hybridization
  • Example 6 Effect of Xist-siRNA on post-implantation development of cloned embryo
  • the present inventors conducted embryo transfer experiments in order to evaluate the developmental ability of cloned embryos introduced with siRNA after implantation. Went. On day 5.5, siRNA had no effect on implantation rate as assessed by endometrial shedding and embryo recovery. However, the morphology of embryos recovered from the implantation site was significantly improved. That is, 75% (9/12) of Xist-siRNA embryos show normal morphology with distinguishable embryo and extraembryonic compartments, and only 5% (1/20) show normal morphology in the control group (FIG. 7B, P ⁇ 0.005, Fisher's exact test).
  • Trichostatin A is a potent inhibitor of histone deacetylation, by mitigating histone-related repression of donor chromatin during genome reprogramming in vitro and in vivo, It is known to promote the development of cloned embryos (Kishigami, S. et al., Biochem. Biophys. Res. Commun. 340, 183-189 (2006)). This finding indicates that trichostatin A treatment and Xist knockdown have a synergistic effect on the development of cloned embryos. This is a mouse somatic cell nuclear transfer cloning since the first success by Wakayama et al. (Wakayama, T., Perry, AC, Zuccotti, M., Johnson, KR & Yanagimachi, R., Nature 394, 369-374 (1998)). Is the highest birth rate ever reported.
  • Both X chromosomes in cells of the inner cell mass are reactivated in female mouse embryos (peripheral of X chromosome inactivation) and then undergo de novo random X chromosome inactivation in epiblast cells
  • imprinted X chromosome inactivation is maintained in trophectoderm lines and placenta. Random X-chromosome inactivation occurs normally in cloned fetuses, and imprinted X-chromosome inactivation persists in the placenta, demonstrating the same for female somatic cell nuclear transfer embryos It was done.
  • the present invention it has become possible to dramatically increase the success rate in a method for producing a cloned animal by somatic cell cloning technology. According to the present invention, it is possible to efficiently produce an individual having the same gene as the parent individual, and the present invention has many applications in a wide range of fields such as biological pharmaceutical production, regenerative medicine, and agriculture. Be expected.

Abstract

It was discovered that the gene expression pattern in a reconstructed embryo obtained by means of somatic cell nuclear transfer normalized by deleting the Xist function on the active X chromosome of the reconstructed embryo, thereby improving cloning efficiency by 7 to 8 times.

Description

クローン動物の作出方法How to make cloned animals
 本発明は、体細胞核移植によるクローン動物の作出方法に関する。 The present invention relates to a method for producing a cloned animal by somatic cell nuclear transfer.
 体細胞クローン技術は、成熟した個体の体細胞から核を取り出し、これを除核した未受精卵に移植して、母体の卵管又は子宮に戻すことにより新しい個体を作成する技術である。この技術によれば、親個体と同じ遺伝子を持つ個体を作製することが可能となり、将来、生物学的な医薬製造、再生医療、および農業への応用が期待されている。 The somatic cell cloning technique is a technique for creating a new individual by removing a nucleus from a somatic cell of a mature individual, transplanting it to an enucleated unfertilized egg, and returning it to the maternal fallopian tube or uterus. This technique makes it possible to produce an individual having the same gene as the parent individual, and is expected to be applied to biological pharmaceutical production, regenerative medicine, and agriculture in the future.
 体細胞核移植(SCNT)は、これまで16以上の動物種への適用に成功してきた。しかしながら、正常な誕生という観点での効率は、この技術の改良のための多くの努力にも拘わらず、常に低いままであった(非特許文献1)。例えば、クローン化効率とドナー細胞の分化状態の間には相関がないため、有効なドナー細胞のスクリーニングは、限られた成功しか収めてこなかった(非特許文献2~4)。 Somatic cell nuclear transfer (SCNT) has been successfully applied to more than 16 animal species. However, the efficiency in terms of normal birth has always remained low despite many efforts to improve this technology (Non-Patent Document 1). For example, since there is no correlation between cloning efficiency and the differentiation state of donor cells, screening of effective donor cells has had limited success (Non-Patent Documents 2 to 4).
 体細胞核移植胚におけるエピジェネティックな変化についての証拠の増加に伴い、ドナー細胞や再構築した胚におけるクロマチン構造やメチル化状態を修飾するために用いられる薬剤が、発生不全を克服するための有力な処理として注目されてきた。最も成功した手段の一つは、レシピエントのマウス卵母細胞を、トリコスタチンA(TSA)(非特許文献5,6)やスクリプタイド(非特許文献7)のようなヒストン脱アセチル化阻害剤(HDACi)で処理することである。この処理によりクローニング効率における有意な増加が導かれた。ヒストンアセチル化は、クロマチン接近性(chromatin accessibility)を制御するための中心的な要因であるため(非特許文献8)、ヒストン脱アセチル化阻害剤は、推定の卵細胞質因子(ooplasmic factor)が、移植された核ゲノムへ接近することを容易にしていると考えられている。それゆえに、ヒストン脱アセチル化阻害剤の効果は特異的というよりもむしろ全体的であり、ドナーゲノムのエピジェネティックな状態に依存して変化してしまう。 With increasing evidence for epigenetic changes in somatic cell nuclear transfer embryos, drugs used to modify chromatin structure and methylation status in donor cells and reconstructed embryos are promising for overcoming developmental deficits. It has been attracting attention as a process. One of the most successful means is that histone deacetylation inhibitors such as trichostatin A (TSA) (Non-patent Documents 5 and 6) and scriptoids (Non-patent Document 7) are used in recipient mouse oocytes. (HDACi). This treatment led to a significant increase in cloning efficiency. Since histone acetylation is a central factor for controlling chromatin accessibility (Non-patent Document 8), histone deacetylation inhibitors are presumed egg cytoplasmic factors (ooplasmic factors) It is believed to facilitate access to the transplanted nuclear genome. Therefore, the effects of histone deacetylation inhibitors are global rather than specific and vary depending on the epigenetic state of the donor genome.
 クローン作製の成功率を高めるため、上記薬剤処理も含め、体細胞核移植技術の改良のための多くの努力がなされている。しかしながら、残念なことに、いずれも、クローン作製の成功率は、1~5%にとどまっている。 In order to increase the success rate of cloning, many efforts have been made to improve somatic cell nuclear transfer techniques, including the above-mentioned drug treatment. Unfortunately, however, the success rate for cloning is only 1-5% in all cases.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、その目的は、体細胞クローン技術によりクローン動物を作出する方法において、その成功率を飛躍的に高めることを可能とする方法を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and its object is to make it possible to dramatically increase the success rate in a method for producing a cloned animal by somatic cell cloning technology. Is to provide.
 多くの体細胞核移植特異的な表現型、例えば、胎盤異常(S. Tanaka, M. Oda et al., Biol Reprod 65, 1813-1821(2001))、肥満(K. L. Tamashiro, T. Wakayama et al., Nat Med 8, 262-267(2002))、および免疫不全(N. Ogonuki, K. Inoue et al., Nat Genet 30, 253-254(2002))は、体細胞核移植が不可避的に特定のエピジェネティックなエラーをドナーゲノムにおいて誘導することを示唆する。これらは、おそらく、体細胞と生殖細胞のゲノム間に存在する根本的なエピジェネティックな相違が引き起こす、ランダムではなく、かつ、限定的な特徴かもしれない。従って、本発明者らは、このようなエラーを改善できれば、体細胞核移植による哺乳動物のクローン化において、技術的なブレークスルーとなると考えた。しかしながら、おそらく、個々のクローンゲノムのエピジェネティックな状態が高度に多様であるために、この推定の何らの証拠は提示されてこなかった。 Many somatic cell nuclear transfer-specific phenotypes such as placental abnormalities (S. Tanaka, M. Oda et al., Biol Reprod 65, 1813-1821 (2001)), obesity (K. L. Tamashiro, T. Wakayama et al., Nat Med 8, 262-267 (2002)) and immunodeficiency (N. Ogonuki, K. Inoue et al., Nat Genet 30, 253-254 (2002)) are inevitable for somatic cell nuclear transfer. Suggesting that certain epigenetic errors are induced in the donor genome. These are probably non-random and limiting features caused by the fundamental epigenetic differences that exist between the somatic and germ cell genomes. Therefore, the present inventors thought that if such an error could be improved, this would be a technical breakthrough in mammalian cloning by somatic cell nuclear transfer. However, no evidence of this presumption has been presented, perhaps because the epigenetic state of individual cloned genomes is highly diverse.
 そこで、本発明者らは、体細胞核移植により誘導されるドナーゲノムにおけるエピジェネティックなエラーを解明すべく鋭意研究を行った。その結果、本発明者は、雌における2つのX染色体の1つで通常不活性化されているXistが、マウスのクローン胚の雌雄双方において、活性X(Xa)染色体から異所的に発現していることを見出した。Xa染色体においてXistを欠損させると、全体的な遺伝子発現パターンが正常化し、クローン化効率が7~8倍も向上した。さらに、本発明者は、一連のX連鎖遺伝子を体細胞型抑制的ヒストン制御(somatic-type repressive histone blocks)を介して抑制する、Xistに非依存的で、ランダムではない機構をも同定した。 Therefore, the present inventors conducted earnest research to elucidate epigenetic errors in the donor genome induced by somatic cell nuclear transfer. As a result, the inventor found that Xist, which is normally inactivated on one of the two X chromosomes in females, is ectopically expressed from active X (Xa) chromosomes in both male and female mouse embryos. I found out. Deletion of Xist in the Xa chromosome normalized the overall gene expression pattern and improved cloning efficiency by 7 to 8 times. Furthermore, the present inventor has also identified a non-random mechanism that is independent of Xist and suppresses a series of X-linked genes via somatic-type repressive histone control.
 また、本発明者らは、Xistに対するsiRNAを作製し、それをクローン化胚に導入した。その結果、siRNAの導入によりクローンの出生率が10倍以上向上することを見出した。さらに、siRNAの導入にトリコスタチンA処理を組み合わせたところ、クローンの出生率において相乗効果がもたらされた。 In addition, the present inventors produced siRNA for Xist and introduced it into a cloned embryo. As a result, we found that the introduction of siRNA improved the birth rate of clones by more than 10 times. Furthermore, combining trichostatin A treatment with the introduction of siRNA resulted in a synergistic effect on the birth rate of the clones.
 このように本発明者は、体細胞核移植により誘導される、ランダムではない再プログラム化のエラーを世界で初めて同定するとともに、このエラーを正常化させることにより、哺乳動物の体細胞核移植の成功率を飛躍的に向上させることが可能であることを見出し、本発明を完成するに至った。 Thus, the inventor has identified the world's first non-random reprogramming error induced by somatic cell nuclear transfer, and by normalizing this error, the success rate of mammalian somatic cell nuclear transfer As a result, the present invention has been completed.
 本発明は、より詳しくは、以下の発明を提供するものである。 More specifically, the present invention provides the following inventions.
 (1) 体細胞核移植によりクローン動物を作出する方法であって、除核卵母細胞に体細胞の核を移植することにより形成された再構築胚における活性X染色体の遺伝子発現異常を抑制することを特徴とする方法。 (1) A method for producing a cloned animal by somatic cell nuclear transfer, which suppresses abnormal gene expression of the active X chromosome in a reconstructed embryo formed by transplanting the nucleus of a somatic cell into an enucleated oocyte A method characterized by.
 (2) 活性X染色体の遺伝子発現異常がXist遺伝子の発現増加である、(1)に記載の方法。 (2) The method according to (1), wherein the gene expression abnormality of the active X chromosome is increased expression of the Xist gene.
 (3) 活性X染色体におけるXist遺伝子の発現が人為的に抑制された体細胞を用いる、(2)に記載の方法。 (3) The method according to (2), wherein somatic cells in which the expression of the Xist gene on the active X chromosome is artificially suppressed are used.
 (4) Xist遺伝子の発現増加の抑制をXist遺伝子に対するsiRNAを用いて行う、(2)に記載の方法。 (4) The method according to (2), wherein suppression of increase in the expression of the Xist gene is performed using siRNA against the Xist gene.
 (5) さらに、体細胞または再構築胚に対しトリコスタチンA処理を行う、(1)から(4)のいずれかに記載の方法。 (5) The method according to any one of (1) to (4), wherein trichostatin A treatment is further performed on somatic cells or reconstructed embryos.
 (6) (1)から(5)に記載の方法を実施するためのキットであって、除核卵母細胞に体細胞の核を移植することにより形成された再構築胚における活性X染色体の遺伝子発現異常を抑制する活性を有する分子を含むキット。 (6) A kit for carrying out the method according to (1) to (5), wherein an active X chromosome in a reconstructed embryo formed by transplanting a somatic nucleus into an enucleated oocyte A kit comprising a molecule having an activity of suppressing abnormal gene expression.
 (7) (1)から(5)のいずれかに記載の方法により作出されたクローン動物。 (7) A cloned animal produced by the method according to any one of (1) to (5).
 本発明により、初めて、X染色体に特異的に影響を与える2つの型の体細胞核移植関連エラー(SCNT-associated errors)が同定された。1つ目は、Xa染色体からのXistの異所的な発現であり、2つ目は、Magea領域およびXlr領域における抑制的なヒストン修飾(H3K9me2)の持続である。さらに、本発明において、クローン胚におけるXist発現パターンの是正が、これまでに適用されたいずれのクローニング手法(非特許文献1)よりも優れたレベルでクローニング効率を改良しうることが明らかとなった。本発明において、Xistの発現が雌雄のウシの体細胞核移植胚においても上昇していることも見出されたため、本発明は広く動物に適用しうると考えられる。本発明によれば、ジーンターゲティングやRNAノックダウンなどの技術を利用して、Xa染色体における遺伝子発現異常を抑制(正常化)することにより、幅広い動物において、体細胞核移植によるクローン動物の作出効率を飛躍的に高めることが可能である。 For the first time, the present invention has identified two types of somatic cell nuclear transfer-related errors (SCNT-associated errors) that specifically affect the X chromosome. The first is the ectopic expression of Xist from the Xa chromosome, and the second is the persistence of inhibitory histone modifications (H3K9me2) in the Magea and Xlr regions. Furthermore, in the present invention, it has been clarified that correction of the Xist expression pattern in the cloned embryo can improve the cloning efficiency at a level superior to any cloning technique (Non-patent Document 1) applied so far. . In the present invention, it was also found that the expression of Xist was increased in both male and female bovine somatic cell nuclear transfer embryos, and therefore, the present invention can be widely applied to animals. According to the present invention, by using gene targeting, RNA knockdown, and other techniques to suppress (normalize) gene expression abnormality in the Xa chromosome, the efficiency of producing cloned animals by somatic cell nuclear transfer can be improved in a wide range of animals. It can be improved dramatically.
体細胞核移植(SCNT)胚におけるX連鎖遺伝子の大規模な発現低下を示す図である。Aは、B6D2F1体外受精胚(IVF;左)および卵丘細胞クローン胚(右)の相対的な遺伝子発現レベルの代表的なパターンを、染色体1からX(Yを除く)のゲノム位置にプロットした図である。発現レベルは、IVF胚の発現レベルで標準化した。赤のバーは、クローン胚において、発現が低下したX連鎖遺伝子を示す。Bは、X連鎖遺伝子の常染色体遺伝子に対する発現レベル比を示すグラフである。データは、平均±s.e.m.a,a’P<0.05,b,b’P<0.0001,c,c’P<0.05(一元配置分散分析およびスチューデントのt検定)で表した。Cは、卵丘細胞クローン胚(赤)、トリコスタチンA処理した卵丘細胞胚(青)、およびIVF胚(グレー)の相対的な遺伝子発現レベルを、X染色体の位置にプロットしたグラフである。点線は、1つの胚を表し、実線は、それらの平均値を示す。It is a figure which shows the large-scale expression fall of the X linkage gene in a somatic cell nuclear transfer (SCNT) embryo. A plots a representative pattern of relative gene expression levels of B6D2F1 in vitro fertilized embryos (IVF; left) and cumulus cell cloned embryos (right) at the genomic location from chromosome 1 to X (except Y). FIG. The expression level was normalized with the expression level of the IVF embryo. Red bars indicate X-linked genes with reduced expression in cloned embryos. B is a graph showing the expression level ratio of the X-linked gene to the autosomal gene. Data were expressed as mean ± sem a, a ′ P <0.05, b, b ′ P <0.0001, c, c ′ P <0.05 (one-way analysis of variance and Student's t test). C is a graph plotting relative gene expression levels of cumulus cell cloned embryos (red), trichostatin A-treated cumulus cell embryos (blue), and IVF embryos (gray) at the position of the X chromosome. . The dotted line represents one embryo and the solid line shows their average value. Xistが雌雄のクローン胚において、活性X染色体上に異所的に発現することを示す図である。Aは、雌雄の胚におけるXistの発現を示すグラフである。Bは、Xist RNAおよび核を染色した胚の顕微鏡写真である。Cは、1つの胚におけるXist RNAドメインの数により分類した卵割球の割合(0~2)を示すグラフである。それぞれのバーは、1つの胚を表す。It is a figure which shows that Xist is ectopically expressed on an active X chromosome in a male and female clone embryo. A is a graph showing the expression of Xist in male and female embryos. B is a photomicrograph of an embryo stained with Xist RNA and nuclei. C is a graph showing the ratio (0-2) of blastomeres classified by the number of Xist RNA domains in one embryo. Each bar represents one embryo. 体細胞核移植胚における活性X染色体(Xa)上のXistの欠失が、in vivoにおける遺伝子発現パターンと発達能力を改善することを示す図である。Aは、対応するIVF胚と比較した、体細胞核移植胚における発現低下した遺伝子の数を示すグラフである。BとCは、それぞれ雌と雄のクローンにおいて、X連鎖遺伝子の相対的な発現レベルをX染色体位置にプロットしたグラフである。Xlrクラスターを、1の数字を付した三角で、Mageaクラスターを、2の数字を付した三角で示した。Dは、移植された胚における出生率を示すグラフである。Eは、Xist遺伝子を持つ(左)または持たない(右)セルトリ細胞を用いた核移植後に生まれた胎児の写真である。It is a figure which shows that the deletion of Xist on the active X chromosome (Xa) in a somatic cell nuclear transfer embryo improves the gene expression pattern and developmental ability in vivo. A is a graph showing the number of genes with reduced expression in somatic cell nuclear transfer embryos compared to the corresponding IVF embryos. B and C are graphs in which the relative expression level of the X-linked gene is plotted at the X chromosome position in female and male clones, respectively. Xlr clusters are indicated by triangles with a number of 1, and Magea clusters are indicated by triangles with a number of 2. D is a graph showing the birth rate in the transplanted embryo. E is a photograph of a fetus born after nuclear transfer using Sertoli cells with (left) or without (right) the Xist gene. ウシの雌雄の体細胞核移植胚におけるXist遺伝子の発現増加を示すグラフである。It is a graph which shows the expression increase of Xist gene in the somatic cell nuclear transfer embryo of a bovine male and female. 異なる時期にsiRNAを導入した単為生殖活性化胚のXist RNAレベルに対する特異的siRNAの効果を示すグラフである。各群の水平線は、平均値を示す。活性化前(中期II;MII)と活性化後6時間目(前核期;PN)にsiRNAを導入した。It is a graph which shows the effect of specific siRNA with respect to the Xist RNA level of the parthenogenetic activation embryo which introduce | transduced siRNA at different time. The horizontal line of each group shows an average value. SiRNA was introduced before activation (mid-phase II; MII) and 6 hours after activation (pronuclear phase; PN). Xist-siRNA導入による、体細胞核移植で発生させた胚における、異所的なXist発現の一過性の抑制を検出した結果を示す図である。(a)対照またはXist-siRNAを導入し、48時間(4細胞期)、72時間(桑実胚期)または96時間(胚盤胞期)培養したクローン胚における、Xistの定量RT-PCRの結果を示すグラフである。各群における水平線は、各発現レベルの平均値を示す。(b)siRNAを導入したクローン胚におけるXistのFISH解析の結果を示す写真である。矢印は、Xist-siRNA-処理したクローン胚の「ピンポイント」のシグナルを示す。スケールバーは、50μmである。(c)Xistの雲またはピンポイントの発現パターンにより分類した割球の割合を、RNA FISHにより分析した結果を示すグラフである。各カラムは、単一の胚を表す。It is a figure which shows the result of having detected the transient suppression of ectopic Xist expression in the embryo | germ generated by somatic cell nuclear transfer by Xist-siRNA introduction | transduction. (A) Quantitative RT-PCR of Xist in cloned embryos introduced with control or Xist-siRNA and cultured for 48 hours (4 cell stage), 72 hours (morula stage) or 96 hours (blastocyst stage) It is a graph which shows a result. The horizontal line in each group shows the average value of each expression level. (B) It is a photograph which shows the result of the FISH analysis of Xist in the cloned embryo which introduce | transduced siRNA. Arrows indicate “pinpoint” signals of Xist-siRNA-treated cloned embryos. The scale bar is 50 μm. (C) It is a graph which shows the result of having analyzed the ratio of the blastomere classified by the cloud or pinpoint expression pattern of Xist by RNA FISH. Each column represents a single embryo. クローン胚の着床後の発達におけるXist-siRNAの効果を示す図である。(a)胎生期(E)5.5および妊娠末期において評価した胚の発達率を示すグラフである。いくつかの実験において、トリコスタチンAを5または50nMで培地に添加した。棒グラフの上の数字は、移植した胚に対する、正常な形をした胚(E5.5)および満期産の率を示す。*P<0.05、**P<0.001(Fisherの正確確率検定)。(b)E5.5で回収したsiRNA処理クローン胚の代表的な顕微鏡写真である。図中、「Epi」は胚体胚盤葉上層領域を、「EXE」は胚体外外胚葉を、「EPC」は栄養膜錐体を示す。(c)Xist-siRNAおよび50nM トリコスタチンAによる処理の後に得たセルトリ細胞から、体細胞核移植により発生させた一腹の子を示す写真である。(d)in vitroにおける96時間目(胚盤胞)およびin uteroにおけるE5.5において、対照またはXist-siRNA処理したクローン胚におけるH3K27me3(緑)およびOct4(赤)を免疫染色にて検出した結果を示す写真である。「Epi」は胚体胚盤葉上層領域を、「EXE」は胚体外外胚葉を示す。矢印は、サンプルにおいて見出された、わずか一つのH3K27me3陽性細胞である。スケールバーは50μmである。It is a figure which shows the effect of Xist-siRNA in the development after implantation of a clone embryo. (A) It is a graph which shows the development rate of the embryo evaluated in embryonic period (E) 5.5 and the last stage of pregnancy. In some experiments, trichostatin A was added to the medium at 5 or 50 nM. The numbers above the bar graph indicate the rate of normal shaped embryos (E5.5) and full-term births relative to the transferred embryos. * P <0.05, ** P <0.001 (Fisher exact test). (B) Representative photomicrographs of siRNA-treated cloned embryos recovered at E5.5. In the figure, “Epi” indicates the upper definitive endoderm region, “EXE” indicates the extraembryonic ectoderm, and “EPC” indicates the trophoblast cone. (C) A photograph showing a litter of pups generated by somatic cell nuclear transfer from Sertoli cells obtained after treatment with Xist-siRNA and 50 nM trichostatin A. (D) Results of immunostaining of H3K27me3 (green) and Oct4 (red) in control or Xist-siRNA-treated cloned embryos at 96 hours (blastocyst) in vitro and E5.5 in utero It is a photograph which shows. “Epi” indicates the upper definitive endoderm region, and “EXE” indicates the extraembryonic ectoderm. The arrow is just one H3K27me3-positive cell found in the sample. The scale bar is 50 μm. siRNAを介したXist抑制と体細胞核移植で発生させた雄の胚の生存への影響を示す概略図である。図中(上)は、Xist発現レベルを、(下)はクローン胚の生存率を示す。It is the schematic which shows the influence on the survival of the male embryo | germ generated by Xist suppression via siRNA and somatic cell nuclear transfer. In the figure, (upper) shows the Xist expression level, and (lower) shows the survival rate of the cloned embryo.
 本発明は、体細胞核移植によりクローン動物を作出する方法を提供する。本発明の方法は、除核卵母細胞に体細胞核を移植することにより形成された胚における活性X染色体の遺伝子発現異常を抑制することを特徴とする。 The present invention provides a method for producing a cloned animal by somatic cell nuclear transfer. The method of the present invention is characterized by suppressing abnormal gene expression of active X chromosomes in embryos formed by transplanting somatic cell nuclei into enucleated oocytes.
 本発明においてクローンを作出するための動物としては、体細胞核移植によりクローンを作出可能な非ヒト動物であれば特に制限はなく、例えば、マウス、ラット、ウシ、ウマ、ブタ、ヒツジ、ヤギ、サル、ウサギ、イヌ、ネコ、フェレット、ラクダ、シカ等が挙げられる。 The animal for producing a clone in the present invention is not particularly limited as long as it is a non-human animal capable of producing a clone by somatic cell nuclear transfer. For example, mouse, rat, cow, horse, pig, sheep, goat, monkey , Rabbits, dogs, cats, ferrets, camels, deer and the like.
 本発明の方法において用いるレシピエント卵母細胞は、例えば、ゴナドトロピン等のホルモン投与による過排卵を誘導した動物、屠殺動物卵巣から採取することができる。卵丘・卵母細胞複合体として採取した場合には、ヒアルロニダーゼ処理を行って、卵丘細胞を除去することが好ましい。卵母細胞における除核は、例えば、細胞骨格形成阻害剤であるサイトカラシンBで卵母細胞を処理した後、微小なピペットを用いて卵母細胞から核を除去することにより行うことができる。 The recipient oocyte used in the method of the present invention can be collected from, for example, an animal in which superovulation is induced by administration of a hormone such as gonadotropin or a slaughtered animal ovary. When collected as a cumulus / oocyte complex, it is preferable to remove the cumulus cells by hyaluronidase treatment. Enucleation in an oocyte can be performed, for example, by treating the oocyte with cytochalasin B, which is a cytoskeleton formation inhibitor, and then removing the nucleus from the oocyte using a micropipette.
 本発明の方法において用いるドナー体細胞としては、例えば、卵丘細胞、セルトリ細胞、繊維芽細胞、神経細胞、乳腺細胞、血球、リンパ球などが挙げられるが、これらに制限されない。これら体細胞は、胚性幹細胞、組織幹細胞、遺伝子操作等により分化多能性が付与された細胞(例えば、iPS細胞)などの幹細胞より誘導されたものであってもよい。 Examples of donor somatic cells used in the method of the present invention include cumulus cells, Sertoli cells, fibroblasts, nerve cells, mammary cells, blood cells, and lymphocytes, but are not limited thereto. These somatic cells may be derived from stem cells such as embryonic stem cells, tissue stem cells, and cells to which pluripotency is imparted by genetic manipulation (for example, iPS cells).
 本発明においては、除核卵母細胞に体細胞核を移植することにより形成された再構築胚における活性X染色体の遺伝子発現異常を抑制するために、上記体細胞、卵母細胞、または再構築胚において、当該遺伝子発現異常を抑制するための処理を行う。本実施例において再構築胚における活性X染色体では、Xist遺伝子の発現が増加していることが見出されたが、Xist遺伝子の発現を抑制することにより、全体的な遺伝子発現パターンが正常化し、クローン化効率が顕著に向上した。従って、活性X染色体の遺伝子発現異常を抑制するための処理としては、好ましくは、Xist遺伝子の発現または機能を抑制するための処理である。 In the present invention, in order to suppress abnormal gene expression of the active X chromosome in a reconstructed embryo formed by transplanting a somatic nucleus into an enucleated oocyte, the above-mentioned somatic cell, oocyte, or reconstructed embryo is used. Then, a process for suppressing the gene expression abnormality is performed. In this example, the active X chromosome in the reconstructed embryo was found to increase the expression of the Xist gene, but by suppressing the expression of the Xist gene, the overall gene expression pattern was normalized, Cloning efficiency was significantly improved. Therefore, the treatment for suppressing abnormal gene expression of the active X chromosome is preferably a treatment for suppressing the expression or function of the Xist gene.
 Xist遺伝子の発現または機能を抑制するための処理としては、例えば、体細胞におけるXist遺伝子を破壊すること、または、Xist遺伝子の発現を抑制する活性を有する分子(例えば、後述する、siRNA、アンチセンスRNA、リボザイム活性を有するRNAや、これらを発現するベクター)を体細胞、卵母細胞、または再構築胚に導入することが挙げられる。なお、Xist遺伝子については、その遺伝子配列は公知である(Borsani,G., Tonlorenzi,R. Nature 351 325-329(1991)、J.Kawai, A.Shinagawa, Nature 409, 685-690(2001)、NCBI Reference ID:AF138745, AK051106, NR_001464.2, U50910.1, GU372693.1, EF619477.1)。 The treatment for suppressing the expression or function of the Xist gene includes, for example, destroying the Xist gene in somatic cells, or a molecule having an activity of suppressing the expression of the Xist gene (for example, siRNA, antisense described later) Introducing RNA, RNA having ribozyme activity, and vectors expressing them) into somatic cells, oocytes, or reconstructed embryos. The gene sequence of the Xist gene is known (Borsani, G., Tonlorenzi, R. Nature 351 325-329 (1991), J. Kawai, A. Shinagawa, Nature 409, 685-690 (2001). NCBI Reference ID: AF138745, AK051106, NR_001464.2, U50910.1, GU372693.1, EF619477.1).
 Xist遺伝子の発現または機能を抑制するためのその他の処理としては、例えば、Xistに結合するBRCA1(Ganesan et al., Cell 111, 393-405(2002)、Sirchia, et al., PLoS One 4(5), e5559(2009))をコードする遺伝子の発現または機能の抑制、X染色体不活化を維持するポリコームタンパクであるPRC1,2関連遺伝子(Plath et al, Science 300, 131-135(2003)、Plath et al, JCB 167(6), 1025-1035(2004)、Hernandez-Munoz et al., PNAS 102, 7635-7640(2005))の発現または機能の抑制、macro-H2A関連遺伝子(Costanzi et al., Development 127, 2283-2289(2000)、Hernandez-Munoz et al., PNAS 102, 7635-7640(2005))の発現または機能の抑制等が挙げられる。体細胞におけるこれら遺伝子を破壊することや、これら遺伝子の発現を抑制する活性を有する分子(例えば、後述する、siRNA、アンチセンスRNA、リボザイム活性を有するRNAや、これらRNAを発現するベクター)を体細胞、卵母細胞、または再構築胚に導入することにより、Xist遺伝子の発現または機能を抑制することが可能である。 Other treatments for suppressing the expression or function of the Xist gene include, for example, BRCA1 binding to Xist (Ganesan et al., Cell 111, 393-405 (2002), Sirchia, et al., PLoS One 4 ( 5), PRC1,2 related genes (Plath et al, Science 300, 131-135 (2003), which is a polycomb protein that suppresses the expression or function of the gene encoding e5559 (2009)) and maintains X chromosome inactivation. Plath et al, JCB 167 (6), 1025-1035 (2004), Hernandez-Munoz et al., PNAS 102, 7635-7640 (2005)) expression or function suppression, macro-H2A related genes (Costanzi et al ., Development 127, 2283-2289 (2000), Hernandez-Munoz et al., PNAS 102, 7635-7640 (2005)), or suppression of function. A body that destroys these genes in somatic cells and has an activity that suppresses the expression of these genes (for example, siRNA, antisense RNA, RNA having ribozyme activity and a vector that expresses these RNAs described later) By introducing into a cell, oocyte, or reconstructed embryo, it is possible to suppress the expression or function of the Xist gene.
 Xist遺伝子の発現または機能を抑制するためのその他の処理としては、Xistによるgene silencingに関わる因子であるSATB1,2(Agrelo, et al., Developmental Cell 16, 507-516(2009))をコードする遺伝子の発現の増加または機能の亢進、Xistを抑える制御因子であるTsix(Lee et al., Cell 99, 47-57(1999)、Lee et al., Cell 103, 17-27(2000)、Sado et al., Development 128, 1275-1286(2001)、Ogawa et al,, Science 320. 1336-1341(2008))をコードする遺伝子の発現の増加または機能の亢進を行うための処理も挙げられる。遺伝子の発現の増加または機能の亢進を行うためには、例えば、当該遺伝子を発現するベクター、または合成RNAを体細胞、卵母細胞、または再構築胚に導入すればよい。 As other processing to suppress the expression or function of Xist gene, SATB1,2 (Agrelo, et al., Developmental Cell 16, 507-516 (2009)), which is a factor involved in gene silencing by Xist, is encoded. Tsix (Lee et al., Cell 99, 47-57 (1999), Lee et al., Cell 103, 17-27 (2000), Sado, which is a regulator that suppresses the increase in gene expression or function, and Xist et al., Development 128, 1275-1286 (2001), Ogawa et al, Science 320. 1336-1341 (2008)) may also include treatment for increasing the expression or enhancing the function of the gene. In order to increase the expression of the gene or enhance the function, for example, a vector expressing the gene or a synthetic RNA may be introduced into a somatic cell, an oocyte, or a reconstructed embryo.
 本発明においては、さらに、X染色体不活化を維持するヒストン修飾であるH3K27me3(Plath et al, Science 300, 131-135(2003)、Rougeulle et al., Mol Cell Biol. 24, 5475-5484(2004))を抑制することにより、Xist遺伝子の発現または機能を抑制すること等も挙げられる。 In the present invention, H3K27me3 (Plath et al, Science 300, 131-135 (2003), Rougeulle et al., Mol Cell Biol. 24, 5475-5484 (2004), which is a histone modification that maintains X chromosome inactivation. )) To suppress the expression or function of the Xist gene.
 一方、本実施例において、再構築胚における活性X染色体では、後述の表1に記載された遺伝子の発現が低下していることも見出されたことから、活性X染色体の遺伝子発現異常を抑制するために、表1に記載された遺伝子の発現または機能の亢進を行うことも考えられる。 On the other hand, in this Example, it was also found that the expression of the genes described in Table 1 below was decreased in the active X chromosome in the reconstructed embryo, so that the abnormal gene expression of the active X chromosome was suppressed. In order to achieve this, it may be possible to enhance the expression or function of the genes listed in Table 1.
 上記例示した活性X染色体の遺伝子発現異常を抑制するための処理方法については、単独で適用することも可能であるが、適宜、複数の方法を組み合わせて適用することも可能である。 The above-described treatment method for suppressing abnormal gene expression of the active X chromosome can be applied alone, but a plurality of methods can be applied in combination as appropriate.
 さらに、体細胞核移植によるクローン動物の作出の効率を高めることが可能な他の処理と組み合わせて適用することも可能である。このような他の処理としては、体細胞または再構築胚のトリコスタチンA処理が挙げられる。トリコスタチンAは、強力なヒストン脱アセチル化阻害剤であり、in vitroおよびin vivoで、ゲノムの再プログラム化の際に、ドナークロマチンのヒストン関連抑制(histone-related repression)を緩和することによって、クローン胚の発達を促進することが知られている(Kishigami, S. et al., Biochem. Biophys. Res. Commun. 340,183-189(2006))。実際、本実施例において、Xistの発現を抑制するsiRNAの導入とトリコスタチンA処理とを組み合わせると、クローン胚の発達において相乗効果が示された(図7A)。 Furthermore, it can be applied in combination with other treatments that can increase the efficiency of production of cloned animals by somatic cell nuclear transfer. Such other treatments include trichostatin A treatment of somatic cells or reconstructed embryos. Trichostatin A is a potent histone deacetylation inhibitor that mitigates histone-related repression of donor chromatin during genome reprogramming in vitro and in vivo, It is known to promote the development of cloned embryos (Kishigami, S. et al., Biochem. Biophys. Res. Commun. 340, 183-189 (2006)). In fact, in this example, when the introduction of siRNA that suppresses expression of Xist and trichostatin A treatment were combined, a synergistic effect was shown in the development of cloned embryos (FIG. 7A).
 なお、本発明において「遺伝子の発現の抑制」とは、遺伝子の発現の完全な抑制と部分的な抑制の双方を含む意である。また、転写の抑制および翻訳の抑制の双方を含む意である。また、本発明において「遺伝子の機能の抑制」とは、遺伝子の転写産物の機能の抑制および翻訳産物の機能の抑制の双方を含む意である。本発明における、遺伝子の発現または機能を抑制する方法としては、例えば、標的遺伝子を破壊する方法、RNA干渉技術を利用する方法など、当業者にとって周知の方法が使用可能である。 In the present invention, “suppression of gene expression” means both complete suppression and partial suppression of gene expression. It also includes both transcriptional and translational repression. Further, in the present invention, “suppression of gene function” means both suppression of the function of a gene transcription product and suppression of the function of a translation product. As a method for suppressing the expression or function of a gene in the present invention, methods well known to those skilled in the art, such as a method for destroying a target gene and a method using an RNA interference technique, can be used.
 標的遺伝子を破壊する方法においては、例えば、相同組換えを利用したノックアウト技術を用いることができる。ノックアウト技術においては、標的遺伝子領域との間で相同組換えが生じるように、該標的遺伝子領域の少なくとも一部の配列と相同な配列を持つターゲティングDNA構築物を細胞に導入する。ターゲティングDNA構築物は、典型的には、標的遺伝子を破壊するためのDNAの各末端に、標的DNA部位の配列と相同な配列からなるDNAが隣接した構造を有している。即ち、相同DNAは、ターゲティングDNA構築物の左右のアームにあり、標的遺伝子を破壊するためのDNAは、この2本のアームの間に位置している。ここで「相同」とは、配列同士が完全に(即ち、100%)同一である場合の他、相同組換えが生じる限り、一部の配列が相違している場合も含まれる。通常、少なくとも95%以上、好ましくは97%以上、さらに好ましくは99%以上の配列が同一である。染色体上の標的遺伝子領域とターゲティングDNA構築物の相同な配列とが相互作用することにより、標的遺伝子領域の特定の配列と、ターゲティングDNA構築物上のDNAが交換され、これにより標的遺伝子をノックアウトすることができる。ターゲティングDNA構築物の作製においては、例えば、クローン化した標的遺伝子の内部にマーカー遺伝子を挿入したDNAを利用することができる。 In the method of destroying the target gene, for example, a knockout technique using homologous recombination can be used. In the knockout technique, a targeting DNA construct having a sequence homologous to at least a part of the target gene region is introduced into a cell so that homologous recombination occurs with the target gene region. The targeting DNA construct typically has a structure in which DNA consisting of a sequence homologous to the sequence of the target DNA site is adjacent to each end of the DNA for destroying the target gene. That is, the homologous DNA is in the left and right arms of the targeting DNA construct, and the DNA for destroying the target gene is located between the two arms. Here, the term “homologous” includes not only the case where sequences are completely identical (ie, 100%) but also the case where some sequences are different as long as homologous recombination occurs. Usually, at least 95% or more, preferably 97% or more, more preferably 99% or more of the sequences are identical. The target gene region on the chromosome and the homologous sequence of the targeting DNA construct interact to exchange a specific sequence of the target gene region with the DNA on the targeting DNA construct, thereby knocking out the target gene. it can. In the preparation of the targeting DNA construct, for example, DNA in which a marker gene is inserted into the cloned target gene can be used.
 RNA干渉を利用する方法においては、標的遺伝子の転写産物と相補的なdsRNA(二重鎖RNA)または該dsRNAをコードするDNAを用いる。dsRNAをコードするDNAは、標的遺伝子の転写産物(mRNA)のいずれかの領域に対するアンチセンスRNAをコードしたアンチセンスDNAと、該mRNAのいずれかの領域のセンスRNAをコードしたセンスDNAを含み、該アンチセンスDNAおよび該センスDNAより、それぞれアンチセンスRNAおよびセンスRNAを発現させることができる。また、これらのアンチセンスRNAおよびセンスRNAよりdsRNAを作成することができる。 In the method using RNA interference, a dsRNA (double stranded RNA) complementary to a transcription product of a target gene or a DNA encoding the dsRNA is used. DNA encoding dsRNA includes antisense DNA encoding antisense RNA for any region of the transcript (mRNA) of the target gene, and sense DNA encoding sense RNA for any region of the mRNA, Antisense RNA and sense RNA can be expressed from the antisense DNA and the sense DNA, respectively. Moreover, dsRNA can be produced from these antisense RNA and sense RNA.
 dsRNAの発現システムをベクター等に保持させる場合の構成としては、同一のベクターからアンチセンスRNAおよびセンスRNAを発現させる場合と、異なるベクターからそれぞれアンチセンスRNAとセンスRNAを発現させる場合がある。同一のベクターからアンチセンスRNAおよびセンスRNAを発現させる構成としては、例えば、アンチセンスDNAおよびセンスDNAの上流にそれぞれpolIII系のような短いRNAを発現し得るプロモーターを連結させたアンチセンスRNA発現カセットとセンスRNA発現カセットをそれぞれ構築し、これらカセットを同方向にあるいは逆方向にベクターに挿入する構成である。 The configuration in which the dsRNA expression system is held in a vector or the like includes a case where antisense RNA and sense RNA are expressed from the same vector, and a case where antisense RNA and sense RNA are expressed from different vectors, respectively. The antisense RNA and sense RNA are expressed from the same vector. For example, an antisense RNA expression cassette in which a promoter capable of expressing a short RNA such as polIII is linked upstream of the antisense DNA and the sense DNA. And sense RNA expression cassettes are constructed, and these cassettes are inserted into the vector in the same direction or in the opposite direction.
 また、異なる鎖上に対向するように、アンチセンスDNAとセンスDNAとを逆向きに配置した発現システムを構成することもできる。この構成では、アンチセンスRNAコード鎖とセンスRNAコード鎖とが対となった一つの二本鎖DNA(siRNAコードDNA)が備えられ、その両側にそれぞれの鎖からアンチセンスRNAとセンスRNAとを発現し得るようにプロモーターを対向して備える。この場合には、センスRNAとアンチセンスRNAの下流に余分な配列が付加されることを避けるために、それぞれの鎖(アンチセンスRNAコード鎖、センスRNAコード鎖)の3'末端にターミネーターをそれぞれ備えることが好ましい。このターミネーターは、A(アデニン)塩基を4つ以上連続させた配列などを用いることができる。また、このパリンドロームスタイルの発現システムでは、二つのプロモーターの種類は異なっていることが好ましい。 It is also possible to construct an expression system in which antisense DNA and sense DNA are arranged in opposite directions so as to face each other on different strands. In this configuration, one double-stranded DNA (siRNA-encoding DNA) in which an antisense RNA coding strand and a sense RNA coding strand are paired is provided, and antisense RNA and sense RNA are separated from each strand on both sides. A promoter is provided oppositely so that it can be expressed. In this case, in order to avoid adding extra sequences downstream of the sense RNA and antisense RNA, a terminator is added to the 3 'end of each strand (antisense RNA coding strand, sense RNA coding strand). It is preferable to provide. As this terminator, a sequence in which four or more A (adenine) bases are continued can be used. Further, in this palindromic style expression system, the two promoter types are preferably different.
 また、異なるベクターからアンチセンスRNAおよびセンスRNAを発現させる構成としては、例えば、アンチセンスDNAおよびセンスDNAの上流にそれぞれpolIII系のような短いRNAを発現し得るプロモーターを連結させたアンチセンスRNA発現カセットとセンスRNA発現カセットとをそれぞれ構築し、これらカセットを異なるベクターに保持させる構成である。 In addition, as a configuration for expressing antisense RNA and sense RNA from different vectors, for example, antisense RNA expression in which a promoter capable of expressing a short RNA such as polIII is linked upstream of antisense DNA and sense DNA, respectively. A cassette and a sense RNA expression cassette are constructed, and these cassettes are held in different vectors.
 なお、上記dsRNAは、当業者であればそれぞれの鎖を化学合成して調製することも可能である。 The above dsRNA can be prepared by those skilled in the art by chemically synthesizing each strand.
 本発明に用いるdsRNAとしては、siRNAが好ましい。siRNAは、細胞内で毒性を示さない範囲の短鎖からなる二重鎖RNAを意味する。標的遺伝子の発現を抑制することができ、かつ、毒性を示さなければ、その鎖長に特に制限はない。dsRNAの鎖長は、例えば、15~49塩基対であり、好適には15~35塩基対であり、さらに好適には21~30塩基対である。 The dsRNA used in the present invention is preferably siRNA. siRNA means double-stranded RNA consisting of short strands in a range that does not show toxicity in cells. The chain length is not particularly limited as long as the expression of the target gene can be suppressed and it does not show toxicity. The dsRNA chain length is, for example, 15 to 49 base pairs, preferably 15 to 35 base pairs, and more preferably 21 to 30 base pairs.
 本発明においては、配列番号:5に記載のRNAと胚列番号:6に記載のRNAとからなるsiRNAを好適に用いることができる。 In the present invention, siRNA composed of the RNA described in SEQ ID NO: 5 and the RNA described in embryonic row number: 6 can be suitably used.
 dsRNAをコードするDNAは、標的遺伝子の塩基配列と完全に同一である必要はないが、少なくとも70%以上、好ましくは80%以上、さらに好ましくは90%以上(例えば、95%、96%、97%、98%、99%以上)の配列の同一性を有する。配列の同一性は、BLASTプログラムにより決定することができる。 The DNA encoding dsRNA need not be completely identical to the base sequence of the target gene, but is at least 70% or more, preferably 80% or more, more preferably 90% or more (eg, 95%, 96%, 97 %, 98%, 99% or more). Sequence identity can be determined by the BLAST program.
 遺伝子発現の抑制のためのその他の方法として、標的遺伝子の転写産物と相補的なアンチセンスRNAをコードするDNA(アンチセンスDNA)を用いるアンチセンス技術や標的遺伝子の転写産物を特異的に開裂するリボザイム活性を有するRNAをコードするDNAを用いるリボザイム技術を利用することも考えられる。 Other methods for suppressing gene expression include antisense technology using DNA encoding antisense RNA complementary to the target gene transcript (antisense DNA) and cleaving target gene transcripts specifically. It is also conceivable to use a ribozyme technique using DNA encoding RNA having ribozyme activity.
 活性X染色体の遺伝子発現異常を抑制するための上記の核酸分子は、公知の形質転換技術、例えば、リポフェクション法、エレクトロポレーション法、ウイルスベクター法などの方法により、宿主動物細胞に導入することができる。 The above nucleic acid molecule for suppressing abnormal gene expression of the active X chromosome can be introduced into host animal cells by a known transformation technique such as lipofection, electroporation, or viral vector method. it can.
 本発明の方法の好ましい態様においては、再構築胚における活性X染色体の遺伝子発現異常を抑制するために、ドナー体細胞として、Xist遺伝子が破壊された体細胞若しくはXist遺伝子の発現を抑制する活性を有するsiRNAが導入された体細胞が用いられる。これらドナー体細胞の核をレシピエントである除核卵母細胞に移植することにより、再構築胚を得ることができる。また、本発明の方法の他の好ましい態様においては、レシピエント除核卵母細胞として、Xist遺伝子の発現を抑制する活性を有するsiRNAが導入された除核卵母細胞が用いられる。ドナー体細胞の核を、この除核卵母細胞に移植することにより、再構築胚を得ることができる。また、本発明の方法の他の好ましい態様においては、ドナー体細胞の核を除核卵母細胞に移植することにより再構築胚を得た後に、この再構築胚に、Xist遺伝子の発現を抑制する活性を有するsiRNAが導入される。 In a preferred embodiment of the method of the present invention, in order to suppress abnormal gene expression of the active X chromosome in the reconstructed embryo, the donor somatic cell has an activity of suppressing the expression of the somatic cell in which the Xist gene is disrupted or the Xist gene. Somatic cells into which siRNA having the same is introduced are used. By transferring the nuclei of these donor somatic cells to the enucleated oocytes that are recipients, reconstructed embryos can be obtained. In another preferred embodiment of the method of the present invention, an enucleated oocyte into which siRNA having an activity to suppress the expression of the Xist gene is introduced as the recipient enucleated oocyte. A reconstructed embryo can be obtained by transplanting the nucleus of a donor somatic cell into this enucleated oocyte. In another preferred embodiment of the method of the present invention, after obtaining a reconstructed embryo by transplanting the nucleus of a donor somatic cell into an enucleated oocyte, the expression of the Xist gene is suppressed in the reconstructed embryo. SiRNA having the activity to be introduced is introduced.
 卵母細胞への体細胞核の移植は、体細胞の核を除核卵母細胞に直接注入する方法や、体細胞と除核卵母細胞とを融合させる方法など、公知の方法により行うことができる。卵母細胞は、核移植の前または後に活性化される。卵母細胞の活性化は、例えば、ストロンチウムやエタノールでの処理、カルシウムイオノフォア処理または電気刺激などにより実施することができる。 Transplantation of a somatic cell nucleus into an oocyte can be performed by a known method such as a method of directly injecting a somatic cell nucleus into an enucleated oocyte or a method of fusing a somatic cell and an enucleated oocyte. it can. Oocytes are activated before or after nuclear transfer. The activation of the oocyte can be carried out, for example, by treatment with strontium or ethanol, calcium ionophore treatment or electrical stimulation.
 こうして得られた再構築胚は、一定期間培養後(例えば、2細胞期、4細胞期、桑実胚期、あるいは胚盤胞期などに達するまで)、動物の卵管又は子宮に移植して発生させ、これによりクローン動物を得ることができる。 The reconstructed embryo thus obtained is cultured for a certain period of time (for example, until reaching the 2-cell stage, 4-cell stage, morula stage, or blastocyst stage) and then transplanted into the oviduct or uterus of the animal. And thus a cloned animal can be obtained.
 本発明は、また、上記本発明の方法を実施するためのキットをも提供する。本発明のキットは、上記した、再構築胚における活性X染色体の遺伝子発現異常を抑制する活性を有する分子の少なくともいずれかを含み、さらに、使用説明書が含まれていてもよい。また、体細胞核移植によるクローン動物の作出の効率を高めることが可能な試薬、例えば、トリコスタチンAが含まれていてもよい。 The present invention also provides a kit for carrying out the above-described method of the present invention. The kit of the present invention includes at least one of the above-described molecules having an activity of suppressing abnormal gene expression of the active X chromosome in the reconstructed embryo, and may further include instructions for use. In addition, a reagent capable of increasing the efficiency of production of a cloned animal by somatic cell nuclear transfer, for example, trichostatin A may be included.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 [材料と方法(実施例1~3)] [Materials and methods (Examples 1 to 3)]
 (1)動物
 8~10週齢の(C57BL/6´DBA/2)F1(BDF1)および8~12週齢のICR雌マウスを、それぞれ、レシピエントの卵母細胞および胚移植レシピエントを採取するために用いた。雌雄のBDF1および雄の(C57BL/6´129/Sv-ter)F1マウスを核ドナーとして用いた。いくつかの実験では、Xist-欠損(XDXist)C57BL/6の雌(T. Sado, Y. Hoki, H. Sasaki, Dev Cell 9, 159-165(2005))とDBA/2の雄を交配させることにより、BDF1ドナーマウスを調製した。動物には、水と実験マウス用飼料を自由に摂取できるように与え、調節された照明条件下(7:00~21:00の日照)で飼育した。動物は、特定病原体除去条件下で維持された。全ての動物実験は、RIKENバイオリソースセンターのガイドラインに従って実施した。
(1) Animals 8-10 weeks old (C57BL / 6´DBA / 2) F1 (BDF1) and 8-12 weeks old ICR female mice were collected from recipient oocytes and embryo transfer recipients, respectively. Used to do. Male and female BDF1 and male (C57BL / 6′129 / Sv-ter) F1 mice were used as nuclear donors. In some experiments, Xist-deficient (X DXist ) C57BL / 6 females (T. Sado, Y. Hoki, H. Sasaki, Dev Cell 9, 159-165 (2005)) were mated with DBA / 2 males. BDF1 donor mice were prepared. Animals were given free access to water and diet for experimental mice and were kept under controlled lighting conditions (7: 00-21: 00 sunshine). Animals were maintained under specific pathogen removal conditions. All animal experiments were performed according to the RIKEN BioResource Center guidelines.
 (2)ドナー細胞の調製
 未成熟セルトリ細胞は、3~7日齢の雄の新生児から採取した。細胞は、文献(K. Inoue, N. Ogonuki et al., Biol Reprod 69, 1394-1400(2003)、A. Ogura, K. Inoue et al., Biol Reprod 62, 1579-1584(2000))に記載されたように調製された。すなわち、採取した精巣細胞を0.1mg/mLコラゲナーゼ(Sigma-Aldrich)と0.01mg/mLデオキシリボヌクレアーゼ(Sigma-Aldrich)で30分間、37℃で処理し、続いて、0.2mg/mLトリプシン(Sigma-Aldrich)で5分間、37℃で処理した。精巣細胞の懸濁液を4mg/mLのウシ血清アルブミンを含むCa2+/Mg2+無添加のPBSで洗浄し、インジェクションに用いた。卵丘細胞は、0.1%の「bovine testicular hyaluronidase」(Calbiochem)を含むKSMO培地で処理後、卵丘・卵母細胞複合体から採取した。
(2) Preparation of donor cells Immature Sertoli cells were collected from 3-7 day old male newborns. Cells are described in the literature (K. Inoue, N. Ogonuki et al., Biol Reprod 69, 1394-1400 (2003), A. Ogura, K. Inoue et al., Biol Reprod 62, 1579-1584 (2000)). Prepared as described. That is, the collected testis cells were treated with 0.1 mg / mL collagenase (Sigma-Aldrich) and 0.01 mg / mL deoxyribonuclease (Sigma-Aldrich) for 30 minutes at 37 ° C., followed by 0.2 mg / mL trypsin (Sigma- Aldrich) for 5 minutes at 37 ° C. The testicular cell suspension was washed with PBS containing 4 mg / mL bovine serum albumin without addition of Ca 2+ / Mg 2+ and used for injection. Cumulus cells were collected from cumulus / oocyte complexes after treatment with KSMO medium containing 0.1% “bovine testicular hyaluronidase” (Calbiochem).
 (3)核移植
 核移植は、文献(K. Inoue, N. Ogonuki et al., Biol Reprod 69, 1394-1400.(2003)、Y. Seki, K. Hayashi et al., Dev Biol 278, 440-458(2005)、T. Wakayama, A. C. Perry et al., Nature 394, 369-374(1998))に記載されたように実施した。すなわち、BDF1雌マウスに、48時間間隔で、7.5IUの「pregnant mare serum gonadotropin」(Sankyo-yell)と7.5IUの「human chorionic gonadotropin」(hCG;Aska-Pharmaceutical)を注入することにより、過排卵を誘導した。hCG注入後15時間目に、卵丘・卵母細胞複合体を卵管から収集し、卵丘細胞を0.1%のウシ精巣性ヒアルロニダーゼを含むKSOM培地に撒いた。卵母細胞は、7.5μg/mLサイトカラシンBを含むへぺス緩衝KSOM中で除核した。「Piezo-driven micromanipulator」(PMM-150FU, Primetech)を用いて、除核した卵母細胞にドナー核を導入した。KSOMで1時間培養後、卵母細胞を2.5mM SrCl2を含むCa2+無添加のKSOM中で1時間活性化した。再構築された胚は、5μg/mL サイトカラシンBを含むKSOM中で5時間培養した。
(3) Nuclear transplantation Nuclear transplantation is performed in the literature (K. Inoue, N. Ogonuki et al., Biol Reprod 69, 1394-1400. (2003), Y. Seki, K. Hayashi et al., Dev Biol 278, 440. -458 (2005), T. Wakayama, AC Perry et al., Nature 394, 369-374 (1998)). That is, superovulation by injecting 7.5 IU “pregnant mare serum gonadotropin” (Sankyo-yell) and 7.5 IU “human chorionic gonadotropin” (hCG; Aska-Pharmaceutical) into BDF1 female mice at 48-hour intervals. Induced. At 15 hours after hCG injection, cumulus-oocyte complexes were collected from the fallopian tube and cumulus cells were seeded in KSOM medium containing 0.1% bovine testicular hyaluronidase. Oocytes were enucleated in hepes buffered KSOM containing 7.5 μg / mL cytochalasin B. The donor nucleus was introduced into the enucleated oocyte using “Piezo-driven micromanipulator” (PMM-150FU, Primetech). After culturing with KSOM for 1 hour, the oocytes were activated for 1 hour in KSOM containing 2.5 mM SrCl 2 without addition of Ca 2+ . The reconstructed embryo was cultured in KSOM containing 5 μg / mL cytochalasin B for 5 hours.
 (4)胚移植
 培養48時間後に4細胞期に達した再構築された胚を、0.5日目(精管結紮雄との交配翌日)に、偽妊娠ICR雌マウスの卵管に移植した。19.5日目に、妊娠した雌は、帝王切開により出産させ、産子を授乳中のICR雌マウスで養育した。
(4) Embryo transfer The reconstructed embryo that reached the 4-cell stage after 48 hours in culture was transplanted into the oviduct of a pseudopregnant ICR female mouse on the 0.5th day (the day after mating with the vas deferens male). On day 19.5, pregnant females were born by caesarean section and their offspring were bred in lactating ICR female mice.
 (5)RNAの調製と増幅
 96時間培養したクローン胚盤胞をTRIzol試薬(Invitrogen)での全RNA抽出に用いた。1つの胚盤胞由来のRNAを、「TargetAmp Two-Round Aminoallyl-aRNA Amplification Kits」(Epicentre)を用い、製造業者の使用説明書に従って、2ラウンドの線形増幅(linear amplification)に供した。対照胚に関しては、1つのIVF胚盤胞を、全RNA抽出と2ラウンドのRNA増幅に供した。増幅されたRNAは、Cy3 dye(GE Healthcare)で標識し、製造業者の使用説明書に従って、「whole mouse genome oligo DNA microarray」(4´44K, Agilent Technologies)に、16時間、65℃でハイブリダイズさせた。
(5) Preparation and amplification of RNA Cloned blastocysts cultured for 96 hours were used for total RNA extraction with TRIzol reagent (Invitrogen). RNA from one blastocyst was subjected to two rounds of linear amplification using “TargetAmp Two-Round Aminoallyl-aRNA Amplification Kits” (Epicentre) according to the manufacturer's instructions. For control embryos, one IVF blastocyst was subjected to total RNA extraction and two rounds of RNA amplification. Amplified RNA is labeled with Cy3 dye (GE Healthcare) and hybridized to “whole mouse genome oligo DNA microarray” (4′44K, Agilent Technologies) for 16 hours at 65 ° C. according to the manufacturer's instructions. I let you.
 (6)マイクロアレイ解析
 マイクロアレイスライドのスキャニングは、DNAマイクロアレイスキャナー(Agilent Technologies)を用いて、5μmの解像度で実施した。スキャンしたイメージファイルは、「Feature Extraction software」(Agilent Technologies)を用いて、シグナル強度を検出した。各染色体における遺伝子発現レベルの比較のため、クオンタイル正規化を実施し、異なるチップ間のシグナル強度の相違を調整した。IVF胚において平均値が50より大きいシグナル強度を選択し、染色体上の位置に従って、プロットした。異なる発現をする遺伝子を抽出するために、全ての生データを「Gene Spring GX 7.3 software」(Agilent Technologies)にロードし、クオンタイル正規化を実施した。全ての野生型IVFとクローン胚において、値が9より低いプローブを、以降の分析から排除した。正規化した値をIVFとクローン胚の間で、異なる発現をする遺伝子の抽出に用いた。この抽出には、ベンジャミンとホッホバーグの手順を用いて有意水準5%のスチューデントのt検定(Student's t-test)を利用した。X:A発現比は、生の強度データの平均を用いて算出した。
(6) Microarray analysis Scanning of microarray slides was performed at a resolution of 5 μm using a DNA microarray scanner (Agilent Technologies). The scanned image file was detected for signal intensity using “Feature Extraction software” (Agilent Technologies). For comparison of gene expression levels in each chromosome, quantile normalization was performed to adjust for differences in signal intensity between different chips. Signal intensities with average values greater than 50 in IVF embryos were selected and plotted according to their location on the chromosome. In order to extract genes with different expression, all raw data were loaded into “Gene Spring GX 7.3 software” (Agilent Technologies) and quantile normalization was performed. In all wild type IVF and cloned embryos, probes with a value lower than 9 were excluded from further analysis. Normalized values were used to extract genes that expressed differently between IVF and cloned embryos. This extraction utilized the Student's t-test with a significance level of 5% using the procedure of Benjamin and Hochberg. The X: A expression ratio was calculated using the average of the raw intensity data.
 (7)RNA蛍光in situハイブリダイゼーション(RNA FISH)
 RNA FISHを、文献(M. Sugimoto, K. Abe, PLoS Genet 3, e116(2007))の記載に、僅かな改変を加えて、実施した。Xist RNAを検出するためのプローブは、Cy3-dCTP(GE Healthcare)を用いたニックトランスレーションにより、エクソン1の7.5kb断片を含むXistゲノムクローンから調製した。胚を0.1% Triton X-100を含むPBS中に10秒間インキュベートし、4% パラホルムアルデヒドを含むPBSで10分間、室温で固定した。ハイブリダイゼーションは、37℃でオーバーナイトで実施した。ストリンジェントな洗浄に次いで、胚の核をTO-PRO-3(Invitrogen)で染色した。胚は、90%グリセロール、0.1´PBS、および1% Dabco(Sigma-Aldrich)中で標本にし、「LSM510 meta confocal laser scanning microscope」(Zeiss)を用いて、蛍光イメージを得た。
(7) RNA fluorescence in situ hybridization (RNA FISH)
RNA FISH was performed with slight modifications to the description in the literature (M. Sugimoto, K. Abe, PLoS Genet 3, e116 (2007)). A probe for detecting Xist RNA was prepared from a Xist genomic clone containing a 7.5 kb fragment of exon 1 by nick translation using Cy3-dCTP (GE Healthcare). Embryos were incubated in PBS containing 0.1% Triton X-100 for 10 seconds and fixed in PBS containing 4% paraformaldehyde for 10 minutes at room temperature. Hybridization was performed overnight at 37 ° C. Following stringent washing, embryonic nuclei were stained with TO-PRO-3 (Invitrogen). Embryos were sampled in 90% glycerol, 0.1'PBS, and 1% Dabco (Sigma-Aldrich) and fluorescent images were obtained using an "LSM510 meta confocal laser scanning microscope" (Zeiss).
 (8)ウシ胚の遺伝子発現解析
 ウシIVFに関し、核移植と胚のin vitro培養は、基本的に、文献(K. Sawai, S. Kageyama et al., Cloning Stem Cells 7, 189-198(2005)、K. Sawai, S. Kageyama et al., J Reprod Dev 53, 77-86(2007))に記載されたように実施した。ウシ胚盤胞期胚または核移植胚を0.5% プロテアーゼで5分間処理し、1% polyvinylpyrrolidoneを含むPBSで3回洗浄した。1つの胚を、5μlの溶解液のアリコートに加え、-80℃で保存した。IVFまたは核移植胚から得た胚サンプルを80℃で5分加熱し、0.8μlの溶液を性決定に用いた。胚の雌雄鑑別のためのPCRを、文献(M. Sugimoto, K. Abe, PLoS Genet 3, e116(2007))に記載されたように実施した。ウシのXist転写産物の相対量を決定するために用いたプロトコールは、文献(A. Ogura, K. Inoue et al., Biol Reprod 62, 1579-1584.(2000))に記載の通りである。Xistの相対的な発現の正規化のために、同じサンプルにおけるGAPDHに対する転写産物の相対量を決定した。PCRは、StepOne unit(Applied Biosystems)を用いて実施し、cDNAを、SYBR Green(Qiagen)、並びに、ウシXISTに対するプライマー(配列番号:1/5'-AATAATGCGACAGGCAAAGG-3'および配列番号:2/5'-TCCCGCTCATTTTCCATTAG-3')またはGAPDHに対するプライマー(配列番号:3/5'-CCAGAAGACTGTGGATGGCC-3'および配列番号:4/5'-CTGACGCCTGCTTCACCACC-3')を含む20μlの反応混合液中で増幅した。
(8) Gene expression analysis of bovine embryos Regarding bovine IVF, nuclear transfer and in vitro culture of embryos are basically performed in the literature (K. Sawai, S. Kageyama et al., Cloning Stem Cells 7, 189-198 (2005 ), K. Sawai, S. Kageyama et al., J Reprod Dev 53, 77-86 (2007)). Bovine blastocyst stage embryos or nuclear transfer embryos were treated with 0.5% protease for 5 minutes and washed 3 times with PBS containing 1% polyvinylpyrrolidone. One embryo was added to an aliquot of 5 μl lysate and stored at −80 ° C. Embryo samples obtained from IVF or nuclear transfer embryos were heated at 80 ° C. for 5 minutes and 0.8 μl of solution was used for sex determination. PCR for the sexing of embryos was performed as described in the literature (M. Sugimoto, K. Abe, PLoS Genet 3, e116 (2007)). The protocol used to determine the relative amount of bovine Xist transcript is as described in the literature (A. Ogura, K. Inoue et al., Biol Reprod 62, 1579-1584. (2000)). For normalization of the relative expression of Xist, the relative amount of transcript relative to GAPDH in the same sample was determined. PCR was performed using StepOne unit (Applied Biosystems), and cDNA was synthesized with SYBR Green (Qiagen) and a primer for bovine XIST (SEQ ID NO: 1 / 5′-AATAATGCGACAGGCAAAGG-3 ′ and SEQ ID NO: 2/5). Amplified in a 20 μl reaction mixture containing '-TCCCGCTCATTTTCCATTAG-3') or primers for GAPDH (SEQ ID NO: 3 / 5'-CCAGAAGACTGTGGATGGCC-3 'and SEQ ID NO: 4 / 5'-CTGACGCCTGCTTCACCACC-3').
 (9)公的データベースの分析
 公的GEOデータベース(GSE13445)(B. Wen, H. Wu et al., Nat Genet 41, 246-250(2009))から得た正規化された値は、1000bp範囲内の平均値として算出した。H3K9me2の程度は、Subio platform(Subio)を用いて解析した。
(9) Analysis of public database Normalized values obtained from public GEO database (GSE13445) (B. Wen, H. Wu et al., Nat Genet 41, 246-250 (2009)) are in the 1000 bp range. The average value was calculated. The degree of H3K9me2 was analyzed using Subio platform (Subio).
[材料と方法(実施例4~6)] [Materials and Methods (Examples 4 to 6)]
 (1)動物
 8~12週齢の(C57BL/6´DBA/2)F1(BDF1)およびICR雌マウスを、それぞれ、卵母細胞の採取および胚移植レシピエントのために用いた。1~9日齢のBDF1雄マウスを、文献(Ogura, A. et al., Biol. Reprod. 62, 1579-1584(2000))に記載されているように、セルトリ細胞の採取のために用いた。体外受精(IVF)対照胚を調製するために、C57BL/6雌マウスから採取した卵母細胞をDBA/2精子を用いてin vitroにて受精させた。全てのマウスは、SLC Japan(Hamamatsu, Japan)から購入し、特定病原体除去条件下および調節された照明条件下(7:00~21:00の日照)で維持した。全ての動物実験は、RIKENバイオリソースセンターのガイドラインに従って実施した。
(1) Animals 8-12 week old (C57BL / 6′DBA / 2) F1 (BDF1) and ICR female mice were used for oocyte collection and embryo transfer recipients, respectively. 1-9 day old BDF1 male mice are used for collection of Sertoli cells as described in the literature (Ogura, A. et al., Biol. Reprod. 62, 1579-1584 (2000)). It was. To prepare in vitro fertilized (IVF) control embryos, oocytes collected from C57BL / 6 female mice were fertilized in vitro using DBA / 2 sperm. All mice were purchased from SLC Japan (Hamamatsu, Japan) and maintained under specific pathogen removal conditions and controlled lighting conditions (sunshine from 7: 00-21: 00). All animal experiments were performed according to the RIKEN BioResource Center guidelines.
 (2)siRNAのデザイン
 合成siRNA二重鎖は、「StealthTM designer」(Invitrogen Life Technologies Japan, Tokyo, Japan)でデザインした。使用したsiRNAsは、次の通りである。
(2) siRNA design Synthetic siRNA duplexes were designed by “Stealth designer” (Invitrogen Life Technologies Japan, Tokyo, Japan). The siRNAs used are as follows.
 Xist用(配列番号:5/5'-AUAACAGUAAGUCUGAUAGAGGACA-3'および配列番号:6/5'-UGUCCUCUAUCAGACUUACUGUUAU-3')
 陰性対照用(配列番号:7/5'-UUACUCAUGUGUCAUAACACAGGUG-3'および配列番号:8/5'-CACCUGUGUUAUGACACAUGAGUAA-3')
 G9a(Ehmt2)およびGlp(Ehmt1)用には、MSS201293およびMSS293979(Invitrogen Life Technologies Japan)をそれぞれ用いた。siRNA二重鎖混合物は、ヌクレアーゼを含まない水で200μMストック溶液として調製し、使用まで-80℃で保存した。
For Xist (SEQ ID NO: 5 / 5'-AUAACAGUAAGUCUGAUAGAGGACA-3 'and SEQ ID NO: 6 / 5'-UGUCCUCUAUCAGACUUACUGUUAU-3')
For negative control (SEQ ID NO: 7 / 5'-UUACUCAUGUGUCAUAACACAGGUG-3 'and SEQ ID NO: 8 / 5'-CACCUGUGUUAUGACACAUGAGUAA-3')
MSS201293 and MSS293979 (Invitrogen Life Technologies Japan) were used for G9a (Ehmt2) and Glp (Ehmt1), respectively. siRNA duplex mixtures were prepared as 200 μM stock solutions in nuclease-free water and stored at −80 ° C. until use.
 (3)mRNAの調製
 Jhdm2aのmRNAsは、製造業者の使用説明書に従い、「T7 mMESSAGE mMACHINE kit」(Ambion,Austin,TX,USA)で合成した。合成したmRNAは、フェノール/クロロホルム抽出で精製し、エタノールで沈降させた。mRNAは、ヌクレアーゼを含まない水に溶解させ、終濃度100pg/mlとし、使用まで-80℃で保存した。
(3) Preparation of mRNA mRNAs of Jhdm2a were synthesized with “T7 mMESSAGE mMACHINE kit” (Ambion, Austin, TX, USA) according to the manufacturer's instructions. The synthesized mRNA was purified by phenol / chloroform extraction and precipitated with ethanol. mRNA was dissolved in nuclease-free water to a final concentration of 100 pg / ml and stored at −80 ° C. until use.
 (4)ドナー細胞の調製
 未成熟セルトリ細胞は、1~9日齢のBDF1系統雄マウスから採取した。白膜の除去後、精細管を0.1mg/mLコラゲナーゼ(Sigma-Aldrich)と0.01mg/mLデオキシリボヌクレアーゼ(Sigma-Aldrich)で30分間、37℃で処理し、続いて、0.2mg/mLトリプシン(Sigma-Aldrich)で5分間、37℃で処理した。精巣細胞の懸濁液を4mg/mLのウシ血清アルブミンを含むPBSで4回洗浄し、核移植に用いた。
(4) Preparation of Donor Cells Immature Sertoli cells were collected from 1-9 day old BDF1 strain male mice. After removal of the white membrane, the seminiferous tubules were treated with 0.1 mg / mL collagenase (Sigma-Aldrich) and 0.01 mg / mL deoxyribonuclease (Sigma-Aldrich) for 30 minutes at 37 ° C., followed by 0.2 mg / mL trypsin ( (Sigma-Aldrich) for 5 minutes at 37 ° C. The testicular cell suspension was washed 4 times with PBS containing 4 mg / mL bovine serum albumin and used for nuclear transfer.
 (5)核移植
 核移植は、文献(Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R., Nature 394, 369-374(1998)、Ogura, A. et al., Biol. Reprod. 62, 1579-1584(2000))に記載されたように実施した。すなわち、レシピエント卵母細胞は、48時間間隔での7.5IUの妊馬血清性性腺刺激ホルモン(equine chorionic gonadotropin)と7.5IUのヒト絨毛膜性ゴナドトロピン(human chorionic gonadotropin)(hCG;Aska-Pharmaceutical)の注入で過排卵を誘導することにより、BDF1雌マウスから採取した。hCG注入後15~17時間目に、卵丘・卵母細胞複合体を卵管から収集し、卵丘細胞を0.1%のウシ精巣性ヒアルロニダーゼを含むKSOM培地に撒いた。卵母細胞は、7.5μg/mLサイトカラシンBを含むへぺス緩衝KSOM中で除核した。「Piezo-driven micromanipulator」(PMM-150FU, Primetech)を用いて、除核した卵母細胞にドナーセルトリ細胞の核を導入した。KSOMで1時間培養後、体細胞核移植卵母細胞を2.5mM SrCl2を含むCa2+無添加のKSOM中で1時間活性化した。再構築された胚は、5μg/mL サイトカラシンBを含むKSOM中で5時間培養し、さらに、サイトカラシンBを含まないKSOM中で培養した。いくつかの実験では、トリコスタチンA(Sigma-Aldrich)(5および50nMの終濃度)を卵母細胞の活性化の当初からそれぞれ6時間および8時間(全体で)、各培地に添加した。
(5) Nuclear transplantation Nuclear transplantation is described in the literature (Wakayama, T., Perry, AC, Zuccotti, M., Johnson, KR & Yanagimachi, R., Nature 394, 369-374 (1998), Ogura, A. et al. , Biol. Reprod. 62, 1579-1584 (2000)). That is, the recipient oocytes were 7.5 IU equine serum gonadotropin and 7.5 IU human chorionic gonadotropin (hCG; Aska-Pharmaceutical) at 48 hour intervals. BDF1 female mice were harvested by inducing superovulation by injection. At 15-17 hours after hCG injection, cumulus-oocyte complexes were collected from the fallopian tube and cumulus cells were plated in KSOM medium containing 0.1% bovine testicular hyaluronidase. Oocytes were enucleated in hepes buffered KSOM containing 7.5 μg / mL cytochalasin B. Using “Piezo-driven micromanipulator” (PMM-150FU, Primetech), the nuclei of donor Sertoli cells were introduced into the enucleated oocytes. After culturing with KSOM for 1 hour, somatic cell nuclear transfer oocytes were activated for 1 hour in KSOM containing 2.5 mM SrCl 2 without addition of Ca 2+ . The reconstructed embryo was cultured in KSOM containing 5 μg / mL cytochalasin B for 5 hours, and further cultured in KSOM not containing cytochalasin B. In some experiments, trichostatin A (Sigma-Aldrich) (final concentrations of 5 and 50 nM) was added to each medium for 6 and 8 hours (total), respectively, from the beginning of oocyte activation.
 (6)倍数性単為生殖胚の発生
 BDF1雌から採取した成熟卵母細胞をサイトカラシンBの存在下でSrCl2により活性化した。洗浄後、それらをKSOMで96時間培養した。
(6) Development of polyploid parthenogenetic embryos Mature oocytes collected from BDF1 females were activated with SrCl 2 in the presence of cytochalasin B. After washing, they were incubated with KSOM for 96 hours.
 (7)siRNAまたはmRNAの導入
 siRNAまたはmRNAのマイクロインジェクションを「Piezo-driven micropipette」(Prime Tech)を用いて実施した。siRNA導入の特異性とタイムスケジュールを調査するために、siRNA(ヌクレアーゼを含まない水で終濃度5mM)を単為発生的活性化の前後に卵母細胞に導入した(図5)。前核(1細胞)期に相当する活性化後6~7時間目に、体細胞核移植で発生させた胚にsiRNAを導入した(図8)。導入後、胚は洗浄し、解析または胚移植の前にKSOMで培養した。いくつかの実験では、mRNA(1-100pg/mL)の卵母細胞への導入は、体細胞核移植の直前に実施した。
(7) Introduction of siRNA or mRNA siRNA or mRNA microinjection was performed using "Piezo-driven micropipette" (Prime Tech). To investigate the specificity and time schedule of siRNA introduction, siRNA (final concentration 5 mM in nuclease-free water) was introduced into oocytes before and after parthenogenetic activation (FIG. 5). SiRNA was introduced into embryos generated by somatic cell nuclear transfer 6-7 hours after activation corresponding to the pronuclear (1 cell) stage (FIG. 8). After introduction, embryos were washed and cultured in KSOM prior to analysis or embryo transfer. In some experiments, mRNA (1-100 pg / mL) was introduced into oocytes just prior to somatic cell nuclear transfer.
 (8)胚移植と回収
 KSOMにおける培養24時間後に2細胞期に達した再構築された胚を、偽妊娠誘導の1日後に、ICRレシピエント雌マウスの卵管に移植した。20日目に、レシピエント雌は、満期胎子について調査し、生きている産子を、授乳中のICR里親で養育した。いくつかのレシピエント雌は、E5.5に相当する6日目に屠殺し、着床した胚を解剖顕微鏡を用いて子宮から慎重に採取した。
(8) Embryo Transfer and Recovery Reconstructed embryos that reached the 2-cell stage after 24 hours of culture in KSOM were transferred to the oviduct of ICR recipient female mice one day after pseudopregnancy induction. On the 20th day, the recipient females investigated for full-term fetuses and raised live births in lactating ICR foster parents. Some recipient females were sacrificed on day 6 corresponding to E5.5 and the implanted embryos were carefully removed from the uterus using a dissecting microscope.
 (9)RNA増幅およびマイクロアレイ解析
単一の胚盤胞の全RNA内容物は、2ラウンド増幅法(two-round amplification method)により増幅した。96時間培養したクローン胚盤胞からTRIzol試薬(Invitrogen)を用いて全RNAを抽出し、「TargetAmp Two-Round Aminoallyl-aRNA Amplification Kits」(Epicentre)を用い、製造業者の使用説明書に従って、2ラウンドの線形増幅(linear amplification)に供した。対照胚に関しては、1つのIVF胚盤胞を、全RNA抽出と2ラウンドのRNA増幅に供した。
(9) RNA amplification and microarray analysis The total RNA content of a single blastocyst was amplified by a two-round amplification method. Extract total RNA from 96-hour cultured blastocysts using TRIzol reagent (Invitrogen) and use `` TargetAmp Two-Round Aminoallyl-aRNA Amplification Kits '' (Epicentre) according to the manufacturer's instructions for 2 rounds Was subjected to linear amplification. For control embryos, one IVF blastocyst was subjected to total RNA extraction and two rounds of RNA amplification.
 増幅されたRNAは、Cy3 dye(GE Healthcare)で標識し、RNeasy Mini kit(Qiagen,Tokyo,Japan)で精製した。標識したRNAは、「whole mouse genome oligo DNA microarray」(4´44K, Agilent Technologies)に、17時間、65℃でハイブリダイズさせた。洗浄後、マイクロアレイスライドのイメージは、DNAマイクロアレイスキャナー(Agilent Technologies)を用いてスキャンし、「Feature Extraction software」(Agilent Technologies)を用いて、シグナル強度を検出した。各実験における遺伝子発現レベルを比較するために、全ての生データを「Gene Spring GX 11 software」(Agilent Technologies)にロードし、異なるチップ間のシグナル強度の相違を調整するためにクオンタイル正規化を実施した。各群の胚の間で異なる発現をする遺伝子の正規化した値を、Tukeyのポストホックテストを用いた一元配置分散分析(ANOVA)(P<0.05は有意差とされる)で比較した。 The amplified RNA was labeled with Cy3 dye (GE Healthcare) and purified with RNeasy Mini kit (Qiagen, Tokyo, Japan). The labeled RNA was hybridized to “whole mouse genome oligo DNA microarray” (4′44K, Agilent Technologies) for 17 hours at 65 ° C. After washing, the image of the microarray slide was scanned using a DNA microarray scanner (Agilent Technologies), and the signal intensity was detected using “Feature Extraction software” (Agilent Technologies). In order to compare gene expression levels in each experiment, all raw data was loaded into “Gene Spring GX 11 software” (Agilent Technologies) and quantile normalization was performed to adjust for differences in signal intensity between different chips did. Normalized values of genes that expressed differently between each group of embryos were compared by one-way analysis of variance (ANOVA) using Tukey's post-hoc test (P <0.05 is considered significant).
(10)定量RT-PCR
 単一の胚のcDNAを「Cell to cDNAII kits」(Ambion Japan, Tokyo, Japan)で合成した。定量PCRを「QuantiTect SYBR Green PCR kit」(Qiagen)および「ABI Prism 7900HT system」(Applied Biosystems)を用いて実施した。全てのPCRは、60℃のアニーリング温度と50の増幅サイクルで2回実験で行った。プライマー配列は次の通りである。
(10) Quantitative RT-PCR
Single embryo cDNA was synthesized by “Cell to cDNAII kits” (Ambion Japan, Tokyo, Japan). Quantitative PCR was performed using “QuantiTect SYBR Green PCR kit” (Qiagen) and “ABI Prism 7900HT system” (Applied Biosystems). All PCRs were performed in duplicate at 60 ° C annealing temperature and 50 amplification cycles. Primer sequences are as follows.
 Xist用(配列番号:9/5'-GTCAGCAAGAGCCTTGAATTG-3'および配列番号:10/5'-TTTGCTGAGTCTTGAGGAGAATC-3')
 Gapdh用(配列番号:11/5'-CAACAGCAACTCCCACTCTTC-3'および配列番号:12/5'-CCTGTTGCTGTAGCCGTATTC-3')
 融解曲線の解析は、増幅特異性の確認に用いた。
For Xist (SEQ ID NO: 9 / 5'-GTCAGCAAGAGCCTTGAATTG-3 'and SEQ ID NO: 10 / 5'-TTTGCTGAGTCTTGAGGAGAATC-3')
For Gapdh (SEQ ID NO: 11 / 5'-CAACAGCAACTCCCACTCTTC-3 'and SEQ ID NO: 12 / 5'-CCTGTTGCTGTAGCCGTATTC-3')
Melting curve analysis was used to confirm amplification specificity.
 (11)免疫蛍光法
 胚を、4% パラホルムアルデヒドで、4℃、オーバーナイトで固定した。3回PBSで洗浄した後、室温で1時間、PBST-BSA(0.5% Triton X-100、PBS中の0.1%BSA)で透析した。その後、胚を4℃、オーバーナイトで、「rabbit anti-H3K27me3 antibody」(1:100希釈; Millipore,Billerica,MA,USA)と「goat anti-Oct4 antibody」(1:100希釈;Santa Cruz Biotechnology, Santa Cruz, CA, USA)の混合物中でインキュベートした。PBST-BSAで3回洗浄した後、胚を、室温で1時間、「Alexa Fluor 488」(抗ウサギ、Invitrogen)または「Alexa Fluor 546」(抗ヒツジ、Invitrogen)を結合した二次抗体の混合物中でインキュベートした。洗浄後、Vectashield(Vector Laboratories, Burlingame, CA, USA)を用いたガラススライド上で標本にした。蛍光シグナルを「confocal scanning laser microscope」(Digital Eclipse C1; Nikon, Tokyo, Japan)を用いて観察した。
(11) Immunofluorescence The embryos were fixed with 4% paraformaldehyde at 4 ° C. overnight. After washing 3 times with PBS, it was dialyzed against PBST-BSA (0.5% Triton X-100, 0.1% BSA in PBS) for 1 hour at room temperature. The embryos were then incubated overnight at 4 ° C. with `` rabbit anti-H3K27me3 antibody '' (1: 100 dilution; Millipore, Billerica, MA, USA) and `` goat anti-Oct4 antibody '' (1: 100 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA). After washing 3 times with PBST-BSA, embryos were mixed in a mixture of secondary antibodies conjugated with `` Alexa Fluor 488 '' (anti-rabbit, Invitrogen) or `` Alexa Fluor 546 '' (anti-sheep, Invitrogen) for 1 hour at room temperature. Incubated with. After washing, specimens were made on glass slides using Vectashield (Vector Laboratories, Burlingame, CA, USA). The fluorescence signal was observed using a “confocal scanning laser microscope” (Digital Eclipse C1; Nikon, Tokyo, Japan).
 (12)RNA蛍光in situハイブリダイゼーション(RNA FISH)
 Xist RNAを検出するためのプローブは、Cy3-dCTP(GE Healthcare)を用いたニックトランスレーションにより、エクソン1の7.5kb断片を含むXistゲノムクローンから調製した。胚を0.1% Triton X-100を含むPBS中に10秒間氷上でインキュベートし、4% パラホルムアルデヒドを含むPBSで10分間、室温で固定した。ハイブリダイゼーションは、37℃でオーバーナイトで実施した。ストリンジェントな洗浄に次いで、胚の核をTO-PRO-3(Invitrogen)で染色した。胚は、90%グリセロール、0.1´PBS、および1% Dabco(Sigma-Aldrich)中で標本にし、「LSM510 meta confocal laser scanning microscope」(Zeiss)を用いて、蛍光イメージを得た。
(12) RNA fluorescence in situ hybridization (RNA FISH)
A probe for detecting Xist RNA was prepared from a Xist genomic clone containing a 7.5 kb fragment of exon 1 by nick translation using Cy3-dCTP (GE Healthcare). Embryos were incubated on ice for 10 seconds in PBS containing 0.1% Triton X-100 and fixed in PBS containing 4% paraformaldehyde for 10 minutes at room temperature. Hybridization was performed overnight at 37 ° C. Following stringent washing, embryonic nuclei were stained with TO-PRO-3 (Invitrogen). Embryos were sampled in 90% glycerol, 0.1'PBS, and 1% Dabco (Sigma-Aldrich) and fluorescent images were obtained using an "LSM510 meta confocal laser scanning microscope" (Zeiss).
 (13)統計解析
 in vitro およびin vivoにおける胚の発達率は、Fisherの正確確率検定を用いて比較した。定量RT-PCRにより決定された胚の相対的な転写産物レベルは、群平均を比較するために、Studentのt検定で分析した。マイクロアレイデータのセットは、一元配置分散分析(ANOVA)とそれに続くTukeyのポストホックテストを用いて分析し、P<0.05は統計的有意差とした。
(13) Statistical analysis In vitro and in vivo embryo development rates were compared using Fisher's exact test. Relative transcript levels in embryos determined by quantitative RT-PCR were analyzed with Student's t test to compare group means. Microarray data sets were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test, where P <0.05 was statistically significant.
 [実施例1] 体細胞核移植(SCNT)胚におけるX連鎖遺伝子の発現
体細胞核移植に特異的なエピジェネティックな特徴を明らかにするため、本発明者は、自らの研究室において厳格に標準化した条件下で、異なるドナー細胞からマウス胚を再構築した(K. Inoue, N. Ogonuki et al., Biol Reprod 69, 1394-1400(2003))。一つのクローン胚盤胞の全体的な遺伝子発現パターンを、同一環境での体外受精(IVF)により遺伝型を一致させた対照と比較することにより分析した。
[Example 1] Expression of X-linked genes in somatic cell nuclear transfer (SCNT) embryos In order to elucidate epigenetic features specific to somatic cell nuclear transfer, the present inventor has strictly standardized conditions in his laboratory. Below, mouse embryos were reconstructed from different donor cells (K. Inoue, N. Ogonuki et al., Biol Reprod 69, 1394-1400 (2003)). The overall gene expression pattern of one clonal blastocyst was analyzed by comparing it to a genotype matched control by in vitro fertilization (IVF) in the same environment.
 まず、44kのオリゴDNAマイクロアレイで選抜したクローン胚の遺伝子について、その相対的な発現レベルを20染色体(Yを除く)上にプロットしたところ、X染色体上の遺伝子が、特異的に発現低下していた(図1A)。3つの型のクローン胚における平均のX:常染色体(X:A)発現比は、対応する対照胚と比較して常に低かったため、この現象は、性や遺伝型に非依存的であった(図1B)。X染色体全体の詳細な観察から、いくつかの遺伝子特異的なバリエーションがあるように見えるが、X連鎖遺伝子はほとんどの領域で大きく発現レベルが低下していた(図1C)。 First, when the relative expression levels of cloned embryo genes selected with a 44k oligo DNA microarray were plotted on chromosome 20 (excluding Y), the expression on the X chromosome was specifically decreased. (FIG. 1A). This phenomenon was independent of sex and genotype, as the average X: autosomal (X: A) expression ratio in the three types of cloned embryos was always lower compared to the corresponding control embryo ( FIG. 1B). From the detailed observation of the entire X chromosome, it seems that there are some gene-specific variations, but the expression level of the X-linked gene was greatly reduced in most regions (FIG. 1C).
 本発明者は、次に、クローン胚における影響を受けた遺伝子の数を同定するために、t-検定を用いた統計分析を行った。それぞれのクローングループにおいて、39301遺伝子プローブのうち2341から7865が、遺伝子型を一致させたIVF対照と比較して異なる発現をしていた。しかしながら、全てのクローングループに共通の影響を受けた遺伝子は、わずかに157遺伝子(164プローブ)であり、128は発現が上昇しており、29は発現が低下していた。このように、体細胞核移植は、遺伝子の大きなサブセットの異常調節を引き起こしていたが、ほとんどが各ドナー細胞型に特異的な様式であった。興味深いことに、発現が上昇した遺伝子の偏りのない集団と比較して、共通に発現が低下した遺伝子(以下、「CDGs」と称する)の62%(18/29)がX染色体上に位置づけられた(表1)。なお、表1において、X連鎖遺伝子については、色を付した。濃い色は、XlrクラスターまたはMageaクラスター(XqA7.2~7.3およびXqF3)に含まれるものを示した。 The inventor then performed a statistical analysis using a t-test to identify the number of affected genes in the cloned embryo. In each clonal group, 2341 to 7865 of the 39301 gene probes had different expression compared to the matched IVF control. However, only 157 genes (164 probes) were affected in common to all clone groups, 128 had increased expression, and 29 had decreased expression. Thus, somatic cell nuclear transfer caused dysregulation of a large subset of genes, but most were specific for each donor cell type. Interestingly, 62% (18/29) of commonly decreased genes (hereinafter referred to as “CDGs”) are located on the X chromosome compared to an unbiased group of genes with increased expression. (Table 1). In Table 1, the X-linked genes are colored. The dark color showed what is contained in the Xlr cluster or Magea cluster (XqA7.2-7.3 and XqF3).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、本発明者は、再構築した卵母細胞をトリコスタチンA処理することにより、クローン胚のX連鎖遺伝子の発現低下を改善することができるか否かを検討した。クローンマウスにおけるトリコスタチンA処理の効果については、本発明者の研究室において、出生率が2または3倍増加するという効果が確認されている。しかしながら、X:A発現比(図1B)またはX連鎖遺伝子の発現レベル(図1C)においては、未処理のクローン胚と比較して何らの意義ある改善が観察されなかった。 Next, the present inventor examined whether or not the reduced expression of the X-linked gene in the cloned embryo could be improved by treating the reconstructed oocyte with trichostatin A. Regarding the effect of trichostatin A treatment in cloned mice, the inventor's laboratory has confirmed that the birth rate is increased 2 or 3 times. However, no significant improvement was observed in X: A expression ratio (FIG. 1B) or X-linked gene expression levels (FIG. 1C) compared to untreated cloned embryos.
 [実施例2] 雌雄のクローン胚におけるXistの発現
 クローン胚におけるX染色体上の広範な発現低下は、X染色体不活性化(XCI)を連想させる。この過程は、通常、遺伝子量において雄と釣り合いがとれるように、雌の胚における2つのX染色体の1つの不活性化を引き起こすものである(K. D. Huynh, J. T. Lee, Nat Rev Genet 6, 410-418(2005))。X染色体不活性化は、cisにおけるXist RNAコーティングにより成立しているため、本発明者は、次に、Xistがクローン胚において過剰発現しているか否か調査した。報告されているように(S. Bao, N. Miyoshi et al., EMBO Rep 6, 748-754(2005)、L. D. Nolen, S. Gao et al., Dev Biol 279, 525-540(2005))、Xist発現レベルは、雌のIVF胚よりも、卵丘細胞由来の雌の胚盤胞において有意に高かった(図2A)。セルトリ細胞由来の雄の胚盤胞では、Xistは高レベルで発現しており、Xistが全くかほとんど発現していない雄のIVF胚とは対照的であった(図2A)。定量リアルタイムPCR(RT-PCR)実験により、雌雄のクローン胚におけるXistの過剰発現が確認された。本発明者は、この発見から、雌雄のクローン胚における活性化X染色体(Xa)から、Xistが異所的に発現していると仮定した。
[Example 2] Expression of Xist in male and female cloned embryos Extensive reduction of expression on the X chromosome in cloned embryos is reminiscent of X inactivation (XCI). This process usually results in the inactivation of one of the two X chromosomes in the female embryo so that it can be balanced with the male in gene dosage (KD Huynh, JT Lee, Nat Rev Genet 6, 410- 418 (2005)). Since X-chromosome inactivation is established by Xist RNA coating in cis, the present inventor next investigated whether Xist is overexpressed in cloned embryos. As reported (S. Bao, N. Miyoshi et al., EMBO Rep 6, 748-754 (2005), LD Nolen, S. Gao et al., Dev Biol 279, 525-540 (2005)) Xist expression levels were significantly higher in female blastocysts derived from cumulus cells than in female IVF embryos (FIG. 2A). In male blastocysts derived from Sertoli cells, Xist was expressed at high levels, in contrast to male IVF embryos that expressed little or no Xist (FIG. 2A). Quantitative real-time PCR (RT-PCR) experiments confirmed the overexpression of Xist in male and female cloned embryos. From this discovery, the present inventor assumed that Xist was ectopically expressed from the activated X chromosome (Xa) in male and female cloned embryos.
 本発明者は、次いで、RNA蛍光in situハイブリダイゼーション(RNA FISH)により、それぞれの卵割球(blastomere)の核内における‘Xistドメイン’の数を観察した。予想した通り、IVF胚の約半数が、常に、それぞれの卵割球において一つのドメインを示し、残りの半数は、何らのドメインを示さなかった。これは、それぞれ雌と雄の胚を表していると考えられる(図2B、2C)。雌のクローンにおいて、全ての4つの胚が、普通でない2対立遺伝子のXistドメインを伴う卵割球を含んでいた。しかし、その頻度は、個々の胚で20.0%から51.7%まで違いがあった(図2B、2C)。これは、雌のクローン胚でXist発現レベルが相対的に変化しやすいことを表していると考えられる(図2A)。雄クローンにおいては、全ての7つの胚が、大多数の卵割球において、1つの強いXist RNAドメインを含んでいた(図2B、2C)。これらの結果は、雌雄のクローンにおいて、XistがXa上で異所的に活性化されているという本発明者の仮説を明らかに支持する。興味深いことに、本発明者は、ウシの両性の体細胞核移植胚盤胞において、XISTが発現上昇していることも見出した(図4)。これは、異所的なXaからのXist(XIST)の発現が、体細胞核移植に特異的で、マウスとウシのゲノムに共通の現象であることを示すものである。雌ウシの体細胞核移植胚において、XISTが過剰発現しているとの報告がある(C. Wrenzycki, A. Lucas-Hahn et al., Biol Reprod 66, 127-134(2002))。Xi(または逆にXa)に関して、移植前の胚と体細胞との間で、遺伝的記憶(インプリンティング)の主要な機構が異なっている可能性がある。前者の記憶は、配偶子形成の間負担されており、Xistプロモーターに非依存的であるが(L. E. McDonald, C. A. Paterson, G. F. Kay, Genomics 54, 379-386(1998)、P. Navarro, I. Chambers et al., Science 321, 1693-1695(2008))、後者の記憶は、移植後のランダムなX染色体不活性化の間、体細胞ゲノムが負担しておりXistプロモーターのメチル化状態に大きく依存している(K. D. Huynh, J. T. Lee, Nat Rev Genet 6, 410-418(2005))。クローン胚での体細胞由来のゲノムにおける、Xi(またはXa)記憶の再構築は、不完全であったと考えられる。 The inventor then observed the number of 'Xist domains' in the nucleus of each blastomere by RNA fluorescence in situ hybridization (RNA FISH). As expected, about half of the IVF embryos always showed one domain in each blastomere and the other half did not show any domain. This is thought to represent female and male embryos, respectively (FIGS. 2B, 2C). In female clones, all four embryos contained blastomeres with an unusual biallelic Xist domain. However, the frequency varied from 20.0% to 51.7% for individual embryos (FIGS. 2B, 2C). This is considered to represent that the Xist expression level is relatively easily changed in the female cloned embryo (FIG. 2A). In male clones, all seven embryos contained one strong Xist RNA domain in the majority of blastomeres (FIGS. 2B, 2C). These results clearly support our hypothesis that Xist is ectopically activated on Xa in male and female clones. Interestingly, the present inventor has also found that expression of XIST is elevated in bovine amphoteric somatic cell nuclear transfer blastocysts (FIG. 4). This indicates that Xist (XIST) expression from ectopic Xa is specific to somatic cell nuclear transfer and is a common phenomenon in the mouse and bovine genomes. It has been reported that XIST is overexpressed in cow somatic cell nuclear transfer embryos (C. Wrenzycki, A. Lucas-Hahn et al., Biol Reprod 66, 127-134 (2002)). With respect to Xi (or conversely Xa), the major mechanisms of genetic memory (imprinting) may differ between embryos and somatic cells before transplantation. The former memory is borne during gametogenesis and is independent of the Xist promoter (L.E.McDonald, C.A. Paterson, G.F.Kay, Genomics 54, 379-386 ( 1998), P. Navarro, I. Chambers et al., Science 321, 1693-1695 (2008)), the latter memory was borne by the somatic genome during random X chromosome inactivation after transplantation. It greatly depends on the methylation state of the cage Xist promoter (K. D. Huynh, J. T. Lee, Nat Rev Genet 6, 410-418 (2005)). Reconstruction of Xi (or Xa) memory in the somatic cell-derived genome in cloned embryos appears to be incomplete.
 [実施例3] 体細胞核移植胚における活性X染色体(Xa)上のXistの欠失の、遺伝子発現パターンと発達能力における影響
 Xistは、X連鎖遺伝子に対し、cisで染色体全体的な抑制効果を有しているため、次に、本発明者は、どの程度、その異所的な発現が、クローン胚における異常な遺伝子発現に寄与しているかを検討した。この検討のために、本発明者は、XaがXist欠損(XDXist)となっている(T. Sado, Y. Hoki, H. Sasaki, Dev Cell 9, 159-165(2005))ドナー細胞をクローン化し、その胚の遺伝子発現パターンを分析した。Xist-欠損ドナー細胞は、野生型ドナー細胞と同じB6D2F1遺伝型を有する。雌(卵丘細胞)と雄(セルトリ細胞)の双方のXDXistクローンにおいて、野生型クローンと比較して、発現低下したX連鎖遺伝子の数が顕著に減少していた(図3A)。すなわち、雌では11%(119→13)、雄では13%(135→17)であった。この効果は、X染色体上にプロットされた遺伝子発現レベル(図3B、3C)およびA:X比(図1B)の上方へのシフトにより、明確に示される。興味深いことに、この効果は、ゲノム全体的なものであり、発現低下した常染色体遺伝子の数もまた、雌と雄において、それぞれ、6%(1298→74)および25%(327→82)に減少していた(図3A)。これらの結果は、クローンにおける異所的なXistの発現が、クローン胚のゲノム全体で、遺伝子発現に悪影響を与えうることを示すものである。
[Example 3] Effect of deletion of Xist on active X chromosome (Xa) in somatic cell nuclear transfer embryos on gene expression pattern and developmental ability Xist has an overall suppressive effect on the X-linked gene with cis Therefore, the present inventor next examined to what extent the ectopic expression contributed to abnormal gene expression in the cloned embryo. For this study, the present inventor determined that Xa is Xist deficient (X DXist ) (T. Sado, Y. Hoki, H. Sasaki, Dev Cell 9, 159-165 (2005)). Cloned and analyzed the gene expression pattern of the embryo. Xist-deficient donor cells have the same B6D2F1 genotype as wild-type donor cells. In both the female (cumulus cells) and male ( Certoli cells) X DXist clones, the number of X-linked genes whose expression was reduced was significantly reduced compared to the wild-type clone (FIG. 3A). That is, 11% (119 → 13) for females and 13% (135 → 17) for males. This effect is clearly shown by the upward shift in gene expression levels plotted on the X chromosome (FIGS. 3B, 3C) and A: X ratio (FIG. 1B). Interestingly, this effect is genome-wide, and the number of autosomal genes that are down-regulated is also 6% (1298 → 74) and 25% (327 → 82) in females and males, respectively. It decreased (FIG. 3A). These results indicate that ectopic Xist expression in clones can adversely affect gene expression throughout the genome of cloned embryos.
 次に、本発明者は、野生型体細胞核移植胚よりも移植後の発達が良いことが実証されることを期待して、Xist-欠損Xa染色体を含む体細胞核移植胚を偽妊娠の雌レシピエントに移植した。その結果、卵丘細胞およびセルトリ細胞に由来するクローンの双方において、胚の発達が顕著に改善された。それぞれの出生率は、移植された胚の12.1%と13.0%にまで達し、これは野生型対照の7~8倍高いレベルであった(図3D、3E)。標準的な遺伝的背景を持つ血統(B6D2F1)に由来するクローンマウスは、トリコスタチンAやスクリプタイドで処理した場合でさえ、このような高い効率には達しなかった(最大で約3~5%)(非特許文献5~7)。 Next, the present inventor hopes that the development after transplantation will be better than that of wild-type somatic cell nuclear transfer embryos, so that the somatic cell nuclear transfer embryos containing the Xist-deficient Xa chromosome were transferred to a pseudopregnant female recipe. Transplanted to the ent. As a result, embryo development was significantly improved in both cumulus cells and clones derived from Sertoli cells. The respective birth rates reached 12.1% and 13.0% of the transferred embryos, which were 7-8 times higher than the wild type control (FIGS. 3D, 3E). Cloned mice derived from a pedigree with a standard genetic background (B6D2F1) did not reach such high efficiencies even when treated with trichostatin A or scriptaid (up to about 3-5%) (Non-Patent Documents 5 to 7).
 上述したように、クローンにおいて発現が低下したX連鎖遺伝子の大多数は、Xa染色体上におけるXistの欠損により、その発現が是正された。しかしながら、それでもなお抑制されている2つの別個の遺伝子グループが存在した(図3B、3C)。これらは、XqF3に位置付けられているMageaクラスターおよびXqA7.2~7.3に位置づけられているXlr遺伝子クラスターであった(図1C)。興味深いことに、18のX連鎖CDGsの11が、これらのクラスターの1つに分類された(表1)。この事実は、Xistに依存した不活性化とは異なる何らかの機構により、これらX連鎖クラスターが、クローンにおいて常に抑制されていることを示すものである。Mageaファミリーの遺伝子は、生殖細胞、胎盤、癌細胞(メラノーマ)にのみ発現する「melanoma antigen A」(MAGE-A)タンパク質をコードしている(E. De Plaen, K. Arden et al., Immunogenetics 40, 360-369(1994)、E. De Plaen, O. De Backer et al., Genomics 55, 176-184(1999))。それらは、G9a(9位のリジンでのヒストンH3のジメチル化を行うヒストンメチルトランスフェラーゼ)を欠損している胚性幹細胞(ES細胞)において、異所的に発現している(M. Tachibana, K. Sugimoto et al., Genes Dev 16, 1779-1791(2002))。H3K9me2は、構成的なヘテロクロマチン状態を伴うジーンサイレンシングの原因となっており、このヒストン修飾に富んだ領域は、LOCKs(large organized chromatin K9 modifications)と呼ばれる組織特異的ブロック(tissue-specific blocks)を示す(B. Wen, H. Wu et al., Nat Genet 41, 246-250(2009))。 As mentioned above, the majority of X-linked genes whose expression was reduced in the clones were corrected for their expression due to the loss of Xist on the Xa chromosome. However, there were two distinct gene groups that were still repressed (FIGS. 3B, 3C). These were the Magea cluster located in XqF3 and the Xlr gene cluster located in XqA 7.2-7.3 (FIG. 1C). Interestingly, 11 of the 18 X-linked CDGs were classified into one of these clusters (Table 1). This fact indicates that these X-linked clusters are always repressed in clones by some mechanism different from Xist-dependent inactivation. The Magea family gene encodes a “melanoma antigen A” (MAGE-A) protein that is expressed only in germ cells, placenta and cancer cells (melanoma) (E. De Plaen, K. Arden et al., Immunogenetics 40, 360-369 (1994), E. De Plaen, O. De Backer et al., Genomics 55, 176-184 (1999)). They are ectopically expressed in embryonic stem cells (ES cells) lacking G9a (histone methyltransferase that dimethylates histone H3 at lysine 9) (M. Tachibana, K Sugimoto et al., Genes Dev 16, 1779-1791 (2002)). H3K9me2 is responsible for gene silencing with a constitutive heterochromatin state, and this histone-modified region is a tissue-specific block called LOCKs (large organized chromatin K9 modifications) (B. Wen, H. Wu et al., Nat Genet 41, 246-250 (2009)).
 本発明者は、次いで、同定した2つの発現低下している領域がLOCKsと関連しているか否かを、Wenらの公的データベース(B. Wen, H. Wu et al., Nat Genet 41, 246-250(2009))を参照することにより試験した。興味深いことに、Mageaファミリー遺伝子のみならず、Xlrファミリー遺伝子も、全ての未分化および分化したES細胞に共通のLOCKs内に存在した(B. Wen, H. Wu et al., Nat Genet 41, 246-250(2009))。対照的に、Xlr遺伝子の中のF8aは、これらの領域外であり、Xistノックアウトのクローン胚において発現レベルが回復していた。本発明者は、マイクロアレイ解析により、未分化のES細胞においてMageaファミリー遺伝子およびXlrファミリー遺伝子の発現が非常に低く、一方、それらの胚盤胞カウンターパートでは、これらの遺伝子が活発に発現していることを示した。それゆえに、本発明者は、ドナー細胞における体細胞型のLOCKsを介した、Magea領域およびXlr領域の抑制的な状態が、推定の卵細胞質因子(ooplasmic factor)によるリプログラミングに耐性であり、結果として、クローン胚に伝達されると考える。G9a遺伝子の発現レベルは、胚盤胞段階で可変的であるが、2細胞クローン胚においては、H3K9をメチル化するためにG9aとヘテロ複合体を形成するGlp(G9a-like-protein)の遺伝子(M. Tachibana, J. Ueda et al., Genes Dev 19, 815-826(2005))と同様に、発現レベルが高かった。主要な胚遺伝子活性化(EGA)期は、マウスにおいて2細胞期に開始するため、この発見は、クローン胚がG9aとGlpを早くもEGA期に活性化し、それらのゲノムにおいて体細胞型のLOCKsを維持していることを示すものである。G9a阻害剤であるBIXは、分化した体細胞由来の誘導多能性幹細胞の生産効率を改善することができる(Y. Shi, C. Desponts et al., Cell Stem Cell 3, 568-574(2008))。それゆえに、H3K9me2記憶の抹消は、効果的な脱分化の本質的なステップであると考えられる。実際、H3K9me2の全体的な脱メチル化は、初期の生殖細胞のゲノムで生じることが知られており、この低メチル化(hypomethylation)は、生殖細胞の発達過程を通じて維持される(Y. Seki, K. Hayashi et al., Dev Biol 278, 440-458(2005))。 The present inventor then determined whether or not the two identified regions with decreased expression are related to LOCKs, such as the public database of Wen et al. (B. Wen, H. Wu et al., Nat Genet 41, 246-250 (2009)). Interestingly, not only the Magea family gene but also the Xlr family gene was present in LOCKs common to all undifferentiated and differentiated ES cells (B. Wen, H. Wu et al., Nat Genet 41, 246. -250 (2009)). In contrast, F8a in the Xlr gene was outside of these regions and expression levels were restored in Xist knockout cloned embryos. The present inventor has shown that the expression of Magea family gene and Xlr family gene is very low in undifferentiated ES cells by microarray analysis, whereas these genes are actively expressed in their blastocyst counterparts. Showed that. Therefore, the inventor has shown that the suppressive state of the Magea region and the Xlr region via somatic cell type LOCKs in donor cells is resistant to reprogramming by putative egg cytoplasmic factors. Think of it as being transmitted to the cloned embryo. The expression level of the G9a gene is variable at the blastocyst stage, but in the 2-cell cloned embryo, the Glp (G9a-like-protein) gene that forms a heterocomplex with G9a to methylate H3K9 Similar to (M. Tachibana, J. Ueda et al., Genes Dev 19, 815-826 (2005)), the expression level was high. Since the primary embryonic gene activation (EGA) phase begins in the 2-cell stage in mice, this finding suggests that cloned embryos activate G9a and Glp as early as EGA, and somatic LOCKs in their genomes. It is shown that it is maintained. BIX, a G9a inhibitor, can improve the production efficiency of differentiated somatic cell-derived induced pluripotent stem cells (Y. Shi, C. Desponts et al., Cell Stem Cell 3, 568-574 (2008 )). Therefore, erasure of H3K9me2 memory appears to be an essential step of effective dedifferentiation. In fact, global demethylation of H3K9me2 is known to occur in the early germ cell genome, and this hypomethylation is maintained throughout the germ cell development process (Y. Seki, K. Hayashi et al., Dev Biol 278, 440-458 (2005)).
 リプログラミングの機構は、配偶子のエピジェネティック状態を接合子のエピジェネティック状態に変更するために、初期的には卵細胞質に存在する。体細胞核移植技術は、配偶子とはエピジェネティックに異なるドナーの体細胞ゲノムを再プログラムするために、何らかの形でこの機構を利用する。それゆえに、多様なエピジェネティックなエラーがクローン胚に生じると考えられる(J. Fulka, Jr., N. Miyashita, T. Nagai, A. Ogura, Nat Biotechnol 22, 25-26(2004))。 The reprogramming mechanism is initially present in the egg cytoplasm to change the epigenetic state of the gamete to the epigenetic state of the zygote. Somatic cell nuclear transfer technology takes advantage of this mechanism in some way to reprogram the donor's somatic genome, which is epigeneticly different from the gamete. Therefore, various epigenetic errors are considered to occur in cloned embryos (J. Fulka, Jr., N. Miyashita, T. Nagai, A. Ogura, Nat Biotechnol 22, 25-26 (2004)).
 [実施例4] 異なる時期にsiRNAを導入した単為生殖活性化胚のXist RNAレベルに対する特異的siRNAの効果
 本発明者らは、桑実胚期以降にXist遺伝子を発現する単為生殖胚を用いて、siRNA構築物の有効性を検討した。その結果、活性化後6時間目に卵母細胞に導入した場合、siRNAは、生じた胚盤胞におけるXist RNAのレベルを効果的に減少させることを見出した(図5)。それゆえ、次の一連の実験において、新生児のセルトリ細胞由来の核を用いて再構築した体細胞核移植胚に対して同様の投与計画を使用した。
[Example 4] Effect of specific siRNA on Xist RNA level of parthenogenetic activated embryos introduced with siRNA at different times The present inventors have developed parthenogenetic embryos expressing the Xist gene after the morula stage The effectiveness of siRNA constructs was examined. As a result, it was found that siRNA effectively reduces the level of Xist RNA in the resulting blastocyst when introduced into the oocyte 6 hours after activation (FIG. 5). Therefore, in the next series of experiments, a similar dosing regimen was used for somatic cell nuclear transfer embryos reconstructed with nuclei from neonatal Sertoli cells.
 [実施例5] Xist-siRNA導入による、体細胞核移植で発生させた胚における、異所的なXist発現の一過性の抑制
 Xist特異的siRNAを導入した1細胞クローン化胚(one-cell cloned embryos)の約66%(53/80)が、培養における96時間後に胚盤胞に発達した。この傾向は、対照siRNAを導入したものとの間で統計的有意差はなかった(52%,44/84;P>0.05,Fisherの正確確率検定)。定量逆転写ポリメラーゼ連鎖反応(RT-PCR)分析により、桑実胚期においては、対照siRNA胚と比較して、Xist-siRNA胚では、Xist転写産物が有意に減少していたが、胚盤胞期においてはこのような減少は認められないことが明らかとなった(図6A)。異所的なXist発現におけるRNAiの効果は、さらに、Xist RNA蛍光in situハイブリダイゼーション(RNA FISH)によって確認した。桑実期において、「雲状」と称されるクラスター化されたXist RNAシグナルが、対照siRNA胚の核の大多数に認められた(図6B、C)。対照的に、Xist-siRNA胚においては、ほとんどの割球が、制限された局在の「ピンポイント」シグナルを示した。このシグナルは、おそらくX染色体における初期のXist RNAを表している。この事実から、Xistの大規模な分解が、導入されたXist-siRNAにより誘導されていることが確認された(図6B、C)。胚盤胞期においては、いくつかのXist-siRNA胚において、異所的なXistの発現が雲状に広がっていたが、これは対照siRNA胚のパターンと区別できなかった(図6B、C)。この発見は、少なくとも本実験の条件下において、導入されたXist-siRNAが約72時間までは有効であるが、その後、有効性が減少することを示唆する。
[Example 5] Transient suppression of ectopic Xist expression in embryos generated by somatic cell nuclear transfer by introduction of Xist-siRNA One-cell cloned embryos introduced with Xist-specific siRNA (one-cell cloned) Approximately 66% (53/80) of embryos) developed into blastocysts after 96 hours in culture. This trend was not statistically significant compared to those introduced with control siRNA (52%, 44/84; P> 0.05, Fisher's exact test). Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis showed that Xist transcripts were significantly reduced in Xist-siRNA embryos compared to control siRNA embryos in morula stages, but blastocysts It became clear that such a decrease was not recognized in the period (FIG. 6A). The effect of RNAi on ectopic Xist expression was further confirmed by Xist RNA fluorescence in situ hybridization (RNA FISH). In the mulberry stage, a clustered Xist RNA signal called “cloudy” was found in the majority of the nuclei of control siRNA embryos (FIGS. 6B, C). In contrast, in Xist-siRNA embryos, most blastomeres showed a “localized” pinpoint signal. This signal probably represents the early Xist RNA on the X chromosome. From this fact, it was confirmed that large-scale degradation of Xist was induced by the introduced Xist-siRNA (FIGS. 6B and 6C). At the blastocyst stage, in several Xist-siRNA embryos, ectopic Xist expression was clouded, which was indistinguishable from the pattern of control siRNA embryos (FIGS. 6B, C). . This finding suggests that, at least under the conditions of this experiment, the introduced Xist-siRNA is effective up to about 72 hours, but then the effectiveness decreases.
 [実施例6] クローン胚の着床後の発達におけるXist-siRNAの効果
 次に、本発明者らは、siRNAを導入したクローン胚の着床後の発達能を評価するために、胚移植実験を行った。5.5日目では、子宮内膜の膜脱落反応および胚の回収率で評価した場合、着床率におけるsiRNAの効果はなかった。しかしながら、着床部位から回収された胚の形態は、顕著に改善されていた。すなわち、Xist-siRNA胚の75%(9/12)が、識別できる胚と胚外体のコンパートメントを伴う正常な形態を示し、対照群では5%(1/20)のみが正常な形態を示した(図7B,P<0.005,Fisherの正確確立検定)。これらの率は、Xist-siRNA群および対照群の移植された胚において、それぞれ16%と1%に相当する(図7A)。残りの胚は、胚性幹細胞からクローン化された胚に関して報告されている通り(Jouneau, A. et al., Development 133, 1597-1607(2006))、胚または胚体外の領域において、発達遅滞や様々な発達障害を示した(図7B)。通常では胚盤葉上層にのみ局在を示すOct4陽性細胞の分布もまた、異常制御されていた(図7D)。本発明者らは、その後、レシピエントの雌を満期産させた。その結果、出生率は、大きく改善された。すなわち、Xistノックダウン胚の12%が正常に見える子にまで発達した。これは対照siRNA群の場合(1%;P<0.005,Fisherの正確確率検定;図7A)と比較して、10倍以上の出生率に達した。興味深いことに、5.5日目と19.5日目(妊娠末期)で調査した正常な発達の率は、同じ群においては有意差はなかった(Xist-siRNA胚では16%と12%、対照では1%と1%;P>0.05,Fisherの正確確率検定)。この事実は、クローン胚の発生的運命が、おおかた、5.5日目という着床後の初期の段階で決定づけられているということを明確に示している。重要なことに、この出生率は、50nMのトリコスタチンA処理と組み合わせることにより、約20%にまでさらに改善することができた(図7A、C)。トリコスタチンAは、強力なヒストン脱アセチル化阻害剤であり、in vitroおよびin vivoで、ゲノムの再プログラム化の際に、ドナークロマチンのヒストン関連抑制(histone-related repression)を緩和することによって、クローン胚の発達を促進することが知られている(Kishigami, S. et al., Biochem. Biophys. Res. Commun. 340,183-189(2006))。この知見は、トリコスタチンA処理とXistノックダウンがクローン胚の発達において相乗効果を持つことを示す。これは、Wakayamaら(Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R., Nature 394, 369-374(1998))による最初の成功以来、マウス体細胞核移植クローニングについてこれまで報告された中で最も高い出生率である。
[Example 6] Effect of Xist-siRNA on post-implantation development of cloned embryo Next, the present inventors conducted embryo transfer experiments in order to evaluate the developmental ability of cloned embryos introduced with siRNA after implantation. Went. On day 5.5, siRNA had no effect on implantation rate as assessed by endometrial shedding and embryo recovery. However, the morphology of embryos recovered from the implantation site was significantly improved. That is, 75% (9/12) of Xist-siRNA embryos show normal morphology with distinguishable embryo and extraembryonic compartments, and only 5% (1/20) show normal morphology in the control group (FIG. 7B, P <0.005, Fisher's exact test). These rates correspond to 16% and 1%, respectively, in the transplanted embryos of the Xist-siRNA group and the control group (FIG. 7A). The remaining embryos, as reported for embryos cloned from embryonic stem cells (Jouneau, A. et al., Development 133, 1597-1607 (2006)), are developmentally delayed in the embryo or extraembryonic area And various developmental disorders (FIG. 7B). The distribution of Oct4-positive cells, which are normally localized only in the upper blastoderm, was also abnormally controlled (FIG. 7D). The inventors then born the recipient female at term. As a result, the fertility rate has been greatly improved. That is, 12% of the Xist knockdown embryos developed into pups that looked normal. This reached a 10-fold or higher birth rate compared to the control siRNA group (1%; P <0.005, Fisher's exact test; FIG. 7A). Interestingly, the rate of normal development investigated on days 5.5 and 19.5 (late pregnancy) was not significantly different in the same group (16% and 12% for Xist-siRNA embryos, 1% for controls) And 1%; P> 0.05, Fisher's exact test). This fact clearly shows that the developmental fate of cloned embryos is largely determined at an early stage after implantation at 5.5 days. Importantly, this birth rate could be further improved to about 20% when combined with 50 nM trichostatin A treatment (FIGS. 7A, C). Trichostatin A is a potent inhibitor of histone deacetylation, by mitigating histone-related repression of donor chromatin during genome reprogramming in vitro and in vivo, It is known to promote the development of cloned embryos (Kishigami, S. et al., Biochem. Biophys. Res. Commun. 340, 183-189 (2006)). This finding indicates that trichostatin A treatment and Xist knockdown have a synergistic effect on the development of cloned embryos. This is a mouse somatic cell nuclear transfer cloning since the first success by Wakayama et al. (Wakayama, T., Perry, AC, Zuccotti, M., Johnson, KR & Yanagimachi, R., Nature 394, 369-374 (1998)). Is the highest birth rate ever reported.
 本発明者らの次の疑問は、なぜ、このようなクローン化効率における顕著な改善が、1細胞期におけるXist RNAの単純な導入により達成されたのかという点であった。5.5日目に生存しているXist-siRNA胚が、特徴的な正常な表現型を示したということは、クローン化されたマウスの胚の生存における、短い着床前後の期間の重要性を示唆する。このことと一致して、異所的なXistの発現の再発にもかかわらず、Xist-siRNA胚盤胞においていくつかの発達に重要な遺伝子(例えば、Fras1、Car2およびTet3)の有意な発現亢進があった。これは単一の胚を用いたDNAマイクロアレイ解析により明らかになった。 The next question of the present inventors was why such a remarkable improvement in cloning efficiency was achieved by simple introduction of Xist RNA at the 1-cell stage. The fact that Xist-siRNA embryos surviving on day 5.5 showed a characteristic normal phenotype suggests the importance of a short pre-implantation period in the survival of cloned mouse embryos To do. Consistent with this, despite the ectopic recurrence of Xist expression, significant upregulation of several developmentally important genes (eg, Fras1, Car2 and Tet3) in Xist-siRNA blastocysts was there. This was revealed by DNA microarray analysis using a single embryo.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表中の「*」は、Tukeyのポストホックテストを伴なう一元配置分散分析(ANOVA)をIVF(n=4)、Xist-siRNA処理胚(n=7)および対照siRNA処理胚(n=5)からのマイクロアレイデータに適用したことを示す。「**」は、二つのプローブの平均値を示す。 In the table, “*” indicates one-way analysis of variance (ANOVA) with Tukey's post-hoc test, IVF (n = 4), Xist-siRNA treated embryo (n = 7) and control siRNA treated embryo ( It is applied to the microarray data from n = 5). “**” indicates an average value of two probes.
 これらの遺伝子は、その後の正常な胎児の発達に必須である、胎児における胚および胚体外の部分の正確なクロストークを保証するかもしれない(Ang, S. L. & Constam, D. B., Cell Dev. Biol. 15, 555-561(2004))。それゆえに、取り組むべく残りの問題は、着床後のクローン胚におけるX染色体不活性化の状態であった。なぜなら、それらは、胚盤胞期においてみられた回復したXist発現(図6Bを参照のこと)を通じて、X染色体不活性化を獲得しているかもしれないからである。内部細胞塊の細胞における両方のX染色体は、雌マウス胚において再活性化され(X染色体不活性化の末梢)、その後、胚盤葉上層細胞においてde novoのランダムなX染色体不活性化を受けるが、栄養外胚葉系統および胎盤においては、刷り込まれたX染色体不活性化が維持されるということが一般に知られている。ランダムなX染色体不活性化がクローン化した胎児において正常に生じ、刷り込まれたX染色体不活性化が胎盤において持続することから、同様のことが、雌の体細胞核移植胚についても言えることが証明された。こうして、本発明者らは、クローン胚に特異的な異所的なX染色体不活性化もそれらの胚体組織から抹消されるが、胚体外組織においては維持されると仮定した。この過程を検証するために、本発明者らは、着床期のクローン胚のX染色体不活性化の状態を、不活性化したX染色体における抑制されたクロマチン状態のマーカーである(Huynh, K. D. & Lee, J. T., Nature 426, 857-862(2003))、リジン27位でトリメチル化されたヒストンH3(H3K27me3)の染色を行うことにより調査した。Xist-siRNAおよび対照胚の双方の胚盤胞において、内部細胞塊の細胞および栄養外胚葉細胞の大部分(>65%)が点状のH3K27me3染色に陽性であった(図7D)。これは、RNA FISH解析の知見(図6B)と一致する。5.5日目におけるクローン胚の胚盤葉上層においては、点状のH3K27me3シグナルを伴なう細胞は数個しかなかった。これはX染色体が予想通り、正確に再活性化されていることを示す(図7D)。しかしながら、予想外にも、胚体外コンパートメントにおける細胞も、Xist-siRNAおよび対照群の双方のX染色体不活性化に典型的な、このようなH3K27me3シグナルに陰性であった(図7D)。これらの発見を併せると、クローン胚における異所的なXist発現が、何らかの未知のメカニズムによって、胚および胚体外の組織の双方において、着床直後に補正されることが示唆される。それゆえ、異所的なXist発現によって引き起こされる、体細胞核移植特異的なX染色体不活性化の異常調節が着床前の限られた時期に限定され、クローン胚の救済において、Xistノックアウトがこの非常に短い時期に大きな効果を示していると考えられる(図8)。実際、この時期において多くの胚が消失していることは、この時期が体細胞核移植で発生させた胚の生存にとっていかに重要であるかということを強く示唆している(ouneau, A. et al., Development 133, 1597-1607(2006)、Wakisaka-Saito, N. et al., Biochem. Biophys. Res. Commun. 349, 106-114(2006)、 Rielland, M., Brochard, V., Lacroix, M. C., Renard, J. P. & Jouneau, A., Dev. Biol. 334, 325-334(2009))。 These genes may guarantee the correct crosstalk of embryos and extraembryonic parts in the fetus, essential for subsequent normal fetal development (Ang, S.L. & Constam, D.B. , Cell Dev. Biol. 15, 555-561 (2004)). Therefore, the remaining issue to address was the state of X chromosome inactivation in the cloned embryo after implantation. This is because they may have acquired X-chromosome inactivation through the restored Xist expression seen in the blastocyst stage (see FIG. 6B). Both X chromosomes in cells of the inner cell mass are reactivated in female mouse embryos (peripheral of X chromosome inactivation) and then undergo de novo random X chromosome inactivation in epiblast cells However, it is generally known that imprinted X chromosome inactivation is maintained in trophectoderm lines and placenta. Random X-chromosome inactivation occurs normally in cloned fetuses, and imprinted X-chromosome inactivation persists in the placenta, demonstrating the same for female somatic cell nuclear transfer embryos It was done. Thus, we hypothesized that ectopic X-chromosome inactivation specific to cloned embryos is also deleted from their embryonic tissues but maintained in extraembryonic tissues. In order to verify this process, we have identified the state of X-chromosome inactivation in implanted clone embryos as a marker of suppressed chromatin state in the inactivated X-chromosome (Huynh, K D. & Lee, J. T., Nature 426, 857-862 (2003)), and histone H3 (H3K27me3) trimethylated at position 27 of lysine was stained. In both blastocysts of Xist-siRNA and control embryos, the majority of the inner cell mass cells and trophectoderm cells (> 65%) were positive for punctate H3K27me3 staining (FIG. 7D). This is consistent with the findings of RNA FISH analysis (FIG. 6B). In the upper layer of the blastoderm of the cloned embryo on day 5.5, there were only a few cells with punctate H3K27me3 signal. This indicates that the X chromosome is reactivated exactly as expected (FIG. 7D). However, unexpectedly, cells in the extraembryonic compartment were also negative for such H3K27me3 signals, typical for X chromosome inactivation of both the Xist-siRNA and the control group (FIG. 7D). Together, these findings suggest that ectopic Xist expression in cloned embryos is corrected immediately after implantation in both embryos and extraembryonic tissues by some unknown mechanism. Therefore, the abnormal regulation of somatic cell nuclear transfer-specific X-chromosome inactivation caused by ectopic Xist expression is limited to a limited time before implantation, and in the rescue of cloned embryos, Xist knockout is It is thought that a large effect is shown in a very short time (Fig. 8). In fact, the disappearance of many embryos during this period strongly suggests how important this period is for the survival of embryos generated by somatic cell nuclear transfer (ouneau, A. et al. ., Development 133, 1597-1607 (2006), Wakisaka-Saito, N. et al., Biochem. Biophys. Res. Commun. 349, 106-114 (2006), Rielland, M., Brochard, V., Lacroix , M. C., Renard, J. P. & Jouneau, A., Dev. Biol. 334, 325-334 (2009)).
 以上説明したように、本発明により、体細胞クローン技術によりクローン動物を作出する方法において、その成功率を飛躍的に高めることが可能となった。本発明によれば、親個体と同じ遺伝子を持つ個体を効率的に作出することが可能となり、本発明は、生物学的な医薬製造、再生医療、および農業などの幅広い分野において多くの応用が期待される。 As described above, according to the present invention, it has become possible to dramatically increase the success rate in a method for producing a cloned animal by somatic cell cloning technology. According to the present invention, it is possible to efficiently produce an individual having the same gene as the parent individual, and the present invention has many applications in a wide range of fields such as biological pharmaceutical production, regenerative medicine, and agriculture. Be expected.
配列番号1~4、9-12<223>  人工的に合成されたプライマーの配列
配列番号5~8
<223>  人工的に合成されたsiRNAの配列
SEQ ID NOs: 1-4, 9-12 <223> Sequences of artificially synthesized primers SEQ ID NOs: 5-8
<223> Artificially synthesized siRNA sequences

Claims (7)

  1.  体細胞核移植によりクローン動物を作出する方法であって、除核卵母細胞に体細胞の核を移植することにより形成された再構築胚における活性X染色体の遺伝子発現異常を抑制することを特徴とする方法。 A method for producing a cloned animal by somatic cell nuclear transfer, characterized by suppressing abnormal gene expression of an active X chromosome in a reconstructed embryo formed by transplanting a somatic cell nucleus into an enucleated oocyte how to.
  2.  活性X染色体の遺伝子発現異常がXist遺伝子の発現増加である、請求項1に記載の方法。 The method according to claim 1, wherein the abnormal gene expression of the active X chromosome is increased expression of the Xist gene.
  3.  活性X染色体におけるXist遺伝子の発現が人為的に抑制された体細胞を用いる、請求項2に記載の方法。 The method according to claim 2, wherein somatic cells in which the expression of the Xist gene on the active X chromosome is artificially suppressed are used.
  4.  Xist遺伝子の発現増加の抑制をXist遺伝子に対するsiRNAを用いて行う、請求項2に記載の方法。 The method according to claim 2, wherein the suppression of the increase in expression of the Xist gene is performed using siRNA against the Xist gene.
  5.  さらに、体細胞または再構築胚に対しトリコスタチンA処理を行う、請求項1から4のいずれかに記載の方法。 Furthermore, the method according to any one of claims 1 to 4, wherein trichostatin A treatment is performed on somatic cells or reconstructed embryos.
  6.  請求項1から5に記載の方法を実施するためのキットであって、除核卵母細胞に体細胞の核を移植することにより形成された再構築胚における活性X染色体の遺伝子発現異常を抑制する活性を有する分子を含むキット。 A kit for carrying out the method according to claims 1 to 5, which suppresses abnormal gene expression of active X chromosome in a reconstructed embryo formed by transplanting a somatic cell nucleus into an enucleated oocyte. A kit comprising a molecule having the activity of
  7.  請求項1から5のいずれかに記載の方法により作出されたクローン動物。 A cloned animal produced by the method according to any one of claims 1 to 5.
PCT/JP2011/070062 2010-09-03 2011-09-02 Method for creating cloned animal WO2012029957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-197583 2010-09-03
JP2010197583 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029957A1 true WO2012029957A1 (en) 2012-03-08

Family

ID=45773031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070062 WO2012029957A1 (en) 2010-09-03 2011-09-02 Method for creating cloned animal

Country Status (1)

Country Link
WO (1) WO2012029957A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510220A (en) * 2013-02-15 2016-04-07 ソン クヮン メデイカル ファウンデーション Production of parthenogenetic stem cells and patient-specific human embryonic stem cells using somatic cell nuclear transfer
WO2020018106A1 (en) * 2018-07-19 2020-01-23 Children's Medical Center Corporation Compositions and methods for generating physiological x chromosome inactivation
CN111849866A (en) * 2020-07-15 2020-10-30 华南农业大学 Application of H3K27me3 in regulation of FoxO1 gene expression in porcine ovarian granulosa cells
JP2021514199A (en) * 2018-01-17 2021-06-10 センター フォー エクセレンス イン ブレイン サイエンス アンド インテリジェンス テクノロジー,チャイニーズ アカデミー オブ サイエンシーズCenter For Excellence In Brain Science And Intelligence Technology,Chinese Academy Of Sciences Method for producing somatic cell cloned animals of non-human primates
US20210340493A1 (en) * 2018-08-01 2021-11-04 University Of Georgia Research Foundation, Inc. Compositions and methods for improving embryo development
US11390885B2 (en) 2014-09-15 2022-07-19 Children's Medical Center Corporation Methods and compositions to increase somatic cell nuclear transfer (SCNT) efficiency by removing histone H3-lysine trimethylation
US11535824B2 (en) 2015-10-29 2022-12-27 Sung Kwang Medical Foundation Nuclear transfer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245294A (en) * 2004-03-03 2005-09-15 Nipro Corp Method for determining or screening normality of externally operated embryo

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245294A (en) * 2004-03-03 2005-09-15 Nipro Corp Method for determining or screening normality of externally operated embryo

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BAO, S ET AL.: "Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte.", EMBO REP., vol. 6, no. 8, August 2005 (2005-08-01), pages 748 - 754 *
INOUE, K ET AL.: "Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.", SCIENCE., vol. 330, no. 6003, 22 October 2010 (2010-10-22), pages 496 - 499 *
KISHIGAMI, S ET AL.: "Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer.", J REPROD DEV., vol. 53, no. 1, February 2007 (2007-02-01), pages 165 - 170 *
NOLEN, LD ET AL.: "X chromosome reactivation and regulation in cloned embryos.", DEV BIOL., vol. 279, no. 2, 15 March 2005 (2005-03-15), pages 525 - 540 *
SHAO, GB ET AL.: "Inheritance of histone H3 methylation in reprogramming of somatic nuclei following nuclear transfer.", J REPROD DEV., vol. 54, no. 3, June 2008 (2008-06-01), pages 233 - 238 *
THUAN, NV ET AL.: "How to improve the success rate of mouse cloning technology.", J REPROD DEV., vol. 56, no. 1, February 2010 (2010-02-01), pages 20 - 30 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510220A (en) * 2013-02-15 2016-04-07 ソン クヮン メデイカル ファウンデーション Production of parthenogenetic stem cells and patient-specific human embryonic stem cells using somatic cell nuclear transfer
US10017733B2 (en) 2013-02-15 2018-07-10 Sung Kwang Medical Foundation Production of parthenogenetic stem cells and patient-specific human embryonic stem cells using somatic cell nuclear transfer
US11339369B2 (en) 2013-02-15 2022-05-24 Sung Kwang Medical Foundation Production of parthenogenetic stem cells and patient-specific human embryonic stem cells using somatic cell nuclear transfer
US11390885B2 (en) 2014-09-15 2022-07-19 Children's Medical Center Corporation Methods and compositions to increase somatic cell nuclear transfer (SCNT) efficiency by removing histone H3-lysine trimethylation
US11535824B2 (en) 2015-10-29 2022-12-27 Sung Kwang Medical Foundation Nuclear transfer
JP2021514199A (en) * 2018-01-17 2021-06-10 センター フォー エクセレンス イン ブレイン サイエンス アンド インテリジェンス テクノロジー,チャイニーズ アカデミー オブ サイエンシーズCenter For Excellence In Brain Science And Intelligence Technology,Chinese Academy Of Sciences Method for producing somatic cell cloned animals of non-human primates
JP7199741B2 (en) 2018-01-17 2023-01-06 センター フォー エクセレンス イン ブレイン サイエンス アンド インテリジェンス テクノロジー,チャイニーズ アカデミー オブ サイエンシーズ Method for producing somatic cell clone animal of non-human primate
WO2020018106A1 (en) * 2018-07-19 2020-01-23 Children's Medical Center Corporation Compositions and methods for generating physiological x chromosome inactivation
US20210340493A1 (en) * 2018-08-01 2021-11-04 University Of Georgia Research Foundation, Inc. Compositions and methods for improving embryo development
US11939593B2 (en) * 2018-08-01 2024-03-26 University Of Georgia Research Foundation, Inc. Compositions and methods for improving embryo development
CN111849866A (en) * 2020-07-15 2020-10-30 华南农业大学 Application of H3K27me3 in regulation of FoxO1 gene expression in porcine ovarian granulosa cells
CN111849866B (en) * 2020-07-15 2022-06-24 华南农业大学 Application of H3K27me3 in regulation of FoxO1 gene expression in porcine ovarian granulosa cells

Similar Documents

Publication Publication Date Title
Conine et al. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice
Morgan et al. mRNA 3′ uridylation and poly (A) tail length sculpt the mammalian maternal transcriptome
WO2012029957A1 (en) Method for creating cloned animal
Buganim et al. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection
Falco et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells
Fu et al. Dynamics of telomere rejuvenation during chemical induction to pluripotent stem cells
Tian et al. Functional oocytes derived from granulosa cells
Ortmann et al. Naive pluripotent stem cells exhibit phenotypic variability that is driven by genetic variation
Itou et al. Induction of DNA methylation by artificial piRNA production in male germ cells
Zheng et al. CNOT3-dependent mRNA deadenylation safeguards the pluripotent state
Oikawa et al. RNAi-mediated knockdown of Xist does not rescue the impaired development of female cloned mouse embryos
Ragina et al. Downregulation of H19 improves the differentiation potential of mouse parthenogenetic embryonic stem cells
Bao et al. The germ cell determinant Blimp1 is not required for derivation of pluripotent stem cells
US20140370602A1 (en) Trophectodermal cell-specific gene transfer methods
Cao et al. Live birth of chimeric monkey with high contribution from embryonic stem cells
Peters et al. Identification and characterisation of imprinted genes in the mouse
Latham Preimplantation embryo gene expression: 56 years of discovery, and counting
CN112272516B (en) Compositions and methods for somatic reprogramming and imprinting
Sim et al. Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas
US20180251728A1 (en) Androgenetic haploid embryonic stem cell, and preparation method and use thereof
Dadi et al. Decreased growth factor expression through RNA interference inhibits development of mouse preimplantation embryos
Chen et al. Effect of shRNA‐mediated Xist knockdown on the quality of porcine parthenogenetic embryos
Nishio et al. Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression
Wu et al. Early embryonic lethality of mice lacking POLD2
Luo et al. Offspring production of ovarian organoids derived from spermatogonial stem cells by chromatin reorganization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP