WO2012029609A1 - Compound having silicon-containing substituent introduced thereto, and singlet oxygen-generating agent and cancer therapeutic comprising same - Google Patents

Compound having silicon-containing substituent introduced thereto, and singlet oxygen-generating agent and cancer therapeutic comprising same Download PDF

Info

Publication number
WO2012029609A1
WO2012029609A1 PCT/JP2011/069070 JP2011069070W WO2012029609A1 WO 2012029609 A1 WO2012029609 A1 WO 2012029609A1 JP 2011069070 W JP2011069070 W JP 2011069070W WO 2012029609 A1 WO2012029609 A1 WO 2012029609A1
Authority
WO
WIPO (PCT)
Prior art keywords
singlet oxygen
general formula
cancer
compound
butyl
Prior art date
Application number
PCT/JP2011/069070
Other languages
French (fr)
Japanese (ja)
Inventor
宏明 堀内
正博 穂坂
浩士 平塚
利行 竹内
荘一郎 久新
真太郎 石田
Original Assignee
国立大学法人 群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 群馬大学 filed Critical 国立大学法人 群馬大学
Priority to JP2012531819A priority Critical patent/JP5843113B2/en
Publication of WO2012029609A1 publication Critical patent/WO2012029609A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/695Silicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring

Definitions

  • the present invention relates to a novel compound into which a silicon-containing substituent is introduced.
  • the present invention also relates to a singlet oxygen generator and a cancer therapeutic agent comprising the compound.
  • Cancer is the biggest cause of death among Japanese people, and the development of treatments is strongly desired all over the world.
  • Current main therapies include surgical removal of tumor tissue, long-term radiation therapy or anticancer drug treatment. If the tissue is excised, loss of function or decrease in function becomes a problem, and radiation therapy or anticancer drug treatment is a long-term therapy, and patients suffer from side effects for a long time. Therefore, there is a problem that the quality of life (QOL) of the patient is remarkably lowered.
  • Photodynamic therapy (PDT) is attracting attention as a new cancer treatment method for solving such problems. In this treatment, a photosensitizing dye, which is a drug, is injected once and irradiated with visible light, so that the tissue can be preserved and the burden on the patient is low.
  • the principle of this therapy is as follows. 1. After waiting several hours after injecting the photosensitizing dye, the photosensitizing dye accumulates in the tumor. 2. When the tumor is selectively irradiated with red light, the accumulated photosensitizing dye is excited and singlet oxygen that is an active oxygen species is generated. 3. Singlet oxygen attacks and kills surrounding cancer cells.
  • the object of the present invention is to further improve the performance of photodynamic therapy, which is currently desired to be improved. Specifically, in addition to the generation efficiency of singlet oxygen, it is an object to improve the selective accumulation in a tumor and the photosensitizing dye uptake efficiency by cells.
  • the present inventor has intensively studied to solve the above problems.
  • COO with a substituent containing a silicon compound such as porphyrin analogues and phthalocyanine derivatives - by introducing a group, not only the efficiency of generation of singlet oxygen is increased, the uptake and tumor tissues to cells
  • these compounds can be suitably used as singlet oxygen generators useful for cancer treatment and the like, and the present invention has been completed.
  • the present invention is as follows. (1) A compound represented by any one of the following general formulas (I) to (IV). (2) A compound represented by the following (I-1), (II-1) or (III-1). (3) A singlet oxygen generator containing the compound of (1) or (2). (4) A cancer therapeutic agent comprising the singlet oxygen generator (3). (5) A compound represented by any one of formulas (I) to (IV) for cancer treatment. (6) A method for treating cancer, comprising a step of administering a compound represented by any one of the general formulas (I) to (IV) to a patient. (7) Use of a compound represented by any one of formulas (I) to (IV) for generating singlet oxygen. (8) A method for generating singlet oxygen, comprising a step of irradiating a compound represented by any one of the general formulas (I) to (IV) with light.
  • the compound of the present invention is 1. 1. Singlet oxygen production efficiency; 2. Uptake efficiency by cells; The three performances of selective accumulation in tumors are improved at the same time, and the cancer treatment effect is remarkably improved. Since the compound of the present invention can be excited even by visible light of 600 to 800 nm, it has a long penetration distance into the human body and has the advantage that singlet oxygen can be generated even in the deep part.
  • the “singlet oxygen generator” refers to a substance that can generate singlet oxygen when irradiated with light.
  • the singlet oxygen generator of the present invention contains one or more compounds selected from the group of compounds represented by the following general formulas (I) to (IV).
  • At least one of R 1 to R 20 is independent of the following (i) to (ii) And at least one of R 1 to R 20 (preferably 4 or more, more preferably 4 to 8) is the substituent of the following (a).
  • at least one of R 1 to R 24 is independent of the following (i) to (ii)
  • at least one of R 1 to R 24 is the substituent of the following (a).
  • At least one of R 1 to R 28 (preferably 3 or more, more preferably 3 to 8, particularly preferably 4 to 8) is independent of the following (i) to (ii) And at least one of R 1 to R 28 (preferably 4 or more, more preferably 4 to 8) is the substituent of the following (a).
  • at least one of R 1 to R 16 (preferably 3 or more, more preferably 3 to 8, particularly preferably 4 to 8) is independent of the following (i) to (ii)
  • at least one of R 1 to R 16 (preferably 4 or more, more preferably 4 to 8) is the substituent of the following (a). In (i) and (ii), (i) is more preferable.
  • Ra, Rb and Rc are independently a substituent selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy and trimethylsilyl. It is. N is an integer of 1 or more, preferably an integer of 1 to 5.
  • Ra and Rb are each independently a substituent selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy, and trimethylsilyl.
  • M is an integer of 0 or more, preferably an integer of 0 to 5.
  • COO ⁇ may be coordinated with ions such as Na + , K + , Mg 2+ , and Ca 2+, or may be bonded with a hydrogen atom.
  • R n is an integer of 1 to 20, 1 to 24, 1 to 28, and 1 to 16, respectively
  • R ni is a substituent selected from the above, and at least one of them may be the substituent of (a)
  • other R n is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, It is a substituent selected from methoxy, ethoxy and trimethylsilyl.
  • the compound represented by the general formula (I) can be synthesized, for example, as in Synthesis Example 1 described later.
  • the compound represented by the general formula (II) can be synthesized, for example, as in Synthesis Example 2 described later.
  • the compound represented by the general formula (III) can be synthesized, for example, as in Synthesis Example 3 described later.
  • the substituents independently selected from (i) to (ii) at the 3-position and 5-position of at least one benzene ring; It is particularly preferable that the above substituent is introduced.
  • the compound represented by the general formula (IV) can be synthesized, for example, as follows.
  • the singlet oxygen generator of the present invention is a compound selected from the above general formulas (I) to (IV) as it is or pharmacologically according to known means generally used in the production of pharmaceutical preparations. It can be mixed with an acceptable carrier and administered orally or parenterally (eg, topical, intravenous administration, etc.) as a pharmaceutical preparation such as an injection.
  • the compounds of general formulas (I) to (IV) are easy to accumulate in cancer tissue and may be administered alone, but they reach the target tissue by a drug delivery system (DDS) method using liposomes. It may be administered in a form that is easy to do.
  • DDS drug delivery system
  • the compounds of the general formulas (I) to (IV) those in which a metal such as Zn 2+ , Cu 2+ (II), Ca 2+ , Mg 2+ is bonded to the center of the ring can also be used.
  • the content of the compounds of the general formulas (I) to (IV) in the preparation is about 0.01 to about 100% by weight of the whole preparation.
  • the dose of the compounds of the general formulas (I) to (IV) varies depending on the administration subject, target organ, symptom, administration method, etc., and is not particularly limited, but is generally about 0.1 to 1000 mg per administration. , Preferably about 1.0 to 100 mg.
  • pharmacologically acceptable carriers examples include excipients, lubricants, binders and disintegrants in solid formulations, or solvents, solubilizers, suspending agents, isotonic agents, buffers in liquid formulations. And soothing agents. If necessary, additives such as conventional preservatives, antioxidants, colorants, sweeteners, adsorbents, wetting agents and the like can be used in appropriate amounts.
  • light of an appropriate wavelength is irradiated after administration of the general formulas (I) to (IV).
  • the irradiation time is appropriately selected depending on the age and sex of the patient, the type and degree of the disease, the distance between the light source and the affected part, and the like.
  • the wavelength is not particularly limited as long as it is a wavelength capable of generating singlet oxygen, but 600 to 800 nm is preferable when performing photodynamic therapy.
  • Irradiation may be performed from outside the body, or may be performed by inserting an optical fiber or the like in the vicinity of the target tissue. Also included are embodiments in which bone marrow is removed from a leukemia patient, treated with compounds of general formulas (I)-(IV) in vitro, and the treated bone marrow is returned to the patient.
  • the cells can be destroyed by generating singlet oxygen. Therefore, the disease to which the singlet oxygen generator of the present invention can be applied is not particularly limited as long as it can be treated by generating singlet oxygen and destroying cells. Examples include diseases, transplant rejection, autoimmune diseases and T cell-mediated immune allergy, bacterial infections, viral infections, age-related macular degeneration, acne and the like. Of these, cancer is particularly preferred.
  • the type of cancer is not particularly limited, but lung cancer, malignant lymphoma (eg, reticulosarcoma, lymphosarcoma, Hodgkin's disease, etc.), digestive cancer (eg, gastric cancer, gallbladder / bile duct cancer, pancreatic cancer, liver cancer, colon cancer, rectum) Cancer), breast cancer, ovarian cancer, disseminated multiple myeloma, bladder cancer, leukemia (for example, acute leukemia including acute transformation of chronic myeloid leukemia), kidney cancer, prostate cancer and the like.
  • malignant lymphoma eg, reticulosarcoma, lymphosarcoma, Hodgkin's disease, etc.
  • digestive cancer eg, gastric cancer, gallbladder / bile duct cancer, pancreatic cancer, liver cancer, colon cancer, rectum
  • breast cancer ovarian cancer
  • leukemia for example, acute leukemia including acute transformation of chronic myeloid leukemia
  • Synthesis example 1 ⁇ Synthesis of 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin sodium salt> 5,10,15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin sodium salt (hereinafter sometimes referred to as SiC 4 ) was synthesized by the following procedure. 1,3,5-Tribromobenzene was lithiated with an equal amount of n-butyllithium in dry diethyl ether at -78 ° C. and then reacted with chlorotrimethylsilane to give 95% yield in 3,5- Dibromotrimethylsilylbenzene was obtained.
  • Synthesis example 2 ⁇ Synthesis of 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) chlorine sodium salt> 5,10,15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin ethyl ester is treated with p-toluenesulfonyl hydrazide and potassium carbonate in dry pyridine, followed by treatment with chloranil. 15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) chlorin ethyl ester was obtained. This was treated with sodium hydroxide to obtain 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) chlorin sodium salt.
  • Synthesis example 3 ⁇ Synthesis of 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) bacteriochlorin sodium salt> 5,10,15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin ethyl ester is treated with p-toluenesulfonyl hydrazide and potassium carbonate in dry pyridine to give 5,10,15,20-tetrakis ( 3-carboxyl-5-trimethylsilylphenyl) bacteriochlorin ethyl ester was obtained. This was treated with sodium hydroxide to obtain 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) bacteriochlorin sodium salt.
  • Example 1 Generation of singlet oxygen> Each compound of C 4 and SiC 4 was dissolved in ethanol at a concentration of 0.1, and then irradiated with 355 nm light using YAG LASER (Lotis TII LS-2137U).
  • YAG LASER Litis TII LS-2137U
  • the quantum yield ⁇ for singlet oxygen generation of SiC 4 was 0.72, 1.29 times that of C 4 . As a result, it was found that the singlet oxygen generation efficiency was increased by introducing a substituent containing Si into C 4 . In addition, when argon gas (Ar) was injected into the ethanol solution, almost no phosphorescence was generated, which confirmed that the observed spectrum was due to singlet oxygen.
  • Ar argon gas
  • Example 2 ⁇ Therapeutic effects of cancer in animals bearing cancer> Silicon substituents developed using nude mice inoculated with cancer cells (SCC7: Shaojuan Zhang, Masahiro Hosaka, Toshitada Yoshihara, Kazuya Negishi, Yasuhiko Iida, Seiji Tobita, and Toshiyuki Takeuchi, Cancer Research, 2010, 70, 4490.) 4 hours after intravenous injection of the therapeutic agent SiC 4 (100 nmol) (400-800 nm, 28 mW / cm 2 , 30 min), the tumor site disappeared after 6 days, It became a scab ( Figure 2). In compound C 4 having no silicon substituent, such discoloration was hardly observed. The time course of tumor size after treatment is shown in FIG. Tumor size increases over C 4 In time, the SiC 4 tumors disappeared. As described above, the performance as a therapeutic agent was greatly improved by the introduction of the silicon substituent.
  • FIG. 4 shows fluorescence images of cancer cells (U251) cultured for 12 hours in a medium containing 15 ⁇ M SiC 4 or C 4 . Strong fluorescence was observed with SiC 4 , but almost no fluorescence was observed with C 4 . Since the fluorescence quantum yield (0.054) of SiC 4 is almost the same as that of C 4 (0.046), it was found that introduction of silicon substituents significantly improved the uptake efficiency by cells. In addition, SiC 4 shows stronger fluorescence than the following compound (SiS 4 ) described in the reissued 2007/023766 publication. Fluorescence quantum yield of SiS 4 is 0.059, since a SiC 4 equivalent quantum yield, towards the SiC 4 is present compounds than SiS 4 was found to be easily taken into the cancer cells.
  • Example 4 ⁇ Effects on cultured cancer cells> The activity of drugs was evaluated at the level of cultured cells using cancer cells (U251: Masanori Aihara, Ken-ichi Sugawara, Seiji Torii, Masahiro Hosaka, Hideyuki Kurihara, Nobuhito Saito and Toshiyuki Takeuchi, Laboratory Investigation (2004) 84, 1581).
  • SiC 4 with a silicon substituent introduced (15 ⁇ M) was able to kill almost 100% of the cancer cells even with a slight light irradiation dose (8 J / cm 2 ), but with C 4 without a silicon substituent, Even if light irradiation of the same degree was performed, the cancer cells could hardly be killed (FIG. 5).
  • Example 5 ⁇ Evaluation of tumor accumulation in cancer-bearing animals> Furthermore, in order to clarify the tumor accumulation property of the drug by the silicon substituent, the localization of the drug was evaluated using a tumor bearing nude mouse (FIG. 6).
  • FIG. 6 the tumor site is surrounded by a circle.
  • SiS 4 100 nmol
  • SiS 4 was intravenously injected from the tail of the mouse, and the fluorescence image after 2 hours is shown in the lower part of FIG. SiS 4 remained in the tail and was found not transported throughout the body. Furthermore, 6 hours after the administration, the mouse died and was toxic. Therefore, it became clear that SiS 4 cannot be used for photodynamic therapy.
  • SiC 4 and C 4 spread throughout the body when injected intravenously, are not toxic, and have solved the problems of SiS 4 .
  • the fluorescence images 24 hours after intravenous injection of C 4 and SiC 4 are shown in FIG.
  • C 4 almost no fluorescence due to the drug was observed from the tumor part, but in SiC 4 , strong fluorescence was observed from the tumor. From this, it was found that the tumor accumulation was improved by the introduction of the silicon substituent.
  • the accumulation property of SiC 4 in each tissue in the cancer-bearing mouse was quantitatively evaluated. As a result, assuming that the concentration in the tumor was 1 at 12 hours after administration, the concentration in the muscle was 0.25, the concentration in the blood was 0.46, and it was found that SiC 4 was selectively collected in the tumor.
  • the compound introduced with a silicon-containing substituent of the present invention can be suitably used for photodynamic therapy used for phototherapy of cancer.

Abstract

A compound represented by any of general formulae (I) to (IV) is to be used as the active ingredient of a singlet oxygen-generating agent. In each of R1 to R20 in general formula (I), R1 to R24 in general formula (II), R1 to R28 in general formula (III) and R1 to R16 in general formula (IV), at least one is a member selected from substituents represented by general formula (i) and (ii) [in general formulae (i) and (ii), Ra, Rb and Rc independently represent a substituent selected from among hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy and trimethylsilyl; and n is 1 or greater], and at least one is a substituent represented by general formula (a) [in general formula (a), Ra and Rb independently represent a substituent selected from among hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy and trimethylsilyl; and m is 0 or greater].

Description

含ケイ素置換基を導入した化合物、並びにそれを含む一重項酸素発生剤及び癌治療薬Compound having silicon-containing substituent introduced therein, singlet oxygen generator and cancer therapeutic agent containing the same
 本発明は含ケイ素置換基を導入した新規化合物に関する。本発明はまた、該化合物を含む一重項酸素発生剤および癌治療薬に関する。 The present invention relates to a novel compound into which a silicon-containing substituent is introduced. The present invention also relates to a singlet oxygen generator and a cancer therapeutic agent comprising the compound.
 癌は日本人の最大の死亡要因であり、その治療法の発展は世界中で強く望まれている。現在の主な治療法は外科手術による腫瘍組織の切除や、長期にわたる放射線治療あるいは抗癌剤治療などである。組織を切除してしまうと、機能を喪失あるいは機能の低下が問題となり、放射線治療や抗癌剤治療は長期療法であり、患者は長期間副作用などに苦しむ。そのため、患者のQuality of Life (QOL)が著しく低下する問題点がある。
 この様な問題を解決するための新たな癌治療法として、光線力学療法(Photodynamic Therapy; PDT)が注目を集めている。この治療では、薬剤である光増感色素を一度注射し、可視光照射を行うのみであり、組織の温存が可能であり、患者への負担が低いメリットがある。この治療法の原理は以下の通りである。1.光増感色素を注射してから数時間待つと、光増感色素が腫瘍に集積する。2.腫瘍に選択的に赤色光を照射すると、集積した光増感色素が励起され、活性酸素種である一重項酸素が発生する。3.一重項酸素が周囲の癌細胞を攻撃し、死滅させる。
Cancer is the biggest cause of death among Japanese people, and the development of treatments is strongly desired all over the world. Current main therapies include surgical removal of tumor tissue, long-term radiation therapy or anticancer drug treatment. If the tissue is excised, loss of function or decrease in function becomes a problem, and radiation therapy or anticancer drug treatment is a long-term therapy, and patients suffer from side effects for a long time. Therefore, there is a problem that the quality of life (QOL) of the patient is remarkably lowered.
Photodynamic therapy (PDT) is attracting attention as a new cancer treatment method for solving such problems. In this treatment, a photosensitizing dye, which is a drug, is injected once and irradiated with visible light, so that the tissue can be preserved and the burden on the patient is low. The principle of this therapy is as follows. 1. After waiting several hours after injecting the photosensitizing dye, the photosensitizing dye accumulates in the tumor. 2. When the tumor is selectively irradiated with red light, the accumulated photosensitizing dye is excited and singlet oxygen that is an active oxygen species is generated. 3. Singlet oxygen attacks and kills surrounding cancer cells.
 現在、いくつかの光増感色素が報告され(特許文献1,2、非特許文献1など)、認可され既に臨床応用されているものもあるが、光増感色素の性能は十分でなく、副作用である光線過敏症を防ぐために患者は治療後数週間は暗室での生活を強いられる。また、現段階では進行癌に対しては十分な効果が得られない。そのため、光増感色素のさらなる改良が求められている。
 改良が求められている主な項目は、1.腫瘍への選択的集積性、2.細胞による光増感色素の取り込み効率、3.赤色光に対する光吸収効率、4.一重項酸素の生成効率である。本発明者らは、これまでに代表的な光増感色素であるポルフィリン誘導体にケイ素置換基を導入することにより、一重項酸素の生成効率が向上することを見いだし、特許出願を行った(特許文献3)。
Currently, several photosensitizing dyes have been reported ( Patent Documents 1, 2, Non-Patent Document 1, etc.), and some have been approved and already clinically applied. However, the performance of the photosensitizing dye is not sufficient, Patients are forced to live in a dark room for several weeks after treatment to prevent the side effect of photosensitivity. At the present stage, sufficient effects cannot be obtained for advanced cancer. Therefore, further improvement of the photosensitizing dye is demanded.
The main items that need improvement are: 1. selective accumulation in tumor; 2. Photosensitizing dye uptake efficiency by cells; 3. Light absorption efficiency for red light It is the production efficiency of singlet oxygen. The present inventors have found that the efficiency of singlet oxygen generation is improved by introducing a silicon substituent into porphyrin derivatives, which are typical photosensitizing dyes, and have filed patent applications (patents). Reference 3).
特開2002-523509号公報JP 2002-523509 A 特開2004-002438号公報JP 2004-002438 A 再表2007/023766号公報No. 2007/023766
 本発明は、現状ではまだ改良が望まれている光線力学療法の性能をさらに向上させることを課題とする。具体的には、一重項酸素の生成効率に加えて、腫瘍への選択的集積性と細胞による光増感色素の取り込み効率などを向上させることを課題とする。 The object of the present invention is to further improve the performance of photodynamic therapy, which is currently desired to be improved. Specifically, in addition to the generation efficiency of singlet oxygen, it is an object to improve the selective accumulation in a tumor and the photosensitizing dye uptake efficiency by cells.
 本発明者は上記課題を解決すべく鋭意検討を行った。その結果、ポルフィリン類縁体やフタロシアニン誘導体などの化合物にケイ素を含む置換基とともにCOO-基を導入することで、一重項酸素の発生効率が上昇するだけでなく、細胞への取り込み率および腫瘍組織への蓄積性も向上することを見出し、それにより、これらの化合物は癌治療などに有用な一重項酸素発生剤として好適に使用できることを見出し、本発明を完成するに至った。 The present inventor has intensively studied to solve the above problems. As a result, COO with a substituent containing a silicon compound such as porphyrin analogues and phthalocyanine derivatives - by introducing a group, not only the efficiency of generation of singlet oxygen is increased, the uptake and tumor tissues to cells As a result, it has been found that these compounds can be suitably used as singlet oxygen generators useful for cancer treatment and the like, and the present invention has been completed.
 すなわち、本発明は以下の通りである。
(1)下記一般式(I)~(IV)のいずれかで示される化合物。
(2)下記(I-1)、(II-1)または(III-1)で示される化合物。
(3)(1)または(2)の化合物を含む一重項酸素発生剤。
(4)(3)の一重項酸素発生剤を含む癌治療薬。
(5)癌治療のための一般式(I)~(IV)のいずれかで示される化合物。
(6)一般式(I)~(IV)のいずれかで示される化合物を患者に投与する工程を含む、癌の治療方法。
(7)一重項酸素を発生させるための一般式(I)~(IV)のいずれかで示される化合物の使用。
(8)一般式(I)~(IV)のいずれかで示される化合物に光を照射する工程を含む、一重項酸素の発生方法。
That is, the present invention is as follows.
(1) A compound represented by any one of the following general formulas (I) to (IV).
(2) A compound represented by the following (I-1), (II-1) or (III-1).
(3) A singlet oxygen generator containing the compound of (1) or (2).
(4) A cancer therapeutic agent comprising the singlet oxygen generator (3).
(5) A compound represented by any one of formulas (I) to (IV) for cancer treatment.
(6) A method for treating cancer, comprising a step of administering a compound represented by any one of the general formulas (I) to (IV) to a patient.
(7) Use of a compound represented by any one of formulas (I) to (IV) for generating singlet oxygen.
(8) A method for generating singlet oxygen, comprising a step of irradiating a compound represented by any one of the general formulas (I) to (IV) with light.
 本発明の化合物は、1.一重項酸素の生成効率、2.細胞による取り込み効率、3.腫瘍への選択的集積生、の三つの性能が同時に向上しており、癌治療効果が著しく向上している。本発明の化合物は600~800nmの可視光でも励起することができるため、人体への浸透距離も長く、深部においても一重項酸素を発生させることができるという利点も有している。 The compound of the present invention is 1. 1. Singlet oxygen production efficiency; 2. Uptake efficiency by cells; The three performances of selective accumulation in tumors are improved at the same time, and the cancer treatment effect is remarkably improved. Since the compound of the present invention can be excited even by visible light of 600 to 800 nm, it has a long penetration distance into the human body and has the advantage that singlet oxygen can be generated even in the deep part.
SiC4とC4の一重項酸素のスペクトル。Singlet oxygen spectrum of SiC 4 and C 4 . 担癌ヌードマウスにC4(左)またはSiC4(右)を投与した後に光照射を行った結果を示す図(写真)。Shows the results of light irradiation after administration C 4 (left) or SiC 4 (right) tumor-bearing nude mice (photograph). SiC4を投与し、光照射した後の腫瘍サイズの経時変化を示す図。The SiC 4 was administered, shows the time course of tumor size after irradiation. 薬剤(C4、SiC4またはSiS4)を含む培地で培養した癌細胞の蛍光像を示す図(写真)。It shows the fluorescence images of cancer cells cultured in a medium containing the drug (C 4, SiC 4 or SiS 4) (photograph). 薬剤(C4、SiC4またはSiS4)を含む培地で培養した癌細胞に光照射を行った際の細胞生存率の変化を示す図。Agent (C 4, SiC 4 or SiS 4) shows changes in the cell survival rate when subjected to light irradiation in cancer cells cultured in a medium containing. 薬剤(C4、SiC4またはSiS4)を静脈注射した担癌ヌードマウスの蛍光像(写真)。Fluorescence image (photograph) of a tumor-bearing nude mouse intravenously injected with a drug (C 4 , SiC 4 or SiS 4 ). 担癌ヌードマウスの癌組織、筋肉、血液におけるSiC4化合物の濃度の経時変化を示す図。Cancer tissue tumor-bearing nude mice, muscle, shows the time course of concentration of SiC 4 compound in the blood.
 以下に本発明を詳しく説明する。
 本発明において、「一重項酸素発生剤」とは、光を照射することによって一重項酸素を発生しうる物質をいう。
 本発明の一重項酸素発生剤は下記一般式(I)~(IV)で表される化合物群から選ばれる1種類以上の化合物を含む。
Figure JPOXMLDOC01-appb-C000005
The present invention is described in detail below.
In the present invention, the “singlet oxygen generator” refers to a substance that can generate singlet oxygen when irradiated with light.
The singlet oxygen generator of the present invention contains one or more compounds selected from the group of compounds represented by the following general formulas (I) to (IV).
Figure JPOXMLDOC01-appb-C000005
 一般式(I)において、R1~R20の少なくとも1つ(好ましくは3個以上、より好ましくは3~8個、特に好ましくは4~8個)は下記(i)~(ii)より独立して選ばれる置換基であり、R1~R20の少なくとも1つ(好ましくは4個以上、より好ましくは4~8個)は下記(a)の置換基である。
 一般式(II)において、R1~R24の少なくとも1つ(好ましくは3個以上、より好ましくは3~8個、特に好ましくは4~8個)は下記(i)~(ii)より独立して選ばれる置換基であり、R1~R24の少なくとも1つ(好ましくは4個以上、より好ましくは4~8個)は下記(a)の置換基である。
 一般式(III)において、R1~R28の少なくとも1つ(好ましくは3個以上、より好ましくは3~8個、特に好ましくは4~8個)は下記(i)~(ii)より独立して選ばれる置換基であり、R1~R28の少なくとも1つ(好ましくは4個以上、より好ましくは4~8個)は下記(a)の置換基である。
 一般式(IV)において、R1~R16の少なくとも1つ(好ましくは3個以上、より好ましくは3~8個、特に好ましくは4~8個)は下記(i)~(ii)より独立して選ばれる置換基であり、R1~R16の少なくとも1つ(好ましくは4個以上、より好ましくは4~8個)は下記(a)の置換基である。
 (i)と(ii)では、(i)がより好ましい。
In the general formula (I), at least one of R 1 to R 20 (preferably 3 or more, more preferably 3 to 8, particularly preferably 4 to 8) is independent of the following (i) to (ii) And at least one of R 1 to R 20 (preferably 4 or more, more preferably 4 to 8) is the substituent of the following (a).
In the general formula (II), at least one of R 1 to R 24 (preferably 3 or more, more preferably 3 to 8, particularly preferably 4 to 8) is independent of the following (i) to (ii) And at least one of R 1 to R 24 (preferably 4 or more, more preferably 4 to 8) is the substituent of the following (a).
In the general formula (III), at least one of R 1 to R 28 (preferably 3 or more, more preferably 3 to 8, particularly preferably 4 to 8) is independent of the following (i) to (ii) And at least one of R 1 to R 28 (preferably 4 or more, more preferably 4 to 8) is the substituent of the following (a).
In the general formula (IV), at least one of R 1 to R 16 (preferably 3 or more, more preferably 3 to 8, particularly preferably 4 to 8) is independent of the following (i) to (ii) And at least one of R 1 to R 16 (preferably 4 or more, more preferably 4 to 8) is the substituent of the following (a).
In (i) and (ii), (i) is more preferable.
Figure JPOXMLDOC01-appb-C000006
 一般式(i)~(ii)において、Ra、Rb、Rcは独立して水素、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、フェニル、メトキシ、エトキシ、トリメチルシリルより選ばれる置換基である。またnは1以上の整数であり、好ましくは1~5の整数である。
Figure JPOXMLDOC01-appb-C000006
In the general formulas (i) to (ii), Ra, Rb and Rc are independently a substituent selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy and trimethylsilyl. It is. N is an integer of 1 or more, preferably an integer of 1 to 5.
Figure JPOXMLDOC01-appb-C000007
 一般式(a)においてRa、Rbは独立して水素、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、フェニル、メトキシ、エトキシ、トリメチルシリルより選ばれる置換基である。またmは0以上の整数であり、好ましくは0~5の整数である。
 なお、COO-はNa+、K+、Mg2+、Ca2+などのイオンが配位していてもよいし、水素原子が結合していてもよい。
 また、上記一般式(I)~(IV)の化合物においては、Rn(nはそれぞれ1~20、1~24、1~28及び1~16の整数)の少なくとも1つが(i)~(ii)より選ばれる置換基であり、少なくとも1つが(a)の置換基であればよく、それ以外のRnは水素、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、フェニル、メトキシ、エトキシ、トリメチルシリルより選ばれる置換基である。
Figure JPOXMLDOC01-appb-C000007
In the general formula (a), Ra and Rb are each independently a substituent selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy, and trimethylsilyl. M is an integer of 0 or more, preferably an integer of 0 to 5.
Note that COO may be coordinated with ions such as Na + , K + , Mg 2+ , and Ca 2+, or may be bonded with a hydrogen atom.
In the compounds of the above general formulas (I) to (IV), at least one of R n (n is an integer of 1 to 20, 1 to 24, 1 to 28, and 1 to 16, respectively) is (i) to ( ii) is a substituent selected from the above, and at least one of them may be the substituent of (a), and other R n is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, It is a substituent selected from methoxy, ethoxy and trimethylsilyl.
 上記一般式(I)で表される化合物は、例えば、後述の合成例1のようにして合成することができる。
 上記一般式(II)で表される化合物は、例えば、後述の合成例2のようにして合成することができる。
 上記一般式(III)で表される化合物は、例えば、後述の合成例3のようにして合成することができる。
The compound represented by the general formula (I) can be synthesized, for example, as in Synthesis Example 1 described later.
The compound represented by the general formula (II) can be synthesized, for example, as in Synthesis Example 2 described later.
The compound represented by the general formula (III) can be synthesized, for example, as in Synthesis Example 3 described later.
 なお、一般式(I)~(III)で表される化合物においては、少なくとも1つのベンゼン環の3位と5位に(i)~(ii)より独立して選ばれる置換基と(a)の置換基が導入されていることが特に好ましい。 In the compounds represented by the general formulas (I) to (III), the substituents independently selected from (i) to (ii) at the 3-position and 5-position of at least one benzene ring; It is particularly preferable that the above substituent is introduced.
 上記一般式(IV)で表される化合物は、例えば、次のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000008
The compound represented by the general formula (IV) can be synthesized, for example, as follows.
Figure JPOXMLDOC01-appb-C000008
 本発明の一重項酸素発生剤として特に好ましい形態としては、下記式(I-1)、(II-1)および(III-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
As a particularly preferred form of the singlet oxygen generator of the present invention, compounds represented by the following formulas (I-1), (II-1) and (III-1) can be mentioned.
Figure JPOXMLDOC01-appb-C000009
 本発明の一重項酸素発生剤は、医薬製剤の製造法で一般的に用いられている公知の手段に従って、上記一般式(I)~(IV)から選択される化合物をそのままあるいは薬理学的に許容される担体と混合して、例えば、注射剤等の医薬製剤として、経口的または非経口的(例、局所、静脈投与等)に投与することができる。なお、一般式(I)~(IV)の化合物は癌組織に蓄積しやすいため、単独で投与してもよいが、リポソームなどを用いた薬品輸送システム(DDS)の手法により、標的組織に到達しやすいような形で投与してもよい。
 なお、一般式(I)~(IV)の化合物は環の中心にZn2+、Cu2+(II)、Ca2+、Mg2+などの金属が結合したものを用いることもできる。
The singlet oxygen generator of the present invention is a compound selected from the above general formulas (I) to (IV) as it is or pharmacologically according to known means generally used in the production of pharmaceutical preparations. It can be mixed with an acceptable carrier and administered orally or parenterally (eg, topical, intravenous administration, etc.) as a pharmaceutical preparation such as an injection. The compounds of general formulas (I) to (IV) are easy to accumulate in cancer tissue and may be administered alone, but they reach the target tissue by a drug delivery system (DDS) method using liposomes. It may be administered in a form that is easy to do.
As the compounds of the general formulas (I) to (IV), those in which a metal such as Zn 2+ , Cu 2+ (II), Ca 2+ , Mg 2+ is bonded to the center of the ring can also be used.
 一般式(I)~(IV)の化合物の製剤中の含有量は、製剤全体の約0.01ないし約100重量%である。一般式(I)~(IV)の化合物の投与量は、投与対象、対象臓器、症状、投与方法などにより異なり特に制限されないが、一般的に、一回の投与あたり、約0.1~1000mg、好ましくは約1.0~100mgである。 The content of the compounds of the general formulas (I) to (IV) in the preparation is about 0.01 to about 100% by weight of the whole preparation. The dose of the compounds of the general formulas (I) to (IV) varies depending on the administration subject, target organ, symptom, administration method, etc., and is not particularly limited, but is generally about 0.1 to 1000 mg per administration. , Preferably about 1.0 to 100 mg.
 薬理学的に許容される担体としては、例えば固形製剤における賦形剤、滑沢剤、結合剤及び崩壊剤、あるいは液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤及び無痛化剤等が挙げられる。更に必要に応じ、通常の防腐剤、抗酸化剤、着色剤、甘味剤、吸着剤、湿潤剤等の添加物を適宜、適量用いることもできる。 Examples of pharmacologically acceptable carriers include excipients, lubricants, binders and disintegrants in solid formulations, or solvents, solubilizers, suspending agents, isotonic agents, buffers in liquid formulations. And soothing agents. If necessary, additives such as conventional preservatives, antioxidants, colorants, sweeteners, adsorbents, wetting agents and the like can be used in appropriate amounts.
 一重項酸素を発生させて光線力学療法(photodynamic therapy)に用いるためには、一般式(I)~(IV)を投与した後に、適当な波長の光を照射する。
 照射時間は、患者の年齢や性別、疾患の種類や程度、光源と患部との距離などによって適宜選定される。波長は一重項酸素を発生させうる波長であれば特に制限されないが、光線力学療法を行う場合は600~800nmが好ましい。照射は体外から行ってもよいし、光ファイバーなどを標的組織近傍に挿入して行ってもよい。また、白血病患者から骨髄を取り出して、インビトロで一般式(I)~(IV)の化合物による処理をし、処理された骨髄を患者に戻すというような態様も含む。
In order to generate singlet oxygen and use it for photodynamic therapy, light of an appropriate wavelength is irradiated after administration of the general formulas (I) to (IV).
The irradiation time is appropriately selected depending on the age and sex of the patient, the type and degree of the disease, the distance between the light source and the affected part, and the like. The wavelength is not particularly limited as long as it is a wavelength capable of generating singlet oxygen, but 600 to 800 nm is preferable when performing photodynamic therapy. Irradiation may be performed from outside the body, or may be performed by inserting an optical fiber or the like in the vicinity of the target tissue. Also included are embodiments in which bone marrow is removed from a leukemia patient, treated with compounds of general formulas (I)-(IV) in vitro, and the treated bone marrow is returned to the patient.
 一重項酸素を発生させることにより細胞を破壊することができる。したがって、本発明の一重項酸素発生剤を適用することのできる疾患は、一重項酸素を発生させて細胞を破壊することによって治療されうるものであれば特に制限されないが、癌、移植片対宿主疾患、移植片拒絶、自己免疫疾患およびT細胞仲介性免疫アレルギー、細菌の感染症、ウイルス感染、加齢性黄斑変性、にきびなどが例示される。このなかでは、癌が特に好ましい。癌の種類は特に制限されないが、肺癌、悪性リンパ腫(例えば、細網肉腫、リンパ肉腫、ホジキン病等)、消化器癌(例えば、胃癌、胆のう・胆管癌、膵臓癌、肝癌、結腸癌、直腸癌等)、乳癌、卵巣癌、播種性多発性骨髄腫、膀胱癌、白血病(例えば、慢性骨髄性白血病の急性転化を含む急性白血病等)、腎臓癌、および前立腺癌等が例示される。 The cells can be destroyed by generating singlet oxygen. Therefore, the disease to which the singlet oxygen generator of the present invention can be applied is not particularly limited as long as it can be treated by generating singlet oxygen and destroying cells. Examples include diseases, transplant rejection, autoimmune diseases and T cell-mediated immune allergy, bacterial infections, viral infections, age-related macular degeneration, acne and the like. Of these, cancer is particularly preferred. The type of cancer is not particularly limited, but lung cancer, malignant lymphoma (eg, reticulosarcoma, lymphosarcoma, Hodgkin's disease, etc.), digestive cancer (eg, gastric cancer, gallbladder / bile duct cancer, pancreatic cancer, liver cancer, colon cancer, rectum) Cancer), breast cancer, ovarian cancer, disseminated multiple myeloma, bladder cancer, leukemia (for example, acute leukemia including acute transformation of chronic myeloid leukemia), kidney cancer, prostate cancer and the like.
 以下に実施例を示し、本発明をさらに具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
合成例1
<5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)ポルフィリン ナトリウム塩の合成>
 5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)ポルフィリンナトリウム塩(以下、SiC4と呼ぶことがある)は以下の手順で合成した。
 1,3,5-トリブロモベンゼンを乾燥ジエチルエーテル中、-78℃で等量のn-ブチルリチウムでリチオ化し、次いでクロロトリメチルシランと反応させたところ、95%の収率で3,5-ジブロモトリメチルシリルベンゼンが得られた。
 次にこれを乾燥ジエチルエーテル中、-78 ℃で等量のn-ブチルリチウムでリチオ化し、次いでDMFと反応させたところ、45%の収率で3-ブロモ-5-トリメチルシリルベンズアルデヒドが得られた。
 これを乾燥トルエンに溶かし、p-トルエンスルフォン酸存在化でエチレングリコールと反応させ、90%の収率で3-ブロモ-5-トリメチルシリルベンズアルデヒド エチレンアセタールを得た。
 次にこれを乾燥THF中でマグネシウムと反応させた後、0 ℃で二酸化炭素と反応させ、40%の収率で3-カルボキシ-5-トリメチルシリルベンズアルデヒド エチレンアセタールを得た。これを塩酸で処理することにより、3-カルボキシ-5-トリメチルシリルベンズアルデヒドを得た。
 次に、これをDMF中において炭酸カリウム存在下でヨウ化エチルと反応させ、3-カルボキシ-5-トリメチルシリルベンズアルデヒド エチルエステルを得た。
 これをクロロホルム中でピロール、フッ化ホウ素エーテル錯体と反応させ、その後DDQで処理することにより、5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)ポルフィリン エチルエステルを得た。
 最後にこれを水酸化ナトリウムで処理することにより、5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)ポルフィリンナトリウム塩を得た。
Figure JPOXMLDOC01-appb-C000010
Synthesis example 1
<Synthesis of 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin sodium salt>
5,10,15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin sodium salt (hereinafter sometimes referred to as SiC 4 ) was synthesized by the following procedure.
1,3,5-Tribromobenzene was lithiated with an equal amount of n-butyllithium in dry diethyl ether at -78 ° C. and then reacted with chlorotrimethylsilane to give 95% yield in 3,5- Dibromotrimethylsilylbenzene was obtained.
This was then lithiated with an equal amount of n-butyllithium in dry diethyl ether at −78 ° C. and then reacted with DMF to give 3-bromo-5-trimethylsilylbenzaldehyde in 45% yield. .
This was dissolved in dry toluene and reacted with ethylene glycol in the presence of p-toluenesulfonic acid to obtain 3-bromo-5-trimethylsilylbenzaldehyde ethylene acetal in 90% yield.
Next, this was reacted with magnesium in dry THF and then with carbon dioxide at 0 ° C. to obtain 3-carboxy-5-trimethylsilylbenzaldehyde ethylene acetal in a yield of 40%. This was treated with hydrochloric acid to obtain 3-carboxy-5-trimethylsilylbenzaldehyde.
Next, this was reacted with ethyl iodide in DMF in the presence of potassium carbonate to obtain 3-carboxy-5-trimethylsilylbenzaldehyde ethyl ester.
This was reacted with pyrrole and boron fluoride ether complex in chloroform, and then treated with DDQ to obtain 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin ethyl ester.
Finally, this was treated with sodium hydroxide to obtain 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin sodium salt.
Figure JPOXMLDOC01-appb-C000010
5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)ポルフィリンの1H NMRデータを以下に示す。
δH (300 MHz, CD3CN) 9.40 (8H, s, pyrrole β-H), 9.35 (4H, s, ph-H), 9.19 (4H, s, ph-H) , 9.16 (4H, s, ph-H), 0.99 (36H, s, Me) and -2.29 (2H, s, N-H).
1 H NMR data of 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin is shown below.
δH (300 MHz, CD 3 CN) 9.40 (8H, s, pyrrole β-H), 9.35 (4H, s, ph-H), 9.19 (4H, s, ph-H), 9.16 (4H, s, ph -H), 0.99 (36H, s, Me) and -2.29 (2H, s, NH).
合成例2
<5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)クロリン ナトリウム塩の合成>
 5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)ポルフィリン エチルエステルを乾燥ピリジン中でp-トルエンスルフォニルヒドラジドと炭酸カリウムで処理した後、クロラニルで処理することにより5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)クロリン エチルエステルを得た。これを水酸化ナトリウムで処理することにより、5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)クロリン ナトリウム塩を得た。
Figure JPOXMLDOC01-appb-C000011
Synthesis example 2
<Synthesis of 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) chlorine sodium salt>
5,10,15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin ethyl ester is treated with p-toluenesulfonyl hydrazide and potassium carbonate in dry pyridine, followed by treatment with chloranil. 15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) chlorin ethyl ester was obtained. This was treated with sodium hydroxide to obtain 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) chlorin sodium salt.
Figure JPOXMLDOC01-appb-C000011
合成例3
<5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)バクテリオクロリン ナトリウム塩の合成>
 5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)ポルフィリン エチルエステルを乾燥ピリジン中でp-トルエンスルフォニルヒドラジドと炭酸カリウムで処理することにより5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)バクテリオクロリン エチルエステルを得た。これを水酸化ナトリウムで処理することにより、5,10,15,20-テトラキス(3-カルボキシル-5-トリメチルシリルフェニル)バクテリオクロリン ナトリウム塩を得た。
Figure JPOXMLDOC01-appb-C000012
Synthesis example 3
<Synthesis of 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) bacteriochlorin sodium salt>
5,10,15,20-Tetrakis (3-carboxyl-5-trimethylsilylphenyl) porphyrin ethyl ester is treated with p-toluenesulfonyl hydrazide and potassium carbonate in dry pyridine to give 5,10,15,20-tetrakis ( 3-carboxyl-5-trimethylsilylphenyl) bacteriochlorin ethyl ester was obtained. This was treated with sodium hydroxide to obtain 5,10,15,20-tetrakis (3-carboxyl-5-trimethylsilylphenyl) bacteriochlorin sodium salt.
Figure JPOXMLDOC01-appb-C000012
下記の実施例では下記の化合物C4を比較対象として用いた。
Figure JPOXMLDOC01-appb-C000013
In the following examples using the compound C 4 below for comparison.
Figure JPOXMLDOC01-appb-C000013
実施例1
<一重項酸素の発生>
 C4およびSiC4のそれぞれの化合物をエタノール中に吸光度0.1の濃度で溶解した後、YAG LASER(Lotis TII LS-2137U)を用いて355nmの光を照射した。一重項酸素の測定には、近赤外用光電子倍増管(浜松ホトニクスR5509-42)を用いた自作の赤外発光測定装置を用いた。なお、測定は17回行い、その平均値を図1に示した。
 その結果、λmax=1270nmの位置に、化合物によって増感された一重項酸素のりん光スペクトルが測定された。SiC4の一重項酸素生成の量子収率Φは0.72であり、C4の1.29倍であった。これにより、C4にSiを含む置換基を導入することにより一重項酸素の発生効率が上昇することがわかった。
 なお、エタノール溶液中にアルゴンガス(Ar)を注入した場合は、りん光はほとんど発生せず、このことから、観察されたスペクトルは一重項酸素によるものであることが確かめられた。
Example 1
<Generation of singlet oxygen>
Each compound of C 4 and SiC 4 was dissolved in ethanol at a concentration of 0.1, and then irradiated with 355 nm light using YAG LASER (Lotis TII LS-2137U). For the measurement of singlet oxygen, a self-made infrared emission measuring device using a near-infrared photomultiplier tube (Hamamatsu Photonics R5509-42) was used. The measurement was performed 17 times, and the average value is shown in FIG.
As a result, the phosphorescence spectrum of singlet oxygen sensitized by the compound was measured at the position of λmax = 1270 nm. The quantum yield Φ for singlet oxygen generation of SiC 4 was 0.72, 1.29 times that of C 4 . As a result, it was found that the singlet oxygen generation efficiency was increased by introducing a substituent containing Si into C 4 .
In addition, when argon gas (Ar) was injected into the ethanol solution, almost no phosphorescence was generated, which confirmed that the observed spectrum was due to singlet oxygen.
実施例2
<担癌動物における癌治療効果>
 癌細胞(SCC7:Shaojuan Zhang, Masahiro Hosaka, Toshitada Yoshihara, Kazuya Negishi, Yasuhiko Iida, Seiji Tobita, and Toshiyuki Takeuchi, Cancer Research, 2010, 70, 4490.)を植え付けたヌードマウスを用いて開発したケイ素置換基を有する治療薬SiC4(100nmol)を静脈注射して4時間後に光線力学治療を行った(400-800 nm, 28 mW/cm2, 30 min)ところ、6日後には腫瘍部位が消失し、かさぶたとなった(図2)。ケイ素置換基を持たない化合物C4ではこのような変色はほとんど見られなかった。治療後の腫瘍サイズの経時変化を図3に示す。C4では時間経過と共に腫瘍サイズは増大するが、SiC4では腫瘍が消失した。この様に、ケイ素置換基の導入により治療薬としての性能が大きく向上した。
Example 2
<Therapeutic effects of cancer in animals bearing cancer>
Silicon substituents developed using nude mice inoculated with cancer cells (SCC7: Shaojuan Zhang, Masahiro Hosaka, Toshitada Yoshihara, Kazuya Negishi, Yasuhiko Iida, Seiji Tobita, and Toshiyuki Takeuchi, Cancer Research, 2010, 70, 4490.) 4 hours after intravenous injection of the therapeutic agent SiC 4 (100 nmol) (400-800 nm, 28 mW / cm 2 , 30 min), the tumor site disappeared after 6 days, It became a scab (Figure 2). In compound C 4 having no silicon substituent, such discoloration was hardly observed. The time course of tumor size after treatment is shown in FIG. Tumor size increases over C 4 In time, the SiC 4 tumors disappeared. As described above, the performance as a therapeutic agent was greatly improved by the introduction of the silicon substituent.
実施例3
<癌細胞への取り込み評価>
 SiC4あるいはC4を15μM含む培地で12時間培養した癌細胞(U251)の蛍光イメージを図4に示す。SiC4では強い蛍光が観測されたが、C4ではほとんど蛍光は見られなかった。SiC4の蛍光量子収率(0.054)はC4のもの(0.046)とほぼ同じであることから、ケイ素置換基を導入することにより細胞による取り込み効率が著しく向上することがわかった。また、再表2007/023766号公報に記述した下記の化合物(SiS4)と比較してもSiC4の方が強い蛍光を示している。SiS4の蛍光量子収率は0.059であり、SiC4と同等の量子収率であるため、SiS4より今回の化合物であるSiC4の方が癌細胞に取り込まれやすいことがわかった。
Figure JPOXMLDOC01-appb-C000014
Example 3
<Evaluation of uptake into cancer cells>
FIG. 4 shows fluorescence images of cancer cells (U251) cultured for 12 hours in a medium containing 15 μM SiC 4 or C 4 . Strong fluorescence was observed with SiC 4 , but almost no fluorescence was observed with C 4 . Since the fluorescence quantum yield (0.054) of SiC 4 is almost the same as that of C 4 (0.046), it was found that introduction of silicon substituents significantly improved the uptake efficiency by cells. In addition, SiC 4 shows stronger fluorescence than the following compound (SiS 4 ) described in the reissued 2007/023766 publication. Fluorescence quantum yield of SiS 4 is 0.059, since a SiC 4 equivalent quantum yield, towards the SiC 4 is present compounds than SiS 4 was found to be easily taken into the cancer cells.
Figure JPOXMLDOC01-appb-C000014
実施例4
<培養癌細胞に対する効果>
 癌細胞(U251: Masanori Aihara, Ken-ichi Sugawara, Seiji Torii, Masahiro Hosaka, Hideyuki Kurihara, Nobuhito Saito and Toshiyuki Takeuchi, Laboratory Investigation (2004) 84, 1581)を用いて培養細胞レベルにおいて薬剤の活性を評価したところ、ケイ素置換基を導入したSiC4(15μM)ではわずかな光照射線量(8 J/cm2)でも癌細胞をほぼ100%死滅させることができたが、ケイ素置換基を持たないC4では同程度の光照射を行っても癌細胞を殺すことはほとんどできなかった(図5)。この結果から、ケイ素置換基の導入により、一重項酸素の生成効率と細胞による取り込み効率の両方が向上し、薬剤の効率を高めていることがわかる。また、培養癌細胞に対するSiC4の活性を、SiS4と比較すると、SiC4はSiS4のおよそ6倍の活性を持つこともわかった。
Example 4
<Effects on cultured cancer cells>
The activity of drugs was evaluated at the level of cultured cells using cancer cells (U251: Masanori Aihara, Ken-ichi Sugawara, Seiji Torii, Masahiro Hosaka, Hideyuki Kurihara, Nobuhito Saito and Toshiyuki Takeuchi, Laboratory Investigation (2004) 84, 1581). However, SiC 4 with a silicon substituent introduced (15 μM) was able to kill almost 100% of the cancer cells even with a slight light irradiation dose (8 J / cm 2 ), but with C 4 without a silicon substituent, Even if light irradiation of the same degree was performed, the cancer cells could hardly be killed (FIG. 5). From this result, it can be seen that the introduction of the silicon substituent improves both the singlet oxygen generation efficiency and the cellular uptake efficiency, and increases the drug efficiency. In addition, when comparing the activity of SiC 4 against cultured cancer cells with that of SiS 4 , it was also found that SiC 4 has an activity approximately 6 times that of SiS 4 .
実施例5
<担癌動物における腫瘍集積性の評価>
 さらにケイ素置換基による薬剤の腫瘍集積性を明らかにするために、担癌ヌードマウスを用いて、薬剤の局在評価を行った(図6)。図6では腫瘍の部位を○で囲って示している。SiS4(100nmol)をマウスの尾から静脈注射し、2時間後の蛍光イメージを図6下に示す。SiS4は尾に留まっており、全身に輸送されないことがわかった。さらに投与から6時間後にはマウスが死亡してしまい、毒性があった。そのため、SiS4は光線力学療法には用いることができないことが明らかになった。これに対しSiC4やC4では、静脈注射すると全身に行き渡り、毒性も無く、SiS4が持つ問題点を解決できた。C4とSiC4を静脈注射から24時間後の蛍光イメージをそれぞれ図6上および中に示す。C4では腫瘍部分からはほとんど薬剤による蛍光は観測されなかったが、SiC4では腫瘍から強い蛍光が観測された。このことからケイ素置換基の導入により、腫瘍集積性も向上することがわかった。
Example 5
<Evaluation of tumor accumulation in cancer-bearing animals>
Furthermore, in order to clarify the tumor accumulation property of the drug by the silicon substituent, the localization of the drug was evaluated using a tumor bearing nude mouse (FIG. 6). In FIG. 6, the tumor site is surrounded by a circle. SiS 4 (100 nmol) was intravenously injected from the tail of the mouse, and the fluorescence image after 2 hours is shown in the lower part of FIG. SiS 4 remained in the tail and was found not transported throughout the body. Furthermore, 6 hours after the administration, the mouse died and was toxic. Therefore, it became clear that SiS 4 cannot be used for photodynamic therapy. In contrast, SiC 4 and C 4 spread throughout the body when injected intravenously, are not toxic, and have solved the problems of SiS 4 . The fluorescence images 24 hours after intravenous injection of C 4 and SiC 4 are shown in FIG. In C 4 , almost no fluorescence due to the drug was observed from the tumor part, but in SiC 4 , strong fluorescence was observed from the tumor. From this, it was found that the tumor accumulation was improved by the introduction of the silicon substituent.
 また、図7には、担癌マウスにおける各組織へのSiC4の集積性を定量評価した。その結果、投与後12時間において腫瘍中の濃度を1とすると、筋肉中の濃度は0.25、血液中の濃度は0.46であり、SiC4は腫瘍に選択的に集まっていることがわかった。 Moreover, in FIG. 7, the accumulation property of SiC 4 in each tissue in the cancer-bearing mouse was quantitatively evaluated. As a result, assuming that the concentration in the tumor was 1 at 12 hours after administration, the concentration in the muscle was 0.25, the concentration in the blood was 0.46, and it was found that SiC 4 was selectively collected in the tumor.
 以上の結果から、再表2007/023766号公報に記載されたSiS4が持つ問題はスルホン酸基をカルボキシル基に変更することにより解決できた。さらに薬剤にケイ素置換基を導入することにより、一重項酸素の生成効率、細胞による取り込み効率、腫瘍集積性が向上し、癌の治療効果が向上することがわかった。 From the above results, the problem of SiS 4 described in Table 2007/023766 was solved by changing the sulfonic acid group to a carboxyl group. Furthermore, it was found that by introducing a silicon substituent into the drug, the generation efficiency of singlet oxygen, the uptake efficiency by cells, and the tumor accumulation were improved, and the therapeutic effect of cancer was improved.
 本発明の含ケイ素置換基を導入した化合物は癌の光治療などに用いられる光線力学療法(photodynamic therapy)に好適に用いることができる。 The compound introduced with a silicon-containing substituent of the present invention can be suitably used for photodynamic therapy used for phototherapy of cancer.

Claims (4)

  1. 下記一般式(I)~(IV)のいずれかで表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    一般式(I)におけるR1~R20、一般式(II)におけるR1~R24、一般式(III)におけるR1~R28、および一般式(IV)におけるR1~R16のそれぞれにおいて、少なくとも1つは下記(i)あるいは(ii)より選ばれる置換基であり、少なくとも1つは下記(a)の置換基である。
    Figure JPOXMLDOC01-appb-C000002
    一般式(i)あるいは(ii)においてRa、Rb、Rcは独立して水素、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、フェニル、メトキシ、エトキシ、トリメチルシリルより選ばれる置換基である。またnは1以上の整数である。
    Figure JPOXMLDOC01-appb-C000003
    一般式(a)においてRa、Rbは独立して水素、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、フェニル、メトキシ、エトキシ、トリメチルシリルより選ばれる置換基である。またmは0以上の整数である。
    A compound represented by any one of the following general formulas (I) to (IV).
    Figure JPOXMLDOC01-appb-C000001
    R 1 to R 20 in the general formula (I), R 1 to R 24 in the general formula (II), R 1 to R 28 in the general formula (III), and R 1 to R 16 in the general formula (IV). In the formula, at least one is a substituent selected from the following (i) or (ii), and at least one is a substituent (a) below.
    Figure JPOXMLDOC01-appb-C000002
    In general formula (i) or (ii), Ra, Rb, and Rc are each independently a substituent selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy, and trimethylsilyl. is there. N is an integer of 1 or more.
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (a), Ra and Rb are each independently a substituent selected from hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, methoxy, ethoxy, and trimethylsilyl. M is an integer of 0 or more.
  2. 下記化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    The compound of Claim 1 which is the following compound.
    Figure JPOXMLDOC01-appb-C000004
  3. 請求項1または2に記載の化合物を含む、一重項酸素発生剤。 A singlet oxygen generator comprising the compound according to claim 1 or 2.
  4. 請求項3に記載の一重項酸素発生剤を含む癌治療薬。 A cancer therapeutic agent comprising the singlet oxygen generator according to claim 3.
PCT/JP2011/069070 2010-09-02 2011-08-24 Compound having silicon-containing substituent introduced thereto, and singlet oxygen-generating agent and cancer therapeutic comprising same WO2012029609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531819A JP5843113B2 (en) 2010-09-02 2011-08-24 Compound having silicon-containing substituent introduced therein, singlet oxygen generator and cancer therapeutic agent containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196568 2010-09-02
JP2010-196568 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029609A1 true WO2012029609A1 (en) 2012-03-08

Family

ID=45772702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069070 WO2012029609A1 (en) 2010-09-02 2011-08-24 Compound having silicon-containing substituent introduced thereto, and singlet oxygen-generating agent and cancer therapeutic comprising same

Country Status (2)

Country Link
JP (1) JP5843113B2 (en)
WO (1) WO2012029609A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194606A1 (en) * 2014-06-17 2015-12-23 国立大学法人大阪大学 Fluorescent probe, singlet oxygen detection agent, and singlet oxygen detection method
WO2018216679A1 (en) * 2017-05-22 2018-11-29 国立大学法人京都大学 Tetraphenylporphyrin derivative
EP3960750A1 (en) 2020-09-01 2022-03-02 M.T.3, Inc. Compound or salt thereof, cancer treatment agent, photosensitizing agent, and fluorescent probe composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540121A (en) * 1991-08-07 1993-02-19 Hitachi Chem Co Ltd Pigment for fluorescence labeling, organism-derived substance labeled with pigment for fluorescence labeling and reagent containing them
JP2002523509A (en) * 1998-08-28 2002-07-30 デスティニー ファーマ リミテッド Porphyrin derivatives, their use in photodynamic therapy and medical devices containing them
JP2007055978A (en) * 2005-08-26 2007-03-08 Gunma Univ Trimethylsilyl group-containing porphyrin dye, photoelectric transducer and dye-sensitized solar cell using the same
JP2008274082A (en) * 2007-04-27 2008-11-13 Chisso Corp Dye containing silicon-containing substituents and dye-sensitized solar cell using the dye
JP2009280702A (en) * 2008-05-22 2009-12-03 Chisso Corp Porphyrin complex, photoelectric conversion device, and dye-sensitized solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540121A (en) * 1991-08-07 1993-02-19 Hitachi Chem Co Ltd Pigment for fluorescence labeling, organism-derived substance labeled with pigment for fluorescence labeling and reagent containing them
JP2002523509A (en) * 1998-08-28 2002-07-30 デスティニー ファーマ リミテッド Porphyrin derivatives, their use in photodynamic therapy and medical devices containing them
JP2007055978A (en) * 2005-08-26 2007-03-08 Gunma Univ Trimethylsilyl group-containing porphyrin dye, photoelectric transducer and dye-sensitized solar cell using the same
JP2008274082A (en) * 2007-04-27 2008-11-13 Chisso Corp Dye containing silicon-containing substituents and dye-sensitized solar cell using the dye
JP2009280702A (en) * 2008-05-22 2009-12-03 Chisso Corp Porphyrin complex, photoelectric conversion device, and dye-sensitized solar cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194606A1 (en) * 2014-06-17 2015-12-23 国立大学法人大阪大学 Fluorescent probe, singlet oxygen detection agent, and singlet oxygen detection method
JPWO2015194606A1 (en) * 2014-06-17 2017-06-29 国立大学法人大阪大学 Fluorescent probe, singlet oxygen detection agent, or singlet oxygen detection method
US10564164B2 (en) 2014-06-17 2020-02-18 Osaka University Fluorescent probe, singlet oxygen detection agent, and singlet oxygen detection method
WO2018216679A1 (en) * 2017-05-22 2018-11-29 国立大学法人京都大学 Tetraphenylporphyrin derivative
CN110650962A (en) * 2017-05-22 2020-01-03 国立大学法人京都大学 Tetraphenylporphyrin derivatives
JPWO2018216679A1 (en) * 2017-05-22 2020-03-26 国立大学法人京都大学 Tetraphenylporphyrin derivative
US11008330B2 (en) 2017-05-22 2021-05-18 Kyoto University Tetraphenylporphyrin derivative
JP7223218B2 (en) 2017-05-22 2023-02-16 国立大学法人京都大学 Tetraphenylporphyrin derivative
EP3960750A1 (en) 2020-09-01 2022-03-02 M.T.3, Inc. Compound or salt thereof, cancer treatment agent, photosensitizing agent, and fluorescent probe composition
US11643430B2 (en) 2020-09-01 2023-05-09 M.T.3, Inc. Porphyrin compound or salt thereof, cancer therapeutic agent, photosensitizer, and fluorescent probe

Also Published As

Publication number Publication date
JPWO2012029609A1 (en) 2013-10-28
JP5843113B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US10780045B2 (en) Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof
US10806694B2 (en) Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof
CN107624114B (en) Low molecular weight derivatives of carboxamide halogenated porphyrins, namely chlorins and bacteriochlorins, and uses thereof
CN1158284C (en) Porphyrins and their use as photosensitizer
PT2322173T (en) Cationic bacteriochlorophyll derivatives and uses thereof
WO2021143829A1 (en) Non-peripheral quaternary ammonium group modified zinc phthalocyanine and method for preparation thereof and application thereof
WO2012153493A1 (en) Photodynamic therapy or diagnostic agent, using infrared-spectrum light
EP1567147B1 (en) Water-soluble anionic bacteriochlorophyll derivatives and their uses
CN113461697A (en) Chlorin compound and preparation method and application thereof
JP5843113B2 (en) Compound having silicon-containing substituent introduced therein, singlet oxygen generator and cancer therapeutic agent containing the same
AU2018282411A1 (en) Chlorin derivative useful in photodynamic therapy and diagnosis
Warszyńska et al. Photodynamic therapy combined with immunotherapy: Recent advances and future research directions
CN102363619A (en) Water soluble protoporphyrin compound and preparation method and use thereof
CN113735886B (en) PDT compounds, methods of preparation and uses thereof
JP4899065B2 (en) Singlet oxygen generator with silicon-containing substituents
US20200147216A1 (en) Disease detection and treatment through activation of compounds using external energy
ES2788725T3 (en) Atropisomers of tetraphenylbacteriochlorins and halogenated chlorins and their use in photodynamic therapy
WO2014071138A1 (en) Disease detection and treatment through activation of compounds using external energy
WO2022146292A1 (en) A drug for the treatment of cervical cancer
CN107417734A (en) A kind of platinum complex with two-Photon Absorption Properties and its preparation method and application
BRPI0802649A2 (en) porphyric derivatives, process for obtaining and pharmaceutical composition comprising the same

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821626

Country of ref document: EP

Kind code of ref document: A1