WO2012029599A1 - Resin film manufacturing method, resin film manufacturing device, resin film, polarizing plate, and liquid crystal display device - Google Patents

Resin film manufacturing method, resin film manufacturing device, resin film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2012029599A1
WO2012029599A1 PCT/JP2011/069022 JP2011069022W WO2012029599A1 WO 2012029599 A1 WO2012029599 A1 WO 2012029599A1 JP 2011069022 W JP2011069022 W JP 2011069022W WO 2012029599 A1 WO2012029599 A1 WO 2012029599A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
gripping
film
resin
smooth
Prior art date
Application number
PCT/JP2011/069022
Other languages
French (fr)
Japanese (ja)
Inventor
田中 博文
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012029599A1 publication Critical patent/WO2012029599A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/20Edge clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a resin film manufacturing method, a resin film manufacturing apparatus, a resin film obtained by the manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate. .
  • Resin films are used in various fields, such as liquid crystal display devices, in view of their chemical characteristics, mechanical characteristics, electrical characteristics, and the like.
  • a transparent protective film for protecting various resin films for example, polarizing elements of polarizing plates, is disposed in the image display area of the liquid crystal display device.
  • a resin film for example, a resin film excellent in transparency such as a cellulose ester film is widely used.
  • an image forming apparatus particularly a liquid crystal display device used as a television receiver is required to have a large screen. Therefore, as a resin film applied to the image forming apparatus, it is required to manufacture a wide film having a wide width.
  • a method for producing such a wide film for example, a method of stretching the film can be considered.
  • the width direction of the long film that is, both side ends in the short side direction are gripped with a plurality of pairs of gripping tools.
  • a method of moving the gripping tool in a direction that gradually increases the distance between the gripping tools that form the above include those described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 in a tenter, both ends of the film are held by a plurality of clips on a tenter rail while being heated by a plurality of hot air blowing nozzles provided on the upper and lower surfaces of the film so as to face each other.
  • the tenter rail width at the stretching start point is wider than the tenter rail width at the tenter inlet from the tenter inlet to the stretching start point.
  • Patent Document 2 discloses a method for stretching a polymer film in which a polymer film is stretched at a predetermined magnification in the width direction by gripping both side edges of the polymer film with an openable / closable gripper that moves in the running direction of the polymer film. Then, after gripping the polymer film with the gripping tool, the gripping width of the polymer film is gradually increased and stretched below a predetermined magnification, and the gripping tool is urged in the closing direction by the contraction force of the stretched polymer film to grip the polymer film.
  • a method of stretching a polymer film which includes a gripping stabilization step for stabilization, and a main stretching step that is provided after the gripping stabilization step and gradually increases the gripping width of the polymer film and stretches the polymer film to a predetermined magnification.
  • Patent Document 1 it is disclosed that a method for producing a thermoplastic resin film having uniform retardation in the in-plane direction and retardation in the thickness direction can be provided.
  • Patent Document 2 it is disclosed that the occurrence of twisting in the side where the polymer film side edge, which may occur due to poor gripping, is depressed toward the center side can be suppressed.
  • the resin films obtained by these methods are not sufficiently high in uniformity of optical values such as retardation and orientation in the width direction, and the generation of foreign matters due to poor gripping cannot be suppressed.
  • the present invention has been made in view of such circumstances, and even when the resin film is stretched in the width direction, it is possible to produce a resin film in which optical values are sufficiently uniform and generation of foreign matter is suppressed. It aims at providing the manufacturing method of a resin film.
  • a resin film manufacturing apparatus that realizes a resin film manufacturing method, a resin film obtained by the resin film manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate The purpose is to provide.
  • the present inventor has inferred that when the resin film is stretched in the width direction, the optical value in the width direction becomes non-uniform as follows.
  • the present inventor is a method in which both ends in the width direction of the resin film are stretched by a plurality of pairs of gripping members, and deformed in the vicinity of the region gripped by the resin film gripping members during stretching. Found that there is a tendency to occur. When such deformation occurs, optical values such as retardation and orientation in the width direction of the obtained resin film become uneven, particularly at the end of the resin film held by the holding member, and the optical characteristics are I thought it would be inferior. As a result, the optical value was considered to be non-uniform.
  • the reason why the uniformity of the optical value could not be sufficiently increased is the reason for the vicinity of the region gripped by the resin film gripping member during stretching. It was considered that the occurrence of deformation could not be sufficiently suppressed. In the methods described in Patent Document 1 and Patent Document 2, it has not been studied to reduce the stress load applied to the resin film by the gripping member.
  • the present inventor has paid attention to the reduction of the stress load applied to the resin film by the gripping part, and as a result of various studies, has found that the above object is achieved by the present invention described below.
  • the method for producing a resin film according to the present invention includes the gripping member moving in the longitudinal direction of the resin film while gripping both side ends of the long resin film in the width direction with a plurality of gripping members.
  • the distance between the 1st holding part which has a plurality of holding members which hold one end part of a resin film among the 2nd holding part which has a plurality of holding members which hold the other end part of a resin film Is provided with a stretching process that gradually moves in the width direction of the resin film, and a plurality of gripping members used in the stretching process are in contact with one surface of the resin film when gripping the resin film.
  • It includes a smooth gripping member in which the total value of the maximum height Ry of the surface at normal temperature and the maximum height Ry of the second contact surface in contact with the other surface of the resin film at normal temperature is 1 ⁇ m to 25 ⁇ m.
  • the gripping member refers to a member that grips the resin film with a first contact surface that contacts one surface of the resin film and a second contact surface that contacts the other surface of the resin film.
  • the smooth gripping member refers to a gripping member having a total value of the maximum height Ry of the first contact surface and the second contact surface at the normal temperature of 1 ⁇ m to 25 ⁇ m among the gripping members.
  • the resin film obtained by stretching can be smoothly conveyed. This is considered to be because the deformation that can occur in the vicinity of the region gripped by the resin film gripper during stretching can be suppressed.
  • the number of smooth gripping members constituting the first gripping part is 98% or more with respect to the number of all gripping members constituting the first gripping part.
  • the number of smooth gripping members constituting the second gripping portion is preferably 98% or more with respect to the number of all gripping members constituting the second gripping portion.
  • a resin film having a sufficiently uniform optical value can be manufactured even when a gripping member other than the smooth gripping member is included as the gripping member.
  • the number of smooth gripping members constituting the first gripping part and the second gripping part is the number of all gripping members.
  • a resin film having a sufficiently uniform optical value can be manufactured even if gripping members other than the smooth gripping member are included.
  • stretch uniformly generation
  • the gripping portion Furthermore, if a gripping member different from the smooth gripping member is included as the gripping portion, the transportability of the resin film tends to decrease, but the smooth gripping member constituting the first gripping portion and the second gripping portion
  • the resin film manufacturing method having excellent transportability of the resin film even if a gripping member other than the smooth gripping member is included, as long as the total number of the gripping members satisfies 98% or more with respect to the total number of the gripping members Can provide.
  • the number of gripping members other than the smooth gripping member, wherein the gripping member adjacent to the smooth gripping member is a gripping member other than the smooth gripping member is the smooth gripping member. It is preferable that it is 5% or less with respect to the total number of other gripping members.
  • a resin film having a sufficiently uniform optical value can be manufactured even when a gripping member other than the smooth gripping member is included as the gripping member.
  • the number of gripping members other than the smooth gripping member is the total number of gripping members other than the smooth gripping member. If it satisfies 5% or less, a resin film having a sufficiently uniform optical value can be produced even if gripping members other than the smooth gripping member are included. This is considered to be because even if gripping members other than the smooth gripping member are included, they are less affected if they are dispersed. Moreover, since it can extend
  • the transportability of the resin film tends to decrease, but the number of gripping members other than the smooth gripping member is smooth gripping. As long as 5% or less is satisfied with respect to the total number of gripping members other than the member, even if gripping members other than the smooth gripping member are included, a resin film manufacturing method excellent in resin film transportability is provided. Can be provided. This is considered to be because even if gripping members other than the smooth gripping member are included, they are less affected if they are dispersed.
  • the number of smooth gripping members disposed between gripping members other than the smooth gripping member is preferably 5% or more with respect to the total number of smooth gripping members.
  • a resin film having a sufficiently uniform optical value can be manufactured even when a gripping member other than the smooth gripping member is included as the gripping member.
  • the number of smooth gripping members arranged between gripping members other than the smooth gripping member is the total number of smooth gripping members.
  • a resin film having a sufficiently uniform optical value can be produced even if a gripping member other than the smooth gripping member is included.
  • the film transportability tends to decrease, but the number of smooth gripping members arranged between gripping members other than the smooth gripping members However, if it satisfies 5% or more with respect to the total number of smooth gripping members, even if gripping members other than the smooth gripping members are included, a method for producing a resin film excellent in film transportability is provided. it can.
  • grip part has the part which goes around in the direction parallel to the surface direction of a resin film, and moves along one edge part of a resin film.
  • a plurality of second endless rotating parts that are held by the part at equal intervals and have a portion that the second gripping part circulates in a direction parallel to the surface direction of the resin film and moves along one end of the resin film It is preferable that a plurality are held at regular intervals.
  • a wet resin film containing a solvent as the resin film to be stretched in the stretching step.
  • Another method for producing a resin film of the present invention is to cast a resin solution containing a transparent resin (hereinafter also referred to as a dope) from a casting die onto a support that runs as a dope film. (Hereinafter also referred to as a web) a casting step, a peeling step in which the casting film is used as a resin film, and a peeling step from the support, and a plurality of grips on both sides in the width direction of the peeled resin film before stretching.
  • a resin solution containing a transparent resin hereinafter also referred to as a dope
  • the gripping member While gripping with the member, the gripping member moves in the longitudinal direction of the resin film, and has a first gripping portion having a plurality of gripping members for gripping one end of the resin film before stretching among the gripping members; A stretching step of moving the distance between the second gripping portion having a plurality of gripping members gripping the other end of the resin film before stretching in a direction of gradually widening in the width direction of the resin film; Used in When the number of gripping members grips the resin film before stretching, the maximum height Ry of the first contact surface that comes into contact with one surface of the resin film before stretching at room temperature and the other of the resin films before stretching A smooth gripping member having a total value of the maximum height Ry of the second contact surface in contact with the surface at the normal temperature is 1 ⁇ m to 25 ⁇ m is included.
  • the resin film manufacturing apparatus of the present invention includes a first gripping part that grips one end in the width direction of the long resin film, and a second gripping part that grips the other end of the resin film.
  • Each of the first gripping portion and the second gripping portion has a plurality of gripping members and moves in the longitudinal direction of the resin film, and the distance between the first gripping portion and the second gripping portion is The first height of contact Ry of the first contact surface that contacts one surface of the resin film when gripping the resin film is gradually increased in the width direction of the resin film, and the other height of the resin film
  • a smooth gripping member having a total value of the maximum height Ry of the second contact surface in contact with the surface at the normal temperature is 1 ⁇ m to 25 ⁇ m is included.
  • the resin film of the present invention is obtained by the method for producing a resin film of the present invention.
  • a wide resin film having a sufficiently uniform optical value can be obtained. For this reason, it can be suitably used as an optical film of a liquid crystal display device that is required to have a uniform optical value. Furthermore, it can be suitably used as an optical film for a liquid crystal display device having a large screen.
  • the polarizing plate of this invention is equipped with a polarizing element and the transparent protective film arrange
  • the resin film having a uniform optical value is applied as the transparent protective film of the polarizing element, for example, when applied to a liquid crystal display device, a liquid crystal display device excellent in contrast and the like is obtained.
  • a polarizing plate that can be realized is obtained. That is, a polarizing plate that can realize high image quality of the liquid crystal display device is obtained.
  • a wide resin film is used as the transparent protective film of the polarizing plate, it can be applied to a liquid crystal display device having a large screen.
  • the liquid crystal display device of the present invention includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates uses the resin film of the present invention. Thus, the polarizing plate is manufactured.
  • the polarizing plate provided with the resin film having a uniform optical value since the polarizing plate provided with the resin film having a uniform optical value is used, a high-quality liquid crystal display device excellent in contrast and the like can be obtained. Further, when a polarizing plate provided with a wide resin film is used, a large screen of the liquid crystal display device can be realized.
  • the present invention it is possible to provide a method for producing a resin film that can produce a resin film having a sufficiently uniform optical value even if the resin film is stretched in the width direction.
  • a resin film manufacturing apparatus that realizes a resin film manufacturing method, a resin film obtained by a resin film manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate Provided.
  • FIG. 3 is a schematic cross-sectional view of a gripping member along a cutting plane line AA ′ in the stretching apparatus shown in FIG. 2.
  • the method for producing a resin film of the present invention is such that the gripping member moves in the longitudinal direction of the resin film before stretching while gripping both side ends in the width direction of the long resin film with a plurality of gripping members, Among the gripping members, a first gripping portion having a plurality of gripping members that grip one end portion of the resin film before stretching, and a plurality of gripping members that grip the other end portion of the resin film before stretching.
  • a stretching step of gradually moving the distance between the two gripping portions in the width direction of the resin film before stretching, and a plurality of gripping members used in the stretching step grip the resin film before stretching.
  • Maximum height at room temperature Total (Ry1 + Ry2) value of Ry (for convenience and Ry2) is intended to include smooth gripping member is 25 ⁇ m from 1 [mu] m.
  • a resin film having a sufficiently uniform optical value can be produced even if the resin film is stretched in the width direction. This is considered to be due to the following.
  • the stress load applied to the resin film by the gripping member can be reduced.
  • the stress load applied to the resin film can be reduced, deformation that may occur in the vicinity of the region gripped by the resin film gripping member at the time of stretching can be suppressed, and non-uniform optical values due to stretching. It is considered that the generation of sex can be sufficiently suppressed. Therefore, it is considered that even if the resin film is stretched in the width direction, a resin film having a sufficiently uniform optical value can be produced.
  • the resin film obtained by stretching can be smoothly conveyed. This is considered to be because the deformation that can occur in the vicinity of the region gripped by the film gripping member during stretching can be suppressed.
  • the method for producing an optical film of the present invention is not particularly limited as long as it includes a stretching process.
  • a method of producing a resin film by peeling a resin film formed on a support from the support and then subjecting the peeled resin film to a stretching process can be mentioned.
  • stretches with respect to the peeled resin film etc. are mentioned.
  • Another method is a melt casting film forming method in which a molten resin is cast on a support to form a film.
  • Such a manufacturing method by the solution casting film forming method is performed by, for example, a resin film manufacturing apparatus as shown in FIG.
  • a manufacturing apparatus of a resin film if it has the extending
  • the resin film herein refers to a film after the cast film made of dope cast on the support is dried on the support and can be peeled off from the support.
  • FIG. 1 is a schematic diagram illustrating an example of a basic configuration of a resin film manufacturing apparatus.
  • the resin film manufacturing apparatus 11 includes an endless belt support 12, a casting die 13, a peeling roller 14, a stretching device 21, a drying device 15, a winding device 16, and the like.
  • the casting die 13 casts a dope in which a transparent resin is dissolved as a dope film 19 on the surface of the endless belt support 12 to form a casting film.
  • the endless belt support 12 is supported to be drivable by a pair of driving rollers and driven rollers, and the dope film 19 discharged from the casting die 13 is cast on the endless belt support 12 to form a casting film. Then, it is dried while being conveyed so that it can be peeled off from the endless belt support 12.
  • the stretching device 21 stretches the resin film 17 before stretching under the conditions described later.
  • the drying device 15 dries the stretched film 18 while being transported by a transport roller.
  • the winding apparatus 16 winds up the stretched and dried film 18, and makes it a film roll.
  • the casting die 13 is supplied with a dope from a dope supply pipe connected to the upper end portion of the casting die 13. Then, the supplied dope is discharged as a dope film 19 from the casting die 13 and cast onto the endless belt support 12, and a casting film is formed on the endless belt support 12.
  • the endless belt support 12 is a metal endless belt having a mirror surface and traveling infinitely.
  • the endless belt for example, an endless belt made of stainless steel or the like is preferably used from the viewpoint of the peelability of the resin film.
  • the width of the cast film discharged from the casting die 13 as the dope film 19 and cast on the endless belt support 12 is the endless belt support.
  • the width of 12 is preferably 80% to 99%.
  • a rotating metal drum (endless drum support) having a mirror surface may be used instead of the endless belt support.
  • the endless belt support 12 dries the solvent in the casting film while conveying the casting film formed on the surface thereof. Drying is performed by, for example, heating the endless belt support 12 or blowing heated air onto the casting membrane.
  • the temperature of the cast film varies depending on the dope solution, the range of ⁇ 5 ° C. to 70 ° C. is preferable and 0 ° C. to 60 ° C. in consideration of the transport speed and productivity accompanying the evaporation time of the solvent. A range of ° C is more preferred.
  • the higher the temperature of the cast film the higher the drying speed of the solvent, which is preferable. However, when the temperature is too high, foaming and flatness tend to deteriorate.
  • the endless belt support 12 When the endless belt support 12 is heated, for example, a method of heating the casting film on the endless belt support 12 with an infrared heater, a method of heating the back surface of the endless belt support 12 with an infrared heater, an endless belt support 12 There is a method of heating by heating air on the back surface, and it can be appropriately selected if necessary.
  • the wind pressure of the heated air is preferably 50 Pa to 5000 Pa in consideration of the uniformity of solvent evaporation and the like.
  • the temperature of the heating air may be dried at a constant temperature, or may be supplied in several steps in the running direction of the endless belt support 12.
  • the time from casting the dope film 19 on the endless belt support 12 to forming the cast film and then peeling the cast film from the endless belt support 12 is the thickness of the optical film to be produced. Although it varies depending on the solvent, it is preferably in the range of 0.5 to 5 minutes in consideration of the peelability from the endless belt support 12.
  • the transport speed of the cast film by the endless belt support 12 is preferably about 50 m / min to 200 m / min, for example. Further, the ratio (draft ratio) of the casting film conveying speed to the traveling speed of the endless belt support 12 is preferably about 0.8 to 1.2. When the draft ratio is within this range, the cast film can be stably formed. For example, if the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the cast film is reduced in the width direction, and if so, a wide resin film cannot be formed.
  • the peeling roller 14 is in contact with the surface of the endless belt support 12 on which the dope film 19 is cast, and the dried cast film is peeled by applying pressure to the endless belt support 12 side.
  • the peeled cast film is referred to as a resin film before stretching.
  • the cast film is stretched in the transport direction (Machine Direction: MD direction) of the resin film before stretching by the peeling tension and the subsequent transport tension. For this reason, it is preferable that the peeling tension and the conveying tension when peeling the cast film from the endless belt support 12 are 50 N / m to 400 N / m.
  • the residual solvent ratio of the cast film when the cast film is peeled from the endless belt support 12 is the peelability from the endless belt support 12, the residual solvent ratio at the time of peel, the transportability after peeling, Considering the physical properties of the resin film obtained after drying, it is preferably 30% by mass to 200% by mass.
  • the residual solvent ratio of the cast film is defined by the following formula (I).
  • M1 represents the mass of the cast film at an arbitrary point in time
  • M2 represents the mass after drying the cast film measured for M1 at 115 ° C. for 1 hour.
  • the stretching device 21 has a configuration that will be described later, and stretches the resin film 17 before stretching in a direction (Transverse Direction: TD direction, width direction) orthogonal to the transport direction of the resin film 17 before stretching. Specifically, as shown in FIG. 2, both end portions in the direction perpendicular to the transport direction of the resin film 17 before stretching are gripped by the gripping members 24 and 25, and the distance between the opposing gripping members 24 and 25 is set. By enlarging, it extends in the TD direction.
  • the drying device 15 includes a plurality of transport rollers, and dries the resin film while transporting the resin film between the rollers. In that case, you may dry using heating air, infrared rays, etc. independently, and you may dry using heating air and infrared rays together. It is preferable to use heated air from the viewpoint of simplicity.
  • the drying temperature varies depending on the residual solvent ratio of the resin film. However, the drying temperature is appropriately selected depending on the residual solvent ratio in the range of 30 ° C. to 180 ° C. in consideration of drying time, shrinkage unevenness, stability of expansion and contraction, etc. You can decide. Moreover, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and divided into several stages of temperature. Further, the resin film can be stretched in the MD direction while being transported in the drying device 15.
  • the winding device 16 winds the resin film stretched by the stretching device 21 and dried by the drying device 15 to a required length to be wound around the winding core.
  • the temperature at the time of winding is cooled to room temperature in order to prevent abrasion, loosening, and the like due to shrinkage after winding.
  • the winder to be used can be used without any particular limitation, and may be a commonly used one, such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method with a constant internal stress. Can be wound up.
  • FIG. 2 is a schematic diagram showing the configuration of the stretching apparatus 21 provided in the resin film manufacturing apparatus shown in FIG. In addition, this figure has shown the case where a clip as shown in FIG. 3 is used as a holding member.
  • the stretching device 21 includes a first grip 21 a having a first rail 22 having a plurality of grip members 24, a second grip 21 b having a second rail 23 having a plurality of grip members 25, and a grip member 24.
  • a first endless rotating part 21c having a pair of sprockets 26, 28 that hold an endless chain (not shown) in which is disposed, and a pair of sprockets 27 that hold an endless chain (not shown) in which a gripping member 24 is placed, 2nd endless rotation part 21d which has 29.
  • FIG. 2 is a schematic view, and the number of grip members 24 and 25 is generally larger than that shown in FIG.
  • the first rail 22 extends along one end of the resin film 17 before stretching, and determines the traveling direction of the gripping member 24 as will be described later. Moreover, the 2nd rail 23 is extended along the other edge part of the resin film 17 before extending
  • the grip members 24 and 25 each grip the end portion in the width direction of the resin film 17 before stretching.
  • the grip members 24 and 25 are arranged at predetermined intervals on an endless chain (not shown).
  • An endless chain (not shown) on which the grip member 24 is arranged is stretched between a pair of sprockets 26 and 28.
  • an endless chain (not shown) on which the gripping member 25 is arranged is stretched around a pair of sprockets 27 and 29.
  • the sprockets 28 and 29 are rotationally driven by a driving source such as a stepping motor, and give a driving force for endlessly rotating each endless chain (not shown).
  • the sprockets 26 and 27 are rotatably provided, and are driven to rotate along with endless rotation of an endless chain (not shown) by the sprockets 28 and 29. Endless rotation of each endless chain (not shown) is guided by the first rail 22 and the second rail 23.
  • the endless chain in which the gripping member 24 and the gripping member 25 are arranged rotates endlessly while being guided by the first rail 22 and the second rail 23, so that the gripping members 24 and 25 are each stretched. While gripping the end portion in the width direction of the previous resin film 17, the first rail 22 and the second rail 23 are sequentially run in the transport direction of the resin film 17 before stretching.
  • the traveling direction of the gripping members 24 and 25 is determined as follows.
  • the holding members 24 and 25 move only along the longitudinal direction of the resin film 17 before stretching while holding both ends in the width direction of the resin film 17 before stretching. That is, it moves so that the distance between the gripping member 24 and the gripping member 25 is hardly changed.
  • each gripping member 24, 25 moves along the longitudinal direction of the resin film 17 before stretching, and gradually moves between the gripping member 24 and the gripping member 25 in the width direction of the resin film 17 before stretching. Move in the direction of spreading. By doing so, the resin film 17 before stretching is stretched in the width direction.
  • the angle ⁇ formed by the longitudinal direction of the film 17 before stretching and the gripping member 24 or gripping member 25 during stretching is preferably 1 ° to 50 °. If the angle ⁇ is too small, the stretch ratio becomes low, and there is a tendency that the widening of the resin film cannot be sufficiently achieved. In addition, if the angle ⁇ is too large, there is a tendency for deformation to occur around the portion gripped by the gripping members 24 and 25, and in some cases, the resin film 17 before stretching may be torn.
  • the gripping members 24 and 25 move so that the distance between them hardly changes. That is, it moves so as to maintain the interval widened by stretching. By doing so, the shrinkage
  • the resin film 17 before stretching is stretched, the resin film 17 before stretching is usually heated.
  • stretching is not specifically limited, For example, you may carry out by spraying a heating air on the resin film 17 before extending
  • stretching changes with composition etc. of a resin film, it is preferable that it is 100 to 150 degreeC, for example.
  • the gripping member 24 constituting the first gripping portion and the gripping member 25 constituting the second gripping portion are the resin before stretching when gripping the resin film 17 before stretching.
  • a smooth gripping member having a total (Ry1 + Ry2) value of 1 ⁇ m to 25 ⁇ m is included. That is, the grip members 24 and 25 may be made of a smooth grip member, or may be made of a grip member other than the smooth grip member and the smooth grip member.
  • the structure thereof is not particularly limited.
  • a structure as shown in FIG. 3 is a schematic cross-sectional view of the gripping member along the cutting plane line AA ′ in the stretching apparatus 21 shown in FIG.
  • the grip member 24 includes a movable part 31 and a pedestal 32.
  • the movable part 31 is pivotally supported by the pedestal 32 so as to be rotatable.
  • the holding member 24 holds the resin film 17 before stretching by rotating the movable part 31 and sandwiching the resin film 17 before stretching in the pedestal 32 by the movable part 31.
  • stretching of the movable part 31 is a surface which has an unevenness
  • the second contact surface 34 of the pedestal 32 that contacts the unstretched resin film 17 is also a surface having irregularities, like the first contact surface 33.
  • the maximum height Ry1 indicating the surface roughness at normal temperature of the first contact surface 33 of the movable portion 31 that contacts the resin film 17 before stretching, and the pedestal 32
  • the total value (Ry1 + Ry2) of the maximum height Ry2 indicating the surface roughness at normal temperature of the second contact surface 34 in contact with the resin film 17 before stretching is 1 ⁇ m to 25 ⁇ m. If the total value is too small, the contact pressure applied to the resin film 17 before stretching when the film 17 is gripped by the movable part 31 and the pedestal 32 increases, and the stress applied to the resin film 17 before stretching by the gripping member 24. Tend to increase the load.
  • fever may cause the malfunction that the resin film 17 before extending
  • the total (Ry1 + Ry2) value is too large, the resin film 17 before stretching is sandwiched between specific portions of the movable portion 31 and the pedestal 32, so that the resin film 17 before stretching is applied to the resin film 17 before stretching by the gripping member 24. There is a tendency for stress loading to increase.
  • the normal temperature is a temperature in a standard state in accordance with JIS Z 8703, and specifically, 20 ° C. ⁇ 15 ° C.
  • the maximum height Ry is a value measured by a method according to JIS B 0601: 1994. Specifically, for example, measurement can be performed using Mitutoyo SURFTEST SV-3100 manufactured by Mitutoyo Corporation.
  • the structure of the smooth gripping member can be gripped between a surface that contacts one surface of the resin film and a surface that contacts the other surface, and the maximum height Ry1 and the first height on the first contact surface 33
  • the total (Ry1 + Ry2) value of the maximum height Ry2 on the two contact surfaces 34 is 1 ⁇ m to 25 ⁇ m.
  • the structure of the gripping member is preferably the same as that of the smooth gripping member.
  • a plating process or a polishing process is performed so that the total value (Ry1 + Ry2) of the maximum height Ry1 on the first contact surface 33 and the maximum height Ry2 on the second contact surface 34 is 1 ⁇ m to 25 ⁇ m. What you gave.
  • the resin film 17 before stretching that is stretched in the stretching process it is preferable to use a wet resin film containing a solvent. Moreover, it is more preferable that the residual solvent ratio of the resin film 17 before being stretched in the stretching step is 1% by mass to 0% by mass. By doing so, even if the resin film 17 before stretching is stretched in the width direction, it is possible to easily realize a method for producing a resin film that can produce a resin film having a sufficiently uniform optical value.
  • the grip members 24 and 25 may include grip members other than the smooth grip member as long as the grip members 24 and 25 include the smooth grip member. In that case, it is preferable to satisfy the following.
  • the number of the smooth gripping members among the plurality of gripping members 24 constituting the first gripping portion is 98% or more with respect to the total number of the gripping members 24, and the second gripping portion is configured.
  • the number of smooth gripping members in the plurality of gripping members 25 is preferably 98% or more with respect to the total number of gripping members 25.
  • the ratio of the number of smooth gripping members to the total number of gripping members is called the smooth gripping member rate.
  • a resin film having a sufficiently uniform optical value can be manufactured even if a gripping member other than the smooth gripping member is included as the gripping member.
  • a gripping member other than the smooth gripping member is included as the gripping member.
  • the optical value is sufficient even if gripping members other than the smooth gripping member are included.
  • a uniform resin film can be produced. Moreover, since it can extend
  • the gripping member includes a gripping member different from the smooth gripping member as described above, the transportability of the resin film tends to decrease, but the plurality of gripping members constituting the first gripping portion
  • the number of smooth gripping members in 24 is 98% or more with respect to the total number of gripping members 24, and the number of smooth gripping members in the plurality of gripping members 25 constituting the second gripping portion is gripped. As long as 98% or more is satisfied with respect to the total number of members 25, even if a gripping member other than the smooth gripping member is included, a method for producing a resin film excellent in resin film transportability can be provided.
  • the number of gripping members other than the smooth gripping member is a gripping member other than the smooth gripping member
  • the gripping member adjacent to the gripping member is a gripping member other than the smooth gripping member. It is preferable that it is 5% or less.
  • the ratio of the number of gripping members whose gripping members adjacent to the gripping member are gripping members other than the smooth gripping member to the total number of gripping members other than the smooth gripping member is called the adjacent number ratio of gripping members other than the smooth gripping member. .
  • a resin film having a sufficiently uniform optical value can be manufactured even if a gripping member other than the smooth gripping member is included as the gripping member.
  • a gripping member other than the smooth gripping member it is preferable to use only a smooth gripping member as a gripping member, but it is a gripping member other than the smooth gripping member, and the gripping member adjacent to the gripping member is a gripping member other than the smooth gripping member. If the number of gripping members satisfies 5% or less with respect to the total number of gripping members other than the smooth gripping member, the optical value is sufficiently high even if gripping members other than the smooth gripping member are included. A uniform resin film can be produced.
  • the gripping member includes a gripping member different from the smooth gripping member as described above, the transportability of the resin film tends to decrease, but the gripping member is a gripping member other than the smooth gripping member. If the number of grip members whose grip members adjacent to the grip member are grip members other than the smooth grip member satisfies 5% or less with respect to the total number of grip members other than the smooth grip member, grips other than the smooth grip member Even if a member is included, a method for producing a resin film excellent in resin film transportability can be provided. This is considered to be because even if gripping members other than the smooth gripping member are included, they are less affected if they are dispersed.
  • the number of smooth gripping members disposed between gripping members other than the smooth gripping members is preferably 5% or more with respect to the total number of smooth gripping members.
  • the ratio of the number of smooth gripping members arranged between gripping members other than the smooth gripping members to the total number of smooth gripping members is called the adjacent number ratio of the smooth gripping members.
  • a resin film having a sufficiently uniform optical value can be manufactured even when a gripping member other than the smooth gripping member is included as the gripping member.
  • the number of smooth gripping members arranged between gripping members other than the smooth gripping member is the total number of smooth gripping members.
  • a resin film having a sufficiently uniform optical value can be produced even if a gripping member other than the smooth gripping member is included.
  • the smooth gripping member can sufficiently exhibit the effect of increasing the uniformity of the optical value by the smooth gripping member by being continued to some extent. It is thought that. Moreover, since it can extend
  • the gripping member includes a gripping member different from the smooth gripping member as described above, the transportability of the resin film tends to decrease, but the gripping member is disposed between gripping members other than the smooth gripping member. If the number of smooth gripping members satisfies 5% or more with respect to the total number of smooth gripping members, even if a gripping member other than the smooth gripping member is included, a resin excellent in resin film transportability A method for producing a film can be provided.
  • a resin film having a uniform optical value can be obtained even if stretched in the width direction. it can. That is, a wide resin film having a sufficiently uniform optical value can be obtained.
  • the optical value include in-plane direction retardation Ro and slow axis angle ⁇ . Therefore, by using the manufacturing apparatus shown in FIG. 1 and the stretching process shown in FIG. 2 using the gripping member shown in FIG. 3, the optical values such as the in-plane direction retardation Ro and the slow axis angle ⁇ are brought to the position of the resin film. Regardless, a uniform resin film can be obtained. For this reason, the obtained resin film can be suitably used as an optical film of a liquid crystal display device that is required to have a uniform optical value. Furthermore, it can be suitably used as an optical film for a liquid crystal display device having a large screen.
  • the difference between the maximum value and the minimum value of the in-plane direction retardation Ro of the resin film obtained here is 1 nm or less.
  • the difference between the maximum value and the minimum value of the slow axis angle ⁇ is preferably 0.2 ° or less.
  • the in-plane retardation Ro and the slow axis angle ⁇ can be measured by the methods described in the examples described later.
  • the stretching ratio in the TD direction of the resin film here is preferably about 1% to 50%.
  • the optical value of the resin film tends to be non-uniform when such a high stretch is used, but the optical value is non-uniform when the film is stretched under a condition where the stretch ratio in the TD direction is 1% to 50%. Can be suppressed. Accordingly, a wide resin film having a uniform optical value can be obtained.
  • variety of a resin film is wide, it is preferable also from the point of use to a large sized liquid crystal display device, the use efficiency of the film at the time of polarizing plate processing, and production efficiency.
  • the stretching ratio is defined by the following formula (1).
  • Stretch rate (%) ⁇ (L 2 ⁇ L 1 ) / L 1 ⁇ ⁇ 100 (1)
  • L 1 indicates the length before stretching between the end portions at a predetermined position of the film
  • L 2 indicates the length after stretching between the end portions at the predetermined position of the film.
  • variety of a film is the value which measured the width
  • the width of the resin film is preferably 1000 mm to 3000 mm.
  • the optical value of the resin film generally tends to be non-uniform.
  • the film is stretched under a stretching ratio in the TD direction of 1% to 50%, It can suppress that a value becomes non-uniform
  • variety of a resin film is wide, it is preferable also from the point of use to a large sized liquid crystal display device, the use efficiency of the film at the time of polarizing plate processing, and production efficiency.
  • the film thickness of the resin film is preferably 10 ⁇ m to 90 ⁇ m from the viewpoint of thinning the liquid crystal display device and stabilizing the production of the film.
  • the film thickness means an average film thickness, and the film thickness is measured from 20 to 200 in the width direction of the resin film with a contact-type film thickness meter manufactured by Mitutoyo Corporation, and the average of the measured values. Values are shown as film thickness.
  • the resin film to be stretched is produced by a solution casting film forming method. It is not limited to the made resin film, for example, the resin film obtained by the melt casting film forming method may be sufficient, and the resin film obtained by the other method may be sufficient.
  • the manufacturing method by the solution casting film forming method the uniformity of the film thickness of the resin film before stretching is high, so that the decrease in the uniformity of the optical value due to the non-uniform film thickness is suppressed after stretching in the width direction.
  • the resin film with a uniform optical value can be manufactured continuously. From these points, it is preferable.
  • the dope used in the present invention is obtained by dissolving a transparent resin in a solvent.
  • the transparent resin is not particularly limited as long as it is a resin having transparency when formed into a film by a solution casting film forming method, etc., but is easy to manufacture by a solution casting film forming method, It is preferable that the adhesiveness with other functional layers, such as a hard-coat layer, is excellent, and that it is optically isotropic.
  • the transparency means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.
  • the transparent resin examples include cellulose ester resins such as cellulose diacetate resin, cellulose triacetate resin, cellulose acetate butyrate resin, and cellulose acetate propionate resin; polyethylene terephthalate resin, polyethylene naphthalate resin, and the like.
  • Acrylic resins such as polymethyl methacrylate resin; Polysulfone (including polyethersulfone) resin, polyethylene resin, polypropylene resin, cellophane, polyvinylidene chloride resin, polyvinyl alcohol resin, ethylene vinyl alcohol resin, syndiotactic Vinyl resins such as tick polystyrene resins, cycloolefin resins and polymethylpentene resins; polycarbonate resins; polyarylate resins; It can be mentioned fluorine-based resin or the like; Li ether ketone resins; polyether ketone imide resin; polyamide resin.
  • cellulose ester resins cellulose ester resins, cycloolefin resins, polycarbonate resins, and polysulfone (including polyethersulfone) resins are preferable.
  • cellulose ester resins are preferred, and among cellulose ester resins, cellulose acetate resins, cellulose propionate resins, cellulose butyrate resins, cellulose acetate butyrate resins, cellulose acetate propionate resins, and cellulose triacetate resins are preferred, Cellulose triacetate resin is particularly preferred.
  • the transparent resin the above exemplified transparent resins may be used alone, or two or more kinds may be used in combination.
  • the number average molecular weight of the cellulose ester-based resin is preferably from 30,000 to 200,000 because the mechanical strength when molded into a resin film is strong and the dope viscosity is appropriate in the solution casting film forming method.
  • the weight average molecular weight (Mw) / number average molecular weight (Mn) is preferably in the range of 1 to 5, more preferably in the range of 1.4 to 3.0.
  • the average molecular weight and molecular weight distribution of a resin such as a cellulose ester resin can be measured using gel permeation chromatography or high performance liquid chromatography. Therefore, the number average molecular weight (Mn) and the mass average molecular weight (Mw) can be calculated using these, and the ratio can be calculated.
  • the cellulose ester resin preferably has an acyl group having 2 to 4 carbon atoms as a substituent.
  • substitution degree for example, when the substitution degree of the acetyl group is X and the substitution degree of the propionyl group or butyryl group is Y, the total value of X and Y is 2.2 or more and 2.95 or less, X is preferably more than 0 and 2.95 or less.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group.
  • These cellulose ester resins can be synthesized by a known method. The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
  • the cellulose that is a raw material of the cellulose ester resin is not particularly limited, and examples thereof include cotton linters, wood pulp (derived from coniferous trees and hardwoods), kenaf and the like.
  • the cellulose ester resins obtained from them can be mixed and used at an arbitrary ratio, but it is preferable to use 50% by mass or more of cotton linter.
  • the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride)
  • these cellulose ester resins use an organic acid such as acetic acid or an organic solvent such as methylene chloride, It can be obtained by reacting with a cellulose raw material using such a protic catalyst.
  • the dope may contain a compound having negative orientation birefringence described later.
  • the compound having negative orientation birefringence means a material exhibiting negative birefringence in the stretching direction of the film in the resin film.
  • the resin film for example, in the case of a film composed of a cellulose ester resin, specifically, for example, an acrylic resin, a polyester resin, a compound having a furanose structure or a pyranose structure, a sulfone compound, and the like can be mentioned. Of these, acrylic resins are preferably used.
  • Whether or not the film has negative orientation birefringence can be determined by measuring the birefringence of the film in a system not added with the compound with a birefringence meter and comparing the difference.
  • the acrylic resin is preferably an acrylic resin having a negative orientation birefringence in the stretching direction and having a mass average molecular weight Mw of 500 or more and 30000 or less and having an aromatic ring in the side chain. And an acrylic resin having a cyclohexyl group in the side chain is more preferable.
  • the acrylic resin polymerization method includes, for example, a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than normal polymerization, and a polymerization method.
  • a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide
  • a method using a polymerization initiator in a larger amount than normal polymerization and a polymerization method.
  • the method described in JP-A No. 2000-128911 or JP-A No. 2000-344823 is preferably used.
  • the acrylic resin preferably has a hydroxyl value measured according to JIS K 0070 (1992) of 30 mgKOH / g to 150 mgKOH / g.
  • a solvent containing a good solvent for the transparent resin can be used, and a poor solvent may be contained as long as the transparent resin does not precipitate.
  • the good solvent for the cellulose ester resin include organic halogen compounds such as methylene chloride.
  • examples of the poor solvent for the cellulose ester resin include alcohols having 1 to 8 carbon atoms such as methanol.
  • the dope used in the present invention may contain other components (additives) other than the transparent resin and the solvent as long as the effects of the present invention are not impaired.
  • additives include fine particles, plasticizers, antioxidants, ultraviolet absorbers, heat stabilizers, conductive substances, flame retardants, lubricants, and matting agents.
  • the fine particles are appropriately selected according to the purpose of use, but are preferably fine particles that can scatter visible light when contained in a transparent resin.
  • the fine particles may be inorganic fine particles such as silicon oxide, or organic fine particles such as acrylic resin.
  • a cellulose ester resin solution can be obtained by mixing the above-mentioned compositions.
  • the obtained cellulose ester resin solution is preferably filtered using a suitable filter medium such as filter paper.
  • the plasticizer can be used without any particular limitation.
  • a phosphate ester plasticizer, a phthalate ester plasticizer, a trimellitic ester plasticizer, a pyromellitic acid plasticizer, a glycolate plasticizer, a quencher examples include acid ester plasticizers and polyester plasticizers.
  • the content is preferably 1% by mass to 40% by mass with respect to the cellulose ester resin in consideration of dimensional stability and processability, and 3% by mass to 20%. More preferably, the content is 4% by mass to 15% by mass. If the content of the plasticizer is too small, a smooth cut surface cannot be obtained when slitting or punching, and there is a tendency for generation of chips. That is, the effect of including a plasticizer cannot be sufficiently exhibited.
  • the antioxidant can be used without any particular limitation, and for example, a hindered phenol compound is preferably used. Moreover, when antioxidant is contained, the content of the antioxidant is preferably 1 ppm to 1.0%, more preferably 10 ppm to 1000 ppm in terms of mass ratio with respect to the cellulose ester resin.
  • the resin film produced by the method for producing a resin film of the present invention can be used for a polarizing plate or a liquid crystal display member because of its high dimensional stability. In this case, the polarizing plate or the liquid crystal is deteriorated. For prevention, an ultraviolet absorber is preferably used.
  • the ultraviolet absorber those which are excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and have little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
  • the transmittance at 380 nm is preferably less than 10%, more preferably less than 5%.
  • Specific examples of ultraviolet absorbers include oxybenzophenone compounds, benzotriazole compounds (benzotriazole ultraviolet absorbers), salicylic acid ester compounds, benzophenone compounds (benzophenone ultraviolet absorbers), and cyanoacrylates. Examples thereof include compounds, nickel complex salts, and triazine compounds.
  • a benzotriazole type ultraviolet absorber and a benzophenone type ultraviolet absorber are preferable.
  • the content of the ultraviolet absorber is preferably from 0.1% by mass to 2.5% by mass, considering the effect as an ultraviolet absorber, transparency, etc., and from 0.8% by mass to 2.0% by mass. It is more preferable that
  • heat stabilizer examples include kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, inorganic fine particles such as alumina, and alkaline earth metal salts such as calcium and magnesium.
  • the conductive material is not particularly limited, and examples thereof include ionic conductive materials such as anionic polymer compounds, conductive fine particles such as metal oxide fine particles, and antistatic agents.
  • ionic conductive materials such as anionic polymer compounds, conductive fine particles such as metal oxide fine particles, and antistatic agents.
  • a resin film having a preferable impedance can be obtained.
  • the ion conductive substance is a substance that shows electric conductivity and contains ions that are carriers for carrying electricity.
  • the method for dissolving the cellulose ester resin when preparing the dope is not particularly limited, and a general method can be used. By combining heating and pressurization, it is possible to heat above the boiling point of the solvent at normal pressure, and it is possible to dissolve the cellulose ester resin in the solvent above the boiling point at normal pressure. It is preferable from the viewpoint of preventing the occurrence of.
  • a method in which a cellulose ester resin is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • the pressurization may be performed by a method in which an inert gas such as nitrogen gas is injected, or a method in which the solvent is heated in a sealed container and the vapor pressure of the solvent is increased by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
  • a higher solvent temperature (heating temperature) for dissolving the cellulose ester resin is preferable from the viewpoint of the solubility of the cellulose ester.
  • the heating temperature is preferably 45 ° C to 120 ° C.
  • the pressure is adjusted to such a pressure that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cellulose ester resin can be dissolved in a solvent such as methyl acetate.
  • the obtained cellulose ester resin solution is filtered using an appropriate filter medium such as filter paper.
  • an appropriate filter medium such as filter paper.
  • the filter medium it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like. However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is likely to be clogged. For this reason, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, and a filter medium of 0.001 mm to 0.008 mm is more preferable.
  • a normal filter medium can be used.
  • a plastic filter material such as polypropylene or Teflon (registered trademark) or a metal filter material such as stainless steel is preferable because fibers do not fall off.
  • impurities, particularly bright spot foreign matter contained in the raw material cellulose ester resin solution by filtration.
  • the bright spot foreign matter is opposite when two polarizing plates are placed in a crossed Nicols state, a resin film is placed between them, light is applied from one polarizing plate, and observation is performed from the other polarizing plate. It is a point (foreign matter) where light from the side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
  • the filtration is not particularly limited and can be carried out by a usual method, but the method of filtration while heating at a temperature not lower than the boiling point of the solvent at normal pressure and at which the solvent does not boil under pressure may be performed before and after the filtration.
  • the increase in the difference in filtration pressure (referred to as differential pressure) is small and preferable.
  • the temperature is preferably 45 ° C to 120 ° C.
  • the filtration pressure is preferably smaller, for example, 1.6 MPa or less.
  • the agent When each additive is contained in the dope, for example, the agent may be dissolved in an organic solvent such as alcohol, methylene chloride, dioxolane, etc. and then added to the dope, or may be added directly into the dope composition.
  • an organic solvent such as alcohol, methylene chloride, dioxolane, etc.
  • the additive and cellulose ester resin are added to the dope using a dissolver or sand mill with the additive dispersed in the cellulose ester resin. It is preferable.
  • Fine particles are dispersed in the obtained cellulose ester resin solution.
  • the method for dispersing is not particularly limited, and can be performed, for example, as follows. For example, first, a dispersion solvent and fine particles are stirred and mixed, and then dispersed using a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the cellulose ester resin solution and stirred.
  • dispersion solvent examples include lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol. Moreover, although it does not specifically limit to lower alcohol, It is preferable to use the thing similar to the solvent used when preparing the solution of a cellulose-ester-type resin.
  • Dispersers can be used without any particular limitation, and general dispersers can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. Medialess dispersers are preferred from the viewpoint of lower haze (higher translucency). Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type, and a high pressure type dispersing device is preferable.
  • a high-pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
  • Examples of the high-pressure dispersing device include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation, a nanomizer manufactured by Nanomizer, and the like, and other examples include a Manton Gorin type high-pressure dispersing device.
  • Examples of the Menton Gorin type high-pressure dispersing device include a homogenizer manufactured by Izumi Food Machinery, UHN-01 manufactured by Sanwa Machinery Co., Ltd., and the like.
  • the resin film produced by the method for producing a resin film of the present invention is a resin film having a sufficiently low retardation and a wide width. For this reason, it can apply to image display apparatuses, such as a liquid crystal display device, as a phase difference film for which retardation is required low enough, especially a phase contrast film for IPS.
  • the polarizing plate of this invention is equipped with a polarizing element and the transparent protective film arrange
  • the polarizing element is an optical element that emits incident light by converting it into polarized light.
  • a resin film or a resin film is prepared by using a completely saponified polyvinyl alcohol aqueous solution on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution. What laminated
  • the transparent protective film for this polarizing plate for example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (above, manufactured by Konica Minolta Opto Co., Ltd.) Etc. are preferably used. Or you may use resin films, such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate uses a resin film as a protective film laminated on at least one surface side of the polarizing element.
  • the resin film works as a retardation film
  • it is preferable that the slow axis of the resin film is arranged so as to be substantially parallel or orthogonal to the absorption axis of the polarizing element.
  • polarizing element examples include, for example, a polyvinyl alcohol polarizing film.
  • Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes.
  • a modified polyvinyl alcohol film modified with ethylene is preferably used as the polyvinyl alcohol film.
  • the polarizing element is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
  • the film thickness of the polarizing element is preferably 5 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • resin films other than a cellulose ester-type resin film it is preferable to carry out the adhesive process to a polarizing plate through a suitable adhesion layer.
  • the polarizing plate as described above can be applied to a liquid crystal display device having a large screen by using a wide resin film according to the method for producing a resin film of the present invention as a transparent protective film.
  • the liquid crystal display device of the present invention includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is a polarizing plate.
  • the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled.
  • Such a liquid crystal display device can have a large screen by using a wide resin film according to the method for producing a resin film of the present invention as a transparent protective film for a polarizing plate.
  • a resin film was produced by the following method.
  • a resin film (cellulose triacetate propione film) was produced as follows.
  • the maximum height Ry1 at the normal temperature of the first contact surface of the surface that contacts the resin film before stretching, and the maximum at the normal temperature of the second contact surface 34 The height Ry2 and the total value (Ry1 + Ry2) are mentioned.
  • Ry is a value measured by a method based on JIS B 0601: 1994, using Mitutoyo SURFTEST SV-3100 manufactured by Mitutoyo Corporation.
  • this smooth holding member is a holding member, and its Ry is about 40 ⁇ m.
  • conditions for the smooth gripping member include the following.
  • the ratio of the number of smooth gripping members to the total number of gripping members can be mentioned.
  • the ratio of the number of gripping members other than the smooth gripping members, wherein the gripping members other than the smooth gripping members are gripping members other than the smooth gripping members, to the total number of gripping members other than the smooth gripping members. Adjacent number ratio of gripping members other than the smooth gripping member.
  • the ratio of the number of smooth gripping members arranged between gripping members other than the smooth gripping members to the total number of smooth gripping members can be mentioned.
  • Table 1 shows the gripping member conditions.
  • the resin films (resin films according to Examples 1 to 8 and Comparative Examples 1 to 8) obtained as described above were evaluated by the following methods.
  • the retardation of each sample was measured at a wavelength of 590 nm in an environment of a temperature of 23 ° C. and a humidity of 55% RH.
  • the angle ⁇ of the axis, the refractive index Nx in the slow axis direction, and the refractive index Ny in the fast axis direction were measured.
  • the film thickness d of the resin film was measured using a contact-type film thickness meter manufactured by Mitutoyo Corporation.
  • the in-plane direction retardation Ro of each sample was calculated from the obtained measured values using the following formula (2).
  • Nx the refractive index in the slow axis direction of the resin film
  • Ny the refractive index in the fast axis direction
  • d the film thickness (nm) of the film.
  • the obtained resin film is placed between two polarizing plates in an orthogonal (crossed Nicols) state, light is applied from one polarizing plate side, and the other polarizing plate side is used with a transmission microscope. And observed at a magnification of 50 times. At that time, the number of foreign matters having a size of 50 ⁇ m or more recognized in the polarization crossed Nicol state in an area of 25 cm 2 was counted, and the value converted into the number per 1 cm 2 was defined as the number of foreign matters.
  • the foreign matter is a foreign matter recognized in the polarization crossed Nicol state, and in the polarized crossed Nicol state, only the location of the foreign matter is observed in the dark field, so that the number can be easily measured. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

In order to provide a resin film manufacturing method that is capable of producing resin films that have a sufficiently uniform optical value, even if the resin film is stretched in the width direction, and that minimize the generation of foreign matter, a resin film manufacturing method involving smooth holding members is used, wherein: both edges of an elongated resin film are held by a plurality of holding members in the width direction of the resin film, and said holding members move in the longitudinal direction of the resin film, and also move in a direction in which, among the holding members, the distance between a plurality of first holding parts that holds one edge of the resin film of the resin film, and a plurality of second holding parts that holds the other edge of the resin film gradually widens in the width direction of the resin film; and when the plurality of holding members used on such occasion holds the resin film, the total value of the maximum height (Ry), at normal temperature, of a first contact surface that comes into contact with one surface of the resin film, and of a second contact surface that comes into contact with the other surface of the film is 1 μm to 24 μm.

Description

樹脂フィルムの製造方法、樹脂フィルムの製造装置、樹脂フィルム、偏光板、及び液晶表示装置Resin film manufacturing method, resin film manufacturing apparatus, resin film, polarizing plate, and liquid crystal display device
 本発明は、樹脂フィルムの製造方法、樹脂フィルムの製造装置、前記製造方法によって得られた樹脂フィルム、前記樹脂フィルムを透明保護フィルムとして用いた偏光板、及び前記偏光板を備えた液晶表示装置に関する。 The present invention relates to a resin film manufacturing method, a resin film manufacturing apparatus, a resin film obtained by the manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate. .
 樹脂フィルムは、その化学的特性、機械的特性及び電気的特性等に鑑み、様々な分野、例えば、液晶表示装置等に用いられている。具体的には、液晶表示装置の画像表示領域には、種々の樹脂フィルム、例えば、偏光板の偏光素子を保護するための透明保護フィルムが配置されている。このような樹脂フィルムとしては、例えば、セルロースエステルフィルムの様に透明性に優れた樹脂フィルムが広く用いられている。 Resin films are used in various fields, such as liquid crystal display devices, in view of their chemical characteristics, mechanical characteristics, electrical characteristics, and the like. Specifically, a transparent protective film for protecting various resin films, for example, polarizing elements of polarizing plates, is disposed in the image display area of the liquid crystal display device. As such a resin film, for example, a resin film excellent in transparency such as a cellulose ester film is widely used.
 また、画像形成装置、特にテレビジョン受信装置として用いられる液晶表示装置は、大画面化が求められている。よって、画像形成装置に適用される樹脂フィルムとしては、幅の広い広幅フィルムの製造が求められている。このような広幅フィルムを製造するための方法としては、例えば、フィルムを延伸させる方法が考えられる。 Further, an image forming apparatus, particularly a liquid crystal display device used as a television receiver is required to have a large screen. Therefore, as a resin film applied to the image forming apparatus, it is required to manufacture a wide film having a wide width. As a method for producing such a wide film, for example, a method of stretching the film can be considered.
 このようなフィルムを延伸させて広幅フィルムを得る方法としては、例えば、長尺状のフィルムの幅方向、すなわち、短手方向の両側端部を複数の対をなす把持具で把持して、対をなす把持具間の距離を徐々に広げる方向に把持具を移動させる方法等が挙げられる。具体的には、例えば、特許文献1や特許文献2に記載のものが挙げられる。 As a method for obtaining such a wide film by stretching such a film, for example, the width direction of the long film, that is, both side ends in the short side direction are gripped with a plurality of pairs of gripping tools. For example, a method of moving the gripping tool in a direction that gradually increases the distance between the gripping tools that form the above. Specific examples include those described in Patent Document 1 and Patent Document 2.
 特許文献1には、テンター内において、フィルムの上下面に該フィルムを介して対向して設けられた複数の熱風吹出しノズルで加熱しながら、該フィルムの両端部をテンターレールの複数のクリップで把持してフィルム搬送しながら幅方向に延伸する熱可塑性樹脂フィルムの製造方法において、テンター入口から延伸開始点まで、該延伸開始点でのテンターレール幅が、テンター入口でのテンターレール幅よりも広い状態でのフィルム搬送しながら予熱する予熱工程を設けた熱可塑性樹脂フィルムの製造方法が記載されている。 In Patent Document 1, in a tenter, both ends of the film are held by a plurality of clips on a tenter rail while being heated by a plurality of hot air blowing nozzles provided on the upper and lower surfaces of the film so as to face each other. In the method for producing a thermoplastic resin film stretched in the width direction while transporting the film, the tenter rail width at the stretching start point is wider than the tenter rail width at the tenter inlet from the tenter inlet to the stretching start point. The manufacturing method of the thermoplastic resin film which provided the preheating process preheated while conveying the film in is described.
 また、特許文献2には、ポリマーフィルムの走行方向に移動する開閉自在な把持具により、ポリマーフィルムの両側縁部を把持してポリマーフィルムを幅方向に所定の倍率に延伸するポリマーフィルムの延伸方法において、把持具によりポリマーフィルムを把持した後に、ポリマーフィルムの把持幅を漸増して所定の倍率未満に延伸し、延伸されたポリマーフィルムの縮む力により把持具を閉じ方向に付勢させて把持を安定させる把持安定工程と、把持安定工程の後に設けられ、ポリマーフィルムの把持幅を漸増して所定の倍率に延伸する本延伸工程とを有するポリマーフィルムの延伸方法が記載されている。 Patent Document 2 discloses a method for stretching a polymer film in which a polymer film is stretched at a predetermined magnification in the width direction by gripping both side edges of the polymer film with an openable / closable gripper that moves in the running direction of the polymer film. Then, after gripping the polymer film with the gripping tool, the gripping width of the polymer film is gradually increased and stretched below a predetermined magnification, and the gripping tool is urged in the closing direction by the contraction force of the stretched polymer film to grip the polymer film. A method of stretching a polymer film is described, which includes a gripping stabilization step for stabilization, and a main stretching step that is provided after the gripping stabilization step and gradually increases the gripping width of the polymer film and stretches the polymer film to a predetermined magnification.
特開2009-178992号公報JP 2009-178992 A 特開2009-234075号公報JP 2009-234075 A
 特許文献1によれば、面内方向のレタデーション及び厚み方向のレタデーションが均一な熱可塑性樹脂フィルムの製造方法を提供することができることが開示されている。 According to Patent Document 1, it is disclosed that a method for producing a thermoplastic resin film having uniform retardation in the in-plane direction and retardation in the thickness direction can be provided.
 また、特許文献2によれば、把持不良によって発生しうるポリマーフィルム側縁が中央側に窪んだ状態になる耳ヨレの発生を抑制できることが開示されている。 Further, according to Patent Document 2, it is disclosed that the occurrence of twisting in the side where the polymer film side edge, which may occur due to poor gripping, is depressed toward the center side can be suppressed.
 しかしながら、これらの方法で得られた樹脂フィルムは、幅方向のレタデーションや配向等の光学値の均一性が充分に高いものではなく、かつ把持不良による異物が発生を抑制出来なかった。 However, the resin films obtained by these methods are not sufficiently high in uniformity of optical values such as retardation and orientation in the width direction, and the generation of foreign matters due to poor gripping cannot be suppressed.
 本発明は、かかる事情に鑑みてなされたものであって、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一、かつ異物が発生を抑制された樹脂フィルムを製造することができる樹脂フィルムの製造方法を提供することを目的とする。また、樹脂フィルムの製造方法を実現する樹脂フィルムの製造装置、樹脂フィルムの製造方法によって得られた樹脂フィルム、樹脂フィルムを透明保護フィルムとして用いた偏光板、及び偏光板を備えた液晶表示装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when the resin film is stretched in the width direction, it is possible to produce a resin film in which optical values are sufficiently uniform and generation of foreign matter is suppressed. It aims at providing the manufacturing method of a resin film. In addition, a resin film manufacturing apparatus that realizes a resin film manufacturing method, a resin film obtained by the resin film manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate The purpose is to provide.
 本発明者は、樹脂フィルムを幅方向に延伸すると、幅方向の光学値が不均一になる原因として、以下のことによると推察した。 The present inventor has inferred that when the resin film is stretched in the width direction, the optical value in the width direction becomes non-uniform as follows.
 まず、本発明者は、上述したような、樹脂フィルムの幅方向の両側端部を複数の対をなす把持部材で延伸させる方法は、延伸時に樹脂フィルムの把持部材で把持された領域付近に変形が発生する傾向があることを見出した。そして、このような変形が発生すると、得られた樹脂フィルムの幅方向のレタデーションや配向等の光学値が、特に把持部材で把持された樹脂フィルムの端部において、不均一になり、光学特性が劣ってしまうと考えた。このことにより、光学値が不均一になると考えた。また、特許文献1や特許文献2に記載の方法では、光学値の均一性を充分に高めることができなかった原因は、このような、延伸時に樹脂フィルムの把持部材で把持された領域付近の変形の発生を充分に抑制できなかったことによると考えた。特許文献1や特許文献2に記載の方法では、把持部材により樹脂フィルムにかかる応力の負荷を低減させることについては、検討されていなかった。 First, the present inventor, as described above, is a method in which both ends in the width direction of the resin film are stretched by a plurality of pairs of gripping members, and deformed in the vicinity of the region gripped by the resin film gripping members during stretching. Found that there is a tendency to occur. When such deformation occurs, optical values such as retardation and orientation in the width direction of the obtained resin film become uneven, particularly at the end of the resin film held by the holding member, and the optical characteristics are I thought it would be inferior. As a result, the optical value was considered to be non-uniform. In addition, in the methods described in Patent Document 1 and Patent Document 2, the reason why the uniformity of the optical value could not be sufficiently increased is the reason for the vicinity of the region gripped by the resin film gripping member during stretching. It was considered that the occurrence of deformation could not be sufficiently suppressed. In the methods described in Patent Document 1 and Patent Document 2, it has not been studied to reduce the stress load applied to the resin film by the gripping member.
 本発明者は、把持部により樹脂フィルムにかかる応力の負荷の低減に着目し、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。 The present inventor has paid attention to the reduction of the stress load applied to the resin film by the gripping part, and as a result of various studies, has found that the above object is achieved by the present invention described below.
 本発明の樹脂フィルムの製造方法は、長尺状の樹脂フィルムの幅方向の両側端部を複数の把持部材で把持しながら、把持部材が、樹脂フィルムの長手方向に移動するとともに、前記把持部材のうちの樹脂フィルムの一方の端部を把持する複数の把持部材を有する第1把持部と、樹脂フィルムの他方の端部を把持する複数の把持部材を有する第2把持部との間の距離を、樹脂フィルムの幅方向に徐々に広げる方向に移動する延伸工程を備え、延伸工程において用いられる複数の把持部材が、樹脂フィルムを把持する際に樹脂フィルムの一方の面と接触する第1接触面の常温時の最大高さRyと、樹脂フィルムの他方の面と接触する第2接触面の常温時の最大高さRyとの合計値が、1μmから25μmである平滑把持部材を含むことを特徴とするものである。 The method for producing a resin film according to the present invention includes the gripping member moving in the longitudinal direction of the resin film while gripping both side ends of the long resin film in the width direction with a plurality of gripping members. The distance between the 1st holding part which has a plurality of holding members which hold one end part of a resin film among the 2nd holding part which has a plurality of holding members which hold the other end part of a resin film Is provided with a stretching process that gradually moves in the width direction of the resin film, and a plurality of gripping members used in the stretching process are in contact with one surface of the resin film when gripping the resin film. It includes a smooth gripping member in which the total value of the maximum height Ry of the surface at normal temperature and the maximum height Ry of the second contact surface in contact with the other surface of the resin film at normal temperature is 1 μm to 25 μm. Features Is.
 本発明で把持部材とは、樹脂フィルムの一方の面と接触する第1接触面と、樹脂フィルムの他方の面と接触する第2接触面とで樹脂フィルムを把持する部材を言う。平滑把持部材とは、把持部材の内、第1接触面と第2接触面との常温時の最大高さRyとの合計値が、1μmから25μmである把持部材を言う。 In the present invention, the gripping member refers to a member that grips the resin film with a first contact surface that contacts one surface of the resin film and a second contact surface that contacts the other surface of the resin film. The smooth gripping member refers to a gripping member having a total value of the maximum height Ry of the first contact surface and the second contact surface at the normal temperature of 1 μm to 25 μm among the gripping members.
 このような構成によれば、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができる。このことは、以下のことによると考えられる。まず、平滑把持部材を用いると、把持部材によりフィルムにかかる応力の負荷を低減することができると考えられる。このように、フィルムにかかる応力の負荷を低減することができれば、延伸時に樹脂フィルムの把持部材で把持された領域付近に発生しうる変形を抑制することができ、延伸による光学値の不均一性の発生を充分に抑制できると同時に変形による割れを抑制できると考えられる。よって、樹脂フィルムを幅方向に延伸しても、割れによる異物がなく光学値が充分に均一な樹脂フィルムを製造することができると考えられる。 According to such a configuration, even if the resin film is stretched in the width direction, a resin film having a sufficiently uniform optical value can be produced. This is considered to be due to the following. First, when a smooth gripping member is used, it is considered that the stress load applied to the film by the gripping member can be reduced. In this way, if the stress load applied to the film can be reduced, deformation that may occur near the region gripped by the resin film gripping member during stretching can be suppressed, and optical value non-uniformity due to stretching. It is considered that the occurrence of cracks can be sufficiently suppressed and cracking due to deformation can be suppressed. Therefore, it is considered that even if the resin film is stretched in the width direction, a resin film having no uniform foreign matter due to cracking and having a sufficiently uniform optical value can be produced.
 また、上記のように樹脂フィルムを製造すると、延伸して得られた樹脂フィルムを円滑に搬送することができる。このことは、延伸時に樹脂フィルムの把持具で把持された領域付近に発生しうる変形を抑制することができることによると考えられる。 Further, when the resin film is produced as described above, the resin film obtained by stretching can be smoothly conveyed. This is considered to be because the deformation that can occur in the vicinity of the region gripped by the resin film gripper during stretching can be suppressed.
 また、本発明の樹脂フィルムの製造方法において、第1把持部を構成している平滑把持部材の個数が、第1把持部を構成している全把持部材の個数に対して、98%以上であり、第2把持部を構成している平滑把持部材の個数が、第2把持部を構成している全把持部材の個数に対して、98%以上であることが好ましい。 In the method for producing a resin film of the present invention, the number of smooth gripping members constituting the first gripping part is 98% or more with respect to the number of all gripping members constituting the first gripping part. In addition, the number of smooth gripping members constituting the second gripping portion is preferably 98% or more with respect to the number of all gripping members constituting the second gripping portion.
 このような構成によれば、把持部材として、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。本来的には、把持部材として、平滑把持部材のみを用いて延伸することが好ましいが、第1把持部及び第2把持部を構成している平滑把持部材の個数が、全把持部材の個数に対して、98%以上を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。また、均一に延伸できることから、得られた樹脂フィルム中に異物の発生を抑制できる。 According to such a configuration, even when a gripping member other than the smooth gripping member is included as the gripping member, a resin film having a sufficiently uniform optical value can be manufactured. Originally, it is preferable to use only a smooth gripping member as a gripping member, but the number of smooth gripping members constituting the first gripping part and the second gripping part is the number of all gripping members. On the other hand, as long as 98% or more is satisfied, a resin film having a sufficiently uniform optical value can be manufactured even if gripping members other than the smooth gripping member are included. Moreover, since it can extend | stretch uniformly, generation | occurrence | production of a foreign material can be suppressed in the obtained resin film.
 さらに、把持部として、平滑把持部材と異なる把持部材が含まれていると、樹脂フィルムの搬送性が低下する傾向があるが、第1把持部及び第2把持部を構成している平滑把持部材の個数が、全把持部材の個数に対して、98%以上を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、樹脂フィルムの搬送性に優れた樹脂フィルムの製造方法を提供できる。 Furthermore, if a gripping member different from the smooth gripping member is included as the gripping portion, the transportability of the resin film tends to decrease, but the smooth gripping member constituting the first gripping portion and the second gripping portion The resin film manufacturing method having excellent transportability of the resin film even if a gripping member other than the smooth gripping member is included, as long as the total number of the gripping members satisfies 98% or more with respect to the total number of the gripping members Can provide.
 また、本発明の樹脂フィルムの製造方法において、平滑把持部材以外の把持部材であって、平滑把持部材に隣接する把持部材が平滑把持部材以外の把持部材である把持部材の個数が、平滑把持部材以外の把持部材の全個数に対して、5%以下であることが好ましい。 In the method for producing a resin film of the present invention, the number of gripping members other than the smooth gripping member, wherein the gripping member adjacent to the smooth gripping member is a gripping member other than the smooth gripping member is the smooth gripping member. It is preferable that it is 5% or less with respect to the total number of other gripping members.
 このような構成によれば、把持部材として、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。本来的には、把持部材として、平滑把持部材のみを用いて延伸することが好ましいが、平滑把持部材以外の把持部材である把持部材の個数が、平滑把持部材以外の把持部材の全個数に対して、5%以下を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。このことは、平滑把持部材以外の把持部材が含まれていたとしても、それらが分散していれば、それらの影響が少ないことによると考えられる。また、均一に延伸できることから、得られた樹脂フィルム中に異物の発生を抑制できる。 According to such a configuration, even when a gripping member other than the smooth gripping member is included as the gripping member, a resin film having a sufficiently uniform optical value can be manufactured. Originally, it is preferable to use only a smooth gripping member as the gripping member, but it is preferable that the number of gripping members other than the smooth gripping member is the total number of gripping members other than the smooth gripping member. If it satisfies 5% or less, a resin film having a sufficiently uniform optical value can be produced even if gripping members other than the smooth gripping member are included. This is considered to be because even if gripping members other than the smooth gripping member are included, they are less affected if they are dispersed. Moreover, since it can extend | stretch uniformly, generation | occurrence | production of a foreign material can be suppressed in the obtained resin film.
 さらに、把持部材として、平滑把持部材と異なる把持部材が含まれていると、樹脂フィルムの搬送性が低下する傾向があるが、平滑把持部材以外の把持部材である把持部材の個数が、平滑把持部材以外の把持部材の全個数に対して、5%以下を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、樹脂フィルムの搬送性に優れた樹脂フィルムの製造方法を提供できる。このことは、前記平滑把持部材以外の把持部材が含まれていたとしても、それらが分散していれば、それらの影響が少ないことによると考えられる。 Furthermore, if a gripping member different from the smooth gripping member is included as the gripping member, the transportability of the resin film tends to decrease, but the number of gripping members other than the smooth gripping member is smooth gripping. As long as 5% or less is satisfied with respect to the total number of gripping members other than the member, even if gripping members other than the smooth gripping member are included, a resin film manufacturing method excellent in resin film transportability is provided. Can be provided. This is considered to be because even if gripping members other than the smooth gripping member are included, they are less affected if they are dispersed.
 また、本発明の樹脂フィルムの製造方法において、平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数が、平滑把持部材の全個数に対して、5%以上であることが好ましい。 In the method for producing a resin film of the present invention, the number of smooth gripping members disposed between gripping members other than the smooth gripping member is preferably 5% or more with respect to the total number of smooth gripping members. .
 このような構成によれば、把持部材として、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。本来的には、把持部材として、平滑把持部材のみを用いて延伸することが好ましいが、平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数が、平滑把持部材の全個数に対して、5%以上を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。このことは、平滑把持部材以外の把持部材が含まれていたとしても、平滑把持部材がある程度以上連続することによって、平滑把持部による光学値の均一性を高める効果を充分に発揮することができることによると考えられる。また、均一に延伸できることから、得られた樹脂フィルム中に異物の発生を抑制できる。 According to such a configuration, even when a gripping member other than the smooth gripping member is included as the gripping member, a resin film having a sufficiently uniform optical value can be manufactured. Originally, it is preferable to stretch using only a smooth gripping member as the gripping member, but the number of smooth gripping members arranged between gripping members other than the smooth gripping member is the total number of smooth gripping members. On the other hand, if 5% or more is satisfied, a resin film having a sufficiently uniform optical value can be produced even if a gripping member other than the smooth gripping member is included. This means that even if a gripping member other than the smooth gripping member is included, the effect of increasing the uniformity of the optical value by the smooth gripping part can be sufficiently exerted by the smooth gripping member being continued to some extent. It is thought that. Moreover, since it can extend | stretch uniformly, generation | occurrence | production of a foreign material can be suppressed in the obtained resin film.
 さらに、把持部として、上記のように異なる把持部が含まれていると、フィルムの搬送性が低下する傾向があるが、平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数が、平滑把持部材の全個数に対して、5%以上を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、フィルムの搬送性に優れた樹脂フィルムの製造方法を提供できる。 Furthermore, if different gripping portions are included as described above, the film transportability tends to decrease, but the number of smooth gripping members arranged between gripping members other than the smooth gripping members However, if it satisfies 5% or more with respect to the total number of smooth gripping members, even if gripping members other than the smooth gripping members are included, a method for producing a resin film excellent in film transportability is provided. it can.
 また、本発明の樹脂フィルムの製造方法において、第1把持部が、樹脂フィルムの面方向に平行な方向に周回し、樹脂フィルムの一方の端部に沿って移動する部分を有する第1無端回転部に等間隔に複数保持されており、第2把持部が、樹脂フィルムの面方向に平行な方向に周回し、樹脂フィルムの一方の端部に沿って移動する部分を有する第2無端回転部に等間隔に複数保持されていることが好ましい。 Moreover, in the manufacturing method of the resin film of this invention, the 1st holding | grip part has the part which goes around in the direction parallel to the surface direction of a resin film, and moves along one edge part of a resin film. A plurality of second endless rotating parts that are held by the part at equal intervals and have a portion that the second gripping part circulates in a direction parallel to the surface direction of the resin film and moves along one end of the resin film It is preferable that a plurality are held at regular intervals.
 このような構成によれば、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができる樹脂フィルムの製造方法を容易に実現できる。 According to such a configuration, even if the resin film is stretched in the width direction, it is possible to easily realize a resin film manufacturing method that can manufacture a resin film having a sufficiently uniform optical value.
 また、本発明の樹脂フィルムの製造方法において、延伸工程で延伸する樹脂フィルムとして、溶媒が含有されている湿潤状態の樹脂フィルムを用いることが好ましい。 In the method for producing a resin film of the present invention, it is preferable to use a wet resin film containing a solvent as the resin film to be stretched in the stretching step.
 このような構成によれば、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができる樹脂フィルムの製造方法を容易に実現できる。 According to such a configuration, even if the resin film is stretched in the width direction, it is possible to easily realize a resin film manufacturing method that can manufacture a resin film having a sufficiently uniform optical value.
 また、本発明の他の樹脂フィルムの製造方法は、透明性樹脂を含む樹脂溶液(以下、ドープとも言う)を、流延ダイからドープ膜として走行する支持体上に流延して流延膜(以下、ウェブとも言う)を形成する流延工程と、流延膜を樹脂フィルムとして支持体から剥離する剥離工程と、剥離された延伸前の樹脂フィルムの幅方向の両側端部を複数の把持部材で把持しながら、把持部材が、樹脂フィルムの長手方向に移動するとともに、把持部材のうちの延伸前の樹脂フィルムの一方の端部を把持する複数の把持部材を有する第1把持部と、延伸前の樹脂フィルムの他方の端部を把持する複数の把持部材を有する第2把持部との間の距離を、樹脂フィルムの幅方向に徐々に広げる方向に移動する延伸工程を備え、延伸工程において用いられる複数の把持部材が、延伸前の樹脂フィルムを把持する際に延伸前の樹脂フィルムの一方の面と接触する第1接触面の常温時の最大高さRyと、延伸前の樹脂フィルムの他方の面と接触する第2接触面の常温時の最大高さRyとの合計値が、1μmから25μmである平滑把持部材を含むことを特徴とするものである。 Another method for producing a resin film of the present invention is to cast a resin solution containing a transparent resin (hereinafter also referred to as a dope) from a casting die onto a support that runs as a dope film. (Hereinafter also referred to as a web) a casting step, a peeling step in which the casting film is used as a resin film, and a peeling step from the support, and a plurality of grips on both sides in the width direction of the peeled resin film before stretching. While gripping with the member, the gripping member moves in the longitudinal direction of the resin film, and has a first gripping portion having a plurality of gripping members for gripping one end of the resin film before stretching among the gripping members; A stretching step of moving the distance between the second gripping portion having a plurality of gripping members gripping the other end of the resin film before stretching in a direction of gradually widening in the width direction of the resin film; Used in When the number of gripping members grips the resin film before stretching, the maximum height Ry of the first contact surface that comes into contact with one surface of the resin film before stretching at room temperature and the other of the resin films before stretching A smooth gripping member having a total value of the maximum height Ry of the second contact surface in contact with the surface at the normal temperature is 1 μm to 25 μm is included.
 このような構成によれば、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを連続して製造することができる。 According to such a configuration, even when the resin film is stretched in the width direction, a resin film having a sufficiently uniform optical value can be continuously produced.
 また、本発明の樹脂フィルムの製造装置は、長尺状の樹脂フィルムの幅方向の一方の端部を把持する第1把持部と、樹脂フィルムの他方の端部を把持する第2把持部とを備え、第1把持部及び第2把持部が、それぞれ複数個の把持部材を有し、樹脂フィルムの長手方向に移動するとともに、第1把持部と、第2把持部との間の距離を、樹脂フィルムの幅方向に徐々に広げる方向に移動させ、樹脂フィルムを把持する際に樹脂フィルムの一方の面と接触する第1接触面の常温時の最大高さRyと、樹脂フィルムの他方の面と接触する第2接触面の常温時の最大高さRyとの合計値が、1μmから25μmである平滑把持部材を含むことを特徴とするものである。 In addition, the resin film manufacturing apparatus of the present invention includes a first gripping part that grips one end in the width direction of the long resin film, and a second gripping part that grips the other end of the resin film. Each of the first gripping portion and the second gripping portion has a plurality of gripping members and moves in the longitudinal direction of the resin film, and the distance between the first gripping portion and the second gripping portion is The first height of contact Ry of the first contact surface that contacts one surface of the resin film when gripping the resin film is gradually increased in the width direction of the resin film, and the other height of the resin film A smooth gripping member having a total value of the maximum height Ry of the second contact surface in contact with the surface at the normal temperature is 1 μm to 25 μm is included.
 このような構成によれば、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができる。 According to such a configuration, even if the resin film is stretched in the width direction, a resin film having a sufficiently uniform optical value can be produced.
 また、本発明の樹脂フィルムは、本発明の樹脂フィルムの製造方法によって得られることを特徴とするものである。 The resin film of the present invention is obtained by the method for producing a resin film of the present invention.
 このような構成によれば、光学値が充分に均一で、広幅な樹脂フィルムが得られる。このため、光学値が均一であることが求められる液晶表示装置の光学フィルムとして、好適に使用できる。さらに、大画面化された液晶表示装置の光学フィルムとしても、好適に使用できる。 According to such a configuration, a wide resin film having a sufficiently uniform optical value can be obtained. For this reason, it can be suitably used as an optical film of a liquid crystal display device that is required to have a uniform optical value. Furthermore, it can be suitably used as an optical film for a liquid crystal display device having a large screen.
 また、本発明の偏光板は、偏光素子と、偏光素子の表面上に配置された透明保護フィルムとを備え、透明保護フィルムが、本発明の樹脂フィルムの製造方法により製造された樹脂フィルムであることを特徴とするものである。 Moreover, the polarizing plate of this invention is equipped with a polarizing element and the transparent protective film arrange | positioned on the surface of a polarizing element, and a transparent protective film is the resin film manufactured with the manufacturing method of the resin film of this invention. It is characterized by this.
 このような構成によれば、偏光素子の透明保護フィルムとして、光学値が均一な樹脂フィルムが適用されているので、例えば、液晶表示装置に適用した際に、コントラスト等に優れた液晶表示装置を実現できる偏光板が得られる。すなわち、液晶表示装置の高画質化を実現できる偏光板が得られる。さらに、偏光板の透明保護フィルムとして、広幅の樹脂フィルムを用いた場合、大画面化した液晶表示装置にも適用可能である。 According to such a configuration, since the resin film having a uniform optical value is applied as the transparent protective film of the polarizing element, for example, when applied to a liquid crystal display device, a liquid crystal display device excellent in contrast and the like is obtained. A polarizing plate that can be realized is obtained. That is, a polarizing plate that can realize high image quality of the liquid crystal display device is obtained. Furthermore, when a wide resin film is used as the transparent protective film of the polarizing plate, it can be applied to a liquid crystal display device having a large screen.
 また、本発明の液晶表示装置は、液晶セルと、液晶セルを挟むように配置された2枚の偏光板とを備え、2枚の偏光板のうち少なくとも一方が、本発明の樹脂フィルムを使用して製造された偏光板であることを特徴とするものである。 The liquid crystal display device of the present invention includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates uses the resin film of the present invention. Thus, the polarizing plate is manufactured.
 このような構成によれば、光学値の均一な樹脂フィルムを備えた偏光板を用いるので、コントラスト等に優れた高画質化された液晶表示装置が得られる。さらに、広幅の樹脂フィルムを備えた偏光板を用いた場合、液晶表示装置の大画面化を実現できる。 According to such a configuration, since the polarizing plate provided with the resin film having a uniform optical value is used, a high-quality liquid crystal display device excellent in contrast and the like can be obtained. Further, when a polarizing plate provided with a wide resin film is used, a large screen of the liquid crystal display device can be realized.
 本発明によれば、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができる樹脂フィルムの製造方法を提供することができる。また、樹脂フィルムの製造方法を実現する樹脂フィルムの製造装置、樹脂フィルムの製造方法によって得られた樹脂フィルム、樹脂フィルムを透明保護フィルムとして用いた偏光板、及び偏光板を備えた液晶表示装置が提供される。 According to the present invention, it is possible to provide a method for producing a resin film that can produce a resin film having a sufficiently uniform optical value even if the resin film is stretched in the width direction. In addition, a resin film manufacturing apparatus that realizes a resin film manufacturing method, a resin film obtained by a resin film manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate Provided.
樹脂フィルムの製造装置の基本的な構成の一例を示す概略図である。It is the schematic which shows an example of the fundamental structure of the manufacturing apparatus of a resin film. 図1に示す樹脂フィルムの製造装置に備えられる延伸装置の構成を示す概略図である。It is the schematic which shows the structure of the extending | stretching apparatus with which the manufacturing apparatus of the resin film shown in FIG. 図2に示す延伸装置における切断面線A-A′に沿った把持部材の概略断面図である。FIG. 3 is a schematic cross-sectional view of a gripping member along a cutting plane line AA ′ in the stretching apparatus shown in FIG. 2.
 以下、本発明の樹脂フィルムの製造方法について説明するが、本発明は、これらに限定されない。 Hereinafter, although the manufacturing method of the resin film of this invention is demonstrated, this invention is not limited to these.
 本発明の樹脂フィルムの製造方法は、長尺状の樹脂フィルムの幅方向の両側端部を複数の把持部材で把持しながら、把持部材が、延伸前の樹脂フィルムの長手方向に移動するとともに、把持部材のうちの延伸前の樹脂フィルムの一方の端部を把持する複数の把持部材を有する第1把持部と、延伸前の樹脂フィルムの他方の端部を把持する複数の把持部材を有する第2把持部との間の距離を、延伸前の樹脂フィルムの幅方向に徐々に広げる方向に移動する延伸工程を備え、延伸工程において用いられる複数の把持部材が、延伸前の樹脂フィルムを把持する際に延伸前の樹脂フィルムの一方の面と接触する第1接触面の常温時の最大高さRy(便宜上Ry1とする)と、延伸前の樹脂フィルムの他方の面と接触する第2接触面の常温時の最大高さRy(便宜上Ry2とする)との合計(Ry1+Ry2)値が、1μmから25μmである平滑把持部材を含むものである。 The method for producing a resin film of the present invention is such that the gripping member moves in the longitudinal direction of the resin film before stretching while gripping both side ends in the width direction of the long resin film with a plurality of gripping members, Among the gripping members, a first gripping portion having a plurality of gripping members that grip one end portion of the resin film before stretching, and a plurality of gripping members that grip the other end portion of the resin film before stretching. A stretching step of gradually moving the distance between the two gripping portions in the width direction of the resin film before stretching, and a plurality of gripping members used in the stretching step grip the resin film before stretching. The maximum height Ry (normally Ry1 for convenience) of the first contact surface in contact with one surface of the resin film before stretching and the second contact surface in contact with the other surface of the resin film before stretching Maximum height at room temperature Total (Ry1 + Ry2) value of Ry (for convenience and Ry2) is intended to include smooth gripping member is 25μm from 1 [mu] m.
 このような製造方法によれば、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができる。このことは、以下のことによると考えられる。 According to such a production method, a resin film having a sufficiently uniform optical value can be produced even if the resin film is stretched in the width direction. This is considered to be due to the following.
 まず、平滑把持部材を用いると、把持部材により樹脂フィルムにかかる応力の負荷を低減することができると考えられる。このように、樹脂フィルムにかかる応力の負荷を低減することができれば、延伸時に樹脂フィルムの把持部材で把持された領域付近に発生しうる変形を抑制することができ、延伸による光学値の不均一性の発生を充分に抑制できると考えられる。よって、樹脂フィルムを幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができると考えられる。 First, it is considered that when a smooth gripping member is used, the stress load applied to the resin film by the gripping member can be reduced. Thus, if the stress load applied to the resin film can be reduced, deformation that may occur in the vicinity of the region gripped by the resin film gripping member at the time of stretching can be suppressed, and non-uniform optical values due to stretching. It is considered that the generation of sex can be sufficiently suppressed. Therefore, it is considered that even if the resin film is stretched in the width direction, a resin film having a sufficiently uniform optical value can be produced.
 また、本発明の樹脂フィルムの製造方法により樹脂フィルムを製造すると、延伸して得られた樹脂フィルムを円滑に搬送することができる。このことは、延伸時にフィルムの把持部材で把持された領域付近に発生しうる変形を抑制することができることによると考えられる。 Further, when a resin film is produced by the method for producing a resin film of the present invention, the resin film obtained by stretching can be smoothly conveyed. This is considered to be because the deformation that can occur in the vicinity of the region gripped by the film gripping member during stretching can be suppressed.
 本発明の光学フィルムの製造方法は、延伸工程を備えたものであれば、特に限定されない。具体的には、例えば、支持体上に製膜した樹脂フィルムを支持体から剥離した後、剥離された樹脂フィルムに対して、延伸工程を施して樹脂フィルムを製造する方法等が挙げられる。具体的には、例えば、透明性樹脂を含む樹脂溶液を、走行する支持体上に流延ダイから流延して流延膜を形成する流延工程と、流延膜を樹脂フィルムとして支持体から剥離する剥離工程と、剥離された樹脂フィルムに対して延伸を施す延伸工程とを備える、いわゆる溶液流延製膜法による製造方法等が挙げられる。 The method for producing an optical film of the present invention is not particularly limited as long as it includes a stretching process. Specifically, for example, a method of producing a resin film by peeling a resin film formed on a support from the support and then subjecting the peeled resin film to a stretching process, can be mentioned. Specifically, for example, a casting process in which a casting solution is formed by casting a resin solution containing a transparent resin from a casting die on a traveling support, and the casting film is used as a resin film. The manufacturing method by what is called a solution casting film forming method provided with the peeling process which peels from, and the extending process which extends | stretches with respect to the peeled resin film etc. are mentioned.
 又、他の方法として、溶融した樹脂を支持体上に流延し製膜する溶融流延製膜法が挙げられる。 Another method is a melt casting film forming method in which a molten resin is cast on a support to form a film.
 このような溶液流延製膜法による製造方法は、例えば、図1に示すような樹脂フィルムの製造装置によって行われる。なお、樹脂フィルムの製造装置としては、延伸工程を備えていれば、図1に示すものに特に限定されず、他の構成のものであってもよい。また、ここで樹脂フィルムとは、支持体上に流延されたドープからなる流延膜が支持体上で乾燥され、支持体から剥離しうる状態となった以後のものを言う。 Such a manufacturing method by the solution casting film forming method is performed by, for example, a resin film manufacturing apparatus as shown in FIG. In addition, as a manufacturing apparatus of a resin film, if it has the extending | stretching process, it will not specifically limit to what is shown in FIG. 1, The thing of another structure may be sufficient. The resin film herein refers to a film after the cast film made of dope cast on the support is dried on the support and can be peeled off from the support.
 図1は、樹脂フィルムの製造装置の基本的な構成の一例を示す概略図である。樹脂フィルムの製造装置11は、無端ベルト支持体12、流延ダイ13、剥離ローラ14、延伸装置21、乾燥装置15、及び巻取装置16等を備える。流延ダイ13は、透明性樹脂を溶解したドープを無端ベルト支持体12の表面上にドープ膜19として流延し流延膜を形成する。無端ベルト支持体12は、一対の駆動ローラと従動ローラとによって駆動可能に支持され、流延ダイ13から吐出されたドープ膜19を無端ベルト支持体12上に流延し流延膜を形成し、搬送しながら乾燥させ無端ベルト支持体12から剥離出来る状態とする。そして、剥離ローラ14は、流延膜を無端ベルト支持体12から剥離する。延伸装置21は、後述の条件下で、延伸前の樹脂フィルム17を延伸させる。乾燥装置15は、延伸されたフィルム18を搬送ローラで搬送させながら、乾燥させる。そして、巻取装置16は、延伸及び乾燥されたフィルム18を巻き取って、フィルムロールとする。 FIG. 1 is a schematic diagram illustrating an example of a basic configuration of a resin film manufacturing apparatus. The resin film manufacturing apparatus 11 includes an endless belt support 12, a casting die 13, a peeling roller 14, a stretching device 21, a drying device 15, a winding device 16, and the like. The casting die 13 casts a dope in which a transparent resin is dissolved as a dope film 19 on the surface of the endless belt support 12 to form a casting film. The endless belt support 12 is supported to be drivable by a pair of driving rollers and driven rollers, and the dope film 19 discharged from the casting die 13 is cast on the endless belt support 12 to form a casting film. Then, it is dried while being conveyed so that it can be peeled off from the endless belt support 12. Then, the peeling roller 14 peels the cast film from the endless belt support 12. The stretching device 21 stretches the resin film 17 before stretching under the conditions described later. The drying device 15 dries the stretched film 18 while being transported by a transport roller. And the winding apparatus 16 winds up the stretched and dried film 18, and makes it a film roll.
 流延ダイ13は、図1に示すように、流延ダイ13の上端部に接続されたドープ供給管からドープが供給される。そして、その供給されたドープが流延ダイ13からドープ膜19として吐出され、無端ベルト支持体12に流延され、無端ベルト支持体12上に流延膜が形成される。 As shown in FIG. 1, the casting die 13 is supplied with a dope from a dope supply pipe connected to the upper end portion of the casting die 13. Then, the supplied dope is discharged as a dope film 19 from the casting die 13 and cast onto the endless belt support 12, and a casting film is formed on the endless belt support 12.
 無端ベルト支持体12は、図1に示すように、表面が鏡面の、無限に走行する金属製の無端ベルトである。無端ベルトとしては、樹脂フィルムの剥離性の点から、例えば、ステンレス鋼等からなる無端ベルトが好ましく用いられる。流延ダイ13からドープ膜19として吐出され、無端ベルト支持体12に流延されて形成された流延膜の幅は、無端ベルト支持体12の幅を有効活用する観点から、無端ベルト支持体12の幅に対して、80%から99%とすることが好ましい。また、無端ベルト支持体の代わりに、表面が鏡面の、回転する金属製のドラム(無端ドラム支持体)を用いてもよい。 As shown in FIG. 1, the endless belt support 12 is a metal endless belt having a mirror surface and traveling infinitely. As the endless belt, for example, an endless belt made of stainless steel or the like is preferably used from the viewpoint of the peelability of the resin film. From the viewpoint of effectively utilizing the width of the endless belt support 12, the width of the cast film discharged from the casting die 13 as the dope film 19 and cast on the endless belt support 12 is the endless belt support. The width of 12 is preferably 80% to 99%. Further, instead of the endless belt support, a rotating metal drum (endless drum support) having a mirror surface may be used.
 そして、無端ベルト支持体12は、その表面上に形成された流延膜を搬送しながら、流延膜中の溶媒を乾燥させる。乾燥は、例えば、無端ベルト支持体12を加熱したり、加熱風を流延膜に吹き付けることによって行う。その際、流延膜の温度が、ドープの溶液によっても異なるが、溶媒の蒸発時間に伴う搬送速度や生産性等を考慮して、-5℃から70℃の範囲が好ましく、0℃から60℃の範囲がより好ましい。流延膜の温度は、高いほど溶媒の乾燥速度を速くできるので好ましいが、高すぎると、発泡したり、平面性が劣化する傾向がある。 The endless belt support 12 dries the solvent in the casting film while conveying the casting film formed on the surface thereof. Drying is performed by, for example, heating the endless belt support 12 or blowing heated air onto the casting membrane. At this time, although the temperature of the cast film varies depending on the dope solution, the range of −5 ° C. to 70 ° C. is preferable and 0 ° C. to 60 ° C. in consideration of the transport speed and productivity accompanying the evaporation time of the solvent. A range of ° C is more preferred. The higher the temperature of the cast film, the higher the drying speed of the solvent, which is preferable. However, when the temperature is too high, foaming and flatness tend to deteriorate.
 無端ベルト支持体12を加熱する場合、例えば、無端ベルト支持体12上の流延膜を赤外線ヒータで加熱する方法、無端ベルト支持体12の裏面を赤外線ヒータで加熱する方法、無端ベルト支持体12の裏面に加熱風を吹き付けて加熱する方法等が挙げられ、必要に応じて適宜選択することが可能である。 When the endless belt support 12 is heated, for example, a method of heating the casting film on the endless belt support 12 with an infrared heater, a method of heating the back surface of the endless belt support 12 with an infrared heater, an endless belt support 12 There is a method of heating by heating air on the back surface, and it can be appropriately selected if necessary.
 また、加熱風を吹き付ける場合、その加熱風の風圧は、溶媒蒸発の均一性等を考慮し、50Paから5000Paであることが好ましい。加熱風の温度は、一定の温度で乾燥してもよいし、無端ベルト支持体12の走行方向で数段階の温度に分けて供給してもよい。 Further, when the heated air is blown, the wind pressure of the heated air is preferably 50 Pa to 5000 Pa in consideration of the uniformity of solvent evaporation and the like. The temperature of the heating air may be dried at a constant temperature, or may be supplied in several steps in the running direction of the endless belt support 12.
 無端ベルト支持体12の上にドープ膜19を流延し流延膜を形成した後、無端ベルト支持体12から流延膜を剥離するまでの時間は、作製する光学フィルムの膜厚、使用する溶媒によっても異なるが、無端ベルト支持体12からの剥離性を考慮し、0.5分間から5分間の範囲であることが好ましい。 The time from casting the dope film 19 on the endless belt support 12 to forming the cast film and then peeling the cast film from the endless belt support 12 is the thickness of the optical film to be produced. Although it varies depending on the solvent, it is preferably in the range of 0.5 to 5 minutes in consideration of the peelability from the endless belt support 12.
 無端ベルト支持体12による流延膜の搬送速度は、例えば、50m/分から200m/分程度であることが好ましい。また、無端ベルト支持体12の走行速度に対する、流延膜搬送速度の比(ドラフト比)は、0.8から1.2程度であることが好ましい。ドラフト比がこの範囲内であると、安定して流延膜を形成させることができる。例えば、ドラフト比が大きすぎると、流延膜が幅方向に縮小されるネックインという現象を発生させる傾向があり、そうなると、広幅の樹脂フィルムを形成できなくなる。 The transport speed of the cast film by the endless belt support 12 is preferably about 50 m / min to 200 m / min, for example. Further, the ratio (draft ratio) of the casting film conveying speed to the traveling speed of the endless belt support 12 is preferably about 0.8 to 1.2. When the draft ratio is within this range, the cast film can be stably formed. For example, if the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the cast film is reduced in the width direction, and if so, a wide resin film cannot be formed.
 剥離ローラ14は、無端ベルト支持体12のドープ膜19が流延される側の表面に接しており、無端ベルト支持体12側に加圧することによって、乾燥された流延膜が剥離される。尚、本発明では剥離された流延膜を延伸前の樹脂フィルムと言う。無端ベルト支持体12から流延膜を剥離する際に、剥離張力及びその後の搬送張力によって流延膜は、延伸前の樹脂フィルムの搬送方向(Machine Direction:MD方向)に延伸する。このため、無端ベルト支持体12から流延膜を剥離する際の剥離張力及び搬送張力は、50N/mから400N/mにすることが好ましい。 The peeling roller 14 is in contact with the surface of the endless belt support 12 on which the dope film 19 is cast, and the dried cast film is peeled by applying pressure to the endless belt support 12 side. In the present invention, the peeled cast film is referred to as a resin film before stretching. When the cast film is peeled from the endless belt support 12, the cast film is stretched in the transport direction (Machine Direction: MD direction) of the resin film before stretching by the peeling tension and the subsequent transport tension. For this reason, it is preferable that the peeling tension and the conveying tension when peeling the cast film from the endless belt support 12 are 50 N / m to 400 N / m.
 また、流延膜を無端ベルト支持体12から剥離する時の流延膜の残留溶媒率は、無端ベルト支持体12からの剥離性、剥離時の残留溶媒率、剥離後の搬送性、搬送・乾燥後に得られる樹脂フィルムの物理特性等を考慮し、30質量%から200質量%であることが好ましい。なお、流延膜の残留溶媒率は、下記式(I)で定義される。 Further, the residual solvent ratio of the cast film when the cast film is peeled from the endless belt support 12 is the peelability from the endless belt support 12, the residual solvent ratio at the time of peel, the transportability after peeling, Considering the physical properties of the resin film obtained after drying, it is preferably 30% by mass to 200% by mass. The residual solvent ratio of the cast film is defined by the following formula (I).
  残留溶媒率(質量%)={(M1-M2)/M2}×100  (I)
 ここで、M1は、流延膜の任意時点での質量を示し、M2は、M1を測定した流延膜を115℃で1時間乾燥させた後の質量を示す。
Residual solvent ratio (mass%) = {(M1-M2) / M2} × 100 (I)
Here, M1 represents the mass of the cast film at an arbitrary point in time, and M2 represents the mass after drying the cast film measured for M1 at 115 ° C. for 1 hour.
 延伸装置21は、後述する構成であって、延伸前の樹脂フィルム17を延伸前の樹脂フィルム17の搬送方向と直交する方向(Transverse Direction:TD方向、幅方向)に延伸させる。具体的には、図2に示すように、延伸前の樹脂フィルム17の搬送方向に垂直な方向の両端部を把持部材24、25で把持して、対向する把持部材24,25間の距離を大きくすることによって、TD方向に延伸する。 The stretching device 21 has a configuration that will be described later, and stretches the resin film 17 before stretching in a direction (Transverse Direction: TD direction, width direction) orthogonal to the transport direction of the resin film 17 before stretching. Specifically, as shown in FIG. 2, both end portions in the direction perpendicular to the transport direction of the resin film 17 before stretching are gripped by the gripping members 24 and 25, and the distance between the opposing gripping members 24 and 25 is set. By enlarging, it extends in the TD direction.
 乾燥装置15は、複数の搬送ローラを備え、そのローラ間を樹脂フィルムを搬送させる間に樹脂フィルムを乾燥させる。その際、加熱空気、赤外線等を単独で用いて乾燥してもよいし、加熱空気と赤外線とを併用して乾燥してもよい。簡便さの点から加熱空気を用いることが好ましい。乾燥温度としては、樹脂フィルムの残留溶媒率により、好適温度が異なるが、乾燥時間、収縮ムラ、伸縮量の安定性等を考慮し、30℃から180℃の範囲で残留溶媒率により適宜選択して決めればよい。また、一定の温度で乾燥してもよいし、2段階から4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。また、乾燥装置15内を搬送される間に、樹脂フィルムを、MD方向に延伸させることもできる。 The drying device 15 includes a plurality of transport rollers, and dries the resin film while transporting the resin film between the rollers. In that case, you may dry using heating air, infrared rays, etc. independently, and you may dry using heating air and infrared rays together. It is preferable to use heated air from the viewpoint of simplicity. The drying temperature varies depending on the residual solvent ratio of the resin film. However, the drying temperature is appropriately selected depending on the residual solvent ratio in the range of 30 ° C. to 180 ° C. in consideration of drying time, shrinkage unevenness, stability of expansion and contraction, etc. You can decide. Moreover, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and divided into several stages of temperature. Further, the resin film can be stretched in the MD direction while being transported in the drying device 15.
 巻取装置16は、延伸装置21で延伸させ、乾燥装置15で乾燥させた樹脂フィルムを必要量の長さに巻き芯に巻き取る。なお、巻き取る際の温度は、巻き取り後の収縮による擦り傷、巻き緩み等を防止するために室温まで冷却することが好ましい。使用する巻き取り機は、特に限定なく使用でき、一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻き取り方法で巻き取ることができる。 The winding device 16 winds the resin film stretched by the stretching device 21 and dried by the drying device 15 to a required length to be wound around the winding core. In addition, it is preferable that the temperature at the time of winding is cooled to room temperature in order to prevent abrasion, loosening, and the like due to shrinkage after winding. The winder to be used can be used without any particular limitation, and may be a commonly used one, such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method with a constant internal stress. Can be wound up.
 図2は、図1に示す樹脂フィルムの製造装置に備えられる延伸装置21の構成を示す概略図である。尚、本図は把持部材として図3に示す様なクリップを使用した場合を示している。 FIG. 2 is a schematic diagram showing the configuration of the stretching apparatus 21 provided in the resin film manufacturing apparatus shown in FIG. In addition, this figure has shown the case where a clip as shown in FIG. 3 is used as a holding member.
 延伸装置21は、複数の把持部材24を備えた第1レール22を有する第1把持部21aと、複数の把持部材25を備えた第2レール23を有する第2把持部21bと、把持部材24が配置された無端チェーン(不図示)を保持する一対のスプロケット26、28を有する第1無端回転部21cと、把持部材24が配置された無端チェーン(不図示)を保持する一対のスプロケット27、29を有する第2無端回転部21dとを有している。なお、図2は、概略図であり、把持部材24、25の数は、図2に示すものより、一般的に、多数である。 The stretching device 21 includes a first grip 21 a having a first rail 22 having a plurality of grip members 24, a second grip 21 b having a second rail 23 having a plurality of grip members 25, and a grip member 24. A first endless rotating part 21c having a pair of sprockets 26, 28 that hold an endless chain (not shown) in which is disposed, and a pair of sprockets 27 that hold an endless chain (not shown) in which a gripping member 24 is placed, 2nd endless rotation part 21d which has 29. FIG. 2 is a schematic view, and the number of grip members 24 and 25 is generally larger than that shown in FIG.
 第1レール22は、延伸前の樹脂フィルム17の一方の端部に沿って延び、後述するように、把持部材24の走行方向を定める。また、第2レール23は、延伸前の樹脂フィルム17の他方の端部に沿って延び、後述するように、把持部材25の走行方向を定める。 The first rail 22 extends along one end of the resin film 17 before stretching, and determines the traveling direction of the gripping member 24 as will be described later. Moreover, the 2nd rail 23 is extended along the other edge part of the resin film 17 before extending | stretching, and determines the running direction of the holding member 25 so that it may mention later.
 把持部材24,25は、それぞれが延伸前の樹脂フィルム17の幅方向の端部を把持する。また、把持部材24,25は、それぞれ不図示の無端チェーンに所定間隔あけて配置される。そして、把持部材24が配置された無端チェーン(不図示)は、一対のスプロケット26、28に掛け渡されている。また、把持部材25が配置された無端チェーン(不図示)は、一対のスプロケット27、29に掛け渡されている。スプロケット28、29は、ステッピングモータ等の駆動源によって回転駆動し、各無端チェーン(不図示)を無端回転させるための駆動力を与える。また、スプロケット26、27は、回転自在に設けられ、スプロケット28、29による無端チェーン(不図示)の無端回転に伴って従動回転する。そして、各無端チェーン(不図示)の無端回転は、第1レール22及び第2レール23によって案内される。このように、把持部材24及び把持部材25が配置された無端チェーンが、第1レール22及び第2レール23によって案内された状態で無端回転することによって、把持部材24、25は、それぞれが延伸前の樹脂フィルム17の幅方向の端部を把持したまま、第1レール22及び第2レール23上を延伸前の樹脂フィルム17の搬送方向に順次走行する。 The grip members 24 and 25 each grip the end portion in the width direction of the resin film 17 before stretching. In addition, the grip members 24 and 25 are arranged at predetermined intervals on an endless chain (not shown). An endless chain (not shown) on which the grip member 24 is arranged is stretched between a pair of sprockets 26 and 28. Further, an endless chain (not shown) on which the gripping member 25 is arranged is stretched around a pair of sprockets 27 and 29. The sprockets 28 and 29 are rotationally driven by a driving source such as a stepping motor, and give a driving force for endlessly rotating each endless chain (not shown). The sprockets 26 and 27 are rotatably provided, and are driven to rotate along with endless rotation of an endless chain (not shown) by the sprockets 28 and 29. Endless rotation of each endless chain (not shown) is guided by the first rail 22 and the second rail 23. Thus, the endless chain in which the gripping member 24 and the gripping member 25 are arranged rotates endlessly while being guided by the first rail 22 and the second rail 23, so that the gripping members 24 and 25 are each stretched. While gripping the end portion in the width direction of the previous resin film 17, the first rail 22 and the second rail 23 are sequentially run in the transport direction of the resin film 17 before stretching.
 把持部材24、25の走行方向は、以下のように定められる。 The traveling direction of the gripping members 24 and 25 is determined as follows.
 まず、各把持部材24、25は、延伸前の樹脂フィルム17の幅方向の両端部を把持しながら、延伸前の樹脂フィルム17の長手方向に沿ってのみ移動する。すなわち、把持部材24と把持部材25との間の距離をほとんど変更しないように移動する。 First, the holding members 24 and 25 move only along the longitudinal direction of the resin film 17 before stretching while holding both ends in the width direction of the resin film 17 before stretching. That is, it moves so that the distance between the gripping member 24 and the gripping member 25 is hardly changed.
 その後、各把持部材24,25は、延伸前の樹脂フィルム17の長手方向に沿って移動するとともに、延伸前の樹脂フィルム17の幅方向に前記把持部材24と把持部材25との間を徐々に広げる方向に移動する。そうすることによって、延伸前の樹脂フィルム17を幅方向に延伸する。その際、延伸前のフィルム17の長手方向と延伸時の把持部材24又は把持部材25とのなす角θは、1°から50°であることが好ましい。角θが小さすぎると、延伸率が低くなり、樹脂フィルムの広幅化を充分に達成できない傾向がある。また、角θが大きすぎると、把持部材24、25で把持した箇所の周辺で変形が発生する傾向があり、場合によっては、延伸前の樹脂フィルム17が裂けてしまうことがある。 Thereafter, each gripping member 24, 25 moves along the longitudinal direction of the resin film 17 before stretching, and gradually moves between the gripping member 24 and the gripping member 25 in the width direction of the resin film 17 before stretching. Move in the direction of spreading. By doing so, the resin film 17 before stretching is stretched in the width direction. At that time, the angle θ formed by the longitudinal direction of the film 17 before stretching and the gripping member 24 or gripping member 25 during stretching is preferably 1 ° to 50 °. If the angle θ is too small, the stretch ratio becomes low, and there is a tendency that the widening of the resin film cannot be sufficiently achieved. In addition, if the angle θ is too large, there is a tendency for deformation to occur around the portion gripped by the gripping members 24 and 25, and in some cases, the resin film 17 before stretching may be torn.
 最後に、各把持部材24、25は、それらの間の距離をほとんど変更しないように移動する。すなわち、延伸によって広げた間隔を保持するように移動する。そうすることによって、各把持部材24、25を開放した後の、フィルム17の幅方向の縮みの発生を抑制する。 Finally, the gripping members 24 and 25 move so that the distance between them hardly changes. That is, it moves so as to maintain the interval widened by stretching. By doing so, the shrinkage | contraction of the width direction of the film 17 after opening each holding member 24 and 25 is suppressed.
 また、延伸前の樹脂フィルム17を延伸させる際、通常、延伸前の樹脂フィルム17を加熱して行う。この延伸前の樹脂フィルム17の加熱は、特に限定されないが、例えば、加熱風を延伸前の樹脂フィルム17に吹き付けることによって行ってもよいし、赤外線等の加熱装置で加熱してもよい。また、延伸時の延伸前の樹脂フィルム17の温度は、樹脂フィルムの組成等によっても異なるが、例えば、100℃から150℃であることが好ましい。 Further, when the resin film 17 before stretching is stretched, the resin film 17 before stretching is usually heated. Although heating of this resin film 17 before extending | stretching is not specifically limited, For example, you may carry out by spraying a heating air on the resin film 17 before extending | stretching, and you may heat with heating apparatuses, such as infrared rays. Moreover, although the temperature of the resin film 17 before extending | stretching at the time of extending | stretching changes with composition etc. of a resin film, it is preferable that it is 100 to 150 degreeC, for example.
 また、第1把持部を構成している把持部材24、第2把持部を構成している把持部材25としては、上述したように、延伸前の樹脂フィルム17を把持する際に延伸前の樹脂フィルム17の一方の面と接触する第1接触面の常温時の最大高さRy1と、延伸前の樹脂フィルム17の他方の面と接触する第2接触面の常温時の最大高さRy2との合計(Ry1+Ry2)値が、1μmから25μmである平滑把持部材を含む。すなわち、把持部材24,25は、平滑把持部材からなっていてもよいし、平滑把持部材と平滑把持部材以外の把持部材からなっていてもよい。 In addition, as described above, the gripping member 24 constituting the first gripping portion and the gripping member 25 constituting the second gripping portion are the resin before stretching when gripping the resin film 17 before stretching. The maximum height Ry1 at normal temperature of the first contact surface in contact with one surface of the film 17 and the maximum height Ry2 at normal temperature of the second contact surface in contact with the other surface of the resin film 17 before stretching. A smooth gripping member having a total (Ry1 + Ry2) value of 1 μm to 25 μm is included. That is, the grip members 24 and 25 may be made of a smooth grip member, or may be made of a grip member other than the smooth grip member and the smooth grip member.
 把持部材24,25は、平滑把持部材を含んでいれば、その構造は特に限定されないが、具体的には、例えば、図3に示すような構造のものが挙げられる。なお、図3は、図2に示す延伸装置21における切断面線A-A′に沿った把持部材概略断面図である。 As long as the gripping members 24 and 25 include a smooth gripping member, the structure thereof is not particularly limited. Specifically, for example, a structure as shown in FIG. 3 is a schematic cross-sectional view of the gripping member along the cutting plane line AA ′ in the stretching apparatus 21 shown in FIG.
 把持部材24は、図3に示すように、可動部31と台座32とを含んで構成されている。可動部31は、台座32に回転自在に軸支されている。把持部材24は、可動部31を回転させて、可動部31で延伸前の樹脂フィルム17を台座32に挟み込むことによって、延伸前の樹脂フィルム17把持する。 As shown in FIG. 3, the grip member 24 includes a movable part 31 and a pedestal 32. The movable part 31 is pivotally supported by the pedestal 32 so as to be rotatable. The holding member 24 holds the resin film 17 before stretching by rotating the movable part 31 and sandwiching the resin film 17 before stretching in the pedestal 32 by the movable part 31.
 可動部31の、延伸前の樹脂フィルム17と接触する第1接触面33は凹凸を有する面となっている。又、台座32の、延伸前の樹脂フィルム17と接触する第2接触面34も第1接触面33と同様に凹凸を有する面となっている。 The 1st contact surface 33 which contacts the resin film 17 before extending | stretching of the movable part 31 is a surface which has an unevenness | corrugation. Further, the second contact surface 34 of the pedestal 32 that contacts the unstretched resin film 17 is also a surface having irregularities, like the first contact surface 33.
 把持部材24が平滑把持部材である場合は、可動部31の、延伸前の樹脂フィルム17と接触する第1接触面33の常温時の面粗さを示す最大高さRy1と、台座32の、延伸前の樹脂フィルム17と接触する第2接触面34の常温時の面粗さを示す最大高さRy2との合計(Ry1+Ry2)値が、1μmから25μmである。この合計値が小さすぎると、可動部31と台座32とでフィルム17を把持する際に延伸前の樹脂フィルム17にかかる接圧が増加し、把持部材24により延伸前の樹脂フィルム17にかかる応力の負荷が増加する傾向がある。また、フィルム17を加熱している場合、その熱により、延伸前の樹脂フィルム17が、可動部31や台座32にくっつくという不具合が発生する場合もある。また、合計(Ry1+Ry2)値が大きすぎる場合、可動部31や台座32の特定の箇所により延伸前の樹脂フィルム17を挟みこむ、いわゆる片当たりによって、把持部材24により延伸前の樹脂フィルム17にかかる応力の負荷が増加する傾向がある。 When the gripping member 24 is a smooth gripping member, the maximum height Ry1 indicating the surface roughness at normal temperature of the first contact surface 33 of the movable portion 31 that contacts the resin film 17 before stretching, and the pedestal 32, The total value (Ry1 + Ry2) of the maximum height Ry2 indicating the surface roughness at normal temperature of the second contact surface 34 in contact with the resin film 17 before stretching is 1 μm to 25 μm. If the total value is too small, the contact pressure applied to the resin film 17 before stretching when the film 17 is gripped by the movable part 31 and the pedestal 32 increases, and the stress applied to the resin film 17 before stretching by the gripping member 24. Tend to increase the load. Moreover, when the film 17 is heated, the heat | fever may cause the malfunction that the resin film 17 before extending | stretching sticks to the movable part 31 or the base 32. When the total (Ry1 + Ry2) value is too large, the resin film 17 before stretching is sandwiched between specific portions of the movable portion 31 and the pedestal 32, so that the resin film 17 before stretching is applied to the resin film 17 before stretching by the gripping member 24. There is a tendency for stress loading to increase.
 ここで、常温とは、JIS Z 8703に準拠の標準状態の温度であって、具体的には、20℃±15℃である。 Here, the normal temperature is a temperature in a standard state in accordance with JIS Z 8703, and specifically, 20 ° C. ± 15 ° C.
 また、最大高さRyは、JIS B 0601:1994に準拠の方法により測定された値である。具体的には、例えば、株式会社ミツトヨ製のMitutoyo SURFTEST SV-3100を用いて測定することができる。 Further, the maximum height Ry is a value measured by a method according to JIS B 0601: 1994. Specifically, for example, measurement can be performed using Mitutoyo SURFTEST SV-3100 manufactured by Mitutoyo Corporation.
 また、平滑把持部材の構造は、樹脂フィルムの一方の面と接触する面と、他の面と接触する面との間で把持することが出来、第1接触面33における最大高さRy1及び第2接触面34における最大高さRy2の合計(Ry1+Ry2)値が1μmから25μmであれば、特に限定されない。また、把持部材の構造は、平滑把持部材と同じであることが好ましい。 Further, the structure of the smooth gripping member can be gripped between a surface that contacts one surface of the resin film and a surface that contacts the other surface, and the maximum height Ry1 and the first height on the first contact surface 33 There is no particular limitation as long as the total (Ry1 + Ry2) value of the maximum height Ry2 on the two contact surfaces 34 is 1 μm to 25 μm. The structure of the gripping member is preferably the same as that of the smooth gripping member.
 具体的には、例えば、第1接触面33における最大高さRy1及び第2接触面34における最大高さRy2の合計(Ry1+Ry2)値が1μmから25μmとなるように、めっき処理や研磨処理等を施したものが挙げられる。 Specifically, for example, a plating process or a polishing process is performed so that the total value (Ry1 + Ry2) of the maximum height Ry1 on the first contact surface 33 and the maximum height Ry2 on the second contact surface 34 is 1 μm to 25 μm. What you gave.
 また、延伸工程で延伸する延伸前の樹脂フィルム17としては、溶媒が含有されている湿潤状態の樹脂フィルムを用いることが好ましい。また、延伸工程で延伸する延伸前の樹脂フィルム17の残留溶媒率は、1質量%から0質量%であることがより好ましい。そうすることによって、延伸前の樹脂フィルム17を幅方向に延伸しても、光学値が充分に均一な樹脂フィルムを製造することができる樹脂フィルムの製造方法を容易に実現できる。 Moreover, as the resin film 17 before stretching that is stretched in the stretching process, it is preferable to use a wet resin film containing a solvent. Moreover, it is more preferable that the residual solvent ratio of the resin film 17 before being stretched in the stretching step is 1% by mass to 0% by mass. By doing so, even if the resin film 17 before stretching is stretched in the width direction, it is possible to easily realize a method for producing a resin film that can produce a resin film having a sufficiently uniform optical value.
 また、把持部材24、25は、上述したように、平滑把持部材を含んでいれば、平滑把持部材以外の把持部材を含んでいてもよい。その際、以下のことを満たすことが好ましい。 Further, as described above, the grip members 24 and 25 may include grip members other than the smooth grip member as long as the grip members 24 and 25 include the smooth grip member. In that case, it is preferable to satisfy the following.
 また、第1把持部を構成している複数の把持部材24中の平滑把持部材の個数が、把持部材24の全個数に対して、98%以上であり、第2把持部を構成している複数の把持部材25中の平滑把持部材の個数が、把持部材25の全個数に対して、98%以上であることが好ましい。平滑把持部材の個数の、把持部材の全個数に対する割合を平滑把持部材率と言う。 Further, the number of the smooth gripping members among the plurality of gripping members 24 constituting the first gripping portion is 98% or more with respect to the total number of the gripping members 24, and the second gripping portion is configured. The number of smooth gripping members in the plurality of gripping members 25 is preferably 98% or more with respect to the total number of gripping members 25. The ratio of the number of smooth gripping members to the total number of gripping members is called the smooth gripping member rate.
 そうすることによって、把持部材として、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。本来的には、把持部材として、平滑把持部材のみを用いて延伸することが好ましいが、上記範囲を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。また、均一に延伸できることから、得られた樹脂フィルム中に異物の発生を抑制できる。 By doing so, a resin film having a sufficiently uniform optical value can be manufactured even if a gripping member other than the smooth gripping member is included as the gripping member. Originally, it is preferable to use only a smooth gripping member as the gripping member, but if the above range is satisfied, the optical value is sufficient even if gripping members other than the smooth gripping member are included. A uniform resin film can be produced. Moreover, since it can extend | stretch uniformly, generation | occurrence | production of a foreign material can be suppressed in the obtained resin film.
 さらに、把持部材として、上記のように平滑把持部材と異なる把持部材が含まれていると、樹脂フィルムの搬送性が低下する傾向があるが、第1把持部を構成している複数の把持部材24中の平滑把持部材の個数が、把持部材24の全個数に対して、98%以上であり、第2把持部を構成している複数の把持部材25中の平滑把持部材の個数が、把持部材25の全個数に対して、98%以上を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、樹脂フィルムの搬送性に優れた樹脂フィルムの製造方法を提供できる。 Further, if the gripping member includes a gripping member different from the smooth gripping member as described above, the transportability of the resin film tends to decrease, but the plurality of gripping members constituting the first gripping portion The number of smooth gripping members in 24 is 98% or more with respect to the total number of gripping members 24, and the number of smooth gripping members in the plurality of gripping members 25 constituting the second gripping portion is gripped. As long as 98% or more is satisfied with respect to the total number of members 25, even if a gripping member other than the smooth gripping member is included, a method for producing a resin film excellent in resin film transportability can be provided.
 また、平滑把持部材以外の把持部材であって、把持部材に隣接する把持部材が平滑把持部材以外の把持部材である把持部材の個数が、平滑把持部材以外の把持部材の全個数に対して、5%以下であることが好ましい。この把持部材に隣接する把持部材が平滑把持部材以外の把持部材である把持部材の個数の、平滑把持部材以外の把持部材の全個数に対する割合を平滑把持部材以外の把持部材の隣接個数率と言う。 In addition, the number of gripping members other than the smooth gripping member is a gripping member other than the smooth gripping member, and the gripping member adjacent to the gripping member is a gripping member other than the smooth gripping member. It is preferable that it is 5% or less. The ratio of the number of gripping members whose gripping members adjacent to the gripping member are gripping members other than the smooth gripping member to the total number of gripping members other than the smooth gripping member is called the adjacent number ratio of gripping members other than the smooth gripping member. .
 そうすることによって、把持部材として、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。本来的には、把持部材として、平滑把持部材のみを用いて延伸することが好ましいが、平滑把持部材以外の把持部材であって、把持部材に隣接する把持部材が平滑把持部材以外の把持部材である把持部材の個数が、平滑把持部材以外の把持部材の全個数に対して、5%以下を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。このことは、平滑把持部材以外の把持部材が含まれていたとしても、それらが分散していれば、それらの影響が少ないことによると考えられる。また、均一に延伸できることから、得られた樹脂フィルム中に異物の発生を抑制できる。 By doing so, a resin film having a sufficiently uniform optical value can be manufactured even if a gripping member other than the smooth gripping member is included as the gripping member. Originally, it is preferable to use only a smooth gripping member as a gripping member, but it is a gripping member other than the smooth gripping member, and the gripping member adjacent to the gripping member is a gripping member other than the smooth gripping member. If the number of gripping members satisfies 5% or less with respect to the total number of gripping members other than the smooth gripping member, the optical value is sufficiently high even if gripping members other than the smooth gripping member are included. A uniform resin film can be produced. This is considered to be because even if gripping members other than the smooth gripping member are included, they are less affected if they are dispersed. Moreover, since it can extend | stretch uniformly, generation | occurrence | production of a foreign material can be suppressed in the obtained resin film.
 さらに、把持部材として、上記のように平滑把持部材と異なる把持部材が含まれていると、樹脂フィルムの搬送性が低下する傾向があるが、平滑把持部材以外の把持部材であって、把持部材に隣接する把持部材が平滑把持部材以外の把持部材である把持部材の個数が、平滑把持部材以外の把持部材の全個数に対して、5%以下を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、樹脂フィルムの搬送性に優れた樹脂フィルムの製造方法を提供できる。このことは、平滑把持部材以外の把持部材が含まれていたとしても、それらが分散していれば、それらの影響が少ないことによると考えられる。 Furthermore, if the gripping member includes a gripping member different from the smooth gripping member as described above, the transportability of the resin film tends to decrease, but the gripping member is a gripping member other than the smooth gripping member. If the number of grip members whose grip members adjacent to the grip member are grip members other than the smooth grip member satisfies 5% or less with respect to the total number of grip members other than the smooth grip member, grips other than the smooth grip member Even if a member is included, a method for producing a resin film excellent in resin film transportability can be provided. This is considered to be because even if gripping members other than the smooth gripping member are included, they are less affected if they are dispersed.
 また、平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数が、平滑把持部材の全個数に対して、5%以上であることが好ましい。平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数の、平滑把持部材の全個数に対する割合を平滑把持部材の隣接個数率という。 Further, the number of smooth gripping members disposed between gripping members other than the smooth gripping members is preferably 5% or more with respect to the total number of smooth gripping members. The ratio of the number of smooth gripping members arranged between gripping members other than the smooth gripping members to the total number of smooth gripping members is called the adjacent number ratio of the smooth gripping members.
 このような構成によれば、把持部材として、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。本来的には、把持部材として、平滑把持部材のみを用いて延伸することが好ましいが、平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数が、平滑把持部材の全個数に対して、5%以上を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、光学値が充分に均一な樹脂フィルムを製造することができる。このことは、平滑把持部材以外の把持部材が含まれていたとしても、平滑把持部材がある程度以上連続することによって、平滑把持部材による光学値の均一性を高める効果を充分に発揮することができることによると考えられる。また、均一に延伸できることから、得られた樹脂フィルム中に異物の発生を抑制できる。 According to such a configuration, even when a gripping member other than the smooth gripping member is included as the gripping member, a resin film having a sufficiently uniform optical value can be manufactured. Originally, it is preferable to stretch using only a smooth gripping member as the gripping member, but the number of smooth gripping members arranged between gripping members other than the smooth gripping member is the total number of smooth gripping members. On the other hand, if 5% or more is satisfied, a resin film having a sufficiently uniform optical value can be produced even if a gripping member other than the smooth gripping member is included. This means that even if a gripping member other than the smooth gripping member is included, the smooth gripping member can sufficiently exhibit the effect of increasing the uniformity of the optical value by the smooth gripping member by being continued to some extent. It is thought that. Moreover, since it can extend | stretch uniformly, generation | occurrence | production of a foreign material can be suppressed in the obtained resin film.
 さらに、把持部材として、上記のように平滑把持部材と異なる把持部材が含まれていると、樹脂フィルムの搬送性が低下する傾向があるが、平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数が、平滑把持部材の全個数に対して、5%以上を満たすのであれば、平滑把持部材以外の把持部材が含まれていたとしても、樹脂フィルムの搬送性に優れた樹脂フィルムの製造方法を提供できる。 Furthermore, if the gripping member includes a gripping member different from the smooth gripping member as described above, the transportability of the resin film tends to decrease, but the gripping member is disposed between gripping members other than the smooth gripping member. If the number of smooth gripping members satisfies 5% or more with respect to the total number of smooth gripping members, even if a gripping member other than the smooth gripping member is included, a resin excellent in resin film transportability A method for producing a film can be provided.
 上記のような図1に示す製造装置を使用し、図3に示す把持部材を使用した図2に示す延伸工程によって、幅方向に延伸しても、光学値が均一な樹脂フィルムを得ることができる。すなわち、光学値が充分に均一で、広幅な樹脂フィルムを得ることができる。また、光学値としては、例えば、面内方向レタデーションRo及び遅相軸の角度θ等が挙げられる。よって、図1に示す製造装置を使用し、図3に示す把持部材を使用した図2に示す延伸工程によって面内方向レタデーションRoや遅相軸の角度θ等の光学値が樹脂フィルムの位置にかかわらず均一である樹脂フィルムを得ることができる。このため、得られた樹脂フィルムは、光学値が均一であることが求められる液晶表示装置の光学フィルムとして、好適に使用できる。さらに、大画面化された液晶表示装置の光学フィルムとしても、好適に使用できる。 By using the manufacturing apparatus shown in FIG. 1 as described above and the stretching process shown in FIG. 2 using the gripping member shown in FIG. 3, a resin film having a uniform optical value can be obtained even if stretched in the width direction. it can. That is, a wide resin film having a sufficiently uniform optical value can be obtained. Examples of the optical value include in-plane direction retardation Ro and slow axis angle θ. Therefore, by using the manufacturing apparatus shown in FIG. 1 and the stretching process shown in FIG. 2 using the gripping member shown in FIG. 3, the optical values such as the in-plane direction retardation Ro and the slow axis angle θ are brought to the position of the resin film. Regardless, a uniform resin film can be obtained. For this reason, the obtained resin film can be suitably used as an optical film of a liquid crystal display device that is required to have a uniform optical value. Furthermore, it can be suitably used as an optical film for a liquid crystal display device having a large screen.
 また、ここで得られた樹脂フィルムは、面内方向レタデーションRoの最大値と最小値との差が、1nm以下であることが好ましい。また、遅相軸の角度θの最大値と最小値との差が、0.2°以下であることが好ましい。なお、面内方向レタデーションRo及び遅相軸の角度θは、後述の実施例に記載の方法で測定することができる。 Moreover, it is preferable that the difference between the maximum value and the minimum value of the in-plane direction retardation Ro of the resin film obtained here is 1 nm or less. The difference between the maximum value and the minimum value of the slow axis angle θ is preferably 0.2 ° or less. The in-plane retardation Ro and the slow axis angle θ can be measured by the methods described in the examples described later.
 また、ここでの樹脂フィルムのTD方向の延伸率は、1%から50%程度であることが好ましい。このような高延伸にすると、一般的に、樹脂フィルムの光学値が不均一になりやすいが、TD方向の延伸率を1%から50%の条件でフィルムを延伸させると、光学値が不均一になることを抑制できる。したがって、光学値が均一で、かつ広幅の樹脂フィルムを得ることができる。また、樹脂フィルムの幅が広いと、大型の液晶表示装置への使用、偏光板加工時のフィルムの使用効率、生産効率の点からも好ましい。なお、延伸率は、下記式(1)で定義される。 Further, the stretching ratio in the TD direction of the resin film here is preferably about 1% to 50%. In general, the optical value of the resin film tends to be non-uniform when such a high stretch is used, but the optical value is non-uniform when the film is stretched under a condition where the stretch ratio in the TD direction is 1% to 50%. Can be suppressed. Accordingly, a wide resin film having a uniform optical value can be obtained. Moreover, when the width | variety of a resin film is wide, it is preferable also from the point of use to a large sized liquid crystal display device, the use efficiency of the film at the time of polarizing plate processing, and production efficiency. The stretching ratio is defined by the following formula (1).
  延伸率(%)={(L-L)/L}×100  (1)
 ここで、Lは、フィルムの所定の位置の端部間の延伸前の長さを示し、Lは、フィルムの所定の位置の端部間の延伸後の長さを示す。なお、フィルムの幅は、C型JIS1級の鋼製スケールで幅を測定した値である。
Stretch rate (%) = {(L 2 −L 1 ) / L 1 } × 100 (1)
Here, L 1 indicates the length before stretching between the end portions at a predetermined position of the film, and L 2 indicates the length after stretching between the end portions at the predetermined position of the film. In addition, the width | variety of a film is the value which measured the width | variety with the C-type JIS1 grade steel scale.
 また、樹脂フィルムの幅は、1000mmから3000mmであることが好ましい。このような広幅の樹脂フィルムを製造しようとすると、一般的に、樹脂フィルムの光学値が不均一になりやすいが、TD方向の延伸率を1%から50%条件でフィルムを延伸させると、光学値が不均一になることを抑制できる。したがって、光学値が均一で、かつ広幅の樹脂フィルムを得ることができる。また、樹脂フィルムの幅が広いと、大型の液晶表示装置への使用、偏光板加工時のフィルムの使用効率、生産効率の点からも好ましい。また、樹脂フィルムの膜厚は、液晶表示装置の薄型化、フィルムの生産安定化の観点等の点から、10μmから90μmであることが好ましい。ここで膜厚とは、平均膜厚のことであり、株式会社ミツトヨ製の接触式膜厚計により、樹脂フィルムの幅方向に20箇所から200箇所、膜厚を測定し、その測定値の平均値を膜厚として示す。 The width of the resin film is preferably 1000 mm to 3000 mm. When trying to produce such a wide resin film, the optical value of the resin film generally tends to be non-uniform. However, when the film is stretched under a stretching ratio in the TD direction of 1% to 50%, It can suppress that a value becomes non-uniform | heterogenous. Accordingly, a wide resin film having a uniform optical value can be obtained. Moreover, when the width | variety of a resin film is wide, it is preferable also from the point of use to a large sized liquid crystal display device, the use efficiency of the film at the time of polarizing plate processing, and production efficiency. The film thickness of the resin film is preferably 10 μm to 90 μm from the viewpoint of thinning the liquid crystal display device and stabilizing the production of the film. Here, the film thickness means an average film thickness, and the film thickness is measured from 20 to 200 in the width direction of the resin film with a contact-type film thickness meter manufactured by Mitutoyo Corporation, and the average of the measured values. Values are shown as film thickness.
 また、図1から図3に、溶液流延製膜法により得られた樹脂フィルムを延伸して樹脂フィルムを製造する方法について記載したが、延伸させる樹脂フィルムは、溶液流延製膜法により製造された樹脂フィルムに限定されず、例えば、溶融流延製膜法により得られた樹脂フィルムであってもよいし、他の方法により得られた樹脂フィルムであってもよい。溶液流延製膜法による製造方法によれば、延伸前の樹脂フィルムの膜厚の均一性が高いので、幅方向に延伸した後、膜厚の不均一による光学値の均一性の低下が抑制され、光学値不良の発生のより抑制された樹脂フィルムを得ることができる。そして、光学値が均一な樹脂フィルムを連続的に製造することができる。これらの点から、好ましい。 1 to 3 describe a method for producing a resin film by stretching a resin film obtained by the solution casting film forming method. The resin film to be stretched is produced by a solution casting film forming method. It is not limited to the made resin film, For example, the resin film obtained by the melt casting film forming method may be sufficient, and the resin film obtained by the other method may be sufficient. According to the manufacturing method by the solution casting film forming method, the uniformity of the film thickness of the resin film before stretching is high, so that the decrease in the uniformity of the optical value due to the non-uniform film thickness is suppressed after stretching in the width direction. Thus, it is possible to obtain a resin film in which the occurrence of optical value defects is further suppressed. And the resin film with a uniform optical value can be manufactured continuously. From these points, it is preferable.
 以下、本発明で使用するドープの組成について説明する。 Hereinafter, the composition of the dope used in the present invention will be described.
 本発明で使用するドープは、透明性樹脂を溶媒に溶解させたものである。 The dope used in the present invention is obtained by dissolving a transparent resin in a solvent.
 透明性樹脂は、溶液流延製膜法等によってフィルム状に成形したときに透明性を有する樹脂であればよく、特に制限されないが、溶液流延製膜法等による製造が容易であること、ハードコート層等の他の機能層との接着性に優れていること、光学的に等方性であること等が好ましい。なお、ここで透明性とは、可視光の透過率が60%以上であることであり、好ましくは80%以上、より好ましくは90%以上である。 The transparent resin is not particularly limited as long as it is a resin having transparency when formed into a film by a solution casting film forming method, etc., but is easy to manufacture by a solution casting film forming method, It is preferable that the adhesiveness with other functional layers, such as a hard-coat layer, is excellent, and that it is optically isotropic. Here, the transparency means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.
 透明性樹脂としては、具体的には、例えば、セルロースジアセテート樹脂、セルローストリアセテート樹脂、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂等のセルロースエステル系樹脂;ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル系樹脂;ポリメチルメタクリレート樹脂等のアクリル系樹脂;ポリスルホン(ポリエーテルスルホンも含む)系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、セロファン、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール樹脂、シンジオタクティックポリスチレン系樹脂、シクロオレフィン系樹脂、ポリメチルペンテン樹脂等のビニル系樹脂;ポリカーボネート系樹脂;ポリアリレート系樹脂;ポリエーテルケトン樹脂;ポリエーテルケトンイミド樹脂;ポリアミド系樹脂;フッ素系樹脂等を挙げることができる。これらの中でも、セルロースエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂、ポリスルホン(ポリエーテルスルホンを含む)系樹脂が好ましい。さらに、セルロースエステル系樹脂が好ましく、セルロースエステル系樹脂の中でも、セルロースアセテート樹脂、セルロースプロピオネート樹脂、セルロースブチレート樹脂、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂、セルローストリアセテート樹脂が好ましく、セルローストリアセテート樹脂が特に好ましい。また、透明性樹脂は、上記例示した透明性樹脂を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Specific examples of the transparent resin include cellulose ester resins such as cellulose diacetate resin, cellulose triacetate resin, cellulose acetate butyrate resin, and cellulose acetate propionate resin; polyethylene terephthalate resin, polyethylene naphthalate resin, and the like. Acrylic resins such as polymethyl methacrylate resin; Polysulfone (including polyethersulfone) resin, polyethylene resin, polypropylene resin, cellophane, polyvinylidene chloride resin, polyvinyl alcohol resin, ethylene vinyl alcohol resin, syndiotactic Vinyl resins such as tick polystyrene resins, cycloolefin resins and polymethylpentene resins; polycarbonate resins; polyarylate resins; It can be mentioned fluorine-based resin or the like; Li ether ketone resins; polyether ketone imide resin; polyamide resin. Among these, cellulose ester resins, cycloolefin resins, polycarbonate resins, and polysulfone (including polyethersulfone) resins are preferable. Furthermore, cellulose ester resins are preferred, and among cellulose ester resins, cellulose acetate resins, cellulose propionate resins, cellulose butyrate resins, cellulose acetate butyrate resins, cellulose acetate propionate resins, and cellulose triacetate resins are preferred, Cellulose triacetate resin is particularly preferred. In addition, as the transparent resin, the above exemplified transparent resins may be used alone, or two or more kinds may be used in combination.
 次に、セルロースエステル系樹脂について説明する。 Next, the cellulose ester resin will be described.
 セルロースエステル系樹脂の数平均分子量は、30000から200000であることが、樹脂フィルムに成型した場合の機械的強度が強く、かつ、溶液流延製膜法において適度なドープ粘度となる点で好ましい。また、重量平均分子量(Mw)/数平均分子量(Mn)が、1から5の範囲内であることが好ましく、1.4から3.0の範囲内であることがより好ましい。 The number average molecular weight of the cellulose ester-based resin is preferably from 30,000 to 200,000 because the mechanical strength when molded into a resin film is strong and the dope viscosity is appropriate in the solution casting film forming method. The weight average molecular weight (Mw) / number average molecular weight (Mn) is preferably in the range of 1 to 5, more preferably in the range of 1.4 to 3.0.
 また、セルロースエステル系樹脂等の樹脂の平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィーや高速液体クロマトグラフィーを用い測定できる。よって、これらを用いて数平均分子量(Mn)、質量平均分子量(Mw)を算出し、その比を計算することができる。 Further, the average molecular weight and molecular weight distribution of a resin such as a cellulose ester resin can be measured using gel permeation chromatography or high performance liquid chromatography. Therefore, the number average molecular weight (Mn) and the mass average molecular weight (Mw) can be calculated using these, and the ratio can be calculated.
 セルロースエステル系樹脂は、炭素数が2から4のアシル基を置換基として有しているものが好ましい。その置換度としては、例えば、アセチル基の置換度をX、プロピオニル基又はブチリル基の置換度をYとした時、XとYとの合計値が2.2以上2.95以下であって、Xが0より大きく2.95以下であることが好ましい。 The cellulose ester resin preferably has an acyl group having 2 to 4 carbon atoms as a substituent. As the substitution degree, for example, when the substitution degree of the acetyl group is X and the substitution degree of the propionyl group or butyryl group is Y, the total value of X and Y is 2.2 or more and 2.95 or less, X is preferably more than 0 and 2.95 or less.
 また、アシル基で置換されていない部分は通常水酸基として存在している。これらのセルロースエステル系樹脂は、公知の方法で合成することができる。アシル基の置換度の測定方法は、ASTM-D817-96の規定に準じて測定することができる。 Further, the portion not substituted with an acyl group usually exists as a hydroxyl group. These cellulose ester resins can be synthesized by a known method. The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
 セルロースエステル系樹脂の原料であるセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。また、それらから得られたセルロースエステル系樹脂はそれぞれ任意の割合で混合使用することができるが、綿花リンターを50質量%以上使用することが好ましい。これらのセルロースエステル系樹脂は、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることができる。 The cellulose that is a raw material of the cellulose ester resin is not particularly limited, and examples thereof include cotton linters, wood pulp (derived from coniferous trees and hardwoods), kenaf and the like. The cellulose ester resins obtained from them can be mixed and used at an arbitrary ratio, but it is preferable to use 50% by mass or more of cotton linter. When the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride), these cellulose ester resins use an organic acid such as acetic acid or an organic solvent such as methylene chloride, It can be obtained by reacting with a cellulose raw material using such a protic catalyst.
 また、ドープには、後述する負の配向複屈折性を有する化合物を含有してもよい。 Further, the dope may contain a compound having negative orientation birefringence described later.
 負の配向複屈折性を有する化合物とは、樹脂フィルムの中で、フィルムの延伸方向に対して負の複屈折性を示す材料を意味する。樹脂フィルムとして、例えば、セルロースエステル系樹脂からなるフィルムの場合、具体的には、例えば、アクリル系樹脂、ポリエステル系樹脂、フラノース構造又はピラノース構造を有する化合物、及びスルホン化合物等が挙げられ、これらの中でも、アクリル系樹脂が好ましく用いられる。 The compound having negative orientation birefringence means a material exhibiting negative birefringence in the stretching direction of the film in the resin film. As the resin film, for example, in the case of a film composed of a cellulose ester resin, specifically, for example, an acrylic resin, a polyester resin, a compound having a furanose structure or a pyranose structure, a sulfone compound, and the like can be mentioned. Of these, acrylic resins are preferably used.
 負の配向複屈折性を有しているか否かは、その化合物を添加した系としていない系でのフィルムの複屈折を複屈折計により測定し、その差を比較することにより知ることができる。 Whether or not the film has negative orientation birefringence can be determined by measuring the birefringence of the film in a system not added with the compound with a birefringence meter and comparing the difference.
 アクリル系樹脂としては、延伸方向に対して負の配向複屈折性を示す、質量平均分子量Mwが500以上30000以下であるアクリル系樹脂であることが好ましく、側鎖に芳香環を有するアクリル系樹脂及び側鎖にシクロヘキシル基を有するアクリル系樹脂であることがより好ましい。 The acrylic resin is preferably an acrylic resin having a negative orientation birefringence in the stretching direction and having a mass average molecular weight Mw of 500 or more and 30000 or less and having an aromatic ring in the side chain. And an acrylic resin having a cyclohexyl group in the side chain is more preferable.
 また、アクリル系樹脂の重合方法としては、例えば、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、特開2000-128911号公報又は特開2000-344823号公報に記載されているような1つのチオール基と2級の水酸基とを有する化合物、又は、該化合物と有機金属化合物とを併用した重合触媒を用いて塊状重合する方法等を挙げることができる。特に、特開2000-128911号公報又は特開2000-344823号公報に記載されている方法が好ましく用いられる。 The acrylic resin polymerization method includes, for example, a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than normal polymerization, and a polymerization method. A method using a chain transfer agent such as a mercapto compound or carbon tetrachloride in addition to the initiator, a method using a polymerization terminator such as benzoquinone or dinitrobenzene in addition to the polymerization initiator, JP-A-2000-128911 or A method of bulk polymerization using a compound having one thiol group and a secondary hydroxyl group as described in JP-A-2000-344823, or a polymerization catalyst in which the compound and an organometallic compound are used in combination. Can be mentioned. In particular, the method described in JP-A No. 2000-128911 or JP-A No. 2000-344823 is preferably used.
 また、アクリル系樹脂は、JIS K 0070(1992)に準じて測定した水酸基価が、30mgKOH/gから150mgKOH/gであることが好ましい。 Further, the acrylic resin preferably has a hydroxyl value measured according to JIS K 0070 (1992) of 30 mgKOH / g to 150 mgKOH / g.
 ドープの溶媒は、透明性樹脂に対する良溶媒を含有する溶媒を用いることができ、透明性樹脂が析出してこない範囲で、貧溶媒を含有させてもよい。セルロースエステル系樹脂に対する良溶媒としては、例えば、メチレンクロライド等の有機ハロゲン化合物等が挙げられる。また、セルロースエステル系樹脂に対する貧溶媒としては、例えば、メタノール等の炭素原子数1から8のアルコール等が挙げられる。 As the solvent for the dope, a solvent containing a good solvent for the transparent resin can be used, and a poor solvent may be contained as long as the transparent resin does not precipitate. Examples of the good solvent for the cellulose ester resin include organic halogen compounds such as methylene chloride. In addition, examples of the poor solvent for the cellulose ester resin include alcohols having 1 to 8 carbon atoms such as methanol.
 また、本発明で使用されるドープは、本発明の効果を阻害しない範囲で、透明性樹脂、及び溶媒以外の他の成分(添加剤)を含有してもよい。添加剤としては、例えば、微粒子、可塑剤、酸化防止剤、紫外線吸収剤、熱安定化剤、導電性物質、難燃剤、滑剤、及びマット剤等が挙げられる。 The dope used in the present invention may contain other components (additives) other than the transparent resin and the solvent as long as the effects of the present invention are not impaired. Examples of additives include fine particles, plasticizers, antioxidants, ultraviolet absorbers, heat stabilizers, conductive substances, flame retardants, lubricants, and matting agents.
 微粒子は、使用目的に応じて適宜選択されるが、透明性樹脂中に含有することによって、可視光を散乱させることができる微粒子であることが好ましい。微粒子としては、酸化珪素等の無機微粒子であってもよいし、アクリル系樹脂等の有機微粒子であってもよい。 The fine particles are appropriately selected according to the purpose of use, but are preferably fine particles that can scatter visible light when contained in a transparent resin. The fine particles may be inorganic fine particles such as silicon oxide, or organic fine particles such as acrylic resin.
 また、上記各組成を混合させることによってセルロースエステル系樹脂の溶液が得られる。また、得られたセルロースエステル系樹脂の溶液は、濾紙等の適当な濾過材を用いて濾過することが好ましい。 Also, a cellulose ester resin solution can be obtained by mixing the above-mentioned compositions. The obtained cellulose ester resin solution is preferably filtered using a suitable filter medium such as filter paper.
 可塑剤としては、特に限定なく使用できるが、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等が挙げられる。可塑剤を含有させる場合、その含有量は、寸法安定性、加工性の点を考慮すると、セルロースエステル系樹脂に対して、1質量%から40質量%であることが好ましく、3質量%から20質量%であることがより好ましく、4質量%から15質量%であることがさらに好ましい。可塑剤の含有量が少なすぎると、スリット加工や打ち抜き加工した際、滑らかな切断面を得ることができず、切り屑の発生が多くなる傾向がある。すなわち、可塑剤を含有させる効果が充分に発揮できない。 The plasticizer can be used without any particular limitation. For example, a phosphate ester plasticizer, a phthalate ester plasticizer, a trimellitic ester plasticizer, a pyromellitic acid plasticizer, a glycolate plasticizer, a quencher Examples include acid ester plasticizers and polyester plasticizers. When the plasticizer is contained, the content is preferably 1% by mass to 40% by mass with respect to the cellulose ester resin in consideration of dimensional stability and processability, and 3% by mass to 20%. More preferably, the content is 4% by mass to 15% by mass. If the content of the plasticizer is too small, a smooth cut surface cannot be obtained when slitting or punching, and there is a tendency for generation of chips. That is, the effect of including a plasticizer cannot be sufficiently exhibited.
 酸化防止剤としては、特に限定なく使用できるが、例えば、ヒンダードフェノール系の化合物が好ましく用いられる。また、酸化防止剤を含有させる場合、酸化防止剤の含有量は、セルロースエステル樹脂に対して質量割合で1ppmから1.0%であることが好ましく、10ppmから1000ppmであることがより好ましい。 The antioxidant can be used without any particular limitation, and for example, a hindered phenol compound is preferably used. Moreover, when antioxidant is contained, the content of the antioxidant is preferably 1 ppm to 1.0%, more preferably 10 ppm to 1000 ppm in terms of mass ratio with respect to the cellulose ester resin.
 本発明の樹脂フィルムの製造方法によって製造された樹脂フィルムは、その高い寸法安定性から、偏光板又は液晶表示用部材等に使用することが可能であり、この場合、偏光板又は液晶等の劣化防止のため、紫外線吸収剤が好ましく用いられる。 The resin film produced by the method for producing a resin film of the present invention can be used for a polarizing plate or a liquid crystal display member because of its high dimensional stability. In this case, the polarizing plate or the liquid crystal is deteriorated. For prevention, an ultraviolet absorber is preferably used.
 紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、且つ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。具体的には380nmの透過率が10%未満であることが好ましく、特に5%未満であることがより好ましい。紫外線吸収剤としては、具体的には、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物(ベンゾトリアゾール系紫外線吸収剤)、サリチル酸エステル系化合物、ベンゾフェノン系化合物(ベンゾフェノン系紫外線吸収剤)、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等が挙げられる。これらの中では、ベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましい。紫外線吸収剤の含有量は、紫外線吸収剤としての効果、透明性等を考慮し、0.1質量%から2.5質量%であることが好ましく、0.8質量%から2.0質量%であることがより好ましい。 As the ultraviolet absorber, those which are excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and have little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties. Specifically, the transmittance at 380 nm is preferably less than 10%, more preferably less than 5%. Specific examples of ultraviolet absorbers include oxybenzophenone compounds, benzotriazole compounds (benzotriazole ultraviolet absorbers), salicylic acid ester compounds, benzophenone compounds (benzophenone ultraviolet absorbers), and cyanoacrylates. Examples thereof include compounds, nickel complex salts, and triazine compounds. In these, a benzotriazole type ultraviolet absorber and a benzophenone type ultraviolet absorber are preferable. The content of the ultraviolet absorber is preferably from 0.1% by mass to 2.5% by mass, considering the effect as an ultraviolet absorber, transparency, etc., and from 0.8% by mass to 2.0% by mass. It is more preferable that
 熱安定剤としては、例えば、カオリン、タルク、けい藻土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等が挙げられる。 Examples of the heat stabilizer include kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, inorganic fine particles such as alumina, and alkaline earth metal salts such as calcium and magnesium.
 導電性物質としては、特に限定はされないが、例えば、アニオン性高分子化合物等のイオン導電性物質、金属酸化物の微粒子等の導電性微粒子及び帯電防止剤等が挙げられる。導電性物質を含有させることによって、好ましいインピーダンスを有する樹脂フィルムを得ることができる。ここでイオン導電性物質とは、電気伝導性を示し、電気を運ぶ担体であるイオンを含有する物質のことである。 The conductive material is not particularly limited, and examples thereof include ionic conductive materials such as anionic polymer compounds, conductive fine particles such as metal oxide fine particles, and antistatic agents. By containing a conductive substance, a resin film having a preferable impedance can be obtained. Here, the ion conductive substance is a substance that shows electric conductivity and contains ions that are carriers for carrying electricity.
 次にドープを調製する方法の一例として、透明性樹脂としてセルロースエステル系樹脂を用いた場合について説明する。 Next, as an example of a method for preparing a dope, a case where a cellulose ester resin is used as a transparent resin will be described.
 ドープを調製する時の、セルロースエステル系樹脂の溶解方法としては、特に限定なく、一般的な方法を用いることができる。加熱と加圧を組み合わせることによって、常圧における溶媒の沸点以上に加熱できることを利用し、常圧における沸点以上で溶媒にセルロースエステル系樹脂を溶解させることが、ゲルやママコと呼ばれる塊状未溶解物の発生を防止する点から好ましい。また、セルロースエステル系樹脂を貧溶媒と混合して湿潤又は膨潤させた後、さらに良溶媒を添加して溶解する方法も好ましく用いられる。 The method for dissolving the cellulose ester resin when preparing the dope is not particularly limited, and a general method can be used. By combining heating and pressurization, it is possible to heat above the boiling point of the solvent at normal pressure, and it is possible to dissolve the cellulose ester resin in the solvent above the boiling point at normal pressure. It is preferable from the viewpoint of preventing the occurrence of. In addition, a method in which a cellulose ester resin is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
 加圧は、窒素ガス等の不活性気体を圧入する方法や、密閉容器に溶媒を加熱して、加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。加熱は、外部から行うことが好ましく、例えば、ジャケットタイプのものは温度コントロールが容易で好ましい。 The pressurization may be performed by a method in which an inert gas such as nitrogen gas is injected, or a method in which the solvent is heated in a sealed container and the vapor pressure of the solvent is increased by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
 セルロースエステル系樹脂を溶解させる時の溶媒の温度(加熱温度)は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度を高くしようとすると、加圧によって容器内の圧力を高くしなければならず、生産性が悪化する。よって、加熱温度は、45℃から120℃であることが好ましい。また、圧力は、設定温度で溶媒が沸騰しないような圧力に調整される。もしくは冷却溶解法も好ましく用いられ、これによって酢酸メチル等の溶媒にセルロースエステル系樹脂を溶解させることができる。 A higher solvent temperature (heating temperature) for dissolving the cellulose ester resin is preferable from the viewpoint of the solubility of the cellulose ester. However, when the heating temperature is increased, the pressure in the container is increased by pressurization. It must be done and productivity deteriorates. Therefore, the heating temperature is preferably 45 ° C to 120 ° C. Further, the pressure is adjusted to such a pressure that the solvent does not boil at the set temperature. Alternatively, a cooling dissolution method is also preferably used, whereby the cellulose ester resin can be dissolved in a solvent such as methyl acetate.
 次に、得られたセルロースエステル系樹脂の溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすいという問題がある。このため絶対濾過精度が0.008mm以下の濾過材が好ましく、0.001mmから0.008mmの濾過材がより好ましい。 Next, the obtained cellulose ester resin solution is filtered using an appropriate filter medium such as filter paper. As the filter medium, it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like. However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is likely to be clogged. For this reason, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, and a filter medium of 0.001 mm to 0.008 mm is more preferable.
 濾過材の材質は、特に制限はなく、通常の濾過材を使用することができる。例えば、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾過材や、ステンレススティール等の金属製の濾過材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステル系樹脂の溶液に含まれていた不純物、特に輝点異物を除去、低減することが好ましい。輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に樹脂フィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。 There is no restriction | limiting in particular in the material of a filter medium, A normal filter medium can be used. For example, a plastic filter material such as polypropylene or Teflon (registered trademark) or a metal filter material such as stainless steel is preferable because fibers do not fall off. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester resin solution by filtration. The bright spot foreign matter is opposite when two polarizing plates are placed in a crossed Nicols state, a resin film is placed between them, light is applied from one polarizing plate, and observation is performed from the other polarizing plate. It is a point (foreign matter) where light from the side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
 濾過は、特に限定なく、通常の方法で行うことができるが、溶媒の常圧での沸点以上で、且つ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。温度としては、45℃から120℃であることが好ましい。濾圧は、小さい方が好ましく、例えば、1.6MPa以下であることが好ましい。 The filtration is not particularly limited and can be carried out by a usual method, but the method of filtration while heating at a temperature not lower than the boiling point of the solvent at normal pressure and at which the solvent does not boil under pressure may be performed before and after the filtration. The increase in the difference in filtration pressure (referred to as differential pressure) is small and preferable. The temperature is preferably 45 ° C to 120 ° C. The filtration pressure is preferably smaller, for example, 1.6 MPa or less.
 ドープに各添加剤を含有させる場合は、例えば、アルコールやメチレンクロライド、ジオキソランなどの有機溶媒に剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。また、無機粉体のように有機溶剤に溶解しないものは、添加剤とセルロースエステル系樹脂とをデゾルバーやサンドミルを使用して、セルロースエステル系樹脂中に添加剤を分散したものをドープに添加することが好ましい。 When each additive is contained in the dope, for example, the agent may be dissolved in an organic solvent such as alcohol, methylene chloride, dioxolane, etc. and then added to the dope, or may be added directly into the dope composition. In addition, for inorganic powders that do not dissolve in organic solvents, the additive and cellulose ester resin are added to the dope using a dissolver or sand mill with the additive dispersed in the cellulose ester resin. It is preferable.
 得られたセルロースエステル系樹脂の溶液に微粒子を分散させる。分散させる方法は、特に限定なく、例えば、以下のようにして行うことができる。例えば、まず、分散用溶媒と微粒子を撹拌混合した後、分散機で分散を行う。これを微粒子分散液とする。この微粒子分散液を上記セルロースエステル系樹脂の溶液に加えて撹拌する。 Fine particles are dispersed in the obtained cellulose ester resin solution. The method for dispersing is not particularly limited, and can be performed, for example, as follows. For example, first, a dispersion solvent and fine particles are stirred and mixed, and then dispersed using a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the cellulose ester resin solution and stirred.
 分散用溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等の低級アルコール類が挙げられる。また、低級アルコール類に特に限定されないが、セルロースエステル系樹脂の溶液を調製する際に用いた溶媒と同様のものを用いることが好ましい。 Examples of the dispersion solvent include lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol. Moreover, although it does not specifically limit to lower alcohol, It is preferable to use the thing similar to the solvent used when preparing the solution of a cellulose-ester-type resin.
 分散機としては、特に限定なく使用でき、一般的な分散機を使用できる。分散機は、大きく分けてメディア分散機とメディアレス分散機に分けられるが、メディアレス分散機のほうかがヘイズが低くなる(透光性が高くなる)点から好ましい。メディア分散機としては、例えば、ボールミル、サンドミル、ダイノミル等が挙げられる。また、メディアレス分散機としては、超音波型、遠心型、高圧型等が挙げられ、高圧型分散装置が好ましい。高圧分散装置とは、微粒子と溶媒とを混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置としては、例えば、Microfluidics Corporation社製の超高圧ホモジナイザ(商品名マイクロフルイダイザ)、ナノマイザ社製ナノマイザ等が挙げられ、他にマントンゴーリン型高圧分散装置等も挙げられる。また、マントンゴーリン型高圧分散装置としては、例えばイズミフードマシナリ製ホモジナイザ、三和機械(株)製UHN-01等が挙げられる。 Dispersers can be used without any particular limitation, and general dispersers can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. Medialess dispersers are preferred from the viewpoint of lower haze (higher translucency). Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type, and a high pressure type dispersing device is preferable. A high-pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube. Examples of the high-pressure dispersing device include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation, a nanomizer manufactured by Nanomizer, and the like, and other examples include a Manton Gorin type high-pressure dispersing device. Examples of the Menton Gorin type high-pressure dispersing device include a homogenizer manufactured by Izumi Food Machinery, UHN-01 manufactured by Sanwa Machinery Co., Ltd., and the like.
 本発明の樹脂フィルムの製造方法によって製造された樹脂フィルムは、リタデーションが充分に低く、かつ広幅の樹脂フィルムである。このため、リタデーションが充分に低いことが求められる位相差フィルム、特にIPS用の位相差フィルムとして、液晶表示装置等の画像表示装置に適用できる。 The resin film produced by the method for producing a resin film of the present invention is a resin film having a sufficiently low retardation and a wide width. For this reason, it can apply to image display apparatuses, such as a liquid crystal display device, as a phase difference film for which retardation is required low enough, especially a phase contrast film for IPS.
 (偏光板)
 本発明の偏光板は、偏光素子と、偏光素子の表面上に配置された透明保護フィルムとを備え、透明保護フィルムが、本発明の樹脂フィルムの製造方法により製造された樹脂フィルムである。偏光素子とは、入射光を偏光に変えて射出する光学素子である。
(Polarizer)
The polarizing plate of this invention is equipped with a polarizing element and the transparent protective film arrange | positioned on the surface of a polarizing element, and a transparent protective film is a resin film manufactured with the manufacturing method of the resin film of this invention. The polarizing element is an optical element that emits incident light by converting it into polarized light.
 偏光板としては、例えば、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬して延伸することによって作製される偏光素子の少なくとも一方の表面に、完全鹸化型ポリビニルアルコール水溶液を用いて、樹脂フィルム又は樹脂フィルムを積層した積層フィルムを貼り合わせたものが好ましい。また、偏光素子のもう一方の表面にも、樹脂フィルムを積層させてもよいし、別の偏光板用の透明保護フィルムを積層させてもよい。この偏光板用の透明保護フィルムとしては、例えば、市販のセルロースエステルフィルムとして、KC8UX2M、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UY-HA、KC8UX-RHA(以上、コニカミノルタオプト(株)製)等が好ましく用いられる。あるいは、セルロースエステルフィルム以外の環状オレフィン樹脂、アクリル樹脂、ポリエステル、ポリカーボネート等の樹脂フィルムを用いてもよい。この場合は、ケン化適性が低いため、適当な接着層を介して偏光板に接着加工することが好ましい。 As a polarizing plate, for example, a resin film or a resin film is prepared by using a completely saponified polyvinyl alcohol aqueous solution on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution. What laminated | stacked the laminated | multilayer film which laminated | stacked this is preferable. Further, a resin film may be laminated on the other surface of the polarizing element, or a transparent protective film for another polarizing plate may be laminated. As the transparent protective film for this polarizing plate, for example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (above, manufactured by Konica Minolta Opto Co., Ltd.) Etc. are preferably used. Or you may use resin films, such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
 偏光板は、上述のように、偏光素子の少なくとも一方の表面側に積層する保護フィルムとして、樹脂フィルムを使用したものである。その際、樹脂フィルムが位相差フィルムとして働く場合、樹脂フィルムの遅相軸が偏光素子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。 As described above, the polarizing plate uses a resin film as a protective film laminated on at least one surface side of the polarizing element. At that time, when the resin film works as a retardation film, it is preferable that the slow axis of the resin film is arranged so as to be substantially parallel or orthogonal to the absorption axis of the polarizing element.
 また、偏光素子の具体例としては、例えば、ポリビニルアルコール系偏光フィルムが挙げられる。ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものとがある。ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。 Further, specific examples of the polarizing element include, for example, a polyvinyl alcohol polarizing film. Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes. As the polyvinyl alcohol film, a modified polyvinyl alcohol film modified with ethylene is preferably used.
 偏光素子は、例えば、以下のようにして得られる。まず、ポリビニルアルコール水溶液を用いて製膜する。得られたポリビニルアルコール系フィルムを一軸延伸させた後染色するか、染色した後一軸延伸する。そして、好ましくはホウ素化合物で耐久性処理を施す。 The polarizing element is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
 偏光素子の膜厚は、5μmから40μmであることが好ましく、5μmから30μmであることがより好ましく、5μmから20μmであることがより好ましい。 The film thickness of the polarizing element is preferably 5 μm to 40 μm, more preferably 5 μm to 30 μm, and even more preferably 5 μm to 20 μm.
 偏光素子の表面上に、セルロースエステル系樹脂フィルムを張り合わせる場合、完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせることが好ましい。また、セルロースエステル系樹脂フィルム以外の樹脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工することが好ましい。 When laminating a cellulose ester resin film on the surface of the polarizing element, it is preferable to bond the cellulose ester resin film with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like. Moreover, in the case of resin films other than a cellulose ester-type resin film, it is preferable to carry out the adhesive process to a polarizing plate through a suitable adhesion layer.
 上述のような偏光板は、透明保護フィルムとして、本発明の樹脂フィルムの製造方法に係る広幅の樹脂フィルムを用いることによって、大画面化した液晶表示装置にも適用可能となる。 The polarizing plate as described above can be applied to a liquid crystal display device having a large screen by using a wide resin film according to the method for producing a resin film of the present invention as a transparent protective film.
 (液晶表示装置)
 本発明の液晶表示装置は、液晶セルと、液晶セルを挟むように配置された2枚の偏光板とを備え、2枚の偏光板のうち少なくとも一方が、偏光板である。なお、液晶セルとは、一対の電極間に液晶物質が充填されたものであり、この電極に電圧を印加することで、液晶の配向状態が変化され、透過光量が制御される。このような液晶表示装置は、偏光板用の透明保護フィルムとして、本発明の樹脂フィルムの製造方法に係る広幅の樹脂フィルムを用いることによって、大画面化が可能となる。
(Liquid crystal display device)
The liquid crystal display device of the present invention includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is a polarizing plate. Note that the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled. Such a liquid crystal display device can have a large screen by using a wide resin film according to the method for producing a resin film of the present invention as a transparent protective film for a polarizing plate.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 以下に示す方法により樹脂フィルムを製造した。 A resin film was produced by the following method.
 (ドープの調製)
 まず、メチレンクロライド400質量部及びエタノール45質量部を入れた溶解タンクに、透明性樹脂としてセルローストリアセテートプロピオーネ(アシル基置換度:2.5(酢化度:61.0%)、質量平均分子量Mw:300000、数平均分子量Mn:100000)100質量部を添加し、さらに、トリフェニルホスフェート5.5質量部、エチルフタリルエチルグリコレート5.5質量部を添加した。そして、液温が80℃になるまで昇温させた後、3時間攪拌した。そうすることによって、セルローストリアセテート樹脂溶液が得られた。その後、攪拌を終了し、液温が43℃になるまで放置した。そして、得られた樹脂溶液を、濾過精度0.005mmの濾紙を使用して濾過した。濾過後の樹脂溶液を一晩放置することにより、樹脂溶液中の気泡を脱泡させた。このようにして得られた樹脂溶液を、ドープとして使用して、以下のように、樹脂フィルム(セルローストリアセテートプロピオーネフィルム)を製造した。
(Preparation of dope)
First, in a dissolution tank containing 400 parts by mass of methylene chloride and 45 parts by mass of ethanol, cellulose triacetate propione (acyl group substitution degree: 2.5 (acetylation degree: 61.0%), mass average molecular weight as a transparent resin) Mw: 300,000, number average molecular weight Mn: 100000) 100 parts by mass were added, and 5.5 parts by mass of triphenyl phosphate and 5.5 parts by mass of ethylphthalyl ethyl glycolate were further added. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours. By doing so, a cellulose triacetate resin solution was obtained. Then, stirring was complete | finished and it was left until liquid temperature became 43 degreeC. Then, the obtained resin solution was filtered using a filter paper having a filtration accuracy of 0.005 mm. Air bubbles in the resin solution were degassed by allowing the resin solution after filtration to stand overnight. Using the resin solution thus obtained as a dope, a resin film (cellulose triacetate propione film) was produced as follows.
 (セルローストリアセテートフィルムの製造)
 まず、得られたドープの温度を35℃に、無端ベルト支持体の温度を25℃に調整した。そして、図1に示すような樹脂フィルムの製造装置を用い、調製したドープを流延ダイからドープ膜として無端ベルト支持体に流延し、無端ベルト支持体上にウェブを形成し、乾燥させながら、搬送した。そして、無端ベルト支持体から延伸前の樹脂フィルムを剥離し、剥離した延伸前の樹脂フィルムを延伸装置を用いて、延伸前の樹脂フィルムの両端を、表1に示す条件の把持部材で把持しながら、延伸率5%でMD方向に延伸した。その際、延伸前の樹脂フィルムフィルムの搬送速度を、50m/分とした。そうすることによって、実施例1から8及び比較例1から8に係る各セルローストリアセテートプロピオーネフィルムを製造した。
(Manufacture of cellulose triacetate film)
First, the temperature of the obtained dope was adjusted to 35 ° C., and the temperature of the endless belt support was adjusted to 25 ° C. Then, using the resin film manufacturing apparatus as shown in FIG. 1, the prepared dope is cast as a dope film from a casting die to an endless belt support, and a web is formed on the endless belt support and dried. , Transported. And the resin film before extending | stretching is peeled from an endless belt support body, the both ends of the resin film before extending | stretching are hold | gripped with the holding member of the conditions shown in Table 1 using the extending | stretching apparatus. However, it was stretched in the MD direction at a stretch rate of 5%. In that case, the conveyance speed of the resin film film before extending | stretching was 50 m / min. By doing so, each cellulose triacetate propione film according to Examples 1 to 8 and Comparative Examples 1 to 8 was produced.
 把持部材の条件としては、まず、複数の把持部材のうち、延伸前の樹脂フィルムと接触する面の第1接触面の常温時の最大高さRy1と、第2接触面34の常温時の最大高さRy2と、それらの合計値(Ry1+Ry2)が挙げられる。Ryは、それぞれ、株式会社ミツトヨ製のMitutoyo SURFTEST SV-3100を用い、JIS B 0601:1994に準拠の方法により測定された値である。 As the conditions of the gripping member, first, among the plurality of gripping members, the maximum height Ry1 at the normal temperature of the first contact surface of the surface that contacts the resin film before stretching, and the maximum at the normal temperature of the second contact surface 34 The height Ry2 and the total value (Ry1 + Ry2) are mentioned. Ry is a value measured by a method based on JIS B 0601: 1994, using Mitutoyo SURFTEST SV-3100 manufactured by Mitutoyo Corporation.
 なお、この平滑把持部材以外は、把持部材であり、そのRyは、40μm程度である。また、平滑把持部材の条件としては、Ry1+Ry2以外に、以下のものが挙げられる。この平滑把持部材の個数の、把持部材の全個数に対する割合(平滑把持部材率)が挙げられる。次に、平滑把持部材以外の把持部材であって、この把持部材に隣接する把持部材が平滑把持部材以外の把持部材である把持部材の個数の、平滑把持部材以外の把持部材の全個数に対する割合(平滑把持部材以外の把持部材の隣接個数率)が挙げられる。最後に、平滑把持部材以外の把持部材の間に配置される平滑把持部材の個数の、平滑把持部材の全個数に対する割合(平滑把持部材の隣接個数率)が挙げられる。 In addition, this smooth holding member is a holding member, and its Ry is about 40 μm. In addition to Ry1 + Ry2, conditions for the smooth gripping member include the following. The ratio of the number of smooth gripping members to the total number of gripping members (smooth gripping member ratio) can be mentioned. Next, the ratio of the number of gripping members other than the smooth gripping members, wherein the gripping members other than the smooth gripping members are gripping members other than the smooth gripping members, to the total number of gripping members other than the smooth gripping members. (Adjacent number ratio of gripping members other than the smooth gripping member). Finally, the ratio of the number of smooth gripping members arranged between gripping members other than the smooth gripping members to the total number of smooth gripping members (adjacent number ratio of smooth gripping members) can be mentioned.
 把持部材の条件を表1に示す。 Table 1 shows the gripping member conditions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記のようにして得られた樹脂フィルム(実施例1から8及び比較例1から8に係る樹脂フィルム)を以下に示す方法で評価した。 The resin films (resin films according to Examples 1 to 8 and Comparative Examples 1 to 8) obtained as described above were evaluated by the following methods.
 (光学値)
 上記透明性の評価で用いた10個のサンプルの面内方向レタデーションRo及び遅相軸の角度θを自動複屈折率測定装置(王子計測機器株式会社製のKOBRA-21ADH)を用いて測定した。
(Optical value)
The in-plane direction retardation Ro and the slow axis angle θ of 10 samples used in the evaluation of the transparency were measured using an automatic birefringence measuring apparatus (KOBRA-21ADH manufactured by Oji Scientific Instruments).
 具体的には、まず、自動複屈折率計KOBRA-21ADH(王子計測機器株式会社製)を用いて、温度23℃、湿度55%RHの環境下で、波長590nmで、各サンプルの、遅相軸の角度θ、遅相軸方向の屈折率Nx、及び進相軸方向の屈折率Nyを測定した。次に、株式会社ミツトヨ製の接触式膜厚計を用いて、樹脂フィルムの膜厚dを測定した。 Specifically, first, using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.), the retardation of each sample was measured at a wavelength of 590 nm in an environment of a temperature of 23 ° C. and a humidity of 55% RH. The angle θ of the axis, the refractive index Nx in the slow axis direction, and the refractive index Ny in the fast axis direction were measured. Next, the film thickness d of the resin film was measured using a contact-type film thickness meter manufactured by Mitutoyo Corporation.
 そして、得られた各測定値から、下記式(2)を用いて、各サンプルの面内方向レタデーションRoを算出した。 The in-plane direction retardation Ro of each sample was calculated from the obtained measured values using the following formula (2).
  Ro=(Nx-Ny)×d  (2)
 式中、Nxは、樹脂フィルムの遅相軸方向の屈折率を示し、Nyは、進相軸方向の屈折率を示し、dは、フィルムの膜厚(nm)を示す。
Ro = (Nx−Ny) × d (2)
In the formula, Nx represents the refractive index in the slow axis direction of the resin film, Ny represents the refractive index in the fast axis direction, and d represents the film thickness (nm) of the film.
 まず、得られた各サンプルの面内方向レタデーションRoの内の最大値Romaxと最小値Rominとの差が、1以下であれば、「○」と評価し、1を超え2以下であれば、「△」と評価し、2を超え4以下であれば、「×」と評価し、4を超えれば、「××」と評価した。 First, if the difference between the maximum value Romax and the minimum value Romin in the in-plane direction retardation Ro of each obtained sample is 1 or less, it is evaluated as “◯”, and if it exceeds 1 and is 2 or less, It evaluated as "(triangle | delta)", if it exceeded 2 and 4 or less, it evaluated as "x", and if it exceeded 4, it evaluated as "xx".
 次に、得られた各サンプルの遅相軸の角度θの内の最大値θmaxと最小値θminとの差が、0.2以下であれば、「○」と評価し、0.2を超え0.3以下であれば、「△」と評価し、0.3を超え0.4以下であれば、「×」と評価し、0.4を超えれば、「××」と評価した。 Next, if the difference between the maximum value θmax and the minimum value θmin among the slow axis angles θ of the obtained samples is 0.2 or less, it is evaluated as “◯” and exceeds 0.2. When it was 0.3 or less, it was evaluated as “Δ”, when it exceeded 0.3 and was 0.4 or less, it was evaluated as “x”, and when it exceeded 0.4, it was evaluated as “xx”.
 (搬送性)
 延伸装置で延伸された直後の樹脂フィルムの端部をカメラで撮影した。その際、樹脂フィルムの端部の、樹脂フィルムの幅方向の移動距離を測定し、1時間当たりの移動距離を蛇行幅とした。そして、蛇行幅が、1mm以下であれば、「◎」と評価し、1mmを超え2mm以下であれば、「○」と評価し、2mmを超え3mm以下であれば、「△」と評価し、3mmを超え4mm以下であれば、「×」と評価し、4mmを超えれば、「××」と評価した。なお、この蛇行幅は、搬送性の評価となり、蛇行幅が小さいほど、搬送性に優れていることがわかる。
(Transportability)
The end of the resin film immediately after being stretched by the stretching apparatus was photographed with a camera. In that case, the movement distance of the edge part of the resin film in the width direction of the resin film was measured, and the movement distance per hour was defined as the meandering width. When the meandering width is 1 mm or less, it is evaluated as “◎”, when it exceeds 1 mm and 2 mm or less, it is evaluated as “◯”, and when it exceeds 2 mm and 3 mm or less, it is evaluated as “Δ”. If it exceeded 3 mm and 4 mm or less, it evaluated as "*", and if it exceeded 4 mm, it evaluated as "xx". In addition, this meandering width | variety becomes evaluation of a conveyance property, and it turns out that a conveyance property is excellent, so that a meandering width | variety is small.
 (異物数)
 得られた樹脂フィルムを、2枚の偏光板を直交(クロスニコル)状態にしたものの間に配置して、一方の偏光板側から光を当てて、他方の偏光板側を透過型顕微鏡を用いて50倍の倍率で観察した。その際、面積25cmの範囲における、偏光クロスニコル状態で認識される大きさが50μm以上の異物の個数を数え、1cm当たりの個数に換算した値を異物数とした。
(Number of foreign objects)
The obtained resin film is placed between two polarizing plates in an orthogonal (crossed Nicols) state, light is applied from one polarizing plate side, and the other polarizing plate side is used with a transmission microscope. And observed at a magnification of 50 times. At that time, the number of foreign matters having a size of 50 μm or more recognized in the polarization crossed Nicol state in an area of 25 cm 2 was counted, and the value converted into the number per 1 cm 2 was defined as the number of foreign matters.
 そして、その異物数が、0.15個以下であれば、「◎」と評価し、0.15個を超え0.2個以下であれば、「○」と評価し、0.2個を超え0.25個以下であれば、「△」と評価し、0.25個を超え0.35個以下であれば、「×」と評価し、0.35個を超えれば、「××」と評価した。 If the number of foreign matters is 0.15 or less, it is evaluated as “◎”, and if it exceeds 0.15 and is 0.2 or less, it is evaluated as “◯”, and 0.2 If it exceeds 0.25, it is evaluated as “Δ”. If it exceeds 0.25 and is 0.35 or less, it is evaluated as “X”. If it exceeds 0.35, “XX” is evaluated. ".
 なお、ここで異物は、偏光クロスニコル状態で認識される異物であり、偏光クロスニコル状態では、暗視野中で、異物の箇所のみ光って観察されるので、容易にその個数を測定することができる。 Here, the foreign matter is a foreign matter recognized in the polarization crossed Nicol state, and in the polarized crossed Nicol state, only the location of the foreign matter is observed in the dark field, so that the number can be easily measured. it can.
 この結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2からわかるように、Ry1+Ry2が1μmから25μmの平滑把持部材を用いて延伸した場合(実施例1から8)は、それ以外の場合(比較例1から8)と比較して、光学値が均一な樹脂フィルムが得られる。 As can be seen from Table 1 and Table 2, when Ry1 + Ry2 is stretched using a smooth gripping member having 1 to 25 μm (Examples 1 to 8), compared to other cases (Comparative Examples 1 to 8), A resin film having a uniform optical value can be obtained.
 11 樹脂フィルムの製造装置
 12 無端ベルト支持体
 13 流延ダイ
 14 剥離ローラ
 15 乾燥装置
 16 巻取装置
 17 フィルム
 19 樹脂溶液(ドープ)
 21 延伸装置
 22 第1レール
 23 第2レール
 24、25 把持部材
 26、27、28、29 スプロケット
 31 可動部
 32 台座
 33 第1接触面
 34 第2接触面
DESCRIPTION OF SYMBOLS 11 Resin film manufacturing apparatus 12 Endless belt support 13 Casting die 14 Peeling roller 15 Drying device 16 Winding device 17 Film 19 Resin solution (dope)
21 Stretching device 22 First rail 23 Second rail 24, 25 Holding member 26, 27, 28, 29 Sprocket 31 Movable part 32 Base 33 First contact surface 34 Second contact surface

Claims (11)

  1.  長尺状の樹脂フィルムの幅方向の両側端部を複数の把持部材で把持しながら、前記把持部材が、前記樹脂フィルムの長手方向に移動するとともに、前記把持部材のうちの前記樹脂フィルムの一方の端部を把持する複数の把持部材を有する第1把持部と、前記樹脂フィルムの他方の端部を把持する複数の把持部材を有する第2把持部との間の距離を、前記樹脂フィルムの幅方向に徐々に広げる方向に移動する延伸工程を備え、
     前記延伸工程において用いられる前記複数の把持部材が、前記樹脂フィルムを把持する際に前記樹脂フィルムの一方の面と接触する第1接触面の常温時の最大高さRyと、前記樹脂フィルムの他方の面と接触する第2接触面の常温時の最大高さRyとの合計値が、1μmから25μmである平滑把持部材を含むことを特徴とする樹脂フィルムの製造方法。
    The gripping member moves in the longitudinal direction of the resin film while gripping both end portions in the width direction of the long resin film with a plurality of gripping members, and one of the resin films of the gripping members The distance between the first gripping part having a plurality of gripping members for gripping the end of the resin film and the second gripping part having the plurality of gripping members for gripping the other end of the resin film, With a stretching process that moves in the direction of widening in the width direction,
    When the plurality of gripping members used in the stretching step grip the resin film, the maximum height Ry of the first contact surface that comes into contact with one surface of the resin film at room temperature and the other of the resin film A method for producing a resin film, comprising: a smooth gripping member having a total value of a maximum height Ry at normal temperature of a second contact surface in contact with the surface of 1 μm to 25 μm.
  2.  前記第1把持部中の前記平滑把持部材の個数が、前記第1把持部の全把持部材個数に対して、98%以上であり、
     前記第2把持部中の前記平滑把持部材の個数が、前記第2把持部の全把持部材個数に対して、98%以上である請求項1に記載の樹脂フィルムの製造方法。
    The number of the smooth gripping members in the first gripping part is 98% or more with respect to the total number of gripping members in the first gripping part,
    The method for producing a resin film according to claim 1, wherein the number of the smooth gripping members in the second gripping portion is 98% or more with respect to the total number of gripping members in the second gripping portion.
  3.  前記平滑把持部材以外の把持部材であって、前記把持部材に隣接する把持部材が前記平滑把持部材以外の把持部材である把持部材の個数が、前記平滑把持部材以外の把持部材の全個数に対して、5%以下である請求項1又は2に記載の樹脂フィルムの製造方法。 The number of gripping members other than the smooth gripping member, wherein the gripping member adjacent to the gripping member is a gripping member other than the smooth gripping member, is the total number of gripping members other than the smooth gripping member. The method for producing a resin film according to claim 1 or 2, wherein the content is 5% or less.
  4.  前記平滑把持部材以外の把持部の間に配置される前記平滑把持部材の個数が、前記平滑把持部材の全個数に対して、5%以上である請求項1から3のいずれか1項に記載の樹脂フィルムの製造方法。 The number of the smooth gripping members disposed between gripping portions other than the smooth gripping member is 5% or more with respect to the total number of the smooth gripping members. Manufacturing method of resin film.
  5.  前記第1把持部が、前記樹脂フィルムの面方向に平行な方向に周回し、前記樹脂フィルムの一方の端部に沿って移動する部分を有する第1無端回転部に等間隔に複数保持されており、
     前記第2把持部が、前記樹脂フィルムの面方向に平行な方向に周回し、前記樹脂フィルムの一方の端部に沿って移動する部分を有する第2無端回転部に等間隔に複数保持されている請求項1から4のいずれか1項に記載の樹脂フィルムの製造方法。
    A plurality of the first gripping portions are held at equal intervals by a first endless rotating portion having a portion that circulates in a direction parallel to the surface direction of the resin film and moves along one end portion of the resin film. And
    A plurality of the second gripping parts are held at equal intervals in a second endless rotating part having a portion that circulates in a direction parallel to the surface direction of the resin film and moves along one end of the resin film. The manufacturing method of the resin film of any one of Claim 1 to 4.
  6.  前記延伸工程で延伸する樹脂フィルムとして、溶媒が含有されている湿潤状態の樹脂フィルムを用いる請求項1から5のいずれか1項に記載の樹脂フィルムの製造方法。 The method for producing a resin film according to any one of claims 1 to 5, wherein a wet resin film containing a solvent is used as the resin film stretched in the stretching step.
  7.  透明性樹脂を含む樹脂溶液を、走行する支持体上に流延ダイから流延して流延膜を形成する流延工程と、
     前記流延膜を樹脂フィルムとして前記支持体から剥離する剥離工程と、
     剥離された樹脂フィルムの幅方向の両側端部を複数の把持部で把持しながら、前記把持部が、前記樹脂フィルムの長手方向に移動するとともに、前記把持部のうちの前記樹脂フィルムの一方の端部を把持する第1把持部と、前記樹脂フィルムの他方の端部を把持する第2把持部との間の距離を、前記樹脂フィルムの幅方向に徐々に広げる方向に移動する延伸工程を備え、
     前記延伸工程において用いられる前記複数の把持部が、前記樹脂フィルムを把持する際に前記樹脂フィルムの一方の面と接触する第1接触面の常温時の最大高さRyと、前記樹脂フィルムの他方の面と接触する第2接触面の常温時の最大高さRyとの合計値が、1μmから25μmである平滑把持部を含むことを特徴とする樹脂フィルムの製造方法。
    A casting step of casting a resin solution containing a transparent resin from a casting die on a traveling support to form a casting film;
    A peeling step of peeling the cast film from the support as a resin film;
    While gripping the both side ends of the peeled resin film in the width direction with a plurality of gripping portions, the gripping portion moves in the longitudinal direction of the resin film, and one of the resin films in the gripping portion A stretching step of moving the distance between the first gripping portion gripping the end portion and the second gripping portion gripping the other end portion of the resin film in a direction of gradually widening the width direction of the resin film; Prepared,
    The maximum height Ry of the first contact surface that comes into contact with one surface of the resin film when the plurality of grip portions used in the stretching step grip the resin film, and the other of the resin film A method for producing a resin film, comprising: a smooth gripping part having a total value of a maximum height Ry of the second contact surface in contact with the surface at room temperature of 1 μm to 25 μm.
  8.  長尺状の樹脂フィルムの幅方向の一方の端部を把持する第1把持部と、
     前記樹脂フィルムの他方の端部を把持する第2把持部とを備え、
     前記第1把持部及び第2把持部が、それぞれ複数個あり、
     前記樹脂フィルムの長手方向に移動するとともに、前記第1把持部と、前記第2把持部との間の距離を、前記樹脂フィルムの幅方向に徐々に広げる方向に移動させ、
     前記樹脂フィルムを把持する際に前記樹脂フィルムの一方の面と接触する第1接触面の常温時の最大高さRyと、前記樹脂フィルムの他方の面と接触する第2接触面の常温時の最大高さRyとの合計値が、1μmから25μmである平滑把持部を含むことを特徴とする樹脂フィルムの製造装置。
    A first gripping part for gripping one end in the width direction of the long resin film;
    A second gripping part for gripping the other end of the resin film,
    There are a plurality of the first grip portion and the second grip portion, respectively.
    While moving in the longitudinal direction of the resin film, the distance between the first gripping portion and the second gripping portion is moved in a direction that gradually widens in the width direction of the resin film,
    When gripping the resin film, the maximum height Ry of the first contact surface in contact with one surface of the resin film at room temperature and the second contact surface in contact with the other surface of the resin film at room temperature. A resin film manufacturing apparatus including a smooth gripping portion having a total value with a maximum height Ry of 1 μm to 25 μm.
  9.  請求項1から7のいずれか1項に記載の樹脂フィルムの製造方法によって得られることを特徴とする樹脂フィルム。 A resin film obtained by the method for producing a resin film according to any one of claims 1 to 7.
  10.  偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備え、前記透明保護フィルムが、請求項9に記載の樹脂フィルムであることを特徴とする偏光板。 A polarizing plate comprising: a polarizing element; and a transparent protective film disposed on a surface of the polarizing element, wherein the transparent protective film is the resin film according to claim 9.
  11.  液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備え、前記2枚の偏光板のうち少なくとも一方が、請求項10に記載の偏光板であることを特徴とする液晶表示装置。 A liquid crystal cell and two polarizing plates disposed so as to sandwich the liquid crystal cell, wherein at least one of the two polarizing plates is the polarizing plate according to claim 10. Liquid crystal display device.
PCT/JP2011/069022 2010-09-01 2011-08-24 Resin film manufacturing method, resin film manufacturing device, resin film, polarizing plate, and liquid crystal display device WO2012029599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010195356 2010-09-01
JP2010-195356 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012029599A1 true WO2012029599A1 (en) 2012-03-08

Family

ID=45772692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069022 WO2012029599A1 (en) 2010-09-01 2011-08-24 Resin film manufacturing method, resin film manufacturing device, resin film, polarizing plate, and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012029599A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187421A (en) * 2000-01-05 2001-07-10 Toray Ind Inc Tenter clip and producing method for thermoplastic resin film
JP2001334569A (en) * 2000-05-26 2001-12-04 Toray Ind Inc Method for manufacturing thermoplastic resin film
JP2006240171A (en) * 2005-03-04 2006-09-14 Fuji Photo Film Co Ltd Tenter clip and solution film forming method
WO2008035762A1 (en) * 2006-09-21 2008-03-27 Asahi Kasei Home Products Corporation Process for the production of polylactic acid film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187421A (en) * 2000-01-05 2001-07-10 Toray Ind Inc Tenter clip and producing method for thermoplastic resin film
JP2001334569A (en) * 2000-05-26 2001-12-04 Toray Ind Inc Method for manufacturing thermoplastic resin film
JP2006240171A (en) * 2005-03-04 2006-09-14 Fuji Photo Film Co Ltd Tenter clip and solution film forming method
WO2008035762A1 (en) * 2006-09-21 2008-03-27 Asahi Kasei Home Products Corporation Process for the production of polylactic acid film

Similar Documents

Publication Publication Date Title
CN108139526B (en) Polyvinyl alcohol film, polarizing film and polarizing plate using same, and method for producing polyvinyl alcohol film
JP2013152430A (en) Optical film, laminated film, and manufacturing method of these
JP7088279B2 (en) Polarizing plate, manufacturing method of polarizing plate and liquid crystal display device
JP2004177642A (en) Phase difference film and its manufacturing method, optical compensating film, polarizing plate, and liquid crystal display device
JP2008275926A (en) Method for manufacturing polarizer, polarizer, polarizing plate, optical film, and image display device
US9539774B2 (en) Method for producing resin film, casting die, device for producing resin film, resin film, polarizing plate, and liquid crystal display device
JP5704173B2 (en) Optical display device manufacturing system and method
JP4917477B2 (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP2017102436A (en) Polyvinyl alcohol-based film, polarizing film using the same, polarizing plate, and manufacturing method for polyvinyl alcohol-based film
JP5182508B2 (en) Manufacturing method of optical film
JP2010184408A (en) Method for producing optical film, optical film, polarizing plate and liquid crystal display apparatus
JP2007121351A (en) Retardation film, method for producing the same and optical compensation polarizing plate
JP2007121352A (en) Retardation film, method for producing the same and optical compensation polarizing plate
JP6740857B2 (en) Method for producing polyvinyl alcohol film for producing polarizing film
WO2013027414A1 (en) Method for producing long stretched film and method for producing circularly polarizing plate
JP6252581B2 (en) Manufacturing method of resin film
JP2018010281A (en) Polyvinyl alcohol film and method for producing the same, and polarization film
JPWO2018070131A1 (en) Polarizer and liquid crystal display
WO2012029599A1 (en) Resin film manufacturing method, resin film manufacturing device, resin film, polarizing plate, and liquid crystal display device
TWI737640B (en) Method for manufacturing polyvinyl alcohol-based film for manufacturing polarizing film, polarizing film using the polyvinyl alcohol-based film, polarizing plate, and polyvinyl alcohol-based film for manufacturing polarizing film
WO2011096161A1 (en) Process for producing resin film, resin film, polarizer, and liquid-crystal display device
US9492977B2 (en) Method for producing resin film, casting die, device for producing resin film, resin film, polarizing plate, and liquid crystal display device
JP2008281877A (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film and image display apparatus
TWI716479B (en) Polyvinyl alcohol-based film and manufacturing method of polarizing film, polarizing plate and polyvinyl alcohol-based film using the polyvinyl alcohol-based film
JP5082998B2 (en) Manufacturing method of resin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP