WO2011096161A1 - Process for producing resin film, resin film, polarizer, and liquid-crystal display device - Google Patents

Process for producing resin film, resin film, polarizer, and liquid-crystal display device Download PDF

Info

Publication number
WO2011096161A1
WO2011096161A1 PCT/JP2011/000230 JP2011000230W WO2011096161A1 WO 2011096161 A1 WO2011096161 A1 WO 2011096161A1 JP 2011000230 W JP2011000230 W JP 2011000230W WO 2011096161 A1 WO2011096161 A1 WO 2011096161A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
film
resin
casting
resin film
Prior art date
Application number
PCT/JP2011/000230
Other languages
French (fr)
Japanese (ja)
Inventor
博文 田中
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011552675A priority Critical patent/JP5692095B2/en
Publication of WO2011096161A1 publication Critical patent/WO2011096161A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising

Definitions

  • the present invention relates to a resin film manufacturing method, a resin film obtained by the manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate.
  • Resin films are used in various fields, such as liquid crystal display devices, in view of their chemical characteristics, mechanical characteristics, electrical characteristics, and the like.
  • various resin films such as a transparent protective film for protecting the polarizing element of the polarizing plate, are disposed in the image display area of the liquid crystal display device.
  • a resin film for example, a resin film excellent in transparency such as a cellulose ester film is widely used.
  • a resin film such as a cellulose ester film can be produced using a resin solution (dope) obtained by dissolving a raw material resin such as a cellulose ester resin in a solvent.
  • a resin solution obtained by dissolving a raw material resin such as a cellulose ester resin in a solvent.
  • a method for producing a resin film using such a dope include a solution casting film forming method.
  • the solution casting film forming method is a method of casting a dope on a traveling support to form a casting film, drying it to a peelable extent, peeling it from the support as a film, and peeling it. This is a method for producing a long resin film by drying, stretching, and the like while the film is conveyed by a conveyance roller.
  • Patent Document 1 includes a method in which a solvent is allowed to flow from the outside of both ends of a lip (discharge port) of a casting die when a resin film is manufactured.
  • the present invention suppresses the formation of a film in the vicinity of both ends in the longitudinal direction of the discharge port of the casting die, further suppresses film peeling failure, and stably manufactures a resin film having excellent optical characteristics.
  • An object of the present invention is to provide a method for producing a resin film. Moreover, it aims at providing the liquid crystal display device provided with the resin film obtained by the said manufacturing method, the polarizing plate which used the said resin film as a transparent protective film, and the said polarizing plate.
  • One aspect of the present invention is a casting process in which a casting solution is formed by casting a resin solution containing a transparent resin from a casting die on a traveling support, and the casting film is used as the support. And a drying step for drying the peeled cast film.
  • the resin solution is discharged from a discharge port of the casting die and cast onto the support.
  • a solvent capable of dissolving the transparent resin is allowed to flow down from both longitudinal ends of the discharge port of the casting die to satisfy the following formula (1).
  • T1 indicates the temperature [° C.] of the solvent immediately after the solvent flows down from the discharge port
  • T2 indicates the temperature [° C.] of the solvent when the solvent reaches the support. Is shown.
  • Another aspect of the present invention is a resin film obtained by the method for producing a resin film.
  • Another aspect of the present invention is a polarizing plate comprising a polarizing element and a transparent protective film disposed on the surface of the polarizing element, wherein the transparent protective film is the resin film.
  • This is a characteristic polarizing plate.
  • Another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates.
  • a liquid crystal display device characterized by being the polarizing plate.
  • FIG. 4 is a cross-sectional view of the casting die as seen from the section line VI-VI in FIG. 3.
  • the present inventor has inferred that the peeling failure occurring at the end portion in the width direction of the film is due to the fact that the drying of the end portion proceeds more than the drying of other portions.
  • the drying of the end portion of the casting film cast from the casting die proceeds more than the drying of other portions. I guessed it. From these things, this inventor guessed that formation of the said film
  • Patent Document 1 is a method that focuses on suppressing the formation of a film based on the dope in the vicinity of both ends of the discharge port of the casting die. Therefore, according to the study of the present inventor, even if this method is simply used, it is likely to be affected by the environmental change around the casting die and the like, and in fact, the peeling failure may not be sufficiently suppressed.
  • the present inventor has paid attention to the influence of the environmental change around the casting die, and as a result of earnestly examining conditions that can suppress film formation and film peeling failure, it has been found that the above object is achieved by the present invention described below. It was.
  • the method for producing a resin film according to the present embodiment forms a casting film (web) by casting a resin solution (dope) obtained by dissolving a transparent resin in a solvent from a casting die on a traveling support.
  • the production method includes a casting process, a peeling process for peeling the cast film from the support, and a drying process for drying the peeled cast film.
  • it is performed by a resin film manufacturing apparatus using a solution casting film forming method as shown in FIG.
  • a manufacturing apparatus of a resin film it is not limited to what is shown in FIG. 1, The thing of another structure may be sufficient.
  • the manufacturing method of the resin film which concerns on this embodiment discharges the said resin solution from the discharge port of the said casting die in the said casting process, and while casting on the said support body, the said casting die A solvent capable of dissolving the transparent resin is allowed to flow down from both longitudinal ends of the discharge port to satisfy the following formula (1).
  • T1 indicates the temperature [° C.] of the solvent immediately after the solvent flows down from the discharge port
  • T2 indicates the temperature [° C.] of the solvent when the solvent reaches the support. Show.
  • T1 and T2 can be measured using a non-contact temperature detection device such as an infrared thermography.
  • a non-contact temperature detection device such as an infrared thermography.
  • the solvent discharged from the longitudinal direction both ends of the discharge port of the casting die gradually permeates the ribbon-shaped resin solution (casting ribbon) discharged from the discharge port of the casting die.
  • Non-contact temperature detection devices such as infrared thermography can measure the temperature of the surface, so by measuring using a non-contact temperature detection device such as infrared thermography, casting before penetrating the casting ribbon. The temperature of the solvent remaining on the ribbon can be measured.
  • FIG. 1 is a schematic view showing a basic configuration of a resin film manufacturing apparatus 1 by a solution casting method using an endless belt support 11.
  • the resin film manufacturing apparatus 1 includes an endless belt support 11, a casting die 20, a peeling roller 13, a drying device 14, a winding device 15, and the like.
  • the casting die 20 discharges a resin solution (dope) 16 in which a transparent resin is dissolved in a solvent in the form of a ribbon and casts it on the surface of the endless belt support 11.
  • the endless belt support 11 is supported to be drivable by a pair of driving rollers and driven rollers, and forms a casting film (web) made of the resin solution 16 cast from the casting die 20 while being conveyed, It is dried to such an extent that it can be peeled by the peeling roller 13.
  • the peeling roller 13 peels the dried cast film from the endless belt support 11.
  • the peeled cast film is further dried by the drying device 14, and the dried cast film is wound around the winding device 15 as a resin film.
  • the endless belt support 11 is a metal endless belt having a mirror surface and traveling infinitely.
  • a belt made of stainless steel or the like is preferably used from the viewpoint of peelability of the cast film.
  • the width of the casting film cast by the casting die 20 is preferably 80 to 99% with respect to the width of the endless belt support 11 from the viewpoint of effectively utilizing the width of the endless belt support 11. .
  • the width of the endless belt support 11 is preferably 1800 to 4500 mm.
  • a rotating metal drum (endless drum support) having a mirror surface may be used instead of the endless belt support.
  • FIG. 2 is a schematic perspective view showing the periphery of the casting die 20.
  • FIG. 3 is a side view of the casting die 20 as viewed from the downstream side in the running direction of the endless belt support 11.
  • FIG. 4 is a cross-sectional view of the casting die 20 as seen from the section line VI-VI in FIG.
  • the casting die 20 includes a casting die body 21, a dope supply pipe 22, a side plate 23, and a solvent supply pipe 24, as shown in FIGS.
  • the dope supply pipe 22 is connected to the upper end portion of the casting die body 21 and supplies the dope 16 into the casting die body 21.
  • the casting die body 21 includes a manifold portion 21 a for stably casting the dope 16 onto the endless belt support 11, and discharging the dope 16 into the endless belt 16.
  • the side plates 23 are provided at both ends of the casting die main body 21 in the longitudinal direction (direction substantially orthogonal to the conveying direction of the endless belt support 11). As shown in FIG.
  • the distance between the side plates 23 provided at both ends in the longitudinal direction of the casting die body 21 is the length in the longitudinal direction of the discharge port 21b of the casting die body 21, that is, a ribbon-like shape.
  • the length of the resin solution 16 in the width direction is defined.
  • the solvent supply pipe 24 is installed on the side plate 23 on the downstream side in the traveling direction of the endless belt support 11, that is, on the downstream side surface in the traveling direction of the dope 16, and is a solvent 35 that can dissolve the transparent resin. Is supplied into the side plate 23.
  • a flow rate detection device 31, a liquid feeding device 32, a valve 33, and a solvent storage tank 34 are connected to the solvent supply pipe 24 in this order from the downstream side in the solvent flow direction.
  • the solvent storage tank 34 stores a solvent 35 that can dissolve the transparent resin.
  • the valve 33 is opened to start distribution of the solvent 35 stored in the solvent storage tank 34 into the solvent supply pipe 24.
  • the liquid feeding device 32 feeds the solvent 35 in the solvent supply pipe 24 toward the side plate 23.
  • the flow rate detection device 31 detects the flow rate of the solvent 35 flowing through the solvent supply pipe 24. And based on the detection result, you may control the output of the said liquid feeding apparatus 32.
  • FIG. By doing so, as shown in FIG. 3, the solvent 35 supplied into the side plate 23 flows through the side plate 23 and flows down from both longitudinal ends of the discharge port 21b. That is, the solvent 35 is caused to flow down on both ends of the casting film 16.
  • the environment around the casting die 20 is set to an environment satisfying the above formula (1). By doing so, it is possible to stably produce a resin film that suppresses poor peeling of the film (casting film) and has excellent optical characteristics such as retardation and orientation.
  • a film based on the dope may be formed in the vicinity of both ends of the discharge port of the casting die.
  • coat is formed when the solvent of dope dries and grows gradually by manufacture of a resin film. And this film had the problem of disturbing the flow of the dope which casts and inhibiting manufacture of a resin film.
  • the film detached from the casting die damages the resin film or the like.
  • this film formation is considered to have a correlation with the peelability of the film. Therefore, in this embodiment, it can be considered that the film peeling failure can be suppressed because it is possible to suppress the formation of a film in the vicinity of both ends in the longitudinal direction of the discharge port of the casting die.
  • the solvent is less effective to improve the peelability of the cast film from the support, There was a tendency for the casting film to fail to peel off. Specifically, when T1 is too high as compared with T2, moisture in the atmosphere tends to precipitate on the surface of the solvent discharged from the discharge port, that is, the solvent on the casting ribbon. For this reason, there was a tendency for the casting film to fail to peel off. Further, when T2 is too high as compared with T1, the solvent is excessively volatilized, and the solvent is caused to flow down to the casting film, thereby improving the peelability of the casting film from the support. There was a tendency that the effect could not be sufficiently exhibited, and this caused a tendency to cause peeling failure of the cast film.
  • the relationship between T1 and T2 varies depending on the environment around the casting die 20. Specifically, for example, the type of the solvent, the ambient temperature, the temperature of the casting ribbon discharged from the discharge port, the flow rate of the solvent, the flow rate of the solvent, the resin discharged from the discharge port from the discharge port By the distance to the location where the solution reaches the support, the presence or absence of the air blown to the resin solution or solvent discharged from the discharge port, the amount of the air, heating or cooling the solvent discharged from the discharge port, etc. Change.
  • a method of heating the solvent for example, a heater is embedded in the solvent until the solvent discharged from the discharge port reaches the support, and the solvent flows on the heater. Examples thereof include a method of heating the solvent and a method of applying infrared rays or hot air to the solvent discharged from the discharge port.
  • the method for cooling the solvent include a method of applying cold air to the solvent discharged from the discharge port.
  • T1 and T2 may satisfy the above relationship, but T1 and T2 are preferably 15 to 30 ° C., respectively. If T1 and T2 are too low or too high, the temperature difference between the solvent and the casting film becomes large, and this temperature difference causes either one of the surfaces of the casting film to shrink and the end portion to There is a tendency to break easily.
  • the environment around the casting die 20 is preferably an environment that satisfies the following formula (2), and more preferably an environment that satisfies the following formula (3). By doing so, the peeling defect of a film (casting film) can be suppressed more.
  • W1 represents the supply amount [ml] of the solvent
  • W2 represents the loss amount [ml] of the solvent
  • W1 and W2 varies depending on the environment around the casting die 20. Specifically, for example, the presence of a film formed near both ends of the discharge port of the casting die, inhibition by impurities present in the solvent, the type of solvent, the ambient temperature, and the casting discharged from the discharge port Ribbon temperature, solvent flow rate, solvent flow rate, distance from the discharge port to the location where the resin solution discharged from the discharge port reaches the support, resin solution discharged from the discharge port, It varies depending on the presence / absence of the air blown on the solvent, the amount of air flow, and heating or cooling the solvent discharged from the discharge port.
  • W1 varies depending on the output of the liquid feeding device 32. Examples of the method for heating or cooling the solvent include the same methods as described above.
  • W1 is the amount of the solvent flowing down.
  • W2 is obtained by measuring the amount of solvent reaching the support and calculating the difference between W1 and the amount of solvent reaching the support.
  • the amount of the solvent reached on the support is measured by measuring the gas concentration volatilized from the solvent until the solvent discharged from the discharge port reaches the support every unit time. It can be calculated by integrating the amount of time it takes for the solvent to circulate.
  • the discharge port 21b is formed on a ridge line on the endless belt support 11 side of the casting die body 21 as shown in FIG. As shown in FIG. 3, the ridge line extends in a direction substantially orthogonal to the traveling direction of the endless belt support 11.
  • the distance A between the discharge port 21b and the endless belt support 11 is preferably 200 to 5000 ⁇ m. If the distance A is too narrow, the casting die 20 and the endless belt support 11 may come into contact with each other. If the distance A is too wide, the casting ribbon tends to be easily influenced by external factors such as wind.
  • the dope supply pipe 22 branches into three and is connected to the casting die main body 21.
  • the number is not limited to this number. It may be.
  • the number of dope supply pipes 22 is preferably about 2 to 4 from the viewpoint of stably supplying the dope 16 to the casting die body 21.
  • the center-to-center distance (pitch) C of the adjacent dope supply pipes 22 connected to the casting die body 21 is determined from the viewpoint of stable supply of the dope 16.
  • the width is preferably about 10 to 25% with respect to the width (width of the casting ribbon) B of the outlet 21b. Moreover, it is preferable that the intervals C between adjacent dope supply pipes 22 are all equal.
  • the dope supply pipe 22 is smoothly bent rather than bent at a right angle after the branching or abruptly bent such as having a small curvature radius. If it bends sharply, the dope flow may stagnate, and contamination tends to occur.
  • a slit 21c is formed between the lower end portion of the manifold portion 21a and the discharge port 21b.
  • the width (slit width) D of the discharge port 21b can be adjusted according to the thickness of the resin film to be manufactured, and is preferably adjusted to about 100 to 1000 ⁇ m, for example. If the width D is too narrow, the liquid feeding pressure of the dope 16 is increased, and when a minute foreign matter is mixed into the dope 16, the foreign matter is clogged by the slit 21c, and a streak-like defect may occur in the casting film. There is. Moreover, when the width D is too wide, it tends to be difficult to produce a thin resin film.
  • the ratio (E / D) of the distance E of the slit (between the lower end of the manifold portion 21a and the discharge port 21b) to the width (slit width) D of the discharge port 21b is about 100 to 400. Preferably there is. If the E / D is too small, the time for the dope 16 to pass through the slit becomes too short, and it tends to be difficult to control the discharge amount (casting amount) of the dope 16. On the other hand, if the E / D is too large, the time for the dope 16 to pass through the slit becomes too long, and the dope tends to be contaminated.
  • the casting die 20 is not limited to the shape shown in FIGS. 2 to 4, and may be any environment as long as the environment around the casting die 20 satisfies the above formula (1).
  • a simple casting die can be used.
  • a resin film can be produced from the cast film (web) formed on the endless belt support 11 by a peeling process or a drying process using the peeling roller 13, the drying device 14, the winding device 15, and the like.
  • the process described below is not particularly limited and can be adopted as long as it is a general process. Specifically, for example, the following steps are performed. In addition, this invention is not limited to the following processes.
  • the solvent in the dope is dried.
  • the drying is performed, for example, by heating the endless belt support 11 or blowing heated air on the web.
  • the temperature of the web varies depending on the dope solution, it is preferably in the range of ⁇ 5 ° C. to 70 ° C. in consideration of the conveyance speed accompanying the evaporation time of the solvent, the degree of dispersion of the fine particles, the productivity, and the like. A range of from 0 to 60 ° C. is more preferable.
  • the higher the temperature of the web the faster the solvent can be dried. However, when the temperature is too high, the web tends to foam or the flatness tends to deteriorate.
  • the endless belt support 11 When the endless belt support 11 is heated, for example, a method of heating the web on the endless belt support 11 with an infrared heater, a method of heating the front and back surfaces of the endless belt support 11 with an infrared heater, the endless belt Examples include a method of heating by heating air on the back surface of the belt support 11, and the method can be appropriately selected as necessary.
  • the wind pressure of the heated air is preferably 50 to 5000 Pa in consideration of the uniformity of solvent evaporation, the degree of dispersion of fine particles, and the like.
  • the temperature of the heating air may be dried at a constant temperature, or may be supplied in several steps in the running direction of the endless belt support 11.
  • the time from casting the dope onto the endless belt support 11 to peeling the web from the endless belt support 11 varies depending on the film thickness of the resin film to be produced and the solvent used. In consideration of the peelability from the endless belt support 11, it is preferably in the range of 0.5 to 5 minutes.
  • the traveling speed of the endless belt support 11 is preferably about 50 to 300 m / min, for example.
  • the ratio (draft ratio) of the traveling speed of the endless belt support 11 to the flow rate of the dope discharged from the casting die 20 is preferably about 0.5 to 2.
  • the draft ratio is within this range, the cast film can be stably formed.
  • the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the cast film is reduced in the width direction, and if so, a wide resin film cannot be formed.
  • the peeling roll 13 is disposed near the surface of the endless belt support 11 on the side where the dope 16 is cast, and the distance between the endless belt support 11 and the peeling roller 13 is 1 to 100 mm. It is preferable.
  • the dried cast film (web) is peeled off as a film by pulling the dried cast film (web) with tension using the peeling roller 13 as a fulcrum.
  • MD direction film transport direction
  • the peeling tension and the conveying tension when peeling the film from the endless belt support 11 are 50 to 400 N / m.
  • the residual solvent rate of the film when peeling the film from the endless belt support 11 is the peelability from the endless belt support 11, the residual solvent rate at the time of peeling, the transportability after peeling, and after transporting and drying.
  • the physical properties of the resulting resin film it is preferably 30 to 200% by mass.
  • the residual solvent ratio of the film is defined by the following formula (I).
  • M 1 is shows the mass at any point in the film
  • M 2 shows the mass after drying for 1 hour at 115 ° C. The film was measured M 1.
  • the drying device 14 includes a plurality of transport rollers, and dries the film while transporting the film between the rollers. In that case, you may dry using heating air, infrared rays, etc. independently, and you may dry using heating air and infrared rays together. It is preferable to use heated air from the viewpoint of simplicity.
  • the drying temperature varies depending on the amount of residual solvent in the film. However, the drying temperature is appropriately selected depending on the residual solvent ratio in the range of 30 to 180 ° C. in consideration of drying time, unevenness of shrinkage, stability of the amount of expansion and contraction, etc. That's fine. Further, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and may be divided into several stages of temperature. Further, the film can be stretched in the MD direction while being transported in the drying device 14.
  • the residual solvent ratio of the film after the drying treatment in the drying device 14 is preferably 0.001 to 5% by mass in consideration of the load of the drying process, the dimensional stability expansion / contraction ratio during storage, and the like.
  • a film in which the solvent is gradually removed in the drying step and the total residual solvent amount is 15% by mass or less is referred to as a resin film.
  • the winding device 15 winds the resin film having a predetermined residual solvent ratio on the winding core to a required length by the drying device 14.
  • the temperature at the time of winding is cooled to room temperature in order to prevent abrasion, loosening, and the like due to shrinkage after winding.
  • the winder to be used can be used without particular limitation, and may be a commonly used one. Specifically, it can be wound using, for example, a winder using a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
  • the manufacturing apparatus of a resin film is not limited to the thing of said structure, For example, you may provide the extending
  • the stretching device include a stretching device that stretches the film peeled from the endless belt support 11 in a direction (Transverse Direction: TD direction) orthogonal to the film transport direction.
  • the resin solution used in this embodiment is obtained by dissolving a transparent resin in a solvent.
  • the transparent resin is not particularly limited as long as it is a resin having transparency when formed into a substrate by a solution casting film forming method or the like, but is easily manufactured by a solution casting film forming method or the like. It is preferable that the adhesive property with other functional layers such as a hard coat layer is excellent and that it is optically isotropic.
  • the transparency means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.
  • the transparent resin examples include cellulose ester resins such as cellulose diacetate resin, cellulose triacetate resin, cellulose acetate butyrate resin, and cellulose acetate propionate resin; polyethylene terephthalate resin and polyethylene naphthalate resin.
  • Acrylic resins such as polymethyl methacrylate resins; Polysulfone (including polyether sulfone) resins, polyethylene resins, polypropylene resins, cellophane, polyvinylidene chloride resins, polyvinyl alcohol resins, ethylene vinyl alcohol resins, Shinji Vinyl resins such as tactic polystyrene resins, cycloolefin resins and polymethylpentene resins; polycarbonate resins; polyarylate trees ; It can be mentioned fluorine-based resin or the like; polyether ketone resins; polyether ketone imide resin; polyamide resin.
  • cellulose ester resins cellulose ester resins, cycloolefin resins, polycarbonate resins, and polysulfone (including polyethersulfone) resins are preferable.
  • cellulose ester resins are preferred, and among cellulose ester resins, cellulose acetate resins, cellulose propionate resins, cellulose butyrate resins, cellulose acetate butyrate resins, cellulose acetate propionate resins, and cellulose triacetate resins are preferred, Cellulose triacetate resin is particularly preferred.
  • the said transparent resin may use the transparent resin illustrated above independently, and may use it in combination of 2 or more type.
  • the number average molecular weight of the cellulose ester-based resin is preferably 30,000 to 200,000 in that the mechanical strength is high when it is molded into a resin film, and an appropriate dope viscosity is obtained in the solution casting film forming method.
  • the weight average molecular weight (Mw) / number average molecular weight (Mn) is preferably in the range of 1 to 5, more preferably in the range of 1.4 to 3.0.
  • the average molecular weight and molecular weight distribution of a resin such as a cellulose ester resin can be measured using gel permeation chromatography or high performance liquid chromatography. Therefore, the number average molecular weight (Mn) and the weight average molecular weight (Mw) can be calculated using these, and the ratio can be calculated.
  • the cellulose ester resin preferably has an acyl group having 2 to 4 carbon atoms as a substituent.
  • substitution degree for example, when the substitution degree of the acetyl group is X and the substitution degree of the propionyl group or butyryl group is Y, the total value of X and Y is 2.2 or more and 2.95 or less, X is preferably more than 0 and 2.95 or less.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group.
  • These cellulose ester resins can be synthesized by a known method. The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
  • the cellulose that is the raw material of the cellulose ester-based resin is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from coniferous tree, derived from broadleaf tree), kenaf and the like.
  • the cellulose ester resins obtained from them can be mixed and used at an arbitrary ratio, but it is preferable to use 50% by mass or more of cotton linter.
  • the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride)
  • these cellulose ester resins use an organic acid such as acetic acid or an organic solvent such as methylene chloride, It can be obtained by reacting with a cellulose raw material using such a protic catalyst.
  • the solvent used in the present embodiment can be a solvent containing a good solvent for the transparent resin.
  • the good solvent varies depending on the transparent resin used.
  • the good solvent and the poor solvent change depending on the acyl group substitution degree of the cellulose ester.
  • the cellulose ester acetate ester acetyl group substitution degree 2.4
  • cellulose Acetate propionate is a good solvent
  • cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent. Therefore, since the good solvent and the poor solvent differ depending on the transparent resin used, the case of a cellulose ester resin will be described as an example.
  • Examples of good solvents for cellulose ester resins include organic halogen compounds such as methylene chloride, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dioxolane derivatives, cyclohexanone, Ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3- Hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • organic halogen compounds such as methylene chloride, methyl acetate, ethyl acetate, amyl acetate,
  • organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone and the like are preferable. These good solvents may be used alone or in combination of two or more.
  • the dope may contain a poor solvent as long as the transparent resin does not precipitate.
  • poor solvents for cellulose ester resins include alcohols having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, methyl ethyl ketone, and methyl isobutyl.
  • Examples include ketones, propyl acetate, monochlorobenzene, benzene, cyclohexane, tetrahydrofuran, methyl cellosolve, and ethylene glycol monomethyl ether. These poor solvents may be used alone or in combination of two or more.
  • the resin solution used in this embodiment may contain other components (additives) other than the transparent resin and the solvent as long as the effects of the present invention are not impaired.
  • additives include fine particles, plasticizers, antioxidants, ultraviolet absorbers, heat stabilizers, conductive substances, flame retardants, lubricants, and matting agents.
  • the fine particles are appropriately selected according to the purpose of use.
  • Specific examples of the purpose of use include, for example, a case where visible light is scattered by being contained in a transparent resin, a case where slipperiness is imparted, and the like. By containing, both the scattering of visible light and the improvement of slipperiness can be improved. Moreover, in any case, it is necessary to adjust the particle size and content of the fine particles to such an extent that the transparency of the film is not impaired.
  • the fine particles may be inorganic fine particles such as silicon oxide or organic fine particles such as acrylic resin.
  • the inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, calcium carbonate, strontium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, and aluminum silicate. And fine particles such as magnesium silicate and calcium phosphate. Among these, fine particles such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, and magnesium oxide are preferably used.
  • organic fine particles examples include acrylic resins such as polymethyl methacrylate resin, acrylic styrene resins, silicone resins, polystyrene resins, polycarbonate resins, benzoguanamine resins, melamine resins, polyolefin resins, polyester resins, Fine particles composed of polyamide-based resin, polyimide-based resin, polyfluorinated ethylene-based resin, and the like can be given. Among these, crosslinked polystyrene particles, acrylic resin fine particles of polymethyl methacrylate particles, and the like are preferable.
  • the fine particles may be used alone, or two or more kinds may be used in combination.
  • the average particle diameter of the fine particles is preferably 0.1 to 10 ⁇ m, and more preferably 0.3 to 5 ⁇ m. If the average particle size of the fine particles is too small, the functionality due to the fine particles tends not to be sufficiently exhibited. On the other hand, if it is too large, not only the functionality due to the fine particles cannot be sufficiently exhibited, but also the translucency of the resin film tends to be lowered. In addition, although the average particle diameter of microparticles
  • fine-particles can be measured also by TEM observation of the cross section of a resin film, it can also be measured using a laser diffraction type particle size distribution measuring apparatus etc.
  • the content of the fine particles is preferably 0.01 to 35% by mass, and more preferably 0.05 to 30% by mass with respect to the transparent resin. If the content of the fine particles is too small, the functionality due to the fine particles tends to be insufficient. Moreover, when there is too much, there exists a tendency for the translucency of a resin film to fall.
  • the shape of the fine particles is not particularly limited, and examples thereof include a spherical shape, a flat plate shape, and a needle shape, and a spherical shape is preferable.
  • the plasticizer can be used without particular limitation, for example, phosphate ester plasticizer, phthalate ester plasticizer, trimellitic ester plasticizer, pyromellitic acid plasticizer, glycolate plasticizer, Examples include citrate plasticizers and polyester plasticizers.
  • the content thereof is preferably 1 to 40% by mass, preferably 3 to 20% by mass with respect to the cellulose ester resin in view of dimensional stability and processability. More preferably, it is 4 to 15% by mass. If the content of the plasticizer is too small, a smooth cut surface cannot be obtained when slitting or punching, and there is a tendency for generation of chips. That is, the effect of including a plasticizer cannot be sufficiently exhibited.
  • the antioxidant can be used without any particular limitation, and for example, a hindered phenol compound is preferably used.
  • the content of the antioxidant is preferably 1 ppm to 1.0%, more preferably 10 to 1000 ppm in terms of mass ratio with respect to the cellulose ester resin.
  • the resin film produced by the production method according to the present embodiment can be used for a polarizing plate or a liquid crystal display member because of its high dimensional stability. In this case, deterioration prevention of the polarizing plate or the liquid crystal is possible. Therefore, an ultraviolet absorber is preferably used.
  • the ultraviolet absorber those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
  • the transmittance at 380 nm is preferably less than 10%, more preferably less than 5%.
  • Specific examples of the UV absorber include oxybenzophenone compounds, benzotriazole compounds (benzotriazole UV absorbers), salicylic acid ester compounds, benzophenone compounds (benzophenone UV absorbers), and cyanoacrylates. Compounds, nickel complex compounds, triazine compounds, and the like.
  • a benzotriazole type ultraviolet absorber and a benzophenone type ultraviolet absorber are preferable.
  • the content of the ultraviolet absorber is preferably from 0.1% by mass to 2.5% by mass, considering the effect as an ultraviolet absorber, transparency, etc., and from 0.8% by mass to 2.0% by mass. % Is more preferable.
  • thermal stabilizer examples include kaolin, talc, diatomaceous earth, quartz, inorganic fine particles such as calcium carbonate, barium sulfate, titanium oxide, and alumina, and salts of alkaline earth metals such as calcium and magnesium.
  • the conductive material is not particularly limited, and examples thereof include ionic conductive materials such as anionic polymer compounds, conductive fine particles such as metal oxide fine particles, and antistatic agents.
  • ionic conductive materials such as anionic polymer compounds, conductive fine particles such as metal oxide fine particles, and antistatic agents.
  • the conductive substance By containing the conductive substance, a resin film having a preferable impedance can be obtained.
  • the ion conductive substance is a substance that shows electric conductivity and contains ions that are carriers for carrying electricity.
  • the method for dissolving the cellulose ester resin when preparing the dope is not particularly limited, and a general method can be used. By combining heating and pressurization, it is possible to heat above the boiling point of the solvent at normal pressure, and it is possible to dissolve the cellulose ester resin in the solvent above the boiling point at normal pressure. It is preferable from the viewpoint of preventing the occurrence of.
  • a method in which a cellulose ester resin is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • the pressurization may be performed by a method in which an inert gas such as nitrogen gas is injected, or a method in which a solvent is heated in a sealed container and the vapor pressure of the solvent is increased by the heating.
  • the heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • a higher solvent temperature (heating temperature) for dissolving the cellulose ester-based resin is preferable from the viewpoint of solubility of the cellulose ester.
  • the heating temperature is preferably 45 to 120 ° C.
  • the pressure is adjusted to a pressure at which the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cellulose ester resin can be dissolved in a solvent such as methyl acetate.
  • the obtained cellulose ester resin solution is filtered using an appropriate filter medium such as filter paper.
  • the filter medium it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like. However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is likely to be clogged. Therefore, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, and a filter medium having a 0.001 to 0.008 mm is more preferable.
  • a normal filter medium can be used.
  • a plastic filter material such as polypropylene or Teflon (registered trademark), a filter paper using cellulose fiber or rayon, or a metal filter material such as stainless steel is preferable because the fiber does not fall off.
  • impurities, particularly bright spot foreign matter contained in the raw material cellulose ester resin solution by filtration.
  • the bright spot foreign matter is a state where two polarizing plates are placed in a crossed Nicols state, a resin film is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
  • the filtration is not particularly limited and can be carried out by a usual method, but the method of filtration while heating at a temperature not lower than the boiling point of the solvent at normal pressure and at which the solvent does not boil under pressure may be performed before and after the filtration.
  • the increase in the difference in filtration pressure (referred to as differential pressure) is small and preferable.
  • the temperature is preferably 35 to 60 ° C.
  • the filtration pressure is preferably smaller, for example, 1.6 MPa or less.
  • the additive may be dissolved in an organic solvent such as alcohol, methylene chloride, dioxolane and the like, or may be added to the dope or directly during the dope composition.
  • an organic solvent such as alcohol, methylene chloride, dioxolane and the like
  • the additive and cellulose ester resin are added to the dope using a dissolver or sand mill with the additive dispersed in the cellulose ester resin. It is preferable.
  • the fine particles are dispersed in the obtained cellulose ester resin solution.
  • the method for dispersing is not particularly limited, and can be performed, for example, as follows. For example, first, a dispersion solvent and fine particles are stirred and mixed, and then dispersed using a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the cellulose ester resin solution and stirred.
  • dispersion solvent examples include lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol. Moreover, although it does not specifically limit to lower alcohol, It is preferable to use the thing similar to the solvent used when preparing the solution of a cellulose-ester-type resin.
  • the disperser can be used without particular limitation, and a general disperser can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. Medialess dispersers are preferred from the viewpoint of lower haze (higher translucency). Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type, and a high pressure type dispersing device is preferable.
  • the high-pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
  • Examples of the high-pressure dispersing device include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation, a nanomizer manufactured by Nanomizer, and the like, and other examples include a Manton Gorin type high-pressure dispersing device.
  • Examples of the Menton Gorin type high-pressure dispersing device include a homogenizer manufactured by Izumi Food Machinery, UHN-01 manufactured by Sanwa Machinery Co., Ltd., and the like.
  • the same solvent as the resin solution (dope) can be used as the same solvent as the resin solution (dope) as the same solvent as the resin solution (dope) can be used.
  • a good solvent for the transparent resin may be contained, and a poor solvent may be contained as necessary.
  • the manufacturing method according to the present embodiment as described above, it is possible to suppress a film peeling failure, and thus a resin film excellent in optical properties with high uniformity such as retardation and orientation can be obtained. Moreover, according to the manufacturing method according to the present embodiment, it is possible to suppress the occurrence of dope contamination and the formation of a film in the vicinity of both ends of the discharge port. can get.
  • the width of the resin film obtained here is preferably 1500 to 2500 mm from the viewpoint of use in a large liquid crystal display device, use efficiency of the film during polarizing plate processing, and production efficiency.
  • the film thickness of the resin film is preferably 20 to 70 ⁇ m from the viewpoint of thinning the liquid crystal display device and stabilizing the production of the resin film.
  • the film thickness is an average film thickness.
  • the film thickness is measured at 20 to 200 locations in the width direction of the resin film with a contact-type film thickness meter manufactured by Mitutoyo Corporation, and the average value of the measured values. Is shown as the film thickness.
  • the polarizing plate which concerns on this embodiment is equipped with a polarizing element and the transparent protective film arrange
  • the polarizing element is an optical element that emits incident light converted to polarized light.
  • the polarizing plate for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution, and the resin film or What laminated
  • the transparent protective film for the polarizing plate for example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (above, manufactured by Konica Minolta Opto) Is preferably used.
  • resin films such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate uses the resin film as a protective film laminated on at least one surface side of the polarizing element.
  • the said resin film works as a phase difference film, it is preferable to arrange
  • polarizing element examples include, for example, a polyvinyl alcohol polarizing film.
  • Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes.
  • a modified polyvinyl alcohol film modified with ethylene is preferably used as the polyvinyl alcohol film.
  • the polarizing element is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
  • the film thickness of the polarizing element is preferably 5 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 5 to 20 ⁇ m.
  • a cellulose ester resin film When a cellulose ester resin film is laminated on the surface of the polarizing element, it is preferably bonded with a water-based adhesive mainly composed of completely saponified polyvinyl alcohol. Moreover, in the case of resin films other than a cellulose ester-based resin film, it is preferable to perform adhesion processing on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate as described above uses the resin film according to this embodiment as a transparent protective film. Since this resin film is excellent in optical properties with high uniformity such as retardation and orientation, when the obtained polarizing plate is applied to, for example, a liquid crystal display device, the contrast of the liquid crystal display device is improved. High image quality can be achieved.
  • the liquid crystal display device includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate.
  • the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled.
  • Such a liquid crystal display device uses the polarizing plate as a transparent protective film for the polarizing plate. By doing so, a high-quality liquid crystal display device with improved contrast and the like can be obtained.
  • Example 1 (Preparation of dope) First, a cellulose acetate propionate resin (acetyl group substitution degree: 1.2, propionyl group substitution degree: 1.2, total acyl) as a transparent resin in a dissolution tank containing 300 parts by mass of methylene chloride and 52 parts by mass of ethanol. Group substitution degree: 2.4) 100 parts by mass are added, and further 5 parts by mass of triphenyl phosphate, 5 parts by mass of ethylphthalylethyl glycol, and 0.2 parts by mass of silica particles (primary particle size: 12 nm) are added. did. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours.
  • a cellulose acetate propionate resin acetyl group substitution degree: 1.2, propionyl group substitution degree: 1.2, total acyl
  • Group substitution degree: 2.4 100 parts by mass are added, and further 5 parts by mass of triphenyl phosphate, 5 parts by mass
  • a cellulose acetate propionate resin solution was obtained. Then, stirring was complete
  • the temperature of the obtained dope was adjusted to 35 ° C., and the temperature of the endless belt support was adjusted to 25 ° C. Then, using a resin film production apparatus as shown in FIG. 1, a dope was cast from an casting die onto an endless belt support made of stainless steel and polished to a super mirror surface at a conveyance speed of 60 m / min. . At that time, a mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol was allowed to flow down from both ends of the discharge port of the casting die as a solvent. Then, before the solvent discharged from the discharge port reaches the support, a heater is embedded in the solvent, and the solvent flows through the heater so that the solvent is heated.
  • the temperature, supply amount, and loss amount of the solvent flowing down from both ends of the discharge port of the die were adjusted to the temperatures, supply amounts, and loss amounts shown in Table 1. Then, the web was peeled from the endless belt support as a film, and the peeled film was stretched 15% in the TD direction while holding both ends of the film with clips using a stretching device (tenter). Then, the stretched film was wound up with a winder, and the resin film wound up in roll shape was obtained.
  • Example 2 As the solvent that flows down from both ends of the discharge port of the casting die, a mixed solvent of 80% by mass of methylene chloride and 20% by mass of methanol is used instead of the mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol.
  • the temperature, supply amount, and loss amount of the solvent flowing down from both ends of the discharge port of the casting die are adjusted by adjusting the flow rate of the air blown to the resin solution and solvent discharged from Example 1 is the same as Example 1 except that the loss is adjusted.
  • Example 3 Instead of a mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol, a mixed solvent of 80% by mass of methylene chloride, 5% by mass of methanol and 15% by mass of cyclohexane was used as a solvent to flow down from both ends of the discharge port of the casting die. Use, adjust the distance from the discharge port to the location where the resin solution discharged from the discharge port reaches the support, thereby supplying the temperature and supply of the solvent flowing down from both ends of the discharge port of the casting die
  • Example 1 is the same as Example 1 except that the amount and loss amount are adjusted to the temperature, supply amount, and loss amount shown in Table 1.
  • Example 4 Instead of a mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol as a solvent that flows down from the both ends of the casting die of the casting die, methylene chloride is used, and hot air is applied to the solvent discharged from the outlet. As in Example 1, except that the temperature, supply amount and loss amount of the solvent flowing down from both ends of the casting die of the casting die were adjusted to the temperatures, supply amounts and loss amounts shown in Table 1. It is.
  • Example 1 By adjusting the distance from the discharge port to the location where the resin solution discharged from the discharge port reaches the support, the temperature of the solvent that flows down from both ends of the discharge port of the casting die, the supply amount, and Example 1 is the same as Example 1 except that the loss amount is adjusted to the temperature, supply amount, and loss amount shown in Table 1.
  • Example 3 Before the solvent discharged from the discharge port reaches the support, a heater is embedded in the solvent, and the solvent flows through the heater so that the solvent is heated.
  • Example 3 is the same as Example 3 except that the temperature, supply amount, and loss amount of the solvent flowing down from both ends of the discharge port are adjusted to the temperature, supply amount, and loss amount shown in Table 1.
  • Example 4 By adjusting the amount of air blown to the resin solution or solvent discharged from the discharge port, the temperature, supply amount and loss amount of the solvent flowing down from both ends of the discharge port of the casting die are shown in Table 1, Example 4 is the same as Example 4 except that the supply amount and the loss amount are adjusted.
  • the obtained resin film is placed between two polarizing plates in an orthogonal (crossed Nicols) state, light is applied from one polarizing plate side, and the other polarizing plate side is used with a transmission microscope. And observed at a magnification of 50 times. At that time, the number of foreign matters having a size of 50 ⁇ m or more recognized in the polarization crossed Nicol state in an area of 25 cm 2 was counted, and the value converted into the number per 1 cm 2 was defined as the number of foreign matters.
  • the foreign matter is a foreign matter recognized in the polarization crossed Nicol state, and in the polarized crossed Nicol state, only the location of the foreign matter is observed in the dark field, so that the number can be easily measured. it can.
  • the haze of the obtained resin film was measured according to JIS K7105-1981. Specifically, 10 samples were cut out at equal intervals in the width direction of the obtained resin film, and the haze of the cut out sample was measured using a haze meter (NDH manufactured by Nippon Denshoku Industries Co., Ltd.). The average value of the measured haze was evaluated as a transparency index. If the haze is 0.1 or less, it is evaluated as “ ⁇ ”, and if it exceeds 0.1 and is 0.2 or less, it is evaluated as “ ⁇ ”, and if it exceeds 0.2 and is 0.5 or less. , “ ⁇ ” was evaluated, and when it exceeded 0.5 and 1.0 or less, it was evaluated as “X”, and when it exceeded 0.1, “XX” was evaluated.
  • Nx the refractive index in the slow axis direction of the resin film
  • Ny the refractive index in the fast axis direction
  • d the film thickness (nm) of the film.
  • Table 1 shows the evaluation results of the above evaluations.
  • T1 and T2 are such that T2-T1 exceeds ⁇ 0.5 and less than 0.5 (Examples 1 to 4), T1 that does not satisfy the above relationship From the case of T2 (Comparative Examples 1 to 4), a resin film having not only excellent releasability but also few foreign substances, excellent transparency, and excellent uniform optical properties such as retardation was obtained. Further, in the case of Examples 1 to 4, even when the resin film was manufactured, the formation of a film on the casting die was suppressed. From this, it is considered that the resin films according to Examples 1 to 4 suppress the occurrence of defects due to film formation. Moreover, it is thought that suppression of this film formation has contributed to the improvement of peelability.
  • Example 1 when W1 and W2 are such that W2 / W1 exceeds 10 ⁇ 7 and less than 10 ⁇ 5 (Examples 2 to 4), they are W1 and W2 that do not satisfy the above relationship (implementation). From Example 1), it was possible to obtain a resin film that was further excellent in transparency and, in some cases, had fewer foreign matters and was superior in optical properties.
  • One aspect of the present invention is a casting process in which a casting solution is formed by casting a resin solution containing a transparent resin from a casting die on a traveling support, and the casting film is used as the support. And a drying step for drying the peeled cast film.
  • the resin solution is discharged from a discharge port of the casting die and cast onto the support.
  • a solvent capable of dissolving the transparent resin is allowed to flow down from both longitudinal ends of the discharge port of the casting die to satisfy the following formula (1).
  • T1 indicates the temperature [° C.] of the solvent immediately after the solvent flows down from the discharge port
  • T2 indicates the temperature [° C.] of the solvent when the solvent reaches the support. Is shown.
  • At least a part of the solvent permeates the casting film on the support by flowing down a solvent capable of dissolving the transparent resin constituting the resin film from both longitudinal ends of the discharge port of the casting die. And it is thought that the solvent concentration of the width direction edge part of a casting film can be raised. That is, it is thought that it can suppress that the drying of the edge part of the casting film cast from the casting die progresses rather than the drying of other parts. Therefore, it is thought that it can suppress that a film
  • the difference between the temperature of the solvent immediately after being discharged from both ends in the longitudinal direction of the discharge port of the casting die and the temperature of the solvent at the time of reaching the support is as follows.
  • the evaporation of the solvent discharged from both ends in the longitudinal direction of the discharge port of the casting die can be sufficiently controlled.
  • the solvent concentration at the end portion in the width direction of the cast film can be sufficiently increased, and the peeling failure at the end portion in the width direction of the film can be sufficiently suppressed.
  • the peeling defect of a film can be suppressed more. This is considered to be because the evaporation of the solvent discharged from both ends in the longitudinal direction of the discharge port of the casting die can be controlled more. Therefore, it is considered that the solvent concentration at the end in the width direction of the cast film can be further increased.
  • the transparent resin is a cellulose ester resin and the solvent contains methylene chloride.
  • film formation and film peeling failure can be further suppressed.
  • the solvent flowed down from the discharge port suitably penetrates into the casting film on the support and can further increase the solvent concentration at the end in the width direction of the casting film.
  • the transparent resin is a cellulose ester resin, a resin film that is sufficiently excellent in transparency can be obtained. can get.
  • Another aspect of the present invention is a resin film obtained by the method for producing a resin film.
  • Another aspect of the present invention is a polarizing plate comprising a polarizing element and a transparent protective film disposed on the surface of the polarizing element, wherein the transparent protective film is the resin film.
  • This is a characteristic polarizing plate.
  • a resin film with high uniformity such as retardation and orientation and excellent optical characteristics is applied.
  • the contrast of it is possible to provide a polarizing plate that can improve the image quality of the liquid crystal display device such as improvement.
  • Another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates.
  • a liquid crystal display device characterized by being the polarizing plate.
  • a polarizing plate including a resin film with excellent uniformity and optical properties such as retardation and orientation is used, it is possible to provide a high-quality liquid crystal display device with improved contrast and the like. it can.
  • the present invention it is possible to suppress the formation of a film in the vicinity of both ends in the longitudinal direction of the discharge port of the casting die, further suppress the film peeling failure, and stabilize the resin film having excellent optical characteristics.
  • a method for producing a resin film that can be produced is provided. Moreover, the resin film obtained by the said manufacturing method, the polarizing plate which used the said resin film as a transparent protective film, and the liquid crystal display device provided with the said polarizing plate are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

Disclosed is a process for producing a resin film through solution casting, the process including a casting step in which a resin solution (dope) (16) is ejected from the orifice (21b) of a casting die (20) and cast on an endless-belt support (11) and, simultaneously therewith, a solvent in which the transparent resin as a component of the dope is soluble is caused to flow down from both longitudinal ends of the orifice (21b) of the casting die (20). The process satisfies relationship (1): -5 < T2 - T1 < 5 (1) (wherein T1 indicates the temperature [ºC] of the solvent which has just left the orifice, and T2 indicates the temperature [ºC] of the solvent which has just reached to the support).

Description

樹脂フィルムの製造方法、樹脂フィルム、偏光板、及び液晶表示装置Manufacturing method of resin film, resin film, polarizing plate, and liquid crystal display device
 本発明は、樹脂フィルムの製造方法、前記製造方法によって得られた樹脂フィルム、前記樹脂フィルムを透明保護フィルムとして用いた偏光板、及び前記偏光板を備えた液晶表示装置に関する。 The present invention relates to a resin film manufacturing method, a resin film obtained by the manufacturing method, a polarizing plate using the resin film as a transparent protective film, and a liquid crystal display device including the polarizing plate.
 樹脂フィルムは、その化学的特性、機械的特性及び電気的特性等に鑑み、様々な分野、例えば、液晶表示装置等に用いられている。具体的には、液晶表示装置の画像表示領域には、種々の樹脂フィルム、例えば、偏光板の偏光素子を保護するための透明保護フィルム等が配置されている。このような樹脂フィルムとしては、例えば、セルロースエステルフィルム等の透明性に優れた樹脂フィルムが広く用いられている。 Resin films are used in various fields, such as liquid crystal display devices, in view of their chemical characteristics, mechanical characteristics, electrical characteristics, and the like. Specifically, various resin films, such as a transparent protective film for protecting the polarizing element of the polarizing plate, are disposed in the image display area of the liquid crystal display device. As such a resin film, for example, a resin film excellent in transparency such as a cellulose ester film is widely used.
 セルロースエステルフィルム等の樹脂フィルムは、セルロースエステル系樹脂等の原料樹脂を溶媒に溶解させた樹脂溶液(ドープ)を用いて製造することができる。このようなドープを用いた樹脂フィルムの製造方法としては、具体的には、例えば、溶液流延製膜法等が挙げられる。溶液流延製膜法とは、走行する支持体上にドープを流延して流延膜を形成し、剥離可能な程度まで乾燥させた後、フィルムとして前記支持体から剥離し、そして、剥離したフィルムを搬送ローラで搬送しながら、乾燥や延伸等を施すことによって、長尺状の樹脂フィルムを製造する方法である。 A resin film such as a cellulose ester film can be produced using a resin solution (dope) obtained by dissolving a raw material resin such as a cellulose ester resin in a solvent. Specific examples of a method for producing a resin film using such a dope include a solution casting film forming method. The solution casting film forming method is a method of casting a dope on a traveling support to form a casting film, drying it to a peelable extent, peeling it from the support as a film, and peeling it. This is a method for producing a long resin film by drying, stretching, and the like while the film is conveyed by a conveyance roller.
 上記のような溶液流延製膜法により樹脂フィルムを製造すると、支持体から流延膜をフィルムとして剥離する際、フィルムの幅方向端部が剥離しにくい場合があった。また、この剥離不良により、支持体上にフィルムが残存した場合、剥離されずに残存したフィルムが、後で製造される樹脂フィルムに、異物として混入したり、悪影響を及ぼすので、支持体を洗浄しなければならなかった。よって、剥離不良が発生した場合、樹脂フィルムを安定して製造できないという問題があった。さらに、剥離不良が発生した場合、得られた樹脂フィルムの幅方向のレタデーションや配向等が不均一になり、光学特性が劣ってしまうという問題もあった。 When a resin film was produced by the solution casting film forming method as described above, when the casting film was peeled off from the support as a film, the end in the width direction of the film was sometimes difficult to peel off. In addition, when the film remains on the support due to this peeling failure, the film that remains without being peeled is mixed as a foreign substance into a resin film that is manufactured later, or has an adverse effect. Had to do. Therefore, when a peeling defect occurs, there is a problem that the resin film cannot be stably manufactured. Furthermore, when peeling failure occurs, there is a problem that retardation and orientation in the width direction of the obtained resin film become non-uniform and optical characteristics are deteriorated.
 また、上記のような溶液流延製膜法により樹脂フィルムを製造すると、走行する支持体上にドープを流延するための流延ダイの吐出口の長手方向両端部付近に、ドープに基づく皮膜が形成されることがあった。この皮膜は、ドープの溶媒が乾燥することによって形成されるものであり、樹脂フィルムの製造により、徐々に成長するものであった。そして、この皮膜は、流延するドープの流れを乱し、樹脂フィルムの製造を阻害するという問題があった。 Further, when a resin film is produced by the solution casting film forming method as described above, a coating based on the dope is formed in the vicinity of both longitudinal ends of the discharge port of the casting die for casting the dope on the traveling support. Was sometimes formed. This film was formed by drying the solvent of the dope, and was gradually grown by the production of the resin film. And this film had the problem of disturbing the flow of the dope which casts and inhibiting manufacture of a resin film.
 また、溶液流延製膜法による樹脂フィルムの製造において、上述したような皮膜の形成を抑制する方法としては、例えば、特許文献1に記載の方法が挙げられる。特許文献1には、樹脂フィルムの製造時に、流延ダイのリップ(吐出口)の両端部外側から、溶剤を流す方法が挙げられる。 Further, in the production of a resin film by a solution casting film forming method, as a method for suppressing the formation of a film as described above, for example, a method described in Patent Document 1 can be mentioned. Patent Document 1 includes a method in which a solvent is allowed to flow from the outside of both ends of a lip (discharge port) of a casting die when a resin film is manufactured.
特開2002-337173号公報JP 2002-337173 A
 本発明は、流延ダイの吐出口の長手方向両端部付近に皮膜が形成されることを抑制し、さらに、フィルムの剥離不良を抑制し、光学特性に優れた樹脂フィルムを安定して製造することができる樹脂フィルムの製造方法を提供することを目的とする。また、前記製造方法によって得られた樹脂フィルム、前記樹脂フィルムを透明保護フィルムとして用いた偏光板、及び前記偏光板を備えた液晶表示装置を提供することを目的とする。 The present invention suppresses the formation of a film in the vicinity of both ends in the longitudinal direction of the discharge port of the casting die, further suppresses film peeling failure, and stably manufactures a resin film having excellent optical characteristics. An object of the present invention is to provide a method for producing a resin film. Moreover, it aims at providing the liquid crystal display device provided with the resin film obtained by the said manufacturing method, the polarizing plate which used the said resin film as a transparent protective film, and the said polarizing plate.
 本発明の一局面は、透明性樹脂を含有する樹脂溶液を、走行する支持体上に流延ダイから流延して流延膜を形成する流延工程と、前記流延膜を前記支持体から剥離する剥離工程と、剥離した流延膜を乾燥させる乾燥工程とを備え、前記流延工程において、前記流延ダイの吐出口から前記樹脂溶液を吐出して、前記支持体上に流延するとともに、前記流延ダイの吐出口の長手方向両端部から前記透明性樹脂を溶解可能な溶剤を流下させ、下記式(1)を満たすことを特徴とする樹脂フィルムの製造方法である。 One aspect of the present invention is a casting process in which a casting solution is formed by casting a resin solution containing a transparent resin from a casting die on a traveling support, and the casting film is used as the support. And a drying step for drying the peeled cast film. In the casting step, the resin solution is discharged from a discharge port of the casting die and cast onto the support. And a solvent capable of dissolving the transparent resin is allowed to flow down from both longitudinal ends of the discharge port of the casting die to satisfy the following formula (1).
  -5 < T2 - T1 < 5  (1)
 (式中、T1は、前記溶剤が前記吐出口から流下された直後の前記溶剤の温度[℃]を示し、T2は、前記溶剤が前記支持体に到達した時点の前記溶剤の温度[℃]を示す。)
−5 <T2−T1 <5 (1)
(In the formula, T1 indicates the temperature [° C.] of the solvent immediately after the solvent flows down from the discharge port, and T2 indicates the temperature [° C.] of the solvent when the solvent reaches the support. Is shown.)
 また、本発明の他の一局面は、前記樹脂フィルムの製造方法によって得られたことを特徴とする樹脂フィルムである。 Another aspect of the present invention is a resin film obtained by the method for producing a resin film.
 また、本発明の他の一局面は、偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備える偏光板であって、前記透明保護フィルムが、前記樹脂フィルムであることを特徴とする偏光板である。 Another aspect of the present invention is a polarizing plate comprising a polarizing element and a transparent protective film disposed on the surface of the polarizing element, wherein the transparent protective film is the resin film. This is a characteristic polarizing plate.
 また、本発明の他の一局面は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備える液晶表示装置であって、前記2枚の偏光板のうち少なくとも一方が、前記偏光板であることを特徴とする液晶表示装置である。 Another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates. Is a liquid crystal display device characterized by being the polarizing plate.
 本発明の目的、特徴、局面、及び利点は、以下の詳細な記載と添付図面によって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の一実施形態における、樹脂フィルムの製造装置の基本的な構成を示す概略図である。It is the schematic which shows the basic composition of the manufacturing apparatus of the resin film in one Embodiment of this invention. 本発明の一実施形態における、流延ダイ20の周辺を示す概略斜視図である。It is a schematic perspective view which shows the periphery of the casting die 20 in one Embodiment of this invention. 本発明の一実施形態における、無端ベルト支持体11の走行方向下流側から見た流延ダイの側面図である。It is a side view of the casting die | dye seen from the running direction downstream of the endless belt support body 11 in one Embodiment of this invention. 図3の切断面線VI-VIから見た流延ダイの断面図である。FIG. 4 is a cross-sectional view of the casting die as seen from the section line VI-VI in FIG. 3.
 本発明者は、フィルムの幅方向端部に発生する剥離不良は、端部の乾燥が他の部分の乾燥より進行していることによると推察した。また、皮膜の形成も、流延ダイの吐出口の両端部付近に発生することから、流延ダイから流延された流延膜の端部の乾燥が他の部分の乾燥より進行していることによると推察した。これらのことから、本発明者は、前記皮膜の形成と前記剥離不良とは関連性があると推察した。そこで、この剥離不良や皮膜形成を抑制するために、流延ダイから吐出される流延膜の幅方向端部の溶媒濃度を高める方法が適用できると考えた。具体的には、例えば、特許文献1のような、流延ダイの吐出口の両端部外側から、溶剤を流す方法が適用できると考えた。 The present inventor has inferred that the peeling failure occurring at the end portion in the width direction of the film is due to the fact that the drying of the end portion proceeds more than the drying of other portions. In addition, since the formation of the film also occurs in the vicinity of both ends of the discharge port of the casting die, the drying of the end portion of the casting film cast from the casting die proceeds more than the drying of other portions. I guessed it. From these things, this inventor guessed that formation of the said film | membrane and the said peeling defect are related. Therefore, in order to suppress the separation failure and the film formation, it was considered that a method of increasing the solvent concentration at the end in the width direction of the casting film discharged from the casting die can be applied. Specifically, for example, it was considered that a method of flowing a solvent from the outside of both ends of the discharge port of the casting die as in Patent Document 1 can be applied.
 しかしながら、特許文献1に記載の方法は、流延ダイの吐出口の両端部付近に、ドープに基づく皮膜が形成されることを抑制することに着目してなされた方法である。よって、本発明者の検討によれば、この方法を単に用いても、流延ダイ周囲の環境変化の影響等を受けやすく、実際には、剥離不良を充分に抑制できない場合があった。 However, the method described in Patent Document 1 is a method that focuses on suppressing the formation of a film based on the dope in the vicinity of both ends of the discharge port of the casting die. Therefore, according to the study of the present inventor, even if this method is simply used, it is likely to be affected by the environmental change around the casting die and the like, and in fact, the peeling failure may not be sufficiently suppressed.
 本発明者は、流延ダイ周囲の環境変化の影響に着目し、皮膜形成やフィルムの剥離不良を抑制できる条件を鋭意検討した結果、上記目的は、以下の本発明により達成されることを見出した。 The present inventor has paid attention to the influence of the environmental change around the casting die, and as a result of earnestly examining conditions that can suppress film formation and film peeling failure, it has been found that the above object is achieved by the present invention described below. It was.
 以下、本発明の樹脂フィルムの製造方法に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the method for producing a resin film of the present invention will be described, but the present invention is not limited thereto.
 本実施形態に係る樹脂フィルムの製造方法は、透明性樹脂を溶媒に溶解した樹脂溶液(ドープ)を、走行する支持体上に流延ダイから流延して流延膜(ウェブ)を形成する流延工程と、前記流延膜を前記支持体から剥離する剥離工程と、剥離した流延膜を乾燥させる乾燥工程とを備えており、いわゆる溶液流延製膜法による製造方法である。例えば、図1に示すような溶液流延製膜法による樹脂フィルムの製造装置によって行われる。なお、樹脂フィルムの製造装置としては、図1に示すものに限定されず、他の構成のものであってもよい。 The method for producing a resin film according to the present embodiment forms a casting film (web) by casting a resin solution (dope) obtained by dissolving a transparent resin in a solvent from a casting die on a traveling support. The production method includes a casting process, a peeling process for peeling the cast film from the support, and a drying process for drying the peeled cast film. For example, it is performed by a resin film manufacturing apparatus using a solution casting film forming method as shown in FIG. In addition, as a manufacturing apparatus of a resin film, it is not limited to what is shown in FIG. 1, The thing of another structure may be sufficient.
 そして、本実施形態に係る樹脂フィルムの製造方法は、前記流延工程において、前記流延ダイの吐出口から前記樹脂溶液を吐出して、前記支持体上に流延するとともに、前記流延ダイの吐出口の長手方向両端部から前記透明性樹脂を溶解可能な溶剤を流下させ、下記式(1)を満たすものである。 And the manufacturing method of the resin film which concerns on this embodiment discharges the said resin solution from the discharge port of the said casting die in the said casting process, and while casting on the said support body, the said casting die A solvent capable of dissolving the transparent resin is allowed to flow down from both longitudinal ends of the discharge port to satisfy the following formula (1).
  -5 < T2 - T1 < 5  (1)
 式中、T1は、前記溶剤が前記吐出口から流下された直後の前記溶剤の温度[℃]を示し、T2は、前記溶剤が前記支持体に到達した時点の前記溶剤の温度[℃]を示す。
−5 <T2−T1 <5 (1)
In the formula, T1 indicates the temperature [° C.] of the solvent immediately after the solvent flows down from the discharge port, and T2 indicates the temperature [° C.] of the solvent when the solvent reaches the support. Show.
 なお、T1及びT2は、赤外線サーモグラフィ等の非接触の温度検出装置を用いて測定することができる。なお、前記流延ダイの吐出口の長手方向両端部から吐出された溶剤は、前記流延ダイの吐出口から吐出された、リボン状の樹脂溶液(流延リボン)に徐々に浸透する。赤外線サーモグラフィ等の非接触の温度検出装置は、表面の温度を測定できるので、赤外線サーモグラフィ等の非接触の温度検出装置を用いて測定することによって、流延リボンに浸透してしまう前の流延リボン上に残存している溶剤の温度を測定することができる。 T1 and T2 can be measured using a non-contact temperature detection device such as an infrared thermography. In addition, the solvent discharged from the longitudinal direction both ends of the discharge port of the casting die gradually permeates the ribbon-shaped resin solution (casting ribbon) discharged from the discharge port of the casting die. Non-contact temperature detection devices such as infrared thermography can measure the temperature of the surface, so by measuring using a non-contact temperature detection device such as infrared thermography, casting before penetrating the casting ribbon. The temperature of the solvent remaining on the ribbon can be measured.
 図1は、無端ベルト支持体11を使用した溶液流延法による樹脂フィルムの製造装置1の基本的な構成を示す概略図である。樹脂フィルムの製造装置1は、無端ベルト支持体11、流延ダイ20、剥離ローラ13、乾燥装置14、及び巻取装置15等を備える。前記流延ダイ20は、透明性樹脂を溶媒に溶解した樹脂溶液(ドープ)16をリボン状に吐出して、前記無端ベルト支持体11の表面上に流延する。前記無端ベルト支持体11は、一対の駆動ローラ及び従動ローラによって駆動可能に支持され、流延ダイ20から流延された樹脂溶液16からなる流延膜(ウェブ)を形成し、搬送しながら、前記剥離ローラ13で剥離可能な程度まで乾燥させる。そして、前記剥離ローラ13は、乾燥された流延膜を前記無端ベルト支持体11から剥離する。剥離された流延膜は、前記乾燥装置14によってさらに乾燥され、乾燥された流延膜を樹脂フィルムとして前記巻取装置15に巻き取る。 FIG. 1 is a schematic view showing a basic configuration of a resin film manufacturing apparatus 1 by a solution casting method using an endless belt support 11. The resin film manufacturing apparatus 1 includes an endless belt support 11, a casting die 20, a peeling roller 13, a drying device 14, a winding device 15, and the like. The casting die 20 discharges a resin solution (dope) 16 in which a transparent resin is dissolved in a solvent in the form of a ribbon and casts it on the surface of the endless belt support 11. The endless belt support 11 is supported to be drivable by a pair of driving rollers and driven rollers, and forms a casting film (web) made of the resin solution 16 cast from the casting die 20 while being conveyed, It is dried to such an extent that it can be peeled by the peeling roller 13. The peeling roller 13 peels the dried cast film from the endless belt support 11. The peeled cast film is further dried by the drying device 14, and the dried cast film is wound around the winding device 15 as a resin film.
 前記無端ベルト支持体11は、図1に示すように、表面が鏡面の、無限に走行する金属製の無端ベルトである。前記ベルトとしては、流延膜の剥離性の点から、例えば、ステンレス鋼等からなるベルトが好ましく用いられる。前記流延ダイ20によって流延する流延膜の幅は、無端ベルト支持体11の幅を有効活用する観点から、無端ベルト支持体11の幅に対して、80~99%とすることが好ましい。そして、最終的に1500~4000mmの幅の樹脂フィルムを得るためには、無端ベルト支持体11の幅は、1800~4500mmであることが好ましい。また、無端ベルト支持体の代わりに、表面が鏡面の、回転する金属製のドラム(無端ドラム支持体)を用いてもよい。 As shown in FIG. 1, the endless belt support 11 is a metal endless belt having a mirror surface and traveling infinitely. As the belt, for example, a belt made of stainless steel or the like is preferably used from the viewpoint of peelability of the cast film. The width of the casting film cast by the casting die 20 is preferably 80 to 99% with respect to the width of the endless belt support 11 from the viewpoint of effectively utilizing the width of the endless belt support 11. . In order to finally obtain a resin film having a width of 1500 to 4000 mm, the width of the endless belt support 11 is preferably 1800 to 4500 mm. Further, instead of the endless belt support, a rotating metal drum (endless drum support) having a mirror surface may be used.
 図2は、流延ダイ20の周辺を示す概略斜視図である。図3は、無端ベルト支持体11の走行方向下流側から見た流延ダイ20の側面図である。図4は、図3の切断面線VI-VIから見た流延ダイ20の断面図である。 FIG. 2 is a schematic perspective view showing the periphery of the casting die 20. FIG. 3 is a side view of the casting die 20 as viewed from the downstream side in the running direction of the endless belt support 11. FIG. 4 is a cross-sectional view of the casting die 20 as seen from the section line VI-VI in FIG.
 前記流延ダイ20は、図2~4に示すように、流延ダイ本体21とドープ供給管22と側板23と溶剤供給管24とを備えている。前記ドープ供給管22は、図4に示すように、前記流延ダイ本体21の上端部に接続され、流延ダイ本体21内にドープ16を供給する。前記流延ダイ本体21は、図4に示すように、ドープ16を前記無端ベルト支持体11に安定して流延させるためのマニホールド部21aと、ドープ16を吐出することによりドープ16を前記無端ベルト支持体11に流延させるための吐出口21bとを備える。前記側板23は、流延ダイ本体21の長手方向(無端ベルト支持体11の搬送方向に略直交する方向)の両側端に備えられる。流延ダイ本体21の長手方向の両側端に備えられる前記側板23間の距離は、図3に示すように、流延ダイ本体21の吐出口21bの長手方向の長さ、すなわち、リボン状の樹脂溶液16の幅方向の長さを規定する。前記溶剤供給管24は、前記側板23の、前記無端ベルト支持体11の走行方向下流側、すなわち、前記ドープ16の進行方向下流側側面上に設置され、前記透明性樹脂を溶解可能な溶剤35を前記側板23内に供給する。そして、前記溶剤供給管24には、溶剤の流通方向下流側から、順に、流量検出装置31と送液装置32とバルブ33と溶剤貯留槽34とが接続されている。前記溶剤貯留槽34は、前記透明性樹脂を溶解可能な溶剤35を貯留する。前記バルブ33は、開放することによって、前記溶剤貯留槽34に貯留された溶剤35を前記溶剤供給管24中への流通を開始させる。前記送液装置32は、前記溶剤供給管24中の溶剤35を、前記側板23内に向かって送液する。前記流量検出装置31は、前記溶剤供給管24中を流通する溶剤35の流量を検出する。そして、その検出結果に基づいて、前記送液装置32の出力を制御してもよい。そうすることによって、図3に示すように、前記側板23内に供給された溶剤35は、前記側板23内を流通し、前記吐出口21bの長手方向両端部から流下させる。すなわち、前記流延膜16の両端部上に、前記溶剤35が載るように流下させる。 The casting die 20 includes a casting die body 21, a dope supply pipe 22, a side plate 23, and a solvent supply pipe 24, as shown in FIGS. As shown in FIG. 4, the dope supply pipe 22 is connected to the upper end portion of the casting die body 21 and supplies the dope 16 into the casting die body 21. As shown in FIG. 4, the casting die body 21 includes a manifold portion 21 a for stably casting the dope 16 onto the endless belt support 11, and discharging the dope 16 into the endless belt 16. And a discharge port 21 b for casting on the belt support 11. The side plates 23 are provided at both ends of the casting die main body 21 in the longitudinal direction (direction substantially orthogonal to the conveying direction of the endless belt support 11). As shown in FIG. 3, the distance between the side plates 23 provided at both ends in the longitudinal direction of the casting die body 21 is the length in the longitudinal direction of the discharge port 21b of the casting die body 21, that is, a ribbon-like shape. The length of the resin solution 16 in the width direction is defined. The solvent supply pipe 24 is installed on the side plate 23 on the downstream side in the traveling direction of the endless belt support 11, that is, on the downstream side surface in the traveling direction of the dope 16, and is a solvent 35 that can dissolve the transparent resin. Is supplied into the side plate 23. A flow rate detection device 31, a liquid feeding device 32, a valve 33, and a solvent storage tank 34 are connected to the solvent supply pipe 24 in this order from the downstream side in the solvent flow direction. The solvent storage tank 34 stores a solvent 35 that can dissolve the transparent resin. The valve 33 is opened to start distribution of the solvent 35 stored in the solvent storage tank 34 into the solvent supply pipe 24. The liquid feeding device 32 feeds the solvent 35 in the solvent supply pipe 24 toward the side plate 23. The flow rate detection device 31 detects the flow rate of the solvent 35 flowing through the solvent supply pipe 24. And based on the detection result, you may control the output of the said liquid feeding apparatus 32. FIG. By doing so, as shown in FIG. 3, the solvent 35 supplied into the side plate 23 flows through the side plate 23 and flows down from both longitudinal ends of the discharge port 21b. That is, the solvent 35 is caused to flow down on both ends of the casting film 16.
 その際、前記流延ダイ20の周辺の環境を、上記式(1)を満たすような環境とする。そうすることによって、フィルム(流延膜)の剥離不良を抑制し、レタデーションや配向等が均一な光学特性に優れた樹脂フィルムを安定して製造することができる。 At that time, the environment around the casting die 20 is set to an environment satisfying the above formula (1). By doing so, it is possible to stably produce a resin film that suppresses poor peeling of the film (casting film) and has excellent optical characteristics such as retardation and orientation.
 また、溶液流延製膜法により樹脂フィルムを製造すると、流延ダイの吐出口の両端部付近に、ドープに基づく皮膜が形成されることがあった。そして、この皮膜は、ドープの溶媒が乾燥することによって形成されるものであり、樹脂フィルムの製造により、徐々に成長するものであった。そして、この皮膜は、流延するドープの流れを乱し、樹脂フィルムの製造を阻害するという問題があった。さらに、流延ダイから離脱した皮膜が、樹脂フィルム等を損傷させるという問題もあった。本実施形態によれば、フィルムの剥離不良を抑制するだけではなく、この皮膜形成も抑制できる。また、この皮膜形成は、フィルムの剥離性と相関があると考えられる。よって、本実施形態において、フィルムの剥離不良を抑制できるのは、流延ダイの吐出口の長手方向両端部付近に皮膜が形成されることを抑制できることにもよると考えられる。 Further, when a resin film is produced by the solution casting film forming method, a film based on the dope may be formed in the vicinity of both ends of the discharge port of the casting die. And this membrane | film | coat is formed when the solvent of dope dries and grows gradually by manufacture of a resin film. And this film had the problem of disturbing the flow of the dope which casts and inhibiting manufacture of a resin film. Furthermore, there has been a problem that the film detached from the casting die damages the resin film or the like. According to this embodiment, not only the film peeling failure can be suppressed, but also the film formation can be suppressed. Moreover, this film formation is considered to have a correlation with the peelability of the film. Therefore, in this embodiment, it can be considered that the film peeling failure can be suppressed because it is possible to suppress the formation of a film in the vicinity of both ends in the longitudinal direction of the discharge port of the casting die.
 一方、吐出口から吐出されてから、支持体に到達するまでの、前記溶剤の温度変化が大きすぎると、前記溶剤が、流延膜の支持体からの剥離性を向上させる効果が低くなり、流延膜の剥離不良は発生する傾向があった。具体的には、T1がT2と比較して高すぎる場合、前記吐出口から吐出された溶剤、すなわち、前記流延リボン上の溶剤の表面に、大気中の水分が析出する傾向があり、これが原因で、流延膜の剥離不良が発生する傾向があった。また、T2がT1と比較して高すぎる場合、前記溶剤が揮発しすぎて、前記溶剤を前記流延膜に流下させることにより、前記流延膜の支持体からの剥離性を向上させるという上記効果を充分に発揮させることができない傾向があり、これが原因で、流延膜の剥離不良が発生する傾向があった。 On the other hand, if the temperature change of the solvent from being discharged from the discharge port until reaching the support is too large, the solvent is less effective to improve the peelability of the cast film from the support, There was a tendency for the casting film to fail to peel off. Specifically, when T1 is too high as compared with T2, moisture in the atmosphere tends to precipitate on the surface of the solvent discharged from the discharge port, that is, the solvent on the casting ribbon. For this reason, there was a tendency for the casting film to fail to peel off. Further, when T2 is too high as compared with T1, the solvent is excessively volatilized, and the solvent is caused to flow down to the casting film, thereby improving the peelability of the casting film from the support. There was a tendency that the effect could not be sufficiently exhibited, and this caused a tendency to cause peeling failure of the cast film.
 また、T1とT2との関係は、前記流延ダイ20の周辺の環境によって変化する。具体的には、例えば、溶剤の種類、周囲の温度、吐出口から吐出された流延リボンの温度、溶剤の流下速度、溶剤の流下流量、前記吐出口から、前記吐出口から吐出された樹脂溶液が前記支持体に到達する箇所までの距離、前記吐出口から吐出された樹脂溶液や溶剤に吹き付ける風の有無やその風量、前記吐出口から吐出された溶剤を加温又は冷却させること等によって変化する。前記溶剤を加温する方法としては、例えば、前記吐出口から吐出された溶剤が前記支持体に到達するまでの間に、前記溶剤にヒータを埋め込み、そのヒータ上を溶剤が流れるようにして、前記溶剤を加熱させる方法や、前記吐出口から吐出された溶剤に、赤外線や温風をあてる方法等が挙げられる。また、前記溶剤を冷却する方法としては、例えば、前記吐出口から吐出された溶剤に、冷風をあてる方法等が挙げられる。 Also, the relationship between T1 and T2 varies depending on the environment around the casting die 20. Specifically, for example, the type of the solvent, the ambient temperature, the temperature of the casting ribbon discharged from the discharge port, the flow rate of the solvent, the flow rate of the solvent, the resin discharged from the discharge port from the discharge port By the distance to the location where the solution reaches the support, the presence or absence of the air blown to the resin solution or solvent discharged from the discharge port, the amount of the air, heating or cooling the solvent discharged from the discharge port, etc. Change. As a method of heating the solvent, for example, a heater is embedded in the solvent until the solvent discharged from the discharge port reaches the support, and the solvent flows on the heater. Examples thereof include a method of heating the solvent and a method of applying infrared rays or hot air to the solvent discharged from the discharge port. Examples of the method for cooling the solvent include a method of applying cold air to the solvent discharged from the discharge port.
 また、T1及びT2は、上記関係を満たしていればよいが、T1及びT2は、それぞれ15~30℃であることが好ましい。T1及びT2が低すぎたり、高すぎたりすると、前記溶剤と前記流延膜との温度差が大きくなり、この温度差によって、前記流延膜のいずれか一方の表面が収縮し、端部が折れやすくなる傾向がある。 T1 and T2 may satisfy the above relationship, but T1 and T2 are preferably 15 to 30 ° C., respectively. If T1 and T2 are too low or too high, the temperature difference between the solvent and the casting film becomes large, and this temperature difference causes either one of the surfaces of the casting film to shrink and the end portion to There is a tendency to break easily.
 また、前記流延ダイ20の周辺の環境を、下記式(2)を満たすような環境とすることが好ましく、下記式(3)を満たすような環境とすることがより好ましい。そうすることによって、フィルム(流延膜)の剥離不良をより抑制することができる。 Further, the environment around the casting die 20 is preferably an environment that satisfies the following formula (2), and more preferably an environment that satisfies the following formula (3). By doing so, the peeling defect of a film (casting film) can be suppressed more.
  10-7 < W2 / W1 < 10-5  (2)
  3×10-7 < W2 / W1 < 10-6  (3)
 式中、W1は、前記溶剤の供給量[ml]を示し、W2は、前記溶剤の損失量[ml]を示す。
10 −7 <W2 / W1 <10 −5 (2)
3 × 10 −7 <W2 / W1 <10 −6 (3)
In the formula, W1 represents the supply amount [ml] of the solvent, and W2 represents the loss amount [ml] of the solvent.
 W1に対して、W2が少なすぎると、溶剤の揮発性が低すぎ、前記支持体上等でも蒸発しにくくなり、フィルムの剥離不良が発生する傾向がある。また、W1に対して、W2が多すぎると、溶剤が蒸発しすぎて、溶剤がフィルムの剥離不良を抑制することができない傾向がある。 If the amount of W2 is too small relative to W1, the volatility of the solvent is too low, and it is difficult to evaporate even on the support and the like, and there is a tendency for film peeling failure to occur. Moreover, when there is too much W2 with respect to W1, there exists a tendency for a solvent to evaporate too much and for a solvent to suppress the peeling defect of a film.
 また、W1とW2との関係は、前記流延ダイ20の周辺の環境によって変化する。具体的には、例えば、流延ダイの吐出口の両端部付近に形成される皮膜の存在、溶剤内に存在する不純物による阻害、溶剤の種類、周囲の温度、吐出口から吐出された流延リボンの温度、溶剤の流下速度、溶剤の流下流量、前記吐出口から、前記吐出口から吐出された樹脂溶液が前記支持体に到達する箇所までの距離、前記吐出口から吐出された樹脂溶液や溶剤に吹き付ける風の有無やその風量、前記吐出口から吐出された溶剤を加温又は冷却させること等によって変化する。なお、W1は、前記送液装置32の出力によって変化する。前記溶剤を加温又は冷却する方法としては、上記と同様の方法が挙げられる。 Also, the relationship between W1 and W2 varies depending on the environment around the casting die 20. Specifically, for example, the presence of a film formed near both ends of the discharge port of the casting die, inhibition by impurities present in the solvent, the type of solvent, the ambient temperature, and the casting discharged from the discharge port Ribbon temperature, solvent flow rate, solvent flow rate, distance from the discharge port to the location where the resin solution discharged from the discharge port reaches the support, resin solution discharged from the discharge port, It varies depending on the presence / absence of the air blown on the solvent, the amount of air flow, and heating or cooling the solvent discharged from the discharge port. Note that W1 varies depending on the output of the liquid feeding device 32. Examples of the method for heating or cooling the solvent include the same methods as described above.
 なお、W1は、前記溶剤の流下量である。また、W2は、前記支持体上に到達した溶剤の量を計測し、W1と、前記支持体上に到達した溶剤の量との差分を算出することによって、求められる。前記支持体上に到達した溶剤の量は、前記吐出口から吐出された溶剤が前記支持体に到達するまでの間の溶剤から揮発したガス濃度を単位時間毎に測定し、前記流路を前記溶剤が流通するのにかかる時間分積算することによって、算出することができる。 Note that W1 is the amount of the solvent flowing down. W2 is obtained by measuring the amount of solvent reaching the support and calculating the difference between W1 and the amount of solvent reaching the support. The amount of the solvent reached on the support is measured by measuring the gas concentration volatilized from the solvent until the solvent discharged from the discharge port reaches the support every unit time. It can be calculated by integrating the amount of time it takes for the solvent to circulate.
 前記吐出口21bは、図4に示すように、前記流延ダイ本体21の前記無端ベルト支持体11側の稜線上に形成されている。この稜線は、図3に示すように、前記無端ベルト支持体11の走行方向に略直交する方向に延びている。そして、前記吐出口21bと前記無端ベルト支持体11との間隔Aは、200~5000μmであることが好ましい。間隔Aが狭すぎると、流延ダイ20と無端ベルト支持体11とが接触するおそれがある。また、間隔Aが広すぎると、流延リボンが風等の外的な要因の影響を受けやすい傾向がある。 The discharge port 21b is formed on a ridge line on the endless belt support 11 side of the casting die body 21 as shown in FIG. As shown in FIG. 3, the ridge line extends in a direction substantially orthogonal to the traveling direction of the endless belt support 11. The distance A between the discharge port 21b and the endless belt support 11 is preferably 200 to 5000 μm. If the distance A is too narrow, the casting die 20 and the endless belt support 11 may come into contact with each other. If the distance A is too wide, the casting ribbon tends to be easily influenced by external factors such as wind.
 前記ドープ供給管22は、図3に示すように、3本に分岐して、流延ダイ本体21に接続されているが、この本数に限定されず、1本でも、3本以外の複数本であってもよい。なお、ドープ供給管22の本数は、ドープ16を流延ダイ本体21に安定して供給する点から2~4本程度が好ましい。 As shown in FIG. 3, the dope supply pipe 22 branches into three and is connected to the casting die main body 21. However, the number is not limited to this number. It may be. The number of dope supply pipes 22 is preferably about 2 to 4 from the viewpoint of stably supplying the dope 16 to the casting die body 21.
 また、ドープ供給管22が複数本の場合、隣り合うドープ供給管22の、流延ダイ本体21への接続位置の中心間距離(ピッチ)Cは、ドープ16の安定供給の観点から、前記吐出口21bの幅(流延リボンの幅)Bに対して、10~25%程度であることが好ましい。また、隣り合うドープ供給管22の間隔Cは、全て同等であることが好ましい。 When there are a plurality of dope supply pipes 22, the center-to-center distance (pitch) C of the adjacent dope supply pipes 22 connected to the casting die body 21 is determined from the viewpoint of stable supply of the dope 16. The width is preferably about 10 to 25% with respect to the width (width of the casting ribbon) B of the outlet 21b. Moreover, it is preferable that the intervals C between adjacent dope supply pipes 22 are all equal.
 また、ドープ供給管22は、図2~4に示すように、分岐後、直角に曲がったり、曲率半径の小さい等の急激に曲がっているのではなく、滑らかに曲がっていることが好ましい。急激に曲がっていると、ドープの流れによどみができ、コンタミが発生しやすくなる傾向がある。 Also, as shown in FIGS. 2 to 4, it is preferable that the dope supply pipe 22 is smoothly bent rather than bent at a right angle after the branching or abruptly bent such as having a small curvature radius. If it bends sharply, the dope flow may stagnate, and contamination tends to occur.
 また、前記マニホールド部21aの下端部と前記吐出口21bとの間は、スリット21cが形成されている。前記吐出口21bの幅(スリットの幅)Dは、製造する樹脂フィルムの厚さに応じて調整させることができ、例えば、100~1000μm程度に調整することが好ましい。幅Dが狭すぎると、ドープ16の送液圧力が高くなるとともに、ドープ16に微小な異物が混入した場合に、前記スリット21cで異物が詰まり、流延膜に筋状の欠損が発生するおそれがある。また、幅Dが広すぎると、薄い樹脂フィルムを製造することが困難になる傾向がある。 Further, a slit 21c is formed between the lower end portion of the manifold portion 21a and the discharge port 21b. The width (slit width) D of the discharge port 21b can be adjusted according to the thickness of the resin film to be manufactured, and is preferably adjusted to about 100 to 1000 μm, for example. If the width D is too narrow, the liquid feeding pressure of the dope 16 is increased, and when a minute foreign matter is mixed into the dope 16, the foreign matter is clogged by the slit 21c, and a streak-like defect may occur in the casting film. There is. Moreover, when the width D is too wide, it tends to be difficult to produce a thin resin film.
 そして、吐出口21bの幅(スリットの幅)Dに対する、スリット(前記マニホールド部21aの下端部と前記吐出口21bとの間)の距離Eの比(E/D)は、100~400程度であることが好ましい。前記E/Dが小さすぎると、ドープ16がスリットを通過する時間が短くなりすぎ、ドープ16の吐出量(流延量)の制御が困難になる傾向がある。また、前記E/Dが大きすぎると、ドープ16がスリットを通過する時間が長くなりすぎ、ドープにコンタミが発生しやすくなる傾向がある。 The ratio (E / D) of the distance E of the slit (between the lower end of the manifold portion 21a and the discharge port 21b) to the width (slit width) D of the discharge port 21b is about 100 to 400. Preferably there is. If the E / D is too small, the time for the dope 16 to pass through the slit becomes too short, and it tends to be difficult to control the discharge amount (casting amount) of the dope 16. On the other hand, if the E / D is too large, the time for the dope 16 to pass through the slit becomes too long, and the dope tends to be contaminated.
 また、前記流延ダイ20は、図2~4に示す形状のものに限定されず、前記流延ダイ20の周囲の環境が上記式(1)を満たすような環境であればよく、一般的な流延ダイを用いることができる。 Further, the casting die 20 is not limited to the shape shown in FIGS. 2 to 4, and may be any environment as long as the environment around the casting die 20 satisfies the above formula (1). A simple casting die can be used.
 そして、無端ベルト支持体11上に形成された流延膜(ウェブ)を、剥離ローラ13、乾燥装置14及び巻取装置15等による剥離工程や乾燥工程によって、樹脂フィルムを製造することができる。後述の工程は、特に限定なく、一般的な工程であれば採用できる。具体的には、例えば、以下のような工程である。なお、本発明は、以下の工程に限定されるものではない。 Then, a resin film can be produced from the cast film (web) formed on the endless belt support 11 by a peeling process or a drying process using the peeling roller 13, the drying device 14, the winding device 15, and the like. The process described below is not particularly limited and can be adopted as long as it is a general process. Specifically, for example, the following steps are performed. In addition, this invention is not limited to the following processes.
 まず、形成された流延膜(ウェブ)を無端ベルト支持体11で搬送しながら、ドープ中の溶媒を乾燥させる。前記乾燥は、例えば、無端ベルト支持体11を加熱したり、加熱風をウェブに吹き付けることによって行う。その際、ウェブの温度が、ドープの溶液によっても異なるが、溶媒の蒸発時間に伴う搬送速度、微粒子の分散度合、生産性等を考慮して、-5℃~70℃の範囲が好ましく、0℃~60℃の範囲がより好ましい。ウェブの温度は、高いほど溶媒の乾燥速度を早くできるので好ましいが、高すぎると、発泡したり、平面性が劣化する傾向がある。 First, while the formed cast film (web) is conveyed by the endless belt support 11, the solvent in the dope is dried. The drying is performed, for example, by heating the endless belt support 11 or blowing heated air on the web. At that time, although the temperature of the web varies depending on the dope solution, it is preferably in the range of −5 ° C. to 70 ° C. in consideration of the conveyance speed accompanying the evaporation time of the solvent, the degree of dispersion of the fine particles, the productivity, and the like. A range of from 0 to 60 ° C. is more preferable. The higher the temperature of the web, the faster the solvent can be dried. However, when the temperature is too high, the web tends to foam or the flatness tends to deteriorate.
 前記無端ベルト支持体11を加熱する場合、例えば、前記無端ベルト支持体11上のウェブを赤外線ヒータで加熱する方法、前記無端ベルト支持体11の表面及び裏面を赤外線ヒータで加熱する方法、前記無端ベルト支持体11の裏面に加熱風を吹き付けて加熱する方法等が挙げられ、必要に応じて適宜選択することが可能である。 When the endless belt support 11 is heated, for example, a method of heating the web on the endless belt support 11 with an infrared heater, a method of heating the front and back surfaces of the endless belt support 11 with an infrared heater, the endless belt Examples include a method of heating by heating air on the back surface of the belt support 11, and the method can be appropriately selected as necessary.
 また、加熱風を吹き付ける場合、その加熱風の風圧は、溶媒蒸発の均一性、微粒子の分散度合等を考慮し、50~5000Paであることが好ましい。加熱風の温度は、一定の温度で乾燥してもよいし、無端ベルト支持体11の走行方向で数段階の温度に分けて供給してもよい。 Further, when the heated air is blown, the wind pressure of the heated air is preferably 50 to 5000 Pa in consideration of the uniformity of solvent evaporation, the degree of dispersion of fine particles, and the like. The temperature of the heating air may be dried at a constant temperature, or may be supplied in several steps in the running direction of the endless belt support 11.
 前記無端ベルト支持体11の上にドープを流延した後、前記無端ベルト支持体11からウェブを剥離するまでの間での時間は、作製する樹脂フィルムの膜厚、使用する溶媒によっても異なるが、前記無端ベルト支持体11からの剥離性を考慮し、0.5~5分間の範囲であることが好ましい。 The time from casting the dope onto the endless belt support 11 to peeling the web from the endless belt support 11 varies depending on the film thickness of the resin film to be produced and the solvent used. In consideration of the peelability from the endless belt support 11, it is preferably in the range of 0.5 to 5 minutes.
 前記無端ベルト支持体11の走行速度は、例えば、50~300m/分程度であることが好ましい。また、前記流延ダイ20から吐出されるドープの流速に対する、前記無端ベルト支持体11の走行速度の比(ドラフト比)は、0.5~2程度であることが好ましい。前記ドラフト比がこの範囲内であると、安定して流延膜を形成させることができる。例えば、ドラフト比が大きすぎると、流延膜が幅方向に縮小されるネックインという現象を発生させる傾向があり、そうなると、広幅の樹脂フィルムを形成できなくなる。 The traveling speed of the endless belt support 11 is preferably about 50 to 300 m / min, for example. The ratio (draft ratio) of the traveling speed of the endless belt support 11 to the flow rate of the dope discharged from the casting die 20 is preferably about 0.5 to 2. When the draft ratio is within this range, the cast film can be stably formed. For example, if the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the cast film is reduced in the width direction, and if so, a wide resin film cannot be formed.
 前記剥離ロール13は、無端ベルト支持体11のドープ16が流延される側の表面近傍に配置されており、前記無端ベルト支持体11と前記剥離ローラ13との距離は、1~100mmであることが好ましい。前記剥離ローラ13を支点として、乾燥された流延膜(ウェブ)に張力をかけて引っ張ることによって、乾燥された流延膜(ウェブ)がフィルムとして剥離される。前記無端ベルト支持体11からフィルムを剥離する際に、剥離張力及びその後の搬送張力によってフィルムは、フィルムの搬送方向(Machine Direction:MD方向)に延伸する。このため、前記無端ベルト支持体11からフィルムを剥離する際の剥離張力及び搬送張力は、50~400N/mにすることが好ましい。 The peeling roll 13 is disposed near the surface of the endless belt support 11 on the side where the dope 16 is cast, and the distance between the endless belt support 11 and the peeling roller 13 is 1 to 100 mm. It is preferable. The dried cast film (web) is peeled off as a film by pulling the dried cast film (web) with tension using the peeling roller 13 as a fulcrum. When the film is peeled from the endless belt support 11, the film is stretched in the film transport direction (machine direction: MD direction) by the peeling tension and the subsequent transport tension. For this reason, it is preferable that the peeling tension and the conveying tension when peeling the film from the endless belt support 11 are 50 to 400 N / m.
 また、フィルムを前記無端ベルト支持体11から剥離する時のフィルムの残留溶媒率は、前記無端ベルト支持体11からの剥離性、剥離時の残留溶媒率、剥離後の搬送性、搬送・乾燥後にできあがる樹脂フィルムの物理特性等を考慮し、30~200質量%であることが好ましい。なお、フィルムの残留溶媒率は、下記式(I)で定義される。 Moreover, the residual solvent rate of the film when peeling the film from the endless belt support 11 is the peelability from the endless belt support 11, the residual solvent rate at the time of peeling, the transportability after peeling, and after transporting and drying. Considering the physical properties of the resulting resin film, it is preferably 30 to 200% by mass. The residual solvent ratio of the film is defined by the following formula (I).
  残留溶媒率(質量%)={(M-M)/M}×100  (I)
 ここで、Mは、フィルムの任意時点での質量を示し、Mは、Mを測定したフィルムを115℃で1時間乾燥させた後の質量を示す。
Residual solvent ratio (mass%) = {(M 1 −M 2 ) / M 2 } × 100 (I)
Here, M 1 is shows the mass at any point in the film, M 2 shows the mass after drying for 1 hour at 115 ° C. The film was measured M 1.
 前記乾燥装置14は、複数の搬送ローラを備え、そのローラ間をフィルムを搬送させる間にフィルムを乾燥させる。その際、加熱空気、赤外線等を単独で用いて乾燥してもよいし、加熱空気と赤外線とを併用して乾燥してもよい。簡便さの点から加熱空気を用いることが好ましい。乾燥温度としては、フィルムの残留溶媒量により、好適温度が異なるが、乾燥時間、収縮むら、伸縮量の安定性等を考慮し、30~180℃の範囲で残留溶媒率により適宜選択して決めればよい。また、一定の温度で乾燥してもよいし、2~4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。また、乾燥装置14内を搬送される間に、フィルムを、MD方向に延伸させることもできる。 The drying device 14 includes a plurality of transport rollers, and dries the film while transporting the film between the rollers. In that case, you may dry using heating air, infrared rays, etc. independently, and you may dry using heating air and infrared rays together. It is preferable to use heated air from the viewpoint of simplicity. The drying temperature varies depending on the amount of residual solvent in the film. However, the drying temperature is appropriately selected depending on the residual solvent ratio in the range of 30 to 180 ° C. in consideration of drying time, unevenness of shrinkage, stability of the amount of expansion and contraction, etc. That's fine. Further, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and may be divided into several stages of temperature. Further, the film can be stretched in the MD direction while being transported in the drying device 14.
 前記乾燥装置14での乾燥処理後のフィルムの残留溶媒率は、乾燥工程の負荷、保存時の寸法安定性伸縮率等を考慮し、0.001~5質量%であることが好ましい。なお、本実施形態では、乾燥工程で徐々に溶媒が除去され、全残留溶媒量が15質量%以下となったフィルムを樹脂フィルムと言う。 The residual solvent ratio of the film after the drying treatment in the drying device 14 is preferably 0.001 to 5% by mass in consideration of the load of the drying process, the dimensional stability expansion / contraction ratio during storage, and the like. In the present embodiment, a film in which the solvent is gradually removed in the drying step and the total residual solvent amount is 15% by mass or less is referred to as a resin film.
 巻取装置15は、前記乾燥装置14で、所定の残留溶媒率となった樹脂フィルムを必要量の長さに巻き芯に巻き取る。なお、巻き取る際の温度は、巻き取り後の収縮による擦り傷、巻き緩み等を防止するために室温まで冷却することが好ましい。使用する巻き取り機は、特に限定なく使用でき、一般的に使用されているものでよい。具体的には、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等を適用した巻き取り機を用いて巻き取ることができる。 The winding device 15 winds the resin film having a predetermined residual solvent ratio on the winding core to a required length by the drying device 14. In addition, it is preferable that the temperature at the time of winding is cooled to room temperature in order to prevent abrasion, loosening, and the like due to shrinkage after winding. The winder to be used can be used without particular limitation, and may be a commonly used one. Specifically, it can be wound using, for example, a winder using a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
 なお、樹脂フィルムの製造装置は、上記の構成のものに限定されず、例えば、延伸装置等を別途備えていてもよい。延伸装置としては、例えば、無端ベルト支持体11から剥離されたフィルムを、フィルムの搬送方向と直交する方向(Transverse Direction:TD方向)に延伸させる延伸装置等が挙げられる。 In addition, the manufacturing apparatus of a resin film is not limited to the thing of said structure, For example, you may provide the extending | stretching apparatus etc. separately. Examples of the stretching device include a stretching device that stretches the film peeled from the endless belt support 11 in a direction (Transverse Direction: TD direction) orthogonal to the film transport direction.
 以下、本実施形態で使用する樹脂溶液(ドープ)の組成について説明する。 Hereinafter, the composition of the resin solution (dope) used in the present embodiment will be described.
 本実施形態で使用する樹脂溶液は、透明性樹脂を溶媒に溶解させたものである。 The resin solution used in this embodiment is obtained by dissolving a transparent resin in a solvent.
 前記透明性樹脂は、溶液流延製膜法等によって基板状に成形したときに透明性を有する樹脂であればよく、特に制限されないが、溶液流延製膜法等による製造が容易であること、ハードコート層等の他の機能層との接着性に優れていること、光学的に等方性であること等が好ましい。なお、ここで透明性とは、可視光の透過率が60%以上であることであり、好ましくは80%以上、より好ましくは90%以上である。 The transparent resin is not particularly limited as long as it is a resin having transparency when formed into a substrate by a solution casting film forming method or the like, but is easily manufactured by a solution casting film forming method or the like. It is preferable that the adhesive property with other functional layers such as a hard coat layer is excellent and that it is optically isotropic. Here, the transparency means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.
 前記透明性樹脂としては、具体的には、例えば、セルロースジアセテート樹脂、セルローストリアセテート樹脂、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂等のセルロースエステル系樹脂;ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル系樹脂;ポリメチルメタクリレート樹脂等のアクリル系樹脂;ポリスルホン(ポリエーテルスルホンも含む)系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、セロファン、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール樹脂、シンジオタクティックポリスチレン系樹脂、シクロオレフィン系樹脂、ポリメチルペンテン樹脂等のビニル系樹脂;ポリカーボネート系樹脂;ポリアリレート系樹脂;ポリエーテルケトン樹脂;ポリエーテルケトンイミド樹脂;ポリアミド系樹脂;フッ素系樹脂等を挙げることができる。これらの中でも、セルロースエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂、ポリスルホン(ポリエーテルスルホンを含む)系樹脂が好ましい。さらに、セルロースエステル系樹脂が好ましく、セルロースエステル系樹脂の中でも、セルロースアセテート樹脂、セルロースプロピオネート樹脂、セルロースブチレート樹脂、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂、セルローストリアセテート樹脂が好ましく、セルローストリアセテート樹脂が特に好ましい。また、前記透明性樹脂は、上記例示した透明性樹脂を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Specific examples of the transparent resin include cellulose ester resins such as cellulose diacetate resin, cellulose triacetate resin, cellulose acetate butyrate resin, and cellulose acetate propionate resin; polyethylene terephthalate resin and polyethylene naphthalate resin. Acrylic resins such as polymethyl methacrylate resins; Polysulfone (including polyether sulfone) resins, polyethylene resins, polypropylene resins, cellophane, polyvinylidene chloride resins, polyvinyl alcohol resins, ethylene vinyl alcohol resins, Shinji Vinyl resins such as tactic polystyrene resins, cycloolefin resins and polymethylpentene resins; polycarbonate resins; polyarylate trees ; It can be mentioned fluorine-based resin or the like; polyether ketone resins; polyether ketone imide resin; polyamide resin. Among these, cellulose ester resins, cycloolefin resins, polycarbonate resins, and polysulfone (including polyethersulfone) resins are preferable. Furthermore, cellulose ester resins are preferred, and among cellulose ester resins, cellulose acetate resins, cellulose propionate resins, cellulose butyrate resins, cellulose acetate butyrate resins, cellulose acetate propionate resins, and cellulose triacetate resins are preferred, Cellulose triacetate resin is particularly preferred. Moreover, the said transparent resin may use the transparent resin illustrated above independently, and may use it in combination of 2 or more type.
 次に、前記セルロースエステル系樹脂について説明する。 Next, the cellulose ester resin will be described.
 セルロースエステル系樹脂の数平均分子量は、30000~200000であることが、樹脂フィルムに成型した場合の機械的強度が強く、かつ、溶液流延製膜法において適度なドープ粘度となる点で好ましい。また、重量平均分子量(Mw)/数平均分子量(Mn)が、1~5の範囲内であることが好ましく、1.4~3.0の範囲内であることがより好ましい。 The number average molecular weight of the cellulose ester-based resin is preferably 30,000 to 200,000 in that the mechanical strength is high when it is molded into a resin film, and an appropriate dope viscosity is obtained in the solution casting film forming method. The weight average molecular weight (Mw) / number average molecular weight (Mn) is preferably in the range of 1 to 5, more preferably in the range of 1.4 to 3.0.
 また、セルロースエステル系樹脂等の樹脂の平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィーや高速液体クロマトグラフィーを用い測定できる。よって、これらを用いて数平均分子量(Mn)、重量平均分子量(Mw)を算出し、その比を計算することができる。 Further, the average molecular weight and molecular weight distribution of a resin such as a cellulose ester resin can be measured using gel permeation chromatography or high performance liquid chromatography. Therefore, the number average molecular weight (Mn) and the weight average molecular weight (Mw) can be calculated using these, and the ratio can be calculated.
 セルロースエステル系樹脂は、炭素数が2~4のアシル基を置換基として有しているものが好ましい。その置換度としては、例えば、アセチル基の置換度をX、プロピオニル基又はブチリル基の置換度をYとした時、XとYとの合計値が2.2以上2.95以下であって、Xが0より大きく2.95以下であることが好ましい。 The cellulose ester resin preferably has an acyl group having 2 to 4 carbon atoms as a substituent. As the substitution degree, for example, when the substitution degree of the acetyl group is X and the substitution degree of the propionyl group or butyryl group is Y, the total value of X and Y is 2.2 or more and 2.95 or less, X is preferably more than 0 and 2.95 or less.
 また、アシル基で置換されていない部分は通常水酸基として存在している。これらのセルロースエステル系樹脂は、公知の方法で合成することができる。アシル基の置換度の測定方法は、ASTM-D817-96の規定に準じて測定することができる。 Further, the portion not substituted with an acyl group usually exists as a hydroxyl group. These cellulose ester resins can be synthesized by a known method. The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
 前記セルロースエステル系樹脂の原料であるセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。また、それらから得られたセルロースエステル系樹脂はそれぞれ任意の割合で混合使用することができるが、綿花リンターを50質量%以上使用することが好ましい。これらのセルロースエステル系樹脂は、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることができる。 The cellulose that is the raw material of the cellulose ester-based resin is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from coniferous tree, derived from broadleaf tree), kenaf and the like. The cellulose ester resins obtained from them can be mixed and used at an arbitrary ratio, but it is preferable to use 50% by mass or more of cotton linter. When the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride), these cellulose ester resins use an organic acid such as acetic acid or an organic solvent such as methylene chloride, It can be obtained by reacting with a cellulose raw material using such a protic catalyst.
 本実施形態で使用される溶媒は、前記透明性樹脂に対する良溶媒を含有する溶媒を用いることができる。前記良溶媒は、使用する透明性樹脂によって異なる。例えばセルロースエステル系樹脂の場合、セルロースエステルのアシル基置換度によって、良溶媒と貧溶媒とが変わり、例えばアセトンを溶媒として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶媒になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶媒となる。したがって、使用する透明性樹脂により、良溶媒及び貧溶媒が異なってくるので、一例としてセルロースエステル系樹脂の場合について説明する。 The solvent used in the present embodiment can be a solvent containing a good solvent for the transparent resin. The good solvent varies depending on the transparent resin used. For example, in the case of a cellulose ester resin, the good solvent and the poor solvent change depending on the acyl group substitution degree of the cellulose ester. For example, when acetone is used as the solvent, the cellulose ester acetate ester (acetyl group substitution degree 2.4), cellulose Acetate propionate is a good solvent, and cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent. Therefore, since the good solvent and the poor solvent differ depending on the transparent resin used, the case of a cellulose ester resin will be described as an example.
 セルロースエステル系樹脂に対する良溶媒としては、例えば、メチレンクロライド等の有機ハロゲン化合物、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジオキソラン誘導体、シクロヘキサノン、蟻酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等が挙げられる。これらの中でも、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン等が好ましい。これらの良溶媒は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of good solvents for cellulose ester resins include organic halogen compounds such as methylene chloride, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, dioxolane derivatives, cyclohexanone, Ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3- Hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Can be mentioned. Among these, organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone and the like are preferable. These good solvents may be used alone or in combination of two or more.
 また、ドープには、透明性樹脂が析出してこない範囲で、貧溶媒を含有させてもよい。セルロースエステル系樹脂に対する貧溶媒としては、例えば、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等の炭素原子数1~8のアルコール、メチルエチルケトン、メチルイソブチルケトン、酢酸プロピル、モノクロルベンゼン、ベンゼン、シクロヘキサン、テトラヒドロフラン、メチルセルソルブ、エチレングリコールモノメチルエーテル等が挙げられる。これらの貧溶媒は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The dope may contain a poor solvent as long as the transparent resin does not precipitate. Examples of poor solvents for cellulose ester resins include alcohols having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, methyl ethyl ketone, and methyl isobutyl. Examples include ketones, propyl acetate, monochlorobenzene, benzene, cyclohexane, tetrahydrofuran, methyl cellosolve, and ethylene glycol monomethyl ether. These poor solvents may be used alone or in combination of two or more.
 また、本実施形態で使用される樹脂溶液は、本発明の効果を阻害しない範囲で、前記透明性樹脂、及び前記溶媒以外の他の成分(添加剤)を含有してもよい。前記添加剤としては、例えば、微粒子、可塑剤、酸化防止剤、紫外線吸収剤、熱安定化剤、導電性物質、難燃剤、滑剤、及びマット剤等が挙げられる。 The resin solution used in this embodiment may contain other components (additives) other than the transparent resin and the solvent as long as the effects of the present invention are not impaired. Examples of the additive include fine particles, plasticizers, antioxidants, ultraviolet absorbers, heat stabilizers, conductive substances, flame retardants, lubricants, and matting agents.
 前記微粒子は、使用目的に応じて適宜選択される。その使用目的としては、具体的には、例えば、透明性樹脂中に含有することによって、可視光を散乱させる場合や、すべり性を付与させる場合等が挙げられ、透明性樹脂中に前記微粒子を含有することによって、可視光の散乱及びすべり性の向上の両方を改善しうる。また、いずれを目的とした場合であっても、フィルムの透明性を損なわない程度に、前記微粒子の粒径や含有量を調整する必要がある。前記微粒子としては、酸化珪素等の無機微粒子であってもよいし、アクリル系樹脂等の有機微粒子であってもよい。 The fine particles are appropriately selected according to the purpose of use. Specific examples of the purpose of use include, for example, a case where visible light is scattered by being contained in a transparent resin, a case where slipperiness is imparted, and the like. By containing, both the scattering of visible light and the improvement of slipperiness can be improved. Moreover, in any case, it is necessary to adjust the particle size and content of the fine particles to such an extent that the transparency of the film is not impaired. The fine particles may be inorganic fine particles such as silicon oxide or organic fine particles such as acrylic resin.
 前記無機微粒子としては、例えば、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等の微粒子が挙げられる。この中でも、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の微粒子が好ましく用いられる。 Examples of the inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, calcium carbonate, strontium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, and aluminum silicate. And fine particles such as magnesium silicate and calcium phosphate. Among these, fine particles such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, and magnesium oxide are preferably used.
 また、前記有機微粒子としては、ポリメチルメタクリレート樹脂等のアクリル系樹脂、アクリルスチレン系樹脂、シリコーン系樹脂、ポリスチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、及びポリフッ化エチレン系樹脂等からなる微粒子が挙げられる。この中でも、架橋ポリスチレン粒子、ポリメチルメタクリレート系粒子のアクリル系樹脂微粒子等が好ましい。 Examples of the organic fine particles include acrylic resins such as polymethyl methacrylate resin, acrylic styrene resins, silicone resins, polystyrene resins, polycarbonate resins, benzoguanamine resins, melamine resins, polyolefin resins, polyester resins, Fine particles composed of polyamide-based resin, polyimide-based resin, polyfluorinated ethylene-based resin, and the like can be given. Among these, crosslinked polystyrene particles, acrylic resin fine particles of polymethyl methacrylate particles, and the like are preferable.
 また、前記微粒子は、上記例示した微粒子を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Further, as the fine particles, the fine particles exemplified above may be used alone, or two or more kinds may be used in combination.
 前記微粒子の平均粒子径としては、0.1~10μmであることが好ましく、0.3~5μmであることがより好ましい。微粒子の平均粒子径が小さすぎると、微粒子による機能性を充分に発揮できない傾向がある。また、大きすぎると、微粒子による機能性を充分に発揮できないだけでなく、樹脂フィルムの透光性も低下する傾向がある。なお、微粒子の平均粒子径は、樹脂フィルムの断面をTEM観察することによっても測定できるが、レーザ回折式粒度分布測定装置等を用いて測定することもできる。 The average particle diameter of the fine particles is preferably 0.1 to 10 μm, and more preferably 0.3 to 5 μm. If the average particle size of the fine particles is too small, the functionality due to the fine particles tends not to be sufficiently exhibited. On the other hand, if it is too large, not only the functionality due to the fine particles cannot be sufficiently exhibited, but also the translucency of the resin film tends to be lowered. In addition, although the average particle diameter of microparticles | fine-particles can be measured also by TEM observation of the cross section of a resin film, it can also be measured using a laser diffraction type particle size distribution measuring apparatus etc.
 前記微粒子の含有量は、前記透明性樹脂に対して0.01~35質量%であることが好ましく、0.05~30質量%であることがより好ましい。微粒子の含有量が少なすぎると、微粒子による機能性を充分に発揮できない傾向がある。また、多すぎると、樹脂フィルムの透光性が低下する傾向がある。 The content of the fine particles is preferably 0.01 to 35% by mass, and more preferably 0.05 to 30% by mass with respect to the transparent resin. If the content of the fine particles is too small, the functionality due to the fine particles tends to be insufficient. Moreover, when there is too much, there exists a tendency for the translucency of a resin film to fall.
 また、微粒子の形状は、特に限定されず、球状、平板状、針状等が挙げられ、球状であることが好ましい。 The shape of the fine particles is not particularly limited, and examples thereof include a spherical shape, a flat plate shape, and a needle shape, and a spherical shape is preferable.
 前記可塑剤としては、特に限定なく使用できるが、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等が挙げられる。前記可塑剤を含有させる場合、その含有量は、寸法安定性、加工性の点を考慮すると、セルロースエステル系樹脂に対して、1~40質量%であることが好ましく、3~20質量%であることがより好ましく、4~15質量%であることがさらに好ましい。可塑剤の含有量が少なすぎると、スリット加工や打ち抜き加工した際、滑らかな切断面を得ることができず、切り屑の発生が多くなる傾向がある。すなわち、可塑剤を含有させる効果が充分に発揮できない。 The plasticizer can be used without particular limitation, for example, phosphate ester plasticizer, phthalate ester plasticizer, trimellitic ester plasticizer, pyromellitic acid plasticizer, glycolate plasticizer, Examples include citrate plasticizers and polyester plasticizers. When the plasticizer is contained, the content thereof is preferably 1 to 40% by mass, preferably 3 to 20% by mass with respect to the cellulose ester resin in view of dimensional stability and processability. More preferably, it is 4 to 15% by mass. If the content of the plasticizer is too small, a smooth cut surface cannot be obtained when slitting or punching, and there is a tendency for generation of chips. That is, the effect of including a plasticizer cannot be sufficiently exhibited.
 前記酸化防止剤としては、特に限定なく使用できるが、例えば、ヒンダードフェノール系の化合物が好ましく用いられる。また、前記酸化防止剤を含有させる場合、酸化防止剤の含有量は、セルロースエステル樹脂に対して質量割合で1ppm~1.0%であることが好ましく、10~1000ppmであることがより好ましい。 The antioxidant can be used without any particular limitation, and for example, a hindered phenol compound is preferably used. When the antioxidant is contained, the content of the antioxidant is preferably 1 ppm to 1.0%, more preferably 10 to 1000 ppm in terms of mass ratio with respect to the cellulose ester resin.
 本実施形態に係る製造方法によって製造された樹脂フィルムは、その高い寸法安定性から、偏光板又は液晶表示用部材等に使用することが可能であり、この場合、偏光板又は液晶等の劣化防止のため、紫外線吸収剤が好ましく用いられる。 The resin film produced by the production method according to the present embodiment can be used for a polarizing plate or a liquid crystal display member because of its high dimensional stability. In this case, deterioration prevention of the polarizing plate or the liquid crystal is possible. Therefore, an ultraviolet absorber is preferably used.
 前記紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、且つ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。具体的には380nmの透過率が10%未満であることが好ましく、特に5%未満であることがより好ましい。前記紫外線吸収剤としては、具体的には、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物(ベンゾトリアゾール系紫外線吸収剤)、サリチル酸エステル系化合物、ベンゾフェノン系化合物(ベンゾフェノン系紫外線吸収剤)、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等が挙げられる。これらの中では、ベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましい。前記紫外線吸収剤の含有量は、紫外線吸収剤としての効果、透明性等を考慮し、0.1質量%~2.5質量%であることが好ましく、0.8質量%~2.0質量%であることがより好ましい。 As the ultraviolet absorber, those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties. Specifically, the transmittance at 380 nm is preferably less than 10%, more preferably less than 5%. Specific examples of the UV absorber include oxybenzophenone compounds, benzotriazole compounds (benzotriazole UV absorbers), salicylic acid ester compounds, benzophenone compounds (benzophenone UV absorbers), and cyanoacrylates. Compounds, nickel complex compounds, triazine compounds, and the like. In these, a benzotriazole type ultraviolet absorber and a benzophenone type ultraviolet absorber are preferable. The content of the ultraviolet absorber is preferably from 0.1% by mass to 2.5% by mass, considering the effect as an ultraviolet absorber, transparency, etc., and from 0.8% by mass to 2.0% by mass. % Is more preferable.
 前記熱安定剤としては、例えば、カオリン、タルク、けい藻土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等が挙げられる。 Examples of the thermal stabilizer include kaolin, talc, diatomaceous earth, quartz, inorganic fine particles such as calcium carbonate, barium sulfate, titanium oxide, and alumina, and salts of alkaline earth metals such as calcium and magnesium.
 前記導電性物質としては、特に限定はされないが、例えば、アニオン性高分子化合物等のイオン導電性物質、金属酸化物の微粒子等の導電性微粒子及び帯電防止剤等が挙げられる。前記導電性物質を含有させることによって、好ましいインピーダンスを有する樹脂フィルムを得ることができる。ここでイオン導電性物質とは、電気伝導性を示し、電気を運ぶ担体であるイオンを含有する物質のことである。 The conductive material is not particularly limited, and examples thereof include ionic conductive materials such as anionic polymer compounds, conductive fine particles such as metal oxide fine particles, and antistatic agents. By containing the conductive substance, a resin film having a preferable impedance can be obtained. Here, the ion conductive substance is a substance that shows electric conductivity and contains ions that are carriers for carrying electricity.
 次にドープを調製する方法の一例として、透明性樹脂としてセルロースエステル系樹脂を用いた場合について説明する。 Next, as an example of a method for preparing a dope, a case where a cellulose ester resin is used as a transparent resin will be described.
 ドープを調製する時の、セルロースエステル系樹脂の溶解方法としては、特に限定なく、一般的な方法を用いることができる。加熱と加圧を組み合わせることによって、常圧における溶媒の沸点以上に加熱できることを利用し、常圧における沸点以上で溶媒にセルロースエステル系樹脂を溶解させることが、ゲルやママコと呼ばれる塊状未溶解物の発生を防止する点から好ましい。また、セルロースエステル系樹脂を貧溶媒と混合して湿潤又は膨潤させた後、さらに良溶媒を添加して溶解する方法も好ましく用いられる。 The method for dissolving the cellulose ester resin when preparing the dope is not particularly limited, and a general method can be used. By combining heating and pressurization, it is possible to heat above the boiling point of the solvent at normal pressure, and it is possible to dissolve the cellulose ester resin in the solvent above the boiling point at normal pressure. It is preferable from the viewpoint of preventing the occurrence of. In addition, a method in which a cellulose ester resin is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
 前記加圧は、窒素ガス等の不活性気体を圧入する方法や、密閉容器に溶媒を加熱して、前記加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。前記加熱は、外部から行うことが好ましく、例えば、ジャケットタイプのものは温度コントロールが容易で好ましい。 The pressurization may be performed by a method in which an inert gas such as nitrogen gas is injected, or a method in which a solvent is heated in a sealed container and the vapor pressure of the solvent is increased by the heating. The heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
 セルロースエステル系樹脂を溶解させる時の溶媒の温度(加熱温度)は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度を高くしようとすると、前記加圧によって容器内の圧力を高くしなければならず、生産性が悪化する。よって、前記加熱温度は、45~120℃であることが好ましい。また、前記圧力は、設定温度で溶媒が沸騰しないような圧力に調整される。もしくは冷却溶解法も好ましく用いられ、これによって酢酸メチル等の溶媒にセルロースエステル系樹脂を溶解させることができる。 A higher solvent temperature (heating temperature) for dissolving the cellulose ester-based resin is preferable from the viewpoint of solubility of the cellulose ester. However, when the heating temperature is increased, the pressure in the container is increased by the pressurization. Productivity must be reduced. Therefore, the heating temperature is preferably 45 to 120 ° C. The pressure is adjusted to a pressure at which the solvent does not boil at the set temperature. Alternatively, a cooling dissolution method is also preferably used, whereby the cellulose ester resin can be dissolved in a solvent such as methyl acetate.
 次に、得られたセルロースエステル系樹脂の溶液を濾紙等の適当な濾過材を用いて濾過する。前記濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすいという問題がある。このため絶対濾過精度が0.008mm以下の濾過材が好ましく、0.001~0.008mmの濾過材がより好ましい。 Next, the obtained cellulose ester resin solution is filtered using an appropriate filter medium such as filter paper. As the filter medium, it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like. However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is likely to be clogged. Therefore, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, and a filter medium having a 0.001 to 0.008 mm is more preferable.
 濾過材の材質は、特に制限はなく、通常の濾過材を使用することができる。例えば、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾過材や、セルロース繊維やレーヨンを用いた濾紙、ステンレススティール等の金属製の濾過材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステル系樹脂の溶液に含まれていた不純物、特に輝点異物を除去、低減することが好ましい。前記輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に樹脂フィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。 There is no restriction | limiting in particular in the material of a filter medium, A normal filter medium can be used. For example, a plastic filter material such as polypropylene or Teflon (registered trademark), a filter paper using cellulose fiber or rayon, or a metal filter material such as stainless steel is preferable because the fiber does not fall off. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester resin solution by filtration. The bright spot foreign matter is a state where two polarizing plates are placed in a crossed Nicols state, a resin film is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less.
 濾過は、特に限定なく、通常の方法で行うことができるが、溶媒の常圧での沸点以上で、且つ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。前記温度としては、35~60℃であることが好ましい。前記濾圧は、小さい方が好ましく、例えば、1.6MPa以下であることが好ましい。 The filtration is not particularly limited and can be carried out by a usual method, but the method of filtration while heating at a temperature not lower than the boiling point of the solvent at normal pressure and at which the solvent does not boil under pressure may be performed before and after the filtration. The increase in the difference in filtration pressure (referred to as differential pressure) is small and preferable. The temperature is preferably 35 to 60 ° C. The filtration pressure is preferably smaller, for example, 1.6 MPa or less.
 前記各添加剤を含有させる場合は、例えば、アルコールやメチレンクロライド、ジオキソランなどの有機溶媒に前記添加剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。また、無機粉体のように有機溶剤に溶解しないものは、添加剤とセルロースエステル系樹脂とをデゾルバーやサンドミルを使用して、セルロースエステル系樹脂中に添加剤を分散したものをドープに添加することが好ましい。 When each of the above additives is contained, for example, the additive may be dissolved in an organic solvent such as alcohol, methylene chloride, dioxolane and the like, or may be added to the dope or directly during the dope composition. In addition, for inorganic powders that do not dissolve in organic solvents, the additive and cellulose ester resin are added to the dope using a dissolver or sand mill with the additive dispersed in the cellulose ester resin. It is preferable.
 得られたセルロースエステル系樹脂の溶液に前記微粒子を分散させる。分散させる方法は、特に限定なく、例えば、以下のようにして行うことができる。例えば、まず、分散用溶媒と微粒子を撹拌混合した後、分散機で分散を行う。これを微粒子分散液とする。この微粒子分散液を上記セルロースエステル系樹脂の溶液に加えて撹拌する。 The fine particles are dispersed in the obtained cellulose ester resin solution. The method for dispersing is not particularly limited, and can be performed, for example, as follows. For example, first, a dispersion solvent and fine particles are stirred and mixed, and then dispersed using a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the cellulose ester resin solution and stirred.
 前記分散用溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等の低級アルコール類が挙げられる。また、低級アルコール類に特に限定されないが、セルロースエステル系樹脂の溶液を調製する際に用いた溶媒と同様のものを用いることが好ましい。 Examples of the dispersion solvent include lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol. Moreover, although it does not specifically limit to lower alcohol, It is preferable to use the thing similar to the solvent used when preparing the solution of a cellulose-ester-type resin.
 前記分散機としては、特に限定なく使用でき、一般的な分散機を使用できる。分散機は、大きく分けてメディア分散機とメディアレス分散機に分けられるが、メディアレス分散機のほうかがヘイズが低くなる(透光性が高くなる)点から好ましい。前記メディア分散機としては、例えば、ボールミル、サンドミル、ダイノミル等が挙げられる。また、前記メディアレス分散機としては、超音波型、遠心型、高圧型等が挙げられ、高圧型分散装置が好ましい。前記高圧分散装置とは、微粒子と溶媒とを混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。前記高圧分散装置としては、例えば、Microfluidics Corporation社製の超高圧ホモジナイザ(商品名マイクロフルイダイザ)、ナノマイザ社製ナノマイザ等が挙げられ、他にマントンゴーリン型高圧分散装置等も挙げられる。また、マントンゴーリン型高圧分散装置としては、例えばイズミフードマシナリ製ホモジナイザ、三和機械株式会社製のUHN-01等が挙げられる。 The disperser can be used without particular limitation, and a general disperser can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. Medialess dispersers are preferred from the viewpoint of lower haze (higher translucency). Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type, and a high pressure type dispersing device is preferable. The high-pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube. Examples of the high-pressure dispersing device include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation, a nanomizer manufactured by Nanomizer, and the like, and other examples include a Manton Gorin type high-pressure dispersing device. Examples of the Menton Gorin type high-pressure dispersing device include a homogenizer manufactured by Izumi Food Machinery, UHN-01 manufactured by Sanwa Machinery Co., Ltd., and the like.
 また、流延ダイの吐出口の両端部から流下させる溶剤としては、前記樹脂溶液(ドープ)の溶媒と同様のものを用いることができる。具体的には、前記透明性樹脂に対する良溶媒を含有し、必要に応じて、貧溶媒を含有させてもよい。 Further, as the solvent that flows down from both ends of the discharge port of the casting die, the same solvent as the resin solution (dope) can be used. Specifically, a good solvent for the transparent resin may be contained, and a poor solvent may be contained as necessary.
 以上のような、本実施形態に係る製造方法によれば、フィルムの剥離不良を抑制でき、よって、レタデーションや配向等の均一性が高い光学特性に優れた樹脂フィルムが得られる。また、本実施形態に係る製造方法によれば、ドープのコンタミの発生や吐出口の両端部付近の皮膜形成等を抑制することができ、異物の混入が抑制された透明性の高い樹脂フィルムが得られる。 According to the manufacturing method according to the present embodiment as described above, it is possible to suppress a film peeling failure, and thus a resin film excellent in optical properties with high uniformity such as retardation and orientation can be obtained. Moreover, according to the manufacturing method according to the present embodiment, it is possible to suppress the occurrence of dope contamination and the formation of a film in the vicinity of both ends of the discharge port. can get.
 なお、ここで得られる樹脂フィルムの幅は、大型の液晶表示装置への使用、偏光板加工時のフィルムの使用効率、生産効率の点から、1500~2500mmであることが好ましい。 The width of the resin film obtained here is preferably 1500 to 2500 mm from the viewpoint of use in a large liquid crystal display device, use efficiency of the film during polarizing plate processing, and production efficiency.
 また、樹脂フィルムの膜厚は、液晶表示装置の薄型化、樹脂フィルムの生産安定化の観点等の点から、20~70μmであることが好ましい。ここで膜厚とは、平均膜厚のことであり、株式会社ミツトヨ製の接触式膜厚計により、樹脂フィルムの幅方向に20~200箇所、膜厚を測定し、その測定値の平均値を膜厚として示す。 The film thickness of the resin film is preferably 20 to 70 μm from the viewpoint of thinning the liquid crystal display device and stabilizing the production of the resin film. Here, the film thickness is an average film thickness. The film thickness is measured at 20 to 200 locations in the width direction of the resin film with a contact-type film thickness meter manufactured by Mitutoyo Corporation, and the average value of the measured values. Is shown as the film thickness.
 (偏光板)
 本実施形態に係る偏光板は、偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備え、前記透明保護フィルムが、前記樹脂フィルムである。前記偏光素子とは、入射光を偏光に変えて射出する光学素子である。
(Polarizer)
The polarizing plate which concerns on this embodiment is equipped with a polarizing element and the transparent protective film arrange | positioned on the surface of the said polarizing element, and the said transparent protective film is the said resin film. The polarizing element is an optical element that emits incident light converted to polarized light.
 前記偏光板としては、例えば、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬して延伸することによって作製される偏光素子の少なくとも一方の表面に、完全鹸化型ポリビニルアルコール水溶液を用いて、前記樹脂フィルム又は前記積層フィルムを貼り合わせたものが好ましい。また、前記偏光素子のもう一方の表面にも、前記樹脂フィルムを積層させてもよいし、別の偏光板用の透明保護フィルムを積層させてもよい。この偏光板用の透明保護フィルムとしては、例えば、市販のセルロースエステルフィルムとして、KC8UX2M、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UY-HA、KC8UX-RHA(以上、コニカミノルタオプト株式会社製)等が好ましく用いられる。あるいは、セルロースエステルフィルム以外の環状オレフィン樹脂、アクリル樹脂、ポリエステル、ポリカーボネート等の樹脂フィルムを用いてもよい。この場合は、ケン化適性が低いため、適当な接着層を介して偏光板に接着加工することが好ましい。 As the polarizing plate, for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing element produced by immersing and stretching a polyvinyl alcohol film in an iodine solution, and the resin film or What laminated | stacked the said laminated | multilayer film is preferable. Further, the resin film may be laminated on the other surface of the polarizing element, or a transparent protective film for another polarizing plate may be laminated. As the transparent protective film for the polarizing plate, for example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (above, manufactured by Konica Minolta Opto) Is preferably used. Or you may use resin films, such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
 前記偏光板は、上述のように、偏光素子の少なくとも一方の表面側に積層する保護フィルムとして、前記樹脂フィルムを使用したものである。その際、前記樹脂フィルムが位相差フィルムとして働く場合、樹脂フィルムの遅相軸が偏光素子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。 As described above, the polarizing plate uses the resin film as a protective film laminated on at least one surface side of the polarizing element. In that case, when the said resin film works as a phase difference film, it is preferable to arrange | position so that the slow axis of a resin film may be substantially parallel or orthogonal to the absorption axis of a polarizing element.
 また、前記偏光素子の具体例としては、例えば、ポリビニルアルコール系偏光フィルムが挙げられる。ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものとがある。前記ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。 Further, specific examples of the polarizing element include, for example, a polyvinyl alcohol polarizing film. Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes. As the polyvinyl alcohol film, a modified polyvinyl alcohol film modified with ethylene is preferably used.
 前記偏光素子は、例えば、以下のようにして得られる。まず、ポリビニルアルコール水溶液を用いて製膜する。得られたポリビニルアルコール系フィルムを一軸延伸させた後染色するか、染色した後一軸延伸する。そして、好ましくはホウ素化合物で耐久性処理を施す。 The polarizing element is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
 前記偏光素子の膜厚は、5~40μmであることが好ましく、5~30μmであることがより好ましく、5~20μmであることがより好ましい。 The film thickness of the polarizing element is preferably 5 to 40 μm, more preferably 5 to 30 μm, and even more preferably 5 to 20 μm.
 該偏光素子の表面上に、セルロ-スエステル系樹脂フィルムを張り合わせる場合、完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせることが好ましい。また、セルロースエステル系樹脂フィルム以外の樹脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工することが好ましい。 When a cellulose ester resin film is laminated on the surface of the polarizing element, it is preferably bonded with a water-based adhesive mainly composed of completely saponified polyvinyl alcohol. Moreover, in the case of resin films other than a cellulose ester-based resin film, it is preferable to perform adhesion processing on the polarizing plate through an appropriate adhesive layer.
 上述のような偏光板は、透明保護フィルムとして、本実施形態に係る樹脂フィルムを用いる。この樹脂フィルムは、レタデーションや配向等の均一性が高い光学特性に優れているので、得られた偏光板を、例えば、液晶表示装置に適用した際に、コントラストの向上等の、液晶表示装置の高画質化を実現できる。 The polarizing plate as described above uses the resin film according to this embodiment as a transparent protective film. Since this resin film is excellent in optical properties with high uniformity such as retardation and orientation, when the obtained polarizing plate is applied to, for example, a liquid crystal display device, the contrast of the liquid crystal display device is improved. High image quality can be achieved.
 (液晶表示装置)
 本実施形態に係る液晶表示装置は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備え、前記2枚の偏光板のうち少なくとも一方が、前記偏光板である。なお、液晶セルとは、一対の電極間に液晶物質が充填されたものであり、この電極に電圧を印加することで、液晶の配向状態が変化され、透過光量が制御される。このような液晶表示装置は、偏光板用の透明保護フィルムとして、前記偏光板を用いる。そうすることによって、コントラスト等が向上された、高画質な液晶表示装置が得られる。
(Liquid crystal display device)
The liquid crystal display device according to this embodiment includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate. . Note that the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled. Such a liquid crystal display device uses the polarizing plate as a transparent protective film for the polarizing plate. By doing so, a high-quality liquid crystal display device with improved contrast and the like can be obtained.
 以上、本発明に係る実施形態が詳細に説明されたが、上記した説明は、全ての局面において例示であって、本発明がこれらに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得ると解される。 As mentioned above, although embodiment which concerns on this invention was described in detail, above-described description is an illustration in all the situation, Comprising: This invention is not limited to these. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 [実施例1]
 (ドープの調製)
 まず、メチレンクロライド300質量部及びエタノール52質量部を入れた溶解タンクに、透明性樹脂としてセルロースアセテートプロピオネート樹脂(アセチル基置換度:1.2、プロピオニル基置換度:1.2、総アシル基置換度:2.4)100質量部を添加し、さらに、トリフェニルホスフェート5質量部及びエチルフタリルエチルグリコール5質量部、シリカ粒子(1次粒径:12nm)0.2質量部を添加した。そして、液温が80℃になるまで昇温させた後、3時間攪拌した。そうすることによって、セルロースアセテートプロピオネート樹脂溶液が得られた。その後、攪拌を終了し、液温が43℃になるまで放置した。そして、得られた樹脂溶液を、濾過精度0.005mmの濾紙を使用して濾過した。濾過後の樹脂溶液を一晩放置することにより、樹脂溶液中の気泡を脱泡させた。このようにして得られた樹脂溶液を、ドープとして使用して、以下のように、樹脂フィルムを製造した。
[Example 1]
(Preparation of dope)
First, a cellulose acetate propionate resin (acetyl group substitution degree: 1.2, propionyl group substitution degree: 1.2, total acyl) as a transparent resin in a dissolution tank containing 300 parts by mass of methylene chloride and 52 parts by mass of ethanol. Group substitution degree: 2.4) 100 parts by mass are added, and further 5 parts by mass of triphenyl phosphate, 5 parts by mass of ethylphthalylethyl glycol, and 0.2 parts by mass of silica particles (primary particle size: 12 nm) are added. did. And after raising the liquid temperature to 80 ° C., the mixture was stirred for 3 hours. By doing so, a cellulose acetate propionate resin solution was obtained. Then, stirring was complete | finished and it was left until the liquid temperature became 43 degreeC. Then, the obtained resin solution was filtered using a filter paper having a filtration accuracy of 0.005 mm. Air bubbles in the resin solution were degassed by allowing the resin solution after filtration to stand overnight. Using the resin solution thus obtained as a dope, a resin film was produced as follows.
 (樹脂フィルムの製造)
 まず、得られたドープの温度を35℃に、無端ベルト支持体の温度を25℃に調整した。そして、図1に示すような樹脂フィルムの製造装置を用い、流延ダイから搬送速度60m/分の、ステンレス鋼製かつ超鏡面に研磨したエンドレスベルトからなる無端ベルト支持体にドープを流延した。その際、流延ダイの吐出口両端部から、メチレンクロライド95質量%及びメタノール5質量%の混合溶媒を溶剤として流下した。そして、前記吐出口から吐出された溶剤が前記支持体に到達するまでの間に、前記溶剤にヒータを埋め込み、そのヒータ上を溶剤が流れるようにして、前記溶剤を加熱させることによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整した。そして、無端ベルト支持体からウェブをフィルムとして剥離し、剥離したフィルムを延伸装置(テンター)を用いて、フィルムの両端をクリップで把持しながら、TD方向に15%延伸した。その後、延伸したフィルムを巻取装置で巻き取ることによって、ロール状に巻き取られた樹脂フィルムが得られた。
(Manufacture of resin film)
First, the temperature of the obtained dope was adjusted to 35 ° C., and the temperature of the endless belt support was adjusted to 25 ° C. Then, using a resin film production apparatus as shown in FIG. 1, a dope was cast from an casting die onto an endless belt support made of stainless steel and polished to a super mirror surface at a conveyance speed of 60 m / min. . At that time, a mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol was allowed to flow down from both ends of the discharge port of the casting die as a solvent. Then, before the solvent discharged from the discharge port reaches the support, a heater is embedded in the solvent, and the solvent flows through the heater so that the solvent is heated. The temperature, supply amount, and loss amount of the solvent flowing down from both ends of the discharge port of the die were adjusted to the temperatures, supply amounts, and loss amounts shown in Table 1. Then, the web was peeled from the endless belt support as a film, and the peeled film was stretched 15% in the TD direction while holding both ends of the film with clips using a stretching device (tenter). Then, the stretched film was wound up with a winder, and the resin film wound up in roll shape was obtained.
 [実施例2]
 流延ダイの吐出口両端部から流下させる溶剤として、メチレンクロライド95質量%及びメタノール5質量%の混合溶媒の代わりに、メチレンクロライド80質量%及びメタノール20質量%の混合溶媒を用い、前記吐出口から吐出された樹脂溶液や溶剤に吹き付ける風の風量を調整することによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整したこと以外、実施例1と同様である。
[Example 2]
As the solvent that flows down from both ends of the discharge port of the casting die, a mixed solvent of 80% by mass of methylene chloride and 20% by mass of methanol is used instead of the mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol. The temperature, supply amount, and loss amount of the solvent flowing down from both ends of the discharge port of the casting die are adjusted by adjusting the flow rate of the air blown to the resin solution and solvent discharged from Example 1 is the same as Example 1 except that the loss is adjusted.
 [実施例3]
 流延ダイの吐出口両端部から流下させる溶剤として、メチレンクロライド95質量%及びメタノール5質量%の混合溶媒の代わりに、メチレンクロライド80質量%、メタノール5質量%及びシクロヘキサン15質量%の混合溶媒を用い、前記吐出口から、前記吐出口から吐出された樹脂溶液が前記支持体に到達する箇所までの距離を調整することによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整したこと以外、実施例1と同様である。
[Example 3]
Instead of a mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol, a mixed solvent of 80% by mass of methylene chloride, 5% by mass of methanol and 15% by mass of cyclohexane was used as a solvent to flow down from both ends of the discharge port of the casting die. Use, adjust the distance from the discharge port to the location where the resin solution discharged from the discharge port reaches the support, thereby supplying the temperature and supply of the solvent flowing down from both ends of the discharge port of the casting die Example 1 is the same as Example 1 except that the amount and loss amount are adjusted to the temperature, supply amount, and loss amount shown in Table 1.
 [実施例4]
 流延ダイの吐出口両端部から流下させる溶剤として、メチレンクロライド95質量%及びメタノール5質量%の混合溶媒の代わりに、メチレンクロライドを用い、前記吐出口から吐出された溶剤に、温風をあてることによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整したこと以外、実施例1と同様である。
[Example 4]
Instead of a mixed solvent of 95% by mass of methylene chloride and 5% by mass of methanol as a solvent that flows down from the both ends of the casting die of the casting die, methylene chloride is used, and hot air is applied to the solvent discharged from the outlet. As in Example 1, except that the temperature, supply amount and loss amount of the solvent flowing down from both ends of the casting die of the casting die were adjusted to the temperatures, supply amounts and loss amounts shown in Table 1. It is.
 [比較例1]
 前記吐出口から、前記吐出口から吐出された樹脂溶液が前記支持体に到達する箇所までの距離を調整することによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整したこと以外、実施例1と同様である。
[Comparative Example 1]
By adjusting the distance from the discharge port to the location where the resin solution discharged from the discharge port reaches the support, the temperature of the solvent that flows down from both ends of the discharge port of the casting die, the supply amount, and Example 1 is the same as Example 1 except that the loss amount is adjusted to the temperature, supply amount, and loss amount shown in Table 1.
 [比較例2]
 前記吐出口から吐出された溶剤に、温風をあてることによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整したこと以外、実施例2と同様である。
[Comparative Example 2]
The temperature, supply amount, and loss amount of the solvent that flows down from both ends of the discharge port of the casting die by applying hot air to the solvent discharged from the discharge port are shown in Table 1. It is the same as that of Example 2 except having adjusted so that it may become.
 [比較例3]
 前記吐出口から吐出された溶剤が前記支持体に到達するまでの間に、前記溶剤にヒータを埋め込み、そのヒータ上を溶剤が流れるようにして、前記溶剤を加熱させることによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整したこと以外、実施例3と同様である。
[Comparative Example 3]
Before the solvent discharged from the discharge port reaches the support, a heater is embedded in the solvent, and the solvent flows through the heater so that the solvent is heated. Example 3 is the same as Example 3 except that the temperature, supply amount, and loss amount of the solvent flowing down from both ends of the discharge port are adjusted to the temperature, supply amount, and loss amount shown in Table 1.
 [比較例4]
 前記吐出口から吐出された樹脂溶液や溶剤に吹き付ける風の風量を調整することによって、流延ダイの吐出口両端部から流下される溶剤の温度、供給量及び損失量が表1に示す温度、供給量及び損失量となるように調整したこと以外、実施例4と同様である。
[Comparative Example 4]
By adjusting the amount of air blown to the resin solution or solvent discharged from the discharge port, the temperature, supply amount and loss amount of the solvent flowing down from both ends of the discharge port of the casting die are shown in Table 1, Example 4 is the same as Example 4 except that the supply amount and the loss amount are adjusted.
 上記のようにして得られた樹脂フィルム(実施例1~4、比較例1~4)を、以下の評価を行い、その結果を表1に示す。 The resin films (Examples 1 to 4 and Comparative Examples 1 to 4) obtained as described above were evaluated as follows, and the results are shown in Table 1.
 (異物数)
 得られた樹脂フィルムを、2枚の偏光板を直交(クロスニコル)状態にしたものの間に配置して、一方の偏光板側から光を当てて、他方の偏光板側を透過型顕微鏡を用いて50倍の倍率で観察した。その際、面積25cmの範囲における、偏光クロスニコル状態で認識される大きさが50μm以上の異物の個数を数え、1cm当たりの個数に換算した値を異物数とした。
(Number of foreign objects)
The obtained resin film is placed between two polarizing plates in an orthogonal (crossed Nicols) state, light is applied from one polarizing plate side, and the other polarizing plate side is used with a transmission microscope. And observed at a magnification of 50 times. At that time, the number of foreign matters having a size of 50 μm or more recognized in the polarization crossed Nicol state in an area of 25 cm 2 was counted, and the value converted into the number per 1 cm 2 was defined as the number of foreign matters.
 そして、その異物数が、0.15個以下であれば、「◎」と評価し、0.15個を超え0.20個以下であれば、「○」と評価し、0.20個を超え0.25個以下であれば、「△」と評価し、0.25個を超え0.35個以下であれば、「×」と評価し、0.35個を超えれば、「××」と評価した。 If the number of foreign substances is 0.15 or less, it is evaluated as “◎”, and if it exceeds 0.15 and is 0.20 or less, it is evaluated as “◯”, and 0.20 If it exceeds 0.25, it is evaluated as “Δ”. If it exceeds 0.25 and is 0.35 or less, it is evaluated as “X”. If it exceeds 0.35, “XX” is evaluated. ".
 なお、ここで異物は、偏光クロスニコル状態で認識される異物であり、偏光クロスニコル状態では、暗視野中で、異物の箇所のみ光って観察されるので、容易にその個数を測定することができる。 Here, the foreign matter is a foreign matter recognized in the polarization crossed Nicol state, and in the polarized crossed Nicol state, only the location of the foreign matter is observed in the dark field, so that the number can be easily measured. it can.
 (透明性)
 得られた樹脂フィルムのヘイズを、JIS K7105-1981に準じて測定した。具体的には、得られた樹脂フィルムの幅方向に等間隔で10個のサンプル切り出し、切り出したサンプルのヘイズを、ヘイズメータ(日本電色工業株式会社製のNDH)を用いて測定した。この測定されたヘイズの平均値を透明性の指標として評価した。ヘイズが、0.1以下であれば、「◎」と評価し、0.1を超え0.2以下であれば、「○」と評価し、0.2を超え0.5以下であれば、「△」と評価し、0.5個を超え1.0以下であれば、「×」と評価し、0.1を超えれば、「××」と評価した。
(transparency)
The haze of the obtained resin film was measured according to JIS K7105-1981. Specifically, 10 samples were cut out at equal intervals in the width direction of the obtained resin film, and the haze of the cut out sample was measured using a haze meter (NDH manufactured by Nippon Denshoku Industries Co., Ltd.). The average value of the measured haze was evaluated as a transparency index. If the haze is 0.1 or less, it is evaluated as “◎”, and if it exceeds 0.1 and is 0.2 or less, it is evaluated as “◯”, and if it exceeds 0.2 and is 0.5 or less. , “△” was evaluated, and when it exceeded 0.5 and 1.0 or less, it was evaluated as “X”, and when it exceeded 0.1, “XX” was evaluated.
 (光学特性)
 上記透明性の評価で用いた10個のサンプルの面内方向レタデーションRo及び遅相軸の角度θを自動複屈折率測定装置(王子計測機器株式会社製のKOBRA-21ADH)を用いて測定した。
(optical properties)
The in-plane direction retardation Ro and the slow axis angle θ of 10 samples used in the evaluation of the transparency were measured using an automatic birefringence measuring apparatus (KOBRA-21ADH manufactured by Oji Scientific Instruments).
 具体的には、まず、自動複屈折率計KOBRA-21ADH(王子計測機器株式会社製)を用いて、温度23℃、湿度55%RHの環境下で、波長590nmで、各サンプルの、遅相軸の角度θ、遅相軸方向の屈折率Nx、及び進相軸方向の屈折率Nyを測定した。次に、株式会社ミツトヨ製の接触式膜厚計を用いて、樹脂フィルムの膜厚dを測定した。そして、得られた各測定値から、下記式(4)を用いて、各サンプルの面内方向レタデーションRoを算出した。 Specifically, first, using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.), in the environment of a temperature of 23 ° C. and a humidity of 55% RH, the retardation of each sample was measured at a wavelength of 590 nm. The angle θ of the axis, the refractive index Nx in the slow axis direction, and the refractive index Ny in the fast axis direction were measured. Next, the film thickness d of the resin film was measured using a contact-type film thickness meter manufactured by Mitutoyo Corporation. And from each measured value obtained, in-plane direction retardation Ro of each sample was calculated using the following formula (4).
  Ro=(Nx-Ny)×d  (4)
 式中、Nxは、樹脂フィルムの遅相軸方向の屈折率を示し、Nyは、進相軸方向の屈折率を示し、dは、フィルムの膜厚(nm)を示す。
Ro = (Nx−Ny) × d (4)
In the formula, Nx represents the refractive index in the slow axis direction of the resin film, Ny represents the refractive index in the fast axis direction, and d represents the film thickness (nm) of the film.
 まず、得られた各サンプルの面内方向レタデーションRoの内の最大値Romaxと最小値Rominとの差が、1.0以下であれば、「◎」と評価し、1.0を超え2.0以下であれば、「○」と評価し、2.0を超え4.0以下であれば、「△」と評価し、4.0を超え5.0以下であれば、「×」と評価し、5.0を超えれば、「××」と評価した。 First, if the difference between the maximum value Romax and the minimum value Romin in the in-plane direction retardation Ro of each obtained sample is 1.0 or less, it is evaluated as “◎”, exceeds 1.0, and exceeds 2. If it is 0 or less, it is evaluated as “◯”, and if it exceeds 2.0 and 4.0 or less, it is evaluated as “Δ”, and if it exceeds 4.0 and 5.0 or less, “×” is evaluated. If it exceeded 5.0, it was evaluated as “XX”.
 次に、得られた各サンプルの遅相軸の角度θの内の最大値θmaxと最小値θminとの差が、0.2以下であれば、「◎」と評価し、0.2を超え0.3以下であれば、「○」と評価し、0.3を超え0.4以下であれば、「△」と評価し、0.4を超え0.5以下であれば、「×」と評価し、0.5を超えれば、「××」と評価した。 Next, if the difference between the maximum value θmax and the minimum value θmin among the slow axis angles θ of the obtained samples is 0.2 or less, it is evaluated as “◎” and exceeds 0.2. If it is 0.3 or less, it is evaluated as “◯”, and if it exceeds 0.3 and 0.4 or less, it is evaluated as “Δ”, and if it exceeds 0.4 and 0.5 or less, “×” ", And if it exceeded 0.5, it was evaluated as" XX ".
 (剥離性)
 支持体上から流延膜を剥離した後に、支持体上に流延膜が残存しているか否かを目視で確認し、流延膜の残存を確認できなければ、「○」と評価し、流延膜の残存が確認されれば、「×」と評価した。
(Peelability)
After peeling the casting film from the support, visually check whether the casting film remains on the support, and if the casting film remains cannot be confirmed, it is evaluated as `` ○ '' If the cast film remained, it was evaluated as “x”.
 (皮膜形成)
 上記のように樹脂フィルムを形成させた後に、前記流延ダイの表面に皮膜が形成されているか否かを目視で観察した。そして、皮膜の形成が確認できなければ、「○」と評価し、皮膜の形成が確認されれば、「×」と評価した。
(Film formation)
After the resin film was formed as described above, it was visually observed whether or not a film was formed on the surface of the casting die. And when formation of the film could not be confirmed, it was evaluated as “◯”, and when formation of the film was confirmed, it was evaluated as “x”.
 上記各評価の評価結果を表1に示す。
Table 1 shows the evaluation results of the above evaluations.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1からわかるように、T2-T1が-0.5を超え0.5未満となるようなT1,T2である場合(実施例1~4)は、上記の関係を満たさないようなT1,T2である場合(比較例1~4)より、剥離性に優れているだけではなく、異物が少なく、透明性に優れ、レタデーション等の均一な光学特性に優れた樹脂フィルムが得られた。さらに、実施例1~4に係る場合、樹脂フィルムを製造しても、流延ダイに皮膜が形成されることが抑制された。このことから、実施例1~4に係る樹脂フィルムは、皮膜形成による不具合の発生が抑制されると考えられる。また、この皮膜形成の抑制が、剥離性の向上に寄与していると考えられる。 As can be seen from Table 1, when T1 and T2 are such that T2-T1 exceeds −0.5 and less than 0.5 (Examples 1 to 4), T1 that does not satisfy the above relationship From the case of T2 (Comparative Examples 1 to 4), a resin film having not only excellent releasability but also few foreign substances, excellent transparency, and excellent uniform optical properties such as retardation was obtained. Further, in the case of Examples 1 to 4, even when the resin film was manufactured, the formation of a film on the casting die was suppressed. From this, it is considered that the resin films according to Examples 1 to 4 suppress the occurrence of defects due to film formation. Moreover, it is thought that suppression of this film formation has contributed to the improvement of peelability.
 また、W2/W1が10-7を超え10-5未満となるようなW1,W2である場合(実施例2~4)は、上記の関係を満たさないようなW1,W2である場合(実施例1)より、さらに、透明性に優れ、場合によっては、異物がより少なく、光学特性により優れた樹脂フィルムが得られた。 Further, when W1 and W2 are such that W2 / W1 exceeds 10 −7 and less than 10 −5 (Examples 2 to 4), they are W1 and W2 that do not satisfy the above relationship (implementation). From Example 1), it was possible to obtain a resin film that was further excellent in transparency and, in some cases, had fewer foreign matters and was superior in optical properties.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、透明性樹脂を含有する樹脂溶液を、走行する支持体上に流延ダイから流延して流延膜を形成する流延工程と、前記流延膜を前記支持体から剥離する剥離工程と、剥離した流延膜を乾燥させる乾燥工程とを備え、前記流延工程において、前記流延ダイの吐出口から前記樹脂溶液を吐出して、前記支持体上に流延するとともに、前記流延ダイの吐出口の長手方向両端部から前記透明性樹脂を溶解可能な溶剤を流下させ、下記式(1)を満たすことを特徴とする樹脂フィルムの製造方法である。 One aspect of the present invention is a casting process in which a casting solution is formed by casting a resin solution containing a transparent resin from a casting die on a traveling support, and the casting film is used as the support. And a drying step for drying the peeled cast film. In the casting step, the resin solution is discharged from a discharge port of the casting die and cast onto the support. And a solvent capable of dissolving the transparent resin is allowed to flow down from both longitudinal ends of the discharge port of the casting die to satisfy the following formula (1).
  -5 < T2 - T1 < 5  (1)
 (式中、T1は、前記溶剤が前記吐出口から流下された直後の前記溶剤の温度[℃]を示し、T2は、前記溶剤が前記支持体に到達した時点の前記溶剤の温度[℃]を示す。)
−5 <T2−T1 <5 (1)
(In the formula, T1 indicates the temperature [° C.] of the solvent immediately after the solvent flows down from the discharge port, and T2 indicates the temperature [° C.] of the solvent when the solvent reaches the support. Is shown.)
 上記の構成によれば、流延ダイの吐出口の長手方向両端部付近に皮膜が形成されることを抑制し、さらに、フィルムの剥離不良を抑制し、光学特性に優れた樹脂フィルムを安定して製造することができる樹脂フィルムの製造方法を提供することができる。 According to said structure, it suppresses that a film | membrane is formed in the longitudinal direction both ends vicinity of the discharge outlet of a casting die, Furthermore, the peeling defect of a film is suppressed and the resin film excellent in the optical characteristic is stabilized. The manufacturing method of the resin film which can be manufactured in this way can be provided.
 このことは、以下のことによると考えられる。 This is thought to be due to the following.
 まず、流延ダイの吐出口の長手方向両端部から、樹脂フィルムを構成する透明性樹脂を溶解可能な溶剤を流下させることによって、支持体上で前記溶剤の少なくとも一部が流延膜に浸透し、流延膜の幅方向端部の溶媒濃度を高めることができると考えられる。すなわち、流延ダイから流延された流延膜の端部の乾燥が他の部分の乾燥より進行することを抑制できると考えられる。よって、流延ダイの吐出口の長手方向両端部付近に皮膜が形成されることを抑制できると考えられる。 First, at least a part of the solvent permeates the casting film on the support by flowing down a solvent capable of dissolving the transparent resin constituting the resin film from both longitudinal ends of the discharge port of the casting die. And it is thought that the solvent concentration of the width direction edge part of a casting film can be raised. That is, it is thought that it can suppress that the drying of the edge part of the casting film cast from the casting die progresses rather than the drying of other parts. Therefore, it is thought that it can suppress that a film | membrane is formed in the longitudinal direction both ends vicinity of the discharge outlet of a casting die.
 さらに、流延ダイの周囲の環境を、流延ダイの吐出口の長手方向両端部から吐出された直後の溶剤の温度と、支持体に到達した時点の溶媒の温度との差が、上記のように小さくなるように調整することによって、流延ダイの吐出口の長手方向両端部から吐出された溶剤の蒸発を充分に制御できると考えられる。具体的には、溶剤が支持体に到達する前に蒸発により減容しすぎることを抑制することができる。よって、流延膜の幅方向端部の溶媒濃度を充分に高めることができ、フィルムの幅方向端部の剥離不良を充分に抑制できると考えられる。よって、剥離不良に基づくレタデーションや配向等の不均一性の発生を充分に抑制できる。さらに、剥離不良が発生することによって行う支持体の洗浄を減らすことができ、樹脂フィルムを安定して製造することができる。 Furthermore, the difference between the temperature of the solvent immediately after being discharged from both ends in the longitudinal direction of the discharge port of the casting die and the temperature of the solvent at the time of reaching the support is as follows. By adjusting so as to be small, it is considered that the evaporation of the solvent discharged from both ends in the longitudinal direction of the discharge port of the casting die can be sufficiently controlled. Specifically, it is possible to suppress the solvent from being excessively reduced by evaporation before reaching the support. Therefore, it is considered that the solvent concentration at the end portion in the width direction of the cast film can be sufficiently increased, and the peeling failure at the end portion in the width direction of the film can be sufficiently suppressed. Therefore, it is possible to sufficiently suppress the occurrence of non-uniformity such as retardation and orientation based on defective peeling. Furthermore, the washing | cleaning of the support body performed when peeling defect generate | occur | produces can be reduced, and a resin film can be manufactured stably.
 また、前記樹脂フィルムの製造方法においては、下記式(2)を満たすことが好ましい。 Moreover, in the method for producing the resin film, it is preferable to satisfy the following formula (2).
  10-7 < W2 / W1 < 10-5  (2)
 (式中、W1は、前記溶剤の供給量[ml]を示し、W2は、前記溶剤の損失量[ml]を示す。)
10 −7 <W2 / W1 <10 −5 (2)
(W1 represents the supply amount [ml] of the solvent, and W2 represents the loss amount [ml] of the solvent.)
 上記の構成によれば、フィルムの剥離不良をより抑制することができる。このことは、流延ダイの吐出口の長手方向両端部から吐出された溶剤の蒸発をより制御できるためと考えられる。よって、流延膜の幅方向端部の溶媒濃度をより高めることができるためと考えられる。 According to said structure, the peeling defect of a film can be suppressed more. This is considered to be because the evaporation of the solvent discharged from both ends in the longitudinal direction of the discharge port of the casting die can be controlled more. Therefore, it is considered that the solvent concentration at the end in the width direction of the cast film can be further increased.
 また、前記樹脂フィルムの製造方法においては、前記透明性樹脂が、セルロースエステル系樹脂であり、前記溶剤が、メチレンクロライドを含むことが好ましい。 Further, in the method for producing the resin film, it is preferable that the transparent resin is a cellulose ester resin and the solvent contains methylene chloride.
 上記の構成によれば、皮膜形成やフィルムの剥離不良をより抑制することができる。このことは、吐出口から流下させた溶剤が、支持体上で流延膜に好適に浸透し、流延膜の幅方向端部の溶媒濃度をより高めることができるためと考えられる。さらに、剥離不良に基づくレタデーションや配向等の不均一性の発生を充分に抑制されるだけではなく、透明性樹脂が、セルロースエステル系樹脂であるので、透明性にも充分に優れた樹脂フィルムが得られる。 According to the above configuration, film formation and film peeling failure can be further suppressed. This is considered because the solvent flowed down from the discharge port suitably penetrates into the casting film on the support and can further increase the solvent concentration at the end in the width direction of the casting film. Furthermore, not only the occurrence of non-uniformity such as retardation and orientation based on poor peeling is sufficiently suppressed, but since the transparent resin is a cellulose ester resin, a resin film that is sufficiently excellent in transparency can be obtained. can get.
 また、本発明の他の一局面は、前記樹脂フィルムの製造方法によって得られたことを特徴とする樹脂フィルムである。 Another aspect of the present invention is a resin film obtained by the method for producing a resin film.
 上記の構成によれば、レタデーションや配向等の均一性が高い光学特性に優れた樹脂フィルムを提供することができる。このことは、流延ダイの吐出口の長手方向両端部付近に形成される皮膜による、ドープの流れの乱れの発生を抑制でき、製造時に発生しうる剥離不良に基づくレタデーションや配向等の不均一性の発生を充分に抑制されているためであると考えられる。 According to the above configuration, it is possible to provide a resin film excellent in optical characteristics with high uniformity such as retardation and orientation. This can suppress the occurrence of turbulence in the dope flow due to the film formed in the vicinity of both ends in the longitudinal direction of the discharge port of the casting die, and nonuniformity such as retardation and orientation based on separation failure that may occur during manufacturing. This is considered to be because the occurrence of sex is sufficiently suppressed.
 また、本発明の他の一局面は、偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備える偏光板であって、前記透明保護フィルムが、前記樹脂フィルムであることを特徴とする偏光板である。 Another aspect of the present invention is a polarizing plate comprising a polarizing element and a transparent protective film disposed on the surface of the polarizing element, wherein the transparent protective film is the resin film. This is a characteristic polarizing plate.
 上記の構成によれば、偏光板の保護フィルムとして、レタデーションや配向等の均一性が高い光学特性に優れた樹脂フィルムが適用されているので、例えば、液晶表示装置に適用した際に、コントラストの向上等の、液晶表示装置の高画質化を実現できる偏光板を提供することができる。 According to the above configuration, as a protective film for the polarizing plate, a resin film with high uniformity such as retardation and orientation and excellent optical characteristics is applied. For example, when applied to a liquid crystal display device, the contrast of It is possible to provide a polarizing plate that can improve the image quality of the liquid crystal display device such as improvement.
 また、本発明の他の一局面は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備える液晶表示装置であって、前記2枚の偏光板のうち少なくとも一方が、前記偏光板であることを特徴とする液晶表示装置である。 Another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates. Is a liquid crystal display device characterized by being the polarizing plate.
 上記の構成によれば、レタデーションや配向等の均一性が高い光学特性に優れた樹脂フィルムを備えた偏光板を用いるので、コントラスト等が向上された、高画質な液晶表示装置を提供することができる。 According to the above configuration, since a polarizing plate including a resin film with excellent uniformity and optical properties such as retardation and orientation is used, it is possible to provide a high-quality liquid crystal display device with improved contrast and the like. it can.
 本発明によれば、流延ダイの吐出口の長手方向両端部付近に皮膜が形成されることを抑制し、さらに、フィルムの剥離不良を抑制し、光学特性に優れた樹脂フィルムを安定して製造することができる樹脂フィルムの製造方法が提供される。また、前記製造方法によって得られた樹脂フィルム、前記樹脂フィルムを透明保護フィルムとして用いた偏光板、及び前記偏光板を備えた液晶表示装置が提供される。 According to the present invention, it is possible to suppress the formation of a film in the vicinity of both ends in the longitudinal direction of the discharge port of the casting die, further suppress the film peeling failure, and stabilize the resin film having excellent optical characteristics. A method for producing a resin film that can be produced is provided. Moreover, the resin film obtained by the said manufacturing method, the polarizing plate which used the said resin film as a transparent protective film, and the liquid crystal display device provided with the said polarizing plate are provided.

Claims (6)

  1.  透明性樹脂を含有する樹脂溶液を、走行する支持体上に流延ダイから流延して流延膜を形成する流延工程と、前記流延膜を前記支持体から剥離する剥離工程と、剥離した流延膜を乾燥させる乾燥工程とを備え、
     前記流延工程において、前記流延ダイの吐出口から前記樹脂溶液を吐出して、前記支持体上に流延するとともに、前記流延ダイの吐出口の長手方向両端部から前記透明性樹脂を溶解可能な溶剤を流下させ、
     下記式(1)を満たすことを特徴とする樹脂フィルムの製造方法。
      -5 < T2 - T1 < 5  (1)
     (式中、T1は、前記溶剤が前記吐出口から流下された直後の前記溶剤の温度[℃]を示し、T2は、前記溶剤が前記支持体に到達した時点の前記溶剤の温度[℃]を示す。)
    A casting step of casting a resin solution containing a transparent resin from a casting die on a traveling support to form a casting film; and a peeling step of peeling the casting film from the support; A drying process for drying the peeled cast film,
    In the casting step, the resin solution is discharged from the discharge port of the casting die and cast on the support, and the transparent resin is poured from both longitudinal ends of the discharge port of the casting die. Let down the soluble solvent,
    The manufacturing method of the resin film characterized by satisfy | filling following formula (1).
    −5 <T2−T1 <5 (1)
    (In the formula, T1 indicates the temperature [° C.] of the solvent immediately after the solvent flows down from the discharge port, and T2 indicates the temperature [° C.] of the solvent when the solvent reaches the support. Is shown.)
  2.  下記式(2)を満たすことを特徴とする請求項1記載の樹脂フィルムの製造方法。
      10-7 < W2 / W1 < 10-5  (2)
     (式中、W1は、前記溶剤の供給量[ml]を示し、W2は、前記溶剤の損失量[ml]を示す。)
    The method for producing a resin film according to claim 1, wherein the following formula (2) is satisfied.
    10 −7 <W2 / W1 <10 −5 (2)
    (W1 represents the supply amount [ml] of the solvent, and W2 represents the loss amount [ml] of the solvent.)
  3.  前記透明性樹脂が、セルロースエステル系樹脂であり、
     前記溶剤が、メチレンクロライドを含むことを特徴とする請求項1又は2に記載の樹脂フィルムの製造方法。
    The transparent resin is a cellulose ester resin,
    The method for producing a resin film according to claim 1, wherein the solvent contains methylene chloride.
  4.  請求項1~3のいずれか1項に記載の樹脂フィルムの製造方法によって得られたことを特徴とする樹脂フィルム。 A resin film obtained by the method for producing a resin film according to any one of claims 1 to 3.
  5.  偏光素子と、前記偏光素子の表面上に配置された透明保護フィルムとを備える偏光板であって、
     前記透明保護フィルムが、請求項4に記載の樹脂フィルムであることを特徴とする偏光板。
    A polarizing plate comprising a polarizing element and a transparent protective film disposed on the surface of the polarizing element,
    The said transparent protective film is a resin film of Claim 4, The polarizing plate characterized by the above-mentioned.
  6.  液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備える液晶表示装置であって、
     前記2枚の偏光板のうち少なくとも一方が、請求項5に記載の偏光板であることを特徴とする液晶表示装置。
    A liquid crystal display device comprising a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell,
    6. The liquid crystal display device according to claim 5, wherein at least one of the two polarizing plates is the polarizing plate according to claim 5.
PCT/JP2011/000230 2010-02-04 2011-01-18 Process for producing resin film, resin film, polarizer, and liquid-crystal display device WO2011096161A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552675A JP5692095B2 (en) 2010-02-04 2011-01-18 Manufacturing method of resin film, resin film, polarizing plate, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-023211 2010-02-04
JP2010023211 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011096161A1 true WO2011096161A1 (en) 2011-08-11

Family

ID=44355182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000230 WO2011096161A1 (en) 2010-02-04 2011-01-18 Process for producing resin film, resin film, polarizer, and liquid-crystal display device

Country Status (2)

Country Link
JP (1) JP5692095B2 (en)
WO (1) WO2011096161A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202811A (en) * 2012-03-27 2013-10-07 Fujifilm Corp Casting method, film manufacturing method, casing die, casting apparatus, and film production equipment
WO2016033626A3 (en) * 2014-09-04 2016-05-26 Berndorf Band Gmbh Device for film casting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208650A (en) * 1989-02-08 1990-08-20 Konica Corp Production of cellulose triacetate film
JP2687260B2 (en) * 1991-09-30 1997-12-08 富士写真フイルム株式会社 Solution casting method
JPH10258438A (en) * 1997-03-21 1998-09-29 Teijin Ltd Production of cast film
JP2002337173A (en) * 2000-07-24 2002-11-27 Fuji Photo Film Co Ltd Casting die for film casting, method of film casting and polarizing plate or the like
JP2005212193A (en) * 2004-01-28 2005-08-11 Konica Minolta Opto Inc Optical film and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208650A (en) * 1989-02-08 1990-08-20 Konica Corp Production of cellulose triacetate film
JP2687260B2 (en) * 1991-09-30 1997-12-08 富士写真フイルム株式会社 Solution casting method
JPH10258438A (en) * 1997-03-21 1998-09-29 Teijin Ltd Production of cast film
JP2002337173A (en) * 2000-07-24 2002-11-27 Fuji Photo Film Co Ltd Casting die for film casting, method of film casting and polarizing plate or the like
JP2005212193A (en) * 2004-01-28 2005-08-11 Konica Minolta Opto Inc Optical film and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202811A (en) * 2012-03-27 2013-10-07 Fujifilm Corp Casting method, film manufacturing method, casing die, casting apparatus, and film production equipment
WO2016033626A3 (en) * 2014-09-04 2016-05-26 Berndorf Band Gmbh Device for film casting

Also Published As

Publication number Publication date
JPWO2011096161A1 (en) 2013-06-10
JP5692095B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP4337345B2 (en) Polarizing plate and liquid crystal display device using the same
JP4686916B2 (en) Retardation film, method for producing the same, and composite polarizing plate
JP2009110012A (en) Method of producing cellulose ester film
JP5708654B2 (en) Manufacturing method of resin film, resin film, polarizing plate, and liquid crystal display device
JP6819604B2 (en) Polarizing plate, manufacturing method of polarizing plate and liquid crystal display device
JP4892794B2 (en) Solid for preparing cellulose ester solution, cellulose ester solution, method for producing cellulose ester film, cellulose ester film, polarizing plate and display device using the same
WO2012035837A1 (en) Production method and production system for optical display device
JP5845702B2 (en) Method for producing retardation film
JP5692095B2 (en) Manufacturing method of resin film, resin film, polarizing plate, and liquid crystal display device
JP2010184408A (en) Method for producing optical film, optical film, polarizing plate and liquid crystal display apparatus
JP5182508B2 (en) Manufacturing method of optical film
JP4228809B2 (en) Cellulose ester film, method for producing the same, and polarizing plate
JP5708655B2 (en) Resin film manufacturing method, casting die, resin film manufacturing apparatus, resin film, polarizing plate, and liquid crystal display device
JP6252581B2 (en) Manufacturing method of resin film
JP4730503B2 (en) Method for producing cellulose ester film
WO2016076057A1 (en) Resin film manufacturing method
JP2009075314A (en) Method of manufacturing retardation film, retardation film, polarizing plate using the same, and liquid crystal display device
JP5082998B2 (en) Manufacturing method of resin film
JP6217744B2 (en) Manufacturing method of resin film
JP5071547B2 (en) Method for producing retardation film
JP5682749B2 (en) Manufacturing method of optical film
JP2007249224A (en) Method for manufacturing protective film of polarizing plate
JPWO2009041298A1 (en) Anti-glare film and method for producing the same
JP2011022592A (en) Roll-like long polarizing plate
WO2012029599A1 (en) Resin film manufacturing method, resin film manufacturing device, resin film, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552675

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739513

Country of ref document: EP

Kind code of ref document: A1